at v6.7-rc4 45 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/bpf.h> 10#include <linux/refcount.h> 11#include <linux/compat.h> 12#include <linux/skbuff.h> 13#include <linux/linkage.h> 14#include <linux/printk.h> 15#include <linux/workqueue.h> 16#include <linux/sched.h> 17#include <linux/sched/clock.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25#include <linux/u64_stats_sync.h> 26 27#include <net/sch_generic.h> 28 29#include <asm/byteorder.h> 30#include <uapi/linux/filter.h> 31 32struct sk_buff; 33struct sock; 34struct seccomp_data; 35struct bpf_prog_aux; 36struct xdp_rxq_info; 37struct xdp_buff; 38struct sock_reuseport; 39struct ctl_table; 40struct ctl_table_header; 41 42/* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46#define BPF_REG_ARG1 BPF_REG_1 47#define BPF_REG_ARG2 BPF_REG_2 48#define BPF_REG_ARG3 BPF_REG_3 49#define BPF_REG_ARG4 BPF_REG_4 50#define BPF_REG_ARG5 BPF_REG_5 51#define BPF_REG_CTX BPF_REG_6 52#define BPF_REG_FP BPF_REG_10 53 54/* Additional register mappings for converted user programs. */ 55#define BPF_REG_A BPF_REG_0 56#define BPF_REG_X BPF_REG_7 57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61/* Kernel hidden auxiliary/helper register. */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66/* unused opcode to mark special call to bpf_tail_call() helper */ 67#define BPF_TAIL_CALL 0xf0 68 69/* unused opcode to mark special load instruction. Same as BPF_ABS */ 70#define BPF_PROBE_MEM 0x20 71 72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73#define BPF_PROBE_MEMSX 0x40 74 75/* unused opcode to mark call to interpreter with arguments */ 76#define BPF_CALL_ARGS 0xe0 77 78/* unused opcode to mark speculation barrier for mitigating 79 * Speculative Store Bypass 80 */ 81#define BPF_NOSPEC 0xc0 82 83/* As per nm, we expose JITed images as text (code) section for 84 * kallsyms. That way, tools like perf can find it to match 85 * addresses. 86 */ 87#define BPF_SYM_ELF_TYPE 't' 88 89/* BPF program can access up to 512 bytes of stack space. */ 90#define MAX_BPF_STACK 512 91 92/* Helper macros for filter block array initializers. */ 93 94/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 95 96#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 97 ((struct bpf_insn) { \ 98 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 99 .dst_reg = DST, \ 100 .src_reg = SRC, \ 101 .off = OFF, \ 102 .imm = 0 }) 103 104#define BPF_ALU64_REG(OP, DST, SRC) \ 105 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 106 107#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 108 ((struct bpf_insn) { \ 109 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 110 .dst_reg = DST, \ 111 .src_reg = SRC, \ 112 .off = OFF, \ 113 .imm = 0 }) 114 115#define BPF_ALU32_REG(OP, DST, SRC) \ 116 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 117 118/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 119 120#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 121 ((struct bpf_insn) { \ 122 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 123 .dst_reg = DST, \ 124 .src_reg = 0, \ 125 .off = OFF, \ 126 .imm = IMM }) 127#define BPF_ALU64_IMM(OP, DST, IMM) \ 128 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 129 130#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 131 ((struct bpf_insn) { \ 132 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 133 .dst_reg = DST, \ 134 .src_reg = 0, \ 135 .off = OFF, \ 136 .imm = IMM }) 137#define BPF_ALU32_IMM(OP, DST, IMM) \ 138 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 139 140/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 141 142#define BPF_ENDIAN(TYPE, DST, LEN) \ 143 ((struct bpf_insn) { \ 144 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 145 .dst_reg = DST, \ 146 .src_reg = 0, \ 147 .off = 0, \ 148 .imm = LEN }) 149 150/* Byte Swap, bswap16/32/64 */ 151 152#define BPF_BSWAP(DST, LEN) \ 153 ((struct bpf_insn) { \ 154 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 155 .dst_reg = DST, \ 156 .src_reg = 0, \ 157 .off = 0, \ 158 .imm = LEN }) 159 160/* Short form of mov, dst_reg = src_reg */ 161 162#define BPF_MOV64_REG(DST, SRC) \ 163 ((struct bpf_insn) { \ 164 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 165 .dst_reg = DST, \ 166 .src_reg = SRC, \ 167 .off = 0, \ 168 .imm = 0 }) 169 170#define BPF_MOV32_REG(DST, SRC) \ 171 ((struct bpf_insn) { \ 172 .code = BPF_ALU | BPF_MOV | BPF_X, \ 173 .dst_reg = DST, \ 174 .src_reg = SRC, \ 175 .off = 0, \ 176 .imm = 0 }) 177 178/* Short form of mov, dst_reg = imm32 */ 179 180#define BPF_MOV64_IMM(DST, IMM) \ 181 ((struct bpf_insn) { \ 182 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 183 .dst_reg = DST, \ 184 .src_reg = 0, \ 185 .off = 0, \ 186 .imm = IMM }) 187 188#define BPF_MOV32_IMM(DST, IMM) \ 189 ((struct bpf_insn) { \ 190 .code = BPF_ALU | BPF_MOV | BPF_K, \ 191 .dst_reg = DST, \ 192 .src_reg = 0, \ 193 .off = 0, \ 194 .imm = IMM }) 195 196/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 197 198#define BPF_MOVSX64_REG(DST, SRC, OFF) \ 199 ((struct bpf_insn) { \ 200 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 201 .dst_reg = DST, \ 202 .src_reg = SRC, \ 203 .off = OFF, \ 204 .imm = 0 }) 205 206#define BPF_MOVSX32_REG(DST, SRC, OFF) \ 207 ((struct bpf_insn) { \ 208 .code = BPF_ALU | BPF_MOV | BPF_X, \ 209 .dst_reg = DST, \ 210 .src_reg = SRC, \ 211 .off = OFF, \ 212 .imm = 0 }) 213 214/* Special form of mov32, used for doing explicit zero extension on dst. */ 215#define BPF_ZEXT_REG(DST) \ 216 ((struct bpf_insn) { \ 217 .code = BPF_ALU | BPF_MOV | BPF_X, \ 218 .dst_reg = DST, \ 219 .src_reg = DST, \ 220 .off = 0, \ 221 .imm = 1 }) 222 223static inline bool insn_is_zext(const struct bpf_insn *insn) 224{ 225 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 226} 227 