Linux kernel
============
There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.
In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``. The formatted documentation can also be read online at:
https://www.kernel.org/doc/html/latest/
There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.
Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
code
Clone this repository
https://tangled.org/tjh.dev/kernel
git@gordian.tjh.dev:tjh.dev/kernel
For self-hosted knots, clone URLs may differ based on your setup.
Pull x86 fixes from Borislav Petkov:
- Mark serialize() noinstr so that it can be used from instrumentation-
free code
- Make sure FRED's RSP0 MSR is synchronized with its corresponding
per-CPU value in order to avoid double faults in hotplug scenarios
- Disable EXECMEM_ROX on x86 for now because it didn't receive proper
x86 maintainers review, went in and broke a bunch of things
* tag 'x86_urgent_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Make serialize() always_inline
x86/fred: Fix the FRED RSP0 MSR out of sync with its per-CPU cache
x86: Disable EXECMEM_ROX support
Pull timer fixes from Borislav Petkov:
- Reset hrtimers correctly when a CPU hotplug state traversal happens
"half-ways" and leaves hrtimers not (re-)initialized properly
- Annotate accesses to a timer group's ignore flag to prevent KCSAN
from raising data_race warnings
- Make sure timer group initialization is visible to timer tree walkers
and avoid a hypothetical race
- Fix another race between CPU hotplug and idle entry/exit where timers
on a fully idle system are getting ignored
- Fix a case where an ignored signal is still being handled which it
shouldn't be
* tag 'timers_urgent_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hrtimers: Handle CPU state correctly on hotplug
timers/migration: Annotate accesses to ignore flag
timers/migration: Enforce group initialization visibility to tree walkers
timers/migration: Fix another race between hotplug and idle entry/exit
signal/posixtimers: Handle ignore/blocked sequences correctly
In order to allow serialize() to be used from noinstr code, make it
__always_inline.
Fixes: 0ef8047b737d ("x86/static-call: provide a way to do very early static-call updates")
Closes: https://lore.kernel.org/oe-kbuild-all/202412181756.aJvzih2K-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20241218100918.22167-1-jgross@suse.com
Pull irq fixes from Borislav Petkov:
- Fix an OF node leak in irqchip init's error handling path
- Fix sunxi systems to wake up from suspend with an NMI by
pressing the power button
- Do not spuriously enable interrupts in gic-v3 in a nested
interrupts-off section
- Make sure gic-v3 handles properly a failure to enter a
low power state
* tag 'irq_urgent_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip: Plug a OF node reference leak in platform_irqchip_probe()
irqchip/sunxi-nmi: Add missing SKIP_WAKE flag
irqchip/gic-v3-its: Don't enable interrupts in its_irq_set_vcpu_affinity()
irqchip/gic-v3: Handle CPU_PM_ENTER_FAILED correctly
Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway
through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to
CPUHP_ONLINE:
Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set
to 1 throughout. However, during a CPU unplug operation, the tick and the
clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online
state, for instance CFS incorrectly assumes that the hrtick is already
active, and the chance of the clockevent device to transition to oneshot
mode is also lost forever for the CPU, unless it goes back to a lower state
than CPUHP_HRTIMERS_PREPARE once.
This round-trip reveals another issue; cpu_base.online is not set to 1
after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer().
Aside of that, the bulk of the per CPU state is not reset either, which
means there are dangling pointers in the worst case.
Address this by adding a corresponding startup() callback, which resets the
stale per CPU state and sets the online flag.
[ tglx: Make the new callback unconditionally available, remove the online
modification in the prepare() callback and clear the remaining
state in the starting callback instead of the prepare callback ]
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Koichiro Den <koichiro.den@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20241220134421.3809834-1-koichiro.den@canonical.com
The FRED RSP0 MSR is only used for delivering events when running
userspace. Linux leverages this property to reduce expensive MSR
writes and optimize context switches. The kernel only writes the
MSR when about to run userspace *and* when the MSR has actually
changed since the last time userspace ran.
This optimization is implemented by maintaining a per-CPU cache of
FRED RSP0 and then checking that against the value for the top of
current task stack before running userspace.
