Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100 */
101struct cfg80211_colocated_ap {
102 struct list_head list;
103 u8 bssid[ETH_ALEN];
104 u8 ssid[IEEE80211_MAX_SSID_LEN];
105 size_t ssid_len;
106 u32 short_ssid;
107 u32 center_freq;
108 u8 unsolicited_probe:1,
109 oct_recommended:1,
110 same_ssid:1,
111 multi_bss:1,
112 transmitted_bssid:1,
113 colocated_ess:1,
114 short_ssid_valid:1;
115 s8 psd_20;
116};
117
118static void bss_free(struct cfg80211_internal_bss *bss)
119{
120 struct cfg80211_bss_ies *ies;
121
122 if (WARN_ON(atomic_read(&bss->hold)))
123 return;
124
125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 if (ies && !bss->pub.hidden_beacon_bss)
127 kfree_rcu(ies, rcu_head);
128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 if (ies)
130 kfree_rcu(ies, rcu_head);
131
132 /*
133 * This happens when the module is removed, it doesn't
134 * really matter any more save for completeness
135 */
136 if (!list_empty(&bss->hidden_list))
137 list_del(&bss->hidden_list);
138
139 kfree(bss);
140}
141
142static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 struct cfg80211_internal_bss *bss)
144{
145 lockdep_assert_held(&rdev->bss_lock);
146
147 bss->refcount++;
148
149 if (bss->pub.hidden_beacon_bss)
150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151
152 if (bss->pub.transmitted_bss)
153 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154}
155
156static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 struct cfg80211_internal_bss *bss)
158{
159 lockdep_assert_held(&rdev->bss_lock);
160
161 if (bss->pub.hidden_beacon_bss) {
162 struct cfg80211_internal_bss *hbss;
163
164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165 hbss->refcount--;
166 if (hbss->refcount == 0)
167 bss_free(hbss);
168 }
169
170 if (bss->pub.transmitted_bss) {
171 struct cfg80211_internal_bss *tbss;
172
173 tbss = bss_from_pub(bss->pub.transmitted_bss);
174 tbss->refcount--;
175 if (tbss->refcount == 0)
176 bss_free(tbss);
177 }
178
179 bss->refcount--;
180 if (bss->refcount == 0)
181 bss_free(bss);
182}
183
184static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 struct cfg80211_internal_bss *bss)
186{
187 lockdep_assert_held(&rdev->bss_lock);
188
189 if (!list_empty(&bss->hidden_list)) {
190 /*
191 * don't remove the beacon entry if it has
192 * probe responses associated with it
193 */
194 if (!bss->pub.hidden_beacon_bss)
195 return false;
196 /*
197 * if it's a probe response entry break its
198 * link to the other entries in the group
199 */
200 list_del_init(&bss->hidden_list);
201 }
202
203 list_del_init(&bss->list);
204 list_del_init(&bss->pub.nontrans_list);
205 rb_erase(&bss->rbn, &rdev->bss_tree);
206 rdev->bss_entries--;
207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 rdev->bss_entries, list_empty(&rdev->bss_list));
210 bss_ref_put(rdev, bss);
211 return true;
212}
213
214bool cfg80211_is_element_inherited(const struct element *elem,
215 const struct element *non_inherit_elem)
216{
217 u8 id_len, ext_id_len, i, loop_len, id;
218 const u8 *list;
219
220 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 return false;
222
223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 return false;
226
227 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 return true;
229
230 /*
231 * non inheritance element format is:
232 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 * Both lists are optional. Both lengths are mandatory.
234 * This means valid length is:
235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 */
237 id_len = non_inherit_elem->data[1];
238 if (non_inherit_elem->datalen < 3 + id_len)
239 return true;
240
241 ext_id_len = non_inherit_elem->data[2 + id_len];
242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 return true;
244
245 if (elem->id == WLAN_EID_EXTENSION) {
246 if (!ext_id_len)
247 return true;
248 loop_len = ext_id_len;
249 list = &non_inherit_elem->data[3 + id_len];
250 id = elem->data[0];
251 } else {
252 if (!id_len)
253 return true;
254 loop_len = id_len;
255 list = &non_inherit_elem->data[2];
256 id = elem->id;
257 }
258
259 for (i = 0; i < loop_len; i++) {
260 if (list[i] == id)
261 return false;
262 }
263
264 return true;
265}
266EXPORT_SYMBOL(cfg80211_is_element_inherited);
267
268static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 const u8 *ie, size_t ie_len,
270 u8 **pos, u8 *buf, size_t buf_len)
271{
272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 elem->data + elem->datalen > ie + ie_len))
274 return 0;
275
276 if (elem->datalen + 2 > buf + buf_len - *pos)
277 return 0;
278
279 memcpy(*pos, elem, elem->datalen + 2);
280 *pos += elem->datalen + 2;
281
282 /* Finish if it is not fragmented */
283 if (elem->datalen != 255)
284 return *pos - buf;
285
286 ie_len = ie + ie_len - elem->data - elem->datalen;
287 ie = (const u8 *)elem->data + elem->datalen;
288
289 for_each_element(elem, ie, ie_len) {
290 if (elem->id != WLAN_EID_FRAGMENT)
291 break;
292
293 if (elem->datalen + 2 > buf + buf_len - *pos)
294 return 0;
295
296 memcpy(*pos, elem, elem->datalen + 2);
297 *pos += elem->datalen + 2;
298
299 if (elem->datalen != 255)
300 break;
301 }
302
303 return *pos - buf;
304}
305
306static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 const u8 *subie, size_t subie_len,
308 u8 *new_ie, size_t new_ie_len)
309{
310 const struct element *non_inherit_elem, *parent, *sub;
311 u8 *pos = new_ie;
312 u8 id, ext_id;
313 unsigned int match_len;
314
315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316 subie, subie_len);
317
318 /* We copy the elements one by one from the parent to the generated
319 * elements.
320 * If they are not inherited (included in subie or in the non
321 * inheritance element), then we copy all occurrences the first time
322 * we see this element type.
323 */
324 for_each_element(parent, ie, ielen) {
325 if (parent->id == WLAN_EID_FRAGMENT)
326 continue;
327
328 if (parent->id == WLAN_EID_EXTENSION) {
329 if (parent->datalen < 1)
330 continue;
331
332 id = WLAN_EID_EXTENSION;
333 ext_id = parent->data[0];
334 match_len = 1;
335 } else {
336 id = parent->id;
337 match_len = 0;
338 }
339
340 /* Find first occurrence in subie */
341 sub = cfg80211_find_elem_match(id, subie, subie_len,
342 &ext_id, match_len, 0);
343
344 /* Copy from parent if not in subie and inherited */
345 if (!sub &&
346 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 if (!cfg80211_copy_elem_with_frags(parent,
348 ie, ielen,
349 &pos, new_ie,
350 new_ie_len))
351 return 0;
352
353 continue;
354 }
355
356 /* Already copied if an earlier element had the same type */
357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 &ext_id, match_len, 0))
359 continue;
360
361 /* Not inheriting, copy all similar elements from subie */
362 while (sub) {
363 if (!cfg80211_copy_elem_with_frags(sub,
364 subie, subie_len,
365 &pos, new_ie,
366 new_ie_len))
367 return 0;
368
369 sub = cfg80211_find_elem_match(id,
370 sub->data + sub->datalen,
371 subie_len + subie -
372 (sub->data +
373 sub->datalen),
374 &ext_id, match_len, 0);
375 }
376 }
377
378 /* The above misses elements that are included in subie but not in the
379 * parent, so do a pass over subie and append those.
380 * Skip the non-tx BSSID caps and non-inheritance element.
381 */
382 for_each_element(sub, subie, subie_len) {
383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 continue;
385
386 if (sub->id == WLAN_EID_FRAGMENT)
387 continue;
388
389 if (sub->id == WLAN_EID_EXTENSION) {
390 if (sub->datalen < 1)
391 continue;
392
393 id = WLAN_EID_EXTENSION;
394 ext_id = sub->data[0];
395 match_len = 1;
396
397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 continue;
399 } else {
400 id = sub->id;
401 match_len = 0;
402 }
403
404 /* Processed if one was included in the parent */
405 if (cfg80211_find_elem_match(id, ie, ielen,
406 &ext_id, match_len, 0))
407 continue;
408
409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 &pos, new_ie, new_ie_len))
411 return 0;
412 }
413
414 return pos - new_ie;
415}
416
417static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 const u8 *ssid, size_t ssid_len)
419{
420 const struct cfg80211_bss_ies *ies;
421 const struct element *ssid_elem;
422
423 if (bssid && !ether_addr_equal(a->bssid, bssid))
424 return false;
425
426 if (!ssid)
427 return true;
428
429 ies = rcu_access_pointer(a->ies);
430 if (!ies)
431 return false;
432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433 if (!ssid_elem)
434 return false;
435 if (ssid_elem->datalen != ssid_len)
436 return false;
437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438}
439
440static int
441cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 struct cfg80211_bss *nontrans_bss)
443{
444 const struct element *ssid_elem;
445 struct cfg80211_bss *bss = NULL;
446
447 rcu_read_lock();
448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449 if (!ssid_elem) {
450 rcu_read_unlock();
451 return -EINVAL;
452 }
453
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 ssid_elem->datalen)) {
458 rcu_read_unlock();
459 return 0;
460 }
461 }
462
463 rcu_read_unlock();
464
465 /*
466 * This is a bit weird - it's not on the list, but already on another
467 * one! The only way that could happen is if there's some BSSID/SSID
468 * shared by multiple APs in their multi-BSSID profiles, potentially
469 * with hidden SSID mixed in ... ignore it.
470 */
471 if (!list_empty(&nontrans_bss->nontrans_list))
472 return -EINVAL;
473
474 /* add to the list */
475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476 return 0;
477}
478
479static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 unsigned long expire_time)
481{
482 struct cfg80211_internal_bss *bss, *tmp;
483 bool expired = false;
484
485 lockdep_assert_held(&rdev->bss_lock);
486
487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 if (atomic_read(&bss->hold))
489 continue;
490 if (!time_after(expire_time, bss->ts))
491 continue;
492
493 if (__cfg80211_unlink_bss(rdev, bss))
494 expired = true;
495 }
496
497 if (expired)
498 rdev->bss_generation++;
499}
500
501static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502{
503 struct cfg80211_internal_bss *bss, *oldest = NULL;
504 bool ret;
505
506 lockdep_assert_held(&rdev->bss_lock);
507
508 list_for_each_entry(bss, &rdev->bss_list, list) {
509 if (atomic_read(&bss->hold))
510 continue;
511
512 if (!list_empty(&bss->hidden_list) &&
513 !bss->pub.hidden_beacon_bss)
514 continue;
515
516 if (oldest && time_before(oldest->ts, bss->ts))
517 continue;
518 oldest = bss;
519 }
520
521 if (WARN_ON(!oldest))
522 return false;
523
524 /*
525 * The callers make sure to increase rdev->bss_generation if anything
526 * gets removed (and a new entry added), so there's no need to also do
527 * it here.
528 */
529
530 ret = __cfg80211_unlink_bss(rdev, oldest);
531 WARN_ON(!ret);
532 return ret;
533}
534
535static u8 cfg80211_parse_bss_param(u8 data,
536 struct cfg80211_colocated_ap *coloc_ap)
537{
538 coloc_ap->oct_recommended =
539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 coloc_ap->same_ssid =
541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 coloc_ap->multi_bss =
543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 coloc_ap->transmitted_bssid =
545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 coloc_ap->unsolicited_probe =
547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 coloc_ap->colocated_ess =
549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550
551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552}
553
554static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 const struct element **elem, u32 *s_ssid)
556{
557
558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 return -EINVAL;
561
562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563 return 0;
564}
565
566static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567{
568 struct cfg80211_colocated_ap *ap, *tmp_ap;
569
570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 list_del(&ap->list);
572 kfree(ap);
573 }
574}
575
576static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 const u8 *pos, u8 length,
578 const struct element *ssid_elem,
579 u32 s_ssid_tmp)
580{
581 u8 bss_params;
582
583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584
585 /* The length is already verified by the caller to contain bss_params */
586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588
589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 entry->short_ssid_valid = true;
592
593 bss_params = tbtt_info->bss_params;
594
595 /* Ignore disabled links */
596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 if (le16_get_bits(tbtt_info->mld_params.params,
598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 return -EINVAL;
600 }
601
602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 psd_20))
604 entry->psd_20 = tbtt_info->psd_20;
605 } else {
606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607
608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609
610 bss_params = tbtt_info->bss_params;
611
612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 psd_20))
614 entry->psd_20 = tbtt_info->psd_20;
615 }
616
617 /* ignore entries with invalid BSSID */
618 if (!is_valid_ether_addr(entry->bssid))
619 return -EINVAL;
620
621 /* skip non colocated APs */
622 if (!cfg80211_parse_bss_param(bss_params, entry))
623 return -EINVAL;
624
625 /* no information about the short ssid. Consider the entry valid
626 * for now. It would later be dropped in case there are explicit
627 * SSIDs that need to be matched
628 */
629 if (!entry->same_ssid && !entry->short_ssid_valid)
630 return 0;
631
632 if (entry->same_ssid) {
633 entry->short_ssid = s_ssid_tmp;
634 entry->short_ssid_valid = true;
635
636 /*
637 * This is safe because we validate datalen in
638 * cfg80211_parse_colocated_ap(), before calling this
639 * function.
