Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/random.h>
27#include <linux/slab.h>
28#include <linux/reboot.h>
29#include <linux/leds.h>
30#include <linux/debugfs.h>
31#include <linux/nvmem-provider.h>
32#include <linux/root_dev.h>
33
34#include <linux/mtd/mtd.h>
35#include <linux/mtd/partitions.h>
36
37#include "mtdcore.h"
38
39struct backing_dev_info *mtd_bdi;
40
41#ifdef CONFIG_PM_SLEEP
42
43static int mtd_cls_suspend(struct device *dev)
44{
45 struct mtd_info *mtd = dev_get_drvdata(dev);
46
47 return mtd ? mtd_suspend(mtd) : 0;
48}
49
50static int mtd_cls_resume(struct device *dev)
51{
52 struct mtd_info *mtd = dev_get_drvdata(dev);
53
54 if (mtd)
55 mtd_resume(mtd);
56 return 0;
57}
58
59static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61#else
62#define MTD_CLS_PM_OPS NULL
63#endif
64
65static struct class mtd_class = {
66 .name = "mtd",
67 .pm = MTD_CLS_PM_OPS,
68};
69
70static DEFINE_IDR(mtd_idr);
71
72/* These are exported solely for the purpose of mtd_blkdevs.c. You
73 should not use them for _anything_ else */
74DEFINE_MUTEX(mtd_table_mutex);
75EXPORT_SYMBOL_GPL(mtd_table_mutex);
76
77struct mtd_info *__mtd_next_device(int i)
78{
79 return idr_get_next(&mtd_idr, &i);
80}
81EXPORT_SYMBOL_GPL(__mtd_next_device);
82
83static LIST_HEAD(mtd_notifiers);
84
85
86#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87
88/* REVISIT once MTD uses the driver model better, whoever allocates
89 * the mtd_info will probably want to use the release() hook...
90 */
91static void mtd_release(struct device *dev)
92{
93 struct mtd_info *mtd = dev_get_drvdata(dev);
94 dev_t index = MTD_DEVT(mtd->index);
95
96 /* remove /dev/mtdXro node */
97 device_destroy(&mtd_class, index + 1);
98}
99
100#define MTD_DEVICE_ATTR_RO(name) \
101static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
102
103#define MTD_DEVICE_ATTR_RW(name) \
104static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
105
106static ssize_t mtd_type_show(struct device *dev,
107 struct device_attribute *attr, char *buf)
108{
109 struct mtd_info *mtd = dev_get_drvdata(dev);
110 char *type;
111
112 switch (mtd->type) {
113 case MTD_ABSENT:
114 type = "absent";
115 break;
116 case MTD_RAM:
117 type = "ram";
118 break;
119 case MTD_ROM:
120 type = "rom";
121 break;
122 case MTD_NORFLASH:
123 type = "nor";
124 break;
125 case MTD_NANDFLASH:
126 type = "nand";
127 break;
128 case MTD_DATAFLASH:
129 type = "dataflash";
130 break;
131 case MTD_UBIVOLUME:
132 type = "ubi";
133 break;
134 case MTD_MLCNANDFLASH:
135 type = "mlc-nand";
136 break;
137 default:
138 type = "unknown";
139 }
140
141 return sysfs_emit(buf, "%s\n", type);
142}
143MTD_DEVICE_ATTR_RO(type);
144
145static ssize_t mtd_flags_show(struct device *dev,
146 struct device_attribute *attr, char *buf)
147{
148 struct mtd_info *mtd = dev_get_drvdata(dev);
149
150 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
151}
152MTD_DEVICE_ATTR_RO(flags);
153
154static ssize_t mtd_size_show(struct device *dev,
155 struct device_attribute *attr, char *buf)
156{
157 struct mtd_info *mtd = dev_get_drvdata(dev);
158
159 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
160}
161MTD_DEVICE_ATTR_RO(size);
162
163static ssize_t mtd_erasesize_show(struct device *dev,
164 struct device_attribute *attr, char *buf)
165{
166 struct mtd_info *mtd = dev_get_drvdata(dev);
167
168 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
169}
170MTD_DEVICE_ATTR_RO(erasesize);
171
172static ssize_t mtd_writesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
175 struct mtd_info *mtd = dev_get_drvdata(dev);
176
177 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
178}
179MTD_DEVICE_ATTR_RO(writesize);
180
181static ssize_t mtd_subpagesize_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
184 struct mtd_info *mtd = dev_get_drvdata(dev);
185 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
186
187 return sysfs_emit(buf, "%u\n", subpagesize);
188}
189MTD_DEVICE_ATTR_RO(subpagesize);
190
191static ssize_t mtd_oobsize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195
196 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
197}
198MTD_DEVICE_ATTR_RO(oobsize);
199
200static ssize_t mtd_oobavail_show(struct device *dev,
201 struct device_attribute *attr, char *buf)
202{
203 struct mtd_info *mtd = dev_get_drvdata(dev);
204
205 return sysfs_emit(buf, "%u\n", mtd->oobavail);
206}
207MTD_DEVICE_ATTR_RO(oobavail);
208
209static ssize_t mtd_numeraseregions_show(struct device *dev,
210 struct device_attribute *attr, char *buf)
211{
212 struct mtd_info *mtd = dev_get_drvdata(dev);
213
214 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
215}
216MTD_DEVICE_ATTR_RO(numeraseregions);
217
218static ssize_t mtd_name_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220{
221 struct mtd_info *mtd = dev_get_drvdata(dev);
222
223 return sysfs_emit(buf, "%s\n", mtd->name);
224}
225MTD_DEVICE_ATTR_RO(name);
226
227static ssize_t mtd_ecc_strength_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
229{
230 struct mtd_info *mtd = dev_get_drvdata(dev);
231
232 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
233}
234MTD_DEVICE_ATTR_RO(ecc_strength);
235
236static ssize_t mtd_bitflip_threshold_show(struct device *dev,
237 struct device_attribute *attr,
238 char *buf)
239{
240 struct mtd_info *mtd = dev_get_drvdata(dev);
241
242 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
243}
244
245static ssize_t mtd_bitflip_threshold_store(struct device *dev,
246 struct device_attribute *attr,
247 const char *buf, size_t count)
248{
249 struct mtd_info *mtd = dev_get_drvdata(dev);
250 unsigned int bitflip_threshold;
251 int retval;
252
253 retval = kstrtouint(buf, 0, &bitflip_threshold);
254 if (retval)
255 return retval;
256
257 mtd->bitflip_threshold = bitflip_threshold;
258 return count;
259}
260MTD_DEVICE_ATTR_RW(bitflip_threshold);
261
262static ssize_t mtd_ecc_step_size_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
264{
265 struct mtd_info *mtd = dev_get_drvdata(dev);
266
267 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
268
269}
270MTD_DEVICE_ATTR_RO(ecc_step_size);
271
272static ssize_t mtd_corrected_bits_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
274{
275 struct mtd_info *mtd = dev_get_drvdata(dev);
276 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
277
278 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
279}
280MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
281
282static ssize_t mtd_ecc_failures_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
284{
285 struct mtd_info *mtd = dev_get_drvdata(dev);
286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287
288 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
289}
290MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
291
292static ssize_t mtd_bad_blocks_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
299}
300MTD_DEVICE_ATTR_RO(bad_blocks);
301
302static ssize_t mtd_bbt_blocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
309}
310MTD_DEVICE_ATTR_RO(bbt_blocks);
311
312static struct attribute *mtd_attrs[] = {
313 &dev_attr_type.attr,
314 &dev_attr_flags.attr,
315 &dev_attr_size.attr,
316 &dev_attr_erasesize.attr,
317 &dev_attr_writesize.attr,
318 &dev_attr_subpagesize.attr,
319 &dev_attr_oobsize.attr,
320 &dev_attr_oobavail.attr,
321 &dev_attr_numeraseregions.attr,
322 &dev_attr_name.attr,
323 &dev_attr_ecc_strength.attr,
324 &dev_attr_ecc_step_size.attr,
325 &dev_attr_corrected_bits.attr,
326 &dev_attr_ecc_failures.attr,
327 &dev_attr_bad_blocks.attr,
328 &dev_attr_bbt_blocks.attr,
329 &dev_attr_bitflip_threshold.attr,
330 NULL,
331};
332ATTRIBUTE_GROUPS(mtd);
333
334static const struct device_type mtd_devtype = {
335 .name = "mtd",
336 .groups = mtd_groups,
337 .release = mtd_release,
338};
339
340static bool mtd_expert_analysis_mode;
341
342#ifdef CONFIG_DEBUG_FS
343bool mtd_check_expert_analysis_mode(void)
344{
345 const char *mtd_expert_analysis_warning =
346 "Bad block checks have been entirely disabled.\n"
347 "This is only reserved for post-mortem forensics and debug purposes.\n"
348 "Never enable this mode if you do not know what you are doing!\n";
349
350 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
351}
352EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
353#endif
354
355static struct dentry *dfs_dir_mtd;
356
357static void mtd_debugfs_populate(struct mtd_info *mtd)
358{
359 struct device *dev = &mtd->dev;
360
361 if (IS_ERR_OR_NULL(dfs_dir_mtd))
362 return;
363
364 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
365}
366
367#ifndef CONFIG_MMU
368unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
369{
370 switch (mtd->type) {
371 case MTD_RAM:
372 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
373 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
374 case MTD_ROM:
375 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
376 NOMMU_MAP_READ;
377 default:
378 return NOMMU_MAP_COPY;
379 }
380}
381EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
382#endif
383
384static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
385 void *cmd)
386{
387 struct mtd_info *mtd;
388
389 mtd = container_of(n, struct mtd_info, reboot_notifier);
390 mtd->_reboot(mtd);
391
392 return NOTIFY_DONE;
393}
394
395/**
396 * mtd_wunit_to_pairing_info - get pairing information of a wunit
397 * @mtd: pointer to new MTD device info structure
398 * @wunit: write unit we are interested in
399 * @info: returned pairing information
400 *
401 * Retrieve pairing information associated to the wunit.
