+5
include/linux/timekeeper_internal.h
+5
include/linux/timekeeper_internal.h
···
57
57
* @cs_was_changed_seq: The sequence number of clocksource change events
58
58
* @next_leap_ktime: CLOCK_MONOTONIC time value of a pending leap-second
59
59
* @raw_sec: CLOCK_MONOTONIC_RAW time in seconds
60
+
* @monotonic_to_boot: CLOCK_MONOTONIC to CLOCK_BOOTTIME offset
60
61
* @cycle_interval: Number of clock cycles in one NTP interval
61
62
* @xtime_interval: Number of clock shifted nano seconds in one NTP
62
63
* interval.
···
85
84
*
86
85
* wall_to_monotonic is no longer the boot time, getboottime must be
87
86
* used instead.
87
+
*
88
+
* @monotonic_to_boottime is a timespec64 representation of @offs_boot to
89
+
* accelerate the VDSO update for CLOCK_BOOTTIME.
88
90
*/
89
91
struct timekeeper {
90
92
struct tk_read_base tkr_mono;
···
103
99
u8 cs_was_changed_seq;
104
100
ktime_t next_leap_ktime;
105
101
u64 raw_sec;
102
+
struct timespec64 monotonic_to_boot;
106
103
107
104
/* The following members are for timekeeping internal use */
108
105
u64 cycle_interval;
+5
kernel/time/timekeeping.c
+5
kernel/time/timekeeping.c
···
146
146
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147
147
{
148
148
tk->offs_boot = ktime_add(tk->offs_boot, delta);
149
+
/*
150
+
* Timespec representation for VDSO update to avoid 64bit division
151
+
* on every update.
152
+
*/
153
+
tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
149
154
}
150
155
151
156
/*
+13
-9
kernel/time/vsyscall.c
+13
-9
kernel/time/vsyscall.c
···
17
17
struct timekeeper *tk)
18
18
{
19
19
struct vdso_timestamp *vdso_ts;
20
-
u64 nsec;
20
+
u64 nsec, sec;
21
21
22
22
vdata[CS_HRES_COARSE].cycle_last = tk->tkr_mono.cycle_last;
23
23
vdata[CS_HRES_COARSE].mask = tk->tkr_mono.mask;
···
45
45
}
46
46
vdso_ts->nsec = nsec;
47
47
48
-
/* CLOCK_MONOTONIC_RAW */
49
-
vdso_ts = &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
50
-
vdso_ts->sec = tk->raw_sec;
51
-
vdso_ts->nsec = tk->tkr_raw.xtime_nsec;
48
+
/* Copy MONOTONIC time for BOOTTIME */
49
+
sec = vdso_ts->sec;
50
+
/* Add the boot offset */
51
+
sec += tk->monotonic_to_boot.tv_sec;
52
+
nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
52
53
53
54
/* CLOCK_BOOTTIME */
54
55
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
55
-
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
56
-
nsec = tk->tkr_mono.xtime_nsec;
57
-
nsec += ((u64)(tk->wall_to_monotonic.tv_nsec +
58
-
ktime_to_ns(tk->offs_boot)) << tk->tkr_mono.shift);
56
+
vdso_ts->sec = sec;
57
+
59
58
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
60
59
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
61
60
vdso_ts->sec++;
62
61
}
63
62
vdso_ts->nsec = nsec;
63
+
64
+
/* CLOCK_MONOTONIC_RAW */
65
+
vdso_ts = &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
66
+
vdso_ts->sec = tk->raw_sec;
67
+
vdso_ts->nsec = tk->tkr_raw.xtime_nsec;
64
68
65
69
/* CLOCK_TAI */
66
70
vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];