Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53/*
54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55 *
56 * The pXx_index() functions return the index of the entry in the page
57 * table page which would control the given virtual address
58 *
59 * As these functions may be used by the same code for different levels of
60 * the page table folding, they are always available, regardless of
61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62 * because in such cases PTRS_PER_PxD equals 1.
63 */
64
65static inline unsigned long pte_index(unsigned long address)
66{
67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68}
69
70#ifndef pmd_index
71static inline unsigned long pmd_index(unsigned long address)
72{
73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74}
75#define pmd_index pmd_index
76#endif
77
78#ifndef pud_index
79static inline unsigned long pud_index(unsigned long address)
80{
81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82}
83#define pud_index pud_index
84#endif
85
86#ifndef pgd_index
87/* Must be a compile-time constant, so implement it as a macro */
88#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89#endif
90
91#ifndef pte_offset_kernel
92static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93{
94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95}
96#define pte_offset_kernel pte_offset_kernel
97#endif
98
99#ifdef CONFIG_HIGHPTE
100#define __pte_map(pmd, address) \
101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102#define pte_unmap(pte) do { \
103 kunmap_local((pte)); \
104 rcu_read_unlock(); \
105} while (0)
106#else
107static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108{
109 return pte_offset_kernel(pmd, address);
110}
111static inline void pte_unmap(pte_t *pte)
112{
113 rcu_read_unlock();
114}
115#endif
116
117void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118
119/* Find an entry in the second-level page table.. */
120#ifndef pmd_offset
121static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122{
123 return pud_pgtable(*pud) + pmd_index(address);
124}
125#define pmd_offset pmd_offset
126#endif
127
128#ifndef pud_offset
129static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130{
131 return p4d_pgtable(*p4d) + pud_index(address);
132}
133#define pud_offset pud_offset
134#endif
135
136static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137{
138 return (pgd + pgd_index(address));
139};
140
141/*
142 * a shortcut to get a pgd_t in a given mm
143 */
144#ifndef pgd_offset
145#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
146#endif
147
148/*
149 * a shortcut which implies the use of the kernel's pgd, instead
150 * of a process's
151 */
152#ifndef pgd_offset_k
153#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
154#endif
155
156/*
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
161 * helpers.
162 */
163static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164{
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166}
167
168static inline pmd_t *pmd_off_k(unsigned long va)
169{
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171}
172
173static inline pte_t *virt_to_kpte(unsigned long vaddr)
174{
175 pmd_t *pmd = pmd_off_k(vaddr);
176
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178}
179
180#ifndef pmd_young
181static inline int pmd_young(pmd_t pmd)
182{
183 return 0;
184}
185#endif
186
187#ifndef pmd_dirty
188static inline int pmd_dirty(pmd_t pmd)
189{
190 return 0;
191}
192#endif
193
194/*
195 * A facility to provide lazy MMU batching. This allows PTE updates and
196 * page invalidations to be delayed until a call to leave lazy MMU mode
197 * is issued. Some architectures may benefit from doing this, and it is
198 * beneficial for both shadow and direct mode hypervisors, which may batch
199 * the PTE updates which happen during this window. Note that using this
200 * interface requires that read hazards be removed from the code. A read
201 * hazard could result in the direct mode hypervisor case, since the actual
202 * write to the page tables may not yet have taken place, so reads though
203 * a raw PTE pointer after it has been modified are not guaranteed to be
204 * up to date. This mode can only be entered and left under the protection of
205 * the page table locks for all page tables which may be modified. In the UP
206 * case, this is required so that preemption is disabled, and in the SMP case,
207 * it must synchronize the delayed page table writes properly on other CPUs.
208 */
209#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210#define arch_enter_lazy_mmu_mode() do {} while (0)
211#define arch_leave_lazy_mmu_mode() do {} while (0)
212#define arch_flush_lazy_mmu_mode() do {} while (0)
213#endif
214
215#ifndef set_ptes
216
217#ifndef pte_next_pfn
218static inline pte_t pte_next_pfn(pte_t pte)
219{
220 return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
221}
222#endif
223
224/**
225 * set_ptes - Map consecutive pages to a contiguous range of addresses.
226 * @mm: Address space to map the pages into.
227 * @addr: Address to map the first page at.
228 * @ptep: Page table pointer for the first entry.
229 * @pte: Page table entry for the first page.
230 * @nr: Number of pages to map.
231 *
232 * May be overridden by the architecture, or the architecture can define
233 * set_pte() and PFN_PTE_SHIFT.
234 *
235 * Context: The caller holds the page table lock. The pages all belong
236 * to the same folio. The PTEs are all in the same PMD.