402 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
403 * paired together, and where programming a page may influence the page it is
404 * paired with.
405 * The notion of page is replaced by the term wunit (write-unit) to stay
406 * consistent with the ->writesize field.
407 *
408 * The @wunit argument can be extracted from an absolute offset using
409 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
410 * to @wunit.
411 *
412 * From the pairing info the MTD user can find all the wunits paired with
413 * @wunit using the following loop:
414 *
415 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
416 * info.pair = i;
417 * mtd_pairing_info_to_wunit(mtd, &info);
418 * ...
419 * }
420 */
421int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
422 struct mtd_pairing_info *info)
423{
424 struct mtd_info *master = mtd_get_master(mtd);
425 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
426
427 if (wunit < 0 || wunit >= npairs)
428 return -EINVAL;
429
430 if (master->pairing && master->pairing->get_info)
431 return master->pairing->get_info(master, wunit, info);
432
433 info->group = 0;
434 info->pair = wunit;
435
436 return 0;
437}
438EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
439
440/**
441 * mtd_pairing_info_to_wunit - get wunit from pairing information
442 * @mtd: pointer to new MTD device info structure
443 * @info: pairing information struct
444 *
445 * Returns a positive number representing the wunit associated to the info
446 * struct, or a negative error code.
447 *
448 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
449 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
450 * doc).
451 *
452 * It can also be used to only program the first page of each pair (i.e.
453 * page attached to group 0), which allows one to use an MLC NAND in
454 * software-emulated SLC mode:
455 *
456 * info.group = 0;
457 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
458 * for (info.pair = 0; info.pair < npairs; info.pair++) {
459 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
460 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
461 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
462 * }
463 */
464int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
465 const struct mtd_pairing_info *info)
466{
467 struct mtd_info *master = mtd_get_master(mtd);
468 int ngroups = mtd_pairing_groups(master);
469 int npairs = mtd_wunit_per_eb(master) / ngroups;
470
471 if (!info || info->pair < 0 || info->pair >= npairs ||
472 info->group < 0 || info->group >= ngroups)
473 return -EINVAL;
474
475 if (master->pairing && master->pairing->get_wunit)
476 return mtd->pairing->get_wunit(master, info);
477
478 return info->pair;
479}
480EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
481
482/**
483 * mtd_pairing_groups - get the number of pairing groups
484 * @mtd: pointer to new MTD device info structure
485 *
486 * Returns the number of pairing groups.
487 *
488 * This number is usually equal to the number of bits exposed by a single
489 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
490 * to iterate over all pages of a given pair.
491 */
492int mtd_pairing_groups(struct mtd_info *mtd)
493{
494 struct mtd_info *master = mtd_get_master(mtd);
495
496 if (!master->pairing || !master->pairing->ngroups)
497 return 1;
498
499 return master->pairing->ngroups;
500}
501EXPORT_SYMBOL_GPL(mtd_pairing_groups);
502
503static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
504 void *val, size_t bytes)
505{
506 struct mtd_info *mtd = priv;
507 size_t retlen;
508 int err;
509
510 err = mtd_read(mtd, offset, bytes, &retlen, val);
511 if (err && err != -EUCLEAN)
512 return err;
513
514 return retlen == bytes ? 0 : -EIO;
515}
516
517static int mtd_nvmem_add(struct mtd_info *mtd)
518{
519 struct device_node *node = mtd_get_of_node(mtd);
520 struct nvmem_config config = {};
521
522 config.id = NVMEM_DEVID_NONE;
523 config.dev = &mtd->dev;
524 config.name = dev_name(&mtd->dev);
525 config.owner = THIS_MODULE;
526 config.reg_read = mtd_nvmem_reg_read;
527 config.size = mtd->size;
528 config.word_size = 1;
529 config.stride = 1;
530 config.read_only = true;
531 config.root_only = true;
532 config.ignore_wp = true;
533 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
534 config.priv = mtd;
535
536 mtd->nvmem = nvmem_register(&config);
537 if (IS_ERR(mtd->nvmem)) {
538 /* Just ignore if there is no NVMEM support in the kernel */
539 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
540 mtd->nvmem = NULL;
541 else
542 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
543 "Failed to register NVMEM device\n");
544 }
545
546 return 0;
547}
548
549static void mtd_check_of_node(struct mtd_info *mtd)
550{
551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 const char *pname, *prefix = "partition-";
553 int plen, mtd_name_len, offset, prefix_len;
554
555 /* Check if MTD already has a device node */
556 if (mtd_get_of_node(mtd))
557 return;
558
559 if (!mtd_is_partition(mtd))
560 return;
561
562 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
563 if (!parent_dn)
564 return;
565
566 if (mtd_is_partition(mtd->parent))
567 partitions = of_node_get(parent_dn);
568 else
569 partitions = of_get_child_by_name(parent_dn, "partitions");
570 if (!partitions)
571 goto exit_parent;
572
573 prefix_len = strlen(prefix);
574 mtd_name_len = strlen(mtd->name);
575
576 /* Search if a partition is defined with the same name */
577 for_each_child_of_node(partitions, mtd_dn) {
578 /* Skip partition with no/wrong prefix */
579 if (!of_node_name_prefix(mtd_dn, prefix))
580 continue;
581
582 /* Label have priority. Check that first */
583 if (!of_property_read_string(mtd_dn, "label", &pname)) {
584 offset = 0;
585 } else {
586 pname = mtd_dn->name;
587 offset = prefix_len;
588 }
589
590 plen = strlen(pname) - offset;
591 if (plen == mtd_name_len &&
592 !strncmp(mtd->name, pname + offset, plen)) {
593 mtd_set_of_node(mtd, mtd_dn);
594 break;
595 }
596 }
597
598 of_node_put(partitions);
599exit_parent:
600 of_node_put(parent_dn);
601}
602
603/**
604 * add_mtd_device - register an MTD device
605 * @mtd: pointer to new MTD device info structure
606 *
607 * Add a device to the list of MTD devices present in the system, and
608 * notify each currently active MTD 'user' of its arrival. Returns
609 * zero on success or non-zero on failure.
610 */
611
612int add_mtd_device(struct mtd_info *mtd)
613{
614 struct device_node *np = mtd_get_of_node(mtd);
615 struct mtd_info *master = mtd_get_master(mtd);
616 struct mtd_notifier *not;
617 int i, error, ofidx;
618
619 /*
620 * May occur, for instance, on buggy drivers which call
621 * mtd_device_parse_register() multiple times on the same master MTD,
622 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
623 */
624 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
625 return -EEXIST;
626
627 BUG_ON(mtd->writesize == 0);
628
629 /*
630 * MTD drivers should implement ->_{write,read}() or
631 * ->_{write,read}_oob(), but not both.
632 */
633 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
634 (mtd->_read && mtd->_read_oob)))
635 return -EINVAL;
636
637 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
638 !(mtd->flags & MTD_NO_ERASE)))
639 return -EINVAL;
640
641 /*
642 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
643 * master is an MLC NAND and has a proper pairing scheme defined.
644 * We also reject masters that implement ->_writev() for now, because
645 * NAND controller drivers don't implement this hook, and adding the
646 * SLC -> MLC address/length conversion to this path is useless if we
647 * don't have a user.