However cpu_init_fred_exceptions() writes the MSR without updating
the per-CPU cache. This means that the kernel might return to
userspace with MSR_IA32_FRED_RSP0==0 when it needed to point to the
top of current task stack. This would induce a double fault (#DF),
which is bad.
A context switch after cpu_init_fred_exceptions() can paper over
the issue since it updates the cached value. That evidently
happens most of the time explaining how this bug got through.
Fix the bug through resynchronizing the FRED RSP0 MSR with its
per-CPU cache in cpu_init_fred_exceptions().
Fixes: fe85ee391966 ("x86/entry: Set FRED RSP0 on return to userspace instead of context switch")
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20250110174639.1250829-1-xin%40zytor.com
Pull scheduler fixes from Borislav Petkov:
- Do not adjust the weight of empty group entities and avoid
scheduling artifacts
- Avoid scheduling lag by computing lag properly and thus address
an EEVDF entity placement issue
* tag 'sched_urgent_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix update_cfs_group() vs DELAY_DEQUEUE
sched/fair: Fix EEVDF entity placement bug causing scheduling lag
platform_irqchip_probe() leaks a OF node when irq_init_cb() fails. Fix it
by declaring par_np with the __free(device_node) cleanup construct.
This bug was found by an experimental static analysis tool that I am
developing.
Fixes: f8410e626569 ("irqchip: Add IRQCHIP_PLATFORM_DRIVER_BEGIN/END and IRQCHIP_MATCH helper macros")
Signed-off-by: Joe Hattori <joe@pf.is.s.u-tokyo.ac.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20241215033945.3414223-1-joe@pf.is.s.u-tokyo.ac.jp
The group's ignore flag is:
_ read under the group's lock (idle entry, remote expiry)
_ turned on/off under the group's lock (idle entry, remote expiry)
_ turned on locklessly on idle exit
When idle entry or remote expiry clear the "ignore" flag of a group, the
operation must be synchronized against other concurrent idle entry or
remote expiry to make sure the related group timer is never missed. To
enforce this synchronization, both "ignore" clear and read are
performed under the group lock.
On the contrary, whether idle entry or remote expiry manage to observe
the "ignore" flag turned on by a CPU exiting idle is a matter of
optimization. If that flag set is missed or cleared concurrently, the
worst outcome is a migrator wasting time remotely handling a "ghost"
timer. This is why the ignore flag can be set locklessly.
Unfortunately, the related lockless accesses are bare and miss
appropriate annotations. KCSAN rightfully complains:
BUG: KCSAN: data-race in __tmigr_cpu_activate / print_report
write to 0xffff88842fc28004 of 1 bytes by task 0 on cpu 0:
__tmigr_cpu_activate
tmigr_cpu_activate
timer_clear_idle
tick_nohz_restart_sched_tick
tick_nohz_idle_exit
do_idle
cpu_startup_entry
kernel_init
do_initcalls
clear_bss
reserve_bios_regions
common_startup_64
read to 0xffff88842fc28004 of 1 bytes by task 0 on cpu 1:
print_report
kcsan_report_known_origin
kcsan_setup_watchpoint
tmigr_next_groupevt
tmigr_update_events
tmigr_inactive_up
__walk_groups+0x50/0x77
walk_groups
__tmigr_cpu_deactivate
tmigr_cpu_deactivate
__get_next_timer_interrupt
timer_base_try_to_set_idle
tick_nohz_stop_tick
tick_nohz_idle_stop_tick
cpuidle_idle_call
do_idle
Although the relevant accesses could be marked as data_race(), the
"ignore" flag being read several times within the same
tmigr_update_events() function is confusing and error prone. Prefer
reading it once in that function and make use of similar/paired accesses
elsewhere with appropriate comments when necessary.
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250114231507.21672-4-frederic@kernel.org
Closes: https://lore.kernel.org/oe-lkp/202501031612.62e0c498-lkp@intel.com
The whole module_writable_address() nonsense made a giant mess of
alternative.c, not to mention it still contains bugs -- notable some of the
CFI variants crash and burn.
Mike has been working on patches to clean all this up again, but given the
current state of things, this stuff just isn't ready.
Disable for now, lets try again next cycle.
