at v6.4-rc5 1231 lines 37 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * tools/testing/selftests/kvm/include/x86_64/processor.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8#ifndef SELFTEST_KVM_PROCESSOR_H 9#define SELFTEST_KVM_PROCESSOR_H 10 11#include <assert.h> 12#include <stdint.h> 13#include <syscall.h> 14 15#include <asm/msr-index.h> 16#include <asm/prctl.h> 17 18#include <linux/stringify.h> 19 20#include "../kvm_util.h" 21 22extern bool host_cpu_is_intel; 23extern bool host_cpu_is_amd; 24 25#define NMI_VECTOR 0x02 26 27#define X86_EFLAGS_FIXED (1u << 1) 28 29#define X86_CR4_VME (1ul << 0) 30#define X86_CR4_PVI (1ul << 1) 31#define X86_CR4_TSD (1ul << 2) 32#define X86_CR4_DE (1ul << 3) 33#define X86_CR4_PSE (1ul << 4) 34#define X86_CR4_PAE (1ul << 5) 35#define X86_CR4_MCE (1ul << 6) 36#define X86_CR4_PGE (1ul << 7) 37#define X86_CR4_PCE (1ul << 8) 38#define X86_CR4_OSFXSR (1ul << 9) 39#define X86_CR4_OSXMMEXCPT (1ul << 10) 40#define X86_CR4_UMIP (1ul << 11) 41#define X86_CR4_LA57 (1ul << 12) 42#define X86_CR4_VMXE (1ul << 13) 43#define X86_CR4_SMXE (1ul << 14) 44#define X86_CR4_FSGSBASE (1ul << 16) 45#define X86_CR4_PCIDE (1ul << 17) 46#define X86_CR4_OSXSAVE (1ul << 18) 47#define X86_CR4_SMEP (1ul << 20) 48#define X86_CR4_SMAP (1ul << 21) 49#define X86_CR4_PKE (1ul << 22) 50 51struct xstate_header { 52 u64 xstate_bv; 53 u64 xcomp_bv; 54 u64 reserved[6]; 55} __attribute__((packed)); 56 57struct xstate { 58 u8 i387[512]; 59 struct xstate_header header; 60 u8 extended_state_area[0]; 61} __attribute__ ((packed, aligned (64))); 62 63#define XFEATURE_MASK_FP BIT_ULL(0) 64#define XFEATURE_MASK_SSE BIT_ULL(1) 65#define XFEATURE_MASK_YMM BIT_ULL(2) 66#define XFEATURE_MASK_BNDREGS BIT_ULL(3) 67#define XFEATURE_MASK_BNDCSR BIT_ULL(4) 68#define XFEATURE_MASK_OPMASK BIT_ULL(5) 69#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) 70#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) 71#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) 72#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) 73 74#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ 75 XFEATURE_MASK_ZMM_Hi256 | \ 76 XFEATURE_MASK_Hi16_ZMM) 77#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ 78 XFEATURE_MASK_XTILE_CFG) 79 80/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ 81enum cpuid_output_regs { 82 KVM_CPUID_EAX, 83 KVM_CPUID_EBX, 84 KVM_CPUID_ECX, 85 KVM_CPUID_EDX 86}; 87 88/* 89 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be 90 * passed by value with no overhead. 91 */ 92struct kvm_x86_cpu_feature { 93 u32 function; 94 u16 index; 95 u8 reg; 96 u8 bit; 97}; 98#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ 99({ \ 100 struct kvm_x86_cpu_feature feature = { \ 101 .function = fn, \ 102 .index = idx, \ 103 .reg = KVM_CPUID_##gpr, \ 104 .bit = __bit, \ 105 }; \ 106 \ 107 kvm_static_assert((fn & 0xc0000000) == 0 || \ 108 (fn & 0xc0000000) == 0x40000000 || \ 109 (fn & 0xc0000000) == 0x80000000 || \ 110 (fn & 0xc0000000) == 0xc0000000); \ 111 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ 112 feature; \ 113}) 114 115/* 116 * Basic Leafs, a.k.a. Intel defined 117 */ 118#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) 119#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) 120#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) 121#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) 122#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) 123#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) 124#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) 125#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) 126#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) 127#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) 128#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) 129#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) 130#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) 131#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) 132#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) 133#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) 134#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) 135#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) 136#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) 137#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) 138#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) 139#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) 140#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) 141#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) 142#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) 