648 */
649 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
650 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
651 !master->pairing || master->_writev))
652 return -EINVAL;
653
654 mutex_lock(&mtd_table_mutex);
655
656 ofidx = -1;
657 if (np)
658 ofidx = of_alias_get_id(np, "mtd");
659 if (ofidx >= 0)
660 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
661 else
662 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
663 if (i < 0) {
664 error = i;
665 goto fail_locked;
666 }
667
668 mtd->index = i;
669 mtd->usecount = 0;
670
671 /* default value if not set by driver */
672 if (mtd->bitflip_threshold == 0)
673 mtd->bitflip_threshold = mtd->ecc_strength;
674
675 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
676 int ngroups = mtd_pairing_groups(master);
677
678 mtd->erasesize /= ngroups;
679 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
680 mtd->erasesize;
681 }
682
683 if (is_power_of_2(mtd->erasesize))
684 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
685 else
686 mtd->erasesize_shift = 0;
687
688 if (is_power_of_2(mtd->writesize))
689 mtd->writesize_shift = ffs(mtd->writesize) - 1;
690 else
691 mtd->writesize_shift = 0;
692
693 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
694 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
695
696 /* Some chips always power up locked. Unlock them now */
697 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
698 error = mtd_unlock(mtd, 0, mtd->size);
699 if (error && error != -EOPNOTSUPP)
700 printk(KERN_WARNING
701 "%s: unlock failed, writes may not work\n",
702 mtd->name);
703 /* Ignore unlock failures? */
704 error = 0;
705 }
706
707 /* Caller should have set dev.parent to match the
708 * physical device, if appropriate.
709 */
710 mtd->dev.type = &mtd_devtype;
711 mtd->dev.class = &mtd_class;
712 mtd->dev.devt = MTD_DEVT(i);
713 dev_set_name(&mtd->dev, "mtd%d", i);
714 dev_set_drvdata(&mtd->dev, mtd);
715 mtd_check_of_node(mtd);
716 of_node_get(mtd_get_of_node(mtd));
717 error = device_register(&mtd->dev);
718 if (error) {
719 put_device(&mtd->dev);
720 goto fail_added;
721 }
722
723 /* Add the nvmem provider */
724 error = mtd_nvmem_add(mtd);
725 if (error)
726 goto fail_nvmem_add;
727
728 mtd_debugfs_populate(mtd);
729
730 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
731 "mtd%dro", i);
732
733 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
734 /* No need to get a refcount on the module containing
735 the notifier, since we hold the mtd_table_mutex */
736 list_for_each_entry(not, &mtd_notifiers, list)
737 not->add(mtd);
738
739 mutex_unlock(&mtd_table_mutex);
740
741 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
742 if (IS_BUILTIN(CONFIG_MTD)) {
743 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
744 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
745 } else {
746 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
747 mtd->index, mtd->name);
748 }
749 }
750
751 /* We _know_ we aren't being removed, because
752 our caller is still holding us here. So none
753 of this try_ nonsense, and no bitching about it
754 either. :) */
755 __module_get(THIS_MODULE);
756 return 0;
757
758fail_nvmem_add:
759 device_unregister(&mtd->dev);
760fail_added:
761 of_node_put(mtd_get_of_node(mtd));
762 idr_remove(&mtd_idr, i);
763fail_locked:
764 mutex_unlock(&mtd_table_mutex);
765 return error;
766}
767
768/**
769 * del_mtd_device - unregister an MTD device
770 * @mtd: pointer to MTD device info structure
771 *
772 * Remove a device from the list of MTD devices present in the system,
773 * and notify each currently active MTD 'user' of its departure.
774 * Returns zero on success or 1 on failure, which currently will happen
775 * if the requested device does not appear to be present in the list.
776 */
777
778int del_mtd_device(struct mtd_info *mtd)
779{
780 int ret;
781 struct mtd_notifier *not;
782 struct device_node *mtd_of_node;
783
784 mutex_lock(&mtd_table_mutex);
785
786 if (idr_find(&mtd_idr, mtd->index) != mtd) {
787 ret = -ENODEV;
788 goto out_error;
789 }
790
791 /* No need to get a refcount on the module containing
792 the notifier, since we hold the mtd_table_mutex */
793 list_for_each_entry(not, &mtd_notifiers, list)
794 not->remove(mtd);
795
796 if (mtd->usecount) {
797 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
798 mtd->index, mtd->name, mtd->usecount);
799 ret = -EBUSY;
800 } else {
801 mtd_of_node = mtd_get_of_node(mtd);
802 debugfs_remove_recursive(mtd->dbg.dfs_dir);
803
804 /* Try to remove the NVMEM provider */
805 nvmem_unregister(mtd->nvmem);
806
807 device_unregister(&mtd->dev);
808
809 /* Clear dev so mtd can be safely re-registered later if desired */
810 memset(&mtd->dev, 0, sizeof(mtd->dev));
811
812 idr_remove(&mtd_idr, mtd->index);
813 of_node_put(mtd_of_node);
814
815 module_put(THIS_MODULE);
816 ret = 0;
817 }
818
819out_error:
820 mutex_unlock(&mtd_table_mutex);
821 return ret;
822}
823
824/*
825 * Set a few defaults based on the parent devices, if not provided by the
826 * driver
827 */
828static void mtd_set_dev_defaults(struct mtd_info *mtd)
829{
830 if (mtd->dev.parent) {
831 if (!mtd->owner && mtd->dev.parent->driver)
832 mtd->owner = mtd->dev.parent->driver->owner;
833 if (!mtd->name)
834 mtd->name = dev_name(mtd->dev.parent);
835 } else {
836 pr_debug("mtd device won't show a device symlink in sysfs\n");
837 }
838
839 INIT_LIST_HEAD(&mtd->partitions);
840 mutex_init(&mtd->master.partitions_lock);
841 mutex_init(&mtd->master.chrdev_lock);
842}
843
844static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
845{
846 struct otp_info *info;
847 ssize_t size = 0;
848 unsigned int i;
849 size_t retlen;
850 int ret;
851
852 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
853 if (!info)
854 return -ENOMEM;
855
856 if (is_user)
857 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
858 else
859 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
860 if (ret)
861 goto err;
862
863 for (i = 0; i < retlen / sizeof(*info); i++)
864 size += info[i].length;
865
866 kfree(info);
867 return size;
868
869err:
870 kfree(info);
871
872 /* ENODATA means there is no OTP region. */
873 return ret == -ENODATA ? 0 : ret;
874}
875
876static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
877 const char *compatible,
878 int size,
879 nvmem_reg_read_t reg_read)
880{
881 struct nvmem_device *nvmem = NULL;
882 struct nvmem_config config = {};
883 struct device_node *np;
884
885 /* DT binding is optional */
886 np = of_get_compatible_child(mtd->dev.of_node, compatible);
887
888 /* OTP nvmem will be registered on the physical device */
889 config.dev = mtd->dev.parent;
890 config.name = compatible;
891 config.id = NVMEM_DEVID_AUTO;
892 config.owner = THIS_MODULE;
893 config.type = NVMEM_TYPE_OTP;
894 config.root_only = true;
895 config.ignore_wp = true;
896 config.reg_read = reg_read;
897 config.size = size;
898 config.of_node = np;
899 config.priv = mtd;
900
901 nvmem = nvmem_register(&config);
902 /* Just ignore if there is no NVMEM support in the kernel */
903 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
904 nvmem = NULL;
905
906 of_node_put(np);
907
908 return nvmem;
909}
910
911static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
912 void *val, size_t bytes)
913{
914 struct mtd_info *mtd = priv;
915 size_t retlen;
916 int ret;
917
918 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
919 if (ret)
920 return ret;
921
922 return retlen == bytes ? 0 : -EIO;
923}
924
925static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
926 void *val, size_t bytes)
927{
928 struct mtd_info *mtd = priv;
929 size_t retlen;
930 int ret;
931
932 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
933 if (ret)
934 return ret;
935
936 return retlen == bytes ? 0 : -EIO;
937}
938
939static int mtd_otp_nvmem_add(struct mtd_info *mtd)
940{
941 struct device *dev = mtd->dev.parent;
942 struct nvmem_device *nvmem;
943 ssize_t size;
944 int err;
945
946 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
947 size = mtd_otp_size(mtd, true);
948 if (size < 0)
949 return size;
950
951 if (size > 0) {
952 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
953 mtd_nvmem_user_otp_reg_read);
954 if (IS_ERR(nvmem)) {
955 err = PTR_ERR(nvmem);
956 goto err;
957 }
958 mtd->otp_user_nvmem = nvmem;
959 }
960 }
961
962 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
963 size = mtd_otp_size(mtd, false);
964 if (size < 0) {
965 err = size;
966 goto err;
967 }
968
969 if (size > 0) {
970 /*
971 * The factory OTP contains thing such as a unique serial
972 * number and is small, so let's read it out and put it
973 * into the entropy pool.
