Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include "cpumap.h"
3#include "debug.h"
4#include "env.h"
5#include "util/header.h"
6#include <linux/ctype.h>
7#include <linux/zalloc.h>
8#include "cgroup.h"
9#include <errno.h>
10#include <sys/utsname.h>
11#include <stdlib.h>
12#include <string.h>
13#include "pmus.h"
14#include "strbuf.h"
15
16struct perf_env perf_env;
17
18#ifdef HAVE_LIBBPF_SUPPORT
19#include "bpf-event.h"
20#include "bpf-utils.h"
21#include <bpf/libbpf.h>
22
23void perf_env__insert_bpf_prog_info(struct perf_env *env,
24 struct bpf_prog_info_node *info_node)
25{
26 __u32 prog_id = info_node->info_linear->info.id;
27 struct bpf_prog_info_node *node;
28 struct rb_node *parent = NULL;
29 struct rb_node **p;
30
31 down_write(&env->bpf_progs.lock);
32 p = &env->bpf_progs.infos.rb_node;
33
34 while (*p != NULL) {
35 parent = *p;
36 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
37 if (prog_id < node->info_linear->info.id) {
38 p = &(*p)->rb_left;
39 } else if (prog_id > node->info_linear->info.id) {
40 p = &(*p)->rb_right;
41 } else {
42 pr_debug("duplicated bpf prog info %u\n", prog_id);
43 goto out;
44 }
45 }
46
47 rb_link_node(&info_node->rb_node, parent, p);
48 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
49 env->bpf_progs.infos_cnt++;
50out:
51 up_write(&env->bpf_progs.lock);
52}
53
54struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
55 __u32 prog_id)
56{
57 struct bpf_prog_info_node *node = NULL;
58 struct rb_node *n;
59
60 down_read(&env->bpf_progs.lock);
61 n = env->bpf_progs.infos.rb_node;
62
63 while (n) {
64 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
65 if (prog_id < node->info_linear->info.id)
66 n = n->rb_left;
67 else if (prog_id > node->info_linear->info.id)
68 n = n->rb_right;
69 else
70 goto out;
71 }
72 node = NULL;
73
74out:
75 up_read(&env->bpf_progs.lock);
76 return node;
77}
78
79bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
80{
81 struct rb_node *parent = NULL;
82 __u32 btf_id = btf_node->id;
83 struct btf_node *node;
84 struct rb_node **p;
85 bool ret = true;
86
87 down_write(&env->bpf_progs.lock);
88 p = &env->bpf_progs.btfs.rb_node;
89
90 while (*p != NULL) {
91 parent = *p;
92 node = rb_entry(parent, struct btf_node, rb_node);
93 if (btf_id < node->id) {
94 p = &(*p)->rb_left;
95 } else if (btf_id > node->id) {
96 p = &(*p)->rb_right;
97 } else {
98 pr_debug("duplicated btf %u\n", btf_id);
99 ret = false;
100 goto out;
101 }
102 }
103
104 rb_link_node(&btf_node->rb_node, parent, p);
105 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
106 env->bpf_progs.btfs_cnt++;
107out:
108 up_write(&env->bpf_progs.lock);
109 return ret;
110}
111
112struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
113{
114 struct btf_node *node = NULL;
115 struct rb_node *n;
116
117 down_read(&env->bpf_progs.lock);
118 n = env->bpf_progs.btfs.rb_node;
119
120 while (n) {
121 node = rb_entry(n, struct btf_node, rb_node);
122 if (btf_id < node->id)
123 n = n->rb_left;
124 else if (btf_id > node->id)
125 n = n->rb_right;
126 else
127 goto out;
128 }
129 node = NULL;
130
131out:
132 up_read(&env->bpf_progs.lock);
133 return node;
134}
135
136/* purge data in bpf_progs.infos tree */
137static void perf_env__purge_bpf(struct perf_env *env)
138{
139 struct rb_root *root;