640 */
641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 entry->ssid_len = ssid_elem->datalen;
643 }
644
645 return 0;
646}
647
648static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 struct list_head *list)
650{
651 struct ieee80211_neighbor_ap_info *ap_info;
652 const struct element *elem, *ssid_elem;
653 const u8 *pos, *end;
654 u32 s_ssid_tmp;
655 int n_coloc = 0, ret;
656 LIST_HEAD(ap_list);
657
658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659 if (ret)
660 return 0;
661
662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 ies->data, ies->len) {
664 pos = elem->data;
665 end = elem->data + elem->datalen;
666
667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 while (pos + sizeof(*ap_info) <= end) {
669 enum nl80211_band band;
670 int freq;
671 u8 length, i, count;
672
673 ap_info = (void *)pos;
674 count = u8_get_bits(ap_info->tbtt_info_hdr,
675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 length = ap_info->tbtt_info_len;
677
678 pos += sizeof(*ap_info);
679
680 if (!ieee80211_operating_class_to_band(ap_info->op_class,
681 &band))
682 break;
683
684 freq = ieee80211_channel_to_frequency(ap_info->channel,
685 band);
686
687 if (end - pos < count * length)
688 break;
689
690 if (u8_get_bits(ap_info->tbtt_info_hdr,
691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 pos += count * length;
694 continue;
695 }
696
697 /* TBTT info must include bss param + BSSID +
698 * (short SSID or same_ssid bit to be set).
699 * ignore other options, and move to the
700 * next AP info
701 */
702 if (band != NL80211_BAND_6GHZ ||
703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 bss_params) ||
705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 bss_params))) {
708 pos += count * length;
709 continue;
710 }
711
712 for (i = 0; i < count; i++) {
713 struct cfg80211_colocated_ap *entry;
714
715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 GFP_ATOMIC);
717
718 if (!entry)
719 goto error;
720
721 entry->center_freq = freq;
722
723 if (!cfg80211_parse_ap_info(entry, pos, length,
724 ssid_elem,
725 s_ssid_tmp)) {
726 n_coloc++;
727 list_add_tail(&entry->list, &ap_list);
728 } else {
729 kfree(entry);
730 }
731
732 pos += length;
733 }
734 }
735
736error:
737 if (pos != end) {
738 cfg80211_free_coloc_ap_list(&ap_list);
739 return 0;
740 }
741 }
742
743 list_splice_tail(&ap_list, list);
744 return n_coloc;
745}
746
747static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 struct ieee80211_channel *chan,
749 bool add_to_6ghz)
750{
751 int i;
752 u32 n_channels = request->n_channels;
753 struct cfg80211_scan_6ghz_params *params =
754 &request->scan_6ghz_params[request->n_6ghz_params];
755
756 for (i = 0; i < n_channels; i++) {
757 if (request->channels[i] == chan) {
758 if (add_to_6ghz)
759 params->channel_idx = i;
760 return;
761 }
762 }
763
764 request->channels[n_channels] = chan;
765 if (add_to_6ghz)
766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 n_channels;
768
769 request->n_channels++;
770}
771
772static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 struct cfg80211_scan_request *request)
774{
775 int i;
776 u32 s_ssid;
777
778 for (i = 0; i < request->n_ssids; i++) {
779 /* wildcard ssid in the scan request */
780 if (!request->ssids[i].ssid_len) {
781 if (ap->multi_bss && !ap->transmitted_bssid)
782 continue;
783
784 return true;
785 }
786
787 if (ap->ssid_len &&
788 ap->ssid_len == request->ssids[i].ssid_len) {
789 if (!memcmp(request->ssids[i].ssid, ap->ssid,
790 ap->ssid_len))
791 return true;
792 } else if (ap->short_ssid_valid) {
793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 request->ssids[i].ssid_len);
795
796 if (ap->short_ssid == s_ssid)
797 return true;
798 }
799 }
800
801 return false;
802}
803
804static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805{
806 u8 i;
807 struct cfg80211_colocated_ap *ap;
808 int n_channels, count = 0, err;
809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 LIST_HEAD(coloc_ap_list);
811 bool need_scan_psc = true;
812 const struct ieee80211_sband_iftype_data *iftd;
813
814 rdev_req->scan_6ghz = true;
815
816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817 return -EOPNOTSUPP;
818
819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 rdev_req->wdev->iftype);
821 if (!iftd || !iftd->he_cap.has_he)
822 return -EOPNOTSUPP;
823
824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825
826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 struct cfg80211_internal_bss *intbss;
828
829 spin_lock_bh(&rdev->bss_lock);
830 list_for_each_entry(intbss, &rdev->bss_list, list) {
831 struct cfg80211_bss *res = &intbss->pub;
832 const struct cfg80211_bss_ies *ies;
833
834 ies = rcu_access_pointer(res->ies);
835 count += cfg80211_parse_colocated_ap(ies,
836 &coloc_ap_list);
837 }
838 spin_unlock_bh(&rdev->bss_lock);
839 }
840
841 request = kzalloc(struct_size(request, channels, n_channels) +
842 sizeof(*request->scan_6ghz_params) * count +
843 sizeof(*request->ssids) * rdev_req->n_ssids,
844 GFP_KERNEL);
845 if (!request) {
846 cfg80211_free_coloc_ap_list(&coloc_ap_list);
847 return -ENOMEM;
848 }
849
850 *request = *rdev_req;
851 request->n_channels = 0;
852 request->scan_6ghz_params =
853 (void *)&request->channels[n_channels];
854
855 /*
856 * PSC channels should not be scanned in case of direct scan with 1 SSID
857 * and at least one of the reported co-located APs with same SSID
858 * indicating that all APs in the same ESS are co-located
859 */
860 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
861 list_for_each_entry(ap, &coloc_ap_list, list) {
862 if (ap->colocated_ess &&
863 cfg80211_find_ssid_match(ap, request)) {
864 need_scan_psc = false;
865 break;
866 }
867 }
868 }
869
870 /*
871 * add to the scan request the channels that need to be scanned
872 * regardless of the collocated APs (PSC channels or all channels
873 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
874 */
875 for (i = 0; i < rdev_req->n_channels; i++) {
876 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
877 ((need_scan_psc &&
878 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
879 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
880 cfg80211_scan_req_add_chan(request,
881 rdev_req->channels[i],
882 false);
883 }
884 }
885
886 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
887 goto skip;
888
889 list_for_each_entry(ap, &coloc_ap_list, list) {
890 bool found = false;
891 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
892 &request->scan_6ghz_params[request->n_6ghz_params];
893 struct ieee80211_channel *chan =
894 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
895
896 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
897 continue;
898
899 for (i = 0; i < rdev_req->n_channels; i++) {
900 if (rdev_req->channels[i] == chan)
901 found = true;
902 }
903
904 if (!found)
905 continue;
906
907 if (request->n_ssids > 0 &&
908 !cfg80211_find_ssid_match(ap, request))
909 continue;
910
911 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
912 continue;
913
914 cfg80211_scan_req_add_chan(request, chan, true);
915 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
916 scan_6ghz_params->short_ssid = ap->short_ssid;
917 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
918 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
919 scan_6ghz_params->psd_20 = ap->psd_20;
920
921 /*
922 * If a PSC channel is added to the scan and 'need_scan_psc' is
923 * set to false, then all the APs that the scan logic is
924 * interested with on the channel are collocated and thus there
925 * is no need to perform the initial PSC channel listen.
926 */
927 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
928 scan_6ghz_params->psc_no_listen = true;
929
930 request->n_6ghz_params++;
931 }
932
933skip:
934 cfg80211_free_coloc_ap_list(&coloc_ap_list);
935
936 if (request->n_channels) {
937 struct cfg80211_scan_request *old = rdev->int_scan_req;
938 rdev->int_scan_req = request;
939
940 /*
941 * Add the ssids from the parent scan request to the new scan
942 * request, so the driver would be able to use them in its
943 * probe requests to discover hidden APs on PSC channels.
944 */
945 request->ssids = (void *)&request->channels[request->n_channels];
946 request->n_ssids = rdev_req->n_ssids;
947 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
948 request->n_ssids);
949
950 /*
951 * If this scan follows a previous scan, save the scan start
952 * info from the first part of the scan
953 */
954 if (old)
955 rdev->int_scan_req->info = old->info;
956
957 err = rdev_scan(rdev, request);
958 if (err) {
959 rdev->int_scan_req = old;
960 kfree(request);
961 } else {
962 kfree(old);
963 }
964
965 return err;
966 }
967
968 kfree(request);
969 return -EINVAL;
970}
971
972int cfg80211_scan(struct cfg80211_registered_device *rdev)
973{
974 struct cfg80211_scan_request *request;
975 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
976 u32 n_channels = 0, idx, i;
977
978 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
979 return rdev_scan(rdev, rdev_req);
980
981 for (i = 0; i < rdev_req->n_channels; i++) {
982 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
983 n_channels++;
984 }
985
986 if (!n_channels)
987 return cfg80211_scan_6ghz(rdev);
988
989 request = kzalloc(struct_size(request, channels, n_channels),
990 GFP_KERNEL);
991 if (!request)
992 return -ENOMEM;
993
994 *request = *rdev_req;
995 request->n_channels = n_channels;
996
997 for (i = idx = 0; i < rdev_req->n_channels; i++) {
998 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
999 request->channels[idx++] = rdev_req->channels[i];
1000 }
1001
1002 rdev_req->scan_6ghz = false;
1003 rdev->int_scan_req = request;
1004 return rdev_scan(rdev, request);
1005}
1006
1007void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1008 bool send_message)
1009{
1010 struct cfg80211_scan_request *request, *rdev_req;
1011 struct wireless_dev *wdev;
1012 struct sk_buff *msg;
1013#ifdef CONFIG_CFG80211_WEXT
1014 union iwreq_data wrqu;
1015#endif
1016
1017 lockdep_assert_held(&rdev->wiphy.mtx);
1018
1019 if (rdev->scan_msg) {
1020 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1021 rdev->scan_msg = NULL;
1022 return;
1023 }
1024
1025 rdev_req = rdev->scan_req;
1026 if (!rdev_req)
1027 return;
1028
1029 wdev = rdev_req->wdev;
1030 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1031
1032 if (wdev_running(wdev) &&
1033 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1034 !rdev_req->scan_6ghz && !request->info.aborted &&
1035 !cfg80211_scan_6ghz(rdev))
1036 return;
1037
1038 /*
1039 * This must be before sending the other events!
1040 * Otherwise, wpa_supplicant gets completely confused with
1041 * wext events.
1042 */
1043 if (wdev->netdev)
1044 cfg80211_sme_scan_done(wdev->netdev);
1045
1046 if (!request->info.aborted &&
1047 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1048 /* flush entries from previous scans */
1049 spin_lock_bh(&rdev->bss_lock);
1050 __cfg80211_bss_expire(rdev, request->scan_start);
1051 spin_unlock_bh(&rdev->bss_lock);
1052 }
1053
1054 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1055
1056#ifdef CONFIG_CFG80211_WEXT
1057 if (wdev->netdev && !request->info.aborted) {
1058 memset(&wrqu, 0, sizeof(wrqu));
1059
1060 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1061 }
1062#endif
1063
1064 dev_put(wdev->netdev);
1065
1066 kfree(rdev->int_scan_req);
1067 rdev->int_scan_req = NULL;
1068
1069 kfree(rdev->scan_req);
1070 rdev->scan_req = NULL;
1071
1072 if (!send_message)
1073 rdev->scan_msg = msg;
1074 else
1075 nl80211_send_scan_msg(rdev, msg);
1076}
1077
1078void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1079{
1080 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1081}
1082
1083void cfg80211_scan_done(struct cfg80211_scan_request *request,
1084 struct cfg80211_scan_info *info)
1085{
1086 struct cfg80211_scan_info old_info = request->info;
1087
1088 trace_cfg80211_scan_done(request, info);
1089 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1090 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1091
1092 request->info = *info;
1093
1094 /*
1095 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1096 * be of the first part. In such a case old_info.scan_start_tsf should
1097 * be non zero.