974 */
975 void *otp;
976
977 otp = kmalloc(size, GFP_KERNEL);
978 if (!otp) {
979 err = -ENOMEM;
980 goto err;
981 }
982 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
983 if (err < 0) {
984 kfree(otp);
985 goto err;
986 }
987 add_device_randomness(otp, err);
988 kfree(otp);
989
990 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
991 mtd_nvmem_fact_otp_reg_read);
992 if (IS_ERR(nvmem)) {
993 err = PTR_ERR(nvmem);
994 goto err;
995 }
996 mtd->otp_factory_nvmem = nvmem;
997 }
998 }
999
1000 return 0;
1001
1002err:
1003 nvmem_unregister(mtd->otp_user_nvmem);
1004 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1005}
1006
1007/**
1008 * mtd_device_parse_register - parse partitions and register an MTD device.
1009 *
1010 * @mtd: the MTD device to register
1011 * @types: the list of MTD partition probes to try, see
1012 * 'parse_mtd_partitions()' for more information
1013 * @parser_data: MTD partition parser-specific data
1014 * @parts: fallback partition information to register, if parsing fails;
1015 * only valid if %nr_parts > %0
1016 * @nr_parts: the number of partitions in parts, if zero then the full
1017 * MTD device is registered if no partition info is found
1018 *
1019 * This function aggregates MTD partitions parsing (done by
1020 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1021 * basically follows the most common pattern found in many MTD drivers:
1022 *
1023 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1024 * registered first.
1025 * * Then It tries to probe partitions on MTD device @mtd using parsers
1026 * specified in @types (if @types is %NULL, then the default list of parsers
1027 * is used, see 'parse_mtd_partitions()' for more information). If none are
1028 * found this functions tries to fallback to information specified in
1029 * @parts/@nr_parts.
1030 * * If no partitions were found this function just registers the MTD device
1031 * @mtd and exits.
1032 *
1033 * Returns zero in case of success and a negative error code in case of failure.
1034 */
1035int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1036 struct mtd_part_parser_data *parser_data,
1037 const struct mtd_partition *parts,
1038 int nr_parts)
1039{
1040 int ret;
1041
1042 mtd_set_dev_defaults(mtd);
1043
1044 ret = mtd_otp_nvmem_add(mtd);
1045 if (ret)
1046 goto out;
1047
1048 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1049 ret = add_mtd_device(mtd);
1050 if (ret)
1051 goto out;
1052 }
1053
1054 /* Prefer parsed partitions over driver-provided fallback */
1055 ret = parse_mtd_partitions(mtd, types, parser_data);
1056 if (ret == -EPROBE_DEFER)
1057 goto out;
1058
1059 if (ret > 0)
1060 ret = 0;
1061 else if (nr_parts)
1062 ret = add_mtd_partitions(mtd, parts, nr_parts);
1063 else if (!device_is_registered(&mtd->dev))
1064 ret = add_mtd_device(mtd);
1065 else
1066 ret = 0;
1067
1068 if (ret)
1069 goto out;
1070
1071 /*
1072 * FIXME: some drivers unfortunately call this function more than once.
1073 * So we have to check if we've already assigned the reboot notifier.
1074 *
1075 * Generally, we can make multiple calls work for most cases, but it
1076 * does cause problems with parse_mtd_partitions() above (e.g.,
1077 * cmdlineparts will register partitions more than once).
1078 */
1079 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1080 "MTD already registered\n");
1081 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1082 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1083 register_reboot_notifier(&mtd->reboot_notifier);
1084 }
1085
1086out:
1087 if (ret) {
1088 nvmem_unregister(mtd->otp_user_nvmem);
1089 nvmem_unregister(mtd->otp_factory_nvmem);
1090 }
1091
1092 if (ret && device_is_registered(&mtd->dev))
1093 del_mtd_device(mtd);
1094
1095 return ret;
1096}
1097EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1098
1099/**
1100 * mtd_device_unregister - unregister an existing MTD device.
1101 *
1102 * @master: the MTD device to unregister. This will unregister both the master
1103 * and any partitions if registered.
1104 */
1105int mtd_device_unregister(struct mtd_info *master)
1106{
1107 int err;
1108
1109 if (master->_reboot) {
1110 unregister_reboot_notifier(&master->reboot_notifier);
1111 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1112 }
1113
1114 nvmem_unregister(master->otp_user_nvmem);
1115 nvmem_unregister(master->otp_factory_nvmem);
1116
1117 err = del_mtd_partitions(master);
1118 if (err)
1119 return err;
1120
1121 if (!device_is_registered(&master->dev))
1122 return 0;
1123
1124 return del_mtd_device(master);
1125}
1126EXPORT_SYMBOL_GPL(mtd_device_unregister);
1127
1128/**
1129 * register_mtd_user - register a 'user' of MTD devices.
1130 * @new: pointer to notifier info structure
1131 *
1132 * Registers a pair of callbacks function to be called upon addition
1133 * or removal of MTD devices. Causes the 'add' callback to be immediately
1134 * invoked for each MTD device currently present in the system.
1135 */
1136void register_mtd_user (struct mtd_notifier *new)
1137{
1138 struct mtd_info *mtd;
1139
1140 mutex_lock(&mtd_table_mutex);
1141
1142 list_add(&new->list, &mtd_notifiers);
1143
1144 __module_get(THIS_MODULE);
1145
1146 mtd_for_each_device(mtd)
1147 new->add(mtd);
1148
1149 mutex_unlock(&mtd_table_mutex);
1150}
1151EXPORT_SYMBOL_GPL(register_mtd_user);
1152
1153/**
1154 * unregister_mtd_user - unregister a 'user' of MTD devices.
1155 * @old: pointer to notifier info structure
1156 *
1157 * Removes a callback function pair from the list of 'users' to be
1158 * notified upon addition or removal of MTD devices. Causes the
1159 * 'remove' callback to be immediately invoked for each MTD device
1160 * currently present in the system.
1161 */
1162int unregister_mtd_user (struct mtd_notifier *old)
1163{
1164 struct mtd_info *mtd;
1165
1166 mutex_lock(&mtd_table_mutex);
1167
1168 module_put(THIS_MODULE);
1169
1170 mtd_for_each_device(mtd)
1171 old->remove(mtd);
1172
1173 list_del(&old->list);
1174 mutex_unlock(&mtd_table_mutex);
1175 return 0;
1176}
1177EXPORT_SYMBOL_GPL(unregister_mtd_user);
1178
1179/**
1180 * get_mtd_device - obtain a validated handle for an MTD device
1181 * @mtd: last known address of the required MTD device
1182 * @num: internal device number of the required MTD device
1183 *
1184 * Given a number and NULL address, return the num'th entry in the device
1185 * table, if any. Given an address and num == -1, search the device table
1186 * for a device with that address and return if it's still present. Given
1187 * both, return the num'th driver only if its address matches. Return
1188 * error code if not.
1189 */
1190struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1191{
1192 struct mtd_info *ret = NULL, *other;
1193 int err = -ENODEV;
1194
1195 mutex_lock(&mtd_table_mutex);
1196
1197 if (num == -1) {
1198 mtd_for_each_device(other) {
1199 if (other == mtd) {
1200 ret = mtd;
1201 break;
1202 }
1203 }
1204 } else if (num >= 0) {
1205 ret = idr_find(&mtd_idr, num);
1206 if (mtd && mtd != ret)
1207 ret = NULL;
1208 }
1209
1210 if (!ret) {
1211 ret = ERR_PTR(err);
1212 goto out;
1213 }
1214
1215 err = __get_mtd_device(ret);
1216 if (err)
1217 ret = ERR_PTR(err);
1218out:
1219 mutex_unlock(&mtd_table_mutex);
1220 return ret;
1221}
1222EXPORT_SYMBOL_GPL(get_mtd_device);
1223
1224
1225int __get_mtd_device(struct mtd_info *mtd)
1226{
1227 struct mtd_info *master = mtd_get_master(mtd);
1228 int err;
1229
1230 if (!try_module_get(master->owner))
1231 return -ENODEV;
1232
1233 if (master->_get_device) {
1234 err = master->_get_device(mtd);
1235
1236 if (err) {
1237 module_put(master->owner);
1238 return err;
1239 }
1240 }
1241
1242 master->usecount++;
1243
1244 while (mtd->parent) {
1245 mtd->usecount++;
1246 mtd = mtd->parent;
1247 }
1248
1249 return 0;
1250}
1251EXPORT_SYMBOL_GPL(__get_mtd_device);
1252
1253/**
1254 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1255 *
1256 * @np: device tree node
1257 */
1258struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1259{
1260 struct mtd_info *mtd = NULL;
1261 struct mtd_info *tmp;
1262 int err;
1263
1264 mutex_lock(&mtd_table_mutex);
1265
1266 err = -EPROBE_DEFER;
1267 mtd_for_each_device(tmp) {
1268 if (mtd_get_of_node(tmp) == np) {
1269 mtd = tmp;
1270 err = __get_mtd_device(mtd);
1271 break;
1272 }
1273 }
1274
1275 mutex_unlock(&mtd_table_mutex);
1276
1277 return err ? ERR_PTR(err) : mtd;
1278}
1279EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1280
1281/**
1282 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1283 * device name
1284 * @name: MTD device name to open
1285 *
1286 * This function returns MTD device description structure in case of
1287 * success and an error code in case of failure.