143#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) 144#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) 145#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) 146#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) 147#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) 148#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) 149#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) 150#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) 151#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) 152#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) 153#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) 154#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) 155#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) 156#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) 157#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) 158#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) 159#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) 160#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) 161#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) 162#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) 163#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) 164 165/* 166 * Extended Leafs, a.k.a. AMD defined 167 */ 168#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) 169#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) 170#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) 171#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) 172#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) 173#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) 174#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) 175#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) 176#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) 177#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) 178#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) 179#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) 180#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) 181#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) 182#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) 183#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) 184#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) 185 186/* 187 * KVM defined paravirt features. 188 */ 189#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) 190#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) 191#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) 192#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) 193#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) 194#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) 195#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) 196#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) 197/* Bit 8 apparently isn't used?!?! */ 198#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) 199#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) 200#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) 201#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) 202#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) 203#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) 204#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) 205#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) 206#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) 207 208/* 209 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit 210 * value/property as opposed to a single-bit feature. Again, pack the info 211 * into a 64-bit value to pass by value with no overhead. 212 */ 213struct kvm_x86_cpu_property { 214 u32 function; 215 u8 index; 216 u8 reg; 217 u8 lo_bit; 218 u8 hi_bit; 219}; 220#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ 221({ \ 222 struct kvm_x86_cpu_property property = { \ 223 .function = fn, \ 224 .index = idx, \ 225 .reg = KVM_CPUID_##gpr, \ 226 .lo_bit = low_bit, \ 227 .hi_bit = high_bit, \ 228 }; \ 229 \ 230 kvm_static_assert(low_bit < high_bit); \ 231 kvm_static_assert((fn & 0xc0000000) == 0 || \ 232 (fn & 0xc0000000) == 0x40000000 || \ 233 (fn & 0xc0000000) == 0x80000000 || \ 234 (fn & 0xc0000000) == 0xc0000000); \ 235 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ 236 property; \ 237}) 238 239#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) 240#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) 241#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) 242#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) 243 244#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) 245#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) 