Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#ifndef SELFTEST_KVM_PROCESSOR_H
9#define SELFTEST_KVM_PROCESSOR_H
10
11#include <assert.h>
12#include <stdint.h>
13#include <syscall.h>
14
15#include <asm/msr-index.h>
16#include <asm/prctl.h>
17
18#include <linux/stringify.h>
19
20#include "../kvm_util.h"
21
22extern bool host_cpu_is_intel;
23extern bool host_cpu_is_amd;
24
25#define NMI_VECTOR 0x02
26
27#define X86_EFLAGS_FIXED (1u << 1)
28
29#define X86_CR4_VME (1ul << 0)
30#define X86_CR4_PVI (1ul << 1)
31#define X86_CR4_TSD (1ul << 2)
32#define X86_CR4_DE (1ul << 3)
33#define X86_CR4_PSE (1ul << 4)
34#define X86_CR4_PAE (1ul << 5)
35#define X86_CR4_MCE (1ul << 6)
36#define X86_CR4_PGE (1ul << 7)
37#define X86_CR4_PCE (1ul << 8)
38#define X86_CR4_OSFXSR (1ul << 9)
39#define X86_CR4_OSXMMEXCPT (1ul << 10)
40#define X86_CR4_UMIP (1ul << 11)
41#define X86_CR4_LA57 (1ul << 12)
42#define X86_CR4_VMXE (1ul << 13)
43#define X86_CR4_SMXE (1ul << 14)
44#define X86_CR4_FSGSBASE (1ul << 16)
45#define X86_CR4_PCIDE (1ul << 17)
46#define X86_CR4_OSXSAVE (1ul << 18)
47#define X86_CR4_SMEP (1ul << 20)
48#define X86_CR4_SMAP (1ul << 21)
49#define X86_CR4_PKE (1ul << 22)
50
51struct xstate_header {
52 u64 xstate_bv;
53 u64 xcomp_bv;
54 u64 reserved[6];
55} __attribute__((packed));
56
57struct xstate {
58 u8 i387[512];
59 struct xstate_header header;
60 u8 extended_state_area[0];
61} __attribute__ ((packed, aligned (64)));
62
63#define XFEATURE_MASK_FP BIT_ULL(0)
64#define XFEATURE_MASK_SSE BIT_ULL(1)
65#define XFEATURE_MASK_YMM BIT_ULL(2)
66#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
67#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
68#define XFEATURE_MASK_OPMASK BIT_ULL(5)
69#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
70#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
71#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
72#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
73
74#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
75 XFEATURE_MASK_ZMM_Hi256 | \
76 XFEATURE_MASK_Hi16_ZMM)
77#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
78 XFEATURE_MASK_XTILE_CFG)
79
80/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
81enum cpuid_output_regs {
82 KVM_CPUID_EAX,
83 KVM_CPUID_EBX,
84 KVM_CPUID_ECX,
85 KVM_CPUID_EDX
86};
87
88/*
89 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
90 * passed by value with no overhead.
91 */
92struct kvm_x86_cpu_feature {
93 u32 function;
94 u16 index;
95 u8 reg;
96 u8 bit;
97};
98#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
99({ \
100 struct kvm_x86_cpu_feature feature = { \
101 .function = fn, \
102 .index = idx, \
103 .reg = KVM_CPUID_##gpr, \
104 .bit = __bit, \
105 }; \
106 \
107 kvm_static_assert((fn & 0xc0000000) == 0 || \
108 (fn & 0xc0000000) == 0x40000000 || \
109 (fn & 0xc0000000) == 0x80000000 || \
110 (fn & 0xc0000000) == 0xc0000000); \
111 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
112 feature; \
113})
114
115/*
116 * Basic Leafs, a.k.a. Intel defined
117 */
118#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
119#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
120#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
121#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
122#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
123#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
124#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
125#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
126#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
127#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
128#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
129#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
130#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
131#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
132#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
133#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
134#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
135#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
136#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
137#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
138#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
139#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
140#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
141#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
142#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
143#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
144#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
145#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
146#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
147#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
148#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
149#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
150#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
151#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
152#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
153#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
154#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
155#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
156#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
157#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
158#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
159#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
160#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
161#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
162#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
163#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
164
165/*
166 * Extended Leafs, a.k.a. AMD defined
167 */
168#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
169#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
170#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
171#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
172#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
173#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
174#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
175#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
176#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
177#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
178#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
179#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
180#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
181#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
182#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
183#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
184#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
185
186/*
187 * KVM defined paravirt features.