1098 */
1099 if (request->scan_6ghz && old_info.scan_start_tsf) {
1100 request->info.scan_start_tsf = old_info.scan_start_tsf;
1101 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1102 sizeof(request->info.tsf_bssid));
1103 }
1104
1105 request->notified = true;
1106 wiphy_work_queue(request->wiphy,
1107 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1108}
1109EXPORT_SYMBOL(cfg80211_scan_done);
1110
1111void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1112 struct cfg80211_sched_scan_request *req)
1113{
1114 lockdep_assert_held(&rdev->wiphy.mtx);
1115
1116 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1117}
1118
1119static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1120 struct cfg80211_sched_scan_request *req)
1121{
1122 lockdep_assert_held(&rdev->wiphy.mtx);
1123
1124 list_del_rcu(&req->list);
1125 kfree_rcu(req, rcu_head);
1126}
1127
1128static struct cfg80211_sched_scan_request *
1129cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1130{
1131 struct cfg80211_sched_scan_request *pos;
1132
1133 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1134 lockdep_is_held(&rdev->wiphy.mtx)) {
1135 if (pos->reqid == reqid)
1136 return pos;
1137 }
1138 return NULL;
1139}
1140
1141/*
1142 * Determines if a scheduled scan request can be handled. When a legacy
1143 * scheduled scan is running no other scheduled scan is allowed regardless
1144 * whether the request is for legacy or multi-support scan. When a multi-support
1145 * scheduled scan is running a request for legacy scan is not allowed. In this
1146 * case a request for multi-support scan can be handled if resources are
1147 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1148 */
1149int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1150 bool want_multi)
1151{
1152 struct cfg80211_sched_scan_request *pos;
1153 int i = 0;
1154
1155 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1156 /* request id zero means legacy in progress */
1157 if (!i && !pos->reqid)
1158 return -EINPROGRESS;
1159 i++;
1160 }
1161
1162 if (i) {
1163 /* no legacy allowed when multi request(s) are active */
1164 if (!want_multi)
1165 return -EINPROGRESS;
1166
1167 /* resource limit reached */
1168 if (i == rdev->wiphy.max_sched_scan_reqs)
1169 return -ENOSPC;
1170 }
1171 return 0;
1172}
1173
1174void cfg80211_sched_scan_results_wk(struct work_struct *work)
1175{
1176 struct cfg80211_registered_device *rdev;
1177 struct cfg80211_sched_scan_request *req, *tmp;
1178
1179 rdev = container_of(work, struct cfg80211_registered_device,
1180 sched_scan_res_wk);
1181
1182 wiphy_lock(&rdev->wiphy);
1183 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1184 if (req->report_results) {
1185 req->report_results = false;
1186 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1187 /* flush entries from previous scans */
1188 spin_lock_bh(&rdev->bss_lock);
1189 __cfg80211_bss_expire(rdev, req->scan_start);
1190 spin_unlock_bh(&rdev->bss_lock);
1191 req->scan_start = jiffies;
1192 }
1193 nl80211_send_sched_scan(req,
1194 NL80211_CMD_SCHED_SCAN_RESULTS);
1195 }
1196 }
1197 wiphy_unlock(&rdev->wiphy);
1198}
1199
1200void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1201{
1202 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1203 struct cfg80211_sched_scan_request *request;
1204
1205 trace_cfg80211_sched_scan_results(wiphy, reqid);
1206 /* ignore if we're not scanning */
1207
1208 rcu_read_lock();
1209 request = cfg80211_find_sched_scan_req(rdev, reqid);
1210 if (request) {
1211 request->report_results = true;
1212 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1213 }
1214 rcu_read_unlock();
1215}
1216EXPORT_SYMBOL(cfg80211_sched_scan_results);
1217
1218void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1219{
1220 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1221
1222 lockdep_assert_held(&wiphy->mtx);
1223
1224 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1225
1226 __cfg80211_stop_sched_scan(rdev, reqid, true);
1227}
1228EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1229
1230void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1231{
1232 wiphy_lock(wiphy);
1233 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1234 wiphy_unlock(wiphy);
1235}
1236EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1237
1238int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1239 struct cfg80211_sched_scan_request *req,
1240 bool driver_initiated)
1241{
1242 lockdep_assert_held(&rdev->wiphy.mtx);
1243
1244 if (!driver_initiated) {
1245 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1246 if (err)
1247 return err;
1248 }
1249
1250 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1251
1252 cfg80211_del_sched_scan_req(rdev, req);
1253
1254 return 0;
1255}
1256
1257int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1258 u64 reqid, bool driver_initiated)
1259{
1260 struct cfg80211_sched_scan_request *sched_scan_req;
1261
1262 lockdep_assert_held(&rdev->wiphy.mtx);
1263
1264 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1265 if (!sched_scan_req)
1266 return -ENOENT;
1267
1268 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1269 driver_initiated);
1270}
1271
1272void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1273 unsigned long age_secs)
1274{
1275 struct cfg80211_internal_bss *bss;
1276 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1277
1278 spin_lock_bh(&rdev->bss_lock);
1279 list_for_each_entry(bss, &rdev->bss_list, list)
1280 bss->ts -= age_jiffies;
1281 spin_unlock_bh(&rdev->bss_lock);
1282}
1283
1284void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1285{
1286 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1287}
1288
1289void cfg80211_bss_flush(struct wiphy *wiphy)
1290{
1291 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1292
1293 spin_lock_bh(&rdev->bss_lock);
1294 __cfg80211_bss_expire(rdev, jiffies);
1295 spin_unlock_bh(&rdev->bss_lock);
1296}
1297EXPORT_SYMBOL(cfg80211_bss_flush);
1298
1299const struct element *
1300cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1301 const u8 *match, unsigned int match_len,
1302 unsigned int match_offset)
1303{
1304 const struct element *elem;
1305
1306 for_each_element_id(elem, eid, ies, len) {
1307 if (elem->datalen >= match_offset + match_len &&
1308 !memcmp(elem->data + match_offset, match, match_len))
1309 return elem;
1310 }
1311
1312 return NULL;
1313}
1314EXPORT_SYMBOL(cfg80211_find_elem_match);
1315
1316const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1317 const u8 *ies,
1318 unsigned int len)
1319{
1320 const struct element *elem;
1321 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1322 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1323
1324 if (WARN_ON(oui_type > 0xff))
1325 return NULL;
1326
1327 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1328 match, match_len, 0);
1329
1330 if (!elem || elem->datalen < 4)
1331 return NULL;
1332
1333 return elem;
1334}
1335EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1336
1337/**
1338 * enum bss_compare_mode - BSS compare mode
1339 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1340 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1341 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1342 */
1343enum bss_compare_mode {
1344 BSS_CMP_REGULAR,
1345 BSS_CMP_HIDE_ZLEN,
1346 BSS_CMP_HIDE_NUL,
1347};
1348
1349static int cmp_bss(struct cfg80211_bss *a,
1350 struct cfg80211_bss *b,
1351 enum bss_compare_mode mode)
1352{
1353 const struct cfg80211_bss_ies *a_ies, *b_ies;
1354 const u8 *ie1 = NULL;
1355 const u8 *ie2 = NULL;
1356 int i, r;
1357
1358 if (a->channel != b->channel)
1359 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1360 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1361
1362 a_ies = rcu_access_pointer(a->ies);
1363 if (!a_ies)
1364 return -1;
1365 b_ies = rcu_access_pointer(b->ies);
1366 if (!b_ies)
1367 return 1;
1368
1369 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1370 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1371 a_ies->data, a_ies->len);
1372 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1373 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1374 b_ies->data, b_ies->len);
1375 if (ie1 && ie2) {
1376 int mesh_id_cmp;
1377
1378 if (ie1[1] == ie2[1])
1379 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1380 else
1381 mesh_id_cmp = ie2[1] - ie1[1];
1382
1383 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1384 a_ies->data, a_ies->len);
1385 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1386 b_ies->data, b_ies->len);
1387 if (ie1 && ie2) {
1388 if (mesh_id_cmp)
1389 return mesh_id_cmp;
1390 if (ie1[1] != ie2[1])
1391 return ie2[1] - ie1[1];
1392 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1393 }
1394 }
1395
1396 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1397 if (r)
1398 return r;
1399
1400 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1401 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1402
1403 if (!ie1 && !ie2)
1404 return 0;
1405
1406 /*
1407 * Note that with "hide_ssid", the function returns a match if
1408 * the already-present BSS ("b") is a hidden SSID beacon for
1409 * the new BSS ("a").
1410 */
1411
1412 /* sort missing IE before (left of) present IE */
1413 if (!ie1)
1414 return -1;
1415 if (!ie2)
1416 return 1;
1417
1418 switch (mode) {
1419 case BSS_CMP_HIDE_ZLEN:
1420 /*
1421 * In ZLEN mode we assume the BSS entry we're
1422 * looking for has a zero-length SSID. So if
1423 * the one we're looking at right now has that,
1424 * return 0. Otherwise, return the difference
1425 * in length, but since we're looking for the
1426 * 0-length it's really equivalent to returning
1427 * the length of the one we're looking at.
1428 *
1429 * No content comparison is needed as we assume
1430 * the content length is zero.
