Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168/*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187DEFINE_RWLOCK(dev_base_lock);
188EXPORT_SYMBOL(dev_base_lock);
189
190static DEFINE_MUTEX(ifalias_mutex);
191
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
195static unsigned int napi_gen_id = NR_CPUS;
196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198static DECLARE_RWSEM(devnet_rename_sem);
199
200static inline void dev_base_seq_inc(struct net *net)
201{
202 while (++net->dev_base_seq == 0)
203 ;
204}
205
206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207{
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211}
212
213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214{
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216}
217
218static inline void rps_lock_irqsave(struct softnet_data *sd,
219 unsigned long *flags)
220{
221 if (IS_ENABLED(CONFIG_RPS))
222 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
223 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
224 local_irq_save(*flags);
225}
226
227static inline void rps_lock_irq_disable(struct softnet_data *sd)
228{
229 if (IS_ENABLED(CONFIG_RPS))
230 spin_lock_irq(&sd->input_pkt_queue.lock);
231 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232 local_irq_disable();
233}
234
235static inline void rps_unlock_irq_restore(struct softnet_data *sd,
236 unsigned long *flags)
237{
238 if (IS_ENABLED(CONFIG_RPS))
239 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
240 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
241 local_irq_restore(*flags);
242}
243
244static inline void rps_unlock_irq_enable(struct softnet_data *sd)
245{
246 if (IS_ENABLED(CONFIG_RPS))
247 spin_unlock_irq(&sd->input_pkt_queue.lock);
248 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249 local_irq_enable();
250}
251
252static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
253 const char *name)
254{
255 struct netdev_name_node *name_node;
256
257 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
258 if (!name_node)
259 return NULL;
260 INIT_HLIST_NODE(&name_node->hlist);
261 name_node->dev = dev;
262 name_node->name = name;
263 return name_node;
264}
265
266static struct netdev_name_node *
267netdev_name_node_head_alloc(struct net_device *dev)
268{
269 struct netdev_name_node *name_node;
270
271 name_node = netdev_name_node_alloc(dev, dev->name);
272 if (!name_node)
273 return NULL;
274 INIT_LIST_HEAD(&name_node->list);
275 return name_node;
276}
277
278static void netdev_name_node_free(struct netdev_name_node *name_node)
279{
280 kfree(name_node);
281}
282
283static void netdev_name_node_add(struct net *net,
284 struct netdev_name_node *name_node)
285{
286 hlist_add_head_rcu(&name_node->hlist,
287 dev_name_hash(net, name_node->name));
288}
289
290static void netdev_name_node_del(struct netdev_name_node *name_node)
291{
292 hlist_del_rcu(&name_node->hlist);
293}
294
295static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
296 const char *name)
297{
298 struct hlist_head *head = dev_name_hash(net, name);
299 struct netdev_name_node *name_node;
300
301 hlist_for_each_entry(name_node, head, hlist)
302 if (!strcmp(name_node->name, name))
303 return name_node;
304 return NULL;
305}
306
307static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
308 const char *name)
309{
310 struct hlist_head *head = dev_name_hash(net, name);
311 struct netdev_name_node *name_node;
312
313 hlist_for_each_entry_rcu(name_node, head, hlist)
314 if (!strcmp(name_node->name, name))
315 return name_node;
316 return NULL;
317}
318
319bool netdev_name_in_use(struct net *net, const char *name)
320{
321 return netdev_name_node_lookup(net, name);
322}
323EXPORT_SYMBOL(netdev_name_in_use);
324
325int netdev_name_node_alt_create(struct net_device *dev, const char *name)
326{
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
329
330 name_node = netdev_name_node_lookup(net, name);
331 if (name_node)
332 return -EEXIST;
333 name_node = netdev_name_node_alloc(dev, name);
334 if (!name_node)
335 return -ENOMEM;
336 netdev_name_node_add(net, name_node);
337 /* The node that holds dev->name acts as a head of per-device list. */
338 list_add_tail(&name_node->list, &dev->name_node->list);
339
340 return 0;
341}
342
343static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
344{
345 list_del(&name_node->list);
346 netdev_name_node_del(name_node);
347 kfree(name_node->name);
348 netdev_name_node_free(name_node);
349}
350
351int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352{
353 struct netdev_name_node *name_node;
354 struct net *net = dev_net(dev);
355
356 name_node = netdev_name_node_lookup(net, name);
357 if (!name_node)
358 return -ENOENT;
359 /* lookup might have found our primary name or a name belonging
360 * to another device.
361 */
362 if (name_node == dev->name_node || name_node->dev != dev)
363 return -EINVAL;
364
365 __netdev_name_node_alt_destroy(name_node);
366
367 return 0;
368}
369
370static void netdev_name_node_alt_flush(struct net_device *dev)
371{
372 struct netdev_name_node *name_node, *tmp;
373
374 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
375 __netdev_name_node_alt_destroy(name_node);
376}
377
378/* Device list insertion */
379static void list_netdevice(struct net_device *dev)
380{
381 struct net *net = dev_net(dev);
382
383 ASSERT_RTNL();
384
385 write_lock(&dev_base_lock);
386 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
387 netdev_name_node_add(net, dev->name_node);
388 hlist_add_head_rcu(&dev->index_hlist,
389 dev_index_hash(net, dev->ifindex));
390 write_unlock(&dev_base_lock);
391
392 dev_base_seq_inc(net);
393}
394
395/* Device list removal
396 * caller must respect a RCU grace period before freeing/reusing dev
397 */
398static void unlist_netdevice(struct net_device *dev, bool lock)
399{
400 ASSERT_RTNL();
401
402 /* Unlink dev from the device chain */
403 if (lock)
404 write_lock(&dev_base_lock);
405 list_del_rcu(&dev->dev_list);
406 netdev_name_node_del(dev->name_node);
407 hlist_del_rcu(&dev->index_hlist);
408 if (lock)
409 write_unlock(&dev_base_lock);
410
411 dev_base_seq_inc(dev_net(dev));
412}
413
414/*
415 * Our notifier list
416 */
417
418static RAW_NOTIFIER_HEAD(netdev_chain);
419
420/*
421 * Device drivers call our routines to queue packets here. We empty the
422 * queue in the local softnet handler.
423 */
424
425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428#ifdef CONFIG_LOCKDEP
429/*
430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431 * according to dev->type
432 */
433static const unsigned short netdev_lock_type[] = {
434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449
450static const char *const netdev_lock_name[] = {
451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466
467static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469
470static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471{
472 int i;
473
474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 if (netdev_lock_type[i] == dev_type)
476 return i;
477 /* the last key is used by default */
478 return ARRAY_SIZE(netdev_lock_type) - 1;
479}
480
481static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
483{
484 int i;
485
486 i = netdev_lock_pos(dev_type);
487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 netdev_lock_name[i]);
489}
490
491static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492{
493 int i;
494
495 i = netdev_lock_pos(dev->type);
496 lockdep_set_class_and_name(&dev->addr_list_lock,
497 &netdev_addr_lock_key[i],
498 netdev_lock_name[i]);
499}
500#else
501static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 unsigned short dev_type)
503{
504}
505
506static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507{
508}
509#endif
510
511/*******************************************************************************
512 *
513 * Protocol management and registration routines
514 *
515 *******************************************************************************/
516
517
518/*
519 * Add a protocol ID to the list. Now that the input handler is
520 * smarter we can dispense with all the messy stuff that used to be
521 * here.
522 *
523 * BEWARE!!! Protocol handlers, mangling input packets,
524 * MUST BE last in hash buckets and checking protocol handlers
525 * MUST start from promiscuous ptype_all chain in net_bh.
526 * It is true now, do not change it.
527 * Explanation follows: if protocol handler, mangling packet, will
528 * be the first on list, it is not able to sense, that packet
529 * is cloned and should be copied-on-write, so that it will
530 * change it and subsequent readers will get broken packet.
531 * --ANK (980803)
532 */
533
534static inline struct list_head *ptype_head(const struct packet_type *pt)
535{
536 if (pt->type == htons(ETH_P_ALL))
537 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 else
539 return pt->dev ? &pt->dev->ptype_specific :
540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541}
542
543/**
544 * dev_add_pack - add packet handler
545 * @pt: packet type declaration
546 *
547 * Add a protocol handler to the networking stack. The passed &packet_type
548 * is linked into kernel lists and may not be freed until it has been
549 * removed from the kernel lists.
550 *
551 * This call does not sleep therefore it can not
552 * guarantee all CPU's that are in middle of receiving packets
553 * will see the new packet type (until the next received packet).
554 */
555
556void dev_add_pack(struct packet_type *pt)
557{
558 struct list_head *head = ptype_head(pt);
559
560 spin_lock(&ptype_lock);
561 list_add_rcu(&pt->list, head);
562 spin_unlock(&ptype_lock);
563}
564EXPORT_SYMBOL(dev_add_pack);
565
566/**
567 * __dev_remove_pack - remove packet handler
568 * @pt: packet type declaration
569 *
570 * Remove a protocol handler that was previously added to the kernel
571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
572 * from the kernel lists and can be freed or reused once this function
573 * returns.
574 *
575 * The packet type might still be in use by receivers
576 * and must not be freed until after all the CPU's have gone
577 * through a quiescent state.
578 */
579void __dev_remove_pack(struct packet_type *pt)
580{
581 struct list_head *head = ptype_head(pt);
582 struct packet_type *pt1;
583
584 spin_lock(&ptype_lock);
585
586 list_for_each_entry(pt1, head, list) {
587 if (pt == pt1) {
588 list_del_rcu(&pt->list);
589 goto out;
590 }
591 }
592
593 pr_warn("dev_remove_pack: %p not found\n", pt);
594out:
595 spin_unlock(&ptype_lock);
596}
597EXPORT_SYMBOL(__dev_remove_pack);
598
599/**
600 * dev_remove_pack - remove packet handler
601 * @pt: packet type declaration
602 *
603 * Remove a protocol handler that was previously added to the kernel
604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
605 * from the kernel lists and can be freed or reused once this function
606 * returns.
607 *
608 * This call sleeps to guarantee that no CPU is looking at the packet
609 * type after return.
610 */
611void dev_remove_pack(struct packet_type *pt)
612{
613 __dev_remove_pack(pt);
614
615 synchronize_net();
616}
617EXPORT_SYMBOL(dev_remove_pack);
618
619
620/*******************************************************************************
621 *
622 * Device Interface Subroutines
623 *
624 *******************************************************************************/
625
626/**
627 * dev_get_iflink - get 'iflink' value of a interface
628 * @dev: targeted interface
629 *
630 * Indicates the ifindex the interface is linked to.
631 * Physical interfaces have the same 'ifindex' and 'iflink' values.
632 */
633
634int dev_get_iflink(const struct net_device *dev)
635{
636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 return dev->netdev_ops->ndo_get_iflink(dev);
638
639 return dev->ifindex;
640}
641EXPORT_SYMBOL(dev_get_iflink);
642
643/**
644 * dev_fill_metadata_dst - Retrieve tunnel egress information.
645 * @dev: targeted interface
646 * @skb: The packet.
647 *
648 * For better visibility of tunnel traffic OVS needs to retrieve
649 * egress tunnel information for a packet. Following API allows
650 * user to get this info.
651 */
652int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653{
654 struct ip_tunnel_info *info;
655
656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
657 return -EINVAL;
658
659 info = skb_tunnel_info_unclone(skb);
660 if (!info)
661 return -ENOMEM;
662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 return -EINVAL;
664
665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666}
667EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668
669static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670{
671 int k = stack->num_paths++;
672
673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 return NULL;
675
676 return &stack->path[k];
677}
678
679int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 struct net_device_path_stack *stack)
681{
682 const struct net_device *last_dev;
683 struct net_device_path_ctx ctx = {
684 .dev = dev,
685 };
686 struct net_device_path *path;
687 int ret = 0;
688
689 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690 stack->num_paths = 0;
691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 last_dev = ctx.dev;
693 path = dev_fwd_path(stack);
694 if (!path)
695 return -1;
696
697 memset(path, 0, sizeof(struct net_device_path));
698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 if (ret < 0)
700 return -1;
701
702 if (WARN_ON_ONCE(last_dev == ctx.dev))
703 return -1;
704 }
705
706 if (!ctx.dev)
707 return ret;
708
709 path = dev_fwd_path(stack);
710 if (!path)
711 return -1;
712 path->type = DEV_PATH_ETHERNET;
713 path->dev = ctx.dev;
714
715 return ret;
716}
717EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718
719/**
720 * __dev_get_by_name - find a device by its name
721 * @net: the applicable net namespace
722 * @name: name to find
723 *
724 * Find an interface by name. Must be called under RTNL semaphore
725 * or @dev_base_lock. If the name is found a pointer to the device
726 * is returned. If the name is not found then %NULL is returned. The
727 * reference counters are not incremented so the caller must be
728 * careful with locks.
729 */
730
731struct net_device *__dev_get_by_name(struct net *net, const char *name)
732{
733 struct netdev_name_node *node_name;
734
735 node_name = netdev_name_node_lookup(net, name);
736 return node_name ? node_name->dev : NULL;
737}
738EXPORT_SYMBOL(__dev_get_by_name);
739
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
754 struct netdev_name_node *node_name;
755
756 node_name = netdev_name_node_lookup_rcu(net, name);
757 return node_name ? node_name->dev : NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761/**
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
773struct net_device *dev_get_by_name(struct net *net, const char *name)
774{
775 struct net_device *dev;
776
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
779 dev_hold(dev);
780 rcu_read_unlock();
781 return dev;
782}
783EXPORT_SYMBOL(dev_get_by_name);
784
785/**
786 * __dev_get_by_index - find a device by its ifindex
787 * @net: the applicable net namespace
788 * @ifindex: index of device
789 *
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold either the RTNL semaphore
794 * or @dev_base_lock.
795 */
796
797struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798{
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
801
802 hlist_for_each_entry(dev, head, index_hlist)
803 if (dev->ifindex == ifindex)
804 return dev;
805
806 return NULL;
807}
808EXPORT_SYMBOL(__dev_get_by_index);
809
810/**
811 * dev_get_by_index_rcu - find a device by its ifindex
812 * @net: the applicable net namespace
813 * @ifindex: index of device
814 *
815 * Search for an interface by index. Returns %NULL if the device
816 * is not found or a pointer to the device. The device has not
817 * had its reference counter increased so the caller must be careful
818 * about locking. The caller must hold RCU lock.
819 */
820
821struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822{
823 struct net_device *dev;
824 struct hlist_head *head = dev_index_hash(net, ifindex);
825
826 hlist_for_each_entry_rcu(dev, head, index_hlist)
827 if (dev->ifindex == ifindex)
828 return dev;
829
830 return NULL;
831}
832EXPORT_SYMBOL(dev_get_by_index_rcu);
833
834
835/**
836 * dev_get_by_index - find a device by its ifindex
837 * @net: the applicable net namespace
838 * @ifindex: index of device
839 *
840 * Search for an interface by index. Returns NULL if the device
841 * is not found or a pointer to the device. The device returned has
842 * had a reference added and the pointer is safe until the user calls
843 * dev_put to indicate they have finished with it.
844 */
845
846struct net_device *dev_get_by_index(struct net *net, int ifindex)
847{
848 struct net_device *dev;
849
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 dev_hold(dev);
853 rcu_read_unlock();
854 return dev;
855}
856EXPORT_SYMBOL(dev_get_by_index);
857
858/**
859 * dev_get_by_napi_id - find a device by napi_id
860 * @napi_id: ID of the NAPI struct
861 *
862 * Search for an interface by NAPI ID. Returns %NULL if the device
863 * is not found or a pointer to the device. The device has not had
864 * its reference counter increased so the caller must be careful
865 * about locking. The caller must hold RCU lock.
866 */
867
868struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869{
870 struct napi_struct *napi;
871
872 WARN_ON_ONCE(!rcu_read_lock_held());
873
874 if (napi_id < MIN_NAPI_ID)
875 return NULL;
876
877 napi = napi_by_id(napi_id);
878
879 return napi ? napi->dev : NULL;
880}
881EXPORT_SYMBOL(dev_get_by_napi_id);
882
883/**
884 * netdev_get_name - get a netdevice name, knowing its ifindex.
885 * @net: network namespace
886 * @name: a pointer to the buffer where the name will be stored.
887 * @ifindex: the ifindex of the interface to get the name from.
888 */
889int netdev_get_name(struct net *net, char *name, int ifindex)
890{
891 struct net_device *dev;
892 int ret;
893
894 down_read(&devnet_rename_sem);
895 rcu_read_lock();
896
897 dev = dev_get_by_index_rcu(net, ifindex);
898 if (!dev) {
899 ret = -ENODEV;
900 goto out;
901 }
902
903 strcpy(name, dev->name);
904
905 ret = 0;
906out:
907 rcu_read_unlock();
908 up_read(&devnet_rename_sem);
909 return ret;
910}
911
912/**
913 * dev_getbyhwaddr_rcu - find a device by its hardware address
914 * @net: the applicable net namespace
915 * @type: media type of device
916 * @ha: hardware address
917 *
918 * Search for an interface by MAC address. Returns NULL if the device
919 * is not found or a pointer to the device.
920 * The caller must hold RCU or RTNL.
921 * The returned device has not had its ref count increased
922 * and the caller must therefore be careful about locking
923 *
924 */
925
926struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 const char *ha)
928{
929 struct net_device *dev;
930
931 for_each_netdev_rcu(net, dev)
932 if (dev->type == type &&
933 !memcmp(dev->dev_addr, ha, dev->addr_len))
934 return dev;
935
936 return NULL;
937}
938EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939
940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941{
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953}
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969{
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982}
983EXPORT_SYMBOL(__dev_get_by_flags);
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993bool dev_valid_name(const char *name)
994{
995 if (*name == '\0')
996 return false;
997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008}
1009EXPORT_SYMBOL(dev_valid_name);
1010
1011/**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027{
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 if (!dev_valid_name(name))
1035 return -EINVAL;
1036
1037 p = strchr(name, '%');
1038 if (p) {
1039 /*
1040 * Verify the string as this thing may have come from
1041 * the user. There must be either one "%d" and no other "%"
1042 * characters.
1043 */
1044 if (p[1] != 'd' || strchr(p + 2, '%'))
1045 return -EINVAL;
1046
1047 /* Use one page as a bit array of possible slots */
1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 if (!inuse)
1050 return -ENOMEM;
1051
1052 for_each_netdev(net, d) {
1053 struct netdev_name_node *name_node;
1054 list_for_each_entry(name_node, &d->name_node->list, list) {
1055 if (!sscanf(name_node->name, name, &i))
1056 continue;
1057 if (i < 0 || i >= max_netdevices)
1058 continue;
1059
1060 /* avoid cases where sscanf is not exact inverse of printf */
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 __set_bit(i, inuse);
1064 }
1065 if (!sscanf(d->name, name, &i))
1066 continue;
1067 if (i < 0 || i >= max_netdevices)
1068 continue;
1069
1070 /* avoid cases where sscanf is not exact inverse of printf */
1071 snprintf(buf, IFNAMSIZ, name, i);
1072 if (!strncmp(buf, d->name, IFNAMSIZ))
1073 __set_bit(i, inuse);
1074 }
1075
1076 i = find_first_zero_bit(inuse, max_netdevices);
1077 free_page((unsigned long) inuse);
1078 }
1079
1080 snprintf(buf, IFNAMSIZ, name, i);
1081 if (!netdev_name_in_use(net, buf))
1082 return i;
1083
1084 /* It is possible to run out of possible slots
1085 * when the name is long and there isn't enough space left
1086 * for the digits, or if all bits are used.
1087 */
1088 return -ENFILE;
1089}
1090
1091static int dev_alloc_name_ns(struct net *net,
1092 struct net_device *dev,
1093 const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 int ret;
1097
1098 BUG_ON(!net);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strscpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103}
1104
1105/**
1106 * dev_alloc_name - allocate a name for a device
1107 * @dev: device
1108 * @name: name format string
1109 *
1110 * Passed a format string - eg "lt%d" it will try and find a suitable
1111 * id. It scans list of devices to build up a free map, then chooses
1112 * the first empty slot. The caller must hold the dev_base or rtnl lock
1113 * while allocating the name and adding the device in order to avoid
1114 * duplicates.
1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116 * Returns the number of the unit assigned or a negative errno code.
1117 */
1118
1119int dev_alloc_name(struct net_device *dev, const char *name)
1120{
1121 return dev_alloc_name_ns(dev_net(dev), dev, name);
1122}
1123EXPORT_SYMBOL(dev_alloc_name);
1124
1125static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 const char *name)
1127{
1128 BUG_ON(!net);
1129
1130 if (!dev_valid_name(name))
1131 return -EINVAL;
1132
1133 if (strchr(name, '%'))
1134 return dev_alloc_name_ns(net, dev, name);
1135 else if (netdev_name_in_use(net, name))
1136 return -EEXIST;
1137 else if (dev->name != name)
1138 strscpy(dev->name, name, IFNAMSIZ);
1139
1140 return 0;
1141}
1142
1143/**
1144 * dev_change_name - change name of a device
1145 * @dev: device
1146 * @newname: name (or format string) must be at least IFNAMSIZ
1147 *
1148 * Change name of a device, can pass format strings "eth%d".
1149 * for wildcarding.
1150 */
1151int dev_change_name(struct net_device *dev, const char *newname)
1152{
1153 unsigned char old_assign_type;
1154 char oldname[IFNAMSIZ];
1155 int err = 0;
1156 int ret;
1157 struct net *net;
1158
1159 ASSERT_RTNL();
1160 BUG_ON(!dev_net(dev));
1161
1162 net = dev_net(dev);
1163
1164 down_write(&devnet_rename_sem);
1165
1166 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1167 up_write(&devnet_rename_sem);
1168 return 0;
1169 }
1170
1171 memcpy(oldname, dev->name, IFNAMSIZ);
1172
1173 err = dev_get_valid_name(net, dev, newname);
1174 if (err < 0) {
1175 up_write(&devnet_rename_sem);
1176 return err;
1177 }
1178
1179 if (oldname[0] && !strchr(oldname, '%'))
1180 netdev_info(dev, "renamed from %s%s\n", oldname,
1181 dev->flags & IFF_UP ? " (while UP)" : "");
1182
1183 old_assign_type = dev->name_assign_type;
1184 dev->name_assign_type = NET_NAME_RENAMED;
1185
1186rollback:
1187 ret = device_rename(&dev->dev, dev->name);
1188 if (ret) {
1189 memcpy(dev->name, oldname, IFNAMSIZ);
1190 dev->name_assign_type = old_assign_type;
1191 up_write(&devnet_rename_sem);
1192 return ret;
1193 }
1194
1195 up_write(&devnet_rename_sem);
1196
1197 netdev_adjacent_rename_links(dev, oldname);
1198
1199 write_lock(&dev_base_lock);
1200 netdev_name_node_del(dev->name_node);
1201 write_unlock(&dev_base_lock);
1202
1203 synchronize_rcu();
1204
1205 write_lock(&dev_base_lock);
1206 netdev_name_node_add(net, dev->name_node);
1207 write_unlock(&dev_base_lock);
1208
1209 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1210 ret = notifier_to_errno(ret);
1211
1212 if (ret) {
1213 /* err >= 0 after dev_alloc_name() or stores the first errno */
1214 if (err >= 0) {
1215 err = ret;
1216 down_write(&devnet_rename_sem);
1217 memcpy(dev->name, oldname, IFNAMSIZ);
1218 memcpy(oldname, newname, IFNAMSIZ);
1219 dev->name_assign_type = old_assign_type;
1220 old_assign_type = NET_NAME_RENAMED;
1221 goto rollback;
1222 } else {
1223 netdev_err(dev, "name change rollback failed: %d\n",
1224 ret);
1225 }
1226 }
1227
1228 return err;
1229}
1230
1231/**
1232 * dev_set_alias - change ifalias of a device
1233 * @dev: device
1234 * @alias: name up to IFALIASZ
1235 * @len: limit of bytes to copy from info
1236 *
1237 * Set ifalias for a device,
1238 */
1239int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1240{
1241 struct dev_ifalias *new_alias = NULL;
1242
1243 if (len >= IFALIASZ)
1244 return -EINVAL;
1245
1246 if (len) {
1247 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1248 if (!new_alias)
1249 return -ENOMEM;
1250
1251 memcpy(new_alias->ifalias, alias, len);
1252 new_alias->ifalias[len] = 0;
1253 }
1254
1255 mutex_lock(&ifalias_mutex);
1256 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1257 mutex_is_locked(&ifalias_mutex));
1258 mutex_unlock(&ifalias_mutex);
1259
1260 if (new_alias)
1261 kfree_rcu(new_alias, rcuhead);
1262
1263 return len;
1264}
1265EXPORT_SYMBOL(dev_set_alias);
1266
1267/**
1268 * dev_get_alias - get ifalias of a device
1269 * @dev: device
1270 * @name: buffer to store name of ifalias
1271 * @len: size of buffer
1272 *
1273 * get ifalias for a device. Caller must make sure dev cannot go
1274 * away, e.g. rcu read lock or own a reference count to device.
1275 */
1276int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1277{
1278 const struct dev_ifalias *alias;
1279 int ret = 0;
1280
1281 rcu_read_lock();
1282 alias = rcu_dereference(dev->ifalias);
1283 if (alias)
1284 ret = snprintf(name, len, "%s", alias->ifalias);
1285 rcu_read_unlock();
1286
1287 return ret;
1288}
1289
1290/**
1291 * netdev_features_change - device changes features
1292 * @dev: device to cause notification
1293 *
1294 * Called to indicate a device has changed features.
1295 */
1296void netdev_features_change(struct net_device *dev)
1297{
1298 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1299}
1300EXPORT_SYMBOL(netdev_features_change);
1301
1302/**
1303 * netdev_state_change - device changes state
1304 * @dev: device to cause notification
1305 *
1306 * Called to indicate a device has changed state. This function calls
1307 * the notifier chains for netdev_chain and sends a NEWLINK message
1308 * to the routing socket.
1309 */
1310void netdev_state_change(struct net_device *dev)
1311{
1312 if (dev->flags & IFF_UP) {
1313 struct netdev_notifier_change_info change_info = {
1314 .info.dev = dev,
1315 };
1316
1317 call_netdevice_notifiers_info(NETDEV_CHANGE,
1318 &change_info.info);
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1320 }
1321}
1322EXPORT_SYMBOL(netdev_state_change);
1323
1324/**
1325 * __netdev_notify_peers - notify network peers about existence of @dev,
1326 * to be called when rtnl lock is already held.
1327 * @dev: network device
1328 *
1329 * Generate traffic such that interested network peers are aware of
1330 * @dev, such as by generating a gratuitous ARP. This may be used when
1331 * a device wants to inform the rest of the network about some sort of
1332 * reconfiguration such as a failover event or virtual machine
1333 * migration.
1334 */
1335void __netdev_notify_peers(struct net_device *dev)
1336{
1337 ASSERT_RTNL();
1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340}
1341EXPORT_SYMBOL(__netdev_notify_peers);
1342
1343/**
1344 * netdev_notify_peers - notify network peers about existence of @dev
1345 * @dev: network device
1346 *
1347 * Generate traffic such that interested network peers are aware of
1348 * @dev, such as by generating a gratuitous ARP. This may be used when
1349 * a device wants to inform the rest of the network about some sort of
1350 * reconfiguration such as a failover event or virtual machine
1351 * migration.
1352 */
1353void netdev_notify_peers(struct net_device *dev)
1354{
1355 rtnl_lock();
1356 __netdev_notify_peers(dev);
1357 rtnl_unlock();
1358}
1359EXPORT_SYMBOL(netdev_notify_peers);
1360
1361static int napi_threaded_poll(void *data);
1362
1363static int napi_kthread_create(struct napi_struct *n)
1364{
1365 int err = 0;
1366
1367 /* Create and wake up the kthread once to put it in
1368 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1369 * warning and work with loadavg.
1370 */
1371 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1372 n->dev->name, n->napi_id);
1373 if (IS_ERR(n->thread)) {
1374 err = PTR_ERR(n->thread);
1375 pr_err("kthread_run failed with err %d\n", err);
1376 n->thread = NULL;
1377 }
1378
1379 return err;
1380}
1381
1382static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383{
1384 const struct net_device_ops *ops = dev->netdev_ops;
1385 int ret;
1386
1387 ASSERT_RTNL();
1388 dev_addr_check(dev);
1389
1390 if (!netif_device_present(dev)) {
1391 /* may be detached because parent is runtime-suspended */
1392 if (dev->dev.parent)
1393 pm_runtime_resume(dev->dev.parent);
1394 if (!netif_device_present(dev))
1395 return -ENODEV;
1396 }
1397
1398 /* Block netpoll from trying to do any rx path servicing.