1288 */
1289struct mtd_info *get_mtd_device_nm(const char *name)
1290{
1291 int err = -ENODEV;
1292 struct mtd_info *mtd = NULL, *other;
1293
1294 mutex_lock(&mtd_table_mutex);
1295
1296 mtd_for_each_device(other) {
1297 if (!strcmp(name, other->name)) {
1298 mtd = other;
1299 break;
1300 }
1301 }
1302
1303 if (!mtd)
1304 goto out_unlock;
1305
1306 err = __get_mtd_device(mtd);
1307 if (err)
1308 goto out_unlock;
1309
1310 mutex_unlock(&mtd_table_mutex);
1311 return mtd;
1312
1313out_unlock:
1314 mutex_unlock(&mtd_table_mutex);
1315 return ERR_PTR(err);
1316}
1317EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1318
1319void put_mtd_device(struct mtd_info *mtd)
1320{
1321 mutex_lock(&mtd_table_mutex);
1322 __put_mtd_device(mtd);
1323 mutex_unlock(&mtd_table_mutex);
1324
1325}
1326EXPORT_SYMBOL_GPL(put_mtd_device);
1327
1328void __put_mtd_device(struct mtd_info *mtd)
1329{
1330 struct mtd_info *master = mtd_get_master(mtd);
1331
1332 while (mtd->parent) {
1333 --mtd->usecount;
1334 BUG_ON(mtd->usecount < 0);
1335 mtd = mtd->parent;
1336 }
1337
1338 master->usecount--;
1339
1340 if (master->_put_device)
1341 master->_put_device(master);
1342
1343 module_put(master->owner);
1344}
1345EXPORT_SYMBOL_GPL(__put_mtd_device);
1346
1347/*
1348 * Erase is an synchronous operation. Device drivers are epected to return a
1349 * negative error code if the operation failed and update instr->fail_addr
1350 * to point the portion that was not properly erased.
1351 */
1352int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1353{
1354 struct mtd_info *master = mtd_get_master(mtd);
1355 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1356 struct erase_info adjinstr;
1357 int ret;
1358
1359 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1360 adjinstr = *instr;
1361
1362 if (!mtd->erasesize || !master->_erase)
1363 return -ENOTSUPP;
1364
1365 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1366 return -EINVAL;
1367 if (!(mtd->flags & MTD_WRITEABLE))
1368 return -EROFS;
1369
1370 if (!instr->len)
1371 return 0;
1372
1373 ledtrig_mtd_activity();
1374
1375 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1376 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1377 master->erasesize;
1378 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1379 master->erasesize) -
1380 adjinstr.addr;
1381 }
1382
1383 adjinstr.addr += mst_ofs;
1384
1385 ret = master->_erase(master, &adjinstr);
1386
1387 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1388 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1389 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1390 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1391 master);
1392 instr->fail_addr *= mtd->erasesize;
1393 }
1394 }
1395
1396 return ret;
1397}
1398EXPORT_SYMBOL_GPL(mtd_erase);
1399
1400/*
1401 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1402 */
1403int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1404 void **virt, resource_size_t *phys)
1405{
1406 struct mtd_info *master = mtd_get_master(mtd);
1407
1408 *retlen = 0;
1409 *virt = NULL;
1410 if (phys)
1411 *phys = 0;
1412 if (!master->_point)
1413 return -EOPNOTSUPP;
1414 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1415 return -EINVAL;
1416 if (!len)
1417 return 0;
1418
1419 from = mtd_get_master_ofs(mtd, from);
1420 return master->_point(master, from, len, retlen, virt, phys);
1421}
1422EXPORT_SYMBOL_GPL(mtd_point);
1423
1424/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1425int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1426{
1427 struct mtd_info *master = mtd_get_master(mtd);
1428
1429 if (!master->_unpoint)
1430 return -EOPNOTSUPP;
1431 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1432 return -EINVAL;
1433 if (!len)
1434 return 0;
1435 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1436}
1437EXPORT_SYMBOL_GPL(mtd_unpoint);
1438
1439/*
1440 * Allow NOMMU mmap() to directly map the device (if not NULL)
1441 * - return the address to which the offset maps
1442 * - return -ENOSYS to indicate refusal to do the mapping
1443 */
1444unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1445 unsigned long offset, unsigned long flags)
1446{
1447 size_t retlen;
1448 void *virt;
1449 int ret;
1450
1451 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1452 if (ret)
1453 return ret;
1454 if (retlen != len) {
1455 mtd_unpoint(mtd, offset, retlen);
1456 return -ENOSYS;
1457 }
1458 return (unsigned long)virt;
1459}
1460EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1461
1462static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1463 const struct mtd_ecc_stats *old_stats)
1464{
1465 struct mtd_ecc_stats diff;
1466
1467 if (master == mtd)
1468 return;
1469
1470 diff = master->ecc_stats;
1471 diff.failed -= old_stats->failed;
1472 diff.corrected -= old_stats->corrected;
1473
1474 while (mtd->parent) {
1475 mtd->ecc_stats.failed += diff.failed;
1476 mtd->ecc_stats.corrected += diff.corrected;
1477 mtd = mtd->parent;
1478 }
1479}
1480
1481int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1482 u_char *buf)
1483{
1484 struct mtd_oob_ops ops = {
1485 .len = len,
1486 .datbuf = buf,
1487 };
1488 int ret;
1489
1490 ret = mtd_read_oob(mtd, from, &ops);
1491 *retlen = ops.retlen;
1492
1493 return ret;
1494}
1495EXPORT_SYMBOL_GPL(mtd_read);
1496
1497int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1498 const u_char *buf)
1499{
1500 struct mtd_oob_ops ops = {
1501 .len = len,
1502 .datbuf = (u8 *)buf,
1503 };
1504 int ret;
1505
1506 ret = mtd_write_oob(mtd, to, &ops);
1507 *retlen = ops.retlen;
1508
1509 return ret;
1510}
1511EXPORT_SYMBOL_GPL(mtd_write);
1512
1513/*
1514 * In blackbox flight recorder like scenarios we want to make successful writes
1515 * in interrupt context. panic_write() is only intended to be called when its
1516 * known the kernel is about to panic and we need the write to succeed. Since
1517 * the kernel is not going to be running for much longer, this function can
1518 * break locks and delay to ensure the write succeeds (but not sleep).
1519 */
1520int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1521 const u_char *buf)
1522{
1523 struct mtd_info *master = mtd_get_master(mtd);
1524
1525 *retlen = 0;
1526 if (!master->_panic_write)
1527 return -EOPNOTSUPP;
1528 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1529 return -EINVAL;
1530 if (!(mtd->flags & MTD_WRITEABLE))
1531 return -EROFS;
1532 if (!len)
1533 return 0;
1534 if (!master->oops_panic_write)
1535 master->oops_panic_write = true;
1536
1537 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1538 retlen, buf);
1539}
1540EXPORT_SYMBOL_GPL(mtd_panic_write);
1541
1542static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1543 struct mtd_oob_ops *ops)
1544{
1545 /*
1546 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1547 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1548 * this case.