1431 */
1432 return ie2[1];
1433 case BSS_CMP_REGULAR:
1434 default:
1435 /* sort by length first, then by contents */
1436 if (ie1[1] != ie2[1])
1437 return ie2[1] - ie1[1];
1438 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1439 case BSS_CMP_HIDE_NUL:
1440 if (ie1[1] != ie2[1])
1441 return ie2[1] - ie1[1];
1442 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1443 for (i = 0; i < ie2[1]; i++)
1444 if (ie2[i + 2])
1445 return -1;
1446 return 0;
1447 }
1448}
1449
1450static bool cfg80211_bss_type_match(u16 capability,
1451 enum nl80211_band band,
1452 enum ieee80211_bss_type bss_type)
1453{
1454 bool ret = true;
1455 u16 mask, val;
1456
1457 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1458 return ret;
1459
1460 if (band == NL80211_BAND_60GHZ) {
1461 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1462 switch (bss_type) {
1463 case IEEE80211_BSS_TYPE_ESS:
1464 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1465 break;
1466 case IEEE80211_BSS_TYPE_PBSS:
1467 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1468 break;
1469 case IEEE80211_BSS_TYPE_IBSS:
1470 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1471 break;
1472 default:
1473 return false;
1474 }
1475 } else {
1476 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1477 switch (bss_type) {
1478 case IEEE80211_BSS_TYPE_ESS:
1479 val = WLAN_CAPABILITY_ESS;
1480 break;
1481 case IEEE80211_BSS_TYPE_IBSS:
1482 val = WLAN_CAPABILITY_IBSS;
1483 break;
1484 case IEEE80211_BSS_TYPE_MBSS:
1485 val = 0;
1486 break;
1487 default:
1488 return false;
1489 }
1490 }
1491
1492 ret = ((capability & mask) == val);
1493 return ret;
1494}
1495
1496/* Returned bss is reference counted and must be cleaned up appropriately. */
1497struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1498 struct ieee80211_channel *channel,
1499 const u8 *bssid,
1500 const u8 *ssid, size_t ssid_len,
1501 enum ieee80211_bss_type bss_type,
1502 enum ieee80211_privacy privacy)
1503{
1504 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1505 struct cfg80211_internal_bss *bss, *res = NULL;
1506 unsigned long now = jiffies;
1507 int bss_privacy;
1508
1509 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1510 privacy);
1511
1512 spin_lock_bh(&rdev->bss_lock);
1513
1514 list_for_each_entry(bss, &rdev->bss_list, list) {
1515 if (!cfg80211_bss_type_match(bss->pub.capability,
1516 bss->pub.channel->band, bss_type))
1517 continue;
1518
1519 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1520 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1521 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1522 continue;
1523 if (channel && bss->pub.channel != channel)
1524 continue;
1525 if (!is_valid_ether_addr(bss->pub.bssid))
1526 continue;
1527 /* Don't get expired BSS structs */
1528 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1529 !atomic_read(&bss->hold))
1530 continue;
1531 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1532 res = bss;
1533 bss_ref_get(rdev, res);
1534 break;
1535 }
1536 }
1537
1538 spin_unlock_bh(&rdev->bss_lock);
1539 if (!res)
1540 return NULL;
1541 trace_cfg80211_return_bss(&res->pub);
1542 return &res->pub;
1543}
1544EXPORT_SYMBOL(cfg80211_get_bss);
1545
1546static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1547 struct cfg80211_internal_bss *bss)
1548{
1549 struct rb_node **p = &rdev->bss_tree.rb_node;
1550 struct rb_node *parent = NULL;
1551 struct cfg80211_internal_bss *tbss;
1552 int cmp;
1553
1554 while (*p) {
1555 parent = *p;
1556 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1557
1558 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1559
1560 if (WARN_ON(!cmp)) {
1561 /* will sort of leak this BSS */
1562 return;
1563 }
1564
1565 if (cmp < 0)
1566 p = &(*p)->rb_left;
1567 else
1568 p = &(*p)->rb_right;
1569 }
1570
1571 rb_link_node(&bss->rbn, parent, p);
1572 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1573}
1574
1575static struct cfg80211_internal_bss *
1576rb_find_bss(struct cfg80211_registered_device *rdev,
1577 struct cfg80211_internal_bss *res,
1578 enum bss_compare_mode mode)
1579{
1580 struct rb_node *n = rdev->bss_tree.rb_node;
1581 struct cfg80211_internal_bss *bss;
1582 int r;
1583
1584 while (n) {
1585 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1586 r = cmp_bss(&res->pub, &bss->pub, mode);
1587
1588 if (r == 0)
1589 return bss;
1590 else if (r < 0)
1591 n = n->rb_left;
1592 else
1593 n = n->rb_right;
1594 }
1595
1596 return NULL;
1597}
1598
1599static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1600 struct cfg80211_internal_bss *new)
1601{
1602 const struct cfg80211_bss_ies *ies;
1603 struct cfg80211_internal_bss *bss;
1604 const u8 *ie;
1605 int i, ssidlen;
1606 u8 fold = 0;
1607 u32 n_entries = 0;
1608
1609 ies = rcu_access_pointer(new->pub.beacon_ies);
1610 if (WARN_ON(!ies))
1611 return false;
1612
1613 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1614 if (!ie) {
1615 /* nothing to do */
1616 return true;
1617 }
1618
1619 ssidlen = ie[1];
1620 for (i = 0; i < ssidlen; i++)
1621 fold |= ie[2 + i];
1622
1623 if (fold) {
1624 /* not a hidden SSID */
1625 return true;
1626 }
1627
1628 /* This is the bad part ... */
1629
1630 list_for_each_entry(bss, &rdev->bss_list, list) {
1631 /*
1632 * we're iterating all the entries anyway, so take the
1633 * opportunity to validate the list length accounting
1634 */
1635 n_entries++;
1636
1637 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1638 continue;
1639 if (bss->pub.channel != new->pub.channel)
1640 continue;
1641 if (bss->pub.scan_width != new->pub.scan_width)
1642 continue;
1643 if (rcu_access_pointer(bss->pub.beacon_ies))
1644 continue;
1645 ies = rcu_access_pointer(bss->pub.ies);
1646 if (!ies)
1647 continue;
1648 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1649 if (!ie)
1650 continue;
1651 if (ssidlen && ie[1] != ssidlen)
1652 continue;
1653 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1654 continue;
1655 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1656 list_del(&bss->hidden_list);
1657 /* combine them */
1658 list_add(&bss->hidden_list, &new->hidden_list);
1659 bss->pub.hidden_beacon_bss = &new->pub;
1660 new->refcount += bss->refcount;
1661 rcu_assign_pointer(bss->pub.beacon_ies,
1662 new->pub.beacon_ies);
1663 }
1664
1665 WARN_ONCE(n_entries != rdev->bss_entries,
1666 "rdev bss entries[%d]/list[len:%d] corruption\n",
1667 rdev->bss_entries, n_entries);
1668
1669 return true;
1670}
1671
1672static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1673 const struct cfg80211_bss_ies *new_ies,
1674 const struct cfg80211_bss_ies *old_ies)
1675{
1676 struct cfg80211_internal_bss *bss;
1677
1678 /* Assign beacon IEs to all sub entries */
1679 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1680 const struct cfg80211_bss_ies *ies;
1681
1682 ies = rcu_access_pointer(bss->pub.beacon_ies);
1683 WARN_ON(ies != old_ies);
1684
1685 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1686 }
1687}
1688
1689static bool
1690cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1691 struct cfg80211_internal_bss *known,
1692 struct cfg80211_internal_bss *new,
1693 bool signal_valid)
1694{
1695 lockdep_assert_held(&rdev->bss_lock);
1696
1697 /* Update IEs */
1698 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1699 const struct cfg80211_bss_ies *old;
1700
1701 old = rcu_access_pointer(known->pub.proberesp_ies);
1702
1703 rcu_assign_pointer(known->pub.proberesp_ies,
1704 new->pub.proberesp_ies);
1705 /* Override possible earlier Beacon frame IEs */
1706 rcu_assign_pointer(known->pub.ies,
1707 new->pub.proberesp_ies);
1708 if (old)
1709 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1710 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1711 const struct cfg80211_bss_ies *old;
1712
1713 if (known->pub.hidden_beacon_bss &&
1714 !list_empty(&known->hidden_list)) {
1715 const struct cfg80211_bss_ies *f;
1716
1717 /* The known BSS struct is one of the probe
1718 * response members of a group, but we're
1719 * receiving a beacon (beacon_ies in the new
1720 * bss is used). This can only mean that the
1721 * AP changed its beacon from not having an
1722 * SSID to showing it, which is confusing so
1723 * drop this information.
1724 */
1725
1726 f = rcu_access_pointer(new->pub.beacon_ies);
1727 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1728 return false;
1729 }
1730
1731 old = rcu_access_pointer(known->pub.beacon_ies);
1732
1733 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1734
1735 /* Override IEs if they were from a beacon before */
1736 if (old == rcu_access_pointer(known->pub.ies))
1737 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1738
1739 cfg80211_update_hidden_bsses(known,
1740 rcu_access_pointer(new->pub.beacon_ies),
1741 old);
1742
1743 if (old)
1744 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1745 }
1746
1747 known->pub.beacon_interval = new->pub.beacon_interval;
1748
1749 /* don't update the signal if beacon was heard on
1750 * adjacent channel.
1751 */
1752 if (signal_valid)
1753 known->pub.signal = new->pub.signal;
1754 known->pub.capability = new->pub.capability;
1755 known->ts = new->ts;
1756 known->ts_boottime = new->ts_boottime;
1757 known->parent_tsf = new->parent_tsf;
1758 known->pub.chains = new->pub.chains;
1759 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1760 IEEE80211_MAX_CHAINS);
1761 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1762 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1763 known->pub.bssid_index = new->pub.bssid_index;
1764
1765 return true;
1766}
1767
1768/* Returned bss is reference counted and must be cleaned up appropriately. */
1769static struct cfg80211_internal_bss *
1770__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1771 struct cfg80211_internal_bss *tmp,
1772 bool signal_valid, unsigned long ts)
1773{
1774 struct cfg80211_internal_bss *found = NULL;
1775
1776 if (WARN_ON(!tmp->pub.channel))
1777 return NULL;
1778
1779 tmp->ts = ts;
1780
1781 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1782 return NULL;
1783 }
1784
1785 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1786
1787 if (found) {
1788 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1789 return NULL;
1790 } else {
1791 struct cfg80211_internal_bss *new;
1792 struct cfg80211_internal_bss *hidden;
1793 struct cfg80211_bss_ies *ies;
1794
1795 /*
1796 * create a copy -- the "res" variable that is passed in
1797 * is allocated on the stack since it's not needed in the
1798 * more common case of an update
1799 */
1800 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1801 GFP_ATOMIC);
1802 if (!new) {
1803 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1804 if (ies)
1805 kfree_rcu(ies, rcu_head);
1806 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1807 if (ies)
1808 kfree_rcu(ies, rcu_head);
1809 return NULL;
1810 }
1811 memcpy(new, tmp, sizeof(*new));
1812 new->refcount = 1;
1813 INIT_LIST_HEAD(&new->hidden_list);
1814 INIT_LIST_HEAD(&new->pub.nontrans_list);
1815 /* we'll set this later if it was non-NULL */
1816 new->pub.transmitted_bss = NULL;
1817
1818 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1819 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1820 if (!hidden)
1821 hidden = rb_find_bss(rdev, tmp,
1822 BSS_CMP_HIDE_NUL);
1823 if (hidden) {
1824 new->pub.hidden_beacon_bss = &hidden->pub;
1825 list_add(&new->hidden_list,
1826 &hidden->hidden_list);
1827 hidden->refcount++;
1828 rcu_assign_pointer(new->pub.beacon_ies,
1829 hidden->pub.beacon_ies);
1830 }
1831 } else {
1832 /*
1833 * Ok so we found a beacon, and don't have an entry. If
1834 * it's a beacon with hidden SSID, we might be in for an
1835 * expensive search for any probe responses that should
1836 * be grouped with this beacon for updates ...
1837 */
1838 if (!cfg80211_combine_bsses(rdev, new)) {
1839 bss_ref_put(rdev, new);
1840 return NULL;
1841 }
1842 }
1843
1844 if (rdev->bss_entries >= bss_entries_limit &&
1845 !cfg80211_bss_expire_oldest(rdev)) {
1846 bss_ref_put(rdev, new);
1847 return NULL;
1848 }
1849
1850 /* This must be before the call to bss_ref_get */
1851 if (tmp->pub.transmitted_bss) {
1852 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1853 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1854 }
1855
1856 list_add_tail(&new->list, &rdev->bss_list);
1857 rdev->bss_entries++;
1858 rb_insert_bss(rdev, new);
1859 found = new;
1860 }
1861
1862 rdev->bss_generation++;
1863 bss_ref_get(rdev, found);
1864
1865 return found;
1866}
1867
1868struct cfg80211_internal_bss *
1869cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1870 struct cfg80211_internal_bss *tmp,
1871 bool signal_valid, unsigned long ts)
1872{
1873 struct cfg80211_internal_bss *res;
1874
1875 spin_lock_bh(&rdev->bss_lock);
1876 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1877 spin_unlock_bh(&rdev->bss_lock);
1878
1879 return res;
1880}
1881
1882int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1883 enum nl80211_band band)
1884{
1885 const struct element *tmp;
1886
1887 if (band == NL80211_BAND_6GHZ) {
1888 struct ieee80211_he_operation *he_oper;
1889
1890 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1891 ielen);
1892 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1893 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1894 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1895
1896 he_oper = (void *)&tmp->data[1];
1897
1898 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1899 if (!he_6ghz_oper)
1900 return -1;
1901
1902 return he_6ghz_oper->primary;
1903 }
1904 } else if (band == NL80211_BAND_S1GHZ) {
1905 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1906 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1907 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1908
1909 return s1gop->oper_ch;
1910 }
1911 } else {
1912 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1913 if (tmp && tmp->datalen == 1)
1914 return tmp->data[0];
1915
1916 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1917 if (tmp &&
1918 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1919 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1920
1921 return htop->primary_chan;
1922 }
1923 }
1924
1925 return -1;
1926}
1927EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1928
1929/*
1930 * Update RX channel information based on the available frame payload
1931 * information. This is mainly for the 2.4 GHz band where frames can be received
1932 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1933 * element to indicate the current (transmitting) channel, but this might also
1934 * be needed on other bands if RX frequency does not match with the actual
1935 * operating channel of a BSS, or if the AP reports a different primary channel.
1936 */
1937static struct ieee80211_channel *
1938cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1939 struct ieee80211_channel *channel,
1940 enum nl80211_bss_scan_width scan_width)
1941{
1942 u32 freq;
1943 int channel_number;
1944 struct ieee80211_channel *alt_channel;
1945
1946 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1947 channel->band);
1948
1949 if (channel_number < 0) {
1950 /* No channel information in frame payload */
1951 return channel;
1952 }
1953
1954 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1955
1956 /*
1957 * Frame info (beacon/prob res) is the same as received channel,
1958 * no need for further processing.