228/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 229#define BPF_LD_IMM64(DST, IMM) \ 230 BPF_LD_IMM64_RAW(DST, 0, IMM) 231 232#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 233 ((struct bpf_insn) { \ 234 .code = BPF_LD | BPF_DW | BPF_IMM, \ 235 .dst_reg = DST, \ 236 .src_reg = SRC, \ 237 .off = 0, \ 238 .imm = (__u32) (IMM) }), \ 239 ((struct bpf_insn) { \ 240 .code = 0, /* zero is reserved opcode */ \ 241 .dst_reg = 0, \ 242 .src_reg = 0, \ 243 .off = 0, \ 244 .imm = ((__u64) (IMM)) >> 32 }) 245 246/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 247#define BPF_LD_MAP_FD(DST, MAP_FD) \ 248 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 249 250/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 251 252#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 253 ((struct bpf_insn) { \ 254 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 255 .dst_reg = DST, \ 256 .src_reg = SRC, \ 257 .off = 0, \ 258 .imm = IMM }) 259 260#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 261 ((struct bpf_insn) { \ 262 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 263 .dst_reg = DST, \ 264 .src_reg = SRC, \ 265 .off = 0, \ 266 .imm = IMM }) 267 268/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 269 270#define BPF_LD_ABS(SIZE, IMM) \ 271 ((struct bpf_insn) { \ 272 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 273 .dst_reg = 0, \ 274 .src_reg = 0, \ 275 .off = 0, \ 276 .imm = IMM }) 277 278/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 279 280#define BPF_LD_IND(SIZE, SRC, IMM) \ 281 ((struct bpf_insn) { \ 282 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 283 .dst_reg = 0, \ 284 .src_reg = SRC, \ 285 .off = 0, \ 286 .imm = IMM }) 287 288/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 289 290#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 291 ((struct bpf_insn) { \ 292 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 293 .dst_reg = DST, \ 294 .src_reg = SRC, \ 295 .off = OFF, \ 296 .imm = 0 }) 297 298/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 299 300#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 301 ((struct bpf_insn) { \ 302 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 303 .dst_reg = DST, \ 304 .src_reg = SRC, \ 305 .off = OFF, \ 306 .imm = 0 }) 307 308/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 309 310#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 311 ((struct bpf_insn) { \ 312 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 313 .dst_reg = DST, \ 314 .src_reg = SRC, \ 315 .off = OFF, \ 316 .imm = 0 }) 317 318 319/* 320 * Atomic operations: 321 * 322 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 323 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 324 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 325 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 326 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 327 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 328 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 329 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 330 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 331 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 332 */ 333 334#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 335 ((struct bpf_insn) { \ 336 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 337 .dst_reg = DST, \ 338 .src_reg = SRC, \ 339 .off = OFF, \ 340 .imm = OP }) 341 342/* Legacy alias */ 343#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 344 345/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 346 347#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 348 ((struct bpf_insn) { \ 349 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 350 .dst_reg = DST, \ 351 .src_reg = 0, \ 352 .off = OFF, \ 353 .imm = IMM }) 354 355/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 356 357#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 358 ((struct bpf_insn) { \ 359 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 360 .dst_reg = DST, \ 361 .src_reg = SRC, \ 362 .off = OFF, \ 363 .imm = 0 }) 364 365/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 366 367#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 368 ((struct bpf_insn) { \ 369 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 370 .dst_reg = DST, \ 371 .src_reg = 0, \ 372 .off = OFF, \ 373 .imm = IMM }) 374 375/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 376 377#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 378 ((struct bpf_insn) { \ 379 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 380 .dst_reg = DST, \ 381 .src_reg = SRC, \ 382 .off = OFF, \ 383 .imm = 0 }) 384 385/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 386 387#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 388 ((struct bpf_insn) { \ 389 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 390 .dst_reg = DST, \ 391 .src_reg = 0, \ 392 .off = OFF, \ 393 .imm = IMM }) 394 395/* Unconditional jumps, goto pc + off16 */ 396 397#define BPF_JMP_A(OFF) \ 398 ((struct bpf_insn) { \ 399 .code = BPF_JMP | BPF_JA, \ 400 .dst_reg = 0, \ 401 .src_reg = 0, \ 402 .off = OFF, \ 403 .imm = 0 }) 404 405/* Relative call */ 406 407#define BPF_CALL_REL(TGT) \ 408 ((struct bpf_insn) { \ 409 .code = BPF_JMP | BPF_CALL, \ 410 .dst_reg = 0, \ 411 .src_reg = BPF_PSEUDO_CALL, \ 412 .off = 0, \ 413 .imm = TGT }) 414 415/* Convert function address to BPF immediate */ 416 417#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 418 419#define BPF_EMIT_CALL(FUNC) \ 420 ((struct bpf_insn) { \ 421 .code = BPF_JMP | BPF_CALL, \ 422 .dst_reg = 0, \ 423 .src_reg = 0, \ 424 .off = 0, \ 425 .imm = BPF_CALL_IMM(FUNC) }) 426 427/* Raw code statement block */ 428 429#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 430 ((struct bpf_insn) { \ 431 .code = CODE, \ 432 .dst_reg = DST, \ 433 .src_reg = SRC, \ 434 .off = OFF, \ 435 .imm = IMM }) 436 437/* Program exit */ 438 439#define BPF_EXIT_INSN() \ 440 ((struct bpf_insn) { \ 441 .code = BPF_JMP | BPF_EXIT, \ 442 .dst_reg = 0, \ 443 .src_reg = 0, \ 444 .off = 0, \ 445 .imm = 0 }) 446 447/* Speculation barrier */ 448 449#define BPF_ST_NOSPEC() \ 450 ((struct bpf_insn) { \ 451 .code = BPF_ST | BPF_NOSPEC, \ 452 .dst_reg = 0, \ 453 .src_reg = 0, \ 454 .off = 0, \ 455 .imm = 0 }) 456 457/* Internal classic blocks for direct assignment */ 458 459#define __BPF_STMT(CODE, K) \ 460 ((struct sock_filter) BPF_STMT(CODE, K)) 461 462#define __BPF_JUMP(CODE, K, JT, JF) \ 463 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 464 465#define bytes_to_bpf_size(bytes) \ 466({ \ 467 int bpf_size = -EINVAL; \ 468 \ 469 if (bytes == sizeof(u8)) \ 470 bpf_size = BPF_B; \ 471 else if (bytes == sizeof(u16)) \ 472 bpf_size = BPF_H; \ 473 else if (bytes == sizeof(u32)) \ 474 bpf_size = BPF_W; \ 475 else if (bytes == sizeof(u64)) \ 476 bpf_size = BPF_DW; \ 477 \ 478 bpf_size; \ 479}) 480 481#define bpf_size_to_bytes(bpf_size) \ 482({ \ 483 int bytes = -EINVAL; \ 484 \ 485 if (bpf_size == BPF_B) \ 486 bytes = sizeof(u8); \ 487 else if (bpf_size == BPF_H) \ 488 bytes = sizeof(u16); \ 489 else if (bpf_size == BPF_W) \ 490 bytes = sizeof(u32); \ 491 else if (bpf_size == BPF_DW) \ 492 bytes = sizeof(u64); \ 493 \ 494 bytes; \ 495}) 496 497#define BPF_SIZEOF(type) \ 498 ({ \ 499 const int __size = bytes_to_bpf_size(sizeof(type)); \ 500 BUILD_BUG_ON(__size < 0); \ 501 __size; \ 502 }) 503 504#define BPF_FIELD_SIZEOF(type, field) \ 505 ({ \ 506 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 507 BUILD_BUG_ON(__size < 0); \ 508 __size; \ 509 }) 510 511#define BPF_LDST_BYTES(insn) \ 512 ({ \ 513 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 514 WARN_ON(__size < 0); \ 515 __size; \ 516 }) 517 518#define __BPF_MAP_0(m, v, ...) v 519#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 520#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 521#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 522#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 523#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 524 525#define __BPF_REG_0(...) __BPF_PAD(5) 526#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 527#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 528#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 529#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 530#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 531 532#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 533#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 534 535#define __BPF_CAST(t, a) \ 536 (__force t) \ 537 (__force \ 538 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 539 (unsigned long)0, (t)0))) a 540#define __BPF_V void 541#define __BPF_N 542 543#define __BPF_DECL_ARGS(t, a) t a 544#define __BPF_DECL_REGS(t, a) u64 a 545 546#define __BPF_PAD(n) \ 547 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 548 u64, __ur_3, u64, __ur_4, u64, __ur_5) 549 550#define BPF_CALL_x(x, name, ...) \ 551 static __always_inline \ 552 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 553 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 554 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 555 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 556 { \ 557 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 558 } \ 559 static __always_inline \ 560 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 561 562#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 563#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 564#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 565#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 566#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 567#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 568 569#define bpf_ctx_range(TYPE, MEMBER) \ 570 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 571#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 572 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 573#if BITS_PER_LONG == 64 574# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 575 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 576#else 577# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 578 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 579#endif /* BITS_PER_LONG == 64 */ 580 581#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 582 ({ \ 583 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 584 *(PTR_SIZE) = (SIZE); \ 585 offsetof(TYPE, MEMBER); \ 586 }) 587 588/* A struct sock_filter is architecture independent. */ 589struct compat_sock_fprog { 590 u16 len; 591 compat_uptr_t filter; /* struct sock_filter * */ 592}; 593 594struct sock_fprog_kern { 595 u16 len; 596 struct sock_filter *filter; 597}; 598 599/* Some arches need doubleword alignment for their instructions and/or data */ 600#define BPF_IMAGE_ALIGNMENT 8 601 602struct bpf_binary_header { 603 u32 size; 604 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 605}; 606 607struct bpf_prog_stats { 608 u64_stats_t cnt; 609 u64_stats_t nsecs; 610 u64_stats_t misses; 611 struct u64_stats_sync syncp; 612} __aligned(2 * sizeof(u64)); 613 614struct sk_filter { 615 refcount_t refcnt; 616 struct rcu_head rcu; 617 struct bpf_prog *prog; 618}; 619 620DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 621 622extern struct mutex nf_conn_btf_access_lock; 623extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 624 const struct bpf_reg_state *reg, 625 int off, int size); 626 627typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 628 const struct bpf_insn *insnsi, 629 unsigned int (*bpf_func)(const void *, 630 const struct bpf_insn *)); 631 