Linux kernel release 4.x <http://kernel.org/>
These are the release notes for Linux version 4. Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.
WHAT IS LINUX?
Linux is a clone of the operating system Unix, written from scratch by
Linus Torvalds with assistance from a loosely-knit team of hackers across
the Net. It aims towards POSIX and Single UNIX Specification compliance.
It has all the features you would expect in a modern fully-fledged Unix,
including true multitasking, virtual memory, shared libraries, demand
loading, shared copy-on-write executables, proper memory management,
and multistack networking including IPv4 and IPv6.
It is distributed under the GNU General Public License - see the
accompanying COPYING file for more details.
ON WHAT HARDWARE DOES IT RUN?
Although originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.
Linux is easily portable to most general-purpose 32- or 64-bit architectures
as long as they have a paged memory management unit (PMMU) and a port of the
GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
also been ported to a number of architectures without a PMMU, although
functionality is then obviously somewhat limited.
Linux has also been ported to itself. You can now run the kernel as a
userspace application - this is called UserMode Linux (UML).
DOCUMENTATION:
- There is a lot of documentation available both in electronic form on
the Internet and in books, both Linux-specific and pertaining to
general UNIX questions. I'd recommend looking into the documentation
subdirectories on any Linux FTP site for the LDP (Linux Documentation
Project) books. This README is not meant to be documentation on the
system: there are much better sources available.
- There are various README files in the Documentation/ subdirectory:
these typically contain kernel-specific installation notes for some
drivers for example. See Documentation/00-INDEX for a list of what
is contained in each file. Please read the Changes file, as it
contains information about the problems, which may result by upgrading
your kernel.
- The Documentation/DocBook/ subdirectory contains several guides for
kernel developers and users. These guides can be rendered in a
number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others.
After installation, "make psdocs", "make pdfdocs", "make htmldocs",
or "make mandocs" will render the documentation in the requested format.
INSTALLING the kernel source:
- If you install the full sources, put the kernel tarball in a
directory where you have permissions (e.g. your home directory) and
unpack it:
xz -cd linux-4.X.tar.xz | tar xvf -
Replace "X" with the version number of the latest kernel.
Do NOT use the /usr/src/linux area! This area has a (usually
incomplete) set of kernel headers that are used by the library header
files. They should match the library, and not get messed up by
whatever the kernel-du-jour happens to be.
- You can also upgrade between 4.x releases by patching. Patches are
distributed in the xz format. To install by patching, get all the
newer patch files, enter the top level directory of the kernel source
(linux-4.X) and execute:
xz -cd ../patch-4.x.xz | patch -p1
Replace "x" for all versions bigger than the version "X" of your current
source tree, _in_order_, and you should be ok. You may want to remove
the backup files (some-file-name~ or some-file-name.orig), and make sure
that there are no failed patches (some-file-name# or some-file-name.rej).
If there are, either you or I have made a mistake.
Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
(also known as the -stable kernels) are not incremental but instead apply
directly to the base 4.x kernel. For example, if your base kernel is 4.0
and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
Documentation/applying-patches.txt
Alternatively, the script patch-kernel can be used to automate this
process. It determines the current kernel version and applies any
patches found.
linux/scripts/patch-kernel linux
The first argument in the command above is the location of the
kernel source. Patches are applied from the current directory, but
an alternative directory can be specified as the second argument.
- Make sure you have no stale .o files and dependencies lying around:
cd linux
make mrproper
You should now have the sources correctly installed.
SOFTWARE REQUIREMENTS
Compiling and running the 4.x kernels requires up-to-date
versions of various software packages. Consult
Documentation/Changes for the minimum version numbers required
and how to get updates for these packages. Beware that using
excessively old versions of these packages can cause indirect
errors that are very difficult to track down, so don't assume that
you can just update packages when obvious problems arise during
build or operation.
BUILD directory for the kernel:
When compiling the kernel, all output files will per default be
stored together with the kernel source code.
Using the option "make O=output/dir" allows you to specify an alternate
place for the output files (including .config).