237 */
238static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
239 pte_t *ptep, pte_t pte, unsigned int nr)
240{
241 page_table_check_ptes_set(mm, ptep, pte, nr);
242
243 arch_enter_lazy_mmu_mode();
244 for (;;) {
245 set_pte(ptep, pte);
246 if (--nr == 0)
247 break;
248 ptep++;
249 pte = pte_next_pfn(pte);
250 }
251 arch_leave_lazy_mmu_mode();
252}
253#endif
254#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
255
256#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
257extern int ptep_set_access_flags(struct vm_area_struct *vma,
258 unsigned long address, pte_t *ptep,
259 pte_t entry, int dirty);
260#endif
261
262#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
264extern int pmdp_set_access_flags(struct vm_area_struct *vma,
265 unsigned long address, pmd_t *pmdp,
266 pmd_t entry, int dirty);
267extern int pudp_set_access_flags(struct vm_area_struct *vma,
268 unsigned long address, pud_t *pudp,
269 pud_t entry, int dirty);
270#else
271static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
272 unsigned long address, pmd_t *pmdp,
273 pmd_t entry, int dirty)
274{
275 BUILD_BUG();
276 return 0;
277}
278static inline int pudp_set_access_flags(struct vm_area_struct *vma,
279 unsigned long address, pud_t *pudp,
280 pud_t entry, int dirty)
281{
282 BUILD_BUG();
283 return 0;
284}
285#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
286#endif
287
288#ifndef ptep_get
289static inline pte_t ptep_get(pte_t *ptep)
290{
291 return READ_ONCE(*ptep);
292}
293#endif
294
295#ifndef pmdp_get
296static inline pmd_t pmdp_get(pmd_t *pmdp)
297{
298 return READ_ONCE(*pmdp);
299}
300#endif
301
302#ifndef pudp_get
303static inline pud_t pudp_get(pud_t *pudp)
304{
305 return READ_ONCE(*pudp);
306}
307#endif
308
309#ifndef p4dp_get
310static inline p4d_t p4dp_get(p4d_t *p4dp)
311{
312 return READ_ONCE(*p4dp);
313}
314#endif
315
316#ifndef pgdp_get
317static inline pgd_t pgdp_get(pgd_t *pgdp)
318{
319 return READ_ONCE(*pgdp);
320}
321#endif
322
323#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
324static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
325 unsigned long address,
326 pte_t *ptep)
327{
328 pte_t pte = ptep_get(ptep);
329 int r = 1;
330 if (!pte_young(pte))
331 r = 0;
332 else
333 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
334 return r;
335}
336#endif
337
338#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
339#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
340static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
341 unsigned long address,
342 pmd_t *pmdp)
343{
344 pmd_t pmd = *pmdp;
345 int r = 1;
346 if (!pmd_young(pmd))
347 r = 0;
348 else
349 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
350 return r;
351}
352#else
353static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
354 unsigned long address,
355 pmd_t *pmdp)
356{
357 BUILD_BUG();
358 return 0;
359}
360#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
361#endif
362
363#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
364int ptep_clear_flush_young(struct vm_area_struct *vma,
365 unsigned long address, pte_t *ptep);
366#endif
367
368#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
369#ifdef CONFIG_TRANSPARENT_HUGEPAGE
370extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
371 unsigned long address, pmd_t *pmdp);
372#else
373/*
374 * Despite relevant to THP only, this API is called from generic rmap code
375 * under PageTransHuge(), hence needs a dummy implementation for !THP
376 */
377static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
378 unsigned long address, pmd_t *pmdp)
379{
380 BUILD_BUG();
381 return 0;
382}
383#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
384#endif
385
386#ifndef arch_has_hw_nonleaf_pmd_young
387/*
388 * Return whether the accessed bit in non-leaf PMD entries is supported on the
389 * local CPU.
390 */
391static inline bool arch_has_hw_nonleaf_pmd_young(void)
392{
393 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
394}
395#endif
396
397#ifndef arch_has_hw_pte_young
398/*
399 * Return whether the accessed bit is supported on the local CPU.
400 *
401 * This stub assumes accessing through an old PTE triggers a page fault.
402 * Architectures that automatically set the access bit should overwrite it.
403 */
404static inline bool arch_has_hw_pte_young(void)
405{
406 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
407}
408#endif
409
410#ifndef arch_check_zapped_pte
411static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
412 pte_t pte)
413{
414}
415#endif
416
417#ifndef arch_check_zapped_pmd
418static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
419 pmd_t pmd)
420{
421}
422#endif
423
424#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
425static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
426 unsigned long address,
427 pte_t *ptep)
428{
429 pte_t pte = ptep_get(ptep);
430 pte_clear(mm, address, ptep);
431 page_table_check_pte_clear(mm, pte);
432 return pte;
433}
434#endif
435
436static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
437 pte_t *ptep)
438{
439 ptep_get_and_clear(mm, addr, ptep);
440}
441
442#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
443/*
444 * For walking the pagetables without holding any locks. Some architectures
445 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
446 * instructions. We are guaranteed that a PTE will only either go from not
447 * present to present, or present to not present -- it will not switch to a
448 * completely different present page without a TLB flush inbetween; which we
449 * are blocking by holding interrupts off.
450 *
451 * Setting ptes from not present to present goes:
452 *
453 * ptep->pte_high = h;
454 * smp_wmb();
455 * ptep->pte_low = l;
456 *
457 * And present to not present goes:
458 *
459 * ptep->pte_low = 0;
460 * smp_wmb();
461 * ptep->pte_high = 0;
462 *
463 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
464 * We load pte_high *after* loading pte_low, which ensures we don't see an older
465 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
466 * picked up a changed pte high. We might have gotten rubbish values from
467 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
468 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
469 * operates on present ptes we're safe.