1959 */
1960 if (freq == ieee80211_channel_to_khz(channel))
1961 return channel;
1962
1963 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1964 if (!alt_channel) {
1965 if (channel->band == NL80211_BAND_2GHZ ||
1966 channel->band == NL80211_BAND_6GHZ) {
1967 /*
1968 * Better not allow unexpected channels when that could
1969 * be going beyond the 1-11 range (e.g., discovering
1970 * BSS on channel 12 when radio is configured for
1971 * channel 11) or beyond the 6 GHz channel range.
1972 */
1973 return NULL;
1974 }
1975
1976 /* No match for the payload channel number - ignore it */
1977 return channel;
1978 }
1979
1980 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1981 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1982 /*
1983 * Ignore channel number in 5 and 10 MHz channels where there
1984 * may not be an n:1 or 1:n mapping between frequencies and
1985 * channel numbers.
1986 */
1987 return channel;
1988 }
1989
1990 /*
1991 * Use the channel determined through the payload channel number
1992 * instead of the RX channel reported by the driver.
1993 */
1994 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1995 return NULL;
1996 return alt_channel;
1997}
1998
1999struct cfg80211_inform_single_bss_data {
2000 struct cfg80211_inform_bss *drv_data;
2001 enum cfg80211_bss_frame_type ftype;
2002 struct ieee80211_channel *channel;
2003 u8 bssid[ETH_ALEN];
2004 u64 tsf;
2005 u16 capability;
2006 u16 beacon_interval;
2007 const u8 *ie;
2008 size_t ielen;
2009
2010 enum {
2011 BSS_SOURCE_DIRECT = 0,
2012 BSS_SOURCE_MBSSID,
2013 BSS_SOURCE_STA_PROFILE,
2014 } bss_source;
2015 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2016 struct cfg80211_bss *source_bss;
2017 u8 max_bssid_indicator;
2018 u8 bssid_index;
2019};
2020
2021/* Returned bss is reference counted and must be cleaned up appropriately. */
2022static struct cfg80211_bss *
2023cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2024 struct cfg80211_inform_single_bss_data *data,
2025 gfp_t gfp)
2026{
2027 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2028 struct cfg80211_inform_bss *drv_data = data->drv_data;
2029 struct cfg80211_bss_ies *ies;
2030 struct ieee80211_channel *channel;
2031 struct cfg80211_internal_bss tmp = {}, *res;
2032 int bss_type;
2033 bool signal_valid;
2034 unsigned long ts;
2035
2036 if (WARN_ON(!wiphy))
2037 return NULL;
2038
2039 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2040 (drv_data->signal < 0 || drv_data->signal > 100)))
2041 return NULL;
2042
2043 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2044 return NULL;
2045
2046 channel = data->channel;
2047 if (!channel)
2048 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2049 drv_data->chan,
2050 drv_data->scan_width);
2051 if (!channel)
2052 return NULL;
2053
2054 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2055 tmp.pub.channel = channel;
2056 tmp.pub.scan_width = drv_data->scan_width;
2057 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2058 tmp.pub.signal = drv_data->signal;
2059 else
2060 tmp.pub.signal = 0;
2061 tmp.pub.beacon_interval = data->beacon_interval;
2062 tmp.pub.capability = data->capability;
2063 tmp.ts_boottime = drv_data->boottime_ns;
2064 tmp.parent_tsf = drv_data->parent_tsf;
2065 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2066
2067 if (data->bss_source != BSS_SOURCE_DIRECT) {
2068 tmp.pub.transmitted_bss = data->source_bss;
2069 ts = bss_from_pub(data->source_bss)->ts;
2070 tmp.pub.bssid_index = data->bssid_index;
2071 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2072 } else {
2073 ts = jiffies;
2074
2075 if (channel->band == NL80211_BAND_60GHZ) {
2076 bss_type = data->capability &
2077 WLAN_CAPABILITY_DMG_TYPE_MASK;
2078 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2079 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2080 regulatory_hint_found_beacon(wiphy, channel,
2081 gfp);
2082 } else {
2083 if (data->capability & WLAN_CAPABILITY_ESS)
2084 regulatory_hint_found_beacon(wiphy, channel,
2085 gfp);
2086 }
2087 }
2088
2089 /*
2090 * If we do not know here whether the IEs are from a Beacon or Probe
2091 * Response frame, we need to pick one of the options and only use it
2092 * with the driver that does not provide the full Beacon/Probe Response
2093 * frame. Use Beacon frame pointer to avoid indicating that this should
2094 * override the IEs pointer should we have received an earlier
2095 * indication of Probe Response data.
2096 */
2097 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2098 if (!ies)
2099 return NULL;
2100 ies->len = data->ielen;
2101 ies->tsf = data->tsf;
2102 ies->from_beacon = false;
2103 memcpy(ies->data, data->ie, data->ielen);
2104
2105 switch (data->ftype) {
2106 case CFG80211_BSS_FTYPE_BEACON:
2107 ies->from_beacon = true;
2108 fallthrough;
2109 case CFG80211_BSS_FTYPE_UNKNOWN:
2110 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2111 break;
2112 case CFG80211_BSS_FTYPE_PRESP:
2113 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2114 break;
2115 }
2116 rcu_assign_pointer(tmp.pub.ies, ies);
2117
2118 signal_valid = drv_data->chan == channel;
2119 spin_lock_bh(&rdev->bss_lock);
2120 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2121 if (!res)
2122 goto drop;
2123
2124 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2125
2126 if (data->bss_source == BSS_SOURCE_MBSSID) {
2127 /* this is a nontransmitting bss, we need to add it to
2128 * transmitting bss' list if it is not there
2129 */
2130 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2131 if (__cfg80211_unlink_bss(rdev, res)) {
2132 rdev->bss_generation++;
2133 res = NULL;
2134 }
2135 }
2136
2137 if (!res)
2138 goto drop;
2139 }
2140 spin_unlock_bh(&rdev->bss_lock);
2141
2142 trace_cfg80211_return_bss(&res->pub);
2143 /* __cfg80211_bss_update gives us a referenced result */
2144 return &res->pub;
2145
2146drop:
2147 spin_unlock_bh(&rdev->bss_lock);
2148 return NULL;
2149}
2150
2151static const struct element
2152*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2153 const struct element *mbssid_elem,
2154 const struct element *sub_elem)
2155{
2156 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2157 const struct element *next_mbssid;
2158 const struct element *next_sub;
2159
2160 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2161 mbssid_end,
2162 ielen - (mbssid_end - ie));
2163
2164 /*
2165 * If it is not the last subelement in current MBSSID IE or there isn't
2166 * a next MBSSID IE - profile is complete.
2167 */
2168 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2169 !next_mbssid)
2170 return NULL;
2171
2172 /* For any length error, just return NULL */
2173
2174 if (next_mbssid->datalen < 4)
2175 return NULL;
2176
2177 next_sub = (void *)&next_mbssid->data[1];
2178
2179 if (next_mbssid->data + next_mbssid->datalen <
2180 next_sub->data + next_sub->datalen)
2181 return NULL;
2182
2183 if (next_sub->id != 0 || next_sub->datalen < 2)
2184 return NULL;
2185
2186 /*
2187 * Check if the first element in the next sub element is a start
2188 * of a new profile
2189 */
2190 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2191 NULL : next_mbssid;
2192}
2193
2194size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2195 const struct element *mbssid_elem,
2196 const struct element *sub_elem,
2197 u8 *merged_ie, size_t max_copy_len)
2198{
2199 size_t copied_len = sub_elem->datalen;
2200 const struct element *next_mbssid;
2201
2202 if (sub_elem->datalen > max_copy_len)
2203 return 0;
2204
2205 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2206
2207 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2208 mbssid_elem,
2209 sub_elem))) {
2210 const struct element *next_sub = (void *)&next_mbssid->data[1];
2211
2212 if (copied_len + next_sub->datalen > max_copy_len)
2213 break;
2214 memcpy(merged_ie + copied_len, next_sub->data,
2215 next_sub->datalen);
2216 copied_len += next_sub->datalen;
2217 }
2218
2219 return copied_len;
2220}
2221EXPORT_SYMBOL(cfg80211_merge_profile);
2222
2223static void
2224cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2225 struct cfg80211_inform_single_bss_data *tx_data,
2226 struct cfg80211_bss *source_bss,
2227 gfp_t gfp)
2228{
2229 struct cfg80211_inform_single_bss_data data = {
2230 .drv_data = tx_data->drv_data,
2231 .ftype = tx_data->ftype,
2232 .tsf = tx_data->tsf,
2233 .beacon_interval = tx_data->beacon_interval,
2234 .source_bss = source_bss,
2235 .bss_source = BSS_SOURCE_MBSSID,
2236 };
2237 const u8 *mbssid_index_ie;
2238 const struct element *elem, *sub;
2239 u8 *new_ie, *profile;
2240 u64 seen_indices = 0;
2241 struct cfg80211_bss *bss;
2242
2243 if (!source_bss)
2244 return;
2245 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2246 tx_data->ie, tx_data->ielen))
2247 return;
2248 if (!wiphy->support_mbssid)
2249 return;
2250 if (wiphy->support_only_he_mbssid &&
2251 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2252 tx_data->ie, tx_data->ielen))
2253 return;
2254
2255 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2256 if (!new_ie)
2257 return;
2258
2259 profile = kmalloc(tx_data->ielen, gfp);
2260 if (!profile)
2261 goto out;
2262
2263 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2264 tx_data->ie, tx_data->ielen) {
2265 if (elem->datalen < 4)
2266 continue;
2267 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2268 continue;
2269 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2270 u8 profile_len;
2271
2272 if (sub->id != 0 || sub->datalen < 4) {
2273 /* not a valid BSS profile */
2274 continue;
2275 }
2276
2277 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2278 sub->data[1] != 2) {
2279 /* The first element within the Nontransmitted
2280 * BSSID Profile is not the Nontransmitted
2281 * BSSID Capability element.
