Linux kernel
============
There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.
In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``. The formatted documentation can also be read online at:
https://www.kernel.org/doc/html/latest/
There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.
Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
code
Clone this repository
https://tangled.org/tjh.dev/kernel
git@gordian.tjh.dev:tjh.dev/kernel
For self-hosted knots, clone URLs may differ based on your setup.
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Take care of faults occuring between the PARange and IPA range by
injecting an exception
- Fix S2 faults taken from a host EL0 in protected mode
- Work around Oops caused by a PMU access from a 32bit guest when PMU
has been created. This is a temporary bodge until we fix it for
good.
x86:
- Fix potential races when walking host page table
- Fix shadow page table leak when KVM runs nested
- Work around bug in userspace when KVM synthesizes leaf 0x80000021
on older (pre-EPYC) or Intel processors
Generic (but affects only RISC-V):
- Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: work around QEMU issue with synthetic CPUID leaves
Revert "x86/mm: Introduce lookup_address_in_mm()"
KVM: x86/mmu: fix potential races when walking host page table
KVM: fix bad user ABI for KVM_EXIT_SYSTEM_EVENT
KVM: x86/mmu: Do not create SPTEs for GFNs that exceed host.MAXPHYADDR
KVM: arm64: Inject exception on out-of-IPA-range translation fault
KVM/arm64: Don't emulate a PMU for 32-bit guests if feature not set
KVM: arm64: Handle host stage-2 faults from 32-bit EL0
Pull x86 fixes from Borislav Petkov:
- A fix to disable PCI/MSI[-X] masking for XEN_HVM guests as that is
solely controlled by the hypervisor
- A build fix to make the function prototype (__warn()) as visible as
the definition itself
- A bunch of objtool annotation fixes which have accumulated over time
- An ORC unwinder fix to handle bad input gracefully
- Well, we thought the microcode gets loaded in time in order to
restore the microcode-emulated MSRs but we thought wrong. So there's
a fix for that to have the ordering done properly
- Add new Intel model numbers
- A spelling fix
* tag 'x86_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pci/xen: Disable PCI/MSI[-X] masking for XEN_HVM guests
bug: Have __warn() prototype defined unconditionally
x86/Kconfig: fix the spelling of 'becoming' in X86_KERNEL_IBT config
objtool: Use offstr() to print address of missing ENDBR
objtool: Print data address for "!ENDBR" data warnings
x86/xen: Add ANNOTATE_NOENDBR to startup_xen()
x86/uaccess: Add ENDBR to __put_user_nocheck*()
x86/retpoline: Add ANNOTATE_NOENDBR for retpolines
x86/static_call: Add ANNOTATE_NOENDBR to static call trampoline
objtool: Enable unreachable warnings for CLANG LTO
x86,objtool: Explicitly mark idtentry_body()s tail REACHABLE
x86,objtool: Mark cpu_startup_entry() __noreturn
x86,xen,objtool: Add UNWIND hint
lib/strn*,objtool: Enforce user_access_begin() rules
MAINTAINERS: Add x86 unwinding entry
x86/unwind/orc: Recheck address range after stack info was updated
x86/cpu: Load microcode during restore_processor_state()
x86/cpu: Add new Alderlake and Raptorlake CPU model numbers
Synthesizing AMD leaves up to 0x80000021 caused problems with QEMU,
which assumes the *host* CPUID[0x80000000].EAX is higher or equal
to what KVM_GET_SUPPORTED_CPUID reports.
This causes QEMU to issue bogus host CPUIDs when preparing the input
to KVM_SET_CPUID2. It can even get into an infinite loop, which is
only terminated by an abort():
cpuid_data is full, no space for cpuid(eax:0x8000001d,ecx:0x3e)
To work around this, only synthesize those leaves if 0x8000001d exists
on the host. The synthetic 0x80000021 leaf is mostly useful on Zen2,
which satisfies the condition.
Fixes: f144c49e8c39 ("KVM: x86: synthesize CPUID leaf 0x80000021h if useful")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull objtool fixes from Borislav Petkov:
"A bunch of objtool fixes to improve unwinding, sibling call detection,
fallthrough detection and relocation handling of weak symbols when the
toolchain strips section symbols"
* tag 'objtool_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Fix code relocs vs weak symbols
objtool: Fix type of reloc::addend
objtool: Fix function fallthrough detection for vmlinux
objtool: Fix sibling call detection in alternatives
objtool: Don't set 'jump_dest' for sibling calls
x86/uaccess: Don't jump between functions
When a XEN_HVM guest uses the XEN PIRQ/Eventchannel mechanism, then
PCI/MSI[-X] masking is solely controlled by the hypervisor, but contrary to
XEN_PV guests this does not disable PCI/MSI[-X] masking in the PCI/MSI
layer.