140 struct rb_node *next;
141
142 down_write(&env->bpf_progs.lock);
143
144 root = &env->bpf_progs.infos;
145 next = rb_first(root);
146
147 while (next) {
148 struct bpf_prog_info_node *node;
149
150 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
151 next = rb_next(&node->rb_node);
152 rb_erase(&node->rb_node, root);
153 zfree(&node->info_linear);
154 free(node);
155 }
156
157 env->bpf_progs.infos_cnt = 0;
158
159 root = &env->bpf_progs.btfs;
160 next = rb_first(root);
161
162 while (next) {
163 struct btf_node *node;
164
165 node = rb_entry(next, struct btf_node, rb_node);
166 next = rb_next(&node->rb_node);
167 rb_erase(&node->rb_node, root);
168 free(node);
169 }
170
171 env->bpf_progs.btfs_cnt = 0;
172
173 up_write(&env->bpf_progs.lock);
174}
175#else // HAVE_LIBBPF_SUPPORT
176static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
177{
178}
179#endif // HAVE_LIBBPF_SUPPORT
180
181void perf_env__exit(struct perf_env *env)
182{
183 int i, j;
184
185 perf_env__purge_bpf(env);
186 perf_env__purge_cgroups(env);
187 zfree(&env->hostname);
188 zfree(&env->os_release);
189 zfree(&env->version);
190 zfree(&env->arch);
191 zfree(&env->cpu_desc);
192 zfree(&env->cpuid);
193 zfree(&env->cmdline);
194 zfree(&env->cmdline_argv);
195 zfree(&env->sibling_dies);
196 zfree(&env->sibling_cores);
197 zfree(&env->sibling_threads);
198 zfree(&env->pmu_mappings);
199 zfree(&env->cpu);
200 for (i = 0; i < env->nr_cpu_pmu_caps; i++)
201 zfree(&env->cpu_pmu_caps[i]);
202 zfree(&env->cpu_pmu_caps);
203 zfree(&env->numa_map);
204
205 for (i = 0; i < env->nr_numa_nodes; i++)
206 perf_cpu_map__put(env->numa_nodes[i].map);
207 zfree(&env->numa_nodes);
208
209 for (i = 0; i < env->caches_cnt; i++)
210 cpu_cache_level__free(&env->caches[i]);
211 zfree(&env->caches);
212
213 for (i = 0; i < env->nr_memory_nodes; i++)
214 zfree(&env->memory_nodes[i].set);
215 zfree(&env->memory_nodes);
216
217 for (i = 0; i < env->nr_hybrid_nodes; i++) {
218 zfree(&env->hybrid_nodes[i].pmu_name);
219 zfree(&env->hybrid_nodes[i].cpus);
220 }
221 zfree(&env->hybrid_nodes);
222
223 for (i = 0; i < env->nr_pmus_with_caps; i++) {
224 for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
225 zfree(&env->pmu_caps[i].caps[j]);
226 zfree(&env->pmu_caps[i].caps);
227 zfree(&env->pmu_caps[i].pmu_name);
228 }
229 zfree(&env->pmu_caps);
230}
231
232void perf_env__init(struct perf_env *env)
233{
234#ifdef HAVE_LIBBPF_SUPPORT
235 env->bpf_progs.infos = RB_ROOT;
236 env->bpf_progs.btfs = RB_ROOT;
237 init_rwsem(&env->bpf_progs.lock);
238#endif
239 env->kernel_is_64_bit = -1;
240}
241
242static void perf_env__init_kernel_mode(struct perf_env *env)
243{
244 const char *arch = perf_env__raw_arch(env);
245
246 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
247 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
248 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
249 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
250 env->kernel_is_64_bit = 1;
251 else
252 env->kernel_is_64_bit = 0;
253}
254
255int perf_env__kernel_is_64_bit(struct perf_env *env)
256{
257 if (env->kernel_is_64_bit == -1)
258 perf_env__init_kernel_mode(env);
259
260 return env->kernel_is_64_bit;
261}
262
263int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
264{
265 int i;
266
267 /* do not include NULL termination */