Fixes: 5185e7f9f3bd ("x86/module: enable ROX caches for module text on 64 bit")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250113112934.GA8385@noisy.programming.kicks-ass.net
Pull tracing fix from Steven Rostedt:
"Fix regression in GFP output in trace events
It was reported that the GFP flags in trace events went from human
readable to just their hex values:
gfp_flags=GFP_HIGHUSER_MOVABLE|__GFP_COMP to gfp_flags=0x140cca
This was caused by a change that added the use of enums in calculating
the GFP flags.
As defines get translated into their values in the trace event format
files, the user space tooling could easily convert the GFP flags into
their symbols via the __print_flags() helper macro.
The problem is that enums do not get converted, and the names of the
enums show up in the format files and user space tooling cannot
translate them.
Add TRACE_DEFINE_ENUM() around the enums used for GFP flags which is
the tracing infrastructure macro that informs the tracing subsystem
what the values for enums and it can then expose that to user space"
* tag 'trace-v6.13-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: gfp: Fix the GFP enum values shown for user space tracing tools
Normally dequeue_entities() will continue to dequeue an empty group entity;
except DELAY_DEQUEUE changes things -- it retains empty entities such that they
might continue to compete and burn off some lag.
However, doing this results in update_cfs_group() re-computing the cgroup
weight 'slice' for an empty group, which it (rightly) figures isn't much at
all. This in turn means that the delayed entity is not competing at the
expected weight. Worse, the very low weight causes its lag to be inflated,
which combined with avg_vruntime() using scale_load_down(), leads to artifacts.
As such, don't adjust the weight for empty group entities and let them compete
at their original weight.
Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250110115720.GA17405@noisy.programming.kicks-ass.net
Some boards with Allwinner SoCs connect the PMIC's IRQ pin to the SoC's NMI
pin instead of a normal GPIO. Since the power key is connected to the PMIC,
and people expect to wake up a suspended system via this key, the NMI IRQ
controller must stay alive when the system goes into suspend.
Add the SKIP_WAKE flag to prevent the sunxi NMI controller from going to
sleep, so that the power key can wake up those systems.
[ tglx: Fixed up coding style ]
Signed-off-by: Philippe Simons <simons.philippe@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250112123402.388520-1-simons.philippe@gmail.com
Commit 2522c84db513 ("timers/migration: Fix another race between hotplug
and idle entry/exit") fixed yet another race between idle exit and CPU
hotplug up leading to a wrong "0" value migrator assigned to the top
level. However there is yet another situation that remains unhandled:
[GRP0:0]
migrator = TMIGR_NONE
active = NONE
groupmask = 1
/ \ \
0 1 2..7
idle idle idle
0) The system is fully idle.
[GRP0:0]
migrator = CPU 0
active = CPU 0
groupmask = 1
/ \ \
0 1 2..7
active idle idle
1) CPU 0 is activating. It has done the cmpxchg on the top's ->migr_state
but it hasn't yet returned to __walk_groups().
[GRP0:0]
migrator = CPU 0
active = CPU 0, CPU 1
groupmask = 1
/ \ \
0 1 2..7
active active idle
2) CPU 1 is activating. CPU 0 stays the migrator (still stuck in
__walk_groups(), delayed by #VMEXIT for example).
[GRP1:0]
migrator = TMIGR_NONE
active = NONE
groupmask = 1
/ \
[GRP0:0] [GRP0:1]
migrator = CPU 0 migrator = TMIGR_NONE
active = CPU 0, CPU1 active = NONE
groupmask = 1 groupmask = 2
/ \ \
0 1 2..7 8
active active idle !online
3) CPU 8 is preparing to boot. CPUHP_TMIGR_PREPARE is being ran by CPU 1
which has created the GRP0:1 and the new top GRP1:0 connected to GRP0:1
and GRP0:0. CPU 1 hasn't yet propagated its activation up to GRP1:0.
[GRP1:0]
migrator = GRP0:0
active = GRP0:0
groupmask = 1
/ \
[GRP0:0] [GRP0:1]
migrator = CPU 0 migrator = TMIGR_NONE
active = CPU 0, CPU1 active = NONE
groupmask = 1 groupmask = 2
/ \ \
0 1 2..7 8
active active idle !online
4) CPU 0 finally resumed after its #VMEXIT. It's in __walk_groups()
returning from tmigr_cpu_active(). The new top GRP1:0 is visible and
fetched and the pre-initialized groupmask of GRP0:0 is also visible.