470 */
471static inline pte_t ptep_get_lockless(pte_t *ptep)
472{
473 pte_t pte;
474
475 do {
476 pte.pte_low = ptep->pte_low;
477 smp_rmb();
478 pte.pte_high = ptep->pte_high;
479 smp_rmb();
480 } while (unlikely(pte.pte_low != ptep->pte_low));
481
482 return pte;
483}
484#define ptep_get_lockless ptep_get_lockless
485
486#if CONFIG_PGTABLE_LEVELS > 2
487static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
488{
489 pmd_t pmd;
490
491 do {
492 pmd.pmd_low = pmdp->pmd_low;
493 smp_rmb();
494 pmd.pmd_high = pmdp->pmd_high;
495 smp_rmb();
496 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
497
498 return pmd;
499}
500#define pmdp_get_lockless pmdp_get_lockless
501#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
502#endif /* CONFIG_PGTABLE_LEVELS > 2 */
503#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
504
505/*
506 * We require that the PTE can be read atomically.
507 */
508#ifndef ptep_get_lockless
509static inline pte_t ptep_get_lockless(pte_t *ptep)
510{
511 return ptep_get(ptep);
512}
513#endif
514
515#ifndef pmdp_get_lockless
516static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
517{
518 return pmdp_get(pmdp);
519}
520static inline void pmdp_get_lockless_sync(void)
521{
522}
523#endif
524
525#ifdef CONFIG_TRANSPARENT_HUGEPAGE
526#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
527static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
528 unsigned long address,
529 pmd_t *pmdp)
530{
531 pmd_t pmd = *pmdp;
532
533 pmd_clear(pmdp);
534 page_table_check_pmd_clear(mm, pmd);
535
536 return pmd;
537}
538#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
539#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
540static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
541 unsigned long address,
542 pud_t *pudp)
543{
544 pud_t pud = *pudp;
545
546 pud_clear(pudp);
547 page_table_check_pud_clear(mm, pud);
548
549 return pud;
550}
551#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
552#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
553
554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
555#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
556static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
557 unsigned long address, pmd_t *pmdp,
558 int full)
559{
560 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
561}
562#endif
563
564#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
565static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
566 unsigned long address, pud_t *pudp,
567 int full)
568{
569 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
570}
571#endif
572#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
573
574#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
575static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
576 unsigned long address, pte_t *ptep,
577 int full)
578{
579 return ptep_get_and_clear(mm, address, ptep);
580}
581#endif
582
583
584/*
585 * If two threads concurrently fault at the same page, the thread that
586 * won the race updates the PTE and its local TLB/Cache. The other thread
587 * gives up, simply does nothing, and continues; on architectures where
588 * software can update TLB, local TLB can be updated here to avoid next page
589 * fault. This function updates TLB only, do nothing with cache or others.
590 * It is the difference with function update_mmu_cache.
591 */
592#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
593static inline void update_mmu_tlb(struct vm_area_struct *vma,
594 unsigned long address, pte_t *ptep)
595{
596}
597#define __HAVE_ARCH_UPDATE_MMU_TLB
598#endif
599
600/*
601 * Some architectures may be able to avoid expensive synchronization
602 * primitives when modifications are made to PTE's which are already
603 * not present, or in the process of an address space destruction.
604 */
605#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
606static inline void pte_clear_not_present_full(struct mm_struct *mm,
607 unsigned long address,
608 pte_t *ptep,
609 int full)
610{
611 pte_clear(mm, address, ptep);
612}
613#endif
614
615#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
616extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
617 unsigned long address,
618 pte_t *ptep);
619#endif
620
621#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
622extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
623 unsigned long address,
624 pmd_t *pmdp);
625extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
626 unsigned long address,
627 pud_t *pudp);
628#endif
629
630#ifndef pte_mkwrite
631static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
632{
633 return pte_mkwrite_novma(pte);
634}
635#endif
636
637#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
638static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
639{
640 return pmd_mkwrite_novma(pmd);
641}
642#endif
643
644#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
645struct mm_struct;
646static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
647{
648 pte_t old_pte = ptep_get(ptep);
649 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
650}
651#endif
652
653/*
654 * On some architectures hardware does not set page access bit when accessing
655 * memory page, it is responsibility of software setting this bit. It brings
656 * out extra page fault penalty to track page access bit. For optimization page
657 * access bit can be set during all page fault flow on these arches.
658 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
659 * where software maintains page access bit.
660 */
661#ifndef pte_sw_mkyoung
662static inline pte_t pte_sw_mkyoung(pte_t pte)
663{
664 return pte;
665}
666#define pte_sw_mkyoung pte_sw_mkyoung
667#endif
668
669#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
670#ifdef CONFIG_TRANSPARENT_HUGEPAGE
671static inline void pmdp_set_wrprotect(struct mm_struct *mm,
672 unsigned long address, pmd_t *pmdp)
673{
674 pmd_t old_pmd = *pmdp;
675 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
676}
677#else
678static inline void pmdp_set_wrprotect(struct mm_struct *mm,
679 unsigned long address, pmd_t *pmdp)
680{
681 BUILD_BUG();
682}
683#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
684#endif
685#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
686#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
687#ifdef CONFIG_TRANSPARENT_HUGEPAGE
688static inline void pudp_set_wrprotect(struct mm_struct *mm,
689 unsigned long address, pud_t *pudp)
690{
691 pud_t old_pud = *pudp;
692
693 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
694}
695#else
696static inline void pudp_set_wrprotect(struct mm_struct *mm,
697 unsigned long address, pud_t *pudp)
698{
699 BUILD_BUG();
700}
701#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
702#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
703#endif
704
705#ifndef pmdp_collapse_flush
706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
707extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
708 unsigned long address, pmd_t *pmdp);
709#else
710static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
711 unsigned long address,
712 pmd_t *pmdp)
713{
714 BUILD_BUG();
715 return *pmdp;
716}
717#define pmdp_collapse_flush pmdp_collapse_flush
718#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
719#endif
720
721#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
722extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
723 pgtable_t pgtable);
724#endif
725
726#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
727extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
728#endif
729
730#ifndef arch_needs_pgtable_deposit
731#define arch_needs_pgtable_deposit() (false)
732#endif
733
734#ifdef CONFIG_TRANSPARENT_HUGEPAGE
735/*
736 * This is an implementation of pmdp_establish() that is only suitable for an
737 * architecture that doesn't have hardware dirty/accessed bits. In this case we
738 * can't race with CPU which sets these bits and non-atomic approach is fine.