1399 * If we don't do this there is a chance ndo_poll_controller
1400 * or ndo_poll may be running while we open the device
1401 */
1402 netpoll_poll_disable(dev);
1403
1404 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1405 ret = notifier_to_errno(ret);
1406 if (ret)
1407 return ret;
1408
1409 set_bit(__LINK_STATE_START, &dev->state);
1410
1411 if (ops->ndo_validate_addr)
1412 ret = ops->ndo_validate_addr(dev);
1413
1414 if (!ret && ops->ndo_open)
1415 ret = ops->ndo_open(dev);
1416
1417 netpoll_poll_enable(dev);
1418
1419 if (ret)
1420 clear_bit(__LINK_STATE_START, &dev->state);
1421 else {
1422 dev->flags |= IFF_UP;
1423 dev_set_rx_mode(dev);
1424 dev_activate(dev);
1425 add_device_randomness(dev->dev_addr, dev->addr_len);
1426 }
1427
1428 return ret;
1429}
1430
1431/**
1432 * dev_open - prepare an interface for use.
1433 * @dev: device to open
1434 * @extack: netlink extended ack
1435 *
1436 * Takes a device from down to up state. The device's private open
1437 * function is invoked and then the multicast lists are loaded. Finally
1438 * the device is moved into the up state and a %NETDEV_UP message is
1439 * sent to the netdev notifier chain.
1440 *
1441 * Calling this function on an active interface is a nop. On a failure
1442 * a negative errno code is returned.
1443 */
1444int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1445{
1446 int ret;
1447
1448 if (dev->flags & IFF_UP)
1449 return 0;
1450
1451 ret = __dev_open(dev, extack);
1452 if (ret < 0)
1453 return ret;
1454
1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1456 call_netdevice_notifiers(NETDEV_UP, dev);
1457
1458 return ret;
1459}
1460EXPORT_SYMBOL(dev_open);
1461
1462static void __dev_close_many(struct list_head *head)
1463{
1464 struct net_device *dev;
1465
1466 ASSERT_RTNL();
1467 might_sleep();
1468
1469 list_for_each_entry(dev, head, close_list) {
1470 /* Temporarily disable netpoll until the interface is down */
1471 netpoll_poll_disable(dev);
1472
1473 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1474
1475 clear_bit(__LINK_STATE_START, &dev->state);
1476
1477 /* Synchronize to scheduled poll. We cannot touch poll list, it
1478 * can be even on different cpu. So just clear netif_running().
1479 *
1480 * dev->stop() will invoke napi_disable() on all of it's
1481 * napi_struct instances on this device.
1482 */
1483 smp_mb__after_atomic(); /* Commit netif_running(). */
1484 }
1485
1486 dev_deactivate_many(head);
1487
1488 list_for_each_entry(dev, head, close_list) {
1489 const struct net_device_ops *ops = dev->netdev_ops;
1490
1491 /*
1492 * Call the device specific close. This cannot fail.
1493 * Only if device is UP
1494 *
1495 * We allow it to be called even after a DETACH hot-plug
1496 * event.
1497 */
1498 if (ops->ndo_stop)
1499 ops->ndo_stop(dev);
1500
1501 dev->flags &= ~IFF_UP;
1502 netpoll_poll_enable(dev);
1503 }
1504}
1505
1506static void __dev_close(struct net_device *dev)
1507{
1508 LIST_HEAD(single);
1509
1510 list_add(&dev->close_list, &single);
1511 __dev_close_many(&single);
1512 list_del(&single);
1513}
1514
1515void dev_close_many(struct list_head *head, bool unlink)
1516{
1517 struct net_device *dev, *tmp;
1518
1519 /* Remove the devices that don't need to be closed */
1520 list_for_each_entry_safe(dev, tmp, head, close_list)
1521 if (!(dev->flags & IFF_UP))
1522 list_del_init(&dev->close_list);
1523
1524 __dev_close_many(head);
1525
1526 list_for_each_entry_safe(dev, tmp, head, close_list) {
1527 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1528 call_netdevice_notifiers(NETDEV_DOWN, dev);
1529 if (unlink)
1530 list_del_init(&dev->close_list);
1531 }
1532}
1533EXPORT_SYMBOL(dev_close_many);
1534
1535/**
1536 * dev_close - shutdown an interface.
1537 * @dev: device to shutdown
1538 *
1539 * This function moves an active device into down state. A
1540 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1541 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1542 * chain.
1543 */
1544void dev_close(struct net_device *dev)
1545{
1546 if (dev->flags & IFF_UP) {
1547 LIST_HEAD(single);
1548
1549 list_add(&dev->close_list, &single);
1550 dev_close_many(&single, true);
1551 list_del(&single);
1552 }
1553}
1554EXPORT_SYMBOL(dev_close);
1555
1556
1557/**
1558 * dev_disable_lro - disable Large Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable Large Receive Offload (LRO) on a net device. Must be
1562 * called under RTNL. This is needed if received packets may be
1563 * forwarded to another interface.
1564 */
1565void dev_disable_lro(struct net_device *dev)
1566{
1567 struct net_device *lower_dev;
1568 struct list_head *iter;
1569
1570 dev->wanted_features &= ~NETIF_F_LRO;
1571 netdev_update_features(dev);
1572
1573 if (unlikely(dev->features & NETIF_F_LRO))
1574 netdev_WARN(dev, "failed to disable LRO!\n");
1575
1576 netdev_for_each_lower_dev(dev, lower_dev, iter)
1577 dev_disable_lro(lower_dev);
1578}
1579EXPORT_SYMBOL(dev_disable_lro);
1580
1581/**
1582 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1583 * @dev: device
1584 *
1585 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1586 * called under RTNL. This is needed if Generic XDP is installed on
1587 * the device.
1588 */
1589static void dev_disable_gro_hw(struct net_device *dev)
1590{
1591 dev->wanted_features &= ~NETIF_F_GRO_HW;
1592 netdev_update_features(dev);
1593
1594 if (unlikely(dev->features & NETIF_F_GRO_HW))
1595 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1596}
1597
1598const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1599{
1600#define N(val) \
1601 case NETDEV_##val: \
1602 return "NETDEV_" __stringify(val);
1603 switch (cmd) {
1604 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1605 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1606 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1607 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1608 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1609 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1610 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1611 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1612 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1613 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1614 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1615 N(XDP_FEAT_CHANGE)
1616 }
1617#undef N
1618 return "UNKNOWN_NETDEV_EVENT";
1619}
1620EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1621
1622static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1623 struct net_device *dev)
1624{
1625 struct netdev_notifier_info info = {
1626 .dev = dev,
1627 };
1628
1629 return nb->notifier_call(nb, val, &info);
1630}
1631
1632static int call_netdevice_register_notifiers(struct notifier_block *nb,
1633 struct net_device *dev)
1634{
1635 int err;
1636
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1639 if (err)
1640 return err;
1641
1642 if (!(dev->flags & IFF_UP))
1643 return 0;
1644
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 return 0;
1647}
1648
1649static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1650 struct net_device *dev)
1651{
1652 if (dev->flags & IFF_UP) {
1653 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1654 dev);
1655 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1656 }
1657 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1658}
1659
1660static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1661 struct net *net)
1662{
1663 struct net_device *dev;
1664 int err;
1665
1666 for_each_netdev(net, dev) {
1667 err = call_netdevice_register_notifiers(nb, dev);
1668 if (err)
1669 goto rollback;
1670 }
1671 return 0;
1672
1673rollback:
1674 for_each_netdev_continue_reverse(net, dev)
1675 call_netdevice_unregister_notifiers(nb, dev);
1676 return err;
1677}
1678
1679static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1680 struct net *net)
1681{
1682 struct net_device *dev;
1683
1684 for_each_netdev(net, dev)
1685 call_netdevice_unregister_notifiers(nb, dev);
1686}
1687
1688static int dev_boot_phase = 1;
1689
1690/**
1691 * register_netdevice_notifier - register a network notifier block
1692 * @nb: notifier
1693 *
1694 * Register a notifier to be called when network device events occur.
1695 * The notifier passed is linked into the kernel structures and must
1696 * not be reused until it has been unregistered. A negative errno code
1697 * is returned on a failure.
1698 *
1699 * When registered all registration and up events are replayed
1700 * to the new notifier to allow device to have a race free
1701 * view of the network device list.
1702 */
1703
1704int register_netdevice_notifier(struct notifier_block *nb)
1705{
1706 struct net *net;
1707 int err;
1708
1709 /* Close race with setup_net() and cleanup_net() */
1710 down_write(&pernet_ops_rwsem);
1711 rtnl_lock();
1712 err = raw_notifier_chain_register(&netdev_chain, nb);
1713 if (err)
1714 goto unlock;
1715 if (dev_boot_phase)
1716 goto unlock;
1717 for_each_net(net) {
1718 err = call_netdevice_register_net_notifiers(nb, net);
1719 if (err)
1720 goto rollback;
1721 }
1722
1723unlock:
1724 rtnl_unlock();
1725 up_write(&pernet_ops_rwsem);
1726 return err;
1727
1728rollback:
1729 for_each_net_continue_reverse(net)
1730 call_netdevice_unregister_net_notifiers(nb, net);
1731
1732 raw_notifier_chain_unregister(&netdev_chain, nb);
1733 goto unlock;
1734}
1735EXPORT_SYMBOL(register_netdevice_notifier);
1736
1737/**
1738 * unregister_netdevice_notifier - unregister a network notifier block
1739 * @nb: notifier
1740 *
1741 * Unregister a notifier previously registered by
1742 * register_netdevice_notifier(). The notifier is unlinked into the
1743 * kernel structures and may then be reused. A negative errno code
1744 * is returned on a failure.
1745 *
1746 * After unregistering unregister and down device events are synthesized
1747 * for all devices on the device list to the removed notifier to remove
1748 * the need for special case cleanup code.
1749 */
1750
1751int unregister_netdevice_notifier(struct notifier_block *nb)
1752{
1753 struct net *net;
1754 int err;
1755
1756 /* Close race with setup_net() and cleanup_net() */
1757 down_write(&pernet_ops_rwsem);
1758 rtnl_lock();
1759 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1760 if (err)
1761 goto unlock;
1762
1763 for_each_net(net)
1764 call_netdevice_unregister_net_notifiers(nb, net);
1765
1766unlock:
1767 rtnl_unlock();
1768 up_write(&pernet_ops_rwsem);
1769 return err;
1770}
1771EXPORT_SYMBOL(unregister_netdevice_notifier);
1772
1773static int __register_netdevice_notifier_net(struct net *net,
1774 struct notifier_block *nb,
1775 bool ignore_call_fail)
1776{
1777 int err;
1778
1779 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1780 if (err)
1781 return err;
1782 if (dev_boot_phase)
1783 return 0;
1784
1785 err = call_netdevice_register_net_notifiers(nb, net);
1786 if (err && !ignore_call_fail)
1787 goto chain_unregister;
1788
1789 return 0;
1790
1791chain_unregister:
1792 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1793 return err;
1794}
1795
1796static int __unregister_netdevice_notifier_net(struct net *net,
1797 struct notifier_block *nb)
1798{
1799 int err;
1800
1801 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1802 if (err)
1803 return err;
1804
1805 call_netdevice_unregister_net_notifiers(nb, net);
1806 return 0;
1807}
1808
1809/**
1810 * register_netdevice_notifier_net - register a per-netns network notifier block
1811 * @net: network namespace
1812 * @nb: notifier
1813 *
1814 * Register a notifier to be called when network device events occur.
1815 * The notifier passed is linked into the kernel structures and must
1816 * not be reused until it has been unregistered. A negative errno code
1817 * is returned on a failure.
1818 *
1819 * When registered all registration and up events are replayed
1820 * to the new notifier to allow device to have a race free
1821 * view of the network device list.
1822 */
1823
1824int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1825{
1826 int err;
1827
1828 rtnl_lock();
1829 err = __register_netdevice_notifier_net(net, nb, false);
1830 rtnl_unlock();
1831 return err;
1832}
1833EXPORT_SYMBOL(register_netdevice_notifier_net);
1834
1835/**
1836 * unregister_netdevice_notifier_net - unregister a per-netns
1837 * network notifier block
1838 * @net: network namespace
1839 * @nb: notifier
1840 *
1841 * Unregister a notifier previously registered by
1842 * register_netdevice_notifier_net(). The notifier is unlinked from the
1843 * kernel structures and may then be reused. A negative errno code
1844 * is returned on a failure.
1845 *
1846 * After unregistering unregister and down device events are synthesized
1847 * for all devices on the device list to the removed notifier to remove
1848 * the need for special case cleanup code.
1849 */
1850
1851int unregister_netdevice_notifier_net(struct net *net,
1852 struct notifier_block *nb)
1853{
1854 int err;
1855
1856 rtnl_lock();
1857 err = __unregister_netdevice_notifier_net(net, nb);
1858 rtnl_unlock();
1859 return err;
1860}
1861EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1862
1863static void __move_netdevice_notifier_net(struct net *src_net,
1864 struct net *dst_net,
1865 struct notifier_block *nb)
1866{
1867 __unregister_netdevice_notifier_net(src_net, nb);
1868 __register_netdevice_notifier_net(dst_net, nb, true);
1869}
1870
1871int register_netdevice_notifier_dev_net(struct net_device *dev,
1872 struct notifier_block *nb,
1873 struct netdev_net_notifier *nn)
1874{
1875 int err;
1876
1877 rtnl_lock();
1878 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1879 if (!err) {
1880 nn->nb = nb;
1881 list_add(&nn->list, &dev->net_notifier_list);
1882 }
1883 rtnl_unlock();
1884 return err;
1885}
1886EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1887
1888int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1889 struct notifier_block *nb,
1890 struct netdev_net_notifier *nn)
1891{
1892 int err;
1893
1894 rtnl_lock();
1895 list_del(&nn->list);
1896 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1897 rtnl_unlock();
1898 return err;
1899}
1900EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1901
1902static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1903 struct net *net)
1904{
1905 struct netdev_net_notifier *nn;
1906
1907 list_for_each_entry(nn, &dev->net_notifier_list, list)
1908 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1909}
1910
1911/**
1912 * call_netdevice_notifiers_info - call all network notifier blocks
1913 * @val: value passed unmodified to notifier function
1914 * @info: notifier information data
1915 *
1916 * Call all network notifier blocks. Parameters and return value
1917 * are as for raw_notifier_call_chain().
1918 */
1919
1920int call_netdevice_notifiers_info(unsigned long val,
1921 struct netdev_notifier_info *info)
1922{
1923 struct net *net = dev_net(info->dev);
1924 int ret;
1925
1926 ASSERT_RTNL();
1927
1928 /* Run per-netns notifier block chain first, then run the global one.
1929 * Hopefully, one day, the global one is going to be removed after
1930 * all notifier block registrators get converted to be per-netns.
1931 */
1932 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1933 if (ret & NOTIFY_STOP_MASK)
1934 return ret;
1935 return raw_notifier_call_chain(&netdev_chain, val, info);
1936}
1937
1938/**
1939 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1940 * for and rollback on error
1941 * @val_up: value passed unmodified to notifier function
1942 * @val_down: value passed unmodified to the notifier function when
1943 * recovering from an error on @val_up
1944 * @info: notifier information data
1945 *
1946 * Call all per-netns network notifier blocks, but not notifier blocks on
1947 * the global notifier chain. Parameters and return value are as for
1948 * raw_notifier_call_chain_robust().
1949 */
1950
1951static int
1952call_netdevice_notifiers_info_robust(unsigned long val_up,
1953 unsigned long val_down,
1954 struct netdev_notifier_info *info)
1955{
1956 struct net *net = dev_net(info->dev);
1957
1958 ASSERT_RTNL();
1959
1960 return raw_notifier_call_chain_robust(&net->netdev_chain,
1961 val_up, val_down, info);
1962}
1963
1964static int call_netdevice_notifiers_extack(unsigned long val,
1965 struct net_device *dev,
1966 struct netlink_ext_ack *extack)
1967{
1968 struct netdev_notifier_info info = {
1969 .dev = dev,
1970 .extack = extack,
1971 };
1972
1973 return call_netdevice_notifiers_info(val, &info);
1974}
1975
1976/**
1977 * call_netdevice_notifiers - call all network notifier blocks
1978 * @val: value passed unmodified to notifier function
1979 * @dev: net_device pointer passed unmodified to notifier function
1980 *
1981 * Call all network notifier blocks. Parameters and return value
1982 * are as for raw_notifier_call_chain().
1983 */
1984
1985int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1986{
1987 return call_netdevice_notifiers_extack(val, dev, NULL);
1988}
1989EXPORT_SYMBOL(call_netdevice_notifiers);
1990
1991/**
1992 * call_netdevice_notifiers_mtu - call all network notifier blocks
1993 * @val: value passed unmodified to notifier function
1994 * @dev: net_device pointer passed unmodified to notifier function
1995 * @arg: additional u32 argument passed to the notifier function
1996 *
1997 * Call all network notifier blocks. Parameters and return value
1998 * are as for raw_notifier_call_chain().
1999 */
2000static int call_netdevice_notifiers_mtu(unsigned long val,
2001 struct net_device *dev, u32 arg)
2002{
2003 struct netdev_notifier_info_ext info = {
2004 .info.dev = dev,
2005 .ext.mtu = arg,
2006 };
2007
2008 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2009
2010 return call_netdevice_notifiers_info(val, &info.info);
2011}
2012
2013#ifdef CONFIG_NET_INGRESS
2014static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2015
2016void net_inc_ingress_queue(void)
2017{
2018 static_branch_inc(&ingress_needed_key);
2019}
2020EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2021
2022void net_dec_ingress_queue(void)
2023{
2024 static_branch_dec(&ingress_needed_key);
2025}
2026EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2027#endif
2028
2029#ifdef CONFIG_NET_EGRESS
2030static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2031
2032void net_inc_egress_queue(void)
2033{
2034 static_branch_inc(&egress_needed_key);
2035}
2036EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2037
2038void net_dec_egress_queue(void)
2039{
2040 static_branch_dec(&egress_needed_key);
2041}
2042EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2043#endif
2044
2045DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2046EXPORT_SYMBOL(netstamp_needed_key);
2047#ifdef CONFIG_JUMP_LABEL
2048static atomic_t netstamp_needed_deferred;
2049static atomic_t netstamp_wanted;
2050static void netstamp_clear(struct work_struct *work)
2051{
2052 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2053 int wanted;
2054
2055 wanted = atomic_add_return(deferred, &netstamp_wanted);
2056 if (wanted > 0)
2057 static_branch_enable(&netstamp_needed_key);
2058 else
2059 static_branch_disable(&netstamp_needed_key);
2060}
2061static DECLARE_WORK(netstamp_work, netstamp_clear);
2062#endif
2063
2064void net_enable_timestamp(void)
2065{
2066#ifdef CONFIG_JUMP_LABEL
2067 int wanted = atomic_read(&netstamp_wanted);
2068
2069 while (wanted > 0) {
2070 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2071 return;
2072 }
2073 atomic_inc(&netstamp_needed_deferred);
2074 schedule_work(&netstamp_work);
2075#else
2076 static_branch_inc(&netstamp_needed_key);
2077#endif
2078}
2079EXPORT_SYMBOL(net_enable_timestamp);
2080
2081void net_disable_timestamp(void)
2082{
2083#ifdef CONFIG_JUMP_LABEL
2084 int wanted = atomic_read(&netstamp_wanted);
2085
2086 while (wanted > 1) {
2087 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2088 return;
2089 }
2090 atomic_dec(&netstamp_needed_deferred);
2091 schedule_work(&netstamp_work);
2092#else
2093 static_branch_dec(&netstamp_needed_key);
2094#endif
2095}
2096EXPORT_SYMBOL(net_disable_timestamp);
2097
2098static inline void net_timestamp_set(struct sk_buff *skb)
2099{
2100 skb->tstamp = 0;
2101 skb->mono_delivery_time = 0;
2102 if (static_branch_unlikely(&netstamp_needed_key))
2103 skb->tstamp = ktime_get_real();
2104}
2105
2106#define net_timestamp_check(COND, SKB) \
2107 if (static_branch_unlikely(&netstamp_needed_key)) { \
2108 if ((COND) && !(SKB)->tstamp) \
2109 (SKB)->tstamp = ktime_get_real(); \
2110 } \
2111
2112bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2113{
2114 return __is_skb_forwardable(dev, skb, true);
2115}
2116EXPORT_SYMBOL_GPL(is_skb_forwardable);
2117
2118static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2119 bool check_mtu)
2120{
2121 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2122
2123 if (likely(!ret)) {
2124 skb->protocol = eth_type_trans(skb, dev);
2125 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2126 }
2127
2128 return ret;
2129}
2130
2131int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2132{
2133 return __dev_forward_skb2(dev, skb, true);
2134}
2135EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137/**
2138 * dev_forward_skb - loopback an skb to another netif
2139 *
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2142 *
2143 * return values:
2144 * NET_RX_SUCCESS (no congestion)
2145 * NET_RX_DROP (packet was dropped, but freed)
2146 *
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2150 *
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2154 */
2155int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156{
2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158}
2159EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2162{
2163 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2164}
2165
2166static inline int deliver_skb(struct sk_buff *skb,
2167 struct packet_type *pt_prev,
2168 struct net_device *orig_dev)
2169{
2170 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2171 return -ENOMEM;
2172 refcount_inc(&skb->users);
2173 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2174}
2175
2176static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2177 struct packet_type **pt,
2178 struct net_device *orig_dev,
2179 __be16 type,
2180 struct list_head *ptype_list)
2181{
2182 struct packet_type *ptype, *pt_prev = *pt;
2183
2184 list_for_each_entry_rcu(ptype, ptype_list, list) {
2185 if (ptype->type != type)
2186 continue;
2187 if (pt_prev)
2188 deliver_skb(skb, pt_prev, orig_dev);
2189 pt_prev = ptype;
2190 }
2191 *pt = pt_prev;
2192}
2193
2194static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2195{
2196 if (!ptype->af_packet_priv || !skb->sk)
2197 return false;
2198
2199 if (ptype->id_match)
2200 return ptype->id_match(ptype, skb->sk);
2201 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2202 return true;
2203
2204 return false;
2205}
2206
2207/**
2208 * dev_nit_active - return true if any network interface taps are in use
2209 *
2210 * @dev: network device to check for the presence of taps
2211 */
2212bool dev_nit_active(struct net_device *dev)
2213{
2214 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2215}
2216EXPORT_SYMBOL_GPL(dev_nit_active);
2217
2218/*
2219 * Support routine. Sends outgoing frames to any network
2220 * taps currently in use.
2221 */
2222
2223void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2224{
2225 struct packet_type *ptype;
2226 struct sk_buff *skb2 = NULL;
2227 struct packet_type *pt_prev = NULL;
2228 struct list_head *ptype_list = &ptype_all;
2229
2230 rcu_read_lock();
2231again:
2232 list_for_each_entry_rcu(ptype, ptype_list, list) {
2233 if (ptype->ignore_outgoing)
2234 continue;
2235
2236 /* Never send packets back to the socket
2237 * they originated from - MvS (miquels@drinkel.ow.org)
2238 */
2239 if (skb_loop_sk(ptype, skb))
2240 continue;
2241
2242 if (pt_prev) {
2243 deliver_skb(skb2, pt_prev, skb->dev);
2244 pt_prev = ptype;
2245 continue;
2246 }
2247
2248 /* need to clone skb, done only once */
2249 skb2 = skb_clone(skb, GFP_ATOMIC);
2250 if (!skb2)
2251 goto out_unlock;
2252
2253 net_timestamp_set(skb2);
2254
2255 /* skb->nh should be correctly
2256 * set by sender, so that the second statement is
2257 * just protection against buggy protocols.
2258 */
2259 skb_reset_mac_header(skb2);
2260
2261 if (skb_network_header(skb2) < skb2->data ||
2262 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2263 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2264 ntohs(skb2->protocol),
2265 dev->name);
2266 skb_reset_network_header(skb2);
2267 }
2268
2269 skb2->transport_header = skb2->network_header;
2270 skb2->pkt_type = PACKET_OUTGOING;
2271 pt_prev = ptype;
2272 }
2273
2274 if (ptype_list == &ptype_all) {
2275 ptype_list = &dev->ptype_all;
2276 goto again;
2277 }
2278out_unlock:
2279 if (pt_prev) {
2280 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2281 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2282 else
2283 kfree_skb(skb2);
2284 }
2285 rcu_read_unlock();
2286}
2287EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2288
2289/**
2290 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2291 * @dev: Network device
2292 * @txq: number of queues available
2293 *
2294 * If real_num_tx_queues is changed the tc mappings may no longer be
2295 * valid. To resolve this verify the tc mapping remains valid and if
2296 * not NULL the mapping. With no priorities mapping to this
2297 * offset/count pair it will no longer be used. In the worst case TC0
2298 * is invalid nothing can be done so disable priority mappings. If is
2299 * expected that drivers will fix this mapping if they can before
2300 * calling netif_set_real_num_tx_queues.