632static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 633 const void *ctx, 634 bpf_dispatcher_fn dfunc) 635{ 636 u32 ret; 637 638 cant_migrate(); 639 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 640 struct bpf_prog_stats *stats; 641 u64 start = sched_clock(); 642 unsigned long flags; 643 644 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 645 stats = this_cpu_ptr(prog->stats); 646 flags = u64_stats_update_begin_irqsave(&stats->syncp); 647 u64_stats_inc(&stats->cnt); 648 u64_stats_add(&stats->nsecs, sched_clock() - start); 649 u64_stats_update_end_irqrestore(&stats->syncp, flags); 650 } else { 651 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 652 } 653 return ret; 654} 655 656static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 657{ 658 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 659} 660 661/* 662 * Use in preemptible and therefore migratable context to make sure that 663 * the execution of the BPF program runs on one CPU. 664 * 665 * This uses migrate_disable/enable() explicitly to document that the 666 * invocation of a BPF program does not require reentrancy protection 667 * against a BPF program which is invoked from a preempting task. 668 */ 669static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 670 const void *ctx) 671{ 672 u32 ret; 673 674 migrate_disable(); 675 ret = bpf_prog_run(prog, ctx); 676 migrate_enable(); 677 return ret; 678} 679 680#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 681 682struct bpf_skb_data_end { 683 struct qdisc_skb_cb qdisc_cb; 684 void *data_meta; 685 void *data_end; 686}; 687 688struct bpf_nh_params { 689 u32 nh_family; 690 union { 691 u32 ipv4_nh; 692 struct in6_addr ipv6_nh; 693 }; 694}; 695 696struct bpf_redirect_info { 697 u64 tgt_index; 698 void *tgt_value; 699 struct bpf_map *map; 700 u32 flags; 701 u32 kern_flags; 702 u32 map_id; 703 enum bpf_map_type map_type; 704 struct bpf_nh_params nh; 705}; 706 707DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 708 709/* flags for bpf_redirect_info kern_flags */ 710#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 711 712/* Compute the linear packet data range [data, data_end) which 713 * will be accessed by various program types (cls_bpf, act_bpf, 714 * lwt, ...). Subsystems allowing direct data access must (!) 715 * ensure that cb[] area can be written to when BPF program is 716 * invoked (otherwise cb[] save/restore is necessary). 717 */ 718static inline void bpf_compute_data_pointers(struct sk_buff *skb) 719{ 720 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 721 722 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 723 cb->data_meta = skb->data - skb_metadata_len(skb); 724 cb->data_end = skb->data + skb_headlen(skb); 725} 726 727/* Similar to bpf_compute_data_pointers(), except that save orginal 728 * data in cb->data and cb->meta_data for restore. 729 */ 730static inline void bpf_compute_and_save_data_end( 731 struct sk_buff *skb, void **saved_data_end) 732{ 733 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 734 735 *saved_data_end = cb->data_end; 736 cb->data_end = skb->data + skb_headlen(skb); 737} 738 739/* Restore data saved by bpf_compute_and_save_data_end(). */ 740static inline void bpf_restore_data_end( 741 struct sk_buff *skb, void *saved_data_end) 742{ 743 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 744 745 cb->data_end = saved_data_end; 746} 747 748static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 749{ 750 /* eBPF programs may read/write skb->cb[] area to transfer meta 751 * data between tail calls. Since this also needs to work with 752 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 753 * 754 * In some socket filter cases, the cb unfortunately needs to be 755 * saved/restored so that protocol specific skb->cb[] data won't 756 * be lost. In any case, due to unpriviledged eBPF programs 757 * attached to sockets, we need to clear the bpf_skb_cb() area 758 * to not leak previous contents to user space. 759 */ 760 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 761 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 762 sizeof_field(struct qdisc_skb_cb, data)); 763 764 return qdisc_skb_cb(skb)->data; 765} 766 767/* Must be invoked with migration disabled */ 768static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 769 const void *ctx) 770{ 771 const struct sk_buff *skb = ctx; 772 u8 *cb_data = bpf_skb_cb(skb); 773 u8 cb_saved[BPF_SKB_CB_LEN]; 774 u32 res; 775 776 if (unlikely(prog->cb_access)) { 777 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 778 memset(cb_data, 0, sizeof(cb_saved)); 779 } 780 781 res = bpf_prog_run(prog, skb); 782 783 if (unlikely(prog->cb_access)) 784 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 785 786 return res; 787} 788 789static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 790 struct sk_buff *skb) 791{ 792 u32 res; 793 794 migrate_disable(); 795 res = __bpf_prog_run_save_cb(prog, skb); 796 migrate_enable(); 797 return res; 798} 799 800static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 801 struct sk_buff *skb) 802{ 803 u8 *cb_data = bpf_skb_cb(skb); 804 u32 res; 805 806 if (unlikely(prog->cb_access)) 807 memset(cb_data, 0, BPF_SKB_CB_LEN); 808 809 res = bpf_prog_run_pin_on_cpu(prog, skb); 810 return res; 811} 812 813DECLARE_BPF_DISPATCHER(xdp) 814 815DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 816 817u32 xdp_master_redirect(struct xdp_buff *xdp); 818 819void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 820 821static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 822{ 823 return prog->len * sizeof(struct bpf_insn); 824} 825 826static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 827{ 828 return round_up(bpf_prog_insn_size(prog) + 829 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 