739 */
740static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
741 unsigned long address, pmd_t *pmdp, pmd_t pmd)
742{
743 pmd_t old_pmd = *pmdp;
744 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
745 return old_pmd;
746}
747#endif
748
749#ifndef __HAVE_ARCH_PMDP_INVALIDATE
750extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
751 pmd_t *pmdp);
752#endif
753
754#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
755
756/*
757 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
758 * hugepage mapping in the page tables. This function is similar to
759 * pmdp_invalidate(), but should only be used if the access and dirty bits would
760 * not be cleared by the software in the new PMD value. The function ensures
761 * that hardware changes of the access and dirty bits updates would not be lost.
762 *
763 * Doing so can allow in certain architectures to avoid a TLB flush in most
764 * cases. Yet, another TLB flush might be necessary later if the PMD update
765 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
766 * even when a TLB flush is needed because of the update, the caller may be able
767 * to batch these TLB flushing operations, so fewer TLB flush operations are
768 * needed.
769 */
770extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
771 unsigned long address, pmd_t *pmdp);
772#endif
773
774#ifndef __HAVE_ARCH_PTE_SAME
775static inline int pte_same(pte_t pte_a, pte_t pte_b)
776{
777 return pte_val(pte_a) == pte_val(pte_b);
778}
779#endif
780
781#ifndef __HAVE_ARCH_PTE_UNUSED
782/*
783 * Some architectures provide facilities to virtualization guests
784 * so that they can flag allocated pages as unused. This allows the
785 * host to transparently reclaim unused pages. This function returns
786 * whether the pte's page is unused.
787 */
788static inline int pte_unused(pte_t pte)
789{
790 return 0;
791}
792#endif
793
794#ifndef pte_access_permitted
795#define pte_access_permitted(pte, write) \
796 (pte_present(pte) && (!(write) || pte_write(pte)))
797#endif
798
799#ifndef pmd_access_permitted
800#define pmd_access_permitted(pmd, write) \
801 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
802#endif
803
804#ifndef pud_access_permitted
805#define pud_access_permitted(pud, write) \
806 (pud_present(pud) && (!(write) || pud_write(pud)))
807#endif
808
809#ifndef p4d_access_permitted
810#define p4d_access_permitted(p4d, write) \
811 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
812#endif
813
814#ifndef pgd_access_permitted
815#define pgd_access_permitted(pgd, write) \
816 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
817#endif
818
819#ifndef __HAVE_ARCH_PMD_SAME
820static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
821{
822 return pmd_val(pmd_a) == pmd_val(pmd_b);
823}
824#endif
825
826#ifndef pud_same
827static inline int pud_same(pud_t pud_a, pud_t pud_b)
828{
829 return pud_val(pud_a) == pud_val(pud_b);
830}
831#define pud_same pud_same
832#endif
833
834#ifndef __HAVE_ARCH_P4D_SAME
835static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
836{
837 return p4d_val(p4d_a) == p4d_val(p4d_b);
838}
839#endif
840
841#ifndef __HAVE_ARCH_PGD_SAME
842static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
843{
844 return pgd_val(pgd_a) == pgd_val(pgd_b);
845}
846#endif
847
848/*
849 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
850 * TLB flush will be required as a result of the "set". For example, use
851 * in scenarios where it is known ahead of time that the routine is
852 * setting non-present entries, or re-setting an existing entry to the
853 * same value. Otherwise, use the typical "set" helpers and flush the
854 * TLB.
855 */
856#define set_pte_safe(ptep, pte) \
857({ \
858 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
859 set_pte(ptep, pte); \
860})
861
862#define set_pmd_safe(pmdp, pmd) \
863({ \
864 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
865 set_pmd(pmdp, pmd); \
866})
867
868#define set_pud_safe(pudp, pud) \
869({ \
870 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
871 set_pud(pudp, pud); \
872})
873
874#define set_p4d_safe(p4dp, p4d) \
875({ \
876 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
877 set_p4d(p4dp, p4d); \
878})
879
880#define set_pgd_safe(pgdp, pgd) \
881({ \
882 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
883 set_pgd(pgdp, pgd); \
884})
885
886#ifndef __HAVE_ARCH_DO_SWAP_PAGE
887/*
888 * Some architectures support metadata associated with a page. When a
889 * page is being swapped out, this metadata must be saved so it can be
890 * restored when the page is swapped back in. SPARC M7 and newer
891 * processors support an ADI (Application Data Integrity) tag for the
892 * page as metadata for the page. arch_do_swap_page() can restore this
893 * metadata when a page is swapped back in.