188 */
189#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
190#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
191#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
192#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
193#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
194#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
195#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
196#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
197/* Bit 8 apparently isn't used?!?! */
198#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
199#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
200#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
201#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
202#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
203#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
204#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
205#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
206#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
207
208/*
209 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
210 * value/property as opposed to a single-bit feature. Again, pack the info
211 * into a 64-bit value to pass by value with no overhead.
212 */
213struct kvm_x86_cpu_property {
214 u32 function;
215 u8 index;
216 u8 reg;
217 u8 lo_bit;
218 u8 hi_bit;
219};
220#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
221({ \
222 struct kvm_x86_cpu_property property = { \
223 .function = fn, \
224 .index = idx, \
225 .reg = KVM_CPUID_##gpr, \
226 .lo_bit = low_bit, \
227 .hi_bit = high_bit, \
228 }; \
229 \
230 kvm_static_assert(low_bit < high_bit); \
231 kvm_static_assert((fn & 0xc0000000) == 0 || \
232 (fn & 0xc0000000) == 0x40000000 || \
233 (fn & 0xc0000000) == 0x80000000 || \
234 (fn & 0xc0000000) == 0xc0000000); \
235 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
236 property; \
237})
238
239#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
240#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
241#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
242#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
243
244#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
245#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
246#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
247#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
248
249#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
250#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
251#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
252#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
253#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
254#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
255#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
256#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
257
258#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
259
260#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
261#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
262#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
263#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
264
265#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
266
267/*
268 * Intel's architectural PMU events are bizarre. They have a "feature" bit
269 * that indicates the feature is _not_ supported, and a property that states
270 * the length of the bit mask of unsupported features. A feature is supported
271 * if the size of the bit mask is larger than the "unavailable" bit, and said
272 * bit is not set.
273 *
274 * Wrap the "unavailable" feature to simplify checking whether or not a given
275 * architectural event is supported.
276 */
277struct kvm_x86_pmu_feature {
278 struct kvm_x86_cpu_feature anti_feature;
279};
280#define KVM_X86_PMU_FEATURE(name, __bit) \
281({ \
282 struct kvm_x86_pmu_feature feature = { \
283 .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit), \
284 }; \
285 \
286 feature; \
287})
288
289#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
290
291static inline unsigned int x86_family(unsigned int eax)
292{
293 unsigned int x86;
294
295 x86 = (eax >> 8) & 0xf;
296
297 if (x86 == 0xf)
298 x86 += (eax >> 20) & 0xff;
299
300 return x86;
301}
302
303static inline unsigned int x86_model(unsigned int eax)
304{
305 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
306}
307
308/* Page table bitfield declarations */
309#define PTE_PRESENT_MASK BIT_ULL(0)
310#define PTE_WRITABLE_MASK BIT_ULL(1)
311#define PTE_USER_MASK BIT_ULL(2)
312#define PTE_ACCESSED_MASK BIT_ULL(5)
313#define PTE_DIRTY_MASK BIT_ULL(6)
314#define PTE_LARGE_MASK BIT_ULL(7)
315#define PTE_GLOBAL_MASK BIT_ULL(8)
316#define PTE_NX_MASK BIT_ULL(63)
317
318#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
319
320#define PAGE_SHIFT 12
321#define PAGE_SIZE (1ULL << PAGE_SHIFT)
322#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