2282 */
2283 continue;
2284 }
2285
2286 memset(profile, 0, tx_data->ielen);
2287 profile_len = cfg80211_merge_profile(tx_data->ie,
2288 tx_data->ielen,
2289 elem,
2290 sub,
2291 profile,
2292 tx_data->ielen);
2293
2294 /* found a Nontransmitted BSSID Profile */
2295 mbssid_index_ie = cfg80211_find_ie
2296 (WLAN_EID_MULTI_BSSID_IDX,
2297 profile, profile_len);
2298 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2299 mbssid_index_ie[2] == 0 ||
2300 mbssid_index_ie[2] > 46) {
2301 /* No valid Multiple BSSID-Index element */
2302 continue;
2303 }
2304
2305 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2306 /* We don't support legacy split of a profile */
2307 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2308 mbssid_index_ie[2]);
2309
2310 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2311
2312 data.bssid_index = mbssid_index_ie[2];
2313 data.max_bssid_indicator = elem->data[0];
2314
2315 cfg80211_gen_new_bssid(tx_data->bssid,
2316 data.max_bssid_indicator,
2317 data.bssid_index,
2318 data.bssid);
2319
2320 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2321 data.ie = new_ie;
2322 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2323 tx_data->ielen,
2324 profile,
2325 profile_len,
2326 new_ie,
2327 IEEE80211_MAX_DATA_LEN);
2328 if (!data.ielen)
2329 continue;
2330
2331 data.capability = get_unaligned_le16(profile + 2);
2332 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2333 if (!bss)
2334 break;
2335 cfg80211_put_bss(wiphy, bss);
2336 }
2337 }
2338
2339out:
2340 kfree(new_ie);
2341 kfree(profile);
2342}
2343
2344ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2345 size_t ieslen, u8 *data, size_t data_len,
2346 u8 frag_id)
2347{
2348 const struct element *next;
2349 ssize_t copied;
2350 u8 elem_datalen;
2351
2352 if (!elem)
2353 return -EINVAL;
2354
2355 /* elem might be invalid after the memmove */
2356 next = (void *)(elem->data + elem->datalen);
2357
2358 elem_datalen = elem->datalen;
2359 if (elem->id == WLAN_EID_EXTENSION) {
2360 copied = elem->datalen - 1;
2361 if (copied > data_len)
2362 return -ENOSPC;
2363
2364 memmove(data, elem->data + 1, copied);
2365 } else {
2366 copied = elem->datalen;
2367 if (copied > data_len)
2368 return -ENOSPC;
2369
2370 memmove(data, elem->data, copied);
2371 }
2372
2373 /* Fragmented elements must have 255 bytes */
2374 if (elem_datalen < 255)
2375 return copied;
2376
2377 for (elem = next;
2378 elem->data < ies + ieslen &&
2379 elem->data + elem->datalen < ies + ieslen;
2380 elem = next) {
2381 /* elem might be invalid after the memmove */
2382 next = (void *)(elem->data + elem->datalen);
2383
2384 if (elem->id != frag_id)
2385 break;
2386
2387 elem_datalen = elem->datalen;
2388
2389 if (copied + elem_datalen > data_len)
2390 return -ENOSPC;
2391
2392 memmove(data + copied, elem->data, elem_datalen);
2393 copied += elem_datalen;
2394
2395 /* Only the last fragment may be short */
2396 if (elem_datalen != 255)
2397 break;
2398 }
2399
2400 return copied;
2401}
2402EXPORT_SYMBOL(cfg80211_defragment_element);
2403
2404struct cfg80211_mle {
2405 struct ieee80211_multi_link_elem *mle;
2406 struct ieee80211_mle_per_sta_profile
2407 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2408 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2409
2410 u8 data[];
2411};
2412
2413static struct cfg80211_mle *
2414cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2415 gfp_t gfp)
2416{
2417 const struct element *elem;
2418 struct cfg80211_mle *res;
2419 size_t buf_len;
2420 ssize_t mle_len;
2421 u8 common_size, idx;
2422
2423 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2424 return NULL;
2425
2426 /* Required length for first defragmentation */
2427 buf_len = mle->datalen - 1;
2428 for_each_element(elem, mle->data + mle->datalen,
2429 ielen - sizeof(*mle) + mle->datalen) {
2430 if (elem->id != WLAN_EID_FRAGMENT)
2431 break;
2432
2433 buf_len += elem->datalen;
2434 }
2435
2436 res = kzalloc(struct_size(res, data, buf_len), gfp);
2437 if (!res)
2438 return NULL;
2439
2440 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2441 res->data, buf_len,
2442 WLAN_EID_FRAGMENT);
2443 if (mle_len < 0)
2444 goto error;
2445
2446 res->mle = (void *)res->data;
2447
2448 /* Find the sub-element area in the buffer */
2449 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2450 ie = res->data + common_size;
2451 ielen = mle_len - common_size;
2452
2453 idx = 0;
2454 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2455 ie, ielen) {
2456 res->sta_prof[idx] = (void *)elem->data;
2457 res->sta_prof_len[idx] = elem->datalen;
2458
2459 idx++;
2460 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2461 break;
2462 }
2463 if (!for_each_element_completed(elem, ie, ielen))
2464 goto error;
2465
2466 /* Defragment sta_info in-place */
2467 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2468 idx++) {
2469 if (res->sta_prof_len[idx] < 255)
2470 continue;
2471
2472 elem = (void *)res->sta_prof[idx] - 2;
2473
2474 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2475 res->sta_prof[idx + 1])
2476 buf_len = (u8 *)res->sta_prof[idx + 1] -
2477 (u8 *)res->sta_prof[idx];
2478 else
2479 buf_len = ielen + ie - (u8 *)elem;
2480
2481 res->sta_prof_len[idx] =
2482 cfg80211_defragment_element(elem,
2483 (u8 *)elem, buf_len,
2484 (u8 *)res->sta_prof[idx],
2485 buf_len,
2486 IEEE80211_MLE_SUBELEM_FRAGMENT);
2487 if (res->sta_prof_len[idx] < 0)
2488 goto error;
2489 }
2490
2491 return res;
2492
2493error:
2494 kfree(res);
2495 return NULL;
2496}
2497
2498static bool
2499cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2500 const struct ieee80211_neighbor_ap_info **ap_info,
2501 const u8 **tbtt_info)
2502{
2503 const struct ieee80211_neighbor_ap_info *info;
2504 const struct element *rnr;
2505 const u8 *pos, *end;
2506
2507 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2508 pos = rnr->data;
2509 end = rnr->data + rnr->datalen;
2510
2511 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2512 while (sizeof(*info) <= end - pos) {
2513 const struct ieee80211_rnr_mld_params *mld_params;
2514 u16 params;
2515 u8 length, i, count, mld_params_offset;
2516 u8 type, lid;
2517
2518 info = (void *)pos;
2519 count = u8_get_bits(info->tbtt_info_hdr,
2520 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2521 length = info->tbtt_info_len;
2522
2523 pos += sizeof(*info);
2524
2525 if (count * length > end - pos)
2526 return false;
2527
2528 type = u8_get_bits(info->tbtt_info_hdr,
2529 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2530
2531 /* Only accept full TBTT information. NSTR mobile APs
2532 * use the shortened version, but we ignore them here.
2533 */
2534 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2535 length >=
2536 offsetofend(struct ieee80211_tbtt_info_ge_11,
2537 mld_params)) {
2538 mld_params_offset =
2539 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2540 } else {
2541 pos += count * length;
2542 continue;
2543 }
2544
2545 for (i = 0; i < count; i++) {
2546 mld_params = (void *)pos + mld_params_offset;
2547 params = le16_to_cpu(mld_params->params);
2548
2549 lid = u16_get_bits(params,
2550 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2551
2552 if (mld_id == mld_params->mld_id &&
2553 link_id == lid) {
2554 *ap_info = info;
2555 *tbtt_info = pos;
2556
2557 return true;
2558 }
2559
2560 pos += length;
2561 }
2562 }
2563 }
2564
2565 return false;
2566}
2567
2568static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2569 struct cfg80211_inform_single_bss_data *tx_data,
2570 struct cfg80211_bss *source_bss,
2571 gfp_t gfp)
2572{
2573 struct cfg80211_inform_single_bss_data data = {
2574 .drv_data = tx_data->drv_data,
2575 .ftype = tx_data->ftype,
2576 .source_bss = source_bss,
2577 .bss_source = BSS_SOURCE_STA_PROFILE,
2578 };
2579 struct ieee80211_multi_link_elem *ml_elem;
2580 const struct element *elem;
2581 struct cfg80211_mle *mle;
2582 u16 control;
2583 u8 *new_ie;
2584 struct cfg80211_bss *bss;
2585 int mld_id;
2586 u16 seen_links = 0;
2587 const u8 *pos;
2588 u8 i;
2589
2590 if (!source_bss)
2591 return;
2592
2593 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2594 return;
2595
2596 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2597 tx_data->ie, tx_data->ielen);
2598 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2599 return;
2600
2601 ml_elem = (void *)elem->data + 1;
2602 control = le16_to_cpu(ml_elem->control);
2603 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2604 IEEE80211_ML_CONTROL_TYPE_BASIC)
2605 return;
2606
2607 /* Must be present when transmitted by an AP (in a probe response) */
2608 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2609 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2610 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2611 return;
2612
2613 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2614 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2615
2616 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2617 pos += 2;
2618 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2619 pos += 2;
2620
2621 /* MLD capabilities and operations */
2622 pos += 2;
2623
2624 /* Not included when the (nontransmitted) AP is responding itself,
2625 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2626 */
2627 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2628 mld_id = *pos;
2629 pos += 1;
2630 } else {
2631 mld_id = 0;
2632 }
2633
2634 /* Extended MLD capabilities and operations */
2635 pos += 2;
2636
2637 /* Fully defrag the ML element for sta information/profile iteration */
2638 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2639 if (!mle)
2640 return;
2641
2642 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2643 if (!new_ie)
2644 goto out;
2645
2646 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2647 const struct ieee80211_neighbor_ap_info *ap_info;
2648 enum nl80211_band band;
2649 u32 freq;
2650 const u8 *profile;
2651 const u8 *tbtt_info;
2652 ssize_t profile_len;
2653 u8 link_id;
2654
2655 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2656 mle->sta_prof_len[i]))
2657 continue;
2658
2659 control = le16_to_cpu(mle->sta_prof[i]->control);
2660
2661 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2662 continue;
2663
2664 link_id = u16_get_bits(control,
2665 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2666 if (seen_links & BIT(link_id))
2667 break;
2668 seen_links |= BIT(link_id);
2669
2670 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2671 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2672 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2673 continue;
2674
2675 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2676 data.beacon_interval =
2677 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2678 data.tsf = tx_data->tsf +
2679 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2680
2681 /* sta_info_len counts itself */
2682 profile = mle->sta_prof[i]->variable +
2683 mle->sta_prof[i]->sta_info_len - 1;
2684 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2685 profile;
2686
2687 if (profile_len < 2)
2688 continue;
2689
2690 data.capability = get_unaligned_le16(profile);
2691 profile += 2;
2692 profile_len -= 2;
2693
2694 /* Find in RNR to look up channel information */
2695 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2696 mld_id, link_id,
2697 &ap_info, &tbtt_info))
2698 continue;
2699
2700 /* We could sanity check the BSSID is included */
2701
2702 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2703 &band))
2704 continue;
2705
2706 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2707 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2708
2709 /* Generate new elements */
2710 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2711 data.ie = new_ie;
2712 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2713 profile, profile_len,
2714 new_ie,
2715 IEEE80211_MAX_DATA_LEN);
2716 if (!data.ielen)
2717 continue;
2718
2719 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2720 if (!bss)
2721 break;
2722 cfg80211_put_bss(wiphy, bss);
2723 }
2724
2725out:
2726 kfree(new_ie);
2727 kfree(mle);
2728}
2729
2730struct cfg80211_bss *
2731cfg80211_inform_bss_data(struct wiphy *wiphy,
2732 struct cfg80211_inform_bss *data,
2733 enum cfg80211_bss_frame_type ftype,
2734 const u8 *bssid, u64 tsf, u16 capability,
2735 u16 beacon_interval, const u8 *ie, size_t ielen,
2736 gfp_t gfp)
2737{
2738 struct cfg80211_inform_single_bss_data inform_data = {
2739 .drv_data = data,
2740 .ftype = ftype,
2741 .tsf = tsf,
2742 .capability = capability,
2743 .beacon_interval = beacon_interval,
2744 .ie = ie,
2745 .ielen = ielen,
2746 };
2747 struct cfg80211_bss *res;
2748
2749 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2750
