Linux kernel
============
There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.
In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``. The formatted documentation can also be read online at:
https://www.kernel.org/doc/html/latest/
There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.
Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
code
Clone this repository
https://tangled.org/tjh.dev/kernel
git@gordian.tjh.dev:tjh.dev/kernel
For self-hosted knots, clone URLs may differ based on your setup.
Pull more Kbuild updates from Masahiro Yamada:
- fix randconfig to generate a sane .config
- rename hostprogs-y / always to hostprogs / always-y, which are more
natual syntax.
- optimize scripts/kallsyms
- fix yes2modconfig and mod2yesconfig
- make multiple directory targets ('make foo/ bar/') work
* tag 'kbuild-v5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kbuild: make multiple directory targets work
kconfig: Invalidate all symbols after changing to y or m.
kallsyms: fix type of kallsyms_token_table[]
scripts/kallsyms: change table to store (strcut sym_entry *)
scripts/kallsyms: rename local variables in read_symbol()
kbuild: rename hostprogs-y/always to hostprogs/always-y
kbuild: fix the document to use extra-y for vmlinux.lds
kconfig: fix broken dependency in randconfig-generated .config
Pull new zonefs file system from Damien Le Moal:
"Zonefs is a very simple file system exposing each zone of a zoned
block device as a file.
Unlike a regular file system with native zoned block device support
(e.g. f2fs or the on-going btrfs effort), zonefs does not hide the
sequential write constraint of zoned block devices to the user. As a
result, zonefs is not a POSIX compliant file system. Its goal is to
simplify the implementation of zoned block devices support in
applications by replacing raw block device file accesses with a richer
file based API, avoiding relying on direct block device file ioctls
which may be more obscure to developers.
One example of this approach is the implementation of LSM
(log-structured merge) tree structures (such as used in RocksDB and
LevelDB) on zoned block devices by allowing SSTables to be stored in a
zone file similarly to a regular file system rather than as a range of
sectors of a zoned device. The introduction of the higher level
construct "one file is one zone" can help reducing the amount of
changes needed in the application while at the same time allowing the
use of zoned block devices with various programming languages other
than C.
Zonefs IO management implementation uses the new iomap generic code.
Zonefs has been successfully tested using a functional test suite
(available with zonefs userland format tool on github) and a prototype
implementation of LevelDB on top of zonefs"
* tag 'zonefs-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal/zonefs:
zonefs: Add documentation
fs: New zonefs file system
Currently, the single-target build does not work when two
or more sub-directories are given:
$ make fs/ kernel/ lib/
CALL scripts/checksyscalls.sh
CALL scripts/atomic/check-atomics.sh
DESCEND objtool
make[2]: Nothing to be done for 'kernel/'.
make[2]: Nothing to be done for 'fs/'.
make[2]: Nothing to be done for 'lib/'.
Make it work properly.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
In order to allow the GICv4 code to link properly on 32bit ARM,
make sure we don't use 64bit divisions when it isn't strictly
necessary.
Fixes: 4e6437f12d6e ("irqchip/gic-v4.1: Ensure L2 vPE table is allocated at RD level")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the new file Documentation/filesystems/zonefs.txt to document
zonefs principles and user-space tool usage.
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Since commit 89b9060987d9 ("kconfig: Add yes2modconfig and
mod2yesconfig targets.") forgot to clear SYMBOL_VALID bit after
changing to y or m, these targets did not save the changes.
Call sym_clear_all_valid() so that all symbols are revalidated.
Fixes: 89b9060987d9 ("kconfig: Add yes2modconfig and mod2yesconfig targets.")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Pull cifs fixes from Steve French:
"13 cifs/smb3 patches, most from testing at the SMB3 plugfest this week:
- Important fix for multichannel and for modefromsid mounts.