323
324#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
325#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
326#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
327
328#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
329#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
330
331/* General Registers in 64-Bit Mode */
332struct gpr64_regs {
333 u64 rax;
334 u64 rcx;
335 u64 rdx;
336 u64 rbx;
337 u64 rsp;
338 u64 rbp;
339 u64 rsi;
340 u64 rdi;
341 u64 r8;
342 u64 r9;
343 u64 r10;
344 u64 r11;
345 u64 r12;
346 u64 r13;
347 u64 r14;
348 u64 r15;
349};
350
351struct desc64 {
352 uint16_t limit0;
353 uint16_t base0;
354 unsigned base1:8, type:4, s:1, dpl:2, p:1;
355 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
356 uint32_t base3;
357 uint32_t zero1;
358} __attribute__((packed));
359
360struct desc_ptr {
361 uint16_t size;
362 uint64_t address;
363} __attribute__((packed));
364
365struct kvm_x86_state {
366 struct kvm_xsave *xsave;
367 struct kvm_vcpu_events events;
368 struct kvm_mp_state mp_state;
369 struct kvm_regs regs;
370 struct kvm_xcrs xcrs;
371 struct kvm_sregs sregs;
372 struct kvm_debugregs debugregs;
373 union {
374 struct kvm_nested_state nested;
375 char nested_[16384];
376 };
377 struct kvm_msrs msrs;
378};
379
380static inline uint64_t get_desc64_base(const struct desc64 *desc)
381{
382 return ((uint64_t)desc->base3 << 32) |
383 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
384}
385
386static inline uint64_t rdtsc(void)
387{
388 uint32_t eax, edx;
389 uint64_t tsc_val;
390 /*
391 * The lfence is to wait (on Intel CPUs) until all previous
392 * instructions have been executed. If software requires RDTSC to be
393 * executed prior to execution of any subsequent instruction, it can
394 * execute LFENCE immediately after RDTSC
395 */
396 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
397 tsc_val = ((uint64_t)edx) << 32 | eax;
398 return tsc_val;
399}
400
401static inline uint64_t rdtscp(uint32_t *aux)
402{
403 uint32_t eax, edx;
404
405 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
406 return ((uint64_t)edx) << 32 | eax;
407}
408
409static inline uint64_t rdmsr(uint32_t msr)
410{
411 uint32_t a, d;
412
413 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
414
415 return a | ((uint64_t) d << 32);
416}
417
418static inline void wrmsr(uint32_t msr, uint64_t value)
419{
420 uint32_t a = value;
421 uint32_t d = value >> 32;
422
423 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
424}
425
426
427static inline uint16_t inw(uint16_t port)
428{
429 uint16_t tmp;
430
431 __asm__ __volatile__("in %%dx, %%ax"
432 : /* output */ "=a" (tmp)
433 : /* input */ "d" (port));
434
435 return tmp;
436}
437
438static inline uint16_t get_es(void)
439{
440 uint16_t es;
441
442 __asm__ __volatile__("mov %%es, %[es]"
443 : /* output */ [es]"=rm"(es));
444 return es;
445}
446
447static inline uint16_t get_cs(void)
448{
449 uint16_t cs;
450
451 __asm__ __volatile__("mov %%cs, %[cs]"
452 : /* output */ [cs]"=rm"(cs));
453 return cs;
454}
455
456static inline uint16_t get_ss(void)
457{
458 uint16_t ss;
459
460 __asm__ __volatile__("mov %%ss, %[ss]"
461 : /* output */ [ss]"=rm"(ss));
462 return ss;
463}
464
465static inline uint16_t get_ds(void)
466{
467 uint16_t ds;
468
469 __asm__ __volatile__("mov %%ds, %[ds]"
470 : /* output */ [ds]"=rm"(ds));
471 return ds;
472}
473
474static inline uint16_t get_fs(void)
475{
476 uint16_t fs;
477
478 __asm__ __volatile__("mov %%fs, %[fs]"
479 : /* output */ [fs]"=rm"(fs));
480 return fs;
481}
482
483static inline uint16_t get_gs(void)
484{
485 uint16_t gs;
486
487 __asm__ __volatile__("mov %%gs, %[gs]"
488 : /* output */ [gs]"=rm"(gs));
489 return gs;
490}
491
492static inline uint16_t get_tr(void)
493{
494 uint16_t tr;
495
496 __asm__ __volatile__("str %[tr]"
497 : /* output */ [tr]"=rm"(tr));
498 return tr;
499}
500
501static inline uint64_t get_cr0(void)
502{
503 uint64_t cr0;
504
505 __asm__ __volatile__("mov %%cr0, %[cr0]"
506 : /* output */ [cr0]"=r"(cr0));
507 return cr0;
508}
509
510static inline uint64_t get_cr3(void)
511{
512 uint64_t cr3;
513
514 __asm__ __volatile__("mov %%cr3, %[cr3]"
515 : /* output */ [cr3]"=r"(cr3));
516 return cr3;
517}
518
519static inline uint64_t get_cr4(void)
520{
521 uint64_t cr4;
522
523 __asm__ __volatile__("mov %%cr4, %[cr4]"
524 : /* output */ [cr4]"=r"(cr4));
525 return cr4;
526}
527
528static inline void set_cr4(uint64_t val)
529{
530 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
531}
532
533static inline u64 xgetbv(u32 index)
534{
535 u32 eax, edx;
536
537 __asm__ __volatile__("xgetbv;"
538 : "=a" (eax), "=d" (edx)
539 : "c" (index));
540 return eax | ((u64)edx << 32);
541}
542
543static inline void xsetbv(u32 index, u64 value)
544{
545 u32 eax = value;
546 u32 edx = value >> 32;
547
548 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
549}