2301 */
2302static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2303{
2304 int i;
2305 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2306
2307 /* If TC0 is invalidated disable TC mapping */
2308 if (tc->offset + tc->count > txq) {
2309 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2310 dev->num_tc = 0;
2311 return;
2312 }
2313
2314 /* Invalidated prio to tc mappings set to TC0 */
2315 for (i = 1; i < TC_BITMASK + 1; i++) {
2316 int q = netdev_get_prio_tc_map(dev, i);
2317
2318 tc = &dev->tc_to_txq[q];
2319 if (tc->offset + tc->count > txq) {
2320 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2321 i, q);
2322 netdev_set_prio_tc_map(dev, i, 0);
2323 }
2324 }
2325}
2326
2327int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2328{
2329 if (dev->num_tc) {
2330 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2331 int i;
2332
2333 /* walk through the TCs and see if it falls into any of them */
2334 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2335 if ((txq - tc->offset) < tc->count)
2336 return i;
2337 }
2338
2339 /* didn't find it, just return -1 to indicate no match */
2340 return -1;
2341 }
2342
2343 return 0;
2344}
2345EXPORT_SYMBOL(netdev_txq_to_tc);
2346
2347#ifdef CONFIG_XPS
2348static struct static_key xps_needed __read_mostly;
2349static struct static_key xps_rxqs_needed __read_mostly;
2350static DEFINE_MUTEX(xps_map_mutex);
2351#define xmap_dereference(P) \
2352 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2353
2354static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2355 struct xps_dev_maps *old_maps, int tci, u16 index)
2356{
2357 struct xps_map *map = NULL;
2358 int pos;
2359
2360 if (dev_maps)
2361 map = xmap_dereference(dev_maps->attr_map[tci]);
2362 if (!map)
2363 return false;
2364
2365 for (pos = map->len; pos--;) {
2366 if (map->queues[pos] != index)
2367 continue;
2368
2369 if (map->len > 1) {
2370 map->queues[pos] = map->queues[--map->len];
2371 break;
2372 }
2373
2374 if (old_maps)
2375 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2376 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2377 kfree_rcu(map, rcu);
2378 return false;
2379 }
2380
2381 return true;
2382}
2383
2384static bool remove_xps_queue_cpu(struct net_device *dev,
2385 struct xps_dev_maps *dev_maps,
2386 int cpu, u16 offset, u16 count)
2387{
2388 int num_tc = dev_maps->num_tc;
2389 bool active = false;
2390 int tci;
2391
2392 for (tci = cpu * num_tc; num_tc--; tci++) {
2393 int i, j;
2394
2395 for (i = count, j = offset; i--; j++) {
2396 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2397 break;
2398 }
2399
2400 active |= i < 0;
2401 }
2402
2403 return active;
2404}
2405
2406static void reset_xps_maps(struct net_device *dev,
2407 struct xps_dev_maps *dev_maps,
2408 enum xps_map_type type)
2409{
2410 static_key_slow_dec_cpuslocked(&xps_needed);
2411 if (type == XPS_RXQS)
2412 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2413
2414 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2415
2416 kfree_rcu(dev_maps, rcu);
2417}
2418
2419static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2420 u16 offset, u16 count)
2421{
2422 struct xps_dev_maps *dev_maps;
2423 bool active = false;
2424 int i, j;
2425
2426 dev_maps = xmap_dereference(dev->xps_maps[type]);
2427 if (!dev_maps)
2428 return;
2429
2430 for (j = 0; j < dev_maps->nr_ids; j++)
2431 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2432 if (!active)
2433 reset_xps_maps(dev, dev_maps, type);
2434
2435 if (type == XPS_CPUS) {
2436 for (i = offset + (count - 1); count--; i--)
2437 netdev_queue_numa_node_write(
2438 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2439 }
2440}
2441
2442static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2443 u16 count)
2444{
2445 if (!static_key_false(&xps_needed))
2446 return;
2447
2448 cpus_read_lock();
2449 mutex_lock(&xps_map_mutex);
2450
2451 if (static_key_false(&xps_rxqs_needed))
2452 clean_xps_maps(dev, XPS_RXQS, offset, count);
2453
2454 clean_xps_maps(dev, XPS_CPUS, offset, count);
2455
2456 mutex_unlock(&xps_map_mutex);
2457 cpus_read_unlock();
2458}
2459
2460static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2461{
2462 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2463}
2464
2465static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2466 u16 index, bool is_rxqs_map)
2467{
2468 struct xps_map *new_map;
2469 int alloc_len = XPS_MIN_MAP_ALLOC;
2470 int i, pos;
2471
2472 for (pos = 0; map && pos < map->len; pos++) {
2473 if (map->queues[pos] != index)
2474 continue;
2475 return map;
2476 }
2477
2478 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2479 if (map) {
2480 if (pos < map->alloc_len)
2481 return map;
2482
2483 alloc_len = map->alloc_len * 2;
2484 }
2485
2486 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2487 * map
2488 */
2489 if (is_rxqs_map)
2490 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2491 else
2492 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2493 cpu_to_node(attr_index));
2494 if (!new_map)
2495 return NULL;
2496
2497 for (i = 0; i < pos; i++)
2498 new_map->queues[i] = map->queues[i];
2499 new_map->alloc_len = alloc_len;
2500 new_map->len = pos;
2501
2502 return new_map;
2503}
2504
2505/* Copy xps maps at a given index */
2506static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2507 struct xps_dev_maps *new_dev_maps, int index,
2508 int tc, bool skip_tc)
2509{
2510 int i, tci = index * dev_maps->num_tc;
2511 struct xps_map *map;
2512
2513 /* copy maps belonging to foreign traffic classes */
2514 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2515 if (i == tc && skip_tc)
2516 continue;
2517
2518 /* fill in the new device map from the old device map */
2519 map = xmap_dereference(dev_maps->attr_map[tci]);
2520 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2521 }
2522}
2523
2524/* Must be called under cpus_read_lock */
2525int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2526 u16 index, enum xps_map_type type)
2527{
2528 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2529 const unsigned long *online_mask = NULL;
2530 bool active = false, copy = false;
2531 int i, j, tci, numa_node_id = -2;
2532 int maps_sz, num_tc = 1, tc = 0;
2533 struct xps_map *map, *new_map;
2534 unsigned int nr_ids;
2535
2536 WARN_ON_ONCE(index >= dev->num_tx_queues);
2537
2538 if (dev->num_tc) {
2539 /* Do not allow XPS on subordinate device directly */
2540 num_tc = dev->num_tc;
2541 if (num_tc < 0)
2542 return -EINVAL;
2543
2544 /* If queue belongs to subordinate dev use its map */
2545 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546
2547 tc = netdev_txq_to_tc(dev, index);
2548 if (tc < 0)
2549 return -EINVAL;
2550 }
2551
2552 mutex_lock(&xps_map_mutex);
2553
2554 dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 if (type == XPS_RXQS) {
2556 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 nr_ids = dev->num_rx_queues;
2558 } else {
2559 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 if (num_possible_cpus() > 1)
2561 online_mask = cpumask_bits(cpu_online_mask);
2562 nr_ids = nr_cpu_ids;
2563 }
2564
2565 if (maps_sz < L1_CACHE_BYTES)
2566 maps_sz = L1_CACHE_BYTES;
2567
2568 /* The old dev_maps could be larger or smaller than the one we're
2569 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 * between. We could try to be smart, but let's be safe instead and only
2571 * copy foreign traffic classes if the two map sizes match.
2572 */
2573 if (dev_maps &&
2574 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 copy = true;
2576
2577 /* allocate memory for queue storage */
2578 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 j < nr_ids;) {
2580 if (!new_dev_maps) {
2581 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 if (!new_dev_maps) {
2583 mutex_unlock(&xps_map_mutex);
2584 return -ENOMEM;
2585 }
2586
2587 new_dev_maps->nr_ids = nr_ids;
2588 new_dev_maps->num_tc = num_tc;
2589 }
2590
2591 tci = j * num_tc + tc;
2592 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593
2594 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 if (!map)
2596 goto error;
2597
2598 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 }
2600
2601 if (!new_dev_maps)
2602 goto out_no_new_maps;
2603
2604 if (!dev_maps) {
2605 /* Increment static keys at most once per type */
2606 static_key_slow_inc_cpuslocked(&xps_needed);
2607 if (type == XPS_RXQS)
2608 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 }
2610
2611 for (j = 0; j < nr_ids; j++) {
2612 bool skip_tc = false;
2613
2614 tci = j * num_tc + tc;
2615 if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 netif_attr_test_online(j, online_mask, nr_ids)) {
2617 /* add tx-queue to CPU/rx-queue maps */
2618 int pos = 0;
2619
2620 skip_tc = true;
2621
2622 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 while ((pos < map->len) && (map->queues[pos] != index))
2624 pos++;
2625
2626 if (pos == map->len)
2627 map->queues[map->len++] = index;
2628#ifdef CONFIG_NUMA
2629 if (type == XPS_CPUS) {
2630 if (numa_node_id == -2)
2631 numa_node_id = cpu_to_node(j);
2632 else if (numa_node_id != cpu_to_node(j))
2633 numa_node_id = -1;
2634 }
2635#endif
2636 }
2637
2638 if (copy)
2639 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 skip_tc);
2641 }
2642
2643 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644
2645 /* Cleanup old maps */
2646 if (!dev_maps)
2647 goto out_no_old_maps;
2648
2649 for (j = 0; j < dev_maps->nr_ids; j++) {
2650 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 map = xmap_dereference(dev_maps->attr_map[tci]);
2652 if (!map)
2653 continue;
2654
2655 if (copy) {
2656 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 if (map == new_map)
2658 continue;
2659 }
2660
2661 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 kfree_rcu(map, rcu);
2663 }
2664 }
2665
2666 old_dev_maps = dev_maps;
2667
2668out_no_old_maps:
2669 dev_maps = new_dev_maps;
2670 active = true;
2671
2672out_no_new_maps:
2673 if (type == XPS_CPUS)
2674 /* update Tx queue numa node */
2675 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 (numa_node_id >= 0) ?
2677 numa_node_id : NUMA_NO_NODE);
2678
2679 if (!dev_maps)
2680 goto out_no_maps;
2681
2682 /* removes tx-queue from unused CPUs/rx-queues */
2683 for (j = 0; j < dev_maps->nr_ids; j++) {
2684 tci = j * dev_maps->num_tc;
2685
2686 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 if (i == tc &&
2688 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 continue;
2691
2692 active |= remove_xps_queue(dev_maps,
2693 copy ? old_dev_maps : NULL,
2694 tci, index);
2695 }
2696 }
2697
2698 if (old_dev_maps)
2699 kfree_rcu(old_dev_maps, rcu);
2700
2701 /* free map if not active */
2702 if (!active)
2703 reset_xps_maps(dev, dev_maps, type);
2704
2705out_no_maps:
2706 mutex_unlock(&xps_map_mutex);
2707
2708 return 0;
2709error:
2710 /* remove any maps that we added */
2711 for (j = 0; j < nr_ids; j++) {
2712 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 map = copy ?
2715 xmap_dereference(dev_maps->attr_map[tci]) :
2716 NULL;
2717 if (new_map && new_map != map)
2718 kfree(new_map);
2719 }
2720 }
2721
2722 mutex_unlock(&xps_map_mutex);
2723
2724 kfree(new_dev_maps);
2725 return -ENOMEM;
2726}
2727EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728
2729int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 u16 index)
2731{
2732 int ret;
2733
2734 cpus_read_lock();
2735 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 cpus_read_unlock();
2737
2738 return ret;
2739}
2740EXPORT_SYMBOL(netif_set_xps_queue);
2741
2742#endif
2743static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744{
2745 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746
2747 /* Unbind any subordinate channels */
2748 while (txq-- != &dev->_tx[0]) {
2749 if (txq->sb_dev)
2750 netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 }
2752}
2753
2754void netdev_reset_tc(struct net_device *dev)
2755{
2756#ifdef CONFIG_XPS
2757 netif_reset_xps_queues_gt(dev, 0);
2758#endif
2759 netdev_unbind_all_sb_channels(dev);
2760
2761 /* Reset TC configuration of device */
2762 dev->num_tc = 0;
2763 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765}
2766EXPORT_SYMBOL(netdev_reset_tc);
2767
2768int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769{
2770 if (tc >= dev->num_tc)
2771 return -EINVAL;
2772
2773#ifdef CONFIG_XPS
2774 netif_reset_xps_queues(dev, offset, count);
2775#endif
2776 dev->tc_to_txq[tc].count = count;
2777 dev->tc_to_txq[tc].offset = offset;
2778 return 0;
2779}
2780EXPORT_SYMBOL(netdev_set_tc_queue);
2781
2782int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783{
2784 if (num_tc > TC_MAX_QUEUE)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues_gt(dev, 0);
2789#endif
2790 netdev_unbind_all_sb_channels(dev);
2791
2792 dev->num_tc = num_tc;
2793 return 0;
2794}
2795EXPORT_SYMBOL(netdev_set_num_tc);
2796
2797void netdev_unbind_sb_channel(struct net_device *dev,
2798 struct net_device *sb_dev)
2799{
2800 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801
2802#ifdef CONFIG_XPS
2803 netif_reset_xps_queues_gt(sb_dev, 0);
2804#endif
2805 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807
2808 while (txq-- != &dev->_tx[0]) {
2809 if (txq->sb_dev == sb_dev)
2810 txq->sb_dev = NULL;
2811 }
2812}
2813EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814
2815int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 struct net_device *sb_dev,
2817 u8 tc, u16 count, u16 offset)
2818{
2819 /* Make certain the sb_dev and dev are already configured */
2820 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 return -EINVAL;
2822
2823 /* We cannot hand out queues we don't have */
2824 if ((offset + count) > dev->real_num_tx_queues)
2825 return -EINVAL;
2826
2827 /* Record the mapping */
2828 sb_dev->tc_to_txq[tc].count = count;
2829 sb_dev->tc_to_txq[tc].offset = offset;
2830
2831 /* Provide a way for Tx queue to find the tc_to_txq map or
2832 * XPS map for itself.
2833 */
2834 while (count--)
2835 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836
2837 return 0;
2838}
2839EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840
2841int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842{
2843 /* Do not use a multiqueue device to represent a subordinate channel */
2844 if (netif_is_multiqueue(dev))
2845 return -ENODEV;
2846
2847 /* We allow channels 1 - 32767 to be used for subordinate channels.
2848 * Channel 0 is meant to be "native" mode and used only to represent
2849 * the main root device. We allow writing 0 to reset the device back
2850 * to normal mode after being used as a subordinate channel.
2851 */
2852 if (channel > S16_MAX)
2853 return -EINVAL;
2854
2855 dev->num_tc = -channel;
2856
2857 return 0;
2858}
2859EXPORT_SYMBOL(netdev_set_sb_channel);
2860
2861/*
2862 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864 */
2865int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866{
2867 bool disabling;
2868 int rc;
2869
2870 disabling = txq < dev->real_num_tx_queues;
2871
2872 if (txq < 1 || txq > dev->num_tx_queues)
2873 return -EINVAL;
2874
2875 if (dev->reg_state == NETREG_REGISTERED ||
2876 dev->reg_state == NETREG_UNREGISTERING) {
2877 ASSERT_RTNL();
2878
2879 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 txq);
2881 if (rc)
2882 return rc;
2883
2884 if (dev->num_tc)
2885 netif_setup_tc(dev, txq);
2886
2887 dev_qdisc_change_real_num_tx(dev, txq);
2888
2889 dev->real_num_tx_queues = txq;
2890
2891 if (disabling) {
2892 synchronize_net();
2893 qdisc_reset_all_tx_gt(dev, txq);
2894#ifdef CONFIG_XPS
2895 netif_reset_xps_queues_gt(dev, txq);
2896#endif
2897 }
2898 } else {
2899 dev->real_num_tx_queues = txq;
2900 }
2901
2902 return 0;
2903}
2904EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905
2906#ifdef CONFIG_SYSFS
2907/**
2908 * netif_set_real_num_rx_queues - set actual number of RX queues used
2909 * @dev: Network device
2910 * @rxq: Actual number of RX queues
2911 *
2912 * This must be called either with the rtnl_lock held or before
2913 * registration of the net device. Returns 0 on success, or a
2914 * negative error code. If called before registration, it always
2915 * succeeds.
2916 */
2917int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918{
2919 int rc;
2920
2921 if (rxq < 1 || rxq > dev->num_rx_queues)
2922 return -EINVAL;
2923
2924 if (dev->reg_state == NETREG_REGISTERED) {
2925 ASSERT_RTNL();
2926
2927 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 rxq);
2929 if (rc)
2930 return rc;
2931 }
2932
2933 dev->real_num_rx_queues = rxq;
2934 return 0;
2935}
2936EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937#endif
2938
2939/**
2940 * netif_set_real_num_queues - set actual number of RX and TX queues used
2941 * @dev: Network device
2942 * @txq: Actual number of TX queues
2943 * @rxq: Actual number of RX queues
2944 *
2945 * Set the real number of both TX and RX queues.
2946 * Does nothing if the number of queues is already correct.
2947 */
2948int netif_set_real_num_queues(struct net_device *dev,
2949 unsigned int txq, unsigned int rxq)
2950{
2951 unsigned int old_rxq = dev->real_num_rx_queues;
2952 int err;
2953
2954 if (txq < 1 || txq > dev->num_tx_queues ||
2955 rxq < 1 || rxq > dev->num_rx_queues)
2956 return -EINVAL;
2957
2958 /* Start from increases, so the error path only does decreases -
2959 * decreases can't fail.
2960 */
2961 if (rxq > dev->real_num_rx_queues) {
2962 err = netif_set_real_num_rx_queues(dev, rxq);
2963 if (err)
2964 return err;
2965 }
2966 if (txq > dev->real_num_tx_queues) {
2967 err = netif_set_real_num_tx_queues(dev, txq);
2968 if (err)
2969 goto undo_rx;
2970 }
2971 if (rxq < dev->real_num_rx_queues)
2972 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 if (txq < dev->real_num_tx_queues)
2974 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975
2976 return 0;
2977undo_rx:
2978 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 return err;
2980}
2981EXPORT_SYMBOL(netif_set_real_num_queues);
2982
2983/**
2984 * netif_set_tso_max_size() - set the max size of TSO frames supported
2985 * @dev: netdev to update
2986 * @size: max skb->len of a TSO frame
2987 *
2988 * Set the limit on the size of TSO super-frames the device can handle.
2989 * Unless explicitly set the stack will assume the value of
2990 * %GSO_LEGACY_MAX_SIZE.
2991 */
2992void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993{
2994 dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 if (size < READ_ONCE(dev->gso_max_size))
2996 netif_set_gso_max_size(dev, size);
2997 if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 netif_set_gso_ipv4_max_size(dev, size);
2999}
3000EXPORT_SYMBOL(netif_set_tso_max_size);
3001
3002/**
3003 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004 * @dev: netdev to update
3005 * @segs: max number of TCP segments
3006 *
3007 * Set the limit on the number of TCP segments the device can generate from
3008 * a single TSO super-frame.
3009 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010 */
3011void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012{
3013 dev->tso_max_segs = segs;
3014 if (segs < READ_ONCE(dev->gso_max_segs))
3015 netif_set_gso_max_segs(dev, segs);
3016}
3017EXPORT_SYMBOL(netif_set_tso_max_segs);
3018
3019/**
3020 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021 * @to: netdev to update
3022 * @from: netdev from which to copy the limits
3023 */
3024void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025{
3026 netif_set_tso_max_size(to, from->tso_max_size);
3027 netif_set_tso_max_segs(to, from->tso_max_segs);
3028}
3029EXPORT_SYMBOL(netif_inherit_tso_max);
3030
3031/**
3032 * netif_get_num_default_rss_queues - default number of RSS queues
3033 *
3034 * Default value is the number of physical cores if there are only 1 or 2, or
3035 * divided by 2 if there are more.
3036 */
3037int netif_get_num_default_rss_queues(void)
3038{
3039 cpumask_var_t cpus;
3040 int cpu, count = 0;
3041
3042 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 return 1;
3044
3045 cpumask_copy(cpus, cpu_online_mask);
3046 for_each_cpu(cpu, cpus) {
3047 ++count;
3048 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 }
3050 free_cpumask_var(cpus);
3051
3052 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053}
3054EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055
3056static void __netif_reschedule(struct Qdisc *q)
3057{
3058 struct softnet_data *sd;
3059 unsigned long flags;
3060
3061 local_irq_save(flags);
3062 sd = this_cpu_ptr(&softnet_data);
3063 q->next_sched = NULL;
3064 *sd->output_queue_tailp = q;
3065 sd->output_queue_tailp = &q->next_sched;
3066 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 local_irq_restore(flags);
3068}
3069
3070void __netif_schedule(struct Qdisc *q)
3071{
3072 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 __netif_reschedule(q);
3074}
3075EXPORT_SYMBOL(__netif_schedule);
3076
3077struct dev_kfree_skb_cb {
3078 enum skb_drop_reason reason;
3079};
3080
3081static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082{
3083 return (struct dev_kfree_skb_cb *)skb->cb;
3084}
3085
3086void netif_schedule_queue(struct netdev_queue *txq)
3087{
3088 rcu_read_lock();
3089 if (!netif_xmit_stopped(txq)) {
3090 struct Qdisc *q = rcu_dereference(txq->qdisc);
3091
3092 __netif_schedule(q);
3093 }
3094 rcu_read_unlock();
3095}
3096EXPORT_SYMBOL(netif_schedule_queue);
3097
3098void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099{
3100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 struct Qdisc *q;
3102
3103 rcu_read_lock();
3104 q = rcu_dereference(dev_queue->qdisc);
3105 __netif_schedule(q);
3106 rcu_read_unlock();
3107 }
3108}
3109EXPORT_SYMBOL(netif_tx_wake_queue);
3110
3111void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3112{
3113 unsigned long flags;
3114
3115 if (unlikely(!skb))
3116 return;
3117
3118 if (likely(refcount_read(&skb->users) == 1)) {
3119 smp_rmb();
3120 refcount_set(&skb->users, 0);
3121 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 return;
3123 }
3124 get_kfree_skb_cb(skb)->reason = reason;
3125 local_irq_save(flags);
3126 skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 __this_cpu_write(softnet_data.completion_queue, skb);
3128 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 local_irq_restore(flags);
3130}
3131EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3132
3133void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3134{
3135 if (in_hardirq() || irqs_disabled())
3136 dev_kfree_skb_irq_reason(skb, reason);
3137 else
3138 kfree_skb_reason(skb, reason);
3139}
3140EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3141
3142
3143/**
3144 * netif_device_detach - mark device as removed
3145 * @dev: network device
3146 *
3147 * Mark device as removed from system and therefore no longer available.
3148 */
3149void netif_device_detach(struct net_device *dev)
3150{
3151 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 netif_running(dev)) {
3153 netif_tx_stop_all_queues(dev);
3154 }
3155}
3156EXPORT_SYMBOL(netif_device_detach);
3157
3158/**
3159 * netif_device_attach - mark device as attached
3160 * @dev: network device
3161 *
3162 * Mark device as attached from system and restart if needed.
3163 */
3164void netif_device_attach(struct net_device *dev)
3165{
3166 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3167 netif_running(dev)) {
3168 netif_tx_wake_all_queues(dev);
3169 __netdev_watchdog_up(dev);
3170 }
3171}
3172EXPORT_SYMBOL(netif_device_attach);
3173
3174/*
3175 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3176 * to be used as a distribution range.
3177 */
3178static u16 skb_tx_hash(const struct net_device *dev,
3179 const struct net_device *sb_dev,
3180 struct sk_buff *skb)
3181{
3182 u32 hash;
3183 u16 qoffset = 0;
3184 u16 qcount = dev->real_num_tx_queues;
3185
3186 if (dev->num_tc) {
3187 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3188
3189 qoffset = sb_dev->tc_to_txq[tc].offset;
3190 qcount = sb_dev->tc_to_txq[tc].count;
3191 if (unlikely(!qcount)) {
3192 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3193 sb_dev->name, qoffset, tc);
3194 qoffset = 0;
3195 qcount = dev->real_num_tx_queues;
3196 }
3197 }
3198
3199 if (skb_rx_queue_recorded(skb)) {
3200 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3201 hash = skb_get_rx_queue(skb);
3202 if (hash >= qoffset)
3203 hash -= qoffset;
3204 while (unlikely(hash >= qcount))
3205 hash -= qcount;
3206 return hash + qoffset;
3207 }
3208
3209 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210}
3211
3212static void skb_warn_bad_offload(const struct sk_buff *skb)
3213{
3214 static const netdev_features_t null_features;
3215 struct net_device *dev = skb->dev;
3216 const char *name = "";
3217
3218 if (!net_ratelimit())
3219 return;
3220
3221 if (dev) {
3222 if (dev->dev.parent)
3223 name = dev_driver_string(dev->dev.parent);
3224 else
3225 name = netdev_name(dev);
3226 }
3227 skb_dump(KERN_WARNING, skb, false);
3228 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229 name, dev ? &dev->features : &null_features,
3230 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231}
3232
3233/*
3234 * Invalidate hardware checksum when packet is to be mangled, and
3235 * complete checksum manually on outgoing path.
3236 */
3237int skb_checksum_help(struct sk_buff *skb)
3238{
3239 __wsum csum;
3240 int ret = 0, offset;
3241
3242 if (skb->ip_summed == CHECKSUM_COMPLETE)
3243 goto out_set_summed;
3244
3245 if (unlikely(skb_is_gso(skb))) {
3246 skb_warn_bad_offload(skb);
3247 return -EINVAL;
3248 }
3249
3250 /* Before computing a checksum, we should make sure no frag could
3251 * be modified by an external entity : checksum could be wrong.
3252 */
3253 if (skb_has_shared_frag(skb)) {
3254 ret = __skb_linearize(skb);
3255 if (ret)
3256 goto out;
3257 }
3258
3259 offset = skb_checksum_start_offset(skb);
3260 ret = -EINVAL;
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3263 goto out;
3264 }
3265 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3266
3267 offset += skb->csum_offset;
3268 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3269 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3270 goto out;
3271 }
3272 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3273 if (ret)
3274 goto out;
3275
3276 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3277out_set_summed:
3278 skb->ip_summed = CHECKSUM_NONE;
3279out:
3280 return ret;
3281}
3282EXPORT_SYMBOL(skb_checksum_help);
3283
3284int skb_crc32c_csum_help(struct sk_buff *skb)
3285{
3286 __le32 crc32c_csum;
3287 int ret = 0, offset, start;
3288
3289 if (skb->ip_summed != CHECKSUM_PARTIAL)
3290 goto out;
3291
3292 if (unlikely(skb_is_gso(skb)))
3293 goto out;
3294
3295 /* Before computing a checksum, we should make sure no frag could
3296 * be modified by an external entity : checksum could be wrong.
3297 */
3298 if (unlikely(skb_has_shared_frag(skb))) {
3299 ret = __skb_linearize(skb);
3300 if (ret)
3301 goto out;
3302 }
3303 start = skb_checksum_start_offset(skb);
3304 offset = start + offsetof(struct sctphdr, checksum);
3305 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3306 ret = -EINVAL;
3307 goto out;
3308 }
3309
3310 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3311 if (ret)
3312 goto out;
3313
3314 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3315 skb->len - start, ~(__u32)0,
3316 crc32c_csum_stub));
3317 *(__le32 *)(skb->data + offset) = crc32c_csum;
3318 skb_reset_csum_not_inet(skb);
3319out:
3320 return ret;
3321}
3322
3323__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3324{
3325 __be16 type = skb->protocol;
3326
3327 /* Tunnel gso handlers can set protocol to ethernet. */
3328 if (type == htons(ETH_P_TEB)) {
3329 struct ethhdr *eth;
3330
3331 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3332 return 0;
3333
3334 eth = (struct ethhdr *)skb->data;
3335 type = eth->h_proto;
3336 }
3337
3338 return vlan_get_protocol_and_depth(skb, type, depth);
3339}
3340
3341/* openvswitch calls this on rx path, so we need a different check.
3342 */
3343static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3344{
3345 if (tx_path)
3346 return skb->ip_summed != CHECKSUM_PARTIAL &&
3347 skb->ip_summed != CHECKSUM_UNNECESSARY;
3348
3349 return skb->ip_summed == CHECKSUM_NONE;
3350}
3351
3352/**
3353 * __skb_gso_segment - Perform segmentation on skb.
3354 * @skb: buffer to segment
3355 * @features: features for the output path (see dev->features)
3356 * @tx_path: whether it is called in TX path
3357 *
3358 * This function segments the given skb and returns a list of segments.
3359 *
3360 * It may return NULL if the skb requires no segmentation. This is
3361 * only possible when GSO is used for verifying header integrity.
3362 *
3363 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3364 */
3365struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3366 netdev_features_t features, bool tx_path)
3367{
3368 struct sk_buff *segs;
3369
3370 if (unlikely(skb_needs_check(skb, tx_path))) {
3371 int err;
3372
3373 /* We're going to init ->check field in TCP or UDP header */
3374 err = skb_cow_head(skb, 0);
3375 if (err < 0)
3376 return ERR_PTR(err);
3377 }
3378
3379 /* Only report GSO partial support if it will enable us to
3380 * support segmentation on this frame without needing additional
3381 * work.
3382 */
3383 if (features & NETIF_F_GSO_PARTIAL) {
3384 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3385 struct net_device *dev = skb->dev;
3386
3387 partial_features |= dev->features & dev->gso_partial_features;
3388 if (!skb_gso_ok(skb, features | partial_features))
3389 features &= ~NETIF_F_GSO_PARTIAL;
3390 }
3391
3392 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3393 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3394
3395 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3396 SKB_GSO_CB(skb)->encap_level = 0;
3397
3398 skb_reset_mac_header(skb);
3399 skb_reset_mac_len(skb);
3400
3401 segs = skb_mac_gso_segment(skb, features);
3402
3403 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3404 skb_warn_bad_offload(skb);
3405
3406 return segs;
3407}
3408EXPORT_SYMBOL(__skb_gso_segment);
3409
3410/* Take action when hardware reception checksum errors are detected. */
3411#ifdef CONFIG_BUG
3412static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3413{
3414 netdev_err(dev, "hw csum failure\n");
3415 skb_dump(KERN_ERR, skb, true);
3416 dump_stack();
3417}
3418
3419void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420{
3421 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3422}
3423EXPORT_SYMBOL(netdev_rx_csum_fault);
3424#endif
3425
3426/* XXX: check that highmem exists at all on the given machine. */
3427static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3428{
3429#ifdef CONFIG_HIGHMEM
3430 int i;
3431
3432 if (!(dev->features & NETIF_F_HIGHDMA)) {
3433 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3434 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3435
3436 if (PageHighMem(skb_frag_page(frag)))
3437 return 1;
3438 }
3439 }
3440#endif
3441 return 0;
3442}
3443
3444/* If MPLS offload request, verify we are testing hardware MPLS features
3445 * instead of standard features for the netdev.