268 env->cmdline_argv = calloc(argc, sizeof(char *));
269 if (env->cmdline_argv == NULL)
270 goto out_enomem;
271
272 /*
273 * Must copy argv contents because it gets moved around during option
274 * parsing:
275 */
276 for (i = 0; i < argc ; i++) {
277 env->cmdline_argv[i] = argv[i];
278 if (env->cmdline_argv[i] == NULL)
279 goto out_free;
280 }
281
282 env->nr_cmdline = argc;
283
284 return 0;
285out_free:
286 zfree(&env->cmdline_argv);
287out_enomem:
288 return -ENOMEM;
289}
290
291int perf_env__read_cpu_topology_map(struct perf_env *env)
292{
293 int idx, nr_cpus;
294
295 if (env->cpu != NULL)
296 return 0;
297
298 if (env->nr_cpus_avail == 0)
299 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
300
301 nr_cpus = env->nr_cpus_avail;
302 if (nr_cpus == -1)
303 return -EINVAL;
304
305 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
306 if (env->cpu == NULL)
307 return -ENOMEM;
308
309 for (idx = 0; idx < nr_cpus; ++idx) {
310 struct perf_cpu cpu = { .cpu = idx };
311
312 env->cpu[idx].core_id = cpu__get_core_id(cpu);
313 env->cpu[idx].socket_id = cpu__get_socket_id(cpu);
314 env->cpu[idx].die_id = cpu__get_die_id(cpu);
315 }
316
317 env->nr_cpus_avail = nr_cpus;
318 return 0;
319}
320
321int perf_env__read_pmu_mappings(struct perf_env *env)
322{
323 struct perf_pmu *pmu = NULL;
324 u32 pmu_num = 0;
325 struct strbuf sb;
326
327 while ((pmu = perf_pmus__scan(pmu))) {
328 if (!pmu->name)
329 continue;
330 pmu_num++;
331 }
332 if (!pmu_num) {
333 pr_debug("pmu mappings not available\n");
334 return -ENOENT;
335 }
336 env->nr_pmu_mappings = pmu_num;
337
338 if (strbuf_init(&sb, 128 * pmu_num) < 0)
339 return -ENOMEM;
340
341 while ((pmu = perf_pmus__scan(pmu))) {
342 if (!pmu->name)
343 continue;
344 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
345 goto error;
346 /* include a NULL character at the end */
347 if (strbuf_add(&sb, "", 1) < 0)
348 goto error;
349 }
350
351 env->pmu_mappings = strbuf_detach(&sb, NULL);
352
353 return 0;
354
355error:
356 strbuf_release(&sb);
357 return -1;
358}
359
360int perf_env__read_cpuid(struct perf_env *env)
361{
362 char cpuid[128];
363 int err = get_cpuid(cpuid, sizeof(cpuid));
364
365 if (err)
366 return err;
367
368 free(env->cpuid);
369 env->cpuid = strdup(cpuid);
370 if (env->cpuid == NULL)
371 return ENOMEM;
372 return 0;
373}
374
375static int perf_env__read_arch(struct perf_env *env)
376{
377 struct utsname uts;
378
379 if (env->arch)
380 return 0;
381
382 if (!uname(&uts))
383 env->arch = strdup(uts.machine);
384
385 return env->arch ? 0 : -ENOMEM;
386}
387
388static int perf_env__read_nr_cpus_avail(struct perf_env *env)
389{
390 if (env->nr_cpus_avail == 0)
391 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
392
393 return env->nr_cpus_avail ? 0 : -ENOENT;
394}
395
396const char *perf_env__raw_arch(struct perf_env *env)
397{
398 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
399}
400
401int perf_env__nr_cpus_avail(struct perf_env *env)
402{
403 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
404}
405
406void cpu_cache_level__free(struct cpu_cache_level *cache)
407{
408 zfree(&cache->type);
409 zfree(&cache->map);
410 zfree(&cache->size);
411}
412
413/*
414 * Return architecture name in a normalized form.
415 * The conversion logic comes from the Makefile.
