Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 struct thread *th, bool lock);
48
49static struct dso *machine__kernel_dso(struct machine *machine)
50{
51 return map__dso(machine->vmlinux_map);
52}
53
54static void dsos__init(struct dsos *dsos)
55{
56 INIT_LIST_HEAD(&dsos->head);
57 dsos->root = RB_ROOT;
58 init_rwsem(&dsos->lock);
59}
60
61static void machine__threads_init(struct machine *machine)
62{
63 int i;
64
65 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 struct threads *threads = &machine->threads[i];
67 threads->entries = RB_ROOT_CACHED;
68 init_rwsem(&threads->lock);
69 threads->nr = 0;
70 INIT_LIST_HEAD(&threads->dead);
71 threads->last_match = NULL;
72 }
73}
74
75static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
76{
77 int to_find = (int) *((pid_t *)key);
78
79 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
80}
81
82static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
83 struct rb_root *tree)
84{
85 pid_t to_find = thread__tid(th);
86 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
87
88 return rb_entry(nd, struct thread_rb_node, rb_node);
89}
90
91static int machine__set_mmap_name(struct machine *machine)
92{
93 if (machine__is_host(machine))
94 machine->mmap_name = strdup("[kernel.kallsyms]");
95 else if (machine__is_default_guest(machine))
96 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
97 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
98 machine->pid) < 0)
99 machine->mmap_name = NULL;
100
101 return machine->mmap_name ? 0 : -ENOMEM;
102}
103
104static void thread__set_guest_comm(struct thread *thread, pid_t pid)
105{
106 char comm[64];
107
108 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
109 thread__set_comm(thread, comm, 0);
110}
111
112int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
113{
114 int err = -ENOMEM;
115
116 memset(machine, 0, sizeof(*machine));
117 machine->kmaps = maps__new(machine);
118 if (machine->kmaps == NULL)
119 return -ENOMEM;
120
121 RB_CLEAR_NODE(&machine->rb_node);
122 dsos__init(&machine->dsos);
123
124 machine__threads_init(machine);
125
126 machine->vdso_info = NULL;
127 machine->env = NULL;
128
129 machine->pid = pid;
130
131 machine->id_hdr_size = 0;
132 machine->kptr_restrict_warned = false;
133 machine->comm_exec = false;
134 machine->kernel_start = 0;
135 machine->vmlinux_map = NULL;
136
137 machine->root_dir = strdup(root_dir);
138 if (machine->root_dir == NULL)
139 goto out;
140
141 if (machine__set_mmap_name(machine))
142 goto out;
143
144 if (pid != HOST_KERNEL_ID) {
145 struct thread *thread = machine__findnew_thread(machine, -1,
146 pid);
147
148 if (thread == NULL)
149 goto out;
150
151 thread__set_guest_comm(thread, pid);
152 thread__put(thread);
153 }
154
155 machine->current_tid = NULL;
156 err = 0;
157
158out:
159 if (err) {
160 zfree(&machine->kmaps);
161 zfree(&machine->root_dir);
162 zfree(&machine->mmap_name);
163 }
164 return 0;
165}
166
167struct machine *machine__new_host(void)
168{
169 struct machine *machine = malloc(sizeof(*machine));
170
171 if (machine != NULL) {
172 machine__init(machine, "", HOST_KERNEL_ID);
173
174 if (machine__create_kernel_maps(machine) < 0)
175 goto out_delete;
176 }
177
178 return machine;
179out_delete:
180 free(machine);
181 return NULL;
182}
183
184struct machine *machine__new_kallsyms(void)
185{
186 struct machine *machine = machine__new_host();
187 /*
188 * FIXME:
189 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
190 * ask for not using the kcore parsing code, once this one is fixed
191 * to create a map per module.
192 */
193 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
194 machine__delete(machine);
195 machine = NULL;
196 }
197
198 return machine;
199}
200
201static void dsos__purge(struct dsos *dsos)
202{
203 struct dso *pos, *n;
204
205 down_write(&dsos->lock);
206
207 list_for_each_entry_safe(pos, n, &dsos->head, node) {
208 RB_CLEAR_NODE(&pos->rb_node);
209 pos->root = NULL;
210 list_del_init(&pos->node);
211 dso__put(pos);
212 }
213
214 up_write(&dsos->lock);
215}
216
217static void dsos__exit(struct dsos *dsos)
218{
219 dsos__purge(dsos);
220 exit_rwsem(&dsos->lock);
221}
222
223void machine__delete_threads(struct machine *machine)
224{
225 struct rb_node *nd;
226 int i;
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 down_write(&threads->lock);
231 nd = rb_first_cached(&threads->entries);
232 while (nd) {
233 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
234
235 nd = rb_next(nd);
236 __machine__remove_thread(machine, trb, trb->thread, false);
237 }
238 up_write(&threads->lock);
239 }
240}
241
242void machine__exit(struct machine *machine)
243{
244 int i;
245
246 if (machine == NULL)
247 return;
248
249 machine__destroy_kernel_maps(machine);
250 maps__zput(machine->kmaps);
251 dsos__exit(&machine->dsos);
252 machine__exit_vdso(machine);
253 zfree(&machine->root_dir);
254 zfree(&machine->mmap_name);
255 zfree(&machine->current_tid);
256 zfree(&machine->kallsyms_filename);
257
258 machine__delete_threads(machine);
259 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
260 struct threads *threads = &machine->threads[i];
261
262 exit_rwsem(&threads->lock);
263 }
264}
265
266void machine__delete(struct machine *machine)
267{
268 if (machine) {
269 machine__exit(machine);
270 free(machine);
271 }
272}
273
274void machines__init(struct machines *machines)
275{
276 machine__init(&machines->host, "", HOST_KERNEL_ID);
277 machines->guests = RB_ROOT_CACHED;
278}
279
280void machines__exit(struct machines *machines)
281{
282 machine__exit(&machines->host);
283 /* XXX exit guest */
284}
285
286struct machine *machines__add(struct machines *machines, pid_t pid,
287 const char *root_dir)
288{
289 struct rb_node **p = &machines->guests.rb_root.rb_node;
290 struct rb_node *parent = NULL;
291 struct machine *pos, *machine = malloc(sizeof(*machine));
292 bool leftmost = true;
293
294 if (machine == NULL)
295 return NULL;
296
297 if (machine__init(machine, root_dir, pid) != 0) {
298 free(machine);
299 return NULL;
300 }
301
302 while (*p != NULL) {
303 parent = *p;
304 pos = rb_entry(parent, struct machine, rb_node);
305 if (pid < pos->pid)
306 p = &(*p)->rb_left;
307 else {
308 p = &(*p)->rb_right;
309 leftmost = false;
310 }
311 }
312
313 rb_link_node(&machine->rb_node, parent, p);
314 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
315
316 machine->machines = machines;
317
318 return machine;
319}
320
321void machines__set_comm_exec(struct machines *machines, bool comm_exec)
322{
323 struct rb_node *nd;
324
325 machines->host.comm_exec = comm_exec;
326
327 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
328 struct machine *machine = rb_entry(nd, struct machine, rb_node);
329
330 machine->comm_exec = comm_exec;
331 }
332}
333
334struct machine *machines__find(struct machines *machines, pid_t pid)
335{
336 struct rb_node **p = &machines->guests.rb_root.rb_node;
337 struct rb_node *parent = NULL;
338 struct machine *machine;
339 struct machine *default_machine = NULL;
340
341 if (pid == HOST_KERNEL_ID)
342 return &machines->host;
343
344 while (*p != NULL) {
345 parent = *p;
346 machine = rb_entry(parent, struct machine, rb_node);
347 if (pid < machine->pid)
348 p = &(*p)->rb_left;
349 else if (pid > machine->pid)
350 p = &(*p)->rb_right;
351 else
352 return machine;
353 if (!machine->pid)
354 default_machine = machine;
355 }
356
357 return default_machine;
358}
359
360struct machine *machines__findnew(struct machines *machines, pid_t pid)
361{
362 char path[PATH_MAX];
363 const char *root_dir = "";
364 struct machine *machine = machines__find(machines, pid);
365
366 if (machine && (machine->pid == pid))
367 goto out;
368
369 if ((pid != HOST_KERNEL_ID) &&
370 (pid != DEFAULT_GUEST_KERNEL_ID) &&
371 (symbol_conf.guestmount)) {
372 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
373 if (access(path, R_OK)) {
374 static struct strlist *seen;
375
376 if (!seen)
377 seen = strlist__new(NULL, NULL);
378
379 if (!strlist__has_entry(seen, path)) {
380 pr_err("Can't access file %s\n", path);
381 strlist__add(seen, path);
382 }
383 machine = NULL;
384 goto out;
385 }
386 root_dir = path;
387 }
388
389 machine = machines__add(machines, pid, root_dir);
390out:
391 return machine;
392}
393
394struct machine *machines__find_guest(struct machines *machines, pid_t pid)
395{
396 struct machine *machine = machines__find(machines, pid);
397
398 if (!machine)
399 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
400 return machine;
401}
402
403/*
404 * A common case for KVM test programs is that the test program acts as the
405 * hypervisor, creating, running and destroying the virtual machine, and
406 * providing the guest object code from its own object code. In this case,
407 * the VM is not running an OS, but only the functions loaded into it by the
408 * hypervisor test program, and conveniently, loaded at the same virtual
409 * addresses.
410 *
411 * Normally to resolve addresses, MMAP events are needed to map addresses
412 * back to the object code and debug symbols for that object code.
413 *
414 * Currently, there is no way to get such mapping information from guests
415 * but, in the scenario described above, the guest has the same mappings
416 * as the hypervisor, so support for that scenario can be achieved.
417 *
418 * To support that, copy the host thread's maps to the guest thread's maps.
419 * Note, we do not discover the guest until we encounter a guest event,
420 * which works well because it is not until then that we know that the host
421 * thread's maps have been set up.
422 *
423 * This function returns the guest thread. Apart from keeping the data
424 * structures sane, using a thread belonging to the guest machine, instead
425 * of the host thread, allows it to have its own comm (refer
426 * thread__set_guest_comm()).
427 */
428static struct thread *findnew_guest_code(struct machine *machine,
429 struct machine *host_machine,
430 pid_t pid)
431{
432 struct thread *host_thread;
433 struct thread *thread;
434 int err;
435
436 if (!machine)
437 return NULL;
438
439 thread = machine__findnew_thread(machine, -1, pid);
440 if (!thread)
441 return NULL;
442
443 /* Assume maps are set up if there are any */
444 if (maps__nr_maps(thread__maps(thread)))
445 return thread;
446
447 host_thread = machine__find_thread(host_machine, -1, pid);
448 if (!host_thread)
449 goto out_err;
450
451 thread__set_guest_comm(thread, pid);
452
453 /*
454 * Guest code can be found in hypervisor process at the same address
455 * so copy host maps.