This can lead to a situation where the PCI/MSI layer masks an MSI[-X]
interrupt and the hypervisor grants the write despite the fact that it
already requested the interrupt. As a consequence interrupt delivery on the
affected device is not happening ever.
Set pci_msi_ignore_mask to prevent that like it's done for XEN_PV guests
already.
Fixes: 809f9267bbab ("xen: map MSIs into pirqs")
Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reported-by: Dusty Mabe <dustymabe@redhat.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Noah Meyerhans <noahm@debian.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87tuaduxj5.ffs@tglx
Drop lookup_address_in_mm() now that KVM is providing it's own variant
of lookup_address_in_pgd() that is safe for use with user addresses, e.g.
guards against page tables being torn down. A variant that provides a
non-init mm is inherently dangerous and flawed, as the only reason to use
an mm other than init_mm is to walk a userspace mapping, and
lookup_address_in_pgd() does not play nice with userspace mappings, e.g.
doesn't disable IRQs to block TLB shootdowns and doesn't use READ_ONCE()
to ensure an upper level entry isn't converted to a huge page between
checking the PAGE_SIZE bit and grabbing the address of the next level
down.
This reverts commit 13c72c060f1ba6f4eddd7b1c4f52a8aded43d6d9.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <YmwIi3bXr/1yhYV/@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull irq fix from Borislav Petkov:
- Fix locking when accessing device MSI descriptors
* tag 'irq_urgent_for_v5.18_rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
bus: fsl-mc-msi: Fix MSI descriptor mutex lock for msi_first_desc()
Occasionally objtool driven code patching (think .static_call_sites
.retpoline_sites etc..) goes sideways and it tries to patch an
instruction that doesn't match.
Much head-scatching and cursing later the problem is as outlined below
and affects every section that objtool generates for us, very much
including the ORC data. The below uses .static_call_sites because it's
convenient for demonstration purposes, but as mentioned the ORC
sections, .retpoline_sites and __mount_loc are all similarly affected.
Consider:
foo-weak.c:
extern void __SCT__foo(void);
__attribute__((weak)) void foo(void)
{
return __SCT__foo();
}
foo.c:
extern void __SCT__foo(void);
extern void my_foo(void);
void foo(void)
{
my_foo();
return __SCT__foo();
}
These generate the obvious code
(gcc -O2 -fcf-protection=none -fno-asynchronous-unwind-tables -c foo*.c):
foo-weak.o:
0000000000000000 <foo>:
0: e9 00 00 00 00 jmpq 5 <foo+0x5> 1: R_X86_64_PLT32 __SCT__foo-0x4
foo.o:
0000000000000000 <foo>:
0: 48 83 ec 08 sub $0x8,%rsp
4: e8 00 00 00 00 callq 9 <foo+0x9> 5: R_X86_64_PLT32 my_foo-0x4
9: 48 83 c4 08 add $0x8,%rsp
d: e9 00 00 00 00 jmpq 12 <foo+0x12> e: R_X86_64_PLT32 __SCT__foo-0x4
Now, when we link these two files together, you get something like
(ld -r -o foos.o foo-weak.o foo.o):
foos.o:
0000000000000000 <foo-0x10>:
0: e9 00 00 00 00 jmpq 5 <foo-0xb> 1: R_X86_64_PLT32 __SCT__foo-0x4
5: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)
f: 90 nop
0000000000000010 <foo>:
10: 48 83 ec 08 sub $0x8,%rsp
14: e8 00 00 00 00 callq 19 <foo+0x9> 15: R_X86_64_PLT32 my_foo-0x4
19: 48 83 c4 08 add $0x8,%rsp
1d: e9 00 00 00 00 jmpq 22 <foo+0x12> 1e: R_X86_64_PLT32 __SCT__foo-0x4
Noting that ld preserves the weak function text, but strips the symbol
off of it (hence objdump doing that funny negative offset thing). This
does lead to 'interesting' unused code issues with objtool when ran on
linked objects, but that seems to be working (fingers crossed).
So far so good.. Now lets consider the objtool static_call output
section (readelf output, old binutils):
foo-weak.o:
Relocation section '.rela.static_call_sites' at offset 0x2c8 contains 1 entry:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 .text + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foo.o:
Relocation section '.rela.static_call_sites' at offset 0x310 contains 2 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 .text + d
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foos.o:
Relocation section '.rela.static_call_sites' at offset 0x430 contains 4 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000100000002 R_X86_64_PC32 0000000000000000 .text + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
0000000000000008 0000000100000002 R_X86_64_PC32 0000000000000000 .text + 1d
000000000000000c 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
So we have two patch sites, one in the dead code of the weak foo and one
in the real foo. All is well.