246#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) 247#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) 248 249#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) 250#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) 251#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) 252#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) 253#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) 254#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) 255#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) 256#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) 257 258#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) 259 260#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) 261#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) 262#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) 263#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) 264 265#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) 266 267/* 268 * Intel's architectural PMU events are bizarre. They have a "feature" bit 269 * that indicates the feature is _not_ supported, and a property that states 270 * the length of the bit mask of unsupported features. A feature is supported 271 * if the size of the bit mask is larger than the "unavailable" bit, and said 272 * bit is not set. 273 * 274 * Wrap the "unavailable" feature to simplify checking whether or not a given 275 * architectural event is supported. 276 */ 277struct kvm_x86_pmu_feature { 278 struct kvm_x86_cpu_feature anti_feature; 279}; 280#define KVM_X86_PMU_FEATURE(name, __bit) \ 281({ \ 282 struct kvm_x86_pmu_feature feature = { \ 283 .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit), \ 284 }; \ 285 \ 286 feature; \ 287}) 288 289#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5) 290 291static inline unsigned int x86_family(unsigned int eax) 292{ 293 unsigned int x86; 294 295 x86 = (eax >> 8) & 0xf; 296 297 if (x86 == 0xf) 298 x86 += (eax >> 20) & 0xff; 299 300 return x86; 301} 302 303static inline unsigned int x86_model(unsigned int eax) 304{ 305 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); 306} 307 308/* Page table bitfield declarations */ 309#define PTE_PRESENT_MASK BIT_ULL(0) 310#define PTE_WRITABLE_MASK BIT_ULL(1) 311#define PTE_USER_MASK BIT_ULL(2) 312#define PTE_ACCESSED_MASK BIT_ULL(5) 313#define PTE_DIRTY_MASK BIT_ULL(6) 314#define PTE_LARGE_MASK BIT_ULL(7) 315#define PTE_GLOBAL_MASK BIT_ULL(8) 316#define PTE_NX_MASK BIT_ULL(63) 317 318#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) 319 320#define PAGE_SHIFT 12 321#define PAGE_SIZE (1ULL << PAGE_SHIFT) 322#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) 323 324#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) 325#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) 326#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) 327 328#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) 329#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) 330 331/* General Registers in 64-Bit Mode */ 332struct gpr64_regs { 333 u64 rax; 334 u64 rcx; 335 u64 rdx; 336 u64 rbx; 337 u64 rsp; 338 u64 rbp; 339 u64 rsi; 340 u64 rdi; 341 u64 r8; 342 u64 r9; 343 u64 r10; 344 u64 r11; 345 u64 r12; 346 u64 r13; 347 u64 r14; 348 u64 r15; 349}; 350 351struct desc64 { 352 uint16_t limit0; 353 uint16_t base0; 354 unsigned base1:8, type:4, s:1, dpl:2, p:1; 355 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; 356 uint32_t base3; 357 uint32_t zero1; 358} __attribute__((packed)); 359 360struct desc_ptr { 361 uint16_t size; 362 uint64_t address; 363} __attribute__((packed)); 364 365struct kvm_x86_state { 366 struct kvm_xsave *xsave; 367 struct kvm_vcpu_events events; 368 struct kvm_mp_state mp_state; 369 struct kvm_regs regs; 370 struct kvm_xcrs xcrs; 371 struct kvm_sregs sregs; 372 struct kvm_debugregs debugregs; 373 union { 374 struct kvm_nested_state nested; 375 char nested_[16384]; 376 }; 377 struct kvm_msrs msrs; 378}; 379 380static inline uint64_t get_desc64_base(const struct desc64 *desc) 381{ 382 return ((uint64_t)desc->base3 << 32) | 383 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); 384} 385 386static inline uint64_t rdtsc(void) 387{ 388 uint32_t eax, edx; 389 uint64_t tsc_val; 390 /* 391 * The lfence is to wait (on Intel CPUs) until all previous 392 * instructions have been executed. If software requires RDTSC to be 393 * executed prior to execution of any subsequent instruction, it can 394 * execute LFENCE immediately after RDTSC 395 */ 396 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 397 tsc_val = ((uint64_t)edx) << 32 | eax; 398 