456 */
457 err = maps__clone(thread, thread__maps(host_thread));
458 thread__put(host_thread);
459 if (err)
460 goto out_err;
461
462 return thread;
463
464out_err:
465 thread__zput(thread);
466 return NULL;
467}
468
469struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
470{
471 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
472 struct machine *machine = machines__findnew(machines, pid);
473
474 return findnew_guest_code(machine, host_machine, pid);
475}
476
477struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
478{
479 struct machines *machines = machine->machines;
480 struct machine *host_machine;
481
482 if (!machines)
483 return NULL;
484
485 host_machine = machines__find(machines, HOST_KERNEL_ID);
486
487 return findnew_guest_code(machine, host_machine, pid);
488}
489
490void machines__process_guests(struct machines *machines,
491 machine__process_t process, void *data)
492{
493 struct rb_node *nd;
494
495 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
496 struct machine *pos = rb_entry(nd, struct machine, rb_node);
497 process(pos, data);
498 }
499}
500
501void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
502{
503 struct rb_node *node;
504 struct machine *machine;
505
506 machines->host.id_hdr_size = id_hdr_size;
507
508 for (node = rb_first_cached(&machines->guests); node;
509 node = rb_next(node)) {
510 machine = rb_entry(node, struct machine, rb_node);
511 machine->id_hdr_size = id_hdr_size;
512 }
513
514 return;
515}
516
517static void machine__update_thread_pid(struct machine *machine,
518 struct thread *th, pid_t pid)
519{
520 struct thread *leader;
521
522 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
523 return;
524
525 thread__set_pid(th, pid);
526
527 if (thread__pid(th) == thread__tid(th))
528 return;
529
530 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
531 if (!leader)
532 goto out_err;
533
534 if (!thread__maps(leader))
535 thread__set_maps(leader, maps__new(machine));
536
537 if (!thread__maps(leader))
538 goto out_err;
539
540 if (thread__maps(th) == thread__maps(leader))
541 goto out_put;
542
543 if (thread__maps(th)) {
544 /*
545 * Maps are created from MMAP events which provide the pid and
546 * tid. Consequently there never should be any maps on a thread
547 * with an unknown pid. Just print an error if there are.
548 */
549 if (!maps__empty(thread__maps(th)))
550 pr_err("Discarding thread maps for %d:%d\n",
551 thread__pid(th), thread__tid(th));
552 maps__put(thread__maps(th));
553 }
554
555 thread__set_maps(th, maps__get(thread__maps(leader)));
556out_put:
557 thread__put(leader);
558 return;
559out_err:
560 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
561 goto out_put;
562}
563
564/*
565 * Front-end cache - TID lookups come in blocks,
566 * so most of the time we dont have to look up
567 * the full rbtree:
568 */
569static struct thread*
570__threads__get_last_match(struct threads *threads, struct machine *machine,
571 int pid, int tid)
572{
573 struct thread *th;
574
575 th = threads->last_match;
576 if (th != NULL) {
577 if (thread__tid(th) == tid) {
578 machine__update_thread_pid(machine, th, pid);
579 return thread__get(th);
580 }
581 thread__put(threads->last_match);
582 threads->last_match = NULL;
583 }
584
585 return NULL;
586}
587
588static struct thread*
589threads__get_last_match(struct threads *threads, struct machine *machine,
590 int pid, int tid)
591{
592 struct thread *th = NULL;
593
594 if (perf_singlethreaded)
595 th = __threads__get_last_match(threads, machine, pid, tid);
596
597 return th;
598}
599
600static void
601__threads__set_last_match(struct threads *threads, struct thread *th)
602{
603 thread__put(threads->last_match);
604 threads->last_match = thread__get(th);
605}
606
607static void
608threads__set_last_match(struct threads *threads, struct thread *th)
609{
610 if (perf_singlethreaded)
611 __threads__set_last_match(threads, th);
612}
613
614/*
615 * Caller must eventually drop thread->refcnt returned with a successful
616 * lookup/new thread inserted.
617 */
618static struct thread *____machine__findnew_thread(struct machine *machine,
619 struct threads *threads,
620 pid_t pid, pid_t tid,
621 bool create)
622{
623 struct rb_node **p = &threads->entries.rb_root.rb_node;
624 struct rb_node *parent = NULL;
625 struct thread *th;
626 struct thread_rb_node *nd;
627 bool leftmost = true;
628
629 th = threads__get_last_match(threads, machine, pid, tid);
630 if (th)
631 return th;
632
633 while (*p != NULL) {
634 parent = *p;
635 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
636
637 if (thread__tid(th) == tid) {
638 threads__set_last_match(threads, th);
639 machine__update_thread_pid(machine, th, pid);
640 return thread__get(th);
641 }
642
643 if (tid < thread__tid(th))
644 p = &(*p)->rb_left;
645 else {
646 p = &(*p)->rb_right;
647 leftmost = false;
648 }
649 }
650
651 if (!create)
652 return NULL;
653
654 th = thread__new(pid, tid);
655 if (th == NULL)
656 return NULL;
657
658 nd = malloc(sizeof(*nd));
659 if (nd == NULL) {
660 thread__put(th);
661 return NULL;
662 }
663 nd->thread = th;
664
665 rb_link_node(&nd->rb_node, parent, p);
666 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
667 /*
668 * We have to initialize maps separately after rb tree is updated.
669 *
670 * The reason is that we call machine__findnew_thread within
671 * thread__init_maps to find the thread leader and that would screwed
672 * the rb tree.
673 */
674 if (thread__init_maps(th, machine)) {
675 pr_err("Thread init failed thread %d\n", pid);
676 rb_erase_cached(&nd->rb_node, &threads->entries);
677 RB_CLEAR_NODE(&nd->rb_node);
678 free(nd);
679 thread__put(th);
680 return NULL;
681 }
682 /*
683 * It is now in the rbtree, get a ref
684 */
685 threads__set_last_match(threads, th);
686 ++threads->nr;
687
688 return thread__get(th);
689}
690
691struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
692{
693 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
694}
695
696struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
697 pid_t tid)
698{
699 struct threads *threads = machine__threads(machine, tid);
700 struct thread *th;
701
702 down_write(&threads->lock);
703 th = __machine__findnew_thread(machine, pid, tid);
704 up_write(&threads->lock);
705 return th;
706}
707
708struct thread *machine__find_thread(struct machine *machine, pid_t pid,
709 pid_t tid)
710{
711 struct threads *threads = machine__threads(machine, tid);
712 struct thread *th;
713
714 down_read(&threads->lock);
715 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
716 up_read(&threads->lock);
717 return th;
718}
719
720/*
721 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
722 * So here a single thread is created for that, but actually there is a separate
723 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
724 * is only 1. That causes problems for some tools, requiring workarounds. For
725 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
726 */
727struct thread *machine__idle_thread(struct machine *machine)
728{
729 struct thread *thread = machine__findnew_thread(machine, 0, 0);
730
731 if (!thread || thread__set_comm(thread, "swapper", 0) ||
732 thread__set_namespaces(thread, 0, NULL))
733 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
734
735 return thread;
736}
737
738struct comm *machine__thread_exec_comm(struct machine *machine,
739 struct thread *thread)
740{
741 if (machine->comm_exec)
742 return thread__exec_comm(thread);
743 else
744 return thread__comm(thread);
745}
746
747int machine__process_comm_event(struct machine *machine, union perf_event *event,
748 struct perf_sample *sample)
749{
750 struct thread *thread = machine__findnew_thread(machine,
751 event->comm.pid,
752 event->comm.tid);
753 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
754 int err = 0;
755
756 if (exec)
757 machine->comm_exec = true;
758
759 if (dump_trace)
760 perf_event__fprintf_comm(event, stdout);
761
762 if (thread == NULL ||
763 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
764 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
765 err = -1;
766 }
767
768 thread__put(thread);
769
770 return err;
771}
772
773int machine__process_namespaces_event(struct machine *machine __maybe_unused,
774 union perf_event *event,
775 struct perf_sample *sample __maybe_unused)
776{
777 struct thread *thread = machine__findnew_thread(machine,
778 event->namespaces.pid,
779 event->namespaces.tid);
780 int err = 0;
781
782 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
783 "\nWARNING: kernel seems to support more namespaces than perf"
784 " tool.\nTry updating the perf tool..\n\n");
785
786 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
787 "\nWARNING: perf tool seems to support more namespaces than"
788 " the kernel.\nTry updating the kernel..\n\n");
789
790 if (dump_trace)
791 perf_event__fprintf_namespaces(event, stdout);
792
793 if (thread == NULL ||
794 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
795 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
796 err = -1;
797 }
798
799 thread__put(thread);
800
801 return err;
802}
803
804int machine__process_cgroup_event(struct machine *machine,
805 union perf_event *event,
806 struct perf_sample *sample __maybe_unused)
807{
808 struct cgroup *cgrp;
809
810 if (dump_trace)
811 perf_event__fprintf_cgroup(event, stdout);
812
813 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
814 if (cgrp == NULL)
815 return -ENOMEM;
816
817 return 0;
818}
819
820int machine__process_lost_event(struct machine *machine __maybe_unused,
821 union perf_event *event, struct perf_sample *sample __maybe_unused)
822{
823 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
824 event->lost.id, event->lost.lost);
825 return 0;
826}
827
828int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
829 union perf_event *event, struct perf_sample *sample)
830{
831 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
832 sample->id, event->lost_samples.lost);
833 return 0;
834}
835
836static struct dso *machine__findnew_module_dso(struct machine *machine,
837 struct kmod_path *m,
838 const char *filename)
839{
840 struct dso *dso;
841
842 down_write(&machine->dsos.lock);
843
844 dso = __dsos__find(&machine->dsos, m->name, true);
845 if (!dso) {
846 dso = __dsos__addnew(&machine->dsos, m->name);
847 if (dso == NULL)
848 goto out_unlock;
849
850 dso__set_module_info(dso, m, machine);
851 dso__set_long_name(dso, strdup(filename), true);
852 dso->kernel = DSO_SPACE__KERNEL;
853 }
854
855 dso__get(dso);
856out_unlock:
857 up_write(&machine->dsos.lock);
858 return dso;
859}
860
861int machine__process_aux_event(struct machine *machine __maybe_unused,
862 union perf_event *event)
863{
864 if (dump_trace)
865 perf_event__fprintf_aux(event, stdout);
866 return 0;
867}
868
869int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
870 union perf_event *event)
871{
872 if (dump_trace)
873 perf_event__fprintf_itrace_start(event, stdout);
874 return 0;
875}
876
877int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
878 union perf_event *event)
879{
880 if (dump_trace)
881 perf_event__fprintf_aux_output_hw_id(event, stdout);
882 return 0;
883}
884
885int machine__process_switch_event(struct machine *machine __maybe_unused,
886 union perf_event *event)
887{
888 if (dump_trace)
889 perf_event__fprintf_switch(event, stdout);
890 return 0;
891}
892
893static int machine__process_ksymbol_register(struct machine *machine,
894 union perf_event *event,
895 struct perf_sample *sample __maybe_unused)
896{
897 struct symbol *sym;
898 struct dso *dso;
899 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
900 bool put_map = false;
901 int err = 0;
902
903 if (!map) {
904 dso = dso__new(event->ksymbol.name);
905
906 if (!dso) {
907 err = -ENOMEM;
908 goto out;
909 }
910 dso->kernel = DSO_SPACE__KERNEL;
911 map = map__new2(0, dso);
912 dso__put(dso);
913 if (!map) {
914 err = -ENOMEM;
915 goto out;
916 }
917 /*
918 * The inserted map has a get on it, we need to put to release
919 * the reference count here, but do it after all accesses are
920 * done.