3446 */
3447#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3448static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 netdev_features_t features,
3450 __be16 type)
3451{
3452 if (eth_p_mpls(type))
3453 features &= skb->dev->mpls_features;
3454
3455 return features;
3456}
3457#else
3458static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 netdev_features_t features,
3460 __be16 type)
3461{
3462 return features;
3463}
3464#endif
3465
3466static netdev_features_t harmonize_features(struct sk_buff *skb,
3467 netdev_features_t features)
3468{
3469 __be16 type;
3470
3471 type = skb_network_protocol(skb, NULL);
3472 features = net_mpls_features(skb, features, type);
3473
3474 if (skb->ip_summed != CHECKSUM_NONE &&
3475 !can_checksum_protocol(features, type)) {
3476 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3477 }
3478 if (illegal_highdma(skb->dev, skb))
3479 features &= ~NETIF_F_SG;
3480
3481 return features;
3482}
3483
3484netdev_features_t passthru_features_check(struct sk_buff *skb,
3485 struct net_device *dev,
3486 netdev_features_t features)
3487{
3488 return features;
3489}
3490EXPORT_SYMBOL(passthru_features_check);
3491
3492static netdev_features_t dflt_features_check(struct sk_buff *skb,
3493 struct net_device *dev,
3494 netdev_features_t features)
3495{
3496 return vlan_features_check(skb, features);
3497}
3498
3499static netdev_features_t gso_features_check(const struct sk_buff *skb,
3500 struct net_device *dev,
3501 netdev_features_t features)
3502{
3503 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3504
3505 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3506 return features & ~NETIF_F_GSO_MASK;
3507
3508 if (!skb_shinfo(skb)->gso_type) {
3509 skb_warn_bad_offload(skb);
3510 return features & ~NETIF_F_GSO_MASK;
3511 }
3512
3513 /* Support for GSO partial features requires software
3514 * intervention before we can actually process the packets
3515 * so we need to strip support for any partial features now
3516 * and we can pull them back in after we have partially
3517 * segmented the frame.
3518 */
3519 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3520 features &= ~dev->gso_partial_features;
3521
3522 /* Make sure to clear the IPv4 ID mangling feature if the
3523 * IPv4 header has the potential to be fragmented.
3524 */
3525 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3526 struct iphdr *iph = skb->encapsulation ?
3527 inner_ip_hdr(skb) : ip_hdr(skb);
3528
3529 if (!(iph->frag_off & htons(IP_DF)))
3530 features &= ~NETIF_F_TSO_MANGLEID;
3531 }
3532
3533 return features;
3534}
3535
3536netdev_features_t netif_skb_features(struct sk_buff *skb)
3537{
3538 struct net_device *dev = skb->dev;
3539 netdev_features_t features = dev->features;
3540
3541 if (skb_is_gso(skb))
3542 features = gso_features_check(skb, dev, features);
3543
3544 /* If encapsulation offload request, verify we are testing
3545 * hardware encapsulation features instead of standard
3546 * features for the netdev
3547 */
3548 if (skb->encapsulation)
3549 features &= dev->hw_enc_features;
3550
3551 if (skb_vlan_tagged(skb))
3552 features = netdev_intersect_features(features,
3553 dev->vlan_features |
3554 NETIF_F_HW_VLAN_CTAG_TX |
3555 NETIF_F_HW_VLAN_STAG_TX);
3556
3557 if (dev->netdev_ops->ndo_features_check)
3558 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3559 features);
3560 else
3561 features &= dflt_features_check(skb, dev, features);
3562
3563 return harmonize_features(skb, features);
3564}
3565EXPORT_SYMBOL(netif_skb_features);
3566
3567static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3568 struct netdev_queue *txq, bool more)
3569{
3570 unsigned int len;
3571 int rc;
3572
3573 if (dev_nit_active(dev))
3574 dev_queue_xmit_nit(skb, dev);
3575
3576 len = skb->len;
3577 trace_net_dev_start_xmit(skb, dev);
3578 rc = netdev_start_xmit(skb, dev, txq, more);
3579 trace_net_dev_xmit(skb, rc, dev, len);
3580
3581 return rc;
3582}
3583
3584struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3585 struct netdev_queue *txq, int *ret)
3586{
3587 struct sk_buff *skb = first;
3588 int rc = NETDEV_TX_OK;
3589
3590 while (skb) {
3591 struct sk_buff *next = skb->next;
3592
3593 skb_mark_not_on_list(skb);
3594 rc = xmit_one(skb, dev, txq, next != NULL);
3595 if (unlikely(!dev_xmit_complete(rc))) {
3596 skb->next = next;
3597 goto out;
3598 }
3599
3600 skb = next;
3601 if (netif_tx_queue_stopped(txq) && skb) {
3602 rc = NETDEV_TX_BUSY;
3603 break;
3604 }
3605 }
3606
3607out:
3608 *ret = rc;
3609 return skb;
3610}
3611
3612static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3613 netdev_features_t features)
3614{
3615 if (skb_vlan_tag_present(skb) &&
3616 !vlan_hw_offload_capable(features, skb->vlan_proto))
3617 skb = __vlan_hwaccel_push_inside(skb);
3618 return skb;
3619}
3620
3621int skb_csum_hwoffload_help(struct sk_buff *skb,
3622 const netdev_features_t features)
3623{
3624 if (unlikely(skb_csum_is_sctp(skb)))
3625 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3626 skb_crc32c_csum_help(skb);
3627
3628 if (features & NETIF_F_HW_CSUM)
3629 return 0;
3630
3631 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3632 switch (skb->csum_offset) {
3633 case offsetof(struct tcphdr, check):
3634 case offsetof(struct udphdr, check):
3635 return 0;
3636 }
3637 }
3638
3639 return skb_checksum_help(skb);
3640}
3641EXPORT_SYMBOL(skb_csum_hwoffload_help);
3642
3643static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3644{
3645 netdev_features_t features;
3646
3647 features = netif_skb_features(skb);
3648 skb = validate_xmit_vlan(skb, features);
3649 if (unlikely(!skb))
3650 goto out_null;
3651
3652 skb = sk_validate_xmit_skb(skb, dev);
3653 if (unlikely(!skb))
3654 goto out_null;
3655
3656 if (netif_needs_gso(skb, features)) {
3657 struct sk_buff *segs;
3658
3659 segs = skb_gso_segment(skb, features);
3660 if (IS_ERR(segs)) {
3661 goto out_kfree_skb;
3662 } else if (segs) {
3663 consume_skb(skb);
3664 skb = segs;
3665 }
3666 } else {
3667 if (skb_needs_linearize(skb, features) &&
3668 __skb_linearize(skb))
3669 goto out_kfree_skb;
3670
3671 /* If packet is not checksummed and device does not
3672 * support checksumming for this protocol, complete
3673 * checksumming here.
3674 */
3675 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3676 if (skb->encapsulation)
3677 skb_set_inner_transport_header(skb,
3678 skb_checksum_start_offset(skb));
3679 else
3680 skb_set_transport_header(skb,
3681 skb_checksum_start_offset(skb));
3682 if (skb_csum_hwoffload_help(skb, features))
3683 goto out_kfree_skb;
3684 }
3685 }
3686
3687 skb = validate_xmit_xfrm(skb, features, again);
3688
3689 return skb;
3690
3691out_kfree_skb:
3692 kfree_skb(skb);
3693out_null:
3694 dev_core_stats_tx_dropped_inc(dev);
3695 return NULL;
3696}
3697
3698struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3699{
3700 struct sk_buff *next, *head = NULL, *tail;
3701
3702 for (; skb != NULL; skb = next) {
3703 next = skb->next;
3704 skb_mark_not_on_list(skb);
3705
3706 /* in case skb wont be segmented, point to itself */
3707 skb->prev = skb;
3708
3709 skb = validate_xmit_skb(skb, dev, again);
3710 if (!skb)
3711 continue;
3712
3713 if (!head)
3714 head = skb;
3715 else
3716 tail->next = skb;
3717 /* If skb was segmented, skb->prev points to
3718 * the last segment. If not, it still contains skb.
3719 */
3720 tail = skb->prev;
3721 }
3722 return head;
3723}
3724EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3725
3726static void qdisc_pkt_len_init(struct sk_buff *skb)
3727{
3728 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3729
3730 qdisc_skb_cb(skb)->pkt_len = skb->len;
3731
3732 /* To get more precise estimation of bytes sent on wire,
3733 * we add to pkt_len the headers size of all segments
3734 */
3735 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3736 u16 gso_segs = shinfo->gso_segs;
3737 unsigned int hdr_len;
3738
3739 /* mac layer + network layer */
3740 hdr_len = skb_transport_offset(skb);
3741
3742 /* + transport layer */
3743 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3744 const struct tcphdr *th;
3745 struct tcphdr _tcphdr;
3746
3747 th = skb_header_pointer(skb, hdr_len,
3748 sizeof(_tcphdr), &_tcphdr);
3749 if (likely(th))
3750 hdr_len += __tcp_hdrlen(th);
3751 } else {
3752 struct udphdr _udphdr;
3753
3754 if (skb_header_pointer(skb, hdr_len,
3755 sizeof(_udphdr), &_udphdr))
3756 hdr_len += sizeof(struct udphdr);
3757 }
3758
3759 if (shinfo->gso_type & SKB_GSO_DODGY)
3760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3761 shinfo->gso_size);
3762
3763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3764 }
3765}
3766
3767static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3768 struct sk_buff **to_free,
3769 struct netdev_queue *txq)
3770{
3771 int rc;
3772
3773 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3774 if (rc == NET_XMIT_SUCCESS)
3775 trace_qdisc_enqueue(q, txq, skb);
3776 return rc;
3777}
3778
3779static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3780 struct net_device *dev,
3781 struct netdev_queue *txq)
3782{
3783 spinlock_t *root_lock = qdisc_lock(q);
3784 struct sk_buff *to_free = NULL;
3785 bool contended;
3786 int rc;
3787
3788 qdisc_calculate_pkt_len(skb, q);
3789
3790 if (q->flags & TCQ_F_NOLOCK) {
3791 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3792 qdisc_run_begin(q)) {
3793 /* Retest nolock_qdisc_is_empty() within the protection
3794 * of q->seqlock to protect from racing with requeuing.
3795 */
3796 if (unlikely(!nolock_qdisc_is_empty(q))) {
3797 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3798 __qdisc_run(q);
3799 qdisc_run_end(q);
3800
3801 goto no_lock_out;
3802 }
3803
3804 qdisc_bstats_cpu_update(q, skb);
3805 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3806 !nolock_qdisc_is_empty(q))
3807 __qdisc_run(q);
3808
3809 qdisc_run_end(q);
3810 return NET_XMIT_SUCCESS;
3811 }
3812
3813 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 qdisc_run(q);
3815
3816no_lock_out:
3817 if (unlikely(to_free))
3818 kfree_skb_list_reason(to_free,
3819 SKB_DROP_REASON_QDISC_DROP);
3820 return rc;
3821 }
3822
3823 /*
3824 * Heuristic to force contended enqueues to serialize on a
3825 * separate lock before trying to get qdisc main lock.
3826 * This permits qdisc->running owner to get the lock more
3827 * often and dequeue packets faster.
3828 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3829 * and then other tasks will only enqueue packets. The packets will be
3830 * sent after the qdisc owner is scheduled again. To prevent this
3831 * scenario the task always serialize on the lock.
3832 */
3833 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3834 if (unlikely(contended))
3835 spin_lock(&q->busylock);
3836
3837 spin_lock(root_lock);
3838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3839 __qdisc_drop(skb, &to_free);
3840 rc = NET_XMIT_DROP;
3841 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3842 qdisc_run_begin(q)) {
3843 /*
3844 * This is a work-conserving queue; there are no old skbs
3845 * waiting to be sent out; and the qdisc is not running -
3846 * xmit the skb directly.
3847 */
3848
3849 qdisc_bstats_update(q, skb);
3850
3851 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3852 if (unlikely(contended)) {
3853 spin_unlock(&q->busylock);
3854 contended = false;
3855 }
3856 __qdisc_run(q);
3857 }
3858
3859 qdisc_run_end(q);
3860 rc = NET_XMIT_SUCCESS;
3861 } else {
3862 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3863 if (qdisc_run_begin(q)) {
3864 if (unlikely(contended)) {
3865 spin_unlock(&q->busylock);
3866 contended = false;
3867 }
3868 __qdisc_run(q);
3869 qdisc_run_end(q);
3870 }
3871 }
3872 spin_unlock(root_lock);
3873 if (unlikely(to_free))
3874 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3875 if (unlikely(contended))
3876 spin_unlock(&q->busylock);
3877 return rc;
3878}
3879
3880#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3881static void skb_update_prio(struct sk_buff *skb)
3882{
3883 const struct netprio_map *map;
3884 const struct sock *sk;
3885 unsigned int prioidx;
3886
3887 if (skb->priority)
3888 return;
3889 map = rcu_dereference_bh(skb->dev->priomap);
3890 if (!map)
3891 return;
3892 sk = skb_to_full_sk(skb);
3893 if (!sk)
3894 return;
3895
3896 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3897
3898 if (prioidx < map->priomap_len)
3899 skb->priority = map->priomap[prioidx];
3900}
3901#else
3902#define skb_update_prio(skb)
3903#endif
3904
3905/**
3906 * dev_loopback_xmit - loop back @skb
3907 * @net: network namespace this loopback is happening in
3908 * @sk: sk needed to be a netfilter okfn
3909 * @skb: buffer to transmit
3910 */
3911int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3912{
3913 skb_reset_mac_header(skb);
3914 __skb_pull(skb, skb_network_offset(skb));
3915 skb->pkt_type = PACKET_LOOPBACK;
3916 if (skb->ip_summed == CHECKSUM_NONE)
3917 skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3919 skb_dst_force(skb);
3920 netif_rx(skb);
3921 return 0;
3922}
3923EXPORT_SYMBOL(dev_loopback_xmit);
3924
3925#ifdef CONFIG_NET_EGRESS
3926static struct sk_buff *
3927sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928{
3929#ifdef CONFIG_NET_CLS_ACT
3930 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3931 struct tcf_result cl_res;
3932
3933 if (!miniq)
3934 return skb;
3935
3936 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3937 tc_skb_cb(skb)->mru = 0;
3938 tc_skb_cb(skb)->post_ct = false;
3939 mini_qdisc_bstats_cpu_update(miniq, skb);
3940
3941 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3942 case TC_ACT_OK:
3943 case TC_ACT_RECLASSIFY:
3944 skb->tc_index = TC_H_MIN(cl_res.classid);
3945 break;
3946 case TC_ACT_SHOT:
3947 mini_qdisc_qstats_cpu_drop(miniq);
3948 *ret = NET_XMIT_DROP;
3949 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3950 return NULL;
3951 case TC_ACT_STOLEN:
3952 case TC_ACT_QUEUED:
3953 case TC_ACT_TRAP:
3954 *ret = NET_XMIT_SUCCESS;
3955 consume_skb(skb);
3956 return NULL;
3957 case TC_ACT_REDIRECT:
3958 /* No need to push/pop skb's mac_header here on egress! */
3959 skb_do_redirect(skb);
3960 *ret = NET_XMIT_SUCCESS;
3961 return NULL;
3962 default:
3963 break;
3964 }
3965#endif /* CONFIG_NET_CLS_ACT */
3966
3967 return skb;
3968}
3969
3970static struct netdev_queue *
3971netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3972{
3973 int qm = skb_get_queue_mapping(skb);
3974
3975 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3976}
3977
3978static bool netdev_xmit_txqueue_skipped(void)
3979{
3980 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3981}
3982
3983void netdev_xmit_skip_txqueue(bool skip)
3984{
3985 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3986}
3987EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3988#endif /* CONFIG_NET_EGRESS */
3989
3990#ifdef CONFIG_XPS
3991static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3992 struct xps_dev_maps *dev_maps, unsigned int tci)
3993{
3994 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3995 struct xps_map *map;
3996 int queue_index = -1;
3997
3998 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3999 return queue_index;
4000
4001 tci *= dev_maps->num_tc;
4002 tci += tc;
4003
4004 map = rcu_dereference(dev_maps->attr_map[tci]);
4005 if (map) {
4006 if (map->len == 1)
4007 queue_index = map->queues[0];
4008 else
4009 queue_index = map->queues[reciprocal_scale(
4010 skb_get_hash(skb), map->len)];
4011 if (unlikely(queue_index >= dev->real_num_tx_queues))
4012 queue_index = -1;
4013 }
4014 return queue_index;
4015}
4016#endif
4017
4018static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4019 struct sk_buff *skb)
4020{
4021#ifdef CONFIG_XPS
4022 struct xps_dev_maps *dev_maps;
4023 struct sock *sk = skb->sk;
4024 int queue_index = -1;
4025
4026 if (!static_key_false(&xps_needed))
4027 return -1;
4028
4029 rcu_read_lock();
4030 if (!static_key_false(&xps_rxqs_needed))
4031 goto get_cpus_map;
4032
4033 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4034 if (dev_maps) {
4035 int tci = sk_rx_queue_get(sk);
4036
4037 if (tci >= 0)
4038 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4039 tci);
4040 }
4041
4042get_cpus_map:
4043 if (queue_index < 0) {
4044 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4045 if (dev_maps) {
4046 unsigned int tci = skb->sender_cpu - 1;
4047
4048 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4049 tci);
4050 }
4051 }
4052 rcu_read_unlock();
4053
4054 return queue_index;
4055#else
4056 return -1;
4057#endif
4058}
4059
4060u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4061 struct net_device *sb_dev)
4062{
4063 return 0;
4064}
4065EXPORT_SYMBOL(dev_pick_tx_zero);
4066
4067u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4068 struct net_device *sb_dev)
4069{
4070 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4071}
4072EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4073
4074u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4075 struct net_device *sb_dev)
4076{
4077 struct sock *sk = skb->sk;
4078 int queue_index = sk_tx_queue_get(sk);
4079
4080 sb_dev = sb_dev ? : dev;
4081
4082 if (queue_index < 0 || skb->ooo_okay ||
4083 queue_index >= dev->real_num_tx_queues) {
4084 int new_index = get_xps_queue(dev, sb_dev, skb);
4085
4086 if (new_index < 0)
4087 new_index = skb_tx_hash(dev, sb_dev, skb);
4088
4089 if (queue_index != new_index && sk &&
4090 sk_fullsock(sk) &&
4091 rcu_access_pointer(sk->sk_dst_cache))
4092 sk_tx_queue_set(sk, new_index);
4093
4094 queue_index = new_index;
4095 }
4096
4097 return queue_index;
4098}
4099EXPORT_SYMBOL(netdev_pick_tx);
4100
4101struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4102 struct sk_buff *skb,
4103 struct net_device *sb_dev)
4104{
4105 int queue_index = 0;
4106
4107#ifdef CONFIG_XPS
4108 u32 sender_cpu = skb->sender_cpu - 1;
4109
4110 if (sender_cpu >= (u32)NR_CPUS)
4111 skb->sender_cpu = raw_smp_processor_id() + 1;
4112#endif
4113
4114 if (dev->real_num_tx_queues != 1) {
4115 const struct net_device_ops *ops = dev->netdev_ops;
4116
4117 if (ops->ndo_select_queue)
4118 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4119 else
4120 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4121
4122 queue_index = netdev_cap_txqueue(dev, queue_index);
4123 }
4124
4125 skb_set_queue_mapping(skb, queue_index);
4126 return netdev_get_tx_queue(dev, queue_index);
4127}
4128
4129/**
4130 * __dev_queue_xmit() - transmit a buffer
4131 * @skb: buffer to transmit
4132 * @sb_dev: suboordinate device used for L2 forwarding offload
4133 *
4134 * Queue a buffer for transmission to a network device. The caller must
4135 * have set the device and priority and built the buffer before calling
4136 * this function. The function can be called from an interrupt.
4137 *
4138 * When calling this method, interrupts MUST be enabled. This is because
4139 * the BH enable code must have IRQs enabled so that it will not deadlock.
4140 *
4141 * Regardless of the return value, the skb is consumed, so it is currently
4142 * difficult to retry a send to this method. (You can bump the ref count
4143 * before sending to hold a reference for retry if you are careful.)
4144 *
4145 * Return:
4146 * * 0 - buffer successfully transmitted
4147 * * positive qdisc return code - NET_XMIT_DROP etc.
4148 * * negative errno - other errors
4149 */
4150int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4151{
4152 struct net_device *dev = skb->dev;
4153 struct netdev_queue *txq = NULL;
4154 struct Qdisc *q;
4155 int rc = -ENOMEM;
4156 bool again = false;
4157
4158 skb_reset_mac_header(skb);
4159 skb_assert_len(skb);
4160
4161 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4162 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4163
4164 /* Disable soft irqs for various locks below. Also
4165 * stops preemption for RCU.
4166 */
4167 rcu_read_lock_bh();
4168
4169 skb_update_prio(skb);
4170
4171 qdisc_pkt_len_init(skb);
4172#ifdef CONFIG_NET_CLS_ACT
4173 skb->tc_at_ingress = 0;
4174#endif
4175#ifdef CONFIG_NET_EGRESS
4176 if (static_branch_unlikely(&egress_needed_key)) {
4177 if (nf_hook_egress_active()) {
4178 skb = nf_hook_egress(skb, &rc, dev);
4179 if (!skb)
4180 goto out;
4181 }
4182
4183 netdev_xmit_skip_txqueue(false);
4184
4185 nf_skip_egress(skb, true);
4186 skb = sch_handle_egress(skb, &rc, dev);
4187 if (!skb)
4188 goto out;
4189 nf_skip_egress(skb, false);
4190
4191 if (netdev_xmit_txqueue_skipped())
4192 txq = netdev_tx_queue_mapping(dev, skb);
4193 }
4194#endif
4195 /* If device/qdisc don't need skb->dst, release it right now while
4196 * its hot in this cpu cache.
4197 */
4198 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4199 skb_dst_drop(skb);
4200 else
4201 skb_dst_force(skb);
4202
4203 if (!txq)
4204 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4205
4206 q = rcu_dereference_bh(txq->qdisc);
4207
4208 trace_net_dev_queue(skb);
4209 if (q->enqueue) {
4210 rc = __dev_xmit_skb(skb, q, dev, txq);
4211 goto out;
4212 }
4213
4214 /* The device has no queue. Common case for software devices:
4215 * loopback, all the sorts of tunnels...
4216
4217 * Really, it is unlikely that netif_tx_lock protection is necessary
4218 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4219 * counters.)
4220 * However, it is possible, that they rely on protection
4221 * made by us here.
4222
4223 * Check this and shot the lock. It is not prone from deadlocks.
4224 *Either shot noqueue qdisc, it is even simpler 8)
4225 */
4226 if (dev->flags & IFF_UP) {
4227 int cpu = smp_processor_id(); /* ok because BHs are off */
4228
4229 /* Other cpus might concurrently change txq->xmit_lock_owner
4230 * to -1 or to their cpu id, but not to our id.
4231 */
4232 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4233 if (dev_xmit_recursion())
4234 goto recursion_alert;
4235
4236 skb = validate_xmit_skb(skb, dev, &again);
4237 if (!skb)
4238 goto out;
4239
4240 HARD_TX_LOCK(dev, txq, cpu);
4241
4242 if (!netif_xmit_stopped(txq)) {
4243 dev_xmit_recursion_inc();
4244 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4245 dev_xmit_recursion_dec();
4246 if (dev_xmit_complete(rc)) {
4247 HARD_TX_UNLOCK(dev, txq);
4248 goto out;
4249 }
4250 }
4251 HARD_TX_UNLOCK(dev, txq);
4252 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4253 dev->name);
4254 } else {
4255 /* Recursion is detected! It is possible,
4256 * unfortunately
4257 */
4258recursion_alert:
4259 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4260 dev->name);
4261 }
4262 }
4263
4264 rc = -ENETDOWN;
4265 rcu_read_unlock_bh();
4266
4267 dev_core_stats_tx_dropped_inc(dev);
4268 kfree_skb_list(skb);
4269 return rc;
4270out:
4271 rcu_read_unlock_bh();
4272 return rc;
4273}
4274EXPORT_SYMBOL(__dev_queue_xmit);
4275
4276int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4277{
4278 struct net_device *dev = skb->dev;
4279 struct sk_buff *orig_skb = skb;
4280 struct netdev_queue *txq;
4281 int ret = NETDEV_TX_BUSY;
4282 bool again = false;
4283
4284 if (unlikely(!netif_running(dev) ||
4285 !netif_carrier_ok(dev)))
4286 goto drop;
4287
4288 skb = validate_xmit_skb_list(skb, dev, &again);
4289 if (skb != orig_skb)
4290 goto drop;
4291
4292 skb_set_queue_mapping(skb, queue_id);
4293 txq = skb_get_tx_queue(dev, skb);
4294
4295 local_bh_disable();
4296
4297 dev_xmit_recursion_inc();
4298 HARD_TX_LOCK(dev, txq, smp_processor_id());
4299 if (!netif_xmit_frozen_or_drv_stopped(txq))
4300 ret = netdev_start_xmit(skb, dev, txq, false);
4301 HARD_TX_UNLOCK(dev, txq);
4302 dev_xmit_recursion_dec();
4303
4304 local_bh_enable();
4305 return ret;
4306drop:
4307 dev_core_stats_tx_dropped_inc(dev);
4308 kfree_skb_list(skb);
4309 return NET_XMIT_DROP;
4310}
4311EXPORT_SYMBOL(__dev_direct_xmit);
4312
4313/*************************************************************************
4314 * Receiver routines
4315 *************************************************************************/
4316
4317int netdev_max_backlog __read_mostly = 1000;
4318EXPORT_SYMBOL(netdev_max_backlog);
4319
4320int netdev_tstamp_prequeue __read_mostly = 1;
4321unsigned int sysctl_skb_defer_max __read_mostly = 64;
4322int netdev_budget __read_mostly = 300;
4323/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4324unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4325int weight_p __read_mostly = 64; /* old backlog weight */
4326int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4327int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4328int dev_rx_weight __read_mostly = 64;
4329int dev_tx_weight __read_mostly = 64;
4330
4331/* Called with irq disabled */
4332static inline void ____napi_schedule(struct softnet_data *sd,
4333 struct napi_struct *napi)
4334{
4335 struct task_struct *thread;
4336
4337 lockdep_assert_irqs_disabled();
4338
4339 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4340 /* Paired with smp_mb__before_atomic() in
4341 * napi_enable()/dev_set_threaded().
4342 * Use READ_ONCE() to guarantee a complete
4343 * read on napi->thread. Only call
4344 * wake_up_process() when it's not NULL.
4345 */
4346 thread = READ_ONCE(napi->thread);
4347 if (thread) {
4348 /* Avoid doing set_bit() if the thread is in
4349 * INTERRUPTIBLE state, cause napi_thread_wait()
4350 * makes sure to proceed with napi polling
4351 * if the thread is explicitly woken from here.
4352 */
4353 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4354 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4355 wake_up_process(thread);
4356 return;
4357 }
4358 }
4359
4360 list_add_tail(&napi->poll_list, &sd->poll_list);
4361 WRITE_ONCE(napi->list_owner, smp_processor_id());
4362 /* If not called from net_rx_action()
4363 * we have to raise NET_RX_SOFTIRQ.
4364 */
4365 if (!sd->in_net_rx_action)
4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367}
4368
4369#ifdef CONFIG_RPS
4370
4371/* One global table that all flow-based protocols share. */
4372struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4373EXPORT_SYMBOL(rps_sock_flow_table);
4374u32 rps_cpu_mask __read_mostly;
4375EXPORT_SYMBOL(rps_cpu_mask);
4376
4377struct static_key_false rps_needed __read_mostly;
4378EXPORT_SYMBOL(rps_needed);
4379struct static_key_false rfs_needed __read_mostly;
4380EXPORT_SYMBOL(rfs_needed);
4381
4382static struct rps_dev_flow *
4383set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4384 struct rps_dev_flow *rflow, u16 next_cpu)
4385{
4386 if (next_cpu < nr_cpu_ids) {
4387#ifdef CONFIG_RFS_ACCEL
4388 struct netdev_rx_queue *rxqueue;
4389 struct rps_dev_flow_table *flow_table;
4390 struct rps_dev_flow *old_rflow;
4391 u32 flow_id;
4392 u16 rxq_index;
4393 int rc;
4394
4395 /* Should we steer this flow to a different hardware queue? */
4396 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4397 !(dev->features & NETIF_F_NTUPLE))
4398 goto out;
4399 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4400 if (rxq_index == skb_get_rx_queue(skb))
4401 goto out;
4402
4403 rxqueue = dev->_rx + rxq_index;
4404 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4405 if (!flow_table)
4406 goto out;
4407 flow_id = skb_get_hash(skb) & flow_table->mask;
4408 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4409 rxq_index, flow_id);
4410 if (rc < 0)
4411 goto out;
4412 old_rflow = rflow;
4413 rflow = &flow_table->flows[flow_id];
4414 rflow->filter = rc;
4415 if (old_rflow->filter == rflow->filter)
4416 old_rflow->filter = RPS_NO_FILTER;
4417 out:
4418#endif
4419 rflow->last_qtail =
4420 per_cpu(softnet_data, next_cpu).input_queue_head;
4421 }
4422
4423 rflow->cpu = next_cpu;
4424 return rflow;
4425}
4426
4427/*
4428 * get_rps_cpu is called from netif_receive_skb and returns the target
4429 * CPU from the RPS map of the receiving queue for a given skb.