894 */
895static inline void arch_do_swap_page(struct mm_struct *mm,
896 struct vm_area_struct *vma,
897 unsigned long addr,
898 pte_t pte, pte_t oldpte)
899{
900
901}
902#endif
903
904#ifndef __HAVE_ARCH_UNMAP_ONE
905/*
906 * Some architectures support metadata associated with a page. When a
907 * page is being swapped out, this metadata must be saved so it can be
908 * restored when the page is swapped back in. SPARC M7 and newer
909 * processors support an ADI (Application Data Integrity) tag for the
910 * page as metadata for the page. arch_unmap_one() can save this
911 * metadata on a swap-out of a page.
912 */
913static inline int arch_unmap_one(struct mm_struct *mm,
914 struct vm_area_struct *vma,
915 unsigned long addr,
916 pte_t orig_pte)
917{
918 return 0;
919}
920#endif
921
922/*
923 * Allow architectures to preserve additional metadata associated with
924 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
925 * prototypes must be defined in the arch-specific asm/pgtable.h file.
926 */
927#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
928static inline int arch_prepare_to_swap(struct page *page)
929{
930 return 0;
931}
932#endif
933
934#ifndef __HAVE_ARCH_SWAP_INVALIDATE
935static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
936{
937}
938
939static inline void arch_swap_invalidate_area(int type)
940{
941}
942#endif
943
944#ifndef __HAVE_ARCH_SWAP_RESTORE
945static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
946{
947}
948#endif
949
950#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
951#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
952#endif
953
954#ifndef __HAVE_ARCH_MOVE_PTE
955#define move_pte(pte, prot, old_addr, new_addr) (pte)
956#endif
957
958#ifndef pte_accessible
959# define pte_accessible(mm, pte) ((void)(pte), 1)
960#endif
961
962#ifndef flush_tlb_fix_spurious_fault
963#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
964#endif
965
966/*
967 * When walking page tables, get the address of the next boundary,
968 * or the end address of the range if that comes earlier. Although no
969 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
970 */
971
972#define pgd_addr_end(addr, end) \
973({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
974 (__boundary - 1 < (end) - 1)? __boundary: (end); \
975})
976
977#ifndef p4d_addr_end
978#define p4d_addr_end(addr, end) \
979({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
980 (__boundary - 1 < (end) - 1)? __boundary: (end); \
981})
982#endif
983
984#ifndef pud_addr_end
985#define pud_addr_end(addr, end) \
986({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
987 (__boundary - 1 < (end) - 1)? __boundary: (end); \
988})
989#endif
990
991#ifndef pmd_addr_end
992#define pmd_addr_end(addr, end) \
993({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
994 (__boundary - 1 < (end) - 1)? __boundary: (end); \
995})
996#endif
997
998/*
999 * When walking page tables, we usually want to skip any p?d_none entries;
1000 * and any p?d_bad entries - reporting the error before resetting to none.
1001 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1002 */
1003void pgd_clear_bad(pgd_t *);
1004
1005#ifndef __PAGETABLE_P4D_FOLDED
1006void p4d_clear_bad(p4d_t *);
1007#else
1008#define p4d_clear_bad(p4d) do { } while (0)
1009#endif
1010
1011#ifndef __PAGETABLE_PUD_FOLDED
1012void pud_clear_bad(pud_t *);
1013#else
1014#define pud_clear_bad(p4d) do { } while (0)
1015#endif
1016
1017void pmd_clear_bad(pmd_t *);
1018
1019static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1020{
1021 if (pgd_none(*pgd))
1022 return 1;
1023 if (unlikely(pgd_bad(*pgd))) {
1024 pgd_clear_bad(pgd);
1025 return 1;
1026 }
1027 return 0;
1028}
1029
1030static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1031{
1032 if (p4d_none(*p4d))
1033 return 1;
1034 if (unlikely(p4d_bad(*p4d))) {
1035 p4d_clear_bad(p4d);
1036 return 1;
1037 }
1038 return 0;
1039}
1040
1041static inline int pud_none_or_clear_bad(pud_t *pud)
1042{
1043 if (pud_none(*pud))
1044 return 1;
1045 if (unlikely(pud_bad(*pud))) {
1046 pud_clear_bad(pud);
1047 return 1;
1048 }
1049 return 0;
1050}
1051
1052static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1053{
1054 if (pmd_none(*pmd))
1055 return 1;
1056 if (unlikely(pmd_bad(*pmd))) {
1057 pmd_clear_bad(pmd);
1058 return 1;
1059 }
1060 return 0;
1061}
1062
1063static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1064 unsigned long addr,
1065 pte_t *ptep)
1066{
1067 /*
1068 * Get the current pte state, but zero it out to make it
1069 * non-present, preventing the hardware from asynchronously
1070 * updating it.
1071 */
1072 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1073}
1074
1075static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1076 unsigned long addr,
1077 pte_t *ptep, pte_t pte)
1078{
1079 /*
1080 * The pte is non-present, so there's no hardware state to
1081 * preserve.
1082 */
1083 set_pte_at(vma->vm_mm, addr, ptep, pte);
1084}
1085
1086#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1087/*
1088 * Start a pte protection read-modify-write transaction, which
1089 * protects against asynchronous hardware modifications to the pte.
1090 * The intention is not to prevent the hardware from making pte
1091 * updates, but to prevent any updates it may make from being lost.
1092 *
1093 * This does not protect against other software modifications of the
1094 * pte; the appropriate pte lock must be held over the transaction.
1095 *
1096 * Note that this interface is intended to be batchable, meaning that
1097 * ptep_modify_prot_commit may not actually update the pte, but merely
1098 * queue the update to be done at some later time. The update must be
1099 * actually committed before the pte lock is released, however.