1549 */
1550 if (!ops->datbuf)
1551 ops->len = 0;
1552
1553 if (!ops->oobbuf)
1554 ops->ooblen = 0;
1555
1556 if (offs < 0 || offs + ops->len > mtd->size)
1557 return -EINVAL;
1558
1559 if (ops->ooblen) {
1560 size_t maxooblen;
1561
1562 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1563 return -EINVAL;
1564
1565 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1566 mtd_div_by_ws(offs, mtd)) *
1567 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1568 if (ops->ooblen > maxooblen)
1569 return -EINVAL;
1570 }
1571
1572 return 0;
1573}
1574
1575static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1576 struct mtd_oob_ops *ops)
1577{
1578 struct mtd_info *master = mtd_get_master(mtd);
1579 int ret;
1580
1581 from = mtd_get_master_ofs(mtd, from);
1582 if (master->_read_oob)
1583 ret = master->_read_oob(master, from, ops);
1584 else
1585 ret = master->_read(master, from, ops->len, &ops->retlen,
1586 ops->datbuf);
1587
1588 return ret;
1589}
1590
1591static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1592 struct mtd_oob_ops *ops)
1593{
1594 struct mtd_info *master = mtd_get_master(mtd);
1595 int ret;
1596
1597 to = mtd_get_master_ofs(mtd, to);
1598 if (master->_write_oob)
1599 ret = master->_write_oob(master, to, ops);
1600 else
1601 ret = master->_write(master, to, ops->len, &ops->retlen,
1602 ops->datbuf);
1603
1604 return ret;
1605}
1606
1607static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1608 struct mtd_oob_ops *ops)
1609{
1610 struct mtd_info *master = mtd_get_master(mtd);
1611 int ngroups = mtd_pairing_groups(master);
1612 int npairs = mtd_wunit_per_eb(master) / ngroups;
1613 struct mtd_oob_ops adjops = *ops;
1614 unsigned int wunit, oobavail;
1615 struct mtd_pairing_info info;
1616 int max_bitflips = 0;
1617 u32 ebofs, pageofs;
1618 loff_t base, pos;
1619
1620 ebofs = mtd_mod_by_eb(start, mtd);
1621 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1622 info.group = 0;
1623 info.pair = mtd_div_by_ws(ebofs, mtd);
1624 pageofs = mtd_mod_by_ws(ebofs, mtd);
1625 oobavail = mtd_oobavail(mtd, ops);
1626
1627 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1628 int ret;
1629
1630 if (info.pair >= npairs) {
1631 info.pair = 0;
1632 base += master->erasesize;
1633 }
1634
1635 wunit = mtd_pairing_info_to_wunit(master, &info);
1636 pos = mtd_wunit_to_offset(mtd, base, wunit);
1637
1638 adjops.len = ops->len - ops->retlen;
1639 if (adjops.len > mtd->writesize - pageofs)
1640 adjops.len = mtd->writesize - pageofs;
1641
1642 adjops.ooblen = ops->ooblen - ops->oobretlen;
1643 if (adjops.ooblen > oobavail - adjops.ooboffs)
1644 adjops.ooblen = oobavail - adjops.ooboffs;
1645
1646 if (read) {
1647 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1648 if (ret > 0)
1649 max_bitflips = max(max_bitflips, ret);
1650 } else {
1651 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1652 }
1653
1654 if (ret < 0)
1655 return ret;
1656
1657 max_bitflips = max(max_bitflips, ret);
1658 ops->retlen += adjops.retlen;
1659 ops->oobretlen += adjops.oobretlen;
1660 adjops.datbuf += adjops.retlen;
1661 adjops.oobbuf += adjops.oobretlen;
1662 adjops.ooboffs = 0;
1663 pageofs = 0;
1664 info.pair++;
1665 }
1666
1667 return max_bitflips;
1668}
1669
1670int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1671{
1672 struct mtd_info *master = mtd_get_master(mtd);
1673 struct mtd_ecc_stats old_stats = master->ecc_stats;
1674 int ret_code;
1675
1676 ops->retlen = ops->oobretlen = 0;
1677
1678 ret_code = mtd_check_oob_ops(mtd, from, ops);
1679 if (ret_code)
1680 return ret_code;
1681
1682 ledtrig_mtd_activity();
1683
1684 /* Check the validity of a potential fallback on mtd->_read */
1685 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1686 return -EOPNOTSUPP;
1687
1688 if (ops->stats)
1689 memset(ops->stats, 0, sizeof(*ops->stats));
1690
1691 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1692 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1693 else
1694 ret_code = mtd_read_oob_std(mtd, from, ops);
1695
1696 mtd_update_ecc_stats(mtd, master, &old_stats);
1697
1698 /*
1699 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1700 * similar to mtd->_read(), returning a non-negative integer
1701 * representing max bitflips. In other cases, mtd->_read_oob() may
1702 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1703 */
1704 if (unlikely(ret_code < 0))
1705 return ret_code;
1706 if (mtd->ecc_strength == 0)
1707 return 0; /* device lacks ecc */
1708 if (ops->stats)
1709 ops->stats->max_bitflips = ret_code;
1710 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1711}
1712EXPORT_SYMBOL_GPL(mtd_read_oob);
1713
1714int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1715 struct mtd_oob_ops *ops)
1716{
1717 struct mtd_info *master = mtd_get_master(mtd);
1718 int ret;
1719
1720 ops->retlen = ops->oobretlen = 0;
1721
1722 if (!(mtd->flags & MTD_WRITEABLE))
1723 return -EROFS;
1724
1725 ret = mtd_check_oob_ops(mtd, to, ops);
1726 if (ret)
1727 return ret;
1728
1729 ledtrig_mtd_activity();
1730
1731 /* Check the validity of a potential fallback on mtd->_write */
1732 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1733 return -EOPNOTSUPP;
1734
1735 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1736 return mtd_io_emulated_slc(mtd, to, false, ops);
1737
1738 return mtd_write_oob_std(mtd, to, ops);
1739}
1740EXPORT_SYMBOL_GPL(mtd_write_oob);
1741
1742/**
1743 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1744 * @mtd: MTD device structure
1745 * @section: ECC section. Depending on the layout you may have all the ECC
1746 * bytes stored in a single contiguous section, or one section
1747 * per ECC chunk (and sometime several sections for a single ECC
1748 * ECC chunk)
1749 * @oobecc: OOB region struct filled with the appropriate ECC position
1750 * information
1751 *
1752 * This function returns ECC section information in the OOB area. If you want
1753 * to get all the ECC bytes information, then you should call
1754 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1755 *
1756 * Returns zero on success, a negative error code otherwise.
1757 */
1758int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1759 struct mtd_oob_region *oobecc)
1760{
1761 struct mtd_info *master = mtd_get_master(mtd);
1762
1763 memset(oobecc, 0, sizeof(*oobecc));
1764
1765 if (!master || section < 0)
1766 return -EINVAL;
1767
1768 if (!master->ooblayout || !master->ooblayout->ecc)
1769 return -ENOTSUPP;
1770
1771 return master->ooblayout->ecc(master, section, oobecc);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1774
1775/**
1776 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1777 * section
1778 * @mtd: MTD device structure
1779 * @section: Free section you are interested in. Depending on the layout
1780 * you may have all the free bytes stored in a single contiguous
1781 * section, or one section per ECC chunk plus an extra section
1782 * for the remaining bytes (or other funky layout).
1783 * @oobfree: OOB region struct filled with the appropriate free position
1784 * information
1785 *
1786 * This function returns free bytes position in the OOB area. If you want
1787 * to get all the free bytes information, then you should call
1788 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1789 *
1790 * Returns zero on success, a negative error code otherwise.
1791 */
1792int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1793 struct mtd_oob_region *oobfree)
1794{
1795 struct mtd_info *master = mtd_get_master(mtd);
1796
1797 memset(oobfree, 0, sizeof(*oobfree));
1798
1799 if (!master || section < 0)
1800 return -EINVAL;
1801
1802 if (!master->ooblayout || !master->ooblayout->free)
1803 return -ENOTSUPP;
1804
1805 return master->ooblayout->free(master, section, oobfree);
1806}
1807EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1808
1809/**
1810 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1811 * @mtd: mtd info structure
1812 * @byte: the byte we are searching for
1813 * @sectionp: pointer where the section id will be stored
1814 * @oobregion: used to retrieve the ECC position
1815 * @iter: iterator function. Should be either mtd_ooblayout_free or
1816 * mtd_ooblayout_ecc depending on the region type you're searching for
1817 *
1818 * This function returns the section id and oobregion information of a
1819 * specific byte. For example, say you want to know where the 4th ECC byte is
1820 * stored, you'll use:
1821 *
1822 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1823 *
1824 * Returns zero on success, a negative error code otherwise.
1825 */
1826static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1827 int *sectionp, struct mtd_oob_region *oobregion,
1828 int (*iter)(struct mtd_info *,
1829 int section,
1830 struct mtd_oob_region *oobregion))
1831{
1832 int pos = 0, ret, section = 0;
1833
1834 memset(oobregion, 0, sizeof(*oobregion));
1835
1836 while (1) {
1837 ret = iter(mtd, section, oobregion);
1838 if (ret)
1839 return ret;
1840
1841 if (pos + oobregion->length > byte)
1842 break;
1843
1844 pos += oobregion->length;
1845 section++;
1846 }
1847
1848 /*
1849 * Adjust region info to make it start at the beginning at the
1850 * 'start' ECC byte.
1851 */
1852 oobregion->offset += byte - pos;
1853 oobregion->length -= byte - pos;
1854 *sectionp = section;
1855
1856 return 0;
1857}
1858
1859/**
1860 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1861 * ECC byte
1862 * @mtd: mtd info structure
1863 * @eccbyte: the byte we are searching for
1864 * @section: pointer where the section id will be stored
1865 * @oobregion: OOB region information
1866 *
1867 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1868 * byte.
1869 *
1870 * Returns zero on success, a negative error code otherwise.
1871 */
1872int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1873 int *section,
1874 struct mtd_oob_region *oobregion)
1875{
1876 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1877 mtd_ooblayout_ecc);
1878}
1879EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1880
1881/**
1882 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1883 * @mtd: mtd info structure
1884 * @buf: destination buffer to store OOB bytes
1885 * @oobbuf: OOB buffer
1886 * @start: first byte to retrieve
1887 * @nbytes: number of bytes to retrieve
1888 * @iter: section iterator
1889 *
1890 * Extract bytes attached to a specific category (ECC or free)
1891 * from the OOB buffer and copy them into buf.