4430 * rcu_read_lock must be held on entry.
4431 */
4432static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4433 struct rps_dev_flow **rflowp)
4434{
4435 const struct rps_sock_flow_table *sock_flow_table;
4436 struct netdev_rx_queue *rxqueue = dev->_rx;
4437 struct rps_dev_flow_table *flow_table;
4438 struct rps_map *map;
4439 int cpu = -1;
4440 u32 tcpu;
4441 u32 hash;
4442
4443 if (skb_rx_queue_recorded(skb)) {
4444 u16 index = skb_get_rx_queue(skb);
4445
4446 if (unlikely(index >= dev->real_num_rx_queues)) {
4447 WARN_ONCE(dev->real_num_rx_queues > 1,
4448 "%s received packet on queue %u, but number "
4449 "of RX queues is %u\n",
4450 dev->name, index, dev->real_num_rx_queues);
4451 goto done;
4452 }
4453 rxqueue += index;
4454 }
4455
4456 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4457
4458 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4459 map = rcu_dereference(rxqueue->rps_map);
4460 if (!flow_table && !map)
4461 goto done;
4462
4463 skb_reset_network_header(skb);
4464 hash = skb_get_hash(skb);
4465 if (!hash)
4466 goto done;
4467
4468 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4469 if (flow_table && sock_flow_table) {
4470 struct rps_dev_flow *rflow;
4471 u32 next_cpu;
4472 u32 ident;
4473
4474 /* First check into global flow table if there is a match */
4475 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4476 if ((ident ^ hash) & ~rps_cpu_mask)
4477 goto try_rps;
4478
4479 next_cpu = ident & rps_cpu_mask;
4480
4481 /* OK, now we know there is a match,
4482 * we can look at the local (per receive queue) flow table
4483 */
4484 rflow = &flow_table->flows[hash & flow_table->mask];
4485 tcpu = rflow->cpu;
4486
4487 /*
4488 * If the desired CPU (where last recvmsg was done) is
4489 * different from current CPU (one in the rx-queue flow
4490 * table entry), switch if one of the following holds:
4491 * - Current CPU is unset (>= nr_cpu_ids).
4492 * - Current CPU is offline.
4493 * - The current CPU's queue tail has advanced beyond the
4494 * last packet that was enqueued using this table entry.
4495 * This guarantees that all previous packets for the flow
4496 * have been dequeued, thus preserving in order delivery.
4497 */
4498 if (unlikely(tcpu != next_cpu) &&
4499 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4500 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4501 rflow->last_qtail)) >= 0)) {
4502 tcpu = next_cpu;
4503 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4504 }
4505
4506 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4507 *rflowp = rflow;
4508 cpu = tcpu;
4509 goto done;
4510 }
4511 }
4512
4513try_rps:
4514
4515 if (map) {
4516 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4517 if (cpu_online(tcpu)) {
4518 cpu = tcpu;
4519 goto done;
4520 }
4521 }
4522
4523done:
4524 return cpu;
4525}
4526
4527#ifdef CONFIG_RFS_ACCEL
4528
4529/**
4530 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4531 * @dev: Device on which the filter was set
4532 * @rxq_index: RX queue index
4533 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4534 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4535 *
4536 * Drivers that implement ndo_rx_flow_steer() should periodically call
4537 * this function for each installed filter and remove the filters for
4538 * which it returns %true.
4539 */
4540bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4541 u32 flow_id, u16 filter_id)
4542{
4543 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4544 struct rps_dev_flow_table *flow_table;
4545 struct rps_dev_flow *rflow;
4546 bool expire = true;
4547 unsigned int cpu;
4548
4549 rcu_read_lock();
4550 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4551 if (flow_table && flow_id <= flow_table->mask) {
4552 rflow = &flow_table->flows[flow_id];
4553 cpu = READ_ONCE(rflow->cpu);
4554 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4555 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4556 rflow->last_qtail) <
4557 (int)(10 * flow_table->mask)))
4558 expire = false;
4559 }
4560 rcu_read_unlock();
4561 return expire;
4562}
4563EXPORT_SYMBOL(rps_may_expire_flow);
4564
4565#endif /* CONFIG_RFS_ACCEL */
4566
4567/* Called from hardirq (IPI) context */
4568static void rps_trigger_softirq(void *data)
4569{
4570 struct softnet_data *sd = data;
4571
4572 ____napi_schedule(sd, &sd->backlog);
4573 sd->received_rps++;
4574}
4575
4576#endif /* CONFIG_RPS */
4577
4578/* Called from hardirq (IPI) context */
4579static void trigger_rx_softirq(void *data)
4580{
4581 struct softnet_data *sd = data;
4582
4583 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584 smp_store_release(&sd->defer_ipi_scheduled, 0);
4585}
4586
4587/*
4588 * After we queued a packet into sd->input_pkt_queue,
4589 * we need to make sure this queue is serviced soon.
4590 *
4591 * - If this is another cpu queue, link it to our rps_ipi_list,
4592 * and make sure we will process rps_ipi_list from net_rx_action().
4593 *
4594 * - If this is our own queue, NAPI schedule our backlog.
4595 * Note that this also raises NET_RX_SOFTIRQ.
4596 */
4597static void napi_schedule_rps(struct softnet_data *sd)
4598{
4599 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4600
4601#ifdef CONFIG_RPS
4602 if (sd != mysd) {
4603 sd->rps_ipi_next = mysd->rps_ipi_list;
4604 mysd->rps_ipi_list = sd;
4605
4606 /* If not called from net_rx_action() or napi_threaded_poll()
4607 * we have to raise NET_RX_SOFTIRQ.
4608 */
4609 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4610 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4611 return;
4612 }
4613#endif /* CONFIG_RPS */
4614 __napi_schedule_irqoff(&mysd->backlog);
4615}
4616
4617#ifdef CONFIG_NET_FLOW_LIMIT
4618int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4619#endif
4620
4621static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4622{
4623#ifdef CONFIG_NET_FLOW_LIMIT
4624 struct sd_flow_limit *fl;
4625 struct softnet_data *sd;
4626 unsigned int old_flow, new_flow;
4627
4628 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4629 return false;
4630
4631 sd = this_cpu_ptr(&softnet_data);
4632
4633 rcu_read_lock();
4634 fl = rcu_dereference(sd->flow_limit);
4635 if (fl) {
4636 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4637 old_flow = fl->history[fl->history_head];
4638 fl->history[fl->history_head] = new_flow;
4639
4640 fl->history_head++;
4641 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4642
4643 if (likely(fl->buckets[old_flow]))
4644 fl->buckets[old_flow]--;
4645
4646 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4647 fl->count++;
4648 rcu_read_unlock();
4649 return true;
4650 }
4651 }
4652 rcu_read_unlock();
4653#endif
4654 return false;
4655}
4656
4657/*
4658 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4659 * queue (may be a remote CPU queue).
4660 */
4661static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4662 unsigned int *qtail)
4663{
4664 enum skb_drop_reason reason;
4665 struct softnet_data *sd;
4666 unsigned long flags;
4667 unsigned int qlen;
4668
4669 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4670 sd = &per_cpu(softnet_data, cpu);
4671
4672 rps_lock_irqsave(sd, &flags);
4673 if (!netif_running(skb->dev))
4674 goto drop;
4675 qlen = skb_queue_len(&sd->input_pkt_queue);
4676 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4677 if (qlen) {
4678enqueue:
4679 __skb_queue_tail(&sd->input_pkt_queue, skb);
4680 input_queue_tail_incr_save(sd, qtail);
4681 rps_unlock_irq_restore(sd, &flags);
4682 return NET_RX_SUCCESS;
4683 }
4684
4685 /* Schedule NAPI for backlog device
4686 * We can use non atomic operation since we own the queue lock
4687 */
4688 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4689 napi_schedule_rps(sd);
4690 goto enqueue;
4691 }
4692 reason = SKB_DROP_REASON_CPU_BACKLOG;
4693
4694drop:
4695 sd->dropped++;
4696 rps_unlock_irq_restore(sd, &flags);
4697
4698 dev_core_stats_rx_dropped_inc(skb->dev);
4699 kfree_skb_reason(skb, reason);
4700 return NET_RX_DROP;
4701}
4702
4703static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4704{
4705 struct net_device *dev = skb->dev;
4706 struct netdev_rx_queue *rxqueue;
4707
4708 rxqueue = dev->_rx;
4709
4710 if (skb_rx_queue_recorded(skb)) {
4711 u16 index = skb_get_rx_queue(skb);
4712
4713 if (unlikely(index >= dev->real_num_rx_queues)) {
4714 WARN_ONCE(dev->real_num_rx_queues > 1,
4715 "%s received packet on queue %u, but number "
4716 "of RX queues is %u\n",
4717 dev->name, index, dev->real_num_rx_queues);
4718
4719 return rxqueue; /* Return first rxqueue */
4720 }
4721 rxqueue += index;
4722 }
4723 return rxqueue;
4724}
4725
4726u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4727 struct bpf_prog *xdp_prog)
4728{
4729 void *orig_data, *orig_data_end, *hard_start;
4730 struct netdev_rx_queue *rxqueue;
4731 bool orig_bcast, orig_host;
4732 u32 mac_len, frame_sz;
4733 __be16 orig_eth_type;
4734 struct ethhdr *eth;
4735 u32 metalen, act;
4736 int off;
4737
4738 /* The XDP program wants to see the packet starting at the MAC
4739 * header.
4740 */
4741 mac_len = skb->data - skb_mac_header(skb);
4742 hard_start = skb->data - skb_headroom(skb);
4743
4744 /* SKB "head" area always have tailroom for skb_shared_info */
4745 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4746 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4747
4748 rxqueue = netif_get_rxqueue(skb);
4749 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4750 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4751 skb_headlen(skb) + mac_len, true);
4752
4753 orig_data_end = xdp->data_end;
4754 orig_data = xdp->data;
4755 eth = (struct ethhdr *)xdp->data;
4756 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4757 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4758 orig_eth_type = eth->h_proto;
4759
4760 act = bpf_prog_run_xdp(xdp_prog, xdp);
4761
4762 /* check if bpf_xdp_adjust_head was used */
4763 off = xdp->data - orig_data;
4764 if (off) {
4765 if (off > 0)
4766 __skb_pull(skb, off);
4767 else if (off < 0)
4768 __skb_push(skb, -off);
4769
4770 skb->mac_header += off;
4771 skb_reset_network_header(skb);
4772 }
4773
4774 /* check if bpf_xdp_adjust_tail was used */
4775 off = xdp->data_end - orig_data_end;
4776 if (off != 0) {
4777 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4778 skb->len += off; /* positive on grow, negative on shrink */
4779 }
4780
4781 /* check if XDP changed eth hdr such SKB needs update */
4782 eth = (struct ethhdr *)xdp->data;
4783 if ((orig_eth_type != eth->h_proto) ||
4784 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4785 skb->dev->dev_addr)) ||
4786 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4787 __skb_push(skb, ETH_HLEN);
4788 skb->pkt_type = PACKET_HOST;
4789 skb->protocol = eth_type_trans(skb, skb->dev);
4790 }
4791
4792 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4793 * before calling us again on redirect path. We do not call do_redirect
4794 * as we leave that up to the caller.
4795 *
4796 * Caller is responsible for managing lifetime of skb (i.e. calling
4797 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4798 */
4799 switch (act) {
4800 case XDP_REDIRECT:
4801 case XDP_TX:
4802 __skb_push(skb, mac_len);
4803 break;
4804 case XDP_PASS:
4805 metalen = xdp->data - xdp->data_meta;
4806 if (metalen)
4807 skb_metadata_set(skb, metalen);
4808 break;
4809 }
4810
4811 return act;
4812}
4813
4814static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4815 struct xdp_buff *xdp,
4816 struct bpf_prog *xdp_prog)
4817{
4818 u32 act = XDP_DROP;
4819
4820 /* Reinjected packets coming from act_mirred or similar should
4821 * not get XDP generic processing.
4822 */
4823 if (skb_is_redirected(skb))
4824 return XDP_PASS;
4825
4826 /* XDP packets must be linear and must have sufficient headroom
4827 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4828 * native XDP provides, thus we need to do it here as well.
4829 */
4830 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4831 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4832 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4833 int troom = skb->tail + skb->data_len - skb->end;
4834
4835 /* In case we have to go down the path and also linearize,
4836 * then lets do the pskb_expand_head() work just once here.
4837 */
4838 if (pskb_expand_head(skb,
4839 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4840 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4841 goto do_drop;
4842 if (skb_linearize(skb))
4843 goto do_drop;
4844 }
4845
4846 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4847 switch (act) {
4848 case XDP_REDIRECT:
4849 case XDP_TX:
4850 case XDP_PASS:
4851 break;
4852 default:
4853 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4854 fallthrough;
4855 case XDP_ABORTED:
4856 trace_xdp_exception(skb->dev, xdp_prog, act);
4857 fallthrough;
4858 case XDP_DROP:
4859 do_drop:
4860 kfree_skb(skb);
4861 break;
4862 }
4863
4864 return act;
4865}
4866
4867/* When doing generic XDP we have to bypass the qdisc layer and the
4868 * network taps in order to match in-driver-XDP behavior. This also means
4869 * that XDP packets are able to starve other packets going through a qdisc,
4870 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4871 * queues, so they do not have this starvation issue.
4872 */
4873void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4874{
4875 struct net_device *dev = skb->dev;
4876 struct netdev_queue *txq;
4877 bool free_skb = true;
4878 int cpu, rc;
4879
4880 txq = netdev_core_pick_tx(dev, skb, NULL);
4881 cpu = smp_processor_id();
4882 HARD_TX_LOCK(dev, txq, cpu);
4883 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4884 rc = netdev_start_xmit(skb, dev, txq, 0);
4885 if (dev_xmit_complete(rc))
4886 free_skb = false;
4887 }
4888 HARD_TX_UNLOCK(dev, txq);
4889 if (free_skb) {
4890 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4891 dev_core_stats_tx_dropped_inc(dev);
4892 kfree_skb(skb);
4893 }
4894}
4895
4896static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4897
4898int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4899{
4900 if (xdp_prog) {
4901 struct xdp_buff xdp;
4902 u32 act;
4903 int err;
4904
4905 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4906 if (act != XDP_PASS) {
4907 switch (act) {
4908 case XDP_REDIRECT:
4909 err = xdp_do_generic_redirect(skb->dev, skb,
4910 &xdp, xdp_prog);
4911 if (err)
4912 goto out_redir;
4913 break;
4914 case XDP_TX:
4915 generic_xdp_tx(skb, xdp_prog);
4916 break;
4917 }
4918 return XDP_DROP;
4919 }
4920 }
4921 return XDP_PASS;
4922out_redir:
4923 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4924 return XDP_DROP;
4925}
4926EXPORT_SYMBOL_GPL(do_xdp_generic);
4927
4928static int netif_rx_internal(struct sk_buff *skb)
4929{
4930 int ret;
4931
4932 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4933
4934 trace_netif_rx(skb);
4935
4936#ifdef CONFIG_RPS
4937 if (static_branch_unlikely(&rps_needed)) {
4938 struct rps_dev_flow voidflow, *rflow = &voidflow;
4939 int cpu;
4940
4941 rcu_read_lock();
4942
4943 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4944 if (cpu < 0)
4945 cpu = smp_processor_id();
4946
4947 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4948
4949 rcu_read_unlock();
4950 } else
4951#endif
4952 {
4953 unsigned int qtail;
4954
4955 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4956 }
4957 return ret;
4958}
4959
4960/**
4961 * __netif_rx - Slightly optimized version of netif_rx
4962 * @skb: buffer to post
4963 *
4964 * This behaves as netif_rx except that it does not disable bottom halves.
4965 * As a result this function may only be invoked from the interrupt context
4966 * (either hard or soft interrupt).
4967 */
4968int __netif_rx(struct sk_buff *skb)
4969{
4970 int ret;
4971
4972 lockdep_assert_once(hardirq_count() | softirq_count());
4973
4974 trace_netif_rx_entry(skb);
4975 ret = netif_rx_internal(skb);
4976 trace_netif_rx_exit(ret);
4977 return ret;
4978}
4979EXPORT_SYMBOL(__netif_rx);
4980
4981/**
4982 * netif_rx - post buffer to the network code
4983 * @skb: buffer to post
4984 *
4985 * This function receives a packet from a device driver and queues it for
4986 * the upper (protocol) levels to process via the backlog NAPI device. It
4987 * always succeeds. The buffer may be dropped during processing for
4988 * congestion control or by the protocol layers.
4989 * The network buffer is passed via the backlog NAPI device. Modern NIC
4990 * driver should use NAPI and GRO.
4991 * This function can used from interrupt and from process context. The
4992 * caller from process context must not disable interrupts before invoking
4993 * this function.
4994 *
4995 * return values:
4996 * NET_RX_SUCCESS (no congestion)
4997 * NET_RX_DROP (packet was dropped)
4998 *
4999 */
5000int netif_rx(struct sk_buff *skb)
5001{
5002 bool need_bh_off = !(hardirq_count() | softirq_count());
5003 int ret;
5004
5005 if (need_bh_off)
5006 local_bh_disable();
5007 trace_netif_rx_entry(skb);
5008 ret = netif_rx_internal(skb);
5009 trace_netif_rx_exit(ret);
5010 if (need_bh_off)
5011 local_bh_enable();
5012 return ret;
5013}
5014EXPORT_SYMBOL(netif_rx);
5015
5016static __latent_entropy void net_tx_action(struct softirq_action *h)
5017{
5018 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5019
5020 if (sd->completion_queue) {
5021 struct sk_buff *clist;
5022
5023 local_irq_disable();
5024 clist = sd->completion_queue;
5025 sd->completion_queue = NULL;
5026 local_irq_enable();
5027
5028 while (clist) {
5029 struct sk_buff *skb = clist;
5030
5031 clist = clist->next;
5032
5033 WARN_ON(refcount_read(&skb->users));
5034 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5035 trace_consume_skb(skb, net_tx_action);
5036 else
5037 trace_kfree_skb(skb, net_tx_action,
5038 get_kfree_skb_cb(skb)->reason);
5039
5040 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041 __kfree_skb(skb);
5042 else
5043 __napi_kfree_skb(skb,
5044 get_kfree_skb_cb(skb)->reason);
5045 }
5046 }
5047
5048 if (sd->output_queue) {
5049 struct Qdisc *head;
5050
5051 local_irq_disable();
5052 head = sd->output_queue;
5053 sd->output_queue = NULL;
5054 sd->output_queue_tailp = &sd->output_queue;
5055 local_irq_enable();
5056
5057 rcu_read_lock();
5058
5059 while (head) {
5060 struct Qdisc *q = head;
5061 spinlock_t *root_lock = NULL;
5062
5063 head = head->next_sched;
5064
5065 /* We need to make sure head->next_sched is read
5066 * before clearing __QDISC_STATE_SCHED
5067 */
5068 smp_mb__before_atomic();
5069
5070 if (!(q->flags & TCQ_F_NOLOCK)) {
5071 root_lock = qdisc_lock(q);
5072 spin_lock(root_lock);
5073 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5074 &q->state))) {
5075 /* There is a synchronize_net() between
5076 * STATE_DEACTIVATED flag being set and
5077 * qdisc_reset()/some_qdisc_is_busy() in
5078 * dev_deactivate(), so we can safely bail out
5079 * early here to avoid data race between
5080 * qdisc_deactivate() and some_qdisc_is_busy()
5081 * for lockless qdisc.
5082 */
5083 clear_bit(__QDISC_STATE_SCHED, &q->state);
5084 continue;
5085 }
5086
5087 clear_bit(__QDISC_STATE_SCHED, &q->state);
5088 qdisc_run(q);
5089 if (root_lock)
5090 spin_unlock(root_lock);
5091 }
5092
5093 rcu_read_unlock();
5094 }
5095
5096 xfrm_dev_backlog(sd);
5097}
5098
5099#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5100/* This hook is defined here for ATM LANE */
5101int (*br_fdb_test_addr_hook)(struct net_device *dev,
5102 unsigned char *addr) __read_mostly;
5103EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5104#endif
5105
5106static inline struct sk_buff *
5107sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5108 struct net_device *orig_dev, bool *another)
5109{
5110#ifdef CONFIG_NET_CLS_ACT
5111 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5112 struct tcf_result cl_res;
5113
5114 /* If there's at least one ingress present somewhere (so
5115 * we get here via enabled static key), remaining devices
5116 * that are not configured with an ingress qdisc will bail
5117 * out here.
5118 */
5119 if (!miniq)
5120 return skb;
5121
5122 if (*pt_prev) {
5123 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5124 *pt_prev = NULL;
5125 }
5126
5127 qdisc_skb_cb(skb)->pkt_len = skb->len;
5128 tc_skb_cb(skb)->mru = 0;
5129 tc_skb_cb(skb)->post_ct = false;
5130 skb->tc_at_ingress = 1;
5131 mini_qdisc_bstats_cpu_update(miniq, skb);
5132
5133 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5134 case TC_ACT_OK:
5135 case TC_ACT_RECLASSIFY:
5136 skb->tc_index = TC_H_MIN(cl_res.classid);
5137 break;
5138 case TC_ACT_SHOT:
5139 mini_qdisc_qstats_cpu_drop(miniq);
5140 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5141 *ret = NET_RX_DROP;
5142 return NULL;
5143 case TC_ACT_STOLEN:
5144 case TC_ACT_QUEUED:
5145 case TC_ACT_TRAP:
5146 consume_skb(skb);
5147 *ret = NET_RX_SUCCESS;
5148 return NULL;
5149 case TC_ACT_REDIRECT:
5150 /* skb_mac_header check was done by cls/act_bpf, so
5151 * we can safely push the L2 header back before
5152 * redirecting to another netdev
5153 */
5154 __skb_push(skb, skb->mac_len);
5155 if (skb_do_redirect(skb) == -EAGAIN) {
5156 __skb_pull(skb, skb->mac_len);
5157 *another = true;
5158 break;
5159 }
5160 *ret = NET_RX_SUCCESS;
5161 return NULL;
5162 case TC_ACT_CONSUMED:
5163 *ret = NET_RX_SUCCESS;
5164 return NULL;
5165 default:
5166 break;
5167 }
5168#endif /* CONFIG_NET_CLS_ACT */
5169 return skb;
5170}
5171
5172/**
5173 * netdev_is_rx_handler_busy - check if receive handler is registered
5174 * @dev: device to check
5175 *
5176 * Check if a receive handler is already registered for a given device.
5177 * Return true if there one.
5178 *
5179 * The caller must hold the rtnl_mutex.
5180 */
5181bool netdev_is_rx_handler_busy(struct net_device *dev)
5182{
5183 ASSERT_RTNL();
5184 return dev && rtnl_dereference(dev->rx_handler);
5185}
5186EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5187
5188/**
5189 * netdev_rx_handler_register - register receive handler
5190 * @dev: device to register a handler for
5191 * @rx_handler: receive handler to register
5192 * @rx_handler_data: data pointer that is used by rx handler
5193 *
5194 * Register a receive handler for a device. This handler will then be
5195 * called from __netif_receive_skb. A negative errno code is returned
5196 * on a failure.
5197 *
5198 * The caller must hold the rtnl_mutex.
5199 *
5200 * For a general description of rx_handler, see enum rx_handler_result.
5201 */
5202int netdev_rx_handler_register(struct net_device *dev,
5203 rx_handler_func_t *rx_handler,
5204 void *rx_handler_data)
5205{
5206 if (netdev_is_rx_handler_busy(dev))
5207 return -EBUSY;
5208
5209 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5210 return -EINVAL;
5211
5212 /* Note: rx_handler_data must be set before rx_handler */
5213 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5214 rcu_assign_pointer(dev->rx_handler, rx_handler);
5215
5216 return 0;
5217}
5218EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5219
5220/**
5221 * netdev_rx_handler_unregister - unregister receive handler
5222 * @dev: device to unregister a handler from
5223 *
5224 * Unregister a receive handler from a device.
5225 *
5226 * The caller must hold the rtnl_mutex.
5227 */
5228void netdev_rx_handler_unregister(struct net_device *dev)
5229{
5230
5231 ASSERT_RTNL();
5232 RCU_INIT_POINTER(dev->rx_handler, NULL);
5233 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5234 * section has a guarantee to see a non NULL rx_handler_data
5235 * as well.
5236 */
5237 synchronize_net();
5238 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5239}
5240EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5241
5242/*
5243 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5244 * the special handling of PFMEMALLOC skbs.
5245 */
5246static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5247{
5248 switch (skb->protocol) {
5249 case htons(ETH_P_ARP):
5250 case htons(ETH_P_IP):
5251 case htons(ETH_P_IPV6):
5252 case htons(ETH_P_8021Q):
5253 case htons(ETH_P_8021AD):
5254 return true;
5255 default:
5256 return false;
5257 }
5258}
5259
5260static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5261 int *ret, struct net_device *orig_dev)
5262{
5263 if (nf_hook_ingress_active(skb)) {
5264 int ingress_retval;
5265
5266 if (*pt_prev) {
5267 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5268 *pt_prev = NULL;
5269 }
5270
5271 rcu_read_lock();
5272 ingress_retval = nf_hook_ingress(skb);
5273 rcu_read_unlock();
5274 return ingress_retval;
5275 }
5276 return 0;
5277}
5278
5279static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5280 struct packet_type **ppt_prev)
5281{
5282 struct packet_type *ptype, *pt_prev;
5283 rx_handler_func_t *rx_handler;
5284 struct sk_buff *skb = *pskb;
5285 struct net_device *orig_dev;
5286 bool deliver_exact = false;
5287 int ret = NET_RX_DROP;
5288 __be16 type;
5289
5290 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5291
5292 trace_netif_receive_skb(skb);
5293
5294 orig_dev = skb->dev;
5295
5296 skb_reset_network_header(skb);
5297 if (!skb_transport_header_was_set(skb))
5298 skb_reset_transport_header(skb);
5299 skb_reset_mac_len(skb);
5300
5301 pt_prev = NULL;
5302
5303another_round:
5304 skb->skb_iif = skb->dev->ifindex;
5305
5306 __this_cpu_inc(softnet_data.processed);
5307
5308 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5309 int ret2;
5310
5311 migrate_disable();
5312 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5313 migrate_enable();
5314
5315 if (ret2 != XDP_PASS) {
5316 ret = NET_RX_DROP;
5317 goto out;
5318 }
5319 }
5320
5321 if (eth_type_vlan(skb->protocol)) {
5322 skb = skb_vlan_untag(skb);
5323 if (unlikely(!skb))
5324 goto out;
5325 }
5326
5327 if (skb_skip_tc_classify(skb))
5328 goto skip_classify;
5329
5330 if (pfmemalloc)
5331 goto skip_taps;
5332
5333 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5334 if (pt_prev)
5335 ret = deliver_skb(skb, pt_prev, orig_dev);
5336 pt_prev = ptype;
5337 }
5338
5339 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5340 if (pt_prev)
5341 ret = deliver_skb(skb, pt_prev, orig_dev);
5342 pt_prev = ptype;
5343 }
5344
5345skip_taps:
5346#ifdef CONFIG_NET_INGRESS
5347 if (static_branch_unlikely(&ingress_needed_key)) {
5348 bool another = false;
5349
5350 nf_skip_egress(skb, true);
5351 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5352 &another);
5353 if (another)
5354 goto another_round;
5355 if (!skb)
5356 goto out;
5357
5358 nf_skip_egress(skb, false);
5359 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5360 goto out;
5361 }
5362#endif
5363 skb_reset_redirect(skb);
5364skip_classify:
5365 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5366 goto drop;
5367
5368 if (skb_vlan_tag_present(skb)) {
5369 if (pt_prev) {
5370 ret = deliver_skb(skb, pt_prev, orig_dev);
5371 pt_prev = NULL;
5372 }
5373 if (vlan_do_receive(&skb))
5374 goto another_round;
5375 else if (unlikely(!skb))
5376 goto out;
5377 }
5378
5379 rx_handler = rcu_dereference(skb->dev->rx_handler);
5380 if (rx_handler) {
5381 if (pt_prev) {
5382 ret = deliver_skb(skb, pt_prev, orig_dev);
5383 pt_prev = NULL;
5384 }
5385 switch (rx_handler(&skb)) {
5386 case RX_HANDLER_CONSUMED:
5387 ret = NET_RX_SUCCESS;
5388 goto out;
5389 case RX_HANDLER_ANOTHER:
5390 goto another_round;
5391 case RX_HANDLER_EXACT:
5392 deliver_exact = true;
5393 break;
5394 case RX_HANDLER_PASS:
5395 break;
5396 default:
5397 BUG();
5398 }
5399 }
5400
5401 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5402check_vlan_id:
5403 if (skb_vlan_tag_get_id(skb)) {
5404 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5405 * find vlan device.