1100 */
1101static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1102 unsigned long addr,
1103 pte_t *ptep)
1104{
1105 return __ptep_modify_prot_start(vma, addr, ptep);
1106}
1107
1108/*
1109 * Commit an update to a pte, leaving any hardware-controlled bits in
1110 * the PTE unmodified.
1111 */
1112static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1113 unsigned long addr,
1114 pte_t *ptep, pte_t old_pte, pte_t pte)
1115{
1116 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1117}
1118#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1119#endif /* CONFIG_MMU */
1120
1121/*
1122 * No-op macros that just return the current protection value. Defined here
1123 * because these macros can be used even if CONFIG_MMU is not defined.
1124 */
1125
1126#ifndef pgprot_nx
1127#define pgprot_nx(prot) (prot)
1128#endif
1129
1130#ifndef pgprot_noncached
1131#define pgprot_noncached(prot) (prot)
1132#endif
1133
1134#ifndef pgprot_writecombine
1135#define pgprot_writecombine pgprot_noncached
1136#endif
1137
1138#ifndef pgprot_writethrough
1139#define pgprot_writethrough pgprot_noncached
1140#endif
1141
1142#ifndef pgprot_device
1143#define pgprot_device pgprot_noncached
1144#endif
1145
1146#ifndef pgprot_mhp
1147#define pgprot_mhp(prot) (prot)
1148#endif
1149
1150#ifdef CONFIG_MMU
1151#ifndef pgprot_modify
1152#define pgprot_modify pgprot_modify
1153static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1154{
1155 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1156 newprot = pgprot_noncached(newprot);
1157 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1158 newprot = pgprot_writecombine(newprot);
1159 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1160 newprot = pgprot_device(newprot);
1161 return newprot;
1162}
1163#endif
1164#endif /* CONFIG_MMU */
1165
1166#ifndef pgprot_encrypted
1167#define pgprot_encrypted(prot) (prot)
1168#endif
1169
1170#ifndef pgprot_decrypted
1171#define pgprot_decrypted(prot) (prot)
1172#endif
1173
1174/*
1175 * A facility to provide batching of the reload of page tables and
1176 * other process state with the actual context switch code for
1177 * paravirtualized guests. By convention, only one of the batched
1178 * update (lazy) modes (CPU, MMU) should be active at any given time,
1179 * entry should never be nested, and entry and exits should always be
1180 * paired. This is for sanity of maintaining and reasoning about the
1181 * kernel code. In this case, the exit (end of the context switch) is
1182 * in architecture-specific code, and so doesn't need a generic
1183 * definition.
1184 */
1185#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1186#define arch_start_context_switch(prev) do {} while (0)
1187#endif
1188
1189#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1190#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1191static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1192{
1193 return pmd;
1194}
1195
1196static inline int pmd_swp_soft_dirty(pmd_t pmd)
1197{
1198 return 0;
1199}
1200
1201static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1202{
1203 return pmd;
1204}
1205#endif
1206#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1207static inline int pte_soft_dirty(pte_t pte)
1208{
1209 return 0;
1210}
1211
1212static inline int pmd_soft_dirty(pmd_t pmd)
1213{
1214 return 0;
1215}
1216
1217static inline pte_t pte_mksoft_dirty(pte_t pte)
1218{
1219 return pte;
1220}
1221
1222static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1223{
1224 return pmd;
1225}
1226
1227static inline pte_t pte_clear_soft_dirty(pte_t pte)
1228{
1229 return pte;
1230}
1231
1232static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1233{
1234 return pmd;
1235}
1236
1237static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1238{
1239 return pte;
1240}
1241
1242static inline int pte_swp_soft_dirty(pte_t pte)
1243{
1244 return 0;
1245}
1246
1247static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1248{
1249 return pte;
1250}
1251
1252static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1253{
1254 return pmd;
1255}
1256
1257static inline int pmd_swp_soft_dirty(pmd_t pmd)
1258{
1259 return 0;
1260}
1261
1262static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1263{
1264 return pmd;
1265}
1266#endif
1267
1268#ifndef __HAVE_PFNMAP_TRACKING
1269/*
1270 * Interfaces that can be used by architecture code to keep track of
1271 * memory type of pfn mappings specified by the remap_pfn_range,
1272 * vmf_insert_pfn.
1273 */
1274
1275/*
1276 * track_pfn_remap is called when a _new_ pfn mapping is being established
1277 * by remap_pfn_range() for physical range indicated by pfn and size.
1278 */
1279static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1280 unsigned long pfn, unsigned long addr,
1281 unsigned long size)
1282{
1283 return 0;
1284}
1285
1286/*
1287 * track_pfn_insert is called when a _new_ single pfn is established
1288 * by vmf_insert_pfn().
1289 */
1290static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1291 pfn_t pfn)
1292{
1293}
1294
1295/*
1296 * track_pfn_copy is called when vma that is covering the pfnmap gets
1297 * copied through copy_page_range().
1298 */
1299static inline int track_pfn_copy(struct vm_area_struct *vma)
1300{
1301 return 0;
1302}
1303
1304/*
1305 * untrack_pfn is called while unmapping a pfnmap for a region.
1306 * untrack can be called for a specific region indicated by pfn and size or
1307 * can be for the entire vma (in which case pfn, size are zero).