921 */
922 put_map = true;
923 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
924 dso->binary_type = DSO_BINARY_TYPE__OOL;
925 dso->data.file_size = event->ksymbol.len;
926 dso__set_loaded(dso);
927 }
928
929 map__set_start(map, event->ksymbol.addr);
930 map__set_end(map, map__start(map) + event->ksymbol.len);
931 err = maps__insert(machine__kernel_maps(machine), map);
932 if (err) {
933 err = -ENOMEM;
934 goto out;
935 }
936
937 dso__set_loaded(dso);
938
939 if (is_bpf_image(event->ksymbol.name)) {
940 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
941 dso__set_long_name(dso, "", false);
942 }
943 } else {
944 dso = map__dso(map);
945 }
946
947 sym = symbol__new(map__map_ip(map, map__start(map)),
948 event->ksymbol.len,
949 0, 0, event->ksymbol.name);
950 if (!sym) {
951 err = -ENOMEM;
952 goto out;
953 }
954 dso__insert_symbol(dso, sym);
955out:
956 if (put_map)
957 map__put(map);
958 return err;
959}
960
961static int machine__process_ksymbol_unregister(struct machine *machine,
962 union perf_event *event,
963 struct perf_sample *sample __maybe_unused)
964{
965 struct symbol *sym;
966 struct map *map;
967
968 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
969 if (!map)
970 return 0;
971
972 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map))
973 maps__remove(machine__kernel_maps(machine), map);
974 else {
975 struct dso *dso = map__dso(map);
976
977 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
978 if (sym)
979 dso__delete_symbol(dso, sym);
980 }
981
982 return 0;
983}
984
985int machine__process_ksymbol(struct machine *machine __maybe_unused,
986 union perf_event *event,
987 struct perf_sample *sample)
988{
989 if (dump_trace)
990 perf_event__fprintf_ksymbol(event, stdout);
991
992 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
993 return machine__process_ksymbol_unregister(machine, event,
994 sample);
995 return machine__process_ksymbol_register(machine, event, sample);
996}
997
998int machine__process_text_poke(struct machine *machine, union perf_event *event,
999 struct perf_sample *sample __maybe_unused)
1000{
1001 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1002 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1003 struct dso *dso = map ? map__dso(map) : NULL;
1004
1005 if (dump_trace)
1006 perf_event__fprintf_text_poke(event, machine, stdout);
1007
1008 if (!event->text_poke.new_len)
1009 return 0;
1010
1011 if (cpumode != PERF_RECORD_MISC_KERNEL) {
1012 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1013 return 0;
1014 }
1015
1016 if (dso) {
1017 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1018 int ret;
1019
1020 /*
1021 * Kernel maps might be changed when loading symbols so loading
1022 * must be done prior to using kernel maps.
1023 */
1024 map__load(map);
1025 ret = dso__data_write_cache_addr(dso, map, machine,
1026 event->text_poke.addr,
1027 new_bytes,
1028 event->text_poke.new_len);
1029 if (ret != event->text_poke.new_len)
1030 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1031 event->text_poke.addr);
1032 } else {
1033 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1034 event->text_poke.addr);
1035 }
1036
1037 return 0;
1038}
1039
1040static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1041 const char *filename)
1042{
1043 struct map *map = NULL;
1044 struct kmod_path m;
1045 struct dso *dso;
1046 int err;
1047
1048 if (kmod_path__parse_name(&m, filename))
1049 return NULL;
1050
1051 dso = machine__findnew_module_dso(machine, &m, filename);
1052 if (dso == NULL)
1053 goto out;
1054
1055 map = map__new2(start, dso);
1056 if (map == NULL)
1057 goto out;
1058
1059 err = maps__insert(machine__kernel_maps(machine), map);
1060 /* If maps__insert failed, return NULL. */
1061 if (err) {
1062 map__put(map);
1063 map = NULL;
1064 }
1065out:
1066 /* put the dso here, corresponding to machine__findnew_module_dso */
1067 dso__put(dso);
1068 zfree(&m.name);
1069 return map;
1070}
1071
1072size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1073{
1074 struct rb_node *nd;
1075 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1076
1077 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1078 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1079 ret += __dsos__fprintf(&pos->dsos.head, fp);
1080 }
1081
1082 return ret;
1083}
1084
1085size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1086 bool (skip)(struct dso *dso, int parm), int parm)
1087{
1088 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1089}
1090
1091size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1092 bool (skip)(struct dso *dso, int parm), int parm)
1093{
1094 struct rb_node *nd;
1095 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1096
1097 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1098 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1099 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1100 }
1101 return ret;
1102}
1103
1104size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1105{
1106 int i;
1107 size_t printed = 0;
1108 struct dso *kdso = machine__kernel_dso(machine);
1109
1110 if (kdso->has_build_id) {
1111 char filename[PATH_MAX];
1112 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1113 false))
1114 printed += fprintf(fp, "[0] %s\n", filename);
1115 }
1116
1117 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1118 printed += fprintf(fp, "[%d] %s\n",
1119 i + kdso->has_build_id, vmlinux_path[i]);
1120
1121 return printed;
1122}
1123
1124size_t machine__fprintf(struct machine *machine, FILE *fp)
1125{
1126 struct rb_node *nd;
1127 size_t ret;
1128 int i;
1129
1130 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1131 struct threads *threads = &machine->threads[i];
1132
1133 down_read(&threads->lock);
1134
1135 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1136
1137 for (nd = rb_first_cached(&threads->entries); nd;
1138 nd = rb_next(nd)) {
1139 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1140
1141 ret += thread__fprintf(pos, fp);
1142 }
1143
1144 up_read(&threads->lock);
1145 }
1146 return ret;
1147}
1148
1149static struct dso *machine__get_kernel(struct machine *machine)
1150{
1151 const char *vmlinux_name = machine->mmap_name;
1152 struct dso *kernel;
1153
1154 if (machine__is_host(machine)) {
1155 if (symbol_conf.vmlinux_name)
1156 vmlinux_name = symbol_conf.vmlinux_name;
1157
1158 kernel = machine__findnew_kernel(machine, vmlinux_name,
1159 "[kernel]", DSO_SPACE__KERNEL);
1160 } else {
1161 if (symbol_conf.default_guest_vmlinux_name)
1162 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1163
1164 kernel = machine__findnew_kernel(machine, vmlinux_name,
1165 "[guest.kernel]",
1166 DSO_SPACE__KERNEL_GUEST);
1167 }
1168
1169 if (kernel != NULL && (!kernel->has_build_id))
1170 dso__read_running_kernel_build_id(kernel, machine);
1171
1172 return kernel;
1173}
1174
1175void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1176 size_t bufsz)
1177{
1178 if (machine__is_default_guest(machine))
1179 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1180 else
1181 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1182}
1183
1184const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1185
1186/* Figure out the start address of kernel map from /proc/kallsyms.
1187 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1188 * symbol_name if it's not that important.
1189 */
1190static int machine__get_running_kernel_start(struct machine *machine,
1191 const char **symbol_name,
1192 u64 *start, u64 *end)
1193{
1194 char filename[PATH_MAX];
1195 int i, err = -1;
1196 const char *name;
1197 u64 addr = 0;
1198
1199 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1200
1201 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1202 return 0;
1203
1204 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1205 err = kallsyms__get_function_start(filename, name, &addr);
1206 if (!err)
1207 break;
1208 }
1209
1210 if (err)
1211 return -1;
1212
1213 if (symbol_name)
1214 *symbol_name = name;
1215
1216 *start = addr;
1217
1218 err = kallsyms__get_function_start(filename, "_etext", &addr);
1219 if (!err)
1220 *end = addr;
1221
1222 return 0;
1223}
1224
1225int machine__create_extra_kernel_map(struct machine *machine,
1226 struct dso *kernel,
1227 struct extra_kernel_map *xm)
1228{
1229 struct kmap *kmap;
1230 struct map *map;
1231 int err;
1232
1233 map = map__new2(xm->start, kernel);
1234 if (!map)
1235 return -ENOMEM;
1236
1237 map__set_end(map, xm->end);
1238 map__set_pgoff(map, xm->pgoff);
1239
1240 kmap = map__kmap(map);
1241
1242 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1243
1244 err = maps__insert(machine__kernel_maps(machine), map);
1245
1246 if (!err) {
1247 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1248 kmap->name, map__start(map), map__end(map));
1249 }
1250
1251 map__put(map);
1252
1253 return err;
1254}
1255
1256static u64 find_entry_trampoline(struct dso *dso)
1257{
1258 /* Duplicates are removed so lookup all aliases */
1259 const char *syms[] = {
1260 "_entry_trampoline",
1261 "__entry_trampoline_start",
1262 "entry_SYSCALL_64_trampoline",
1263 };
1264 struct symbol *sym = dso__first_symbol(dso);
1265 unsigned int i;
1266
1267 for (; sym; sym = dso__next_symbol(sym)) {
1268 if (sym->binding != STB_GLOBAL)
1269 continue;
1270 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1271 if (!strcmp(sym->name, syms[i]))
1272 return sym->start;
1273 }
1274 }
1275
1276 return 0;
1277}
1278
1279/*
1280 * These values can be used for kernels that do not have symbols for the entry
1281 * trampolines in kallsyms.
1282 */
1283#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1284#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1285#define X86_64_ENTRY_TRAMPOLINE 0x6000
1286
1287/* Map x86_64 PTI entry trampolines */
1288int machine__map_x86_64_entry_trampolines(struct machine *machine,
1289 struct dso *kernel)
1290{
1291 struct maps *kmaps = machine__kernel_maps(machine);
1292 int nr_cpus_avail, cpu;
1293 bool found = false;
1294 struct map_rb_node *rb_node;
1295 u64 pgoff;
1296
1297 /*
1298 * In the vmlinux case, pgoff is a virtual address which must now be
1299 * mapped to a vmlinux offset.
1300 */
1301 maps__for_each_entry(kmaps, rb_node) {
1302 struct map *dest_map, *map = rb_node->map;
1303 struct kmap *kmap = __map__kmap(map);
1304
1305 if (!kmap || !is_entry_trampoline(kmap->name))
1306 continue;
1307
1308 dest_map = maps__find(kmaps, map__pgoff(map));
1309 if (dest_map != map)
1310 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1311 found = true;
1312 }
1313 if (found || machine->trampolines_mapped)
1314 return 0;
1315
1316 pgoff = find_entry_trampoline(kernel);
1317 if (!pgoff)
1318 return 0;
1319
1320 nr_cpus_avail = machine__nr_cpus_avail(machine);
1321
1322 /* Add a 1 page map for each CPU's entry trampoline */
1323 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1324 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1325 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1326 X86_64_ENTRY_TRAMPOLINE;
1327 struct extra_kernel_map xm = {
1328 .start = va,
1329 .end = va + page_size,
1330 .pgoff = pgoff,
1331 };
1332
1333 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1334
1335 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1336 return -1;
1337 }
1338
1339 machine->trampolines_mapped = nr_cpus_avail;
1340
1341 return 0;
1342}
1343
1344int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1345 struct dso *kernel __maybe_unused)
1346{
1347 return 0;
1348}
1349
1350static int
1351__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1352{
1353 /* In case of renewal the kernel map, destroy previous one */
1354 machine__destroy_kernel_maps(machine);
1355
1356 map__put(machine->vmlinux_map);
1357 machine->vmlinux_map = map__new2(0, kernel);
1358 if (machine->vmlinux_map == NULL)
1359 return -ENOMEM;
1360
1361 map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1362 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1363 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1364}
1365
1366void machine__destroy_kernel_maps(struct machine *machine)
1367{
1368 struct kmap *kmap;
1369 struct map *map = machine__kernel_map(machine);
1370
1371 if (map == NULL)
1372 return;
1373
1374 kmap = map__kmap(map);
1375 maps__remove(machine__kernel_maps(machine), map);
1376 if (kmap && kmap->ref_reloc_sym) {
1377 zfree((char **)&kmap->ref_reloc_sym->name);
1378 zfree(&kmap->ref_reloc_sym);
1379 }
1380
1381 map__zput(machine->vmlinux_map);
1382}
1383
1384int machines__create_guest_kernel_maps(struct machines *machines)
1385{
1386 int ret = 0;
1387 struct dirent **namelist = NULL;
1388 int i, items = 0;
1389 char path[PATH_MAX];
1390 pid_t pid;
1391 char *endp;
1392
1393 if (symbol_conf.default_guest_vmlinux_name ||
1394 symbol_conf.default_guest_modules ||
1395 symbol_conf.default_guest_kallsyms) {
1396 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1397 }
1398
1399 if (symbol_conf.guestmount) {
1400 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1401 if (items <= 0)
1402 return -ENOENT;
1403 for (i = 0; i < items; i++) {
1404 if (!isdigit(namelist[i]->d_name[0])) {
1405 /* Filter out . and .. */
1406 continue;
1407 }
1408 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1409 if ((*endp != '\0') ||
1410 (endp == namelist[i]->d_name) ||
1411 (errno == ERANGE)) {
1412 pr_debug("invalid directory (%s). Skipping.\n",
1413 namelist[i]->d_name);
1414 continue;
1415 }
1416 sprintf(path, "%s/%s/proc/kallsyms",
1417 symbol_conf.guestmount,
1418 namelist[i]->d_name);
1419 ret = access(path, R_OK);
1420 if (ret) {
1421 pr_debug("Can't access file %s\n", path);
1422 goto failure;
1423 }
1424 machines__create_kernel_maps(machines, pid);
1425 }
1426failure:
1427 free(namelist);
1428 }
1429
1430 return ret;
1431}
1432
1433void machines__destroy_kernel_maps(struct machines *machines)
1434{
1435 struct rb_node *next = rb_first_cached(&machines->guests);
1436
1437 machine__destroy_kernel_maps(&machines->host);
1438
1439 while (next) {
1440 struct machine *pos = rb_entry(next, struct machine, rb_node);
1441
1442 next = rb_next(&pos->rb_node);
1443 rb_erase_cached(&pos->rb_node, &machines->guests);
1444 machine__delete(pos);
1445 }
1446}
1447
1448int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1449{
1450 struct machine *machine = machines__findnew(machines, pid);
1451
1452 if (machine == NULL)
1453 return -1;
1454
1455 return machine__create_kernel_maps(machine);
1456}
1457
1458int machine__load_kallsyms(struct machine *machine, const char *filename)
1459{
1460 struct map *map = machine__kernel_map(machine);
1461 struct dso *dso = map__dso(map);
1462 int ret = __dso__load_kallsyms(dso, filename, map, true);
1463
1464 if (ret > 0) {
1465 dso__set_loaded(dso);
1466 /*
1467 * Since /proc/kallsyms will have multiple sessions for the
1468 * kernel, with modules between them, fixup the end of all
1469 * sections.