return tsc_val; 399} 400 401static inline uint64_t rdtscp(uint32_t *aux) 402{ 403 uint32_t eax, edx; 404 405 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); 406 return ((uint64_t)edx) << 32 | eax; 407} 408 409static inline uint64_t rdmsr(uint32_t msr) 410{ 411 uint32_t a, d; 412 413 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); 414 415 return a | ((uint64_t) d << 32); 416} 417 418static inline void wrmsr(uint32_t msr, uint64_t value) 419{ 420 uint32_t a = value; 421 uint32_t d = value >> 32; 422 423 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); 424} 425 426 427static inline uint16_t inw(uint16_t port) 428{ 429 uint16_t tmp; 430 431 __asm__ __volatile__("in %%dx, %%ax" 432 : /* output */ "=a" (tmp) 433 : /* input */ "d" (port)); 434 435 return tmp; 436} 437 438static inline uint16_t get_es(void) 439{ 440 uint16_t es; 441 442 __asm__ __volatile__("mov %%es, %[es]" 443 : /* output */ [es]"=rm"(es)); 444 return es; 445} 446 447static inline uint16_t get_cs(void) 448{ 449 uint16_t cs; 450 451 __asm__ __volatile__("mov %%cs, %[cs]" 452 : /* output */ [cs]"=rm"(cs)); 453 return cs; 454} 455 456static inline uint16_t get_ss(void) 457{ 458 uint16_t ss; 459 460 __asm__ __volatile__("mov %%ss, %[ss]" 461 : /* output */ [ss]"=rm"(ss)); 462 return ss; 463} 464 465static inline uint16_t get_ds(void) 466{ 467 uint16_t ds; 468 469 __asm__ __volatile__("mov %%ds, %[ds]" 470 : /* output */ [ds]"=rm"(ds)); 471 return ds; 472} 473 474static inline uint16_t get_fs(void) 475{ 476 uint16_t fs; 477 478 __asm__ __volatile__("mov %%fs, %[fs]" 479 : /* output */ [fs]"=rm"(fs)); 480 return fs; 481} 482 483static inline uint16_t get_gs(void) 484{ 485 uint16_t gs; 486 487 __asm__ __volatile__("mov %%gs, %[gs]" 488 : /* output */ [gs]"=rm"(gs)); 489 return gs; 490} 491 492static inline uint16_t get_tr(void) 493{ 494 uint16_t tr; 495 496 __asm__ __volatile__("str %[tr]" 497 : /* output */ [tr]"=rm"(tr)); 498 return tr; 499} 500 501static inline uint64_t get_cr0(void) 502{ 503 uint64_t cr0; 504 505 __asm__ __volatile__("mov %%cr0, %[cr0]" 506 : /* output */ [cr0]"=r"(cr0)); 507 return cr0; 508} 509 510static inline uint64_t get_cr3(void) 511{ 512 uint64_t cr3; 513 514 __asm__ __volatile__("mov %%cr3, %[cr3]" 515 : /* output */ [cr3]"=r"(cr3)); 516 return cr3; 517} 518 519static inline uint64_t get_cr4(void) 520{ 521 uint64_t cr4; 522 523 __asm__ __volatile__("mov %%cr4, %[cr4]" 524 : /* output */ [cr4]"=r"(cr4)); 525 return cr4; 526} 527 528static inline void set_cr4(uint64_t val) 529{ 530 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); 531} 532 533static inline u64 xgetbv(u32 index) 534{ 535 u32 eax, edx; 536 537 __asm__ __volatile__("xgetbv;" 538 : "=a" (eax), "=d" (edx) 539 : "c" (index)); 540 return eax | ((u64)edx << 32); 541} 542 543static inline void xsetbv(u32 index, u64 value) 544{ 545 u32 eax = value; 546 u32 edx = value >> 32; 547 548 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); 549} 550 551static inline struct desc_ptr get_gdt(void) 552{ 553 struct desc_ptr gdt; 554 __asm__ __volatile__("sgdt %[gdt]" 555 : /* output */ [gdt]"=m"(gdt)); 556 return gdt; 557} 558 559static inline struct desc_ptr get_idt(void) 560{ 561 struct desc_ptr idt; 562 __asm__ __volatile__("sidt %[idt]" 563 : /* output */ [idt]"=m"(idt)); 564 return idt; 565} 566 567static inline void outl(uint16_t port, uint32_t value) 568{ 569 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); 570} 571 572static inline void __cpuid(uint32_t function, uint32_t index, 573 uint32_t *eax, uint32_t *ebx, 574 uint32_t *ecx, uint32_t *edx) 575{ 576 *eax = function; 577 *ecx = index; 578 579 asm volatile("cpuid" 580 : "=a" (*eax), 581 "=b" (*ebx), 582 "=c" (*ecx), 583 "=d" (*edx) 584 : "0" (*eax), "2" (*ecx) 585 : "memory"); 586} 587 588static inline void cpuid(uint32_t function, 589 uint32_t *eax, uint32_t *ebx, 590 uint32_t *ecx, uint32_t *edx) 591{ 592 return __cpuid(function, 0, eax, ebx, ecx, edx); 593} 594 595static inline uint32_t this_cpu_fms(void) 596{ 597 uint32_t eax, ebx, ecx, edx; 598 599 cpuid(1, &eax, &ebx, &ecx, &edx); 600 return eax; 601} 602 603static inline uint32_t this_cpu_family(void) 604{ 605 return x86_family(this_cpu_fms()); 606} 607 608static inline uint32_t this_cpu_model(void) 609{ 610 return x86_model(this_cpu_fms()); 611} 612 613static inline bool this_cpu_vendor_string_is(const char *vendor) 614{ 615 const uint32_t *chunk = (const uint32_t *)vendor; 616 uint32_t eax, ebx, ecx, edx; 617 618 cpuid(0, &eax, &ebx, &ecx, &edx); 619 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 620} 621 622static inline bool this_cpu_is_intel(void) 