1308 */
1309static inline void untrack_pfn(struct vm_area_struct *vma,
1310 unsigned long pfn, unsigned long size,
1311 bool mm_wr_locked)
1312{
1313}
1314
1315/*
1316 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1317 * or fails to copy pgtable during duplicate vm area.
1318 */
1319static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1320{
1321}
1322#else
1323extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1324 unsigned long pfn, unsigned long addr,
1325 unsigned long size);
1326extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1327 pfn_t pfn);
1328extern int track_pfn_copy(struct vm_area_struct *vma);
1329extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1330 unsigned long size, bool mm_wr_locked);
1331extern void untrack_pfn_clear(struct vm_area_struct *vma);
1332#endif
1333
1334#ifdef CONFIG_MMU
1335#ifdef __HAVE_COLOR_ZERO_PAGE
1336static inline int is_zero_pfn(unsigned long pfn)
1337{
1338 extern unsigned long zero_pfn;
1339 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1340 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1341}
1342
1343#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1344
1345#else
1346static inline int is_zero_pfn(unsigned long pfn)
1347{
1348 extern unsigned long zero_pfn;
1349 return pfn == zero_pfn;
1350}
1351
1352static inline unsigned long my_zero_pfn(unsigned long addr)
1353{
1354 extern unsigned long zero_pfn;
1355 return zero_pfn;
1356}
1357#endif
1358#else
1359static inline int is_zero_pfn(unsigned long pfn)
1360{
1361 return 0;
1362}
1363
1364static inline unsigned long my_zero_pfn(unsigned long addr)
1365{
1366 return 0;
1367}
1368#endif /* CONFIG_MMU */
1369
1370#ifdef CONFIG_MMU
1371
1372#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1373static inline int pmd_trans_huge(pmd_t pmd)
1374{
1375 return 0;
1376}
1377#ifndef pmd_write
1378static inline int pmd_write(pmd_t pmd)
1379{
1380 BUG();
1381 return 0;
1382}
1383#endif /* pmd_write */
1384#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1385
1386#ifndef pud_write
1387static inline int pud_write(pud_t pud)
1388{
1389 BUG();
1390 return 0;
1391}
1392#endif /* pud_write */
1393
1394#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1395static inline int pmd_devmap(pmd_t pmd)
1396{
1397 return 0;
1398}
1399static inline int pud_devmap(pud_t pud)
1400{
1401 return 0;
1402}
1403static inline int pgd_devmap(pgd_t pgd)
1404{
1405 return 0;
1406}
1407#endif
1408
1409#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1410 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1411static inline int pud_trans_huge(pud_t pud)
1412{
1413 return 0;
1414}
1415#endif
1416
1417static inline int pud_trans_unstable(pud_t *pud)
1418{
1419#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1420 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1421 pud_t pudval = READ_ONCE(*pud);
1422
1423 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1424 return 1;
1425 if (unlikely(pud_bad(pudval))) {
1426 pud_clear_bad(pud);
1427 return 1;
1428 }
1429#endif
1430 return 0;
1431}
1432
1433#ifndef CONFIG_NUMA_BALANCING
1434/*
1435 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1436 * perfectly valid to indicate "no" in that case, which is why our default
1437 * implementation defaults to "always no".
1438 *
1439 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1440 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1441 * accessible VMAs.
1442 *
1443 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1444 * looking at the VMA accessibility is sufficient.
1445 */
1446static inline int pte_protnone(pte_t pte)
1447{
1448 return 0;
1449}
1450
1451static inline int pmd_protnone(pmd_t pmd)
1452{
1453 return 0;
1454}
1455#endif /* CONFIG_NUMA_BALANCING */
1456
1457#endif /* CONFIG_MMU */
1458
1459#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1460
1461#ifndef __PAGETABLE_P4D_FOLDED
1462int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1463void p4d_clear_huge(p4d_t *p4d);
1464#else
1465static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1466{
1467 return 0;
1468}
1469static inline void p4d_clear_huge(p4d_t *p4d) { }
1470#endif /* !__PAGETABLE_P4D_FOLDED */
1471
1472int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1473int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1474int pud_clear_huge(pud_t *pud);
1475int pmd_clear_huge(pmd_t *pmd);
1476int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1477int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1478int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1479#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1480static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1481{
1482 return 0;
1483}
1484static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1485{
1486 return 0;
1487}
1488static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1489{
1490 return 0;
1491}
1492static inline void p4d_clear_huge(p4d_t *p4d) { }
1493static inline int pud_clear_huge(pud_t *pud)
1494{
1495 return 0;
1496}
1497static inline int pmd_clear_huge(pmd_t *pmd)
1498{
1499 return 0;
1500}
1501static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1502{
1503 return 0;
1504}
1505static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1506{
1507 return 0;
1508}
1509static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1510{
1511 return 0;
1512}
1513#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1514
1515#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1516#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517/*
1518 * ARCHes with special requirements for evicting THP backing TLB entries can
1519 * implement this. Otherwise also, it can help optimize normal TLB flush in
1520 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1521 * entire TLB if flush span is greater than a threshold, which will
1522 * likely be true for a single huge page. Thus a single THP flush will
1523 * invalidate the entire TLB which is not desirable.