5406 */
5407 skb->pkt_type = PACKET_OTHERHOST;
5408 } else if (eth_type_vlan(skb->protocol)) {
5409 /* Outer header is 802.1P with vlan 0, inner header is
5410 * 802.1Q or 802.1AD and vlan_do_receive() above could
5411 * not find vlan dev for vlan id 0.
5412 */
5413 __vlan_hwaccel_clear_tag(skb);
5414 skb = skb_vlan_untag(skb);
5415 if (unlikely(!skb))
5416 goto out;
5417 if (vlan_do_receive(&skb))
5418 /* After stripping off 802.1P header with vlan 0
5419 * vlan dev is found for inner header.
5420 */
5421 goto another_round;
5422 else if (unlikely(!skb))
5423 goto out;
5424 else
5425 /* We have stripped outer 802.1P vlan 0 header.
5426 * But could not find vlan dev.
5427 * check again for vlan id to set OTHERHOST.
5428 */
5429 goto check_vlan_id;
5430 }
5431 /* Note: we might in the future use prio bits
5432 * and set skb->priority like in vlan_do_receive()
5433 * For the time being, just ignore Priority Code Point
5434 */
5435 __vlan_hwaccel_clear_tag(skb);
5436 }
5437
5438 type = skb->protocol;
5439
5440 /* deliver only exact match when indicated */
5441 if (likely(!deliver_exact)) {
5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 &ptype_base[ntohs(type) &
5444 PTYPE_HASH_MASK]);
5445 }
5446
5447 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5448 &orig_dev->ptype_specific);
5449
5450 if (unlikely(skb->dev != orig_dev)) {
5451 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5452 &skb->dev->ptype_specific);
5453 }
5454
5455 if (pt_prev) {
5456 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5457 goto drop;
5458 *ppt_prev = pt_prev;
5459 } else {
5460drop:
5461 if (!deliver_exact)
5462 dev_core_stats_rx_dropped_inc(skb->dev);
5463 else
5464 dev_core_stats_rx_nohandler_inc(skb->dev);
5465 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5466 /* Jamal, now you will not able to escape explaining
5467 * me how you were going to use this. :-)
5468 */
5469 ret = NET_RX_DROP;
5470 }
5471
5472out:
5473 /* The invariant here is that if *ppt_prev is not NULL
5474 * then skb should also be non-NULL.
5475 *
5476 * Apparently *ppt_prev assignment above holds this invariant due to
5477 * skb dereferencing near it.
5478 */
5479 *pskb = skb;
5480 return ret;
5481}
5482
5483static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5484{
5485 struct net_device *orig_dev = skb->dev;
5486 struct packet_type *pt_prev = NULL;
5487 int ret;
5488
5489 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5490 if (pt_prev)
5491 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5492 skb->dev, pt_prev, orig_dev);
5493 return ret;
5494}
5495
5496/**
5497 * netif_receive_skb_core - special purpose version of netif_receive_skb
5498 * @skb: buffer to process
5499 *
5500 * More direct receive version of netif_receive_skb(). It should
5501 * only be used by callers that have a need to skip RPS and Generic XDP.
5502 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5503 *
5504 * This function may only be called from softirq context and interrupts
5505 * should be enabled.
5506 *
5507 * Return values (usually ignored):
5508 * NET_RX_SUCCESS: no congestion
5509 * NET_RX_DROP: packet was dropped
5510 */
5511int netif_receive_skb_core(struct sk_buff *skb)
5512{
5513 int ret;
5514
5515 rcu_read_lock();
5516 ret = __netif_receive_skb_one_core(skb, false);
5517 rcu_read_unlock();
5518
5519 return ret;
5520}
5521EXPORT_SYMBOL(netif_receive_skb_core);
5522
5523static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5524 struct packet_type *pt_prev,
5525 struct net_device *orig_dev)
5526{
5527 struct sk_buff *skb, *next;
5528
5529 if (!pt_prev)
5530 return;
5531 if (list_empty(head))
5532 return;
5533 if (pt_prev->list_func != NULL)
5534 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5535 ip_list_rcv, head, pt_prev, orig_dev);
5536 else
5537 list_for_each_entry_safe(skb, next, head, list) {
5538 skb_list_del_init(skb);
5539 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5540 }
5541}
5542
5543static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5544{
5545 /* Fast-path assumptions:
5546 * - There is no RX handler.
5547 * - Only one packet_type matches.
5548 * If either of these fails, we will end up doing some per-packet
5549 * processing in-line, then handling the 'last ptype' for the whole
5550 * sublist. This can't cause out-of-order delivery to any single ptype,
5551 * because the 'last ptype' must be constant across the sublist, and all
5552 * other ptypes are handled per-packet.
5553 */
5554 /* Current (common) ptype of sublist */
5555 struct packet_type *pt_curr = NULL;
5556 /* Current (common) orig_dev of sublist */
5557 struct net_device *od_curr = NULL;
5558 struct list_head sublist;
5559 struct sk_buff *skb, *next;
5560
5561 INIT_LIST_HEAD(&sublist);
5562 list_for_each_entry_safe(skb, next, head, list) {
5563 struct net_device *orig_dev = skb->dev;
5564 struct packet_type *pt_prev = NULL;
5565
5566 skb_list_del_init(skb);
5567 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5568 if (!pt_prev)
5569 continue;
5570 if (pt_curr != pt_prev || od_curr != orig_dev) {
5571 /* dispatch old sublist */
5572 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5573 /* start new sublist */
5574 INIT_LIST_HEAD(&sublist);
5575 pt_curr = pt_prev;
5576 od_curr = orig_dev;
5577 }
5578 list_add_tail(&skb->list, &sublist);
5579 }
5580
5581 /* dispatch final sublist */
5582 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5583}
5584
5585static int __netif_receive_skb(struct sk_buff *skb)
5586{
5587 int ret;
5588
5589 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5590 unsigned int noreclaim_flag;
5591
5592 /*
5593 * PFMEMALLOC skbs are special, they should
5594 * - be delivered to SOCK_MEMALLOC sockets only
5595 * - stay away from userspace
5596 * - have bounded memory usage
5597 *
5598 * Use PF_MEMALLOC as this saves us from propagating the allocation
5599 * context down to all allocation sites.
5600 */
5601 noreclaim_flag = memalloc_noreclaim_save();
5602 ret = __netif_receive_skb_one_core(skb, true);
5603 memalloc_noreclaim_restore(noreclaim_flag);
5604 } else
5605 ret = __netif_receive_skb_one_core(skb, false);
5606
5607 return ret;
5608}
5609
5610static void __netif_receive_skb_list(struct list_head *head)
5611{
5612 unsigned long noreclaim_flag = 0;
5613 struct sk_buff *skb, *next;
5614 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5615
5616 list_for_each_entry_safe(skb, next, head, list) {
5617 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5618 struct list_head sublist;
5619
5620 /* Handle the previous sublist */
5621 list_cut_before(&sublist, head, &skb->list);
5622 if (!list_empty(&sublist))
5623 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5624 pfmemalloc = !pfmemalloc;
5625 /* See comments in __netif_receive_skb */
5626 if (pfmemalloc)
5627 noreclaim_flag = memalloc_noreclaim_save();
5628 else
5629 memalloc_noreclaim_restore(noreclaim_flag);
5630 }
5631 }
5632 /* Handle the remaining sublist */
5633 if (!list_empty(head))
5634 __netif_receive_skb_list_core(head, pfmemalloc);
5635 /* Restore pflags */
5636 if (pfmemalloc)
5637 memalloc_noreclaim_restore(noreclaim_flag);
5638}
5639
5640static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5641{
5642 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5643 struct bpf_prog *new = xdp->prog;
5644 int ret = 0;
5645
5646 switch (xdp->command) {
5647 case XDP_SETUP_PROG:
5648 rcu_assign_pointer(dev->xdp_prog, new);
5649 if (old)
5650 bpf_prog_put(old);
5651
5652 if (old && !new) {
5653 static_branch_dec(&generic_xdp_needed_key);
5654 } else if (new && !old) {
5655 static_branch_inc(&generic_xdp_needed_key);
5656 dev_disable_lro(dev);
5657 dev_disable_gro_hw(dev);
5658 }
5659 break;
5660
5661 default:
5662 ret = -EINVAL;
5663 break;
5664 }
5665
5666 return ret;
5667}
5668
5669static int netif_receive_skb_internal(struct sk_buff *skb)
5670{
5671 int ret;
5672
5673 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5674
5675 if (skb_defer_rx_timestamp(skb))
5676 return NET_RX_SUCCESS;
5677
5678 rcu_read_lock();
5679#ifdef CONFIG_RPS
5680 if (static_branch_unlikely(&rps_needed)) {
5681 struct rps_dev_flow voidflow, *rflow = &voidflow;
5682 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5683
5684 if (cpu >= 0) {
5685 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5686 rcu_read_unlock();
5687 return ret;
5688 }
5689 }
5690#endif
5691 ret = __netif_receive_skb(skb);
5692 rcu_read_unlock();
5693 return ret;
5694}
5695
5696void netif_receive_skb_list_internal(struct list_head *head)
5697{
5698 struct sk_buff *skb, *next;
5699 struct list_head sublist;
5700
5701 INIT_LIST_HEAD(&sublist);
5702 list_for_each_entry_safe(skb, next, head, list) {
5703 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5704 skb_list_del_init(skb);
5705 if (!skb_defer_rx_timestamp(skb))
5706 list_add_tail(&skb->list, &sublist);
5707 }
5708 list_splice_init(&sublist, head);
5709
5710 rcu_read_lock();
5711#ifdef CONFIG_RPS
5712 if (static_branch_unlikely(&rps_needed)) {
5713 list_for_each_entry_safe(skb, next, head, list) {
5714 struct rps_dev_flow voidflow, *rflow = &voidflow;
5715 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5716
5717 if (cpu >= 0) {
5718 /* Will be handled, remove from list */
5719 skb_list_del_init(skb);
5720 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5721 }
5722 }
5723 }
5724#endif
5725 __netif_receive_skb_list(head);
5726 rcu_read_unlock();
5727}
5728
5729/**
5730 * netif_receive_skb - process receive buffer from network
5731 * @skb: buffer to process
5732 *
5733 * netif_receive_skb() is the main receive data processing function.
5734 * It always succeeds. The buffer may be dropped during processing
5735 * for congestion control or by the protocol layers.
5736 *
5737 * This function may only be called from softirq context and interrupts
5738 * should be enabled.
5739 *
5740 * Return values (usually ignored):
5741 * NET_RX_SUCCESS: no congestion
5742 * NET_RX_DROP: packet was dropped
5743 */
5744int netif_receive_skb(struct sk_buff *skb)
5745{
5746 int ret;
5747
5748 trace_netif_receive_skb_entry(skb);
5749
5750 ret = netif_receive_skb_internal(skb);
5751 trace_netif_receive_skb_exit(ret);
5752
5753 return ret;
5754}
5755EXPORT_SYMBOL(netif_receive_skb);
5756
5757/**
5758 * netif_receive_skb_list - process many receive buffers from network
5759 * @head: list of skbs to process.
5760 *
5761 * Since return value of netif_receive_skb() is normally ignored, and
5762 * wouldn't be meaningful for a list, this function returns void.
5763 *
5764 * This function may only be called from softirq context and interrupts
5765 * should be enabled.
5766 */
5767void netif_receive_skb_list(struct list_head *head)
5768{
5769 struct sk_buff *skb;
5770
5771 if (list_empty(head))
5772 return;
5773 if (trace_netif_receive_skb_list_entry_enabled()) {
5774 list_for_each_entry(skb, head, list)
5775 trace_netif_receive_skb_list_entry(skb);
5776 }
5777 netif_receive_skb_list_internal(head);
5778 trace_netif_receive_skb_list_exit(0);
5779}
5780EXPORT_SYMBOL(netif_receive_skb_list);
5781
5782static DEFINE_PER_CPU(struct work_struct, flush_works);
5783
5784/* Network device is going away, flush any packets still pending */
5785static void flush_backlog(struct work_struct *work)
5786{
5787 struct sk_buff *skb, *tmp;
5788 struct softnet_data *sd;
5789
5790 local_bh_disable();
5791 sd = this_cpu_ptr(&softnet_data);
5792
5793 rps_lock_irq_disable(sd);
5794 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5795 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5796 __skb_unlink(skb, &sd->input_pkt_queue);
5797 dev_kfree_skb_irq(skb);
5798 input_queue_head_incr(sd);
5799 }
5800 }
5801 rps_unlock_irq_enable(sd);
5802
5803 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5804 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5805 __skb_unlink(skb, &sd->process_queue);
5806 kfree_skb(skb);
5807 input_queue_head_incr(sd);
5808 }
5809 }
5810 local_bh_enable();
5811}
5812
5813static bool flush_required(int cpu)
5814{
5815#if IS_ENABLED(CONFIG_RPS)
5816 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5817 bool do_flush;
5818
5819 rps_lock_irq_disable(sd);
5820
5821 /* as insertion into process_queue happens with the rps lock held,
5822 * process_queue access may race only with dequeue
5823 */
5824 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5825 !skb_queue_empty_lockless(&sd->process_queue);
5826 rps_unlock_irq_enable(sd);
5827
5828 return do_flush;
5829#endif
5830 /* without RPS we can't safely check input_pkt_queue: during a
5831 * concurrent remote skb_queue_splice() we can detect as empty both
5832 * input_pkt_queue and process_queue even if the latter could end-up
5833 * containing a lot of packets.
5834 */
5835 return true;
5836}
5837
5838static void flush_all_backlogs(void)
5839{
5840 static cpumask_t flush_cpus;
5841 unsigned int cpu;
5842
5843 /* since we are under rtnl lock protection we can use static data
5844 * for the cpumask and avoid allocating on stack the possibly
5845 * large mask
5846 */
5847 ASSERT_RTNL();
5848
5849 cpus_read_lock();
5850
5851 cpumask_clear(&flush_cpus);
5852 for_each_online_cpu(cpu) {
5853 if (flush_required(cpu)) {
5854 queue_work_on(cpu, system_highpri_wq,
5855 per_cpu_ptr(&flush_works, cpu));
5856 cpumask_set_cpu(cpu, &flush_cpus);
5857 }
5858 }
5859
5860 /* we can have in flight packet[s] on the cpus we are not flushing,
5861 * synchronize_net() in unregister_netdevice_many() will take care of
5862 * them
5863 */
5864 for_each_cpu(cpu, &flush_cpus)
5865 flush_work(per_cpu_ptr(&flush_works, cpu));
5866
5867 cpus_read_unlock();
5868}
5869
5870static void net_rps_send_ipi(struct softnet_data *remsd)
5871{
5872#ifdef CONFIG_RPS
5873 while (remsd) {
5874 struct softnet_data *next = remsd->rps_ipi_next;
5875
5876 if (cpu_online(remsd->cpu))
5877 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5878 remsd = next;
5879 }
5880#endif
5881}
5882
5883/*
5884 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5885 * Note: called with local irq disabled, but exits with local irq enabled.
5886 */
5887static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5888{
5889#ifdef CONFIG_RPS
5890 struct softnet_data *remsd = sd->rps_ipi_list;
5891
5892 if (remsd) {
5893 sd->rps_ipi_list = NULL;
5894
5895 local_irq_enable();
5896
5897 /* Send pending IPI's to kick RPS processing on remote cpus. */
5898 net_rps_send_ipi(remsd);
5899 } else
5900#endif
5901 local_irq_enable();
5902}
5903
5904static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5905{
5906#ifdef CONFIG_RPS
5907 return sd->rps_ipi_list != NULL;
5908#else
5909 return false;
5910#endif
5911}
5912
5913static int process_backlog(struct napi_struct *napi, int quota)
5914{
5915 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5916 bool again = true;
5917 int work = 0;
5918
5919 /* Check if we have pending ipi, its better to send them now,
5920 * not waiting net_rx_action() end.
5921 */
5922 if (sd_has_rps_ipi_waiting(sd)) {
5923 local_irq_disable();
5924 net_rps_action_and_irq_enable(sd);
5925 }
5926
5927 napi->weight = READ_ONCE(dev_rx_weight);
5928 while (again) {
5929 struct sk_buff *skb;
5930
5931 while ((skb = __skb_dequeue(&sd->process_queue))) {
5932 rcu_read_lock();
5933 __netif_receive_skb(skb);
5934 rcu_read_unlock();
5935 input_queue_head_incr(sd);
5936 if (++work >= quota)
5937 return work;
5938
5939 }
5940
5941 rps_lock_irq_disable(sd);
5942 if (skb_queue_empty(&sd->input_pkt_queue)) {
5943 /*
5944 * Inline a custom version of __napi_complete().
5945 * only current cpu owns and manipulates this napi,
5946 * and NAPI_STATE_SCHED is the only possible flag set
5947 * on backlog.
5948 * We can use a plain write instead of clear_bit(),
5949 * and we dont need an smp_mb() memory barrier.
5950 */
5951 napi->state = 0;
5952 again = false;
5953 } else {
5954 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5955 &sd->process_queue);
5956 }
5957 rps_unlock_irq_enable(sd);
5958 }
5959
5960 return work;
5961}
5962
5963/**
5964 * __napi_schedule - schedule for receive
5965 * @n: entry to schedule
5966 *
5967 * The entry's receive function will be scheduled to run.
5968 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5969 */
5970void __napi_schedule(struct napi_struct *n)
5971{
5972 unsigned long flags;
5973
5974 local_irq_save(flags);
5975 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5976 local_irq_restore(flags);
5977}
5978EXPORT_SYMBOL(__napi_schedule);
5979
5980/**
5981 * napi_schedule_prep - check if napi can be scheduled
5982 * @n: napi context
5983 *
5984 * Test if NAPI routine is already running, and if not mark
5985 * it as running. This is used as a condition variable to
5986 * insure only one NAPI poll instance runs. We also make
5987 * sure there is no pending NAPI disable.
5988 */
5989bool napi_schedule_prep(struct napi_struct *n)
5990{
5991 unsigned long new, val = READ_ONCE(n->state);
5992
5993 do {
5994 if (unlikely(val & NAPIF_STATE_DISABLE))
5995 return false;
5996 new = val | NAPIF_STATE_SCHED;
5997
5998 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5999 * This was suggested by Alexander Duyck, as compiler
6000 * emits better code than :
6001 * if (val & NAPIF_STATE_SCHED)
6002 * new |= NAPIF_STATE_MISSED;
6003 */
6004 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6005 NAPIF_STATE_MISSED;
6006 } while (!try_cmpxchg(&n->state, &val, new));
6007
6008 return !(val & NAPIF_STATE_SCHED);
6009}
6010EXPORT_SYMBOL(napi_schedule_prep);
6011
6012/**
6013 * __napi_schedule_irqoff - schedule for receive
6014 * @n: entry to schedule
6015 *
6016 * Variant of __napi_schedule() assuming hard irqs are masked.
6017 *
6018 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6019 * because the interrupt disabled assumption might not be true
6020 * due to force-threaded interrupts and spinlock substitution.
6021 */
6022void __napi_schedule_irqoff(struct napi_struct *n)
6023{
6024 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6025 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6026 else
6027 __napi_schedule(n);
6028}
6029EXPORT_SYMBOL(__napi_schedule_irqoff);
6030
6031bool napi_complete_done(struct napi_struct *n, int work_done)
6032{
6033 unsigned long flags, val, new, timeout = 0;
6034 bool ret = true;
6035
6036 /*
6037 * 1) Don't let napi dequeue from the cpu poll list
6038 * just in case its running on a different cpu.
6039 * 2) If we are busy polling, do nothing here, we have
6040 * the guarantee we will be called later.
6041 */
6042 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6043 NAPIF_STATE_IN_BUSY_POLL)))
6044 return false;
6045
6046 if (work_done) {
6047 if (n->gro_bitmask)
6048 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6049 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6050 }
6051 if (n->defer_hard_irqs_count > 0) {
6052 n->defer_hard_irqs_count--;
6053 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6054 if (timeout)
6055 ret = false;
6056 }
6057 if (n->gro_bitmask) {
6058 /* When the NAPI instance uses a timeout and keeps postponing
6059 * it, we need to bound somehow the time packets are kept in
6060 * the GRO layer
6061 */
6062 napi_gro_flush(n, !!timeout);
6063 }
6064
6065 gro_normal_list(n);
6066
6067 if (unlikely(!list_empty(&n->poll_list))) {
6068 /* If n->poll_list is not empty, we need to mask irqs */
6069 local_irq_save(flags);
6070 list_del_init(&n->poll_list);
6071 local_irq_restore(flags);
6072 }
6073 WRITE_ONCE(n->list_owner, -1);
6074
6075 val = READ_ONCE(n->state);
6076 do {
6077 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6078
6079 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6080 NAPIF_STATE_SCHED_THREADED |
6081 NAPIF_STATE_PREFER_BUSY_POLL);
6082
6083 /* If STATE_MISSED was set, leave STATE_SCHED set,
6084 * because we will call napi->poll() one more time.
6085 * This C code was suggested by Alexander Duyck to help gcc.
6086 */
6087 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6088 NAPIF_STATE_SCHED;
6089 } while (!try_cmpxchg(&n->state, &val, new));
6090
6091 if (unlikely(val & NAPIF_STATE_MISSED)) {
6092 __napi_schedule(n);
6093 return false;
6094 }
6095
6096 if (timeout)
6097 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6098 HRTIMER_MODE_REL_PINNED);
6099 return ret;
6100}
6101EXPORT_SYMBOL(napi_complete_done);
6102
6103/* must be called under rcu_read_lock(), as we dont take a reference */
6104static struct napi_struct *napi_by_id(unsigned int napi_id)
6105{
6106 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6107 struct napi_struct *napi;
6108
6109 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6110 if (napi->napi_id == napi_id)
6111 return napi;
6112
6113 return NULL;
6114}
6115
6116#if defined(CONFIG_NET_RX_BUSY_POLL)
6117
6118static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6119{
6120 if (!skip_schedule) {
6121 gro_normal_list(napi);
6122 __napi_schedule(napi);
6123 return;
6124 }
6125
6126 if (napi->gro_bitmask) {
6127 /* flush too old packets
6128 * If HZ < 1000, flush all packets.
6129 */
6130 napi_gro_flush(napi, HZ >= 1000);
6131 }
6132
6133 gro_normal_list(napi);
6134 clear_bit(NAPI_STATE_SCHED, &napi->state);
6135}
6136
6137static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6138 u16 budget)
6139{
6140 bool skip_schedule = false;
6141 unsigned long timeout;
6142 int rc;
6143
6144 /* Busy polling means there is a high chance device driver hard irq
6145 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6146 * set in napi_schedule_prep().
6147 * Since we are about to call napi->poll() once more, we can safely
6148 * clear NAPI_STATE_MISSED.
6149 *
6150 * Note: x86 could use a single "lock and ..." instruction
6151 * to perform these two clear_bit()
6152 */
6153 clear_bit(NAPI_STATE_MISSED, &napi->state);
6154 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6155
6156 local_bh_disable();
6157
6158 if (prefer_busy_poll) {
6159 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6160 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6161 if (napi->defer_hard_irqs_count && timeout) {
6162 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6163 skip_schedule = true;
6164 }
6165 }
6166
6167 /* All we really want here is to re-enable device interrupts.
6168 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6169 */
6170 rc = napi->poll(napi, budget);
6171 /* We can't gro_normal_list() here, because napi->poll() might have
6172 * rearmed the napi (napi_complete_done()) in which case it could
6173 * already be running on another CPU.
6174 */
6175 trace_napi_poll(napi, rc, budget);
6176 netpoll_poll_unlock(have_poll_lock);
6177 if (rc == budget)
6178 __busy_poll_stop(napi, skip_schedule);
6179 local_bh_enable();
6180}
6181
6182void napi_busy_loop(unsigned int napi_id,
6183 bool (*loop_end)(void *, unsigned long),
6184 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6185{
6186 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6187 int (*napi_poll)(struct napi_struct *napi, int budget);
6188 void *have_poll_lock = NULL;
6189 struct napi_struct *napi;
6190
6191restart:
6192 napi_poll = NULL;
6193
6194 rcu_read_lock();
6195
6196 napi = napi_by_id(napi_id);
6197 if (!napi)
6198 goto out;
6199
6200 preempt_disable();
6201 for (;;) {
6202 int work = 0;
6203
6204 local_bh_disable();
6205 if (!napi_poll) {
6206 unsigned long val = READ_ONCE(napi->state);
6207
6208 /* If multiple threads are competing for this napi,
6209 * we avoid dirtying napi->state as much as we can.
6210 */
6211 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6212 NAPIF_STATE_IN_BUSY_POLL)) {
6213 if (prefer_busy_poll)
6214 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6215 goto count;
6216 }
6217 if (cmpxchg(&napi->state, val,
6218 val | NAPIF_STATE_IN_BUSY_POLL |
6219 NAPIF_STATE_SCHED) != val) {
6220 if (prefer_busy_poll)
6221 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6222 goto count;
6223 }
6224 have_poll_lock = netpoll_poll_lock(napi);
6225 napi_poll = napi->poll;
6226 }
6227 work = napi_poll(napi, budget);
6228 trace_napi_poll(napi, work, budget);
6229 gro_normal_list(napi);
6230count:
6231 if (work > 0)
6232 __NET_ADD_STATS(dev_net(napi->dev),
6233 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6234 local_bh_enable();
6235
6236 if (!loop_end || loop_end(loop_end_arg, start_time))
6237 break;
6238
6239 if (unlikely(need_resched())) {
6240 if (napi_poll)
6241 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6242 preempt_enable();
6243 rcu_read_unlock();
6244 cond_resched();
6245 if (loop_end(loop_end_arg, start_time))
6246 return;
6247 goto restart;
6248 }
6249 cpu_relax();
6250 }
6251 if (napi_poll)
6252 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6253 preempt_enable();
6254out:
6255 rcu_read_unlock();
6256}
6257EXPORT_SYMBOL(napi_busy_loop);
6258
6259#endif /* CONFIG_NET_RX_BUSY_POLL */
6260
6261static void napi_hash_add(struct napi_struct *napi)
6262{
6263 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6264 return;
6265
6266 spin_lock(&napi_hash_lock);
6267
6268 /* 0..NR_CPUS range is reserved for sender_cpu use */
6269 do {
6270 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6271 napi_gen_id = MIN_NAPI_ID;
6272 } while (napi_by_id(napi_gen_id));
6273 napi->napi_id = napi_gen_id;
6274
6275 hlist_add_head_rcu(&napi->napi_hash_node,
6276 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6277
6278 spin_unlock(&napi_hash_lock);
6279}
6280
6281/* Warning : caller is responsible to make sure rcu grace period
6282 * is respected before freeing memory containing @napi
6283 */
6284static void napi_hash_del(struct napi_struct *napi)
6285{
6286 spin_lock(&napi_hash_lock);
6287
6288 hlist_del_init_rcu(&napi->napi_hash_node);
6289
6290 spin_unlock(&napi_hash_lock);
6291}
6292
6293static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6294{
6295 struct napi_struct *napi;
6296
6297 napi = container_of(timer, struct napi_struct, timer);
6298
6299 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6300 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6301 */
6302 if (!napi_disable_pending(napi) &&
6303 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6304 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6305 __napi_schedule_irqoff(napi);
6306 }
6307
6308 return HRTIMER_NORESTART;
6309}
6310
6311static void init_gro_hash(struct napi_struct *napi)
6312{
6313 int i;
6314
6315 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6316 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6317 napi->gro_hash[i].count = 0;
6318 }
6319 napi->gro_bitmask = 0;
6320}
6321
6322int dev_set_threaded(struct net_device *dev, bool threaded)
6323{
6324 struct napi_struct *napi;
6325 int err = 0;
6326
6327 if (dev->threaded == threaded)
6328 return 0;
6329
6330 if (threaded) {
6331 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6332 if (!napi->thread) {
6333 err = napi_kthread_create(napi);
6334 if (err) {
6335 threaded = false;
6336 break;
6337 }
6338 }
6339 }
6340 }
6341
6342 dev->threaded = threaded;
6343
6344 /* Make sure kthread is created before THREADED bit
6345 * is set.