623{ 624 return this_cpu_vendor_string_is("GenuineIntel"); 625} 626 627/* 628 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 629 */ 630static inline bool this_cpu_is_amd(void) 631{ 632 return this_cpu_vendor_string_is("AuthenticAMD"); 633} 634 635static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, 636 uint8_t reg, uint8_t lo, uint8_t hi) 637{ 638 uint32_t gprs[4]; 639 640 __cpuid(function, index, 641 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], 642 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); 643 644 return (gprs[reg] & GENMASK(hi, lo)) >> lo; 645} 646 647static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) 648{ 649 return __this_cpu_has(feature.function, feature.index, 650 feature.reg, feature.bit, feature.bit); 651} 652 653static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) 654{ 655 return __this_cpu_has(property.function, property.index, 656 property.reg, property.lo_bit, property.hi_bit); 657} 658 659static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) 660{ 661 uint32_t max_leaf; 662 663 switch (property.function & 0xc0000000) { 664 case 0: 665 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 666 break; 667 case 0x40000000: 668 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 669 break; 670 case 0x80000000: 671 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 672 break; 673 case 0xc0000000: 674 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 675 } 676 return max_leaf >= property.function; 677} 678 679static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) 680{ 681 uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 682 683 return nr_bits > feature.anti_feature.bit && 684 !this_cpu_has(feature.anti_feature); 685} 686 687static __always_inline uint64_t this_cpu_supported_xcr0(void) 688{ 689 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 690 return 0; 691 692 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 693 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 694} 695 696typedef u32 __attribute__((vector_size(16))) sse128_t; 697#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } 698#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) 699#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) 700 701static inline void read_sse_reg(int reg, sse128_t *data) 702{ 703 switch (reg) { 704 case 0: 705 asm("movdqa %%xmm0, %0" : "=m"(*data)); 706 break; 707 case 1: 708 asm("movdqa %%xmm1, %0" : "=m"(*data)); 709 break; 710 case 2: 711 asm("movdqa %%xmm2, %0" : "=m"(*data)); 712 break; 713 case 3: 714 asm("movdqa %%xmm3, %0" : "=m"(*data)); 715 break; 716 case 4: 717 asm("movdqa %%xmm4, %0" : "=m"(*data)); 718 break; 719 case 5: 720 asm("movdqa %%xmm5, %0" : "=m"(*data)); 721 break; 722 case 6: 723 asm("movdqa %%xmm6, %0" : "=m"(*data)); 724 break; 725 case 7: 726 asm("movdqa %%xmm7, %0" : "=m"(*data)); 727 break; 728 default: 729 BUG(); 730 } 731} 732 733static inline void write_sse_reg(int reg, const sse128_t *data) 734{ 735 switch (reg) { 736 case 0: 737 asm("movdqa %0, %%xmm0" : : "m"(*data)); 738 break; 739 case 1: 740 asm("movdqa %0, %%xmm1" : : "m"(*data)); 741 break; 742 case 2: 743 asm("movdqa %0, %%xmm2" : : "m"(*data)); 744 break; 745 case 3: 746 asm("movdqa %0, %%xmm3" : : "m"(*data)); 747 break; 748 case 4: 749 asm("movdqa %0, %%xmm4" : : "m"(*data)); 750 break; 751 case 5: 752 asm("movdqa %0, %%xmm5" : : "m"(*data)); 753 break; 754 case 6: 755 asm("movdqa %0, %%xmm6" : : "m"(*data)); 756 break; 757 case 7: 758 asm("movdqa %0, %%xmm7" : : "m"(*data)); 759 break; 760 default: 761 BUG(); 762 } 763} 764 765static inline void cpu_relax(void) 766{ 767 asm volatile("rep; nop" ::: "memory"); 768} 769 770#define ud2() \ 771 __asm__ __volatile__( \ 772 "ud2\n" \ 773 ) 774 775#define hlt() \ 776 __asm__ __volatile__( \ 777 "hlt\n" \ 778 ) 779 780struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); 781void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); 782void kvm_x86_state_cleanup(struct kvm_x86_state *state); 783 784const struct kvm_msr_list *kvm_get_msr_index_list(void); 785const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); 786bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); 787uint64_t kvm_get_feature_msr(uint64_t msr_index); 788 789static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, 790 struct kvm_msrs *msrs) 791{ 792 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); 793 794 TEST_ASSERT(r == msrs->nmsrs, 795 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", 796 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 797} 798static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) 