Example:
kernel source code: /usr/src/linux-4.X
build directory: /home/name/build/kernel
To configure and build the kernel, use:
cd /usr/src/linux-4.X
make O=/home/name/build/kernel menuconfig
make O=/home/name/build/kernel
sudo make O=/home/name/build/kernel modules_install install
Please note: If the 'O=output/dir' option is used, then it must be
used for all invocations of make.
CONFIGURING the kernel:
Do not skip this step even if you are only upgrading one minor
version. New configuration options are added in each release, and
odd problems will turn up if the configuration files are not set up
as expected. If you want to carry your existing configuration to a
new version with minimal work, use "make oldconfig", which will
only ask you for the answers to new questions.
- Alternative configuration commands are:
"make config" Plain text interface.
"make menuconfig" Text based color menus, radiolists & dialogs.
"make nconfig" Enhanced text based color menus.
"make xconfig" Qt based configuration tool.
"make gconfig" GTK+ based configuration tool.
"make oldconfig" Default all questions based on the contents of
your existing ./.config file and asking about
new config symbols.
"make silentoldconfig"
Like above, but avoids cluttering the screen
with questions already answered.
Additionally updates the dependencies.
"make olddefconfig"
Like above, but sets new symbols to their default
values without prompting.
"make defconfig" Create a ./.config file by using the default
symbol values from either arch/$ARCH/defconfig
or arch/$ARCH/configs/${PLATFORM}_defconfig,
depending on the architecture.
"make ${PLATFORM}_defconfig"
Create a ./.config file by using the default
symbol values from
arch/$ARCH/configs/${PLATFORM}_defconfig.
Use "make help" to get a list of all available
platforms of your architecture.
"make allyesconfig"
Create a ./.config file by setting symbol
values to 'y' as much as possible.
"make allmodconfig"
Create a ./.config file by setting symbol
values to 'm' as much as possible.
"make allnoconfig" Create a ./.config file by setting symbol
values to 'n' as much as possible.
"make randconfig" Create a ./.config file by setting symbol
values to random values.
"make localmodconfig" Create a config based on current config and
loaded modules (lsmod). Disables any module
option that is not needed for the loaded modules.
To create a localmodconfig for another machine,
store the lsmod of that machine into a file
and pass it in as a LSMOD parameter.
target$ lsmod > /tmp/mylsmod
target$ scp /tmp/mylsmod host:/tmp
host$ make LSMOD=/tmp/mylsmod localmodconfig
The above also works when cross compiling.
"make localyesconfig" Similar to localmodconfig, except it will convert
all module options to built in (=y) options.
You can find more information on using the Linux kernel config tools
in Documentation/kbuild/kconfig.txt.
- NOTES on "make config":
- Having unnecessary drivers will make the kernel bigger, and can
under some circumstances lead to problems: probing for a
nonexistent controller card may confuse your other controllers
- Compiling the kernel with "Processor type" set higher than 386
will result in a kernel that does NOT work on a 386. The
kernel will detect this on bootup, and give up.
- A kernel with math-emulation compiled in will still use the
coprocessor if one is present: the math emulation will just
never get used in that case. The kernel will be slightly larger,
but will work on different machines regardless of whether they
have a math coprocessor or not.
- The "kernel hacking" configuration details usually result in a
bigger or slower kernel (or both), and can even make the kernel
less stable by configuring some routines to actively try to
break bad code to find kernel problems (kmalloc()). Thus you
should probably answer 'n' to the questions for "development",
"experimental", or "debugging" features.
COMPILING the kernel:
- Make sure you have at least gcc 3.2 available.
For more information, refer to Documentation/Changes.
Please note that you can still run a.out user programs with this kernel.
- Do a "make" to create a compressed kernel image. It is also
possible to do "make install" if you have lilo installed to suit the
kernel makefiles, but you may want to check your particular lilo setup first.
To do the actual install, you have to be root, but none of the normal
build should require that. Don't take the name of root in vain.
- If you configured any of the parts of the kernel as `modules', you
will also have to do "make modules_install".
- Verbose kernel compile/build output:
Normally, the kernel build system runs in a fairly quiet mode (but not
totally silent). However, sometimes you or other kernel developers need
to see compile, link, or other commands exactly as they are executed.
For this, use "verbose" build mode. This is done by passing
"V=1" to the "make" command, e.g.
make V=1 all
To have the build system also tell the reason for the rebuild of each
target, use "V=2". The default is "V=0".