- Two reconnect fixes
- Addition of SMB3 change notify support
- Backup tools fix
- A few additional minor debug improvements (tracepoints and
additional logging found useful during testing this week)"
* tag '5.6-rc-smb3-plugfest-patches' of git://git.samba.org/sfrench/cifs-2.6:
smb3: Add defines for new information level, FileIdInformation
smb3: print warning once if posix context returned on open
smb3: add one more dynamic tracepoint missing from strict fsync path
cifs: fix mode bits from dir listing when mounted with modefromsid
cifs: fix channel signing
cifs: add SMB3 change notification support
cifs: make multichannel warning more visible
cifs: fix soft mounts hanging in the reconnect code
cifs: Add tracepoints for errors on flush or fsync
cifs: log warning message (once) if out of disk space
cifs: fail i/o on soft mounts if sessionsetup errors out
smb3: fix problem with null cifs super block with previous patch
SMB3: Backup intent flag missing from some more ops
zonefs is a very simple file system exposing each zone of a zoned block
device as a file. Unlike a regular file system with zoned block device
support (e.g. f2fs), zonefs does not hide the sequential write
constraint of zoned block devices to the user. Files representing
sequential write zones of the device must be written sequentially
starting from the end of the file (append only writes).
As such, zonefs is in essence closer to a raw block device access
interface than to a full featured POSIX file system. The goal of zonefs
is to simplify the implementation of zoned block device support in
applications by replacing raw block device file accesses with a richer
file API, avoiding relying on direct block device file ioctls which may
be more obscure to developers. One example of this approach is the
implementation of LSM (log-structured merge) tree structures (such as
used in RocksDB and LevelDB) on zoned block devices by allowing SSTables
to be stored in a zone file similarly to a regular file system rather
than as a range of sectors of a zoned device. The introduction of the
higher level construct "one file is one zone" can help reducing the
amount of changes needed in the application as well as introducing
support for different application programming languages.
Zonefs on-disk metadata is reduced to an immutable super block to
persistently store a magic number and optional feature flags and
values. On mount, zonefs uses blkdev_report_zones() to obtain the device
zone configuration and populates the mount point with a static file tree
solely based on this information. E.g. file sizes come from the device
zone type and write pointer offset managed by the device itself.
The zone files created on mount have the following characteristics.
1) Files representing zones of the same type are grouped together
under a common sub-directory:
* For conventional zones, the sub-directory "cnv" is used.
* For sequential write zones, the sub-directory "seq" is used.
These two directories are the only directories that exist in zonefs.
Users cannot create other directories and cannot rename nor delete
the "cnv" and "seq" sub-directories.
2) The name of zone files is the number of the file within the zone
type sub-directory, in order of increasing zone start sector.
3) The size of conventional zone files is fixed to the device zone size.
Conventional zone files cannot be truncated.
4) The size of sequential zone files represent the file's zone write
pointer position relative to the zone start sector. Truncating these
files is allowed only down to 0, in which case, the zone is reset to
rewind the zone write pointer position to the start of the zone, or
up to the zone size, in which case the file's zone is transitioned
to the FULL state (finish zone operation).
5) All read and write operations to files are not allowed beyond the
file zone size. Any access exceeding the zone size is failed with
the -EFBIG error.
6) Creating, deleting, renaming or modifying any attribute of files and
sub-directories is not allowed.
7) There are no restrictions on the type of read and write operations
that can be issued to conventional zone files. Buffered, direct and
mmap read & write operations are accepted. For sequential zone files,
there are no restrictions on read operations, but all write
operations must be direct IO append writes. mmap write of sequential
files is not allowed.
Several optional features of zonefs can be enabled at format time.
* Conventional zone aggregation: ranges of contiguous conventional
zones can be aggregated into a single larger file instead of the
default one file per zone.
* File ownership: The owner UID and GID of zone files is by default 0
(root) but can be changed to any valid UID/GID.
* File access permissions: the default 640 access permissions can be
changed.
The mkzonefs tool is used to format zoned block devices for use with
zonefs. This tool is available on Github at:
git@github.com:damien-lemoal/zonefs-tools.git.
zonefs-tools also includes a test suite which can be run against any
zoned block device, including null_blk block device created with zoned
mode.
Example: the following formats a 15TB host-managed SMR HDD with 256 MB
zones with the conventional zones aggregation feature enabled.