1892 *
1893 * Returns zero on success, a negative error code otherwise.
1894 */
1895static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1896 const u8 *oobbuf, int start, int nbytes,
1897 int (*iter)(struct mtd_info *,
1898 int section,
1899 struct mtd_oob_region *oobregion))
1900{
1901 struct mtd_oob_region oobregion;
1902 int section, ret;
1903
1904 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1905 &oobregion, iter);
1906
1907 while (!ret) {
1908 int cnt;
1909
1910 cnt = min_t(int, nbytes, oobregion.length);
1911 memcpy(buf, oobbuf + oobregion.offset, cnt);
1912 buf += cnt;
1913 nbytes -= cnt;
1914
1915 if (!nbytes)
1916 break;
1917
1918 ret = iter(mtd, ++section, &oobregion);
1919 }
1920
1921 return ret;
1922}
1923
1924/**
1925 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1926 * @mtd: mtd info structure
1927 * @buf: source buffer to get OOB bytes from
1928 * @oobbuf: OOB buffer
1929 * @start: first OOB byte to set
1930 * @nbytes: number of OOB bytes to set
1931 * @iter: section iterator
1932 *
1933 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1934 * is selected by passing the appropriate iterator.
1935 *
1936 * Returns zero on success, a negative error code otherwise.
1937 */
1938static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1939 u8 *oobbuf, int start, int nbytes,
1940 int (*iter)(struct mtd_info *,
1941 int section,
1942 struct mtd_oob_region *oobregion))
1943{
1944 struct mtd_oob_region oobregion;
1945 int section, ret;
1946
1947 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1948 &oobregion, iter);
1949
1950 while (!ret) {
1951 int cnt;
1952
1953 cnt = min_t(int, nbytes, oobregion.length);
1954 memcpy(oobbuf + oobregion.offset, buf, cnt);
1955 buf += cnt;
1956 nbytes -= cnt;
1957
1958 if (!nbytes)
1959 break;
1960
1961 ret = iter(mtd, ++section, &oobregion);
1962 }
1963
1964 return ret;
1965}
1966
1967/**
1968 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1969 * @mtd: mtd info structure
1970 * @iter: category iterator
1971 *
1972 * Count the number of bytes in a given category.
1973 *
1974 * Returns a positive value on success, a negative error code otherwise.
1975 */
1976static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1977 int (*iter)(struct mtd_info *,
1978 int section,
1979 struct mtd_oob_region *oobregion))
1980{
1981 struct mtd_oob_region oobregion;
1982 int section = 0, ret, nbytes = 0;
1983
1984 while (1) {
1985 ret = iter(mtd, section++, &oobregion);
1986 if (ret) {
1987 if (ret == -ERANGE)
1988 ret = nbytes;
1989 break;
1990 }
1991
1992 nbytes += oobregion.length;
1993 }
1994
1995 return ret;
1996}
1997
1998/**
1999 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2000 * @mtd: mtd info structure
2001 * @eccbuf: destination buffer to store ECC bytes
2002 * @oobbuf: OOB buffer
2003 * @start: first ECC byte to retrieve
2004 * @nbytes: number of ECC bytes to retrieve
2005 *
2006 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2007 *
2008 * Returns zero on success, a negative error code otherwise.
2009 */
2010int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2011 const u8 *oobbuf, int start, int nbytes)
2012{
2013 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2014 mtd_ooblayout_ecc);
2015}
2016EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2017
2018/**
2019 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2020 * @mtd: mtd info structure
2021 * @eccbuf: source buffer to get ECC bytes from
2022 * @oobbuf: OOB buffer
2023 * @start: first ECC byte to set
2024 * @nbytes: number of ECC bytes to set
2025 *
2026 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2027 *
2028 * Returns zero on success, a negative error code otherwise.
2029 */
2030int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2031 u8 *oobbuf, int start, int nbytes)
2032{
2033 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2034 mtd_ooblayout_ecc);
2035}
2036EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2037
2038/**
2039 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2040 * @mtd: mtd info structure
2041 * @databuf: destination buffer to store ECC bytes
2042 * @oobbuf: OOB buffer
2043 * @start: first ECC byte to retrieve
2044 * @nbytes: number of ECC bytes to retrieve
2045 *
2046 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2047 *
2048 * Returns zero on success, a negative error code otherwise.
2049 */
2050int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2051 const u8 *oobbuf, int start, int nbytes)
2052{
2053 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2054 mtd_ooblayout_free);
2055}
2056EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2057
2058/**
2059 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2060 * @mtd: mtd info structure
2061 * @databuf: source buffer to get data bytes from
2062 * @oobbuf: OOB buffer
2063 * @start: first ECC byte to set
2064 * @nbytes: number of ECC bytes to set
2065 *
2066 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2067 *
2068 * Returns zero on success, a negative error code otherwise.
2069 */
2070int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2071 u8 *oobbuf, int start, int nbytes)
2072{
2073 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2074 mtd_ooblayout_free);
2075}
2076EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2077
2078/**
2079 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2080 * @mtd: mtd info structure
2081 *
2082 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2083 *
2084 * Returns zero on success, a negative error code otherwise.
2085 */
2086int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2087{
2088 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2089}
2090EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2091
2092/**
2093 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2094 * @mtd: mtd info structure
2095 *
2096 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2097 *
2098 * Returns zero on success, a negative error code otherwise.
2099 */
2100int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2101{
2102 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2103}
2104EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2105
2106/*
2107 * Method to access the protection register area, present in some flash
2108 * devices. The user data is one time programmable but the factory data is read
2109 * only.
2110 */
2111int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2112 struct otp_info *buf)
2113{
2114 struct mtd_info *master = mtd_get_master(mtd);
2115
2116 if (!master->_get_fact_prot_info)
2117 return -EOPNOTSUPP;
2118 if (!len)
2119 return 0;
2120 return master->_get_fact_prot_info(master, len, retlen, buf);
2121}
2122EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2123
2124int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2125 size_t *retlen, u_char *buf)
2126{
2127 struct mtd_info *master = mtd_get_master(mtd);
2128
2129 *retlen = 0;
2130 if (!master->_read_fact_prot_reg)
2131 return -EOPNOTSUPP;
2132 if (!len)
2133 return 0;
2134 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2135}
2136EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2137
2138int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2139 struct otp_info *buf)
2140{
2141 struct mtd_info *master = mtd_get_master(mtd);
2142
2143 if (!master->_get_user_prot_info)
2144 return -EOPNOTSUPP;
2145 if (!len)
2146 return 0;
2147 return master->_get_user_prot_info(master, len, retlen, buf);
2148}
2149EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2150
2151int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2152 size_t *retlen, u_char *buf)
2153{
2154 struct mtd_info *master = mtd_get_master(mtd);
2155
2156 *retlen = 0;
2157 if (!master->_read_user_prot_reg)
2158 return -EOPNOTSUPP;
2159 if (!len)
2160 return 0;
2161 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2162}
2163EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2164
2165int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2166 size_t *retlen, const u_char *buf)
2167{
2168 struct mtd_info *master = mtd_get_master(mtd);
2169 int ret;
2170
2171 *retlen = 0;
2172 if (!master->_write_user_prot_reg)
2173 return -EOPNOTSUPP;
2174 if (!len)
2175 return 0;
2176 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2177 if (ret)
2178 return ret;
2179
2180 /*
2181 * If no data could be written at all, we are out of memory and
2182 * must return -ENOSPC.