- Keep a backup kernel handy in case something goes wrong. This is
especially true for the development releases, since each new release
contains new code which has not been debugged. Make sure you keep a
backup of the modules corresponding to that kernel, as well. If you
are installing a new kernel with the same version number as your
working kernel, make a backup of your modules directory before you
do a "make modules_install".
Alternatively, before compiling, use the kernel config option
"LOCALVERSION" to append a unique suffix to the regular kernel version.
LOCALVERSION can be set in the "General Setup" menu.
- In order to boot your new kernel, you'll need to copy the kernel
image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
to the place where your regular bootable kernel is found.
- Booting a kernel directly from a floppy without the assistance of a
bootloader such as LILO, is no longer supported.
If you boot Linux from the hard drive, chances are you use LILO, which
uses the kernel image as specified in the file /etc/lilo.conf. The
kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
/boot/bzImage. To use the new kernel, save a copy of the old image
and copy the new image over the old one. Then, you MUST RERUN LILO
to update the loading map! If you don't, you won't be able to boot
the new kernel image.
Reinstalling LILO is usually a matter of running /sbin/lilo.
You may wish to edit /etc/lilo.conf to specify an entry for your
old kernel image (say, /vmlinux.old) in case the new one does not
work. See the LILO docs for more information.
After reinstalling LILO, you should be all set. Shutdown the system,
reboot, and enjoy!
If you ever need to change the default root device, video mode,
ramdisk size, etc. in the kernel image, use the 'rdev' program (or
alternatively the LILO boot options when appropriate). No need to
recompile the kernel to change these parameters.
- Reboot with the new kernel and enjoy.
IF SOMETHING GOES WRONG:
- If you have problems that seem to be due to kernel bugs, please check
the file MAINTAINERS to see if there is a particular person associated
with the part of the kernel that you are having trouble with. If there
isn't anyone listed there, then the second best thing is to mail
them to me (torvalds@linux-foundation.org), and possibly to any other
relevant mailing-list or to the newsgroup.
- In all bug-reports, *please* tell what kernel you are talking about,
how to duplicate the problem, and what your setup is (use your common
sense). If the problem is new, tell me so, and if the problem is
old, please try to tell me when you first noticed it.
- If the bug results in a message like
unable to handle kernel paging request at address C0000010
Oops: 0002
EIP: 0010:XXXXXXXX
eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
ds: xxxx es: xxxx fs: xxxx gs: xxxx
Pid: xx, process nr: xx
xx xx xx xx xx xx xx xx xx xx
or similar kernel debugging information on your screen or in your
system log, please duplicate it *exactly*. The dump may look
incomprehensible to you, but it does contain information that may
help debugging the problem. The text above the dump is also
important: it tells something about why the kernel dumped code (in
the above example, it's due to a bad kernel pointer). More information
on making sense of the dump is in Documentation/oops-tracing.txt
- If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
as is, otherwise you will have to use the "ksymoops" program to make
sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
This utility can be downloaded from
ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
Alternatively, you can do the dump lookup by hand:
- In debugging dumps like the above, it helps enormously if you can
look up what the EIP value means. The hex value as such doesn't help
me or anybody else very much: it will depend on your particular
kernel setup. What you should do is take the hex value from the EIP
line (ignore the "0010:"), and look it up in the kernel namelist to
see which kernel function contains the offending address.
To find out the kernel function name, you'll need to find the system
binary associated with the kernel that exhibited the symptom. This is
the file 'linux/vmlinux'. To extract the namelist and match it against
the EIP from the kernel crash, do:
nm vmlinux | sort | less
This will give you a list of kernel addresses sorted in ascending
order, from which it is simple to find the function that contains the
offending address. Note that the address given by the kernel
debugging messages will not necessarily match exactly with the
function addresses (in fact, that is very unlikely), so you can't
just 'grep' the list: the list will, however, give you the starting
point of each kernel function, so by looking for the function that
has a starting address lower than the one you are searching for but
is followed by a function with a higher address you will find the one
you want. In fact, it may be a good idea to include a bit of
"context" in your problem report, giving a few lines around the
interesting one.