416 */
417static const char *normalize_arch(char *arch)
418{
419 if (!strcmp(arch, "x86_64"))
420 return "x86";
421 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
422 return "x86";
423 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
424 return "sparc";
425 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
426 return "arm64";
427 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
428 return "arm";
429 if (!strncmp(arch, "s390", 4))
430 return "s390";
431 if (!strncmp(arch, "parisc", 6))
432 return "parisc";
433 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
434 return "powerpc";
435 if (!strncmp(arch, "mips", 4))
436 return "mips";
437 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
438 return "sh";
439 if (!strncmp(arch, "loongarch", 9))
440 return "loongarch";
441
442 return arch;
443}
444
445const char *perf_env__arch(struct perf_env *env)
446{
447 char *arch_name;
448
449 if (!env || !env->arch) { /* Assume local operation */
450 static struct utsname uts = { .machine[0] = '\0', };
451 if (uts.machine[0] == '\0' && uname(&uts) < 0)
452 return NULL;
453 arch_name = uts.machine;
454 } else
455 arch_name = env->arch;
456
457 return normalize_arch(arch_name);
458}
459
460const char *perf_env__cpuid(struct perf_env *env)
461{
462 int status;
463
464 if (!env || !env->cpuid) { /* Assume local operation */
465 status = perf_env__read_cpuid(env);
466 if (status)
467 return NULL;
468 }
469
470 return env->cpuid;
471}
472
473int perf_env__nr_pmu_mappings(struct perf_env *env)
474{
475 int status;
476
477 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
478 status = perf_env__read_pmu_mappings(env);
479 if (status)
480 return 0;
481 }
482
483 return env->nr_pmu_mappings;
484}
485
486const char *perf_env__pmu_mappings(struct perf_env *env)
487{
488 int status;
489
490 if (!env || !env->pmu_mappings) { /* Assume local operation */
491 status = perf_env__read_pmu_mappings(env);
492 if (status)
493 return NULL;
494 }
495
496 return env->pmu_mappings;
497}
498
499int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
500{
501 if (!env->nr_numa_map) {
502 struct numa_node *nn;
503 int i, nr = 0;
504
505 for (i = 0; i < env->nr_numa_nodes; i++) {
506 nn = &env->numa_nodes[i];
507 nr = max(nr, perf_cpu_map__max(nn->map).cpu);
508 }
509
510 nr++;
511
512 /*
513 * We initialize the numa_map array to prepare
514 * it for missing cpus, which return node -1
515 */
516 env->numa_map = malloc(nr * sizeof(int));
517 if (!env->numa_map)
518 return -1;
519
520 for (i = 0; i < nr; i++)
521 env->numa_map[i] = -1;
522
523 env->nr_numa_map = nr;
524
525 for (i = 0; i < env->nr_numa_nodes; i++) {
526 struct perf_cpu tmp;
527 int j;
528
529 nn = &env->numa_nodes[i];
530 perf_cpu_map__for_each_cpu(tmp, j, nn->map)
531 env->numa_map[tmp.cpu] = i;
532 }
533 }
534
535 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
536}
537
538char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
539 const char *cap)
540{
541 char *cap_eq;
542 int cap_size;
543 char **ptr;
544 int i, j;
545
546 if (!pmu_name || !cap)
547 return NULL;
548
549 cap_size = strlen(cap);
550 cap_eq = zalloc(cap_size + 2);
551 if (!cap_eq)
552 return NULL;
553
554 memcpy(cap_eq, cap, cap_size);
555 cap_eq[cap_size] = '=';
556
557 if (!strcmp(pmu_name, "cpu")) {
558 for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
559 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
560 free(cap_eq);
561 return &env->cpu_pmu_caps[i][cap_size + 1];
562 }
563 }
564 goto out;
565 }
566
567 for (i = 0; i < env->nr_pmus_with_caps; i++) {
568 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
569 continue;
570
571 ptr = env->pmu_caps[i].caps;
572
573 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
574 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
575 free(cap_eq);
576 return &ptr[j][cap_size + 1];
577 }
578 }
579 }
580
581out:
582 free(cap_eq);
583 return NULL;
584}