1470 */
1471 maps__fixup_end(machine__kernel_maps(machine));
1472 }
1473
1474 return ret;
1475}
1476
1477int machine__load_vmlinux_path(struct machine *machine)
1478{
1479 struct map *map = machine__kernel_map(machine);
1480 struct dso *dso = map__dso(map);
1481 int ret = dso__load_vmlinux_path(dso, map);
1482
1483 if (ret > 0)
1484 dso__set_loaded(dso);
1485
1486 return ret;
1487}
1488
1489static char *get_kernel_version(const char *root_dir)
1490{
1491 char version[PATH_MAX];
1492 FILE *file;
1493 char *name, *tmp;
1494 const char *prefix = "Linux version ";
1495
1496 sprintf(version, "%s/proc/version", root_dir);
1497 file = fopen(version, "r");
1498 if (!file)
1499 return NULL;
1500
1501 tmp = fgets(version, sizeof(version), file);
1502 fclose(file);
1503 if (!tmp)
1504 return NULL;
1505
1506 name = strstr(version, prefix);
1507 if (!name)
1508 return NULL;
1509 name += strlen(prefix);
1510 tmp = strchr(name, ' ');
1511 if (tmp)
1512 *tmp = '\0';
1513
1514 return strdup(name);
1515}
1516
1517static bool is_kmod_dso(struct dso *dso)
1518{
1519 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1520 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1521}
1522
1523static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1524{
1525 char *long_name;
1526 struct dso *dso;
1527 struct map *map = maps__find_by_name(maps, m->name);
1528
1529 if (map == NULL)
1530 return 0;
1531
1532 long_name = strdup(path);
1533 if (long_name == NULL)
1534 return -ENOMEM;
1535
1536 dso = map__dso(map);
1537 dso__set_long_name(dso, long_name, true);
1538 dso__kernel_module_get_build_id(dso, "");
1539
1540 /*
1541 * Full name could reveal us kmod compression, so
1542 * we need to update the symtab_type if needed.
1543 */
1544 if (m->comp && is_kmod_dso(dso)) {
1545 dso->symtab_type++;
1546 dso->comp = m->comp;
1547 }
1548
1549 return 0;
1550}
1551
1552static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1553{
1554 struct dirent *dent;
1555 DIR *dir = opendir(dir_name);
1556 int ret = 0;
1557
1558 if (!dir) {
1559 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1560 return -1;
1561 }
1562
1563 while ((dent = readdir(dir)) != NULL) {
1564 char path[PATH_MAX];
1565 struct stat st;
1566
1567 /*sshfs might return bad dent->d_type, so we have to stat*/
1568 path__join(path, sizeof(path), dir_name, dent->d_name);
1569 if (stat(path, &st))
1570 continue;
1571
1572 if (S_ISDIR(st.st_mode)) {
1573 if (!strcmp(dent->d_name, ".") ||
1574 !strcmp(dent->d_name, ".."))
1575 continue;
1576
1577 /* Do not follow top-level source and build symlinks */
1578 if (depth == 0) {
1579 if (!strcmp(dent->d_name, "source") ||
1580 !strcmp(dent->d_name, "build"))
1581 continue;
1582 }
1583
1584 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1585 if (ret < 0)
1586 goto out;
1587 } else {
1588 struct kmod_path m;
1589
1590 ret = kmod_path__parse_name(&m, dent->d_name);
1591 if (ret)
1592 goto out;
1593
1594 if (m.kmod)
1595 ret = maps__set_module_path(maps, path, &m);
1596
1597 zfree(&m.name);
1598
1599 if (ret)
1600 goto out;
1601 }
1602 }
1603
1604out:
1605 closedir(dir);
1606 return ret;
1607}
1608
1609static int machine__set_modules_path(struct machine *machine)
1610{
1611 char *version;
1612 char modules_path[PATH_MAX];
1613
1614 version = get_kernel_version(machine->root_dir);
1615 if (!version)
1616 return -1;
1617
1618 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1619 machine->root_dir, version);
1620 free(version);
1621
1622 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1623}
1624int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1625 u64 *size __maybe_unused,
1626 const char *name __maybe_unused)
1627{
1628 return 0;
1629}
1630
1631static int machine__create_module(void *arg, const char *name, u64 start,
1632 u64 size)
1633{
1634 struct machine *machine = arg;
1635 struct map *map;
1636
1637 if (arch__fix_module_text_start(&start, &size, name) < 0)
1638 return -1;
1639
1640 map = machine__addnew_module_map(machine, start, name);
1641 if (map == NULL)
1642 return -1;
1643 map__set_end(map, start + size);
1644
1645 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1646 map__put(map);
1647 return 0;
1648}
1649
1650static int machine__create_modules(struct machine *machine)
1651{
1652 const char *modules;
1653 char path[PATH_MAX];
1654
1655 if (machine__is_default_guest(machine)) {
1656 modules = symbol_conf.default_guest_modules;
1657 } else {
1658 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1659 modules = path;
1660 }
1661
1662 if (symbol__restricted_filename(modules, "/proc/modules"))
1663 return -1;
1664
1665 if (modules__parse(modules, machine, machine__create_module))
1666 return -1;
1667
1668 if (!machine__set_modules_path(machine))
1669 return 0;
1670
1671 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1672
1673 return 0;
1674}
1675
1676static void machine__set_kernel_mmap(struct machine *machine,
1677 u64 start, u64 end)
1678{
1679 map__set_start(machine->vmlinux_map, start);
1680 map__set_end(machine->vmlinux_map, end);
1681 /*
1682 * Be a bit paranoid here, some perf.data file came with
1683 * a zero sized synthesized MMAP event for the kernel.
1684 */
1685 if (start == 0 && end == 0)
1686 map__set_end(machine->vmlinux_map, ~0ULL);
1687}
1688
1689static int machine__update_kernel_mmap(struct machine *machine,
1690 u64 start, u64 end)
1691{
1692 struct map *orig, *updated;
1693 int err;
1694
1695 orig = machine->vmlinux_map;
1696 updated = map__get(orig);
1697
1698 machine->vmlinux_map = updated;
1699 machine__set_kernel_mmap(machine, start, end);
1700 maps__remove(machine__kernel_maps(machine), orig);
1701 err = maps__insert(machine__kernel_maps(machine), updated);
1702 map__put(orig);
1703
1704 return err;
1705}
1706
1707int machine__create_kernel_maps(struct machine *machine)
1708{
1709 struct dso *kernel = machine__get_kernel(machine);
1710 const char *name = NULL;
1711 u64 start = 0, end = ~0ULL;
1712 int ret;
1713
1714 if (kernel == NULL)
1715 return -1;
1716
1717 ret = __machine__create_kernel_maps(machine, kernel);
1718 if (ret < 0)
1719 goto out_put;
1720
1721 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1722 if (machine__is_host(machine))
1723 pr_debug("Problems creating module maps, "
1724 "continuing anyway...\n");
1725 else
1726 pr_debug("Problems creating module maps for guest %d, "
1727 "continuing anyway...\n", machine->pid);
1728 }
1729
1730 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1731 if (name &&
1732 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1733 machine__destroy_kernel_maps(machine);
1734 ret = -1;
1735 goto out_put;
1736 }
1737
1738 /*
1739 * we have a real start address now, so re-order the kmaps
1740 * assume it's the last in the kmaps
1741 */
1742 ret = machine__update_kernel_mmap(machine, start, end);
1743 if (ret < 0)
1744 goto out_put;
1745 }
1746
1747 if (machine__create_extra_kernel_maps(machine, kernel))
1748 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1749
1750 if (end == ~0ULL) {
1751 /* update end address of the kernel map using adjacent module address */
1752 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1753 machine__kernel_map(machine));
1754 struct map_rb_node *next = map_rb_node__next(rb_node);
1755
1756 if (next)
1757 machine__set_kernel_mmap(machine, start, map__start(next->map));
1758 }
1759
1760out_put:
1761 dso__put(kernel);
1762 return ret;
1763}
1764
1765static bool machine__uses_kcore(struct machine *machine)
1766{
1767 struct dso *dso;
1768
1769 list_for_each_entry(dso, &machine->dsos.head, node) {
1770 if (dso__is_kcore(dso))
1771 return true;
1772 }
1773
1774 return false;
1775}
1776
1777static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1778 struct extra_kernel_map *xm)
1779{
1780 return machine__is(machine, "x86_64") &&
1781 is_entry_trampoline(xm->name);
1782}
1783
1784static int machine__process_extra_kernel_map(struct machine *machine,
1785 struct extra_kernel_map *xm)
1786{
1787 struct dso *kernel = machine__kernel_dso(machine);
1788
1789 if (kernel == NULL)
1790 return -1;
1791
1792 return machine__create_extra_kernel_map(machine, kernel, xm);
1793}
1794
1795static int machine__process_kernel_mmap_event(struct machine *machine,
1796 struct extra_kernel_map *xm,
1797 struct build_id *bid)
1798{
1799 enum dso_space_type dso_space;
1800 bool is_kernel_mmap;
1801 const char *mmap_name = machine->mmap_name;
1802
1803 /* If we have maps from kcore then we do not need or want any others */
1804 if (machine__uses_kcore(machine))
1805 return 0;
1806
1807 if (machine__is_host(machine))
1808 dso_space = DSO_SPACE__KERNEL;
1809 else
1810 dso_space = DSO_SPACE__KERNEL_GUEST;
1811
1812 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1813 if (!is_kernel_mmap && !machine__is_host(machine)) {
1814 /*
1815 * If the event was recorded inside the guest and injected into
1816 * the host perf.data file, then it will match a host mmap_name,
1817 * so try that - see machine__set_mmap_name().