550
551static inline struct desc_ptr get_gdt(void)
552{
553 struct desc_ptr gdt;
554 __asm__ __volatile__("sgdt %[gdt]"
555 : /* output */ [gdt]"=m"(gdt));
556 return gdt;
557}
558
559static inline struct desc_ptr get_idt(void)
560{
561 struct desc_ptr idt;
562 __asm__ __volatile__("sidt %[idt]"
563 : /* output */ [idt]"=m"(idt));
564 return idt;
565}
566
567static inline void outl(uint16_t port, uint32_t value)
568{
569 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
570}
571
572static inline void __cpuid(uint32_t function, uint32_t index,
573 uint32_t *eax, uint32_t *ebx,
574 uint32_t *ecx, uint32_t *edx)
575{
576 *eax = function;
577 *ecx = index;
578
579 asm volatile("cpuid"
580 : "=a" (*eax),
581 "=b" (*ebx),
582 "=c" (*ecx),
583 "=d" (*edx)
584 : "0" (*eax), "2" (*ecx)
585 : "memory");
586}
587
588static inline void cpuid(uint32_t function,
589 uint32_t *eax, uint32_t *ebx,
590 uint32_t *ecx, uint32_t *edx)
591{
592 return __cpuid(function, 0, eax, ebx, ecx, edx);
593}
594
595static inline uint32_t this_cpu_fms(void)
596{
597 uint32_t eax, ebx, ecx, edx;
598
599 cpuid(1, &eax, &ebx, &ecx, &edx);
600 return eax;
601}
602
603static inline uint32_t this_cpu_family(void)
604{
605 return x86_family(this_cpu_fms());
606}
607
608static inline uint32_t this_cpu_model(void)
609{
610 return x86_model(this_cpu_fms());
611}
612
613static inline bool this_cpu_vendor_string_is(const char *vendor)
614{
615 const uint32_t *chunk = (const uint32_t *)vendor;
616 uint32_t eax, ebx, ecx, edx;
617
618 cpuid(0, &eax, &ebx, &ecx, &edx);
619 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
620}
621
622static inline bool this_cpu_is_intel(void)
623{
624 return this_cpu_vendor_string_is("GenuineIntel");
625}
626
627/*
628 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
629 */
630static inline bool this_cpu_is_amd(void)
631{
632 return this_cpu_vendor_string_is("AuthenticAMD");
633}
634
635static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
636 uint8_t reg, uint8_t lo, uint8_t hi)
637{
638 uint32_t gprs[4];
639
640 __cpuid(function, index,
641 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
642 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
643
644 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
645}
646
647static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
648{
649 return __this_cpu_has(feature.function, feature.index,
650 feature.reg, feature.bit, feature.bit);
651}
652
653static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
654{
655 return __this_cpu_has(property.function, property.index,
656 property.reg, property.lo_bit, property.hi_bit);
657}
658
659static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
660{
661 uint32_t max_leaf;
662
663 switch (property.function & 0xc0000000) {
664 case 0:
665 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
666 break;
667 case 0x40000000:
668 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
669 break;
670 case 0x80000000:
671 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
672 break;
673 case 0xc0000000:
674 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
675 }
676 return max_leaf >= property.function;
677}
678
679static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
680{
681 uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
682
683 return nr_bits > feature.anti_feature.bit &&
684 !this_cpu_has(feature.anti_feature);
685}
686
687static __always_inline uint64_t this_cpu_supported_xcr0(void)
688{
689 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
690 return 0;
691
692 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
693 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
694}
695
696typedef u32 __attribute__((vector_size(16))) sse128_t;
697#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
698#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
699#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
700
701static inline void read_sse_reg(int reg, sse128_t *data)
702{
703 switch (reg) {
704 case 0:
705 asm("movdqa %%xmm0, %0" : "=m"(*data));
706 break;
707 case 1:
708 asm("movdqa %%xmm1, %0" : "=m"(*data));
709 break;
710 case 2:
711 asm("movdqa %%xmm2, %0" : "=m"(*data));
712 break;
713 case 3:
714 asm("movdqa %%xmm3, %0" : "=m"(*data));
715 break;
716 case 4:
717 asm("movdqa %%xmm4, %0" : "=m"(*data));
718 break;
719 case 5:
720 asm("movdqa %%xmm5, %0" : "=m"(*data));
721 break;
722 case 6:
723 asm("movdqa %%xmm6, %0" : "=m"(*data));
724 break;
725 case 7:
726 asm("movdqa %%xmm7, %0" : "=m"(*data));
727 break;
728 default:
729 BUG();
730 }
731}
732
733static inline void write_sse_reg(int reg, const sse128_t *data)
734{
735 switch (reg) {
736 case 0:
737 asm("movdqa %0, %%xmm0" : : "m"(*data));
738 break;
739 case 1:
740 asm("movdqa %0, %%xmm1" : : "m"(*data));
741 break;
742 case 2:
743 asm("movdqa %0, %%xmm2" : : "m"(*data));
744 break;
745 case 3:
746 asm("movdqa %0, %%xmm3" : : "m"(*data));
747 break;
748 case 4:
749 asm("movdqa %0, %%xmm4" : : "m"(*data));
750 break;
751 case 5:
752 asm("movdqa %0, %%xmm5" : : "m"(*data));
753 break;
754 case 6:
755 asm("movdqa %0, %%xmm6" : : "m"(*data));
756 break;
757 case 7:
758 asm("movdqa %0, %%xmm7" : : "m"(*data));
759 break;
760 default:
761 BUG();
762 }
763}
764
765static inline void cpu_relax(void)
766{
767 asm volatile("rep; nop" ::: "memory");
768}
769
770#define ud2() \
771 __asm__ __volatile__( \
772 "ud2\n" \
773 )
774
775#define hlt() \
776 __asm__ __volatile__( \
777 "hlt\n" \
778 )
779
780struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
781void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
782void kvm_x86_state_cleanup(struct kvm_x86_state *state);
783
784const struct kvm_msr_list *kvm_get_msr_index_list(void);
785const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
786bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
787uint64_t kvm_get_feature_msr(uint64_t msr_index);
788
789static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
790 struct kvm_msrs *msrs)
791{
792 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
793
794 TEST_ASSERT(r == msrs->nmsrs,
795 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
796 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
797}
798static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
799{
800 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
801
802 TEST_ASSERT(r == msrs->nmsrs,
803 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
804 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
805}
806static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
807 struct kvm_debugregs *debugregs)
808{
809 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
810}
811static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
812 struct kvm_debugregs *debugregs)
813{
814 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
815}
816static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
817 struct kvm_xsave *xsave)
818{
819 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
820}
821static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
822 struct kvm_xsave *xsave)
823{
824 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
825}
826static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
827 struct kvm_xsave *xsave)
828{
829 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
830}
831static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
832 struct kvm_xcrs *xcrs)
833{
834 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
835}
836static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
837{
838 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
839}
840
841const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
842 uint32_t function, uint32_t index);
843const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
844const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
845const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
846
847static inline uint32_t kvm_cpu_fms(void)
848{
849 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
850}
851
852static inline uint32_t kvm_cpu_family(void)
853{
854 return x86_family(kvm_cpu_fms());
855}
856
857static inline uint32_t kvm_cpu_model(void)
858{
859 return x86_model(kvm_cpu_fms());
860}
861
862bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
863 struct kvm_x86_cpu_feature feature);
864
865static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
866{
867 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
868}
869
870uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
871 struct kvm_x86_cpu_property property);
872
873static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
874{
875 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
876}
877
878static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
879{
880 uint32_t max_leaf;
881
882 switch (property.function & 0xc0000000) {
883 case 0:
884 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
885 break;
886 case 0x40000000:
887 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
888 break;
889 case 0x80000000:
890 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
891 break;
892 case 0xc0000000:
893 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
894 }
895 return max_leaf >= property.function;
896}
897
898static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
899{
900 uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
901
902 return nr_bits > feature.anti_feature.bit &&
903 !kvm_cpu_has(feature.anti_feature);
904}
905
906static inline size_t kvm_cpuid2_size(int nr_entries)
907{
908 return sizeof(struct kvm_cpuid2) +
909 sizeof(struct kvm_cpuid_entry2) * nr_entries;
910}
911
912/*
913 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
914 * entries sized to hold @nr_entries. The caller is responsible for freeing
915 * the struct.