799{ 800 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); 801 802 TEST_ASSERT(r == msrs->nmsrs, 803 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", 804 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 805} 806static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, 807 struct kvm_debugregs *debugregs) 808{ 809 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); 810} 811static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, 812 struct kvm_debugregs *debugregs) 813{ 814 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); 815} 816static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, 817 struct kvm_xsave *xsave) 818{ 819 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); 820} 821static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, 822 struct kvm_xsave *xsave) 823{ 824 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); 825} 826static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, 827 struct kvm_xsave *xsave) 828{ 829 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); 830} 831static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, 832 struct kvm_xcrs *xcrs) 833{ 834 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); 835} 836static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) 837{ 838 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); 839} 840 841const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 842 uint32_t function, uint32_t index); 843const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); 844const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void); 845const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu); 846 847static inline uint32_t kvm_cpu_fms(void) 848{ 849 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; 850} 851 852static inline uint32_t kvm_cpu_family(void) 853{ 854 return x86_family(kvm_cpu_fms()); 855} 856 857static inline uint32_t kvm_cpu_model(void) 858{ 859 return x86_model(kvm_cpu_fms()); 860} 861 862bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 863 struct kvm_x86_cpu_feature feature); 864 865static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) 866{ 867 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); 868} 869 870uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 871 struct kvm_x86_cpu_property property); 872 873static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) 874{ 875 return kvm_cpuid_property(kvm_get_supported_cpuid(), property); 876} 877 878static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) 879{ 880 uint32_t max_leaf; 881 882 switch (property.function & 0xc0000000) { 883 case 0: 884 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 885 break; 886 case 0x40000000: 887 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 888 break; 889 case 0x80000000: 890 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 891 break; 892 case 0xc0000000: 893 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 894 } 895 return max_leaf >= property.function; 896} 897 898static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) 899{ 900 uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 901 902 return nr_bits > feature.anti_feature.bit && 903 !kvm_cpu_has(feature.anti_feature); 904} 905 906static inline size_t kvm_cpuid2_size(int nr_entries) 907{ 908 return sizeof(struct kvm_cpuid2) + 909 sizeof(struct kvm_cpuid_entry2) * nr_entries; 910} 911 912/* 913 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of 914 * entries sized to hold @nr_entries. The caller is responsible for freeing 915 * the struct. 916 */ 917static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) 918{ 919 struct kvm_cpuid2 *cpuid; 920 921 cpuid = malloc(kvm_cpuid2_size(nr_entries)); 922 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); 923 924 cpuid->nent = nr_entries; 925 926 return cpuid; 927} 928 929void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); 930void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu); 931 932static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 933 uint32_t function, 934 uint32_t index) 935{ 936 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, 937 function, index); 938} 939 940static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 941 uint32_t function) 942{ 943 return __vcpu_get_cpuid_entry(vcpu, function, 0); 944} 945 946static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) 947{ 948 int r; 949 950 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 951 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 952 if (r) 953 return r; 954 955 /* On success, refresh the cache