*HOWEVER*, when the toolchain strips unused section symbols it
generates things like this (using new enough binutils):
foo-weak.o:
Relocation section '.rela.static_call_sites' at offset 0x2c8 contains 1 entry:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 foo + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foo.o:
Relocation section '.rela.static_call_sites' at offset 0x310 contains 2 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000200000002 R_X86_64_PC32 0000000000000000 foo + d
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
foos.o:
Relocation section '.rela.static_call_sites' at offset 0x430 contains 4 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
0000000000000000 0000000100000002 R_X86_64_PC32 0000000000000000 foo + 0
0000000000000004 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
0000000000000008 0000000100000002 R_X86_64_PC32 0000000000000000 foo + d
000000000000000c 0000000d00000002 R_X86_64_PC32 0000000000000000 __SCT__foo + 1
And now we can see how that foos.o .static_call_sites goes side-ways, we
now have _two_ patch sites in foo. One for the weak symbol at foo+0
(which is no longer a static_call site!) and one at foo+d which is in
fact the right location.
This seems to happen when objtool cannot find a section symbol, in which
case it falls back to any other symbol to key off of, however in this
case that goes terribly wrong!
As such, teach objtool to create a section symbol when there isn't
one.
Fixes: 44f6a7c0755d ("objtool: Fix seg fault with Clang non-section symbols")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20220419203807.655552918@infradead.org
The __warn() prototype is declared in CONFIG_BUG scope but the function
definition in panic.c is unconditional. The IBT enablement started using
it unconditionally but a CONFIG_X86_KERNEL_IBT=y, CONFIG_BUG=n .config
will trigger a
arch/x86/kernel/traps.c: In function ‘__exc_control_protection’:
arch/x86/kernel/traps.c:249:17: error: implicit declaration of function \
‘__warn’; did you mean ‘pr_warn’? [-Werror=implicit-function-declaration]
Pull up the declarations so that they're unconditionally visible too.
[ bp: Rewrite commit message. ]
Fixes: 991625f3dd2c ("x86/ibt: Add IBT feature, MSR and #CP handling")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Shida Zhang <zhangshida@kylinos.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220426032007.510245-1-starzhangzsd@gmail.com
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees:
* Fix potential races when walking host page table
* Fix bad user ABI for KVM_EXIT_SYSTEM_EVENT
* Fix shadow page table leak when KVM runs nested
Pull driver core fixes from Greg KH:
"Here are some small driver core and kernfs fixes for some reported
problems. They include:
- kernfs regression that is causing oopses in 5.17 and newer releases
- topology sysfs fixes for a few small reported problems.
All of these have been in linux-next for a while with no reported
issues"
* tag 'driver-core-5.18-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
kernfs: fix NULL dereferencing in kernfs_remove
topology: Fix up build warning in topology_is_visible()
arch_topology: Do not set llc_sibling if llc_id is invalid
topology: make core_mask include at least cluster_siblings
topology/sysfs: Hide PPIN on systems that do not support it.
Commit e8604b1447b4 introduced a call to the helper function
msi_first_desc(), which needs MSI descriptor mutex lock before
call. However, the required mutex lock was not added. This results in
lockdep assertion:
WARNING: CPU: 4 PID: 119 at kernel/irq/msi.c:274 msi_first_desc+0xd0/0x10c
msi_first_desc+0xd0/0x10c
fsl_mc_msi_domain_alloc_irqs+0x7c/0xc0
fsl_mc_populate_irq_pool+0x80/0x3cc
Fix this by adding the mutex lock and unlock around the function call.
Fixes: e8604b1447b4 ("bus: fsl-mc-msi: Simplify MSI descriptor handling")
Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220412075636.755454-1-shinichiro.kawasaki@wdc.com
Elf{32,64}_Rela::r_addend is of type: Elf{32,64}_Sword, that means
that our reloc::addend needs to be long or face tuncation issues when
we do elf_rebuild_reloc_section():
- 107: 48 b8 00 00 00 00 00 00 00 00 movabs $0x0,%rax 109: R_X86_64_64 level4_kernel_pgt+0x80000067
+ 107: 48 b8 00 00 00 00 00 00 00 00 movabs $0x0,%rax 109: R_X86_64_64 level4_kernel_pgt-0x7fffff99
Fixes: 627fce14809b ("objtool: Add ORC unwind table generation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20220419203807.596871927@infradead.org