1524 * e.g. see arch/arc: flush_pmd_tlb_range
1525 */
1526#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1527#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1528#else
1529#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1530#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1531#endif
1532#endif
1533
1534struct file;
1535int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1536 unsigned long size, pgprot_t *vma_prot);
1537
1538#ifndef CONFIG_X86_ESPFIX64
1539static inline void init_espfix_bsp(void) { }
1540#endif
1541
1542extern void __init pgtable_cache_init(void);
1543
1544#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1545static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1546{
1547 return true;
1548}
1549
1550static inline bool arch_has_pfn_modify_check(void)
1551{
1552 return false;
1553}
1554#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1555
1556/*
1557 * Architecture PAGE_KERNEL_* fallbacks
1558 *
1559 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1560 * because they really don't support them, or the port needs to be updated to
1561 * reflect the required functionality. Below are a set of relatively safe
1562 * fallbacks, as best effort, which we can count on in lieu of the architectures
1563 * not defining them on their own yet.
1564 */
1565
1566#ifndef PAGE_KERNEL_RO
1567# define PAGE_KERNEL_RO PAGE_KERNEL
1568#endif
1569
1570#ifndef PAGE_KERNEL_EXEC
1571# define PAGE_KERNEL_EXEC PAGE_KERNEL
1572#endif
1573
1574/*
1575 * Page Table Modification bits for pgtbl_mod_mask.
1576 *
1577 * These are used by the p?d_alloc_track*() set of functions an in the generic
1578 * vmalloc/ioremap code to track at which page-table levels entries have been
1579 * modified. Based on that the code can better decide when vmalloc and ioremap
1580 * mapping changes need to be synchronized to other page-tables in the system.
1581 */
1582#define __PGTBL_PGD_MODIFIED 0
1583#define __PGTBL_P4D_MODIFIED 1
1584#define __PGTBL_PUD_MODIFIED 2
1585#define __PGTBL_PMD_MODIFIED 3
1586#define __PGTBL_PTE_MODIFIED 4
1587
1588#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1589#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1590#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1591#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1592#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1593
1594/* Page-Table Modification Mask */
1595typedef unsigned int pgtbl_mod_mask;
1596
1597#endif /* !__ASSEMBLY__ */
1598
1599#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1600#ifdef CONFIG_PHYS_ADDR_T_64BIT
1601/*
1602 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1603 * with physical address space extension, but falls back to
1604 * BITS_PER_LONG otherwise.
1605 */
1606#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1607#else
1608#define MAX_POSSIBLE_PHYSMEM_BITS 32
1609#endif
1610#endif
1611
1612#ifndef has_transparent_hugepage
1613#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1614#endif
1615
1616#ifndef has_transparent_pud_hugepage
1617#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1618#endif
1619/*
1620 * On some architectures it depends on the mm if the p4d/pud or pmd
1621 * layer of the page table hierarchy is folded or not.
1622 */
1623#ifndef mm_p4d_folded
1624#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1625#endif
1626
1627#ifndef mm_pud_folded
1628#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1629#endif
1630
1631#ifndef mm_pmd_folded
1632#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1633#endif
1634
1635#ifndef p4d_offset_lockless
1636#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1637#endif
1638#ifndef pud_offset_lockless
1639#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1640#endif
1641#ifndef pmd_offset_lockless
1642#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1643#endif
1644
1645/*
1646 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1647 * This differs from p?d_huge() by the fact that they are always available (if
1648 * the architecture supports large pages at the appropriate level) even
1649 * if CONFIG_HUGETLB_PAGE is not defined.
1650 * Only meaningful when called on a valid entry.
1651 */
1652#ifndef pgd_leaf
1653#define pgd_leaf(x) 0
1654#endif
1655#ifndef p4d_leaf
1656#define p4d_leaf(x) 0
1657#endif
1658#ifndef pud_leaf
1659#define pud_leaf(x) 0
1660#endif
1661#ifndef pmd_leaf
1662#define pmd_leaf(x) 0
1663#endif
1664
1665#ifndef pgd_leaf_size
1666#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1667#endif
1668#ifndef p4d_leaf_size
1669#define p4d_leaf_size(x) P4D_SIZE
1670#endif
1671#ifndef pud_leaf_size
1672#define pud_leaf_size(x) PUD_SIZE
1673#endif
1674#ifndef pmd_leaf_size
1675#define pmd_leaf_size(x) PMD_SIZE
1676#endif
1677#ifndef pte_leaf_size
1678#define pte_leaf_size(x) PAGE_SIZE
1679#endif
1680
1681/*
1682 * Some architectures have MMUs that are configurable or selectable at boot
1683 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1684 * helps to have a static maximum value.
1685 */
1686
1687#ifndef MAX_PTRS_PER_PTE
1688#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1689#endif
1690
1691#ifndef MAX_PTRS_PER_PMD
1692#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1693#endif
1694
1695#ifndef MAX_PTRS_PER_PUD
1696#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1697#endif
1698
1699#ifndef MAX_PTRS_PER_P4D
1700#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1701#endif
1702
1703/* description of effects of mapping type and prot in current implementation.
1704 * this is due to the limited x86 page protection hardware. The expected
1705 * behavior is in parens:
1706 *
1707 * map_type prot
1708 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1709 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1710 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1711 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1712 *
1713 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1714 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1715 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1716 *
1717 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1718 * MAP_PRIVATE (with Enhanced PAN supported):
1719 * r: (no) no
1720 * w: (no) no
1721 * x: (yes) yes
1722 */
1723#define DECLARE_VM_GET_PAGE_PROT \
1724pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1725{ \
1726 return protection_map[vm_flags & \
1727 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1728} \
1729EXPORT_SYMBOL(vm_get_page_prot);
1730
1731#endif /* _LINUX_PGTABLE_H */