830} 831 832static inline unsigned int bpf_prog_size(unsigned int proglen) 833{ 834 return max(sizeof(struct bpf_prog), 835 offsetof(struct bpf_prog, insns[proglen])); 836} 837 838static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 839{ 840 /* When classic BPF programs have been loaded and the arch 841 * does not have a classic BPF JIT (anymore), they have been 842 * converted via bpf_migrate_filter() to eBPF and thus always 843 * have an unspec program type. 844 */ 845 return prog->type == BPF_PROG_TYPE_UNSPEC; 846} 847 848static inline u32 bpf_ctx_off_adjust_machine(u32 size) 849{ 850 const u32 size_machine = sizeof(unsigned long); 851 852 if (size > size_machine && size % size_machine == 0) 853 size = size_machine; 854 855 return size; 856} 857 858static inline bool 859bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 860{ 861 return size <= size_default && (size & (size - 1)) == 0; 862} 863 864static inline u8 865bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 866{ 867 u8 access_off = off & (size_default - 1); 868 869#ifdef __LITTLE_ENDIAN 870 return access_off; 871#else 872 return size_default - (access_off + size); 873#endif 874} 875 876#define bpf_ctx_wide_access_ok(off, size, type, field) \ 877 (size == sizeof(__u64) && \ 878 off >= offsetof(type, field) && \ 879 off + sizeof(__u64) <= offsetofend(type, field) && \ 880 off % sizeof(__u64) == 0) 881 882#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 883 884static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 885{ 886#ifndef CONFIG_BPF_JIT_ALWAYS_ON 887 if (!fp->jited) { 888 set_vm_flush_reset_perms(fp); 889 set_memory_ro((unsigned long)fp, fp->pages); 890 } 891#endif 892} 893 894static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 895{ 896 set_vm_flush_reset_perms(hdr); 897 set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 898} 899 900int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 901static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 902{ 903 return sk_filter_trim_cap(sk, skb, 1); 904} 905 906struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 907void bpf_prog_free(struct bpf_prog *fp); 908 909bool bpf_opcode_in_insntable(u8 code); 910 911void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 912 const u32 *insn_to_jit_off); 913int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 914void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 915 916struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 917struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 918struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 919 gfp_t gfp_extra_flags); 920void __bpf_prog_free(struct bpf_prog *fp); 921 922static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 923{ 924 __bpf_prog_free(fp); 925} 926 927typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 928 unsigned int flen); 929 930int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 931int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 932 bpf_aux_classic_check_t trans, bool save_orig); 933void bpf_prog_destroy(struct bpf_prog *fp); 934 935int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 936int sk_attach_bpf(u32 ufd, struct sock *sk); 937int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 938int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 939void sk_reuseport_prog_free(struct bpf_prog *prog); 940int sk_detach_filter(struct sock *sk); 941int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 942 943bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 944void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 945 946u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 947#define __bpf_call_base_args \ 948 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 949 (void *)__bpf_call_base) 950 951struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 952void bpf_jit_compile(struct bpf_prog *prog); 953bool bpf_jit_needs_zext(void); 954bool bpf_jit_supports_subprog_tailcalls(void); 955bool bpf_jit_supports_kfunc_call(void); 956bool bpf_jit_supports_far_kfunc_call(void); 957bool bpf_jit_supports_exceptions(void); 958void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 959bool bpf_helper_changes_pkt_data(void *func); 960 961static inline bool bpf_dump_raw_ok(const struct cred *cred) 962{ 963 /* Reconstruction of call-sites is dependent on kallsyms, 964 * thus make dump the same restriction. 965 */ 966 return kallsyms_show_value(cred); 967} 968 969struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 970 const struct bpf_insn *patch, u32 len); 971int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 972 973void bpf_clear_redirect_map(struct bpf_map *map); 974 975static inline bool xdp_return_frame_no_direct(void) 976{ 977 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 978 979 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 980} 981 982static inline void xdp_set_return_frame_no_direct(void) 983{ 984 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 985 986 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 987} 988 989static inline void xdp_clear_return_frame_no_direct(void) 990{ 991 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 992 993 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 994} 995 996static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 997 unsigned int pktlen) 998{ 999 unsigned int len; 1000 1001 if (unlikely(!(fwd->flags & IFF_UP))) 1002 return -ENETDOWN; 1003 1004 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1005 if (pktlen > len) 1006 return -EMSGSIZE; 1007 1008 return 0; 1009} 1010 1011/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1012 * same cpu context. Further for best results no more than a single map 1013 * for the do_redirect/do_flush pair should be used. This limitation is 1014 * because we only track one map and force a flush when the map changes. 