If you for some reason cannot do the above (you have a pre-compiled
kernel image or similar), telling me as much about your setup as
possible will help. Please read the REPORTING-BUGS document for details.
- Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
cannot change values or set break points.) To do this, first compile the
kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
clean". You'll also need to enable CONFIG_PROC_FS (via "make config").
After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
You can now use all the usual gdb commands. The command to look up the
point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
with the EIP value.)
gdb'ing a non-running kernel currently fails because gdb (wrongly)
disregards the starting offset for which the kernel is compiled.
code
Clone this repository
https://tangled.org/tjh.dev/kernel
git@gordian.tjh.dev:tjh.dev/kernel
For self-hosted knots, clone URLs may differ based on your setup.
Commit aa71987472a9 ("nvme: fabrics drivers don't need the nvme-pci
driver") removed the dependency on BLK_DEV_NVME, but the cdoe does
depend on the block layer (which used to be an implicit dependency
through BLK_DEV_NVME).
Otherwise you get various errors from the kbuild test robot random
config testing when that happens to hit a configuration with BLOCK
device support disabled.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jay Freyensee <james_p_freyensee@linux.intel.com>
Cc: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull IIO fixes from Greg KH:
"Here are a few small IIO fixes for 4.8-rc6.
Nothing major, full details are in the shortlog, all of these have
been in linux-next with no reported issues"
* tag 'staging-4.8-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging:
iio:core: fix IIO_VAL_FRACTIONAL sign handling
iio: ensure ret is initialized to zero before entering do loop
iio: accel: kxsd9: Fix scaling bug
iio: accel: bmc150: reset chip at init time
iio: fix pressure data output unit in hid-sensor-attributes
tools:iio:iio_generic_buffer: fix trigger-less mode
Pull USB fixes from Greg KH:
"Here are some small USB gadget, phy, and xhci fixes for 4.8-rc6.
All of these resolve minor issues that have been reported, and all
have been in linux-next with no reported issues"
* tag 'usb-4.8-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb:
usb: chipidea: udc: fix NULL ptr dereference in isr_setup_status_phase
xhci: fix null pointer dereference in stop command timeout function
usb: dwc3: pci: fix build warning on !PM_SLEEP
usb: gadget: prevent potenial null pointer dereference on skb->len
usb: renesas_usbhs: fix clearing the {BRDY,BEMP}STS condition
usb: phy: phy-generic: Check clk_prepare_enable() error
usb: gadget: udc: renesas-usb3: clear VBOUT bit in DRD_CON
Revert "usb: dwc3: gadget: always decrement by 1"
Jonathan writes:
Second set of IIO fixes for the 4.8 cycle.
We have a big rework of the kxsd9 driver queued up behind the fix below and
a fix for a recent fix that was marked for stable.
Hence this fix series is perhaps a little more urgent than average for IIO.
* core
- a fix for a fix in the last set. The recent fix for blocking ops when
! task running left a path (unlikely one) in which the function return
value was not set - so initialise it to 0.
- The IIO_TYPE_FRACTIONAL code previously didn't cope with negative
fractions. Turned out a fix for this was in Analog's tree but hadn't made
it upstream.
* bmc150
- reset chip at init time. At least one board out there ends up coming up
in an unstable state due to noise during power up. The reset does no
harm on other boards.
* kxsd9
- Fix a bug in the reported scaling due to failing to set the integer
part to 0.
* hid-sensors-pressure
- Output was in the wrong units to comply with the IIO ABI.
* tools
- iio_generic_buffer: Fix the trigger-less mode by ensuring we don't fault
out for having no trigger when we explicitly said we didn't want to have
one.
Pull libnvdimm fixes from Dan Williams:
"nvdimm fixes for v4.8, two of them are tagged for -stable:
- Fix devm_memremap_pages() to use track_pfn_insert(). Otherwise,
DAX pmd mappings end up with an uncached pgprot, and unusable
performance for the device-dax interface. The device-dax interface
appeared in 4.7 so this is tagged for -stable.
- Fix a couple VM_BUG_ON() checks in the show_smaps() path to
understand DAX pmd entries. This fix is tagged for -stable.