to pick up adjustments made by KVM. */ 956 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 957 return 0; 958} 959 960static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) 961{ 962 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 963 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 964 965 /* Refresh the cache to pick up adjustments made by KVM. */ 966 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 967} 968 969void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); 970 971void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); 972void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 973 struct kvm_x86_cpu_feature feature, 974 bool set); 975 976static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, 977 struct kvm_x86_cpu_feature feature) 978{ 979 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); 980 981} 982 983static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, 984 struct kvm_x86_cpu_feature feature) 985{ 986 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); 987} 988 989uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); 990int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); 991 992/* 993 * Assert on an MSR access(es) and pretty print the MSR name when possible. 994 * Note, the caller provides the stringified name so that the name of macro is 995 * printed, not the value the macro resolves to (due to macro expansion). 996 */ 997#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ 998do { \ 999 if (__builtin_constant_p(msr)) { \ 1000 TEST_ASSERT(cond, fmt, str, args); \ 1001 } else if (!(cond)) { \ 1002 char buf[16]; \ 1003 \ 1004 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ 1005 TEST_ASSERT(cond, fmt, buf, args); \ 1006 } \ 1007} while (0) 1008 1009/* 1010 * Returns true if KVM should return the last written value when reading an MSR 1011 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that 1012 * is changing, etc. This is NOT an exhaustive list! The intent is to filter 1013 * out MSRs that are not durable _and_ that a selftest wants to write. 1014 */ 1015static inline bool is_durable_msr(uint32_t msr) 1016{ 1017 return msr != MSR_IA32_TSC; 1018} 1019 1020#define vcpu_set_msr(vcpu, msr, val) \ 1021do { \ 1022 uint64_t r, v = val; \ 1023 \ 1024 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ 1025 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ 1026 if (!is_durable_msr(msr)) \ 1027 break; \ 1028 r = vcpu_get_msr(vcpu, msr); \ 1029 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ 1030} while (0) 1031 1032void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); 1033bool vm_is_unrestricted_guest(struct kvm_vm *vm); 1034 1035struct ex_regs { 1036 uint64_t rax, rcx, rdx, rbx; 1037 uint64_t rbp, rsi, rdi; 1038 uint64_t r8, r9, r10, r11; 1039 uint64_t r12, r13, r14, r15; 1040 uint64_t vector; 1041 uint64_t error_code; 1042 uint64_t rip; 1043 uint64_t cs; 1044 uint64_t rflags; 1045}; 1046 1047struct idt_entry { 1048 uint16_t offset0; 1049 uint16_t selector; 1050 uint16_t ist : 3; 1051 uint16_t : 5; 1052 uint16_t type : 4; 1053 uint16_t : 1; 1054 uint16_t dpl : 2; 1055 uint16_t p : 1; 1056 uint16_t offset1; 1057 uint32_t offset2; uint32_t reserved; 1058}; 1059 1060void vm_init_descriptor_tables(struct kvm_vm *vm); 1061void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu); 1062void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1063 void (*handler)(struct ex_regs *)); 1064 1065/* If a toddler were to say "abracadabra". */ 1066#define KVM_EXCEPTION_MAGIC 0xabacadabaULL 1067 1068/* 1069 * KVM selftest exception fixup uses registers to coordinate with the exception 1070 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory 1071 * per-CPU data. Using only registers avoids having to map memory into the 1072 * guest, doesn't require a valid, stable GS.base, and reduces the risk of 1073 * for recursive faults when accessing memory in the handler. The downside to 1074 * using registers is that it restricts what registers can be used by the actual 1075 * instruction. But, selftests are 64-bit only, making register* pressure a 1076 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved 1077 * by the callee, and except for r11 are not implicit parameters to any 1078 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit 1079 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V 1080 * is higher priority than testing non-faulting SYSCALL/SYSRET. 1081 * 1082 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector 1083 * is guaranteed to be non-zero on fault. 