1015 * This does not appear to be a real limitation for existing software. 1016 */ 1017int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1018 struct xdp_buff *xdp, struct bpf_prog *prog); 1019int xdp_do_redirect(struct net_device *dev, 1020 struct xdp_buff *xdp, 1021 struct bpf_prog *prog); 1022int xdp_do_redirect_frame(struct net_device *dev, 1023 struct xdp_buff *xdp, 1024 struct xdp_frame *xdpf, 1025 struct bpf_prog *prog); 1026void xdp_do_flush(void); 1027 1028void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); 1029 1030#ifdef CONFIG_INET 1031struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1032 struct bpf_prog *prog, struct sk_buff *skb, 1033 struct sock *migrating_sk, 1034 u32 hash); 1035#else 1036static inline struct sock * 1037bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1038 struct bpf_prog *prog, struct sk_buff *skb, 1039 struct sock *migrating_sk, 1040 u32 hash) 1041{ 1042 return NULL; 1043} 1044#endif 1045 1046#ifdef CONFIG_BPF_JIT 1047extern int bpf_jit_enable; 1048extern int bpf_jit_harden; 1049extern int bpf_jit_kallsyms; 1050extern long bpf_jit_limit; 1051extern long bpf_jit_limit_max; 1052 1053typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1054 1055void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1056 1057struct bpf_binary_header * 1058bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1059 unsigned int alignment, 1060 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1061void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1062u64 bpf_jit_alloc_exec_limit(void); 1063void *bpf_jit_alloc_exec(unsigned long size); 1064void bpf_jit_free_exec(void *addr); 1065void bpf_jit_free(struct bpf_prog *fp); 1066struct bpf_binary_header * 1067bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1068 1069void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1070void bpf_prog_pack_free(struct bpf_binary_header *hdr); 1071 1072static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1073{ 1074 return list_empty(&fp->aux->ksym.lnode) || 1075 fp->aux->ksym.lnode.prev == LIST_POISON2; 1076} 1077 1078struct bpf_binary_header * 1079bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1080 unsigned int alignment, 1081 struct bpf_binary_header **rw_hdr, 1082 u8 **rw_image, 1083 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1084int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, 1085 struct bpf_binary_header *ro_header, 1086 struct bpf_binary_header *rw_header); 1087void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1088 struct bpf_binary_header *rw_header); 1089 1090int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1091 struct bpf_jit_poke_descriptor *poke); 1092 1093int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1094 const struct bpf_insn *insn, bool extra_pass, 1095 u64 *func_addr, bool *func_addr_fixed); 1096 1097struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1098void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1099 1100static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1101 u32 pass, void *image) 1102{ 1103 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1104 proglen, pass, image, current->comm, task_pid_nr(current)); 1105 1106 if (image) 1107 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1108 16, 1, image, proglen, false); 1109} 1110 1111static inline bool bpf_jit_is_ebpf(void) 1112{ 1113# ifdef CONFIG_HAVE_EBPF_JIT 1114 return true; 1115# else 1116 return false; 1117# endif 1118} 1119 1120static inline bool ebpf_jit_enabled(void) 1121{ 1122 return bpf_jit_enable && bpf_jit_is_ebpf(); 1123} 1124 1125static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1126{ 1127 return fp->jited && bpf_jit_is_ebpf(); 1128} 1129 1130static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1131{ 1132 /* These are the prerequisites, should someone ever have the 1133 * idea to call blinding outside of them, we make sure to 1134 * bail out. 1135 */ 1136 if (!bpf_jit_is_ebpf()) 1137 return false; 1138 if (!prog->jit_requested) 1139 return false; 1140 if (!bpf_jit_harden) 1141 return false; 1142 if (bpf_jit_harden == 1 && bpf_capable()) 1143 return false; 1144 1145 return true; 1146} 1147 1148static inline bool bpf_jit_kallsyms_enabled(void) 1149{ 1150 /* There are a couple of corner cases where kallsyms should 1151 * not be enabled f.e. on hardening. 1152 */ 1153 if (bpf_jit_harden) 1154 return false; 1155 if (!bpf_jit_kallsyms) 1156 return false; 1157 if (bpf_jit_kallsyms == 1) 1158 return true; 1159 1160 return false; 1161} 1162 1163const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1164 unsigned long *off, char *sym); 1165bool is_bpf_text_address(unsigned long addr); 1166int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1167 char *sym); 1168struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1169 1170static inline const char * 1171bpf_address_lookup(unsigned long addr, unsigned long *size, 1172 unsigned long *off, char **modname, char *sym) 1173{ 1174 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1175 1176 if (ret && modname) 1177 *modname = NULL; 1178 return ret; 1179} 1180 1181void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1182void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1183 1184#else /* CONFIG_BPF_JIT */ 1185 1186static inline bool ebpf_jit_enabled(void) 1187{ 1188 return false; 1189} 1190 1191static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1192{ 1193 return false; 1194} 1195 1196static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1197{ 1198 return false; 1199} 1200 1201static inline int 1202bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1203 struct bpf_jit_poke_descriptor *poke) 1204{ 1205 return -ENOTSUPP; 1206} 1207 1208static