6346 */
6347 smp_mb__before_atomic();
6348
6349 /* Setting/unsetting threaded mode on a napi might not immediately
6350 * take effect, if the current napi instance is actively being
6351 * polled. In this case, the switch between threaded mode and
6352 * softirq mode will happen in the next round of napi_schedule().
6353 * This should not cause hiccups/stalls to the live traffic.
6354 */
6355 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6356 if (threaded)
6357 set_bit(NAPI_STATE_THREADED, &napi->state);
6358 else
6359 clear_bit(NAPI_STATE_THREADED, &napi->state);
6360 }
6361
6362 return err;
6363}
6364EXPORT_SYMBOL(dev_set_threaded);
6365
6366void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6367 int (*poll)(struct napi_struct *, int), int weight)
6368{
6369 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6370 return;
6371
6372 INIT_LIST_HEAD(&napi->poll_list);
6373 INIT_HLIST_NODE(&napi->napi_hash_node);
6374 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6375 napi->timer.function = napi_watchdog;
6376 init_gro_hash(napi);
6377 napi->skb = NULL;
6378 INIT_LIST_HEAD(&napi->rx_list);
6379 napi->rx_count = 0;
6380 napi->poll = poll;
6381 if (weight > NAPI_POLL_WEIGHT)
6382 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6383 weight);
6384 napi->weight = weight;
6385 napi->dev = dev;
6386#ifdef CONFIG_NETPOLL
6387 napi->poll_owner = -1;
6388#endif
6389 napi->list_owner = -1;
6390 set_bit(NAPI_STATE_SCHED, &napi->state);
6391 set_bit(NAPI_STATE_NPSVC, &napi->state);
6392 list_add_rcu(&napi->dev_list, &dev->napi_list);
6393 napi_hash_add(napi);
6394 napi_get_frags_check(napi);
6395 /* Create kthread for this napi if dev->threaded is set.
6396 * Clear dev->threaded if kthread creation failed so that
6397 * threaded mode will not be enabled in napi_enable().
6398 */
6399 if (dev->threaded && napi_kthread_create(napi))
6400 dev->threaded = 0;
6401}
6402EXPORT_SYMBOL(netif_napi_add_weight);
6403
6404void napi_disable(struct napi_struct *n)
6405{
6406 unsigned long val, new;
6407
6408 might_sleep();
6409 set_bit(NAPI_STATE_DISABLE, &n->state);
6410
6411 val = READ_ONCE(n->state);
6412 do {
6413 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6414 usleep_range(20, 200);
6415 val = READ_ONCE(n->state);
6416 }
6417
6418 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6419 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6420 } while (!try_cmpxchg(&n->state, &val, new));
6421
6422 hrtimer_cancel(&n->timer);
6423
6424 clear_bit(NAPI_STATE_DISABLE, &n->state);
6425}
6426EXPORT_SYMBOL(napi_disable);
6427
6428/**
6429 * napi_enable - enable NAPI scheduling
6430 * @n: NAPI context
6431 *
6432 * Resume NAPI from being scheduled on this context.
6433 * Must be paired with napi_disable.
6434 */
6435void napi_enable(struct napi_struct *n)
6436{
6437 unsigned long new, val = READ_ONCE(n->state);
6438
6439 do {
6440 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6441
6442 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6443 if (n->dev->threaded && n->thread)
6444 new |= NAPIF_STATE_THREADED;
6445 } while (!try_cmpxchg(&n->state, &val, new));
6446}
6447EXPORT_SYMBOL(napi_enable);
6448
6449static void flush_gro_hash(struct napi_struct *napi)
6450{
6451 int i;
6452
6453 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6454 struct sk_buff *skb, *n;
6455
6456 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6457 kfree_skb(skb);
6458 napi->gro_hash[i].count = 0;
6459 }
6460}
6461
6462/* Must be called in process context */
6463void __netif_napi_del(struct napi_struct *napi)
6464{
6465 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6466 return;
6467
6468 napi_hash_del(napi);
6469 list_del_rcu(&napi->dev_list);
6470 napi_free_frags(napi);
6471
6472 flush_gro_hash(napi);
6473 napi->gro_bitmask = 0;
6474
6475 if (napi->thread) {
6476 kthread_stop(napi->thread);
6477 napi->thread = NULL;
6478 }
6479}
6480EXPORT_SYMBOL(__netif_napi_del);
6481
6482static int __napi_poll(struct napi_struct *n, bool *repoll)
6483{
6484 int work, weight;
6485
6486 weight = n->weight;
6487
6488 /* This NAPI_STATE_SCHED test is for avoiding a race
6489 * with netpoll's poll_napi(). Only the entity which
6490 * obtains the lock and sees NAPI_STATE_SCHED set will
6491 * actually make the ->poll() call. Therefore we avoid
6492 * accidentally calling ->poll() when NAPI is not scheduled.
6493 */
6494 work = 0;
6495 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6496 work = n->poll(n, weight);
6497 trace_napi_poll(n, work, weight);
6498 }
6499
6500 if (unlikely(work > weight))
6501 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6502 n->poll, work, weight);
6503
6504 if (likely(work < weight))
6505 return work;
6506
6507 /* Drivers must not modify the NAPI state if they
6508 * consume the entire weight. In such cases this code
6509 * still "owns" the NAPI instance and therefore can
6510 * move the instance around on the list at-will.
6511 */
6512 if (unlikely(napi_disable_pending(n))) {
6513 napi_complete(n);
6514 return work;
6515 }
6516
6517 /* The NAPI context has more processing work, but busy-polling
6518 * is preferred. Exit early.
6519 */
6520 if (napi_prefer_busy_poll(n)) {
6521 if (napi_complete_done(n, work)) {
6522 /* If timeout is not set, we need to make sure
6523 * that the NAPI is re-scheduled.
6524 */
6525 napi_schedule(n);
6526 }
6527 return work;
6528 }
6529
6530 if (n->gro_bitmask) {
6531 /* flush too old packets
6532 * If HZ < 1000, flush all packets.
6533 */
6534 napi_gro_flush(n, HZ >= 1000);
6535 }
6536
6537 gro_normal_list(n);
6538
6539 /* Some drivers may have called napi_schedule
6540 * prior to exhausting their budget.
6541 */
6542 if (unlikely(!list_empty(&n->poll_list))) {
6543 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6544 n->dev ? n->dev->name : "backlog");
6545 return work;
6546 }
6547
6548 *repoll = true;
6549
6550 return work;
6551}
6552
6553static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6554{
6555 bool do_repoll = false;
6556 void *have;
6557 int work;
6558
6559 list_del_init(&n->poll_list);
6560
6561 have = netpoll_poll_lock(n);
6562
6563 work = __napi_poll(n, &do_repoll);
6564
6565 if (do_repoll)
6566 list_add_tail(&n->poll_list, repoll);
6567
6568 netpoll_poll_unlock(have);
6569
6570 return work;
6571}
6572
6573static int napi_thread_wait(struct napi_struct *napi)
6574{
6575 bool woken = false;
6576
6577 set_current_state(TASK_INTERRUPTIBLE);
6578
6579 while (!kthread_should_stop()) {
6580 /* Testing SCHED_THREADED bit here to make sure the current
6581 * kthread owns this napi and could poll on this napi.
6582 * Testing SCHED bit is not enough because SCHED bit might be
6583 * set by some other busy poll thread or by napi_disable().
6584 */
6585 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6586 WARN_ON(!list_empty(&napi->poll_list));
6587 __set_current_state(TASK_RUNNING);
6588 return 0;
6589 }
6590
6591 schedule();
6592 /* woken being true indicates this thread owns this napi. */
6593 woken = true;
6594 set_current_state(TASK_INTERRUPTIBLE);
6595 }
6596 __set_current_state(TASK_RUNNING);
6597
6598 return -1;
6599}
6600
6601static void skb_defer_free_flush(struct softnet_data *sd)
6602{
6603 struct sk_buff *skb, *next;
6604
6605 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6606 if (!READ_ONCE(sd->defer_list))
6607 return;
6608
6609 spin_lock(&sd->defer_lock);
6610 skb = sd->defer_list;
6611 sd->defer_list = NULL;
6612 sd->defer_count = 0;
6613 spin_unlock(&sd->defer_lock);
6614
6615 while (skb != NULL) {
6616 next = skb->next;
6617 napi_consume_skb(skb, 1);
6618 skb = next;
6619 }
6620}
6621
6622static int napi_threaded_poll(void *data)
6623{
6624 struct napi_struct *napi = data;
6625 struct softnet_data *sd;
6626 void *have;
6627
6628 while (!napi_thread_wait(napi)) {
6629 for (;;) {
6630 bool repoll = false;
6631
6632 local_bh_disable();
6633 sd = this_cpu_ptr(&softnet_data);
6634 sd->in_napi_threaded_poll = true;
6635
6636 have = netpoll_poll_lock(napi);
6637 __napi_poll(napi, &repoll);
6638 netpoll_poll_unlock(have);
6639
6640 sd->in_napi_threaded_poll = false;
6641 barrier();
6642
6643 if (sd_has_rps_ipi_waiting(sd)) {
6644 local_irq_disable();
6645 net_rps_action_and_irq_enable(sd);
6646 }
6647 skb_defer_free_flush(sd);
6648 local_bh_enable();
6649
6650 if (!repoll)
6651 break;
6652
6653 cond_resched();
6654 }
6655 }
6656 return 0;
6657}
6658
6659static __latent_entropy void net_rx_action(struct softirq_action *h)
6660{
6661 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6662 unsigned long time_limit = jiffies +
6663 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6664 int budget = READ_ONCE(netdev_budget);
6665 LIST_HEAD(list);
6666 LIST_HEAD(repoll);
6667
6668start:
6669 sd->in_net_rx_action = true;
6670 local_irq_disable();
6671 list_splice_init(&sd->poll_list, &list);
6672 local_irq_enable();
6673
6674 for (;;) {
6675 struct napi_struct *n;
6676
6677 skb_defer_free_flush(sd);
6678
6679 if (list_empty(&list)) {
6680 if (list_empty(&repoll)) {
6681 sd->in_net_rx_action = false;
6682 barrier();
6683 /* We need to check if ____napi_schedule()
6684 * had refilled poll_list while
6685 * sd->in_net_rx_action was true.
6686 */
6687 if (!list_empty(&sd->poll_list))
6688 goto start;
6689 if (!sd_has_rps_ipi_waiting(sd))
6690 goto end;
6691 }
6692 break;
6693 }
6694
6695 n = list_first_entry(&list, struct napi_struct, poll_list);
6696 budget -= napi_poll(n, &repoll);
6697
6698 /* If softirq window is exhausted then punt.
6699 * Allow this to run for 2 jiffies since which will allow
6700 * an average latency of 1.5/HZ.
6701 */
6702 if (unlikely(budget <= 0 ||
6703 time_after_eq(jiffies, time_limit))) {
6704 sd->time_squeeze++;
6705 break;
6706 }
6707 }
6708
6709 local_irq_disable();
6710
6711 list_splice_tail_init(&sd->poll_list, &list);
6712 list_splice_tail(&repoll, &list);
6713 list_splice(&list, &sd->poll_list);
6714 if (!list_empty(&sd->poll_list))
6715 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6716 else
6717 sd->in_net_rx_action = false;
6718
6719 net_rps_action_and_irq_enable(sd);
6720end:;
6721}
6722
6723struct netdev_adjacent {
6724 struct net_device *dev;
6725 netdevice_tracker dev_tracker;
6726
6727 /* upper master flag, there can only be one master device per list */
6728 bool master;
6729
6730 /* lookup ignore flag */
6731 bool ignore;
6732
6733 /* counter for the number of times this device was added to us */
6734 u16 ref_nr;
6735
6736 /* private field for the users */
6737 void *private;
6738
6739 struct list_head list;
6740 struct rcu_head rcu;
6741};
6742
6743static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6744 struct list_head *adj_list)
6745{
6746 struct netdev_adjacent *adj;
6747
6748 list_for_each_entry(adj, adj_list, list) {
6749 if (adj->dev == adj_dev)
6750 return adj;
6751 }
6752 return NULL;
6753}
6754
6755static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6756 struct netdev_nested_priv *priv)
6757{
6758 struct net_device *dev = (struct net_device *)priv->data;
6759
6760 return upper_dev == dev;
6761}
6762
6763/**
6764 * netdev_has_upper_dev - Check if device is linked to an upper device
6765 * @dev: device
6766 * @upper_dev: upper device to check
6767 *
6768 * Find out if a device is linked to specified upper device and return true
6769 * in case it is. Note that this checks only immediate upper device,
6770 * not through a complete stack of devices. The caller must hold the RTNL lock.
6771 */
6772bool netdev_has_upper_dev(struct net_device *dev,
6773 struct net_device *upper_dev)
6774{
6775 struct netdev_nested_priv priv = {
6776 .data = (void *)upper_dev,
6777 };
6778
6779 ASSERT_RTNL();
6780
6781 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6782 &priv);
6783}
6784EXPORT_SYMBOL(netdev_has_upper_dev);
6785
6786/**
6787 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6788 * @dev: device
6789 * @upper_dev: upper device to check
6790 *
6791 * Find out if a device is linked to specified upper device and return true
6792 * in case it is. Note that this checks the entire upper device chain.
6793 * The caller must hold rcu lock.
6794 */
6795
6796bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6797 struct net_device *upper_dev)
6798{
6799 struct netdev_nested_priv priv = {
6800 .data = (void *)upper_dev,
6801 };
6802
6803 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6804 &priv);
6805}
6806EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6807
6808/**
6809 * netdev_has_any_upper_dev - Check if device is linked to some device
6810 * @dev: device
6811 *
6812 * Find out if a device is linked to an upper device and return true in case
6813 * it is. The caller must hold the RTNL lock.
6814 */
6815bool netdev_has_any_upper_dev(struct net_device *dev)
6816{
6817 ASSERT_RTNL();
6818
6819 return !list_empty(&dev->adj_list.upper);
6820}
6821EXPORT_SYMBOL(netdev_has_any_upper_dev);
6822
6823/**
6824 * netdev_master_upper_dev_get - Get master upper device
6825 * @dev: device
6826 *
6827 * Find a master upper device and return pointer to it or NULL in case
6828 * it's not there. The caller must hold the RTNL lock.
6829 */
6830struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6831{
6832 struct netdev_adjacent *upper;
6833
6834 ASSERT_RTNL();
6835
6836 if (list_empty(&dev->adj_list.upper))
6837 return NULL;
6838
6839 upper = list_first_entry(&dev->adj_list.upper,
6840 struct netdev_adjacent, list);
6841 if (likely(upper->master))
6842 return upper->dev;
6843 return NULL;
6844}
6845EXPORT_SYMBOL(netdev_master_upper_dev_get);
6846
6847static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6848{
6849 struct netdev_adjacent *upper;
6850
6851 ASSERT_RTNL();
6852
6853 if (list_empty(&dev->adj_list.upper))
6854 return NULL;
6855
6856 upper = list_first_entry(&dev->adj_list.upper,
6857 struct netdev_adjacent, list);
6858 if (likely(upper->master) && !upper->ignore)
6859 return upper->dev;
6860 return NULL;
6861}
6862
6863/**
6864 * netdev_has_any_lower_dev - Check if device is linked to some device
6865 * @dev: device
6866 *
6867 * Find out if a device is linked to a lower device and return true in case
6868 * it is. The caller must hold the RTNL lock.
6869 */
6870static bool netdev_has_any_lower_dev(struct net_device *dev)
6871{
6872 ASSERT_RTNL();
6873
6874 return !list_empty(&dev->adj_list.lower);
6875}
6876
6877void *netdev_adjacent_get_private(struct list_head *adj_list)
6878{
6879 struct netdev_adjacent *adj;
6880
6881 adj = list_entry(adj_list, struct netdev_adjacent, list);
6882
6883 return adj->private;
6884}
6885EXPORT_SYMBOL(netdev_adjacent_get_private);
6886
6887/**
6888 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6889 * @dev: device
6890 * @iter: list_head ** of the current position
6891 *
6892 * Gets the next device from the dev's upper list, starting from iter
6893 * position. The caller must hold RCU read lock.
6894 */
6895struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6896 struct list_head **iter)
6897{
6898 struct netdev_adjacent *upper;
6899
6900 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6901
6902 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6903
6904 if (&upper->list == &dev->adj_list.upper)
6905 return NULL;
6906
6907 *iter = &upper->list;
6908
6909 return upper->dev;
6910}
6911EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6912
6913static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6914 struct list_head **iter,
6915 bool *ignore)
6916{
6917 struct netdev_adjacent *upper;
6918
6919 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6920
6921 if (&upper->list == &dev->adj_list.upper)
6922 return NULL;
6923
6924 *iter = &upper->list;
6925 *ignore = upper->ignore;
6926
6927 return upper->dev;
6928}
6929
6930static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6931 struct list_head **iter)
6932{
6933 struct netdev_adjacent *upper;
6934
6935 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6936
6937 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6938
6939 if (&upper->list == &dev->adj_list.upper)
6940 return NULL;
6941
6942 *iter = &upper->list;
6943
6944 return upper->dev;
6945}
6946
6947static int __netdev_walk_all_upper_dev(struct net_device *dev,
6948 int (*fn)(struct net_device *dev,
6949 struct netdev_nested_priv *priv),
6950 struct netdev_nested_priv *priv)
6951{
6952 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6953 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6954 int ret, cur = 0;
6955 bool ignore;
6956
6957 now = dev;
6958 iter = &dev->adj_list.upper;
6959
6960 while (1) {
6961 if (now != dev) {
6962 ret = fn(now, priv);
6963 if (ret)
6964 return ret;
6965 }
6966
6967 next = NULL;
6968 while (1) {
6969 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6970 if (!udev)
6971 break;
6972 if (ignore)
6973 continue;
6974
6975 next = udev;
6976 niter = &udev->adj_list.upper;
6977 dev_stack[cur] = now;
6978 iter_stack[cur++] = iter;
6979 break;
6980 }
6981
6982 if (!next) {
6983 if (!cur)
6984 return 0;
6985 next = dev_stack[--cur];
6986 niter = iter_stack[cur];
6987 }
6988
6989 now = next;
6990 iter = niter;
6991 }
6992
6993 return 0;
6994}
6995
6996int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6997 int (*fn)(struct net_device *dev,
6998 struct netdev_nested_priv *priv),
6999 struct netdev_nested_priv *priv)
7000{
7001 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7002 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7003 int ret, cur = 0;
7004
7005 now = dev;
7006 iter = &dev->adj_list.upper;
7007
7008 while (1) {
7009 if (now != dev) {
7010 ret = fn(now, priv);
7011 if (ret)
7012 return ret;
7013 }
7014
7015 next = NULL;
7016 while (1) {
7017 udev = netdev_next_upper_dev_rcu(now, &iter);
7018 if (!udev)
7019 break;
7020
7021 next = udev;
7022 niter = &udev->adj_list.upper;
7023 dev_stack[cur] = now;
7024 iter_stack[cur++] = iter;
7025 break;
7026 }
7027
7028 if (!next) {
7029 if (!cur)
7030 return 0;
7031 next = dev_stack[--cur];
7032 niter = iter_stack[cur];
7033 }
7034
7035 now = next;
7036 iter = niter;
7037 }
7038
7039 return 0;
7040}
7041EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7042
7043static bool __netdev_has_upper_dev(struct net_device *dev,
7044 struct net_device *upper_dev)
7045{
7046 struct netdev_nested_priv priv = {
7047 .flags = 0,
7048 .data = (void *)upper_dev,
7049 };
7050
7051 ASSERT_RTNL();
7052
7053 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7054 &priv);
7055}
7056
7057/**
7058 * netdev_lower_get_next_private - Get the next ->private from the
7059 * lower neighbour list
7060 * @dev: device
7061 * @iter: list_head ** of the current position
7062 *
7063 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7064 * list, starting from iter position. The caller must hold either hold the
7065 * RTNL lock or its own locking that guarantees that the neighbour lower
7066 * list will remain unchanged.
7067 */
7068void *netdev_lower_get_next_private(struct net_device *dev,
7069 struct list_head **iter)
7070{
7071 struct netdev_adjacent *lower;
7072
7073 lower = list_entry(*iter, struct netdev_adjacent, list);
7074
7075 if (&lower->list == &dev->adj_list.lower)
7076 return NULL;
7077
7078 *iter = lower->list.next;
7079
7080 return lower->private;
7081}
7082EXPORT_SYMBOL(netdev_lower_get_next_private);
7083
7084/**
7085 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7086 * lower neighbour list, RCU
7087 * variant
7088 * @dev: device
7089 * @iter: list_head ** of the current position
7090 *
7091 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7092 * list, starting from iter position. The caller must hold RCU read lock.
7093 */
7094void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7095 struct list_head **iter)
7096{
7097 struct netdev_adjacent *lower;
7098
7099 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7100
7101 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7102
7103 if (&lower->list == &dev->adj_list.lower)
7104 return NULL;
7105
7106 *iter = &lower->list;
7107
7108 return lower->private;
7109}
7110EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7111
7112/**
7113 * netdev_lower_get_next - Get the next device from the lower neighbour
7114 * list
7115 * @dev: device
7116 * @iter: list_head ** of the current position
7117 *
7118 * Gets the next netdev_adjacent from the dev's lower neighbour
7119 * list, starting from iter position. The caller must hold RTNL lock or
7120 * its own locking that guarantees that the neighbour lower
7121 * list will remain unchanged.
7122 */
7123void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7124{
7125 struct netdev_adjacent *lower;
7126
7127 lower = list_entry(*iter, struct netdev_adjacent, list);
7128
7129 if (&lower->list == &dev->adj_list.lower)
7130 return NULL;
7131
7132 *iter = lower->list.next;
7133
7134 return lower->dev;
7135}
7136EXPORT_SYMBOL(netdev_lower_get_next);
7137
7138static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7139 struct list_head **iter)
7140{
7141 struct netdev_adjacent *lower;
7142
7143 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7144
7145 if (&lower->list == &dev->adj_list.lower)
7146 return NULL;
7147
7148 *iter = &lower->list;
7149
7150 return lower->dev;
7151}
7152
7153static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7154 struct list_head **iter,
7155 bool *ignore)
7156{
7157 struct netdev_adjacent *lower;
7158
7159 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7160
7161 if (&lower->list == &dev->adj_list.lower)
7162 return NULL;
7163
7164 *iter = &lower->list;
7165 *ignore = lower->ignore;
7166
7167 return lower->dev;
7168}
7169
7170int netdev_walk_all_lower_dev(struct net_device *dev,
7171 int (*fn)(struct net_device *dev,
7172 struct netdev_nested_priv *priv),
7173 struct netdev_nested_priv *priv)
7174{
7175 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7176 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7177 int ret, cur = 0;
7178
7179 now = dev;
7180 iter = &dev->adj_list.lower;
7181
7182 while (1) {
7183 if (now != dev) {
7184 ret = fn(now, priv);
7185 if (ret)
7186 return ret;
7187 }
7188
7189 next = NULL;
7190 while (1) {
7191 ldev = netdev_next_lower_dev(now, &iter);
7192 if (!ldev)
7193 break;
7194
7195 next = ldev;
7196 niter = &ldev->adj_list.lower;
7197 dev_stack[cur] = now;
7198 iter_stack[cur++] = iter;
7199 break;
7200 }
7201
7202 if (!next) {
7203 if (!cur)
7204 return 0;
7205 next = dev_stack[--cur];
7206 niter = iter_stack[cur];
7207 }
7208
7209 now = next;
7210 iter = niter;
7211 }
7212
7213 return 0;
7214}
7215EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7216
7217static int __netdev_walk_all_lower_dev(struct net_device *dev,
7218 int (*fn)(struct net_device *dev,
7219 struct netdev_nested_priv *priv),
7220 struct netdev_nested_priv *priv)
7221{
7222 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7223 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7224 int ret, cur = 0;
7225 bool ignore;
7226
7227 now = dev;
7228 iter = &dev->adj_list.lower;
7229
7230 while (1) {
7231 if (now != dev) {
7232 ret = fn(now, priv);
7233 if (ret)
7234 return ret;
7235 }
7236
7237 next = NULL;
7238 while (1) {
7239 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7240 if (!ldev)
7241 break;
7242 if (ignore)
7243 continue;
7244
7245 next = ldev;
7246 niter = &ldev->adj_list.lower;
7247 dev_stack[cur] = now;
7248 iter_stack[cur++] = iter;
7249 break;
7250 }
7251
7252 if (!next) {
7253 if (!cur)
7254 return 0;
7255 next = dev_stack[--cur];
7256 niter = iter_stack[cur];
7257 }
7258
7259 now = next;
7260 iter = niter;
7261 }
7262
7263 return 0;
7264}
7265
7266struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7267 struct list_head **iter)
7268{
7269 struct netdev_adjacent *lower;
7270
7271 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7272 if (&lower->list == &dev->adj_list.lower)
7273 return NULL;
7274
7275 *iter = &lower->list;
7276
7277 return lower->dev;
7278}
7279EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7280
7281static u8 __netdev_upper_depth(struct net_device *dev)
7282{
7283 struct net_device *udev;
7284 struct list_head *iter;
7285 u8 max_depth = 0;
7286 bool ignore;
7287
7288 for (iter = &dev->adj_list.upper,
7289 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7290 udev;
7291 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7292 if (ignore)
7293 continue;
7294 if (max_depth < udev->upper_level)
7295 max_depth = udev->upper_level;
7296 }
7297
7298 return max_depth;
7299}
7300
7301static u8 __netdev_lower_depth(struct net_device *dev)
7302{
7303 struct net_device *ldev;
7304 struct list_head *iter;
7305 u8 max_depth = 0;
7306 bool ignore;
7307
7308 for (iter = &dev->adj_list.lower,
7309 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7310 ldev;
7311 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7312 if (ignore)
7313 continue;
7314 if (max_depth < ldev->lower_level)
7315 max_depth = ldev->lower_level;
7316 }
7317
7318 return max_depth;
7319}
7320
7321static int __netdev_update_upper_level(struct net_device *dev,
7322 struct netdev_nested_priv *__unused)
7323{
7324 dev->upper_level = __netdev_upper_depth(dev) + 1;
7325 return 0;
7326}
7327
7328#ifdef CONFIG_LOCKDEP
7329static LIST_HEAD(net_unlink_list);
7330
7331static void net_unlink_todo(struct net_device *dev)
7332{
7333 if (list_empty(&dev->unlink_list))
7334 list_add_tail(&dev->unlink_list, &net_unlink_list);
7335}
7336#endif
7337
7338static int __netdev_update_lower_level(struct net_device *dev,
7339 struct netdev_nested_priv *priv)
7340{
7341 dev->lower_level = __netdev_lower_depth(dev) + 1;
7342
7343#ifdef CONFIG_LOCKDEP
7344 if (!priv)
7345 return 0;
7346
7347 if (priv->flags & NESTED_SYNC_IMM)
7348 dev->nested_level = dev->lower_level - 1;
7349 if (priv->flags & NESTED_SYNC_TODO)
7350 net_unlink_todo(dev);
7351#endif
7352 return 0;
7353}
7354
7355int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7356 int (*fn)(struct net_device *dev,
7357 struct netdev_nested_priv *priv),
7358 struct netdev_nested_priv *priv)
7359{
7360 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7361 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7362 int ret, cur = 0;
7363
7364 now = dev;
7365 iter = &dev->adj_list.lower;
7366
7367 while (1) {
7368 if (now != dev) {
7369 ret = fn(now, priv);
7370 if (ret)
7371 return ret;
7372 }
7373
7374 next = NULL;
7375 while (1) {
7376 ldev = netdev_next_lower_dev_rcu(now, &iter);
7377 if (!ldev)
7378 break;
7379
7380 next = ldev;
7381 niter = &ldev->adj_list.lower;
7382 dev_stack[cur] = now;
7383 iter_stack[cur++] = iter;
7384 break;
7385 }
7386
7387 if (!next) {
7388 if (!cur)
7389 return 0;
7390 next = dev_stack[--cur];
7391 niter = iter_stack[cur];
7392 }
7393
7394 now = next;
7395 iter = niter;
7396 }
7397
7398 return 0;
7399}
7400EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7401
7402/**
7403 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7404 * lower neighbour list, RCU
7405 * variant
7406 * @dev: device
7407 *
7408 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7409 * list. The caller must hold RCU read lock.