2751 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2752 if (!res)
2753 return NULL;
2754
2755 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2756
2757 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2758
2759 return res;
2760}
2761EXPORT_SYMBOL(cfg80211_inform_bss_data);
2762
2763/* cfg80211_inform_bss_width_frame helper */
2764static struct cfg80211_bss *
2765cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2766 struct cfg80211_inform_bss *data,
2767 struct ieee80211_mgmt *mgmt, size_t len,
2768 gfp_t gfp)
2769{
2770 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2771 struct cfg80211_internal_bss tmp = {}, *res;
2772 struct cfg80211_bss_ies *ies;
2773 struct ieee80211_channel *channel;
2774 bool signal_valid;
2775 struct ieee80211_ext *ext = NULL;
2776 u8 *bssid, *variable;
2777 u16 capability, beacon_int;
2778 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2779 u.probe_resp.variable);
2780 int bss_type;
2781
2782 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2783 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2784
2785 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2786
2787 if (WARN_ON(!mgmt))
2788 return NULL;
2789
2790 if (WARN_ON(!wiphy))
2791 return NULL;
2792
2793 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2794 (data->signal < 0 || data->signal > 100)))
2795 return NULL;
2796
2797 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2798 ext = (void *) mgmt;
2799 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2800 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2801 min_hdr_len = offsetof(struct ieee80211_ext,
2802 u.s1g_short_beacon.variable);
2803 }
2804
2805 if (WARN_ON(len < min_hdr_len))
2806 return NULL;
2807
2808 ielen = len - min_hdr_len;
2809 variable = mgmt->u.probe_resp.variable;
2810 if (ext) {
2811 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2812 variable = ext->u.s1g_short_beacon.variable;
2813 else
2814 variable = ext->u.s1g_beacon.variable;
2815 }
2816
2817 channel = cfg80211_get_bss_channel(wiphy, variable,
2818 ielen, data->chan, data->scan_width);
2819 if (!channel)
2820 return NULL;
2821
2822 if (ext) {
2823 const struct ieee80211_s1g_bcn_compat_ie *compat;
2824 const struct element *elem;
2825
2826 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2827 variable, ielen);
2828 if (!elem)
2829 return NULL;
2830 if (elem->datalen < sizeof(*compat))
2831 return NULL;
2832 compat = (void *)elem->data;
2833 bssid = ext->u.s1g_beacon.sa;
2834 capability = le16_to_cpu(compat->compat_info);
2835 beacon_int = le16_to_cpu(compat->beacon_int);
2836 } else {
2837 bssid = mgmt->bssid;
2838 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2839 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2840 }
2841
2842 if (channel->band == NL80211_BAND_60GHZ) {
2843 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2844 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2845 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2846 regulatory_hint_found_beacon(wiphy, channel, gfp);
2847 } else {
2848 if (capability & WLAN_CAPABILITY_ESS)
2849 regulatory_hint_found_beacon(wiphy, channel, gfp);
2850 }
2851
2852 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2853 if (!ies)
2854 return NULL;
2855 ies->len = ielen;
2856 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2857 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2858 ieee80211_is_s1g_beacon(mgmt->frame_control);
2859 memcpy(ies->data, variable, ielen);
2860
2861 if (ieee80211_is_probe_resp(mgmt->frame_control))
2862 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2863 else
2864 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2865 rcu_assign_pointer(tmp.pub.ies, ies);
2866
2867 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2868 tmp.pub.beacon_interval = beacon_int;
2869 tmp.pub.capability = capability;
2870 tmp.pub.channel = channel;
2871 tmp.pub.scan_width = data->scan_width;
2872 tmp.pub.signal = data->signal;
2873 tmp.ts_boottime = data->boottime_ns;
2874 tmp.parent_tsf = data->parent_tsf;
2875 tmp.pub.chains = data->chains;
2876 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2877 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2878
2879 signal_valid = data->chan == channel;
2880 spin_lock_bh(&rdev->bss_lock);
2881 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2882 if (!res)
2883 goto drop;
2884
2885 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2886
2887 spin_unlock_bh(&rdev->bss_lock);
2888
2889 trace_cfg80211_return_bss(&res->pub);
2890 /* __cfg80211_bss_update gives us a referenced result */
2891 return &res->pub;
2892
2893drop:
2894 spin_unlock_bh(&rdev->bss_lock);
2895 return NULL;
2896}
2897
2898struct cfg80211_bss *
2899cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2900 struct cfg80211_inform_bss *data,
2901 struct ieee80211_mgmt *mgmt, size_t len,
2902 gfp_t gfp)
2903{
2904 struct cfg80211_inform_single_bss_data inform_data = {
2905 .drv_data = data,
2906 .ie = mgmt->u.probe_resp.variable,
2907 .ielen = len - offsetof(struct ieee80211_mgmt,
2908 u.probe_resp.variable),
2909 };
2910 struct cfg80211_bss *res;
2911
2912 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2913 len, gfp);
2914 if (!res)
2915 return NULL;
2916
2917 /* don't do any further MBSSID/ML handling for S1G */
2918 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2919 return res;
2920
2921 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2922 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2923 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2924 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2925 inform_data.beacon_interval =
2926 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2927
2928 /* process each non-transmitting bss */
2929 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2930
2931 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2932
2933 return res;
2934}
2935EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2936
2937void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2938{
2939 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2940
2941 if (!pub)
2942 return;
2943
2944 spin_lock_bh(&rdev->bss_lock);
2945 bss_ref_get(rdev, bss_from_pub(pub));
2946 spin_unlock_bh(&rdev->bss_lock);
2947}
2948EXPORT_SYMBOL(cfg80211_ref_bss);
2949
2950void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2951{
2952 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2953
2954 if (!pub)
2955 return;
2956
2957 spin_lock_bh(&rdev->bss_lock);
2958 bss_ref_put(rdev, bss_from_pub(pub));
2959 spin_unlock_bh(&rdev->bss_lock);
2960}
2961EXPORT_SYMBOL(cfg80211_put_bss);
2962
2963void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2964{
2965 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2966 struct cfg80211_internal_bss *bss, *tmp1;
2967 struct cfg80211_bss *nontrans_bss, *tmp;
2968
2969 if (WARN_ON(!pub))
2970 return;
2971
2972 bss = bss_from_pub(pub);
2973
2974 spin_lock_bh(&rdev->bss_lock);
2975 if (list_empty(&bss->list))
2976 goto out;
2977
2978 list_for_each_entry_safe(nontrans_bss, tmp,
2979 &pub->nontrans_list,
2980 nontrans_list) {
2981 tmp1 = bss_from_pub(nontrans_bss);
2982 if (__cfg80211_unlink_bss(rdev, tmp1))
2983 rdev->bss_generation++;
2984 }
2985
2986 if (__cfg80211_unlink_bss(rdev, bss))
2987 rdev->bss_generation++;
2988out:
2989 spin_unlock_bh(&rdev->bss_lock);
2990}
2991EXPORT_SYMBOL(cfg80211_unlink_bss);
2992
2993void cfg80211_bss_iter(struct wiphy *wiphy,
2994 struct cfg80211_chan_def *chandef,
2995 void (*iter)(struct wiphy *wiphy,
2996 struct cfg80211_bss *bss,
2997 void *data),
2998 void *iter_data)
2999{
3000 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3001 struct cfg80211_internal_bss *bss;
3002
3003 spin_lock_bh(&rdev->bss_lock);
3004
3005 list_for_each_entry(bss, &rdev->bss_list, list) {
3006 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3007 false))
3008 iter(wiphy, &bss->pub, iter_data);
3009 }
3010
3011 spin_unlock_bh(&rdev->bss_lock);
3012}
3013EXPORT_SYMBOL(cfg80211_bss_iter);
3014
3015void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3016 unsigned int link_id,
3017 struct ieee80211_channel *chan)
3018{
3019 struct wiphy *wiphy = wdev->wiphy;
3020 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3021 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3022 struct cfg80211_internal_bss *new = NULL;
3023 struct cfg80211_internal_bss *bss;
3024 struct cfg80211_bss *nontrans_bss;
3025 struct cfg80211_bss *tmp;
3026
3027 spin_lock_bh(&rdev->bss_lock);
3028
3029 /*
3030 * Some APs use CSA also for bandwidth changes, i.e., without actually
3031 * changing the control channel, so no need to update in such a case.
3032 */
3033 if (cbss->pub.channel == chan)
3034 goto done;
3035
3036 /* use transmitting bss */
3037 if (cbss->pub.transmitted_bss)
3038 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3039
3040 cbss->pub.channel = chan;
3041
3042 list_for_each_entry(bss, &rdev->bss_list, list) {
3043 if (!cfg80211_bss_type_match(bss->pub.capability,
3044 bss->pub.channel->band,
3045 wdev->conn_bss_type))
3046 continue;
3047
3048 if (bss == cbss)
3049 continue;
3050
3051 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3052 new = bss;
3053 break;
3054 }
3055 }
3056
3057 if (new) {
3058 /* to save time, update IEs for transmitting bss only */
3059 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3060 new->pub.proberesp_ies = NULL;
3061 new->pub.beacon_ies = NULL;
3062 }
3063
3064 list_for_each_entry_safe(nontrans_bss, tmp,
3065 &new->pub.nontrans_list,
3066 nontrans_list) {
3067 bss = bss_from_pub(nontrans_bss);
3068 if (__cfg80211_unlink_bss(rdev, bss))
3069 rdev->bss_generation++;
3070 }
3071
3072 WARN_ON(atomic_read(&new->hold));
3073 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3074 rdev->bss_generation++;
3075 }
3076
3077 rb_erase(&cbss->rbn, &rdev->bss_tree);
3078 rb_insert_bss(rdev, cbss);
3079 rdev->bss_generation++;
3080
3081 list_for_each_entry_safe(nontrans_bss, tmp,
3082 &cbss->pub.nontrans_list,
3083 nontrans_list) {
3084 bss = bss_from_pub(nontrans_bss);
3085 bss->pub.channel = chan;
3086 rb_erase(&bss->rbn, &rdev->bss_tree);
3087 rb_insert_bss(rdev, bss);
3088 rdev->bss_generation++;
3089 }
3090
3091done:
3092 spin_unlock_bh(&rdev->bss_lock);
3093}
3094
3095#ifdef CONFIG_CFG80211_WEXT
3096static struct cfg80211_registered_device *
3097cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3098{
3099 struct cfg80211_registered_device *rdev;
3100 struct net_device *dev;
3101
3102 ASSERT_RTNL();
3103
3104 dev = dev_get_by_index(net, ifindex);
3105 if (!dev)
3106 return ERR_PTR(-ENODEV);
3107 if (dev->ieee80211_ptr)
3108 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3109 else
3110 rdev = ERR_PTR(-ENODEV);
3111 dev_put(dev);
3112 return rdev;
3113}
3114
3115int cfg80211_wext_siwscan(struct net_device *dev,
3116 struct iw_request_info *info,
3117 union iwreq_data *wrqu, char *extra)
3118{
3119 struct cfg80211_registered_device *rdev;
3120 struct wiphy *wiphy;
3121 struct iw_scan_req *wreq = NULL;
3122 struct cfg80211_scan_request *creq;
3123 int i, err, n_channels = 0;
3124 enum nl80211_band band;
3125
3126 if (!netif_running(dev))
3127 return -ENETDOWN;
3128
3129 if (wrqu->data.length == sizeof(struct iw_scan_req))
3130 wreq = (struct iw_scan_req *)extra;
3131
3132 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3133
3134 if (IS_ERR(rdev))
3135 return PTR_ERR(rdev);
3136
3137 if (rdev->scan_req || rdev->scan_msg)
3138 return -EBUSY;
3139
3140 wiphy = &rdev->wiphy;
3141
3142 /* Determine number of channels, needed to allocate creq */
3143 if (wreq && wreq->num_channels)
3144 n_channels = wreq->num_channels;
3145 else
3146 n_channels = ieee80211_get_num_supported_channels(wiphy);
3147
3148 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3149 n_channels * sizeof(void *),
3150 GFP_ATOMIC);
3151 if (!creq)
3152 return -ENOMEM;
3153
3154 creq->wiphy = wiphy;
3155 creq->wdev = dev->ieee80211_ptr;
3156 /* SSIDs come after channels */
3157 creq->ssids = (void *)&creq->channels[n_channels];
3158 creq->n_channels = n_channels;
3159 creq->n_ssids = 1;
3160 creq->scan_start = jiffies;
3161
3162 /* translate "Scan on frequencies" request */
3163 i = 0;
3164 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3165 int j;
3166
3167 if (!wiphy->bands[band])
3168 continue;
3169
3170 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3171 /* ignore disabled channels */
3172 if (wiphy->bands[band]->channels[j].flags &
3173 IEEE80211_CHAN_DISABLED)
3174 continue;
3175
3176 /* If we have a wireless request structure and the
3177 * wireless request specifies frequencies, then search
3178 * for the matching hardware channel.