inline void bpf_jit_free(struct bpf_prog *fp) 1209{ 1210 bpf_prog_unlock_free(fp); 1211} 1212 1213static inline bool bpf_jit_kallsyms_enabled(void) 1214{ 1215 return false; 1216} 1217 1218static inline const char * 1219__bpf_address_lookup(unsigned long addr, unsigned long *size, 1220 unsigned long *off, char *sym) 1221{ 1222 return NULL; 1223} 1224 1225static inline bool is_bpf_text_address(unsigned long addr) 1226{ 1227 return false; 1228} 1229 1230static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1231 char *type, char *sym) 1232{ 1233 return -ERANGE; 1234} 1235 1236static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1237{ 1238 return NULL; 1239} 1240 1241static inline const char * 1242bpf_address_lookup(unsigned long addr, unsigned long *size, 1243 unsigned long *off, char **modname, char *sym) 1244{ 1245 return NULL; 1246} 1247 1248static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1249{ 1250} 1251 1252static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1253{ 1254} 1255 1256#endif /* CONFIG_BPF_JIT */ 1257 1258void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1259 1260#define BPF_ANC BIT(15) 1261 1262static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1263{ 1264 switch (first->code) { 1265 case BPF_RET | BPF_K: 1266 case BPF_LD | BPF_W | BPF_LEN: 1267 return false; 1268 1269 case BPF_LD | BPF_W | BPF_ABS: 1270 case BPF_LD | BPF_H | BPF_ABS: 1271 case BPF_LD | BPF_B | BPF_ABS: 1272 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1273 return true; 1274 return false; 1275 1276 default: 1277 return true; 1278 } 1279} 1280 1281static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1282{ 1283 BUG_ON(ftest->code & BPF_ANC); 1284 1285 switch (ftest->code) { 1286 case BPF_LD | BPF_W | BPF_ABS: 1287 case BPF_LD | BPF_H | BPF_ABS: 1288 case BPF_LD | BPF_B | BPF_ABS: 1289#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1290 return BPF_ANC | SKF_AD_##CODE 1291 switch (ftest->k) { 1292 BPF_ANCILLARY(PROTOCOL); 1293 BPF_ANCILLARY(PKTTYPE); 1294 BPF_ANCILLARY(IFINDEX); 1295 BPF_ANCILLARY(NLATTR); 1296 BPF_ANCILLARY(NLATTR_NEST); 1297 BPF_ANCILLARY(MARK); 1298 BPF_ANCILLARY(QUEUE); 1299 BPF_ANCILLARY(HATYPE); 1300 BPF_ANCILLARY(RXHASH); 1301 BPF_ANCILLARY(CPU); 1302 BPF_ANCILLARY(ALU_XOR_X); 1303 BPF_ANCILLARY(VLAN_TAG); 1304 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1305 BPF_ANCILLARY(PAY_OFFSET); 1306 BPF_ANCILLARY(RANDOM); 1307 BPF_ANCILLARY(VLAN_TPID); 1308 } 1309 fallthrough; 1310 default: 1311 return ftest->code; 1312 } 1313} 1314 1315void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1316 int k, unsigned int size); 1317 1318static inline int bpf_tell_extensions(void) 1319{ 1320 return SKF_AD_MAX; 1321} 1322 1323struct bpf_sock_addr_kern { 1324 struct sock *sk; 1325 struct sockaddr *uaddr; 1326 /* Temporary "register" to make indirect stores to nested structures 1327 * defined above. We need three registers to make such a store, but 1328 * only two (src and dst) are available at convert_ctx_access time 1329 */ 1330 u64 tmp_reg; 1331 void *t_ctx; /* Attach type specific context. */ 1332 u32 uaddrlen; 1333}; 1334 1335struct bpf_sock_ops_kern { 1336 struct sock *sk; 1337 union { 1338 u32 args[4]; 1339 u32 reply; 1340 u32 replylong[4]; 1341 }; 1342 struct sk_buff *syn_skb; 1343 struct sk_buff *skb; 1344 void *skb_data_end; 1345 u8 op; 1346 u8 is_fullsock; 1347 u8 remaining_opt_len; 1348 u64 temp; /* temp and everything after is not 1349 * initialized to 0 before calling 1350 * the BPF program. New fields that 1351 * should be initialized to 0 should 1352 * be inserted before temp. 1353 * temp is scratch storage used by 1354 * sock_ops_convert_ctx_access 1355 * as temporary storage of a register. 1356 */ 1357}; 1358 1359struct bpf_sysctl_kern { 1360 struct ctl_table_header *head; 1361 struct ctl_table *table; 1362 void *cur_val; 1363 size_t cur_len; 1364 void *new_val; 1365 size_t new_len; 1366 int new_updated; 1367 int write; 1368 loff_t *ppos; 1369 /* Temporary "register" for indirect stores to ppos. */ 1370 u64 tmp_reg; 1371}; 1372 1373#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1374struct bpf_sockopt_buf { 1375 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1376}; 1377 1378struct bpf_sockopt_kern { 1379 struct sock *sk; 1380 u8 *optval; 1381 u8 *optval_end; 1382 s32 level; 1383 s32 optname; 1384 s32 optlen; 1385 /* for retval in struct bpf_cg_run_ctx */ 1386 struct task_struct *current_task; 1387 /* Temporary "register" for indirect stores to ppos. */ 1388 u64 tmp_reg; 1389}; 1390 1391int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1392 1393struct bpf_sk_lookup_kern { 1394 u16 family; 1395 u16 protocol; 1396 __be16 sport; 1397 u16 dport; 1398 struct { 1399 __be32 saddr; 1400 __be32 daddr; 1401 } v4; 1402 struct { 1403 const struct in6_addr *saddr; 1404 const struct in6_addr *daddr; 1405 } v6; 1406 struct sock *selected_sk; 1407 u32 ingress_ifindex; 1408 bool no_reuseport; 1409}; 1410 1411extern struct static_key_false bpf_sk_lookup_enabled; 1412 1413/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1414 * 1415 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1416 * SK_DROP. Their meaning is as follows: 1417 * 1418 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1419 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1420 * SK_DROP : terminate lookup with -ECONNREFUSED 1421 * 1422 * This macro aggregates return values and selected sockets from 1423 * multiple BPF programs according to following rules in order: 1424 * 1425 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1426 * macro result is SK_PASS and last ctx.selected_sk is used. 1427 * 2. If any program returned SK_DROP return value, 1428 * macro result is SK_DROP. 1429 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1430 * 1431 * Caller must ensure that the prog array is non-NULL, and that the 1432 * array as well as the programs it contains remain valid. 