2183 */
2184 return (*retlen) ? 0 : -ENOSPC;
2185}
2186EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2187
2188int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2189{
2190 struct mtd_info *master = mtd_get_master(mtd);
2191
2192 if (!master->_lock_user_prot_reg)
2193 return -EOPNOTSUPP;
2194 if (!len)
2195 return 0;
2196 return master->_lock_user_prot_reg(master, from, len);
2197}
2198EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2199
2200int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2201{
2202 struct mtd_info *master = mtd_get_master(mtd);
2203
2204 if (!master->_erase_user_prot_reg)
2205 return -EOPNOTSUPP;
2206 if (!len)
2207 return 0;
2208 return master->_erase_user_prot_reg(master, from, len);
2209}
2210EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2211
2212/* Chip-supported device locking */
2213int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2214{
2215 struct mtd_info *master = mtd_get_master(mtd);
2216
2217 if (!master->_lock)
2218 return -EOPNOTSUPP;
2219 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2220 return -EINVAL;
2221 if (!len)
2222 return 0;
2223
2224 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2225 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2226 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2227 }
2228
2229 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2230}
2231EXPORT_SYMBOL_GPL(mtd_lock);
2232
2233int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2234{
2235 struct mtd_info *master = mtd_get_master(mtd);
2236
2237 if (!master->_unlock)
2238 return -EOPNOTSUPP;
2239 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2240 return -EINVAL;
2241 if (!len)
2242 return 0;
2243
2244 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2245 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2246 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2247 }
2248
2249 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2250}
2251EXPORT_SYMBOL_GPL(mtd_unlock);
2252
2253int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2254{
2255 struct mtd_info *master = mtd_get_master(mtd);
2256
2257 if (!master->_is_locked)
2258 return -EOPNOTSUPP;
2259 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2260 return -EINVAL;
2261 if (!len)
2262 return 0;
2263
2264 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2265 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2266 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2267 }
2268
2269 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2270}
2271EXPORT_SYMBOL_GPL(mtd_is_locked);
2272
2273int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2274{
2275 struct mtd_info *master = mtd_get_master(mtd);
2276
2277 if (ofs < 0 || ofs >= mtd->size)
2278 return -EINVAL;
2279 if (!master->_block_isreserved)
2280 return 0;
2281
2282 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2283 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2284
2285 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2286}
2287EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2288
2289int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2290{
2291 struct mtd_info *master = mtd_get_master(mtd);
2292
2293 if (ofs < 0 || ofs >= mtd->size)
2294 return -EINVAL;
2295 if (!master->_block_isbad)
2296 return 0;
2297
2298 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2299 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2300
2301 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2302}
2303EXPORT_SYMBOL_GPL(mtd_block_isbad);
2304
2305int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2306{
2307 struct mtd_info *master = mtd_get_master(mtd);
2308 int ret;
2309
2310 if (!master->_block_markbad)
2311 return -EOPNOTSUPP;
2312 if (ofs < 0 || ofs >= mtd->size)
2313 return -EINVAL;
2314 if (!(mtd->flags & MTD_WRITEABLE))
2315 return -EROFS;
2316
2317 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2318 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2319
2320 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2321 if (ret)
2322 return ret;
2323
2324 while (mtd->parent) {
2325 mtd->ecc_stats.badblocks++;
2326 mtd = mtd->parent;
2327 }
2328
2329 return 0;
2330}
2331EXPORT_SYMBOL_GPL(mtd_block_markbad);
2332
2333/*
2334 * default_mtd_writev - the default writev method
2335 * @mtd: mtd device description object pointer
2336 * @vecs: the vectors to write
2337 * @count: count of vectors in @vecs
2338 * @to: the MTD device offset to write to
2339 * @retlen: on exit contains the count of bytes written to the MTD device.
2340 *
2341 * This function returns zero in case of success and a negative error code in
2342 * case of failure.
2343 */
2344static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2345 unsigned long count, loff_t to, size_t *retlen)
2346{
2347 unsigned long i;
2348 size_t totlen = 0, thislen;
2349 int ret = 0;
2350
2351 for (i = 0; i < count; i++) {
2352 if (!vecs[i].iov_len)
2353 continue;
2354 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2355 vecs[i].iov_base);
2356 totlen += thislen;
2357 if (ret || thislen != vecs[i].iov_len)
2358 break;
2359 to += vecs[i].iov_len;
2360 }
2361 *retlen = totlen;
2362 return ret;
2363}
2364
2365/*
2366 * mtd_writev - the vector-based MTD write method
2367 * @mtd: mtd device description object pointer
2368 * @vecs: the vectors to write
2369 * @count: count of vectors in @vecs
2370 * @to: the MTD device offset to write to
2371 * @retlen: on exit contains the count of bytes written to the MTD device.
2372 *
2373 * This function returns zero in case of success and a negative error code in
2374 * case of failure.
2375 */
2376int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2377 unsigned long count, loff_t to, size_t *retlen)
2378{
2379 struct mtd_info *master = mtd_get_master(mtd);
2380
2381 *retlen = 0;
2382 if (!(mtd->flags & MTD_WRITEABLE))
2383 return -EROFS;
2384
2385 if (!master->_writev)
2386 return default_mtd_writev(mtd, vecs, count, to, retlen);
2387
2388 return master->_writev(master, vecs, count,
2389 mtd_get_master_ofs(mtd, to), retlen);
2390}
2391EXPORT_SYMBOL_GPL(mtd_writev);
2392
2393/**
2394 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2395 * @mtd: mtd device description object pointer
2396 * @size: a pointer to the ideal or maximum size of the allocation, points
2397 * to the actual allocation size on success.
2398 *
2399 * This routine attempts to allocate a contiguous kernel buffer up to
2400 * the specified size, backing off the size of the request exponentially
2401 * until the request succeeds or until the allocation size falls below
2402 * the system page size. This attempts to make sure it does not adversely
2403 * impact system performance, so when allocating more than one page, we
2404 * ask the memory allocator to avoid re-trying, swapping, writing back
2405 * or performing I/O.
2406 *
2407 * Note, this function also makes sure that the allocated buffer is aligned to
2408 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2409 *
2410 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2411 * to handle smaller (i.e. degraded) buffer allocations under low- or
2412 * fragmented-memory situations where such reduced allocations, from a
2413 * requested ideal, are allowed.
2414 *
2415 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2416 */
2417void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2418{
2419 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2420 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2421 void *kbuf;
2422
2423 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2424
2425 while (*size > min_alloc) {
2426 kbuf = kmalloc(*size, flags);
2427 if (kbuf)
2428 return kbuf;
2429
2430 *size >>= 1;
2431 *size = ALIGN(*size, mtd->writesize);
2432 }
2433
2434 /*
2435 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2436 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2437 */
2438 return kmalloc(*size, GFP_KERNEL);
2439}
2440EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2441
2442#ifdef CONFIG_PROC_FS
2443
2444/*====================================================================*/
2445/* Support for /proc/mtd */
2446
2447static int mtd_proc_show(struct seq_file *m, void *v)
2448{
2449 struct mtd_info *mtd;
2450
2451 seq_puts(m, "dev: size erasesize name\n");
2452 mutex_lock(&mtd_table_mutex);
2453 mtd_for_each_device(mtd) {
2454 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2455 mtd->index, (unsigned long long)mtd->size,
2456 mtd->erasesize, mtd->name);
2457 }
2458 mutex_unlock(&mtd_table_mutex);
2459 return 0;
2460}
2461#endif /* CONFIG_PROC_FS */
2462
2463/*====================================================================*/
2464/* Init code */
2465
2466static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2467{
2468 struct backing_dev_info *bdi;
2469 int ret;
2470
2471 bdi = bdi_alloc(NUMA_NO_NODE);
2472 if (!bdi)
2473 return ERR_PTR(-ENOMEM);
2474 bdi->ra_pages = 0;
2475 bdi->io_pages = 0;
2476
2477 /*
2478 * We put '-0' suffix to the name to get the same name format as we
2479 * used to get. Since this is called only once, we get a unique name.
2480 */
2481 ret = bdi_register(bdi, "%.28s-0", name);
2482 if (ret)
2483 bdi_put(bdi);
2484
2485 return ret ? ERR_PTR(ret) : bdi;
2486}
2487
2488static struct proc_dir_entry *proc_mtd;
2489
2490static int __init init_mtd(void)
2491{
2492 int ret;
2493
2494 ret = class_register(&mtd_class);
2495 if (ret)
2496 goto err_reg;
2497
2498 mtd_bdi = mtd_bdi_init("mtd");
2499 if (IS_ERR(mtd_bdi)) {
2500 ret = PTR_ERR(mtd_bdi);
2501 goto err_bdi;
2502 }
2503
2504 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2505
2506 ret = init_mtdchar();
2507 if (ret)
2508 goto out_procfs;
2509
2510 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2511 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2512 &mtd_expert_analysis_mode);
2513
2514 return 0;
2515
2516out_procfs:
2517 if (proc_mtd)
2518 remove_proc_entry("mtd", NULL);
2519 bdi_unregister(mtd_bdi);
2520 bdi_put(mtd_bdi);
2521err_bdi:
2522 class_unregister(&mtd_class);
2523err_reg:
2524 pr_err("Error registering mtd class or bdi: %d\n", ret);
2525 return ret;
2526}
2527
2528static void __exit cleanup_mtd(void)
2529{
2530 debugfs_remove_recursive(dfs_dir_mtd);
2531 cleanup_mtdchar();
2532 if (proc_mtd)
2533 remove_proc_entry("mtd", NULL);
2534 class_unregister(&mtd_class);
2535 bdi_unregister(mtd_bdi);
2536 bdi_put(mtd_bdi);
2537 idr_destroy(&mtd_idr);
2538}
2539
2540module_init(init_mtd);
2541module_exit(cleanup_mtd);
2542
2543MODULE_LICENSE("GPL");
2544MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2545MODULE_DESCRIPTION("Core MTD registration and access routines");