3179 */
3180 if (wreq && wreq->num_channels) {
3181 int k;
3182 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3183 for (k = 0; k < wreq->num_channels; k++) {
3184 struct iw_freq *freq =
3185 &wreq->channel_list[k];
3186 int wext_freq =
3187 cfg80211_wext_freq(freq);
3188
3189 if (wext_freq == wiphy_freq)
3190 goto wext_freq_found;
3191 }
3192 goto wext_freq_not_found;
3193 }
3194
3195 wext_freq_found:
3196 creq->channels[i] = &wiphy->bands[band]->channels[j];
3197 i++;
3198 wext_freq_not_found: ;
3199 }
3200 }
3201 /* No channels found? */
3202 if (!i) {
3203 err = -EINVAL;
3204 goto out;
3205 }
3206
3207 /* Set real number of channels specified in creq->channels[] */
3208 creq->n_channels = i;
3209
3210 /* translate "Scan for SSID" request */
3211 if (wreq) {
3212 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3213 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3214 err = -EINVAL;
3215 goto out;
3216 }
3217 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3218 creq->ssids[0].ssid_len = wreq->essid_len;
3219 }
3220 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3221 creq->n_ssids = 0;
3222 }
3223
3224 for (i = 0; i < NUM_NL80211_BANDS; i++)
3225 if (wiphy->bands[i])
3226 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3227
3228 eth_broadcast_addr(creq->bssid);
3229
3230 wiphy_lock(&rdev->wiphy);
3231
3232 rdev->scan_req = creq;
3233 err = rdev_scan(rdev, creq);
3234 if (err) {
3235 rdev->scan_req = NULL;
3236 /* creq will be freed below */
3237 } else {
3238 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3239 /* creq now owned by driver */
3240 creq = NULL;
3241 dev_hold(dev);
3242 }
3243 wiphy_unlock(&rdev->wiphy);
3244 out:
3245 kfree(creq);
3246 return err;
3247}
3248EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3249
3250static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3251 const struct cfg80211_bss_ies *ies,
3252 char *current_ev, char *end_buf)
3253{
3254 const u8 *pos, *end, *next;
3255 struct iw_event iwe;
3256
3257 if (!ies)
3258 return current_ev;
3259
3260 /*
3261 * If needed, fragment the IEs buffer (at IE boundaries) into short
3262 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3263 */
3264 pos = ies->data;
3265 end = pos + ies->len;
3266
3267 while (end - pos > IW_GENERIC_IE_MAX) {
3268 next = pos + 2 + pos[1];
3269 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3270 next = next + 2 + next[1];
3271
3272 memset(&iwe, 0, sizeof(iwe));
3273 iwe.cmd = IWEVGENIE;
3274 iwe.u.data.length = next - pos;
3275 current_ev = iwe_stream_add_point_check(info, current_ev,
3276 end_buf, &iwe,
3277 (void *)pos);
3278 if (IS_ERR(current_ev))
3279 return current_ev;
3280 pos = next;
3281 }
3282
3283 if (end > pos) {
3284 memset(&iwe, 0, sizeof(iwe));
3285 iwe.cmd = IWEVGENIE;
3286 iwe.u.data.length = end - pos;
3287 current_ev = iwe_stream_add_point_check(info, current_ev,
3288 end_buf, &iwe,
3289 (void *)pos);
3290 if (IS_ERR(current_ev))
3291 return current_ev;
3292 }
3293
3294 return current_ev;
3295}
3296
3297static char *
3298ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3299 struct cfg80211_internal_bss *bss, char *current_ev,
3300 char *end_buf)
3301{
3302 const struct cfg80211_bss_ies *ies;
3303 struct iw_event iwe;
3304 const u8 *ie;
3305 u8 buf[50];
3306 u8 *cfg, *p, *tmp;
3307 int rem, i, sig;
3308 bool ismesh = false;
3309
3310 memset(&iwe, 0, sizeof(iwe));
3311 iwe.cmd = SIOCGIWAP;
3312 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3313 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3314 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3315 IW_EV_ADDR_LEN);
3316 if (IS_ERR(current_ev))
3317 return current_ev;
3318
3319 memset(&iwe, 0, sizeof(iwe));
3320 iwe.cmd = SIOCGIWFREQ;
3321 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3322 iwe.u.freq.e = 0;
3323 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3324 IW_EV_FREQ_LEN);
3325 if (IS_ERR(current_ev))
3326 return current_ev;
3327
3328 memset(&iwe, 0, sizeof(iwe));
3329 iwe.cmd = SIOCGIWFREQ;
3330 iwe.u.freq.m = bss->pub.channel->center_freq;
3331 iwe.u.freq.e = 6;
3332 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3333 IW_EV_FREQ_LEN);
3334 if (IS_ERR(current_ev))
3335 return current_ev;
3336
3337 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3338 memset(&iwe, 0, sizeof(iwe));
3339 iwe.cmd = IWEVQUAL;
3340 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3341 IW_QUAL_NOISE_INVALID |
3342 IW_QUAL_QUAL_UPDATED;
3343 switch (wiphy->signal_type) {
3344 case CFG80211_SIGNAL_TYPE_MBM:
3345 sig = bss->pub.signal / 100;
3346 iwe.u.qual.level = sig;
3347 iwe.u.qual.updated |= IW_QUAL_DBM;
3348 if (sig < -110) /* rather bad */
3349 sig = -110;
3350 else if (sig > -40) /* perfect */
3351 sig = -40;
3352 /* will give a range of 0 .. 70 */
3353 iwe.u.qual.qual = sig + 110;
3354 break;
3355 case CFG80211_SIGNAL_TYPE_UNSPEC:
3356 iwe.u.qual.level = bss->pub.signal;
3357 /* will give range 0 .. 100 */
3358 iwe.u.qual.qual = bss->pub.signal;
3359 break;
3360 default:
3361 /* not reached */
3362 break;
3363 }
3364 current_ev = iwe_stream_add_event_check(info, current_ev,
3365 end_buf, &iwe,
3366 IW_EV_QUAL_LEN);
3367 if (IS_ERR(current_ev))
3368 return current_ev;
3369 }
3370
3371 memset(&iwe, 0, sizeof(iwe));
3372 iwe.cmd = SIOCGIWENCODE;
3373 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3374 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3375 else
3376 iwe.u.data.flags = IW_ENCODE_DISABLED;
3377 iwe.u.data.length = 0;
3378 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3379 &iwe, "");
3380 if (IS_ERR(current_ev))
3381 return current_ev;
3382
3383 rcu_read_lock();
3384 ies = rcu_dereference(bss->pub.ies);
3385 rem = ies->len;
3386 ie = ies->data;
3387
3388 while (rem >= 2) {
3389 /* invalid data */
3390 if (ie[1] > rem - 2)
3391 break;
3392
3393 switch (ie[0]) {
3394 case WLAN_EID_SSID:
3395 memset(&iwe, 0, sizeof(iwe));
3396 iwe.cmd = SIOCGIWESSID;
3397 iwe.u.data.length = ie[1];
3398 iwe.u.data.flags = 1;
3399 current_ev = iwe_stream_add_point_check(info,
3400 current_ev,
3401 end_buf, &iwe,
3402 (u8 *)ie + 2);
3403 if (IS_ERR(current_ev))
3404 goto unlock;
3405 break;
3406 case WLAN_EID_MESH_ID:
3407 memset(&iwe, 0, sizeof(iwe));
3408 iwe.cmd = SIOCGIWESSID;
3409 iwe.u.data.length = ie[1];
3410 iwe.u.data.flags = 1;
3411 current_ev = iwe_stream_add_point_check(info,
3412 current_ev,
3413 end_buf, &iwe,
3414 (u8 *)ie + 2);
3415 if (IS_ERR(current_ev))
3416 goto unlock;
3417 break;
3418 case WLAN_EID_MESH_CONFIG:
3419 ismesh = true;
3420 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3421 break;
3422 cfg = (u8 *)ie + 2;
3423 memset(&iwe, 0, sizeof(iwe));
3424 iwe.cmd = IWEVCUSTOM;
3425 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3426 "0x%02X", cfg[0]);
3427 iwe.u.data.length = strlen(buf);
3428 current_ev = iwe_stream_add_point_check(info,
3429 current_ev,
3430 end_buf,
3431 &iwe, buf);
3432 if (IS_ERR(current_ev))
3433 goto unlock;
3434 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3435 cfg[1]);
3436 iwe.u.data.length = strlen(buf);
3437 current_ev = iwe_stream_add_point_check(info,
3438 current_ev,
3439 end_buf,
3440 &iwe, buf);
3441 if (IS_ERR(current_ev))
3442 goto unlock;
3443 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3444 cfg[2]);
3445 iwe.u.data.length = strlen(buf);
3446 current_ev = iwe_stream_add_point_check(info,
3447 current_ev,
3448 end_buf,
3449 &iwe, buf);
3450 if (IS_ERR(current_ev))
3451 goto unlock;
3452 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3453 iwe.u.data.length = strlen(buf);
3454 current_ev = iwe_stream_add_point_check(info,
3455 current_ev,
3456 end_buf,
3457 &iwe, buf);
3458 if (IS_ERR(current_ev))
3459 goto unlock;
3460 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3461 iwe.u.data.length = strlen(buf);
3462 current_ev = iwe_stream_add_point_check(info,
3463 current_ev,
3464 end_buf,
3465 &iwe, buf);
3466 if (IS_ERR(current_ev))
3467 goto unlock;
3468 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3469 iwe.u.data.length = strlen(buf);
3470 current_ev = iwe_stream_add_point_check(info,
3471 current_ev,
3472 end_buf,
3473 &iwe, buf);
3474 if (IS_ERR(current_ev))
3475 goto unlock;
3476 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3477 iwe.u.data.length = strlen(buf);
3478 current_ev = iwe_stream_add_point_check(info,
3479 current_ev,
3480 end_buf,
3481 &iwe, buf);
3482 if (IS_ERR(current_ev))
3483 goto unlock;
3484 break;
3485 case WLAN_EID_SUPP_RATES:
3486 case WLAN_EID_EXT_SUPP_RATES:
3487 /* display all supported rates in readable format */
3488 p = current_ev + iwe_stream_lcp_len(info);
3489
3490 memset(&iwe, 0, sizeof(iwe));
3491 iwe.cmd = SIOCGIWRATE;
3492 /* Those two flags are ignored... */
3493 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3494
3495 for (i = 0; i < ie[1]; i++) {
3496 iwe.u.bitrate.value =
3497 ((ie[i + 2] & 0x7f) * 500000);
3498 tmp = p;
3499 p = iwe_stream_add_value(info, current_ev, p,
3500 end_buf, &iwe,
3501 IW_EV_PARAM_LEN);
3502 if (p == tmp) {
3503 current_ev = ERR_PTR(-E2BIG);
3504 goto unlock;
3505 }
3506 }
3507 current_ev = p;
3508 break;
3509 }
3510 rem -= ie[1] + 2;
3511 ie += ie[1] + 2;
3512 }
3513
3514 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3515 ismesh) {
3516 memset(&iwe, 0, sizeof(iwe));
3517 iwe.cmd = SIOCGIWMODE;
3518 if (ismesh)
3519 iwe.u.mode = IW_MODE_MESH;
3520 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3521 iwe.u.mode = IW_MODE_MASTER;
3522 else
3523 iwe.u.mode = IW_MODE_ADHOC;
3524 current_ev = iwe_stream_add_event_check(info, current_ev,
3525 end_buf, &iwe,
3526 IW_EV_UINT_LEN);
3527 if (IS_ERR(current_ev))
3528 goto unlock;
3529 }
3530
3531 memset(&iwe, 0, sizeof(iwe));
3532 iwe.cmd = IWEVCUSTOM;
3533 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3534 iwe.u.data.length = strlen(buf);
3535 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3536 &iwe, buf);
3537 if (IS_ERR(current_ev))
3538 goto unlock;
3539 memset(&iwe, 0, sizeof(iwe));
3540 iwe.cmd = IWEVCUSTOM;
3541 sprintf(buf, " Last beacon: %ums ago",
3542 elapsed_jiffies_msecs(bss->ts));
3543 iwe.u.data.length = strlen(buf);
3544 current_ev = iwe_stream_add_point_check(info, current_ev,
3545 end_buf, &iwe, buf);
3546 if (IS_ERR(current_ev))
3547 goto unlock;
3548
3549 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3550
3551 unlock:
3552 rcu_read_unlock();
3553 return current_ev;
3554}
3555
3556
3557static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3558 struct iw_request_info *info,
3559 char *buf, size_t len)
3560{
3561 char *current_ev = buf;
3562 char *end_buf = buf + len;
3563 struct cfg80211_internal_bss *bss;
3564 int err = 0;
3565
3566 spin_lock_bh(&rdev->bss_lock);
3567 cfg80211_bss_expire(rdev);
3568
3569 list_for_each_entry(bss, &rdev->bss_list, list) {
3570 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3571 err = -E2BIG;
3572 break;
3573 }
3574 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3575 current_ev, end_buf);
3576 if (IS_ERR(current_ev)) {
3577 err = PTR_ERR(current_ev);
3578 break;
3579 }
3580 }
3581 spin_unlock_bh(&rdev->bss_lock);
3582
3583 if (err)
3584 return err;
3585 return current_ev - buf;
3586}
3587
3588
3589int cfg80211_wext_giwscan(struct net_device *dev,
3590 struct iw_request_info *info,
3591 union iwreq_data *wrqu, char *extra)
3592{
3593 struct iw_point *data = &wrqu->data;
3594 struct cfg80211_registered_device *rdev;
3595 int res;
3596
3597 if (!netif_running(dev))
3598 return -ENETDOWN;
3599
3600 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3601
3602 if (IS_ERR(rdev))
3603 return PTR_ERR(rdev);
3604
3605 if (rdev->scan_req || rdev->scan_msg)
3606 return -EAGAIN;
3607
3608 res = ieee80211_scan_results(rdev, info, extra, data->length);
3609 data->length = 0;
3610 if (res >= 0) {
3611 data->length = res;
3612 res = 0;
3613 }
3614
3615 return res;
3616}
3617EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3618#endif