1818 */
1819 mmap_name = "[kernel.kallsyms]";
1820 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1821 }
1822 if (xm->name[0] == '/' ||
1823 (!is_kernel_mmap && xm->name[0] == '[')) {
1824 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1825
1826 if (map == NULL)
1827 goto out_problem;
1828
1829 map__set_end(map, map__start(map) + xm->end - xm->start);
1830
1831 if (build_id__is_defined(bid))
1832 dso__set_build_id(map__dso(map), bid);
1833
1834 map__put(map);
1835 } else if (is_kernel_mmap) {
1836 const char *symbol_name = xm->name + strlen(mmap_name);
1837 /*
1838 * Should be there already, from the build-id table in
1839 * the header.
1840 */
1841 struct dso *kernel = NULL;
1842 struct dso *dso;
1843
1844 down_read(&machine->dsos.lock);
1845
1846 list_for_each_entry(dso, &machine->dsos.head, node) {
1847
1848 /*
1849 * The cpumode passed to is_kernel_module is not the
1850 * cpumode of *this* event. If we insist on passing
1851 * correct cpumode to is_kernel_module, we should
1852 * record the cpumode when we adding this dso to the
1853 * linked list.
1854 *
1855 * However we don't really need passing correct
1856 * cpumode. We know the correct cpumode must be kernel
1857 * mode (if not, we should not link it onto kernel_dsos
1858 * list).
1859 *
1860 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1861 * is_kernel_module() treats it as a kernel cpumode.
1862 */
1863
1864 if (!dso->kernel ||
1865 is_kernel_module(dso->long_name,
1866 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1867 continue;
1868
1869
1870 kernel = dso__get(dso);
1871 break;
1872 }
1873
1874 up_read(&machine->dsos.lock);
1875
1876 if (kernel == NULL)
1877 kernel = machine__findnew_dso(machine, machine->mmap_name);
1878 if (kernel == NULL)
1879 goto out_problem;
1880
1881 kernel->kernel = dso_space;
1882 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1883 dso__put(kernel);
1884 goto out_problem;
1885 }
1886
1887 if (strstr(kernel->long_name, "vmlinux"))
1888 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1889
1890 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1891 dso__put(kernel);
1892 goto out_problem;
1893 }
1894
1895 if (build_id__is_defined(bid))
1896 dso__set_build_id(kernel, bid);
1897
1898 /*
1899 * Avoid using a zero address (kptr_restrict) for the ref reloc
1900 * symbol. Effectively having zero here means that at record
1901 * time /proc/sys/kernel/kptr_restrict was non zero.
1902 */
1903 if (xm->pgoff != 0) {
1904 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1905 symbol_name,
1906 xm->pgoff);
1907 }
1908
1909 if (machine__is_default_guest(machine)) {
1910 /*
1911 * preload dso of guest kernel and modules
1912 */
1913 dso__load(kernel, machine__kernel_map(machine));
1914 }
1915 dso__put(kernel);
1916 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1917 return machine__process_extra_kernel_map(machine, xm);
1918 }
1919 return 0;
1920out_problem:
1921 return -1;
1922}
1923
1924int machine__process_mmap2_event(struct machine *machine,
1925 union perf_event *event,
1926 struct perf_sample *sample)
1927{
1928 struct thread *thread;
1929 struct map *map;
1930 struct dso_id dso_id = {
1931 .maj = event->mmap2.maj,
1932 .min = event->mmap2.min,
1933 .ino = event->mmap2.ino,
1934 .ino_generation = event->mmap2.ino_generation,
1935 };
1936 struct build_id __bid, *bid = NULL;
1937 int ret = 0;
1938
1939 if (dump_trace)
1940 perf_event__fprintf_mmap2(event, stdout);
1941
1942 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1943 bid = &__bid;
1944 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1945 }
1946
1947 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1948 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1949 struct extra_kernel_map xm = {
1950 .start = event->mmap2.start,
1951 .end = event->mmap2.start + event->mmap2.len,
1952 .pgoff = event->mmap2.pgoff,
1953 };
1954
1955 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1956 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1957 if (ret < 0)
1958 goto out_problem;
1959 return 0;
1960 }
1961
1962 thread = machine__findnew_thread(machine, event->mmap2.pid,
1963 event->mmap2.tid);
1964 if (thread == NULL)
1965 goto out_problem;
1966
1967 map = map__new(machine, event->mmap2.start,
1968 event->mmap2.len, event->mmap2.pgoff,
1969 &dso_id, event->mmap2.prot,
1970 event->mmap2.flags, bid,
1971 event->mmap2.filename, thread);
1972
1973 if (map == NULL)
1974 goto out_problem_map;
1975
1976 ret = thread__insert_map(thread, map);
1977 if (ret)
1978 goto out_problem_insert;
1979
1980 thread__put(thread);
1981 map__put(map);
1982 return 0;
1983
1984out_problem_insert:
1985 map__put(map);
1986out_problem_map:
1987 thread__put(thread);
1988out_problem:
1989 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1990 return 0;
1991}
1992
1993int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1994 struct perf_sample *sample)
1995{
1996 struct thread *thread;
1997 struct map *map;
1998 u32 prot = 0;
1999 int ret = 0;
2000
2001 if (dump_trace)
2002 perf_event__fprintf_mmap(event, stdout);
2003
2004 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2005 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2006 struct extra_kernel_map xm = {
2007 .start = event->mmap.start,
2008 .end = event->mmap.start + event->mmap.len,
2009 .pgoff = event->mmap.pgoff,
2010 };
2011
2012 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2013 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2014 if (ret < 0)
2015 goto out_problem;
2016 return 0;
2017 }
2018
2019 thread = machine__findnew_thread(machine, event->mmap.pid,
2020 event->mmap.tid);
2021 if (thread == NULL)
2022 goto out_problem;
2023
2024 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2025 prot = PROT_EXEC;
2026
2027 map = map__new(machine, event->mmap.start,
2028 event->mmap.len, event->mmap.pgoff,
2029 NULL, prot, 0, NULL, event->mmap.filename, thread);
2030
2031 if (map == NULL)
2032 goto out_problem_map;
2033
2034 ret = thread__insert_map(thread, map);
2035 if (ret)
2036 goto out_problem_insert;
2037
2038 thread__put(thread);
2039 map__put(map);
2040 return 0;
2041
2042out_problem_insert:
2043 map__put(map);
2044out_problem_map:
2045 thread__put(thread);
2046out_problem:
2047 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2048 return 0;
2049}
2050
2051static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2052 struct thread *th, bool lock)
2053{
2054 struct threads *threads = machine__threads(machine, thread__tid(th));
2055
2056 if (!nd)
2057 nd = thread_rb_node__find(th, &threads->entries.rb_root);
2058
2059 if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th))
2060 threads__set_last_match(threads, NULL);
2061
2062 if (lock)
2063 down_write(&threads->lock);
2064
2065 BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2066
2067 thread__put(nd->thread);
2068 rb_erase_cached(&nd->rb_node, &threads->entries);
2069 RB_CLEAR_NODE(&nd->rb_node);
2070 --threads->nr;
2071
2072 free(nd);
2073
2074 if (lock)
2075 up_write(&threads->lock);
2076}
2077
2078void machine__remove_thread(struct machine *machine, struct thread *th)
2079{
2080 return __machine__remove_thread(machine, NULL, th, true);
2081}
2082
2083int machine__process_fork_event(struct machine *machine, union perf_event *event,
2084 struct perf_sample *sample)
2085{
2086 struct thread *thread = machine__find_thread(machine,
2087 event->fork.pid,
2088 event->fork.tid);
2089 struct thread *parent = machine__findnew_thread(machine,
2090 event->fork.ppid,
2091 event->fork.ptid);
2092 bool do_maps_clone = true;
2093 int err = 0;
2094
2095 if (dump_trace)
2096 perf_event__fprintf_task(event, stdout);
2097
2098 /*
2099 * There may be an existing thread that is not actually the parent,
2100 * either because we are processing events out of order, or because the
2101 * (fork) event that would have removed the thread was lost. Assume the
2102 * latter case and continue on as best we can.
2103 */
2104 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2105 dump_printf("removing erroneous parent thread %d/%d\n",
2106 thread__pid(parent), thread__tid(parent));
2107 machine__remove_thread(machine, parent);
2108 thread__put(parent);
2109 parent = machine__findnew_thread(machine, event->fork.ppid,
2110 event->fork.ptid);
2111 }
2112
2113 /* if a thread currently exists for the thread id remove it */
2114 if (thread != NULL) {
2115 machine__remove_thread(machine, thread);
2116 thread__put(thread);
2117 }
2118
2119 thread = machine__findnew_thread(machine, event->fork.pid,
2120 event->fork.tid);
2121 /*
2122 * When synthesizing FORK events, we are trying to create thread
2123 * objects for the already running tasks on the machine.
2124 *
2125 * Normally, for a kernel FORK event, we want to clone the parent's
2126 * maps because that is what the kernel just did.
2127 *
2128 * But when synthesizing, this should not be done. If we do, we end up
2129 * with overlapping maps as we process the synthesized MMAP2 events that
2130 * get delivered shortly thereafter.
2131 *
2132 * Use the FORK event misc flags in an internal way to signal this
2133 * situation, so we can elide the map clone when appropriate.
2134 */
2135 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2136 do_maps_clone = false;
2137
2138 if (thread == NULL || parent == NULL ||
2139 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2140 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2141 err = -1;
2142 }
2143 thread__put(thread);
2144 thread__put(parent);
2145
2146 return err;
2147}
2148
2149int machine__process_exit_event(struct machine *machine, union perf_event *event,
2150 struct perf_sample *sample __maybe_unused)
2151{
2152 struct thread *thread = machine__find_thread(machine,
2153 event->fork.pid,
2154 event->fork.tid);
2155
2156 if (dump_trace)
2157 perf_event__fprintf_task(event, stdout);
2158
2159 if (thread != NULL)
2160 thread__put(thread);
2161
2162 return 0;
2163}
2164
2165int machine__process_event(struct machine *machine, union perf_event *event,
2166 struct perf_sample *sample)
2167{
2168 int ret;
2169
2170 switch (event->header.type) {
2171 case PERF_RECORD_COMM:
2172 ret = machine__process_comm_event(machine, event, sample); break;
2173 case PERF_RECORD_MMAP:
2174 ret = machine__process_mmap_event(machine, event, sample); break;
2175 case PERF_RECORD_NAMESPACES:
2176 ret = machine__process_namespaces_event(machine, event, sample); break;
2177 case PERF_RECORD_CGROUP:
2178 ret = machine__process_cgroup_event(machine, event, sample); break;
2179 case PERF_RECORD_MMAP2:
2180 ret = machine__process_mmap2_event(machine, event, sample); break;
2181 case PERF_RECORD_FORK:
2182 ret = machine__process_fork_event(machine, event, sample); break;
2183 case PERF_RECORD_EXIT:
2184 ret = machine__process_exit_event(machine, event, sample); break;
2185 case PERF_RECORD_LOST:
2186 ret = machine__process_lost_event(machine, event, sample); break;
2187 case PERF_RECORD_AUX:
2188 ret = machine__process_aux_event(machine, event); break;
2189 case PERF_RECORD_ITRACE_START:
2190 ret = machine__process_itrace_start_event(machine, event); break;
2191 case PERF_RECORD_LOST_SAMPLES:
2192 ret = machine__process_lost_samples_event(machine, event, sample); break;
2193 case PERF_RECORD_SWITCH:
2194 case PERF_RECORD_SWITCH_CPU_WIDE:
2195 ret = machine__process_switch_event(machine, event); break;
2196 case PERF_RECORD_KSYMBOL:
2197 ret = machine__process_ksymbol(machine, event, sample); break;
2198 case PERF_RECORD_BPF_EVENT:
2199 ret = machine__process_bpf(machine, event, sample); break;
2200 case PERF_RECORD_TEXT_POKE:
2201 ret = machine__process_text_poke(machine, event, sample); break;
2202 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2203 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2204 default:
2205 ret = -1;
2206 break;
2207 }
2208
2209 return ret;
2210}
2211
2212static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2213{
2214 if (!regexec(regex, sym->name, 0, NULL, 0))
2215 return true;
2216 return false;
2217}
2218
2219static void ip__resolve_ams(struct thread *thread,
2220 struct addr_map_symbol *ams,
2221 u64 ip)
2222{
2223 struct addr_location al;
2224
2225 addr_location__init(&al);
2226 /*
2227 * We cannot use the header.misc hint to determine whether a
2228 * branch stack address is user, kernel, guest, hypervisor.