1084 * 1085 * REGISTER INPUTS: 1086 * r9 = MAGIC 1087 * r10 = RIP 1088 * r11 = new RIP on fault 1089 * 1090 * REGISTER OUTPUTS: 1091 * r9 = exception vector (non-zero) 1092 * r10 = error code 1093 */ 1094#define KVM_ASM_SAFE(insn) \ 1095 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ 1096 "lea 1f(%%rip), %%r10\n\t" \ 1097 "lea 2f(%%rip), %%r11\n\t" \ 1098 "1: " insn "\n\t" \ 1099 "xor %%r9, %%r9\n\t" \ 1100 "2:\n\t" \ 1101 "mov %%r9b, %[vector]\n\t" \ 1102 "mov %%r10, %[error_code]\n\t" 1103 1104#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) 1105#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" 1106 1107#define kvm_asm_safe(insn, inputs...) \ 1108({ \ 1109 uint64_t ign_error_code; \ 1110 uint8_t vector; \ 1111 \ 1112 asm volatile(KVM_ASM_SAFE(insn) \ 1113 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1114 : inputs \ 1115 : KVM_ASM_SAFE_CLOBBERS); \ 1116 vector; \ 1117}) 1118 1119#define kvm_asm_safe_ec(insn, error_code, inputs...) \ 1120({ \ 1121 uint8_t vector; \ 1122 \ 1123 asm volatile(KVM_ASM_SAFE(insn) \ 1124 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1125 : inputs \ 1126 : KVM_ASM_SAFE_CLOBBERS); \ 1127 vector; \ 1128}) 1129 1130static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val) 1131{ 1132 uint64_t error_code; 1133 uint8_t vector; 1134 uint32_t a, d; 1135 1136 asm volatile(KVM_ASM_SAFE("rdmsr") 1137 : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code) 1138 : "c"(msr) 1139 : KVM_ASM_SAFE_CLOBBERS); 1140 1141 *val = (uint64_t)a | ((uint64_t)d << 32); 1142 return vector; 1143} 1144 1145static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) 1146{ 1147 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); 1148} 1149 1150static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) 1151{ 1152 u32 eax = value; 1153 u32 edx = value >> 32; 1154 1155 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); 1156} 1157 1158bool kvm_is_tdp_enabled(void); 1159 1160uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 1161 int *level); 1162uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); 1163 1164uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1165 uint64_t a3); 1166uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1167void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1168 1169void __vm_xsave_require_permission(uint64_t xfeature, const char *name); 1170 1171#define vm_xsave_require_permission(xfeature) \ 1172 __vm_xsave_require_permission(xfeature, #xfeature) 1173 1174enum pg_level { 1175 PG_LEVEL_NONE, 1176 PG_LEVEL_4K, 1177 PG_LEVEL_2M, 1178 PG_LEVEL_1G, 1179 PG_LEVEL_512G, 1180 PG_LEVEL_NUM 1181}; 1182 1183#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) 1184#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) 1185 1186#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) 1187#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) 1188#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) 1189 1190void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); 1191void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1192 uint64_t nr_bytes, int level); 1193 1194/* 1195 * Basic CPU control in CR0 1196 */ 1197#define X86_CR0_PE (1UL<<0) /* Protection Enable */ 1198#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ 1199#define X86_CR0_EM (1UL<<2) /* Emulation */ 1200#define X86_CR0_TS (1UL<<3) /* Task Switched */ 1201#define X86_CR0_ET (1UL<<4) /* Extension Type */ 1202#define X86_CR0_NE (1UL<<5) /* Numeric Error */ 1203#define X86_CR0_WP (1UL<<16) /* Write Protect */ 1204#define X86_CR0_AM (1UL<<18) /* Alignment Mask */ 1205#define X86_CR0_NW (1UL<<29) /* Not Write-through */ 1206#define X86_CR0_CD (1UL<<30) /* Cache Disable */ 1207#define X86_CR0_PG (1UL<<31) /* Paging */ 1208 1209#define PFERR_PRESENT_BIT 0 1210#define PFERR_WRITE_BIT 1 1211#define PFERR_USER_BIT 2 1212#define PFERR_RSVD_BIT 3 1213#define PFERR_FETCH_BIT 4 1214#define PFERR_PK_BIT 5 1215#define PFERR_SGX_BIT 15 1216#define PFERR_GUEST_FINAL_BIT 32 1217#define PFERR_GUEST_PAGE_BIT 33 1218#define PFERR_IMPLICIT_ACCESS_BIT 48 1219 1220#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 1221#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 1222#define PFERR_USER_MASK BIT(PFERR_USER_BIT) 1223#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 1224#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 1225#define PFERR_PK_MASK BIT(PFERR_PK_BIT) 1226#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 1227#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 1228#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 1229#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 1230 1231#endif /* SELFTEST_KVM_PROCESSOR_H */