916 */
917static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
918{
919 struct kvm_cpuid2 *cpuid;
920
921 cpuid = malloc(kvm_cpuid2_size(nr_entries));
922 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
923
924 cpuid->nent = nr_entries;
925
926 return cpuid;
927}
928
929void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
930void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
931
932static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
933 uint32_t function,
934 uint32_t index)
935{
936 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
937 function, index);
938}
939
940static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
941 uint32_t function)
942{
943 return __vcpu_get_cpuid_entry(vcpu, function, 0);
944}
945
946static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
947{
948 int r;
949
950 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
951 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
952 if (r)
953 return r;
954
955 /* On success, refresh the cache to pick up adjustments made by KVM. */
956 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
957 return 0;
958}
959
960static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
961{
962 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
963 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
964
965 /* Refresh the cache to pick up adjustments made by KVM. */
966 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
967}
968
969void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
970
971void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
972void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
973 struct kvm_x86_cpu_feature feature,
974 bool set);
975
976static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
977 struct kvm_x86_cpu_feature feature)
978{
979 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
980
981}
982
983static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
984 struct kvm_x86_cpu_feature feature)
985{
986 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
987}
988
989uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
990int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
991
992/*
993 * Assert on an MSR access(es) and pretty print the MSR name when possible.
994 * Note, the caller provides the stringified name so that the name of macro is
995 * printed, not the value the macro resolves to (due to macro expansion).
996 */
997#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
998do { \
999 if (__builtin_constant_p(msr)) { \
1000 TEST_ASSERT(cond, fmt, str, args); \
1001 } else if (!(cond)) { \
1002 char buf[16]; \
1003 \
1004 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
1005 TEST_ASSERT(cond, fmt, buf, args); \
1006 } \
1007} while (0)
1008
1009/*
1010 * Returns true if KVM should return the last written value when reading an MSR
1011 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1012 * is changing, etc. This is NOT an exhaustive list! The intent is to filter
1013 * out MSRs that are not durable _and_ that a selftest wants to write.
1014 */
1015static inline bool is_durable_msr(uint32_t msr)
1016{
1017 return msr != MSR_IA32_TSC;
1018}
1019
1020#define vcpu_set_msr(vcpu, msr, val) \
1021do { \
1022 uint64_t r, v = val; \
1023 \
1024 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
1025 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
1026 if (!is_durable_msr(msr)) \
1027 break; \
1028 r = vcpu_get_msr(vcpu, msr); \
1029 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1030} while (0)
1031
1032void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1033bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1034
1035struct ex_regs {
1036 uint64_t rax, rcx, rdx, rbx;
1037 uint64_t rbp, rsi, rdi;
1038 uint64_t r8, r9, r10, r11;
1039 uint64_t r12, r13, r14, r15;
1040 uint64_t vector;
1041 uint64_t error_code;
1042 uint64_t rip;
1043 uint64_t cs;
1044 uint64_t rflags;
1045};
1046
1047struct idt_entry {
1048 uint16_t offset0;
1049 uint16_t selector;
1050 uint16_t ist : 3;
1051 uint16_t : 5;
1052 uint16_t type : 4;
1053 uint16_t : 1;
1054 uint16_t dpl : 2;
1055 uint16_t p : 1;
1056 uint16_t offset1;
1057 uint32_t offset2; uint32_t reserved;
1058};
1059
1060void vm_init_descriptor_tables(struct kvm_vm *vm);
1061void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1062void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1063 void (*handler)(struct ex_regs *));
1064
1065/* If a toddler were to say "abracadabra". */
1066#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1067
1068/*
1069 * KVM selftest exception fixup uses registers to coordinate with the exception
1070 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1071 * per-CPU data. Using only registers avoids having to map memory into the
1072 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1073 * for recursive faults when accessing memory in the handler. The downside to
1074 * using registers is that it restricts what registers can be used by the actual
1075 * instruction. But, selftests are 64-bit only, making register* pressure a
1076 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
1077 * by the callee, and except for r11 are not implicit parameters to any
1078 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
1079 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1080 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1081 *
1082 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1083 * is guaranteed to be non-zero on fault.