2229 * Branches may straddle the kernel/user/hypervisor boundaries.
2230 * Thus, we have to try consecutively until we find a match
2231 * or else, the symbol is unknown
2232 */
2233 thread__find_cpumode_addr_location(thread, ip, &al);
2234
2235 ams->addr = ip;
2236 ams->al_addr = al.addr;
2237 ams->al_level = al.level;
2238 ams->ms.maps = maps__get(al.maps);
2239 ams->ms.sym = al.sym;
2240 ams->ms.map = map__get(al.map);
2241 ams->phys_addr = 0;
2242 ams->data_page_size = 0;
2243 addr_location__exit(&al);
2244}
2245
2246static void ip__resolve_data(struct thread *thread,
2247 u8 m, struct addr_map_symbol *ams,
2248 u64 addr, u64 phys_addr, u64 daddr_page_size)
2249{
2250 struct addr_location al;
2251
2252 addr_location__init(&al);
2253
2254 thread__find_symbol(thread, m, addr, &al);
2255
2256 ams->addr = addr;
2257 ams->al_addr = al.addr;
2258 ams->al_level = al.level;
2259 ams->ms.maps = maps__get(al.maps);
2260 ams->ms.sym = al.sym;
2261 ams->ms.map = map__get(al.map);
2262 ams->phys_addr = phys_addr;
2263 ams->data_page_size = daddr_page_size;
2264 addr_location__exit(&al);
2265}
2266
2267struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2268 struct addr_location *al)
2269{
2270 struct mem_info *mi = mem_info__new();
2271
2272 if (!mi)
2273 return NULL;
2274
2275 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2276 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2277 sample->addr, sample->phys_addr,
2278 sample->data_page_size);
2279 mi->data_src.val = sample->data_src;
2280
2281 return mi;
2282}
2283
2284static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2285{
2286 struct map *map = ms->map;
2287 char *srcline = NULL;
2288 struct dso *dso;
2289
2290 if (!map || callchain_param.key == CCKEY_FUNCTION)
2291 return srcline;
2292
2293 dso = map__dso(map);
2294 srcline = srcline__tree_find(&dso->srclines, ip);
2295 if (!srcline) {
2296 bool show_sym = false;
2297 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2298
2299 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2300 ms->sym, show_sym, show_addr, ip);
2301 srcline__tree_insert(&dso->srclines, ip, srcline);
2302 }
2303
2304 return srcline;
2305}
2306
2307struct iterations {
2308 int nr_loop_iter;
2309 u64 cycles;
2310};
2311
2312static int add_callchain_ip(struct thread *thread,
2313 struct callchain_cursor *cursor,
2314 struct symbol **parent,
2315 struct addr_location *root_al,
2316 u8 *cpumode,
2317 u64 ip,
2318 bool branch,
2319 struct branch_flags *flags,
2320 struct iterations *iter,
2321 u64 branch_from)
2322{
2323 struct map_symbol ms = {};
2324 struct addr_location al;
2325 int nr_loop_iter = 0, err = 0;
2326 u64 iter_cycles = 0;
2327 const char *srcline = NULL;
2328
2329 addr_location__init(&al);
2330 al.filtered = 0;
2331 al.sym = NULL;
2332 al.srcline = NULL;
2333 if (!cpumode) {
2334 thread__find_cpumode_addr_location(thread, ip, &al);
2335 } else {
2336 if (ip >= PERF_CONTEXT_MAX) {
2337 switch (ip) {
2338 case PERF_CONTEXT_HV:
2339 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2340 break;
2341 case PERF_CONTEXT_KERNEL:
2342 *cpumode = PERF_RECORD_MISC_KERNEL;
2343 break;
2344 case PERF_CONTEXT_USER:
2345 *cpumode = PERF_RECORD_MISC_USER;
2346 break;
2347 default:
2348 pr_debug("invalid callchain context: "
2349 "%"PRId64"\n", (s64) ip);
2350 /*
2351 * It seems the callchain is corrupted.
2352 * Discard all.
2353 */
2354 callchain_cursor_reset(cursor);
2355 err = 1;
2356 goto out;
2357 }
2358 goto out;
2359 }
2360 thread__find_symbol(thread, *cpumode, ip, &al);
2361 }
2362
2363 if (al.sym != NULL) {
2364 if (perf_hpp_list.parent && !*parent &&
2365 symbol__match_regex(al.sym, &parent_regex))
2366 *parent = al.sym;
2367 else if (have_ignore_callees && root_al &&
2368 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2369 /* Treat this symbol as the root,
2370 forgetting its callees. */
2371 addr_location__copy(root_al, &al);
2372 callchain_cursor_reset(cursor);
2373 }
2374 }
2375
2376 if (symbol_conf.hide_unresolved && al.sym == NULL)
2377 goto out;
2378
2379 if (iter) {
2380 nr_loop_iter = iter->nr_loop_iter;
2381 iter_cycles = iter->cycles;
2382 }
2383
2384 ms.maps = maps__get(al.maps);
2385 ms.map = map__get(al.map);
2386 ms.sym = al.sym;
2387 srcline = callchain_srcline(&ms, al.addr);
2388 err = callchain_cursor_append(cursor, ip, &ms,
2389 branch, flags, nr_loop_iter,
2390 iter_cycles, branch_from, srcline);
2391out:
2392 addr_location__exit(&al);
2393 maps__put(ms.maps);
2394 map__put(ms.map);
2395 return err;
2396}
2397
2398struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2399 struct addr_location *al)
2400{
2401 unsigned int i;
2402 const struct branch_stack *bs = sample->branch_stack;
2403 struct branch_entry *entries = perf_sample__branch_entries(sample);
2404 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2405
2406 if (!bi)
2407 return NULL;
2408
2409 for (i = 0; i < bs->nr; i++) {
2410 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2411 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2412 bi[i].flags = entries[i].flags;
2413 }
2414 return bi;
2415}
2416
2417static void save_iterations(struct iterations *iter,
2418 struct branch_entry *be, int nr)
2419{
2420 int i;
2421
2422 iter->nr_loop_iter++;
2423 iter->cycles = 0;
2424
2425 for (i = 0; i < nr; i++)
2426 iter->cycles += be[i].flags.cycles;
2427}
2428
2429#define CHASHSZ 127
2430#define CHASHBITS 7
2431#define NO_ENTRY 0xff
2432
2433#define PERF_MAX_BRANCH_DEPTH 127
2434
2435/* Remove loops. */
2436static int remove_loops(struct branch_entry *l, int nr,
2437 struct iterations *iter)
2438{
2439 int i, j, off;
2440 unsigned char chash[CHASHSZ];
2441
2442 memset(chash, NO_ENTRY, sizeof(chash));
2443
2444 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2445
2446 for (i = 0; i < nr; i++) {
2447 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2448
2449 /* no collision handling for now */
2450 if (chash[h] == NO_ENTRY) {
2451 chash[h] = i;
2452 } else if (l[chash[h]].from == l[i].from) {
2453 bool is_loop = true;
2454 /* check if it is a real loop */
2455 off = 0;
2456 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2457 if (l[j].from != l[i + off].from) {
2458 is_loop = false;
2459 break;
2460 }
2461 if (is_loop) {
2462 j = nr - (i + off);
2463 if (j > 0) {
2464 save_iterations(iter + i + off,
2465 l + i, off);
2466
2467 memmove(iter + i, iter + i + off,
2468 j * sizeof(*iter));
2469
2470 memmove(l + i, l + i + off,
2471 j * sizeof(*l));
2472 }
2473
2474 nr -= off;
2475 }
2476 }
2477 }
2478 return nr;
2479}
2480
2481static int lbr_callchain_add_kernel_ip(struct thread *thread,
2482 struct callchain_cursor *cursor,
2483 struct perf_sample *sample,
2484 struct symbol **parent,
2485 struct addr_location *root_al,
2486 u64 branch_from,
2487 bool callee, int end)
2488{
2489 struct ip_callchain *chain = sample->callchain;
2490 u8 cpumode = PERF_RECORD_MISC_USER;
2491 int err, i;
2492
2493 if (callee) {
2494 for (i = 0; i < end + 1; i++) {
2495 err = add_callchain_ip(thread, cursor, parent,
2496 root_al, &cpumode, chain->ips[i],
2497 false, NULL, NULL, branch_from);
2498 if (err)
2499 return err;
2500 }
2501 return 0;
2502 }
2503
2504 for (i = end; i >= 0; i--) {
2505 err = add_callchain_ip(thread, cursor, parent,
2506 root_al, &cpumode, chain->ips[i],
2507 false, NULL, NULL, branch_from);
2508 if (err)
2509 return err;
2510 }
2511
2512 return 0;
2513}
2514
2515static void save_lbr_cursor_node(struct thread *thread,
2516 struct callchain_cursor *cursor,
2517 int idx)
2518{
2519 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2520
2521 if (!lbr_stitch)
2522 return;
2523
2524 if (cursor->pos == cursor->nr) {
2525 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2526 return;
2527 }
2528
2529 if (!cursor->curr)
2530 cursor->curr = cursor->first;
2531 else
2532 cursor->curr = cursor->curr->next;
2533 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2534 sizeof(struct callchain_cursor_node));
2535
2536 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2537 cursor->pos++;
2538}
2539
2540static int lbr_callchain_add_lbr_ip(struct thread *thread,
2541 struct callchain_cursor *cursor,
2542 struct perf_sample *sample,
2543 struct symbol **parent,
2544 struct addr_location *root_al,
2545 u64 *branch_from,
2546 bool callee)
2547{
2548 struct branch_stack *lbr_stack = sample->branch_stack;
2549 struct branch_entry *entries = perf_sample__branch_entries(sample);
2550 u8 cpumode = PERF_RECORD_MISC_USER;
2551 int lbr_nr = lbr_stack->nr;
2552 struct branch_flags *flags;
2553 int err, i;
2554 u64 ip;
2555
2556 /*
2557 * The curr and pos are not used in writing session. They are cleared
2558 * in callchain_cursor_commit() when the writing session is closed.
2559 * Using curr and pos to track the current cursor node.
2560 */
2561 if (thread__lbr_stitch(thread)) {
2562 cursor->curr = NULL;
2563 cursor->pos = cursor->nr;
2564 if (cursor->nr) {
2565 cursor->curr = cursor->first;
2566 for (i = 0; i < (int)(cursor->nr - 1); i++)
2567 cursor->curr = cursor->curr->next;
2568 }
2569 }
2570
2571 if (callee) {
2572 /* Add LBR ip from first entries.to */
2573 ip = entries[0].to;
2574 flags = &entries[0].flags;
2575 *branch_from = entries[0].from;
2576 err = add_callchain_ip(thread, cursor, parent,
2577 root_al, &cpumode, ip,
2578 true, flags, NULL,
2579 *branch_from);
2580 if (err)
2581 return err;
2582
2583 /*
2584 * The number of cursor node increases.
2585 * Move the current cursor node.
2586 * But does not need to save current cursor node for entry 0.
2587 * It's impossible to stitch the whole LBRs of previous sample.