- Fix a mis-merge of the nfit machine-check handler to flip the
polarity of an if() to match the final version of the patch that
Vishal sent for 4.8-rc1. Without this the nfit machine check
handler never detects / inserts new 'badblocks' entries which
applications use to identify lost portions of files.
- For test purposes, fix the nvdimm_clear_poison() path to operate on
legacy / simulated nvdimm memory ranges. Without this fix a test
can set badblocks, but never clear them on these ranges.
- Fix the range checking done by dax_dev_pmd_fault(). This is not
tagged for -stable since this problem is mitigated by specifying
aligned resources at device-dax setup time.
These patches have appeared in a next release over the past week. The
recent rebase you can see in the timestamps was to drop an invalid fix
as identified by the updated device-dax unit tests [1]. The -mm
touches have an ack from Andrew"
[1]: "[ndctl PATCH 0/3] device-dax test for recent kernel bugs"
https://lists.01.org/pipermail/linux-nvdimm/2016-September/006855.html
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm: allow legacy (e820) pmem region to clear bad blocks
nfit, mce: Fix SPA matching logic in MCE handler
mm: fix cache mode of dax pmd mappings
mm: fix show_smap() for zone_device-pmd ranges
dax: fix mapping size check
Felipe writes:
usb: fixes for v4.8-rc6
Unfortunately we have a bogus dwc3 patch leaked through the cracks and
got merged into Linus' HEAD. That patch ended up causing off-by-1 error
in our TRB accounting logic. Thankfully John Youn found out the problem
and we provided a revert to the bogus dwc3 patch in no time.
Apart from this off-by-1 error, we have two fixes to the Renesas drivers,
a small fix to our generic phy driver, a NULL pointer dereference fix for
f_eem and a build warning fix in dwc3.
7985e7c100 ("iio: Introduce a new fractional value type") introduced a
new IIO_VAL_FRACTIONAL value type meant to represent rational type numbers
expressed by a numerator and denominator combination.
Formating of IIO_VAL_FRACTIONAL values relies upon do_div() usage. This
fails handling negative values properly since parameters are reevaluated
as unsigned values.
Fix this by using div_s64_rem() instead. Computed integer part will carry
properly signed value. Formatted fractional part will always be positive.
Fixes: 7985e7c100 ("iio: Introduce a new fractional value type")
Signed-off-by: Gregor Boirie <gregor.boirie@parrot.com>
Reviewed-by: Lars-Peter Clausen <lars@metafoo.de>
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
Pull i2c fixes from Wolfram Sang:
"Mostly driver bugfixes, but also a few cleanups which are nice to have
out of the way"
* 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux:
i2c: rk3x: Restore clock settings at resume time
i2c: Spelling s/acknowedge/acknowledge/
i2c: designware: save the preset value of DW_IC_SDA_HOLD
Documentation: i2c: slave-interface: add note for driver development
i2c: mux: demux-pinctrl: run properly with multiple instances
i2c: bcm-kona: fix inconsistent indenting
i2c: rcar: use proper device with dma_mapping_error
i2c: sh_mobile: use proper device with dma_mapping_error
i2c: mux: demux-pinctrl: invalidate properly when switching fails
Bad blocks can be injected via /sys/block/pmemN/badblocks. In a situation
where legacy pmem is being used or a pmem region created by using memmap
kernel parameter, the injected bad blocks are not cleared due to
nvdimm_clear_poison() failing from lack of ndctl function pointer. In
this case we need to just return as handled and allow the bad blocks to
be cleared rather than fail.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Peter writes:
Fix the possible kernel panic when the hardware signal is bad for chipidea udc.
When building a kernel with CONFIG_PM_SLEEP=n, we
get the following warning:
drivers/usb/dwc3/dwc3-pci.c:253:12: warning: 'dwc3_pci_pm_dummy' defined but not used
In order to fix this, we should only define
dwc3_pci_pm_dummy() when CONFIG_PM_SLEEP is defined.
Fixes: f6c274e11e3b ("usb: dwc3: pci: runtime_resume child device")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Pull x86 fix from Thomas Gleixner:
"A single fix for an AMD erratum so machines without a BIOS fix work"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/AMD: Apply erratum 665 on machines without a BIOS fix