1084 *
1085 * REGISTER INPUTS:
1086 * r9 = MAGIC
1087 * r10 = RIP
1088 * r11 = new RIP on fault
1089 *
1090 * REGISTER OUTPUTS:
1091 * r9 = exception vector (non-zero)
1092 * r10 = error code
1093 */
1094#define KVM_ASM_SAFE(insn) \
1095 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
1096 "lea 1f(%%rip), %%r10\n\t" \
1097 "lea 2f(%%rip), %%r11\n\t" \
1098 "1: " insn "\n\t" \
1099 "xor %%r9, %%r9\n\t" \
1100 "2:\n\t" \
1101 "mov %%r9b, %[vector]\n\t" \
1102 "mov %%r10, %[error_code]\n\t"
1103
1104#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
1105#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
1106
1107#define kvm_asm_safe(insn, inputs...) \
1108({ \
1109 uint64_t ign_error_code; \
1110 uint8_t vector; \
1111 \
1112 asm volatile(KVM_ASM_SAFE(insn) \
1113 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
1114 : inputs \
1115 : KVM_ASM_SAFE_CLOBBERS); \
1116 vector; \
1117})
1118
1119#define kvm_asm_safe_ec(insn, error_code, inputs...) \
1120({ \
1121 uint8_t vector; \
1122 \
1123 asm volatile(KVM_ASM_SAFE(insn) \
1124 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1125 : inputs \
1126 : KVM_ASM_SAFE_CLOBBERS); \
1127 vector; \
1128})
1129
1130static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1131{
1132 uint64_t error_code;
1133 uint8_t vector;
1134 uint32_t a, d;
1135
1136 asm volatile(KVM_ASM_SAFE("rdmsr")
1137 : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1138 : "c"(msr)
1139 : KVM_ASM_SAFE_CLOBBERS);
1140
1141 *val = (uint64_t)a | ((uint64_t)d << 32);
1142 return vector;
1143}
1144
1145static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1146{
1147 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1148}
1149
1150static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1151{
1152 u32 eax = value;
1153 u32 edx = value >> 32;
1154
1155 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1156}
1157
1158bool kvm_is_tdp_enabled(void);
1159
1160uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1161 int *level);
1162uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1163
1164uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1165 uint64_t a3);
1166uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1167void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1168
1169void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1170
1171#define vm_xsave_require_permission(xfeature) \
1172 __vm_xsave_require_permission(xfeature, #xfeature)
1173
1174enum pg_level {
1175 PG_LEVEL_NONE,
1176 PG_LEVEL_4K,
1177 PG_LEVEL_2M,
1178 PG_LEVEL_1G,
1179 PG_LEVEL_512G,
1180 PG_LEVEL_NUM
1181};
1182
1183#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1184#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1185
1186#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1187#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1188#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1189
1190void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1191void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1192 uint64_t nr_bytes, int level);
1193
1194/*
1195 * Basic CPU control in CR0
1196 */
1197#define X86_CR0_PE (1UL<<0) /* Protection Enable */
1198#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1199#define X86_CR0_EM (1UL<<2) /* Emulation */
1200#define X86_CR0_TS (1UL<<3) /* Task Switched */
1201#define X86_CR0_ET (1UL<<4) /* Extension Type */
1202#define X86_CR0_NE (1UL<<5) /* Numeric Error */
1203#define X86_CR0_WP (1UL<<16) /* Write Protect */
1204#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1205#define X86_CR0_NW (1UL<<29) /* Not Write-through */
1206#define X86_CR0_CD (1UL<<30) /* Cache Disable */
1207#define X86_CR0_PG (1UL<<31) /* Paging */
1208
1209#define PFERR_PRESENT_BIT 0
1210#define PFERR_WRITE_BIT 1
1211#define PFERR_USER_BIT 2
1212#define PFERR_RSVD_BIT 3
1213#define PFERR_FETCH_BIT 4
1214#define PFERR_PK_BIT 5
1215#define PFERR_SGX_BIT 15
1216#define PFERR_GUEST_FINAL_BIT 32
1217#define PFERR_GUEST_PAGE_BIT 33
1218#define PFERR_IMPLICIT_ACCESS_BIT 48
1219
1220#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1221#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1222#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1223#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1224#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1225#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1226#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1227#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1228#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1229#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1230
1231#endif /* SELFTEST_KVM_PROCESSOR_H */