2588 */
2589 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2590 if (!cursor->curr)
2591 cursor->curr = cursor->first;
2592 else
2593 cursor->curr = cursor->curr->next;
2594 cursor->pos++;
2595 }
2596
2597 /* Add LBR ip from entries.from one by one. */
2598 for (i = 0; i < lbr_nr; i++) {
2599 ip = entries[i].from;
2600 flags = &entries[i].flags;
2601 err = add_callchain_ip(thread, cursor, parent,
2602 root_al, &cpumode, ip,
2603 true, flags, NULL,
2604 *branch_from);
2605 if (err)
2606 return err;
2607 save_lbr_cursor_node(thread, cursor, i);
2608 }
2609 return 0;
2610 }
2611
2612 /* Add LBR ip from entries.from one by one. */
2613 for (i = lbr_nr - 1; i >= 0; i--) {
2614 ip = entries[i].from;
2615 flags = &entries[i].flags;
2616 err = add_callchain_ip(thread, cursor, parent,
2617 root_al, &cpumode, ip,
2618 true, flags, NULL,
2619 *branch_from);
2620 if (err)
2621 return err;
2622 save_lbr_cursor_node(thread, cursor, i);
2623 }
2624
2625 /* Add LBR ip from first entries.to */
2626 ip = entries[0].to;
2627 flags = &entries[0].flags;
2628 *branch_from = entries[0].from;
2629 err = add_callchain_ip(thread, cursor, parent,
2630 root_al, &cpumode, ip,
2631 true, flags, NULL,
2632 *branch_from);
2633 if (err)
2634 return err;
2635
2636 return 0;
2637}
2638
2639static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2640 struct callchain_cursor *cursor)
2641{
2642 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2643 struct callchain_cursor_node *cnode;
2644 struct stitch_list *stitch_node;
2645 int err;
2646
2647 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2648 cnode = &stitch_node->cursor;
2649
2650 err = callchain_cursor_append(cursor, cnode->ip,
2651 &cnode->ms,
2652 cnode->branch,
2653 &cnode->branch_flags,
2654 cnode->nr_loop_iter,
2655 cnode->iter_cycles,
2656 cnode->branch_from,
2657 cnode->srcline);
2658 if (err)
2659 return err;
2660 }
2661 return 0;
2662}
2663
2664static struct stitch_list *get_stitch_node(struct thread *thread)
2665{
2666 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2667 struct stitch_list *stitch_node;
2668
2669 if (!list_empty(&lbr_stitch->free_lists)) {
2670 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2671 struct stitch_list, node);
2672 list_del(&stitch_node->node);
2673
2674 return stitch_node;
2675 }
2676
2677 return malloc(sizeof(struct stitch_list));
2678}
2679
2680static bool has_stitched_lbr(struct thread *thread,
2681 struct perf_sample *cur,
2682 struct perf_sample *prev,
2683 unsigned int max_lbr,
2684 bool callee)
2685{
2686 struct branch_stack *cur_stack = cur->branch_stack;
2687 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2688 struct branch_stack *prev_stack = prev->branch_stack;
2689 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2690 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2691 int i, j, nr_identical_branches = 0;
2692 struct stitch_list *stitch_node;
2693 u64 cur_base, distance;
2694
2695 if (!cur_stack || !prev_stack)
2696 return false;
2697
2698 /* Find the physical index of the base-of-stack for current sample. */
2699 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2700
2701 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2702 (max_lbr + prev_stack->hw_idx - cur_base);
2703 /* Previous sample has shorter stack. Nothing can be stitched. */
2704 if (distance + 1 > prev_stack->nr)
2705 return false;
2706
2707 /*
2708 * Check if there are identical LBRs between two samples.
2709 * Identical LBRs must have same from, to and flags values. Also,
2710 * they have to be saved in the same LBR registers (same physical
2711 * index).
2712 *
2713 * Starts from the base-of-stack of current sample.
2714 */
2715 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2716 if ((prev_entries[i].from != cur_entries[j].from) ||
2717 (prev_entries[i].to != cur_entries[j].to) ||
2718 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2719 break;
2720 nr_identical_branches++;
2721 }
2722
2723 if (!nr_identical_branches)
2724 return false;
2725
2726 /*
2727 * Save the LBRs between the base-of-stack of previous sample
2728 * and the base-of-stack of current sample into lbr_stitch->lists.
2729 * These LBRs will be stitched later.
2730 */
2731 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2732
2733 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2734 continue;
2735
2736 stitch_node = get_stitch_node(thread);
2737 if (!stitch_node)
2738 return false;
2739
2740 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2741 sizeof(struct callchain_cursor_node));
2742
2743 if (callee)
2744 list_add(&stitch_node->node, &lbr_stitch->lists);
2745 else
2746 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2747 }
2748
2749 return true;
2750}
2751
2752static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2753{
2754 if (thread__lbr_stitch(thread))
2755 return true;
2756
2757 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2758 if (!thread__lbr_stitch(thread))
2759 goto err;
2760
2761 thread__lbr_stitch(thread)->prev_lbr_cursor =
2762 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2763 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2764 goto free_lbr_stitch;
2765
2766 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2767 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2768
2769 return true;
2770
2771free_lbr_stitch:
2772 free(thread__lbr_stitch(thread));
2773 thread__set_lbr_stitch(thread, NULL);
2774err:
2775 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2776 thread__set_lbr_stitch_enable(thread, false);
2777 return false;
2778}
2779
2780/*
2781 * Resolve LBR callstack chain sample
2782 * Return:
2783 * 1 on success get LBR callchain information
2784 * 0 no available LBR callchain information, should try fp
2785 * negative error code on other errors.
2786 */
2787static int resolve_lbr_callchain_sample(struct thread *thread,
2788 struct callchain_cursor *cursor,
2789 struct perf_sample *sample,
2790 struct symbol **parent,
2791 struct addr_location *root_al,
2792 int max_stack,
2793 unsigned int max_lbr)
2794{
2795 bool callee = (callchain_param.order == ORDER_CALLEE);
2796 struct ip_callchain *chain = sample->callchain;
2797 int chain_nr = min(max_stack, (int)chain->nr), i;
2798 struct lbr_stitch *lbr_stitch;
2799 bool stitched_lbr = false;
2800 u64 branch_from = 0;
2801 int err;
2802
2803 for (i = 0; i < chain_nr; i++) {
2804 if (chain->ips[i] == PERF_CONTEXT_USER)
2805 break;
2806 }
2807
2808 /* LBR only affects the user callchain */
2809 if (i == chain_nr)
2810 return 0;
2811
2812 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2813 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2814 lbr_stitch = thread__lbr_stitch(thread);
2815
2816 stitched_lbr = has_stitched_lbr(thread, sample,
2817 &lbr_stitch->prev_sample,
2818 max_lbr, callee);
2819
2820 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2821 list_replace_init(&lbr_stitch->lists,
2822 &lbr_stitch->free_lists);
2823 }
2824 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2825 }
2826
2827 if (callee) {
2828 /* Add kernel ip */
2829 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2830 parent, root_al, branch_from,
2831 true, i);
2832 if (err)
2833 goto error;
2834
2835 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2836 root_al, &branch_from, true);
2837 if (err)
2838 goto error;
2839
2840 if (stitched_lbr) {
2841 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2842 if (err)
2843 goto error;
2844 }
2845
2846 } else {
2847 if (stitched_lbr) {
2848 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2849 if (err)
2850 goto error;
2851 }
2852 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2853 root_al, &branch_from, false);
2854 if (err)
2855 goto error;
2856
2857 /* Add kernel ip */
2858 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2859 parent, root_al, branch_from,
2860 false, i);
2861 if (err)
2862 goto error;
2863 }
2864 return 1;
2865
2866error:
2867 return (err < 0) ? err : 0;
2868}
2869
2870static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2871 struct callchain_cursor *cursor,
2872 struct symbol **parent,
2873 struct addr_location *root_al,
2874 u8 *cpumode, int ent)
2875{
2876 int err = 0;
2877
2878 while (--ent >= 0) {
2879 u64 ip = chain->ips[ent];
2880
2881 if (ip >= PERF_CONTEXT_MAX) {
2882 err = add_callchain_ip(thread, cursor, parent,
2883 root_al, cpumode, ip,
2884 false, NULL, NULL, 0);
2885 break;
2886 }
2887 }
2888 return err;
2889}
2890
2891static u64 get_leaf_frame_caller(struct perf_sample *sample,
2892 struct thread *thread, int usr_idx)
2893{
2894 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2895 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2896 else
2897 return 0;
2898}
2899
2900static int thread__resolve_callchain_sample(struct thread *thread,
2901 struct callchain_cursor *cursor,
2902 struct evsel *evsel,
2903 struct perf_sample *sample,
2904 struct symbol **parent,
2905 struct addr_location *root_al,
2906 int max_stack)
2907{
2908 struct branch_stack *branch = sample->branch_stack;
2909 struct branch_entry *entries = perf_sample__branch_entries(sample);
2910 struct ip_callchain *chain = sample->callchain;
2911 int chain_nr = 0;
2912 u8 cpumode = PERF_RECORD_MISC_USER;
2913 int i, j, err, nr_entries, usr_idx;
2914 int skip_idx = -1;
2915 int first_call = 0;
2916 u64 leaf_frame_caller;
2917
2918 if (chain)
2919 chain_nr = chain->nr;
2920
2921 if (evsel__has_branch_callstack(evsel)) {
2922 struct perf_env *env = evsel__env(evsel);
2923
2924 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2925 root_al, max_stack,
2926 !env ? 0 : env->max_branches);
2927 if (err)
2928 return (err < 0) ? err : 0;
2929 }
2930
2931 /*
2932 * Based on DWARF debug information, some architectures skip
2933 * a callchain entry saved by the kernel.
2934 */
2935 skip_idx = arch_skip_callchain_idx(thread, chain);
2936
2937 /*
2938 * Add branches to call stack for easier browsing. This gives
2939 * more context for a sample than just the callers.
2940 *
2941 * This uses individual histograms of paths compared to the
2942 * aggregated histograms the normal LBR mode uses.
2943 *
2944 * Limitations for now:
2945 * - No extra filters
2946 * - No annotations (should annotate somehow)
2947 */
2948
2949 if (branch && callchain_param.branch_callstack) {
2950 int nr = min(max_stack, (int)branch->nr);
2951 struct branch_entry be[nr];
2952 struct iterations iter[nr];
2953
2954 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2955 pr_warning("corrupted branch chain. skipping...\n");
2956 goto check_calls;
2957 }
2958
2959 for (i = 0; i < nr; i++) {
2960 if (callchain_param.order == ORDER_CALLEE) {
2961 be[i] = entries[i];
2962
2963 if (chain == NULL)
2964 continue;
2965
2966 /*
2967 * Check for overlap into the callchain.
2968 * The return address is one off compared to
2969 * the branch entry. To adjust for this
2970 * assume the calling instruction is not longer
2971 * than 8 bytes.
2972 */
2973 if (i == skip_idx ||
2974 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2975 first_call++;
2976 else if (be[i].from < chain->ips[first_call] &&
2977 be[i].from >= chain->ips[first_call] - 8)
2978 first_call++;
2979 } else
2980 be[i] = entries[branch->nr - i - 1];
2981 }
2982
2983 memset(iter, 0, sizeof(struct iterations) * nr);
2984 nr = remove_loops(be, nr, iter);
2985
2986 for (i = 0; i < nr; i++) {
2987 err = add_callchain_ip(thread, cursor, parent,
2988 root_al,
2989 NULL, be[i].to,
2990 true, &be[i].flags,
2991 NULL, be[i].from);
2992
2993 if (!err)
2994 err = add_callchain_ip(thread, cursor, parent, root_al,
2995 NULL, be[i].from,
2996 true, &be[i].flags,
2997 &iter[i], 0);
2998 if (err == -EINVAL)
2999 break;
3000 if (err)
3001 return err;
3002 }
3003
3004 if (chain_nr == 0)
3005 return 0;
3006
3007 chain_nr -= nr;
3008 }
3009
3010check_calls:
3011 if (chain && callchain_param.order != ORDER_CALLEE) {
3012 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3013 &cpumode, chain->nr - first_call);
3014 if (err)
3015 return (err < 0) ? err : 0;
3016 }
3017 for (i = first_call, nr_entries = 0;
3018 i < chain_nr && nr_entries < max_stack; i++) {
3019 u64 ip;
3020
3021 if (callchain_param.order == ORDER_CALLEE)
3022 j = i;
3023 else
3024 j = chain->nr - i - 1;
3025
3026#ifdef HAVE_SKIP_CALLCHAIN_IDX
3027 if (j == skip_idx)
3028 continue;
3029#endif
3030 ip = chain->ips[j];
3031 if (ip < PERF_CONTEXT_MAX)
3032 ++nr_entries;
3033 else if (callchain_param.order != ORDER_CALLEE) {
3034 err = find_prev_cpumode(chain, thread, cursor, parent,
3035 root_al, &cpumode, j);
3036 if (err)
3037 return (err < 0) ? err : 0;
3038 continue;
3039 }
3040
3041 /*
3042 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3043 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3044 * the index will be different in order to add the missing frame
3045 * at the right place.