As a result tmigr_active_up() is called to GRP1:0 with GRP0:0 as active
and migrator. CPU 0 is returning to __walk_groups() but suffers again
a #VMEXIT.
[GRP1:0]
migrator = GRP0:0
active = GRP0:0
groupmask = 1
/ \
[GRP0:0] [GRP0:1]
migrator = CPU 0 migrator = TMIGR_NONE
active = CPU 0, CPU1 active = NONE
groupmask = 1 groupmask = 2
/ \ \
0 1 2..7 8
active active idle !online
5) CPU 1 propagates its activation of GRP0:0 to GRP1:0. This has no
effect since CPU 0 did it already.
[GRP1:0]
migrator = GRP0:0
active = GRP0:0, GRP0:1
groupmask = 1
/ \
[GRP0:0] [GRP0:1]
migrator = CPU 0 migrator = CPU 8
active = CPU 0, CPU1 active = CPU 8
groupmask = 1 groupmask = 2
/ \ \ \
0 1 2..7 8
active active idle active
6) CPU 1 links CPU 8 to its group. CPU 8 boots and goes through
CPUHP_AP_TMIGR_ONLINE which propagates activation.
[GRP2:0]
migrator = TMIGR_NONE
active = NONE
groupmask = 1
/ \
[GRP1:0] [GRP1:1]
migrator = GRP0:0 migrator = TMIGR_NONE
active = GRP0:0, GRP0:1 active = NONE
groupmask = 1 groupmask = 2
/ \
[GRP0:0] [GRP0:1] [GRP0:2]
migrator = CPU 0 migrator = CPU 8 migrator = TMIGR_NONE
active = CPU 0, CPU1 active = CPU 8 active = NONE
groupmask = 1 groupmask = 2 groupmask = 0
/ \ \ \
0 1 2..7 8 64
active active idle active !online
7) CPU 64 is booting. CPUHP_TMIGR_PREPARE is being ran by CPU 1
which has created the GRP1:1, GRP0:2 and the new top GRP2:0 connected to
GRP1:1 and GRP1:0. CPU 1 hasn't yet propagated its activation up to
GRP2:0.
[GRP2:0]
migrator = 0 (!!!)
active = NONE
groupmask = 1
/ \
[GRP1:0] [GRP1:1]
migrator = GRP0:0 migrator = TMIGR_NONE
active = GRP0:0, GRP0:1 active = NONE
groupmask = 1 groupmask = 2
/ \
[GRP0:0] [GRP0:1] [GRP0:2]
migrator = CPU 0 migrator = CPU 8 migrator = TMIGR_NONE
active = CPU 0, CPU1 active = CPU 8 active = NONE
groupmask = 1 groupmask = 2 groupmask = 0
/ \ \ \
0 1 2..7 8 64
active active idle active !online
8) CPU 0 finally resumed after its #VMEXIT. It's in __walk_groups()
returning from tmigr_cpu_active(). The new top GRP2:0 is visible and
fetched but the pre-initialized groupmask of GRP1:0 is not because no
ordering made its initialization visible. As a result tmigr_active_up()
may be called to GRP2:0 with a "0" child's groumask. Leaving the timers
ignored for ever when the system is fully idle.
The race is highly theoretical and perhaps impossible in practice but
the groupmask of the child is not the only concern here as the whole
initialization of the child is not guaranteed to be visible to any
tree walker racing against hotplug (idle entry/exit, remote handling,
etc...). Although the current code layout seem to be resilient to such
hazards, this doesn't tell much about the future.
Fix this with enforcing address dependency between group initialization
and the write/read to the group's parent's pointer. Fortunately that
doesn't involve any barrier addition in the fast paths.
Fixes: 10a0e6f3d3db ("timers/migration: Move hierarchy setup into cpuhotplug prepare callback")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20250114231507.21672-3-frederic@kernel.org
Pull devicetree fixes from Rob Herring:
"Another fix and testcase to avoid the newly added WARN in the case of
non-translatable addresses"
* tag 'devicetree-fixes-for-6.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux:
of/address: Fix WARN when attempting translating non-translatable addresses
of/unittest: Add test that of_address_to_resource() fails on non-translatable address