$ sudo mkzonefs -o aggr_cnv /dev/sdX
$ sudo mount -t zonefs /dev/sdX /mnt
$ ls -l /mnt/
total 0
dr-xr-xr-x 2 root root 1 Nov 25 13:23 cnv
dr-xr-xr-x 2 root root 55356 Nov 25 13:23 seq
The size of the zone files sub-directories indicate the number of files
existing for each type of zones. In this example, there is only one
conventional zone file (all conventional zones are aggregated under a
single file).
$ ls -l /mnt/cnv
total 137101312
-rw-r----- 1 root root 140391743488 Nov 25 13:23 0
This aggregated conventional zone file can be used as a regular file.
$ sudo mkfs.ext4 /mnt/cnv/0
$ sudo mount -o loop /mnt/cnv/0 /data
The "seq" sub-directory grouping files for sequential write zones has
in this example 55356 zones.
$ ls -lv /mnt/seq
total 14511243264
-rw-r----- 1 root root 0 Nov 25 13:23 0
-rw-r----- 1 root root 0 Nov 25 13:23 1
-rw-r----- 1 root root 0 Nov 25 13:23 2
...
-rw-r----- 1 root root 0 Nov 25 13:23 55354
-rw-r----- 1 root root 0 Nov 25 13:23 55355
For sequential write zone files, the file size changes as data is
appended at the end of the file, similarly to any regular file system.
$ dd if=/dev/zero of=/mnt/seq/0 bs=4K count=1 conv=notrunc oflag=direct
1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.000452219 s, 9.1 MB/s
$ ls -l /mnt/seq/0
-rw-r----- 1 root root 4096 Nov 25 13:23 /mnt/seq/0
The written file can be truncated to the zone size, preventing any
further write operation.
$ truncate -s 268435456 /mnt/seq/0
$ ls -l /mnt/seq/0
-rw-r----- 1 root root 268435456 Nov 25 13:49 /mnt/seq/0
Truncation to 0 size allows freeing the file zone storage space and
restart append-writes to the file.
$ truncate -s 0 /mnt/seq/0
$ ls -l /mnt/seq/0
-rw-r----- 1 root root 0 Nov 25 13:49 /mnt/seq/0
Since files are statically mapped to zones on the disk, the number of
blocks of a file as reported by stat() and fstat() indicates the size
of the file zone.
$ stat /mnt/seq/0
File: /mnt/seq/0
Size: 0 Blocks: 524288 IO Block: 4096 regular empty file
Device: 870h/2160d Inode: 50431 Links: 1
Access: (0640/-rw-r-----) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2019-11-25 13:23:57.048971997 +0900
Modify: 2019-11-25 13:52:25.553805765 +0900
Change: 2019-11-25 13:52:25.553805765 +0900
Birth: -
The number of blocks of the file ("Blocks") in units of 512B blocks
gives the maximum file size of 524288 * 512 B = 256 MB, corresponding
to the device zone size in this example. Of note is that the "IO block"
field always indicates the minimum IO size for writes and corresponds
to the device physical sector size.
This code contains contributions from:
* Johannes Thumshirn <jthumshirn@suse.de>,
* Darrick J. Wong <darrick.wong@oracle.com>,
* Christoph Hellwig <hch@lst.de>,
* Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> and
* Ting Yao <tingyao@hust.edu.cn>.
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
kallsyms_token_table[] only contains ASCII characters. It should be
char instead of u8.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Pull vboxfs from Al Viro:
"This is the VirtualBox guest shared folder support by Hans de Goede,
with fixups for fs_parse folded in to avoid bisection hazards from
those API changes..."
* 'work.vboxsf' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Add VirtualBox guest shared folder (vboxsf) support
See MS-FSCC 2.4.43. Valid to be quried from most
Windows servers (among others).
Signed-off-by: Steve French <stfrench@microsoft.com>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
The symbol table is extended every 10000 addition by using realloc(),
where data copy might occur to the new buffer.
To decrease the amount of possible data copy, let's change the table
to store the pointer.
The symbol type + symbol name part is appended at the end of
(struct sym_entry), and allocated together with the struct body.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>