3046 */
3047
3048 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3049
3050 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3051
3052 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3053
3054 /*
3055 * check if leaf_frame_Caller != ip to not add the same
3056 * value twice.
3057 */
3058
3059 if (leaf_frame_caller && leaf_frame_caller != ip) {
3060
3061 err = add_callchain_ip(thread, cursor, parent,
3062 root_al, &cpumode, leaf_frame_caller,
3063 false, NULL, NULL, 0);
3064 if (err)
3065 return (err < 0) ? err : 0;
3066 }
3067 }
3068
3069 err = add_callchain_ip(thread, cursor, parent,
3070 root_al, &cpumode, ip,
3071 false, NULL, NULL, 0);
3072
3073 if (err)
3074 return (err < 0) ? err : 0;
3075 }
3076
3077 return 0;
3078}
3079
3080static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3081{
3082 struct symbol *sym = ms->sym;
3083 struct map *map = ms->map;
3084 struct inline_node *inline_node;
3085 struct inline_list *ilist;
3086 struct dso *dso;
3087 u64 addr;
3088 int ret = 1;
3089 struct map_symbol ilist_ms;
3090
3091 if (!symbol_conf.inline_name || !map || !sym)
3092 return ret;
3093
3094 addr = map__dso_map_ip(map, ip);
3095 addr = map__rip_2objdump(map, addr);
3096 dso = map__dso(map);
3097
3098 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3099 if (!inline_node) {
3100 inline_node = dso__parse_addr_inlines(dso, addr, sym);
3101 if (!inline_node)
3102 return ret;
3103 inlines__tree_insert(&dso->inlined_nodes, inline_node);
3104 }
3105
3106 ilist_ms = (struct map_symbol) {
3107 .maps = maps__get(ms->maps),
3108 .map = map__get(map),
3109 };
3110 list_for_each_entry(ilist, &inline_node->val, list) {
3111 ilist_ms.sym = ilist->symbol;
3112 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3113 NULL, 0, 0, 0, ilist->srcline);
3114
3115 if (ret != 0)
3116 return ret;
3117 }
3118 map__put(ilist_ms.map);
3119 maps__put(ilist_ms.maps);
3120
3121 return ret;
3122}
3123
3124static int unwind_entry(struct unwind_entry *entry, void *arg)
3125{
3126 struct callchain_cursor *cursor = arg;
3127 const char *srcline = NULL;
3128 u64 addr = entry->ip;
3129
3130 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3131 return 0;
3132
3133 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3134 return 0;
3135
3136 /*
3137 * Convert entry->ip from a virtual address to an offset in
3138 * its corresponding binary.
3139 */
3140 if (entry->ms.map)
3141 addr = map__dso_map_ip(entry->ms.map, entry->ip);
3142
3143 srcline = callchain_srcline(&entry->ms, addr);
3144 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3145 false, NULL, 0, 0, 0, srcline);
3146}
3147
3148static int thread__resolve_callchain_unwind(struct thread *thread,
3149 struct callchain_cursor *cursor,
3150 struct evsel *evsel,
3151 struct perf_sample *sample,
3152 int max_stack)
3153{
3154 /* Can we do dwarf post unwind? */
3155 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3156 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3157 return 0;
3158
3159 /* Bail out if nothing was captured. */
3160 if ((!sample->user_regs.regs) ||
3161 (!sample->user_stack.size))
3162 return 0;
3163
3164 return unwind__get_entries(unwind_entry, cursor,
3165 thread, sample, max_stack, false);
3166}
3167
3168int thread__resolve_callchain(struct thread *thread,
3169 struct callchain_cursor *cursor,
3170 struct evsel *evsel,
3171 struct perf_sample *sample,
3172 struct symbol **parent,
3173 struct addr_location *root_al,
3174 int max_stack)
3175{
3176 int ret = 0;
3177
3178 if (cursor == NULL)
3179 return -ENOMEM;
3180
3181 callchain_cursor_reset(cursor);
3182
3183 if (callchain_param.order == ORDER_CALLEE) {
3184 ret = thread__resolve_callchain_sample(thread, cursor,
3185 evsel, sample,
3186 parent, root_al,
3187 max_stack);
3188 if (ret)
3189 return ret;
3190 ret = thread__resolve_callchain_unwind(thread, cursor,
3191 evsel, sample,
3192 max_stack);
3193 } else {
3194 ret = thread__resolve_callchain_unwind(thread, cursor,
3195 evsel, sample,
3196 max_stack);
3197 if (ret)
3198 return ret;
3199 ret = thread__resolve_callchain_sample(thread, cursor,
3200 evsel, sample,
3201 parent, root_al,
3202 max_stack);
3203 }
3204
3205 return ret;
3206}
3207
3208int machine__for_each_thread(struct machine *machine,
3209 int (*fn)(struct thread *thread, void *p),
3210 void *priv)
3211{
3212 struct threads *threads;
3213 struct rb_node *nd;
3214 int rc = 0;
3215 int i;
3216
3217 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3218 threads = &machine->threads[i];
3219 for (nd = rb_first_cached(&threads->entries); nd;
3220 nd = rb_next(nd)) {
3221 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3222
3223 rc = fn(trb->thread, priv);
3224 if (rc != 0)
3225 return rc;
3226 }
3227 }
3228 return rc;
3229}
3230
3231int machines__for_each_thread(struct machines *machines,
3232 int (*fn)(struct thread *thread, void *p),
3233 void *priv)
3234{
3235 struct rb_node *nd;
3236 int rc = 0;
3237
3238 rc = machine__for_each_thread(&machines->host, fn, priv);
3239 if (rc != 0)
3240 return rc;
3241
3242 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3243 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3244
3245 rc = machine__for_each_thread(machine, fn, priv);
3246 if (rc != 0)
3247 return rc;
3248 }
3249 return rc;
3250}
3251
3252pid_t machine__get_current_tid(struct machine *machine, int cpu)
3253{
3254 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3255 return -1;
3256
3257 return machine->current_tid[cpu];
3258}
3259
3260int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3261 pid_t tid)
3262{
3263 struct thread *thread;
3264 const pid_t init_val = -1;
3265
3266 if (cpu < 0)
3267 return -EINVAL;
3268
3269 if (realloc_array_as_needed(machine->current_tid,
3270 machine->current_tid_sz,
3271 (unsigned int)cpu,
3272 &init_val))
3273 return -ENOMEM;
3274
3275 machine->current_tid[cpu] = tid;
3276
3277 thread = machine__findnew_thread(machine, pid, tid);
3278 if (!thread)
3279 return -ENOMEM;
3280
3281 thread__set_cpu(thread, cpu);
3282 thread__put(thread);
3283
3284 return 0;
3285}
3286
3287/*
3288 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3289 * machine__normalized_is() if a normalized arch is needed.
3290 */
3291bool machine__is(struct machine *machine, const char *arch)
3292{
3293 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3294}
3295
3296bool machine__normalized_is(struct machine *machine, const char *arch)
3297{
3298 return machine && !strcmp(perf_env__arch(machine->env), arch);
3299}
3300
3301int machine__nr_cpus_avail(struct machine *machine)
3302{
3303 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3304}
3305
3306int machine__get_kernel_start(struct machine *machine)
3307{
3308 struct map *map = machine__kernel_map(machine);
3309 int err = 0;
3310
3311 /*
3312 * The only addresses above 2^63 are kernel addresses of a 64-bit
3313 * kernel. Note that addresses are unsigned so that on a 32-bit system
3314 * all addresses including kernel addresses are less than 2^32. In
3315 * that case (32-bit system), if the kernel mapping is unknown, all
3316 * addresses will be assumed to be in user space - see
3317 * machine__kernel_ip().
3318 */
3319 machine->kernel_start = 1ULL << 63;
3320 if (map) {
3321 err = map__load(map);
3322 /*
3323 * On x86_64, PTI entry trampolines are less than the
3324 * start of kernel text, but still above 2^63. So leave
3325 * kernel_start = 1ULL << 63 for x86_64.
3326 */
3327 if (!err && !machine__is(machine, "x86_64"))
3328 machine->kernel_start = map__start(map);
3329 }
3330 return err;
3331}
3332
3333u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3334{
3335 u8 addr_cpumode = cpumode;
3336 bool kernel_ip;
3337
3338 if (!machine->single_address_space)
3339 goto out;
3340
3341 kernel_ip = machine__kernel_ip(machine, addr);
3342 switch (cpumode) {
3343 case PERF_RECORD_MISC_KERNEL:
3344 case PERF_RECORD_MISC_USER:
3345 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3346 PERF_RECORD_MISC_USER;
3347 break;
3348 case PERF_RECORD_MISC_GUEST_KERNEL:
3349 case PERF_RECORD_MISC_GUEST_USER:
3350 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3351 PERF_RECORD_MISC_GUEST_USER;
3352 break;
3353 default:
3354 break;
3355 }
3356out:
3357 return addr_cpumode;
3358}
3359
3360struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3361{
3362 return dsos__findnew_id(&machine->dsos, filename, id);
3363}
3364
3365struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3366{
3367 return machine__findnew_dso_id(machine, filename, NULL);
3368}
3369
3370char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3371{
3372 struct machine *machine = vmachine;
3373 struct map *map;
3374 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3375
3376 if (sym == NULL)
3377 return NULL;
3378
3379 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3380 *addrp = map__unmap_ip(map, sym->start);
3381 return sym->name;
3382}
3383
3384int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3385{
3386 struct dso *pos;
3387 int err = 0;
3388
3389 list_for_each_entry(pos, &machine->dsos.head, node) {
3390 if (fn(pos, machine, priv))
3391 err = -1;
3392 }
3393 return err;
3394}
3395
3396int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3397{
3398 struct maps *maps = machine__kernel_maps(machine);
3399 struct map_rb_node *pos;
3400 int err = 0;
3401
3402 maps__for_each_entry(maps, pos) {
3403 err = fn(pos->map, priv);
3404 if (err != 0) {
3405 break;
3406 }
3407 }
3408 return err;
3409}
3410
3411bool machine__is_lock_function(struct machine *machine, u64 addr)
3412{
3413 if (!machine->sched.text_start) {
3414 struct map *kmap;
3415 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3416
3417 if (!sym) {
3418 /* to avoid retry */
3419 machine->sched.text_start = 1;
3420 return false;
3421 }
3422
3423 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3424
3425 /* should not fail from here */
3426 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3427 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3428
3429 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3430 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3431
3432 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3433 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3434 }
3435
3436 /* failed to get kernel symbols */
3437 if (machine->sched.text_start == 1)
3438 return false;
3439
3440 /* mutex and rwsem functions are in sched text section */
3441 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3442 return true;
3443
3444 /* spinlock functions are in lock text section */
3445 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3446 return true;
3447
3448 return false;
3449}