1433 */ 1434#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1435 ({ \ 1436 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1437 struct bpf_prog_array_item *_item; \ 1438 struct sock *_selected_sk = NULL; \ 1439 bool _no_reuseport = false; \ 1440 struct bpf_prog *_prog; \ 1441 bool _all_pass = true; \ 1442 u32 _ret; \ 1443 \ 1444 migrate_disable(); \ 1445 _item = &(array)->items[0]; \ 1446 while ((_prog = READ_ONCE(_item->prog))) { \ 1447 /* restore most recent selection */ \ 1448 _ctx->selected_sk = _selected_sk; \ 1449 _ctx->no_reuseport = _no_reuseport; \ 1450 \ 1451 _ret = func(_prog, _ctx); \ 1452 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1453 /* remember last non-NULL socket */ \ 1454 _selected_sk = _ctx->selected_sk; \ 1455 _no_reuseport = _ctx->no_reuseport; \ 1456 } else if (_ret == SK_DROP && _all_pass) { \ 1457 _all_pass = false; \ 1458 } \ 1459 _item++; \ 1460 } \ 1461 _ctx->selected_sk = _selected_sk; \ 1462 _ctx->no_reuseport = _no_reuseport; \ 1463 migrate_enable(); \ 1464 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1465 }) 1466 1467static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1468 const __be32 saddr, const __be16 sport, 1469 const __be32 daddr, const u16 dport, 1470 const int ifindex, struct sock **psk) 1471{ 1472 struct bpf_prog_array *run_array; 1473 struct sock *selected_sk = NULL; 1474 bool no_reuseport = false; 1475 1476 rcu_read_lock(); 1477 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1478 if (run_array) { 1479 struct bpf_sk_lookup_kern ctx = { 1480 .family = AF_INET, 1481 .protocol = protocol, 1482 .v4.saddr = saddr, 1483 .v4.daddr = daddr, 1484 .sport = sport, 1485 .dport = dport, 1486 .ingress_ifindex = ifindex, 1487 }; 1488 u32 act; 1489 1490 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1491 if (act == SK_PASS) { 1492 selected_sk = ctx.selected_sk; 1493 no_reuseport = ctx.no_reuseport; 1494 } else { 1495 selected_sk = ERR_PTR(-ECONNREFUSED); 1496 } 1497 } 1498 rcu_read_unlock(); 1499 *psk = selected_sk; 1500 return no_reuseport; 1501} 1502 1503#if IS_ENABLED(CONFIG_IPV6) 1504static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1505 const struct in6_addr *saddr, 1506 const __be16 sport, 1507 const struct in6_addr *daddr, 1508 const u16 dport, 1509 const int ifindex, struct sock **psk) 1510{ 1511 struct bpf_prog_array *run_array; 1512 struct sock *selected_sk = NULL; 1513 bool no_reuseport = false; 1514 1515 rcu_read_lock(); 1516 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1517 if (run_array) { 1518 struct bpf_sk_lookup_kern ctx = { 1519 .family = AF_INET6, 1520 .protocol = protocol, 1521 .v6.saddr = saddr, 1522 .v6.daddr = daddr, 1523 .sport = sport, 1524 .dport = dport, 1525 .ingress_ifindex = ifindex, 1526 }; 1527 u32 act; 1528 1529 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1530 if (act == SK_PASS) { 1531 selected_sk = ctx.selected_sk; 1532 no_reuseport = ctx.no_reuseport; 1533 } else { 1534 selected_sk = ERR_PTR(-ECONNREFUSED); 1535 } 1536 } 1537 rcu_read_unlock(); 1538 *psk = selected_sk; 1539 return no_reuseport; 1540} 1541#endif /* IS_ENABLED(CONFIG_IPV6) */ 1542 1543static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1544 u64 flags, const u64 flag_mask, 1545 void *lookup_elem(struct bpf_map *map, u32 key)) 1546{ 1547 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1548 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1549 1550 /* Lower bits of the flags are used as return code on lookup failure */ 1551 if (unlikely(flags & ~(action_mask | flag_mask))) 1552 return XDP_ABORTED; 1553 1554 ri->tgt_value = lookup_elem(map, index); 1555 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1556 /* If the lookup fails we want to clear out the state in the 1557 * redirect_info struct completely, so that if an eBPF program 1558 * performs multiple lookups, the last one always takes 1559 * precedence. 1560 */ 1561 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1562 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1563 return flags & action_mask; 1564 } 1565 1566 ri->tgt_index = index; 1567 ri->map_id = map->id; 1568 ri->map_type = map->map_type; 1569 1570 if (flags & BPF_F_BROADCAST) { 1571 WRITE_ONCE(ri->map, map); 1572 ri->flags = flags; 1573 } else { 1574 WRITE_ONCE(ri->map, NULL); 1575 ri->flags = 0; 1576 } 1577 1578 return XDP_REDIRECT; 1579} 1580 1581#ifdef CONFIG_NET 1582int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1583int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1584 u32 len, u64 flags); 1585int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1586int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1587void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1588void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1589 void *buf, unsigned long len, bool flush); 1590#else /* CONFIG_NET */ 1591static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1592 void *to, u32 len) 1593{ 1594 return -EOPNOTSUPP; 1595} 1596 1597static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1598 const void *from, u32 len, u64 flags) 1599{ 1600 return -EOPNOTSUPP; 1601} 1602 1603static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1604 void *buf, u32 len) 1605{ 1606 return -EOPNOTSUPP; 1607} 1608 1609static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1610 void *buf, u32 len) 1611{ 1612 return -EOPNOTSUPP; 1613} 1614 1615static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1616{ 1617 return NULL; 1618} 1619 1620static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1621 unsigned long len, bool flush) 1622{ 1623} 1624#endif /* CONFIG_NET */ 1625 1626#endif /* __LINUX_FILTER_H__ */