7410 */
7411void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7412{
7413 struct netdev_adjacent *lower;
7414
7415 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7416 struct netdev_adjacent, list);
7417 if (lower)
7418 return lower->private;
7419 return NULL;
7420}
7421EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7422
7423/**
7424 * netdev_master_upper_dev_get_rcu - Get master upper device
7425 * @dev: device
7426 *
7427 * Find a master upper device and return pointer to it or NULL in case
7428 * it's not there. The caller must hold the RCU read lock.
7429 */
7430struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7431{
7432 struct netdev_adjacent *upper;
7433
7434 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7435 struct netdev_adjacent, list);
7436 if (upper && likely(upper->master))
7437 return upper->dev;
7438 return NULL;
7439}
7440EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7441
7442static int netdev_adjacent_sysfs_add(struct net_device *dev,
7443 struct net_device *adj_dev,
7444 struct list_head *dev_list)
7445{
7446 char linkname[IFNAMSIZ+7];
7447
7448 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7449 "upper_%s" : "lower_%s", adj_dev->name);
7450 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7451 linkname);
7452}
7453static void netdev_adjacent_sysfs_del(struct net_device *dev,
7454 char *name,
7455 struct list_head *dev_list)
7456{
7457 char linkname[IFNAMSIZ+7];
7458
7459 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7460 "upper_%s" : "lower_%s", name);
7461 sysfs_remove_link(&(dev->dev.kobj), linkname);
7462}
7463
7464static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7465 struct net_device *adj_dev,
7466 struct list_head *dev_list)
7467{
7468 return (dev_list == &dev->adj_list.upper ||
7469 dev_list == &dev->adj_list.lower) &&
7470 net_eq(dev_net(dev), dev_net(adj_dev));
7471}
7472
7473static int __netdev_adjacent_dev_insert(struct net_device *dev,
7474 struct net_device *adj_dev,
7475 struct list_head *dev_list,
7476 void *private, bool master)
7477{
7478 struct netdev_adjacent *adj;
7479 int ret;
7480
7481 adj = __netdev_find_adj(adj_dev, dev_list);
7482
7483 if (adj) {
7484 adj->ref_nr += 1;
7485 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7486 dev->name, adj_dev->name, adj->ref_nr);
7487
7488 return 0;
7489 }
7490
7491 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7492 if (!adj)
7493 return -ENOMEM;
7494
7495 adj->dev = adj_dev;
7496 adj->master = master;
7497 adj->ref_nr = 1;
7498 adj->private = private;
7499 adj->ignore = false;
7500 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7501
7502 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7503 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7504
7505 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7506 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7507 if (ret)
7508 goto free_adj;
7509 }
7510
7511 /* Ensure that master link is always the first item in list. */
7512 if (master) {
7513 ret = sysfs_create_link(&(dev->dev.kobj),
7514 &(adj_dev->dev.kobj), "master");
7515 if (ret)
7516 goto remove_symlinks;
7517
7518 list_add_rcu(&adj->list, dev_list);
7519 } else {
7520 list_add_tail_rcu(&adj->list, dev_list);
7521 }
7522
7523 return 0;
7524
7525remove_symlinks:
7526 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7527 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7528free_adj:
7529 netdev_put(adj_dev, &adj->dev_tracker);
7530 kfree(adj);
7531
7532 return ret;
7533}
7534
7535static void __netdev_adjacent_dev_remove(struct net_device *dev,
7536 struct net_device *adj_dev,
7537 u16 ref_nr,
7538 struct list_head *dev_list)
7539{
7540 struct netdev_adjacent *adj;
7541
7542 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7543 dev->name, adj_dev->name, ref_nr);
7544
7545 adj = __netdev_find_adj(adj_dev, dev_list);
7546
7547 if (!adj) {
7548 pr_err("Adjacency does not exist for device %s from %s\n",
7549 dev->name, adj_dev->name);
7550 WARN_ON(1);
7551 return;
7552 }
7553
7554 if (adj->ref_nr > ref_nr) {
7555 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7556 dev->name, adj_dev->name, ref_nr,
7557 adj->ref_nr - ref_nr);
7558 adj->ref_nr -= ref_nr;
7559 return;
7560 }
7561
7562 if (adj->master)
7563 sysfs_remove_link(&(dev->dev.kobj), "master");
7564
7565 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7566 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7567
7568 list_del_rcu(&adj->list);
7569 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7570 adj_dev->name, dev->name, adj_dev->name);
7571 netdev_put(adj_dev, &adj->dev_tracker);
7572 kfree_rcu(adj, rcu);
7573}
7574
7575static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7576 struct net_device *upper_dev,
7577 struct list_head *up_list,
7578 struct list_head *down_list,
7579 void *private, bool master)
7580{
7581 int ret;
7582
7583 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7584 private, master);
7585 if (ret)
7586 return ret;
7587
7588 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7589 private, false);
7590 if (ret) {
7591 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7592 return ret;
7593 }
7594
7595 return 0;
7596}
7597
7598static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7599 struct net_device *upper_dev,
7600 u16 ref_nr,
7601 struct list_head *up_list,
7602 struct list_head *down_list)
7603{
7604 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7605 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7606}
7607
7608static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7609 struct net_device *upper_dev,
7610 void *private, bool master)
7611{
7612 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7613 &dev->adj_list.upper,
7614 &upper_dev->adj_list.lower,
7615 private, master);
7616}
7617
7618static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7619 struct net_device *upper_dev)
7620{
7621 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7622 &dev->adj_list.upper,
7623 &upper_dev->adj_list.lower);
7624}
7625
7626static int __netdev_upper_dev_link(struct net_device *dev,
7627 struct net_device *upper_dev, bool master,
7628 void *upper_priv, void *upper_info,
7629 struct netdev_nested_priv *priv,
7630 struct netlink_ext_ack *extack)
7631{
7632 struct netdev_notifier_changeupper_info changeupper_info = {
7633 .info = {
7634 .dev = dev,
7635 .extack = extack,
7636 },
7637 .upper_dev = upper_dev,
7638 .master = master,
7639 .linking = true,
7640 .upper_info = upper_info,
7641 };
7642 struct net_device *master_dev;
7643 int ret = 0;
7644
7645 ASSERT_RTNL();
7646
7647 if (dev == upper_dev)
7648 return -EBUSY;
7649
7650 /* To prevent loops, check if dev is not upper device to upper_dev. */
7651 if (__netdev_has_upper_dev(upper_dev, dev))
7652 return -EBUSY;
7653
7654 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7655 return -EMLINK;
7656
7657 if (!master) {
7658 if (__netdev_has_upper_dev(dev, upper_dev))
7659 return -EEXIST;
7660 } else {
7661 master_dev = __netdev_master_upper_dev_get(dev);
7662 if (master_dev)
7663 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7664 }
7665
7666 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7667 &changeupper_info.info);
7668 ret = notifier_to_errno(ret);
7669 if (ret)
7670 return ret;
7671
7672 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7673 master);
7674 if (ret)
7675 return ret;
7676
7677 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7678 &changeupper_info.info);
7679 ret = notifier_to_errno(ret);
7680 if (ret)
7681 goto rollback;
7682
7683 __netdev_update_upper_level(dev, NULL);
7684 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7685
7686 __netdev_update_lower_level(upper_dev, priv);
7687 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7688 priv);
7689
7690 return 0;
7691
7692rollback:
7693 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7694
7695 return ret;
7696}
7697
7698/**
7699 * netdev_upper_dev_link - Add a link to the upper device
7700 * @dev: device
7701 * @upper_dev: new upper device
7702 * @extack: netlink extended ack
7703 *
7704 * Adds a link to device which is upper to this one. The caller must hold
7705 * the RTNL lock. On a failure a negative errno code is returned.
7706 * On success the reference counts are adjusted and the function
7707 * returns zero.
7708 */
7709int netdev_upper_dev_link(struct net_device *dev,
7710 struct net_device *upper_dev,
7711 struct netlink_ext_ack *extack)
7712{
7713 struct netdev_nested_priv priv = {
7714 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7715 .data = NULL,
7716 };
7717
7718 return __netdev_upper_dev_link(dev, upper_dev, false,
7719 NULL, NULL, &priv, extack);
7720}
7721EXPORT_SYMBOL(netdev_upper_dev_link);
7722
7723/**
7724 * netdev_master_upper_dev_link - Add a master link to the upper device
7725 * @dev: device
7726 * @upper_dev: new upper device
7727 * @upper_priv: upper device private
7728 * @upper_info: upper info to be passed down via notifier
7729 * @extack: netlink extended ack
7730 *
7731 * Adds a link to device which is upper to this one. In this case, only
7732 * one master upper device can be linked, although other non-master devices
7733 * might be linked as well. The caller must hold the RTNL lock.
7734 * On a failure a negative errno code is returned. On success the reference
7735 * counts are adjusted and the function returns zero.
7736 */
7737int netdev_master_upper_dev_link(struct net_device *dev,
7738 struct net_device *upper_dev,
7739 void *upper_priv, void *upper_info,
7740 struct netlink_ext_ack *extack)
7741{
7742 struct netdev_nested_priv priv = {
7743 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7744 .data = NULL,
7745 };
7746
7747 return __netdev_upper_dev_link(dev, upper_dev, true,
7748 upper_priv, upper_info, &priv, extack);
7749}
7750EXPORT_SYMBOL(netdev_master_upper_dev_link);
7751
7752static void __netdev_upper_dev_unlink(struct net_device *dev,
7753 struct net_device *upper_dev,
7754 struct netdev_nested_priv *priv)
7755{
7756 struct netdev_notifier_changeupper_info changeupper_info = {
7757 .info = {
7758 .dev = dev,
7759 },
7760 .upper_dev = upper_dev,
7761 .linking = false,
7762 };
7763
7764 ASSERT_RTNL();
7765
7766 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7767
7768 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7769 &changeupper_info.info);
7770
7771 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7772
7773 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7774 &changeupper_info.info);
7775
7776 __netdev_update_upper_level(dev, NULL);
7777 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7778
7779 __netdev_update_lower_level(upper_dev, priv);
7780 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7781 priv);
7782}
7783
7784/**
7785 * netdev_upper_dev_unlink - Removes a link to upper device
7786 * @dev: device
7787 * @upper_dev: new upper device
7788 *
7789 * Removes a link to device which is upper to this one. The caller must hold
7790 * the RTNL lock.
7791 */
7792void netdev_upper_dev_unlink(struct net_device *dev,
7793 struct net_device *upper_dev)
7794{
7795 struct netdev_nested_priv priv = {
7796 .flags = NESTED_SYNC_TODO,
7797 .data = NULL,
7798 };
7799
7800 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7801}
7802EXPORT_SYMBOL(netdev_upper_dev_unlink);
7803
7804static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7805 struct net_device *lower_dev,
7806 bool val)
7807{
7808 struct netdev_adjacent *adj;
7809
7810 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7811 if (adj)
7812 adj->ignore = val;
7813
7814 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7815 if (adj)
7816 adj->ignore = val;
7817}
7818
7819static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7820 struct net_device *lower_dev)
7821{
7822 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7823}
7824
7825static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7826 struct net_device *lower_dev)
7827{
7828 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7829}
7830
7831int netdev_adjacent_change_prepare(struct net_device *old_dev,
7832 struct net_device *new_dev,
7833 struct net_device *dev,
7834 struct netlink_ext_ack *extack)
7835{
7836 struct netdev_nested_priv priv = {
7837 .flags = 0,
7838 .data = NULL,
7839 };
7840 int err;
7841
7842 if (!new_dev)
7843 return 0;
7844
7845 if (old_dev && new_dev != old_dev)
7846 netdev_adjacent_dev_disable(dev, old_dev);
7847 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7848 extack);
7849 if (err) {
7850 if (old_dev && new_dev != old_dev)
7851 netdev_adjacent_dev_enable(dev, old_dev);
7852 return err;
7853 }
7854
7855 return 0;
7856}
7857EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7858
7859void netdev_adjacent_change_commit(struct net_device *old_dev,
7860 struct net_device *new_dev,
7861 struct net_device *dev)
7862{
7863 struct netdev_nested_priv priv = {
7864 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7865 .data = NULL,
7866 };
7867
7868 if (!new_dev || !old_dev)
7869 return;
7870
7871 if (new_dev == old_dev)
7872 return;
7873
7874 netdev_adjacent_dev_enable(dev, old_dev);
7875 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7876}
7877EXPORT_SYMBOL(netdev_adjacent_change_commit);
7878
7879void netdev_adjacent_change_abort(struct net_device *old_dev,
7880 struct net_device *new_dev,
7881 struct net_device *dev)
7882{
7883 struct netdev_nested_priv priv = {
7884 .flags = 0,
7885 .data = NULL,
7886 };
7887
7888 if (!new_dev)
7889 return;
7890
7891 if (old_dev && new_dev != old_dev)
7892 netdev_adjacent_dev_enable(dev, old_dev);
7893
7894 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7895}
7896EXPORT_SYMBOL(netdev_adjacent_change_abort);
7897
7898/**
7899 * netdev_bonding_info_change - Dispatch event about slave change
7900 * @dev: device
7901 * @bonding_info: info to dispatch
7902 *
7903 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7904 * The caller must hold the RTNL lock.
7905 */
7906void netdev_bonding_info_change(struct net_device *dev,
7907 struct netdev_bonding_info *bonding_info)
7908{
7909 struct netdev_notifier_bonding_info info = {
7910 .info.dev = dev,
7911 };
7912
7913 memcpy(&info.bonding_info, bonding_info,
7914 sizeof(struct netdev_bonding_info));
7915 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7916 &info.info);
7917}
7918EXPORT_SYMBOL(netdev_bonding_info_change);
7919
7920static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7921 struct netlink_ext_ack *extack)
7922{
7923 struct netdev_notifier_offload_xstats_info info = {
7924 .info.dev = dev,
7925 .info.extack = extack,
7926 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7927 };
7928 int err;
7929 int rc;
7930
7931 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7932 GFP_KERNEL);
7933 if (!dev->offload_xstats_l3)
7934 return -ENOMEM;
7935
7936 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7937 NETDEV_OFFLOAD_XSTATS_DISABLE,
7938 &info.info);
7939 err = notifier_to_errno(rc);
7940 if (err)
7941 goto free_stats;
7942
7943 return 0;
7944
7945free_stats:
7946 kfree(dev->offload_xstats_l3);
7947 dev->offload_xstats_l3 = NULL;
7948 return err;
7949}
7950
7951int netdev_offload_xstats_enable(struct net_device *dev,
7952 enum netdev_offload_xstats_type type,
7953 struct netlink_ext_ack *extack)
7954{
7955 ASSERT_RTNL();
7956
7957 if (netdev_offload_xstats_enabled(dev, type))
7958 return -EALREADY;
7959
7960 switch (type) {
7961 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7962 return netdev_offload_xstats_enable_l3(dev, extack);
7963 }
7964
7965 WARN_ON(1);
7966 return -EINVAL;
7967}
7968EXPORT_SYMBOL(netdev_offload_xstats_enable);
7969
7970static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7971{
7972 struct netdev_notifier_offload_xstats_info info = {
7973 .info.dev = dev,
7974 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7975 };
7976
7977 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7978 &info.info);
7979 kfree(dev->offload_xstats_l3);
7980 dev->offload_xstats_l3 = NULL;
7981}
7982
7983int netdev_offload_xstats_disable(struct net_device *dev,
7984 enum netdev_offload_xstats_type type)
7985{
7986 ASSERT_RTNL();
7987
7988 if (!netdev_offload_xstats_enabled(dev, type))
7989 return -EALREADY;
7990
7991 switch (type) {
7992 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7993 netdev_offload_xstats_disable_l3(dev);
7994 return 0;
7995 }
7996
7997 WARN_ON(1);
7998 return -EINVAL;
7999}
8000EXPORT_SYMBOL(netdev_offload_xstats_disable);
8001
8002static void netdev_offload_xstats_disable_all(struct net_device *dev)
8003{
8004 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8005}
8006
8007static struct rtnl_hw_stats64 *
8008netdev_offload_xstats_get_ptr(const struct net_device *dev,
8009 enum netdev_offload_xstats_type type)
8010{
8011 switch (type) {
8012 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8013 return dev->offload_xstats_l3;
8014 }
8015
8016 WARN_ON(1);
8017 return NULL;
8018}
8019
8020bool netdev_offload_xstats_enabled(const struct net_device *dev,
8021 enum netdev_offload_xstats_type type)
8022{
8023 ASSERT_RTNL();
8024
8025 return netdev_offload_xstats_get_ptr(dev, type);
8026}
8027EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8028
8029struct netdev_notifier_offload_xstats_ru {
8030 bool used;
8031};
8032
8033struct netdev_notifier_offload_xstats_rd {
8034 struct rtnl_hw_stats64 stats;
8035 bool used;
8036};
8037
8038static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8039 const struct rtnl_hw_stats64 *src)
8040{
8041 dest->rx_packets += src->rx_packets;
8042 dest->tx_packets += src->tx_packets;
8043 dest->rx_bytes += src->rx_bytes;
8044 dest->tx_bytes += src->tx_bytes;
8045 dest->rx_errors += src->rx_errors;
8046 dest->tx_errors += src->tx_errors;
8047 dest->rx_dropped += src->rx_dropped;
8048 dest->tx_dropped += src->tx_dropped;
8049 dest->multicast += src->multicast;
8050}
8051
8052static int netdev_offload_xstats_get_used(struct net_device *dev,
8053 enum netdev_offload_xstats_type type,
8054 bool *p_used,
8055 struct netlink_ext_ack *extack)
8056{
8057 struct netdev_notifier_offload_xstats_ru report_used = {};
8058 struct netdev_notifier_offload_xstats_info info = {
8059 .info.dev = dev,
8060 .info.extack = extack,
8061 .type = type,
8062 .report_used = &report_used,
8063 };
8064 int rc;
8065
8066 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8067 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8068 &info.info);
8069 *p_used = report_used.used;
8070 return notifier_to_errno(rc);
8071}
8072
8073static int netdev_offload_xstats_get_stats(struct net_device *dev,
8074 enum netdev_offload_xstats_type type,
8075 struct rtnl_hw_stats64 *p_stats,
8076 bool *p_used,
8077 struct netlink_ext_ack *extack)
8078{
8079 struct netdev_notifier_offload_xstats_rd report_delta = {};
8080 struct netdev_notifier_offload_xstats_info info = {
8081 .info.dev = dev,
8082 .info.extack = extack,
8083 .type = type,
8084 .report_delta = &report_delta,
8085 };
8086 struct rtnl_hw_stats64 *stats;
8087 int rc;
8088
8089 stats = netdev_offload_xstats_get_ptr(dev, type);
8090 if (WARN_ON(!stats))
8091 return -EINVAL;
8092
8093 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8094 &info.info);
8095
8096 /* Cache whatever we got, even if there was an error, otherwise the
8097 * successful stats retrievals would get lost.
8098 */
8099 netdev_hw_stats64_add(stats, &report_delta.stats);
8100
8101 if (p_stats)
8102 *p_stats = *stats;
8103 *p_used = report_delta.used;
8104
8105 return notifier_to_errno(rc);
8106}
8107
8108int netdev_offload_xstats_get(struct net_device *dev,
8109 enum netdev_offload_xstats_type type,
8110 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8111 struct netlink_ext_ack *extack)
8112{
8113 ASSERT_RTNL();
8114
8115 if (p_stats)
8116 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8117 p_used, extack);
8118 else
8119 return netdev_offload_xstats_get_used(dev, type, p_used,
8120 extack);
8121}
8122EXPORT_SYMBOL(netdev_offload_xstats_get);
8123
8124void
8125netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8126 const struct rtnl_hw_stats64 *stats)
8127{
8128 report_delta->used = true;
8129 netdev_hw_stats64_add(&report_delta->stats, stats);
8130}
8131EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8132
8133void
8134netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8135{
8136 report_used->used = true;
8137}
8138EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8139
8140void netdev_offload_xstats_push_delta(struct net_device *dev,
8141 enum netdev_offload_xstats_type type,
8142 const struct rtnl_hw_stats64 *p_stats)
8143{
8144 struct rtnl_hw_stats64 *stats;
8145
8146 ASSERT_RTNL();
8147
8148 stats = netdev_offload_xstats_get_ptr(dev, type);
8149 if (WARN_ON(!stats))
8150 return;
8151
8152 netdev_hw_stats64_add(stats, p_stats);
8153}
8154EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8155
8156/**
8157 * netdev_get_xmit_slave - Get the xmit slave of master device
8158 * @dev: device
8159 * @skb: The packet
8160 * @all_slaves: assume all the slaves are active
8161 *
8162 * The reference counters are not incremented so the caller must be
8163 * careful with locks. The caller must hold RCU lock.
8164 * %NULL is returned if no slave is found.
8165 */
8166
8167struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8168 struct sk_buff *skb,
8169 bool all_slaves)
8170{
8171 const struct net_device_ops *ops = dev->netdev_ops;
8172
8173 if (!ops->ndo_get_xmit_slave)
8174 return NULL;
8175 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8176}
8177EXPORT_SYMBOL(netdev_get_xmit_slave);
8178
8179static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8180 struct sock *sk)
8181{
8182 const struct net_device_ops *ops = dev->netdev_ops;
8183
8184 if (!ops->ndo_sk_get_lower_dev)
8185 return NULL;
8186 return ops->ndo_sk_get_lower_dev(dev, sk);
8187}
8188
8189/**
8190 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8191 * @dev: device
8192 * @sk: the socket
8193 *
8194 * %NULL is returned if no lower device is found.
8195 */
8196
8197struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8198 struct sock *sk)
8199{
8200 struct net_device *lower;
8201
8202 lower = netdev_sk_get_lower_dev(dev, sk);
8203 while (lower) {
8204 dev = lower;
8205 lower = netdev_sk_get_lower_dev(dev, sk);
8206 }
8207
8208 return dev;
8209}
8210EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8211
8212static void netdev_adjacent_add_links(struct net_device *dev)
8213{
8214 struct netdev_adjacent *iter;
8215
8216 struct net *net = dev_net(dev);
8217
8218 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8219 if (!net_eq(net, dev_net(iter->dev)))
8220 continue;
8221 netdev_adjacent_sysfs_add(iter->dev, dev,
8222 &iter->dev->adj_list.lower);
8223 netdev_adjacent_sysfs_add(dev, iter->dev,
8224 &dev->adj_list.upper);
8225 }
8226
8227 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8228 if (!net_eq(net, dev_net(iter->dev)))
8229 continue;
8230 netdev_adjacent_sysfs_add(iter->dev, dev,
8231 &iter->dev->adj_list.upper);
8232 netdev_adjacent_sysfs_add(dev, iter->dev,
8233 &dev->adj_list.lower);
8234 }
8235}
8236
8237static void netdev_adjacent_del_links(struct net_device *dev)
8238{
8239 struct netdev_adjacent *iter;
8240
8241 struct net *net = dev_net(dev);
8242
8243 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8244 if (!net_eq(net, dev_net(iter->dev)))
8245 continue;
8246 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8247 &iter->dev->adj_list.lower);
8248 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8249 &dev->adj_list.upper);
8250 }
8251
8252 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8253 if (!net_eq(net, dev_net(iter->dev)))
8254 continue;
8255 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8256 &iter->dev->adj_list.upper);
8257 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8258 &dev->adj_list.lower);
8259 }
8260}
8261
8262void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8263{
8264 struct netdev_adjacent *iter;
8265
8266 struct net *net = dev_net(dev);
8267
8268 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8269 if (!net_eq(net, dev_net(iter->dev)))
8270 continue;
8271 netdev_adjacent_sysfs_del(iter->dev, oldname,
8272 &iter->dev->adj_list.lower);
8273 netdev_adjacent_sysfs_add(iter->dev, dev,
8274 &iter->dev->adj_list.lower);
8275 }
8276
8277 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8278 if (!net_eq(net, dev_net(iter->dev)))
8279 continue;
8280 netdev_adjacent_sysfs_del(iter->dev, oldname,
8281 &iter->dev->adj_list.upper);
8282 netdev_adjacent_sysfs_add(iter->dev, dev,
8283 &iter->dev->adj_list.upper);
8284 }
8285}
8286
8287void *netdev_lower_dev_get_private(struct net_device *dev,
8288 struct net_device *lower_dev)
8289{
8290 struct netdev_adjacent *lower;
8291
8292 if (!lower_dev)
8293 return NULL;
8294 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8295 if (!lower)
8296 return NULL;
8297
8298 return lower->private;
8299}
8300EXPORT_SYMBOL(netdev_lower_dev_get_private);
8301
8302
8303/**
8304 * netdev_lower_state_changed - Dispatch event about lower device state change
8305 * @lower_dev: device
8306 * @lower_state_info: state to dispatch
8307 *
8308 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8309 * The caller must hold the RTNL lock.
8310 */
8311void netdev_lower_state_changed(struct net_device *lower_dev,
8312 void *lower_state_info)
8313{
8314 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8315 .info.dev = lower_dev,
8316 };
8317
8318 ASSERT_RTNL();
8319 changelowerstate_info.lower_state_info = lower_state_info;
8320 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8321 &changelowerstate_info.info);
8322}
8323EXPORT_SYMBOL(netdev_lower_state_changed);
8324
8325static void dev_change_rx_flags(struct net_device *dev, int flags)
8326{
8327 const struct net_device_ops *ops = dev->netdev_ops;
8328
8329 if (ops->ndo_change_rx_flags)
8330 ops->ndo_change_rx_flags(dev, flags);
8331}
8332
8333static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8334{
8335 unsigned int old_flags = dev->flags;
8336 kuid_t uid;
8337 kgid_t gid;
8338
8339 ASSERT_RTNL();
8340
8341 dev->flags |= IFF_PROMISC;
8342 dev->promiscuity += inc;
8343 if (dev->promiscuity == 0) {
8344 /*
8345 * Avoid overflow.
8346 * If inc causes overflow, untouch promisc and return error.
8347 */
8348 if (inc < 0)
8349 dev->flags &= ~IFF_PROMISC;
8350 else {
8351 dev->promiscuity -= inc;
8352 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8353 return -EOVERFLOW;
8354 }
8355 }
8356 if (dev->flags != old_flags) {
8357 netdev_info(dev, "%s promiscuous mode\n",
8358 dev->flags & IFF_PROMISC ? "entered" : "left");
8359 if (audit_enabled) {
8360 current_uid_gid(&uid, &gid);
8361 audit_log(audit_context(), GFP_ATOMIC,
8362 AUDIT_ANOM_PROMISCUOUS,
8363 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8364 dev->name, (dev->flags & IFF_PROMISC),
8365 (old_flags & IFF_PROMISC),
8366 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8367 from_kuid(&init_user_ns, uid),
8368 from_kgid(&init_user_ns, gid),
8369 audit_get_sessionid(current));
8370 }
8371
8372 dev_change_rx_flags(dev, IFF_PROMISC);
8373 }
8374 if (notify)
8375 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8376 return 0;
8377}
8378
8379/**
8380 * dev_set_promiscuity - update promiscuity count on a device
8381 * @dev: device
8382 * @inc: modifier
8383 *
8384 * Add or remove promiscuity from a device. While the count in the device
8385 * remains above zero the interface remains promiscuous. Once it hits zero
8386 * the device reverts back to normal filtering operation. A negative inc
8387 * value is used to drop promiscuity on the device.
8388 * Return 0 if successful or a negative errno code on error.
8389 */
8390int dev_set_promiscuity(struct net_device *dev, int inc)
8391{
8392 unsigned int old_flags = dev->flags;
8393 int err;
8394
8395 err = __dev_set_promiscuity(dev, inc, true);
8396 if (err < 0)
8397 return err;
8398 if (dev->flags != old_flags)
8399 dev_set_rx_mode(dev);
8400 return err;
8401}
8402EXPORT_SYMBOL(dev_set_promiscuity);
8403
8404static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8405{
8406 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8407
8408 ASSERT_RTNL();
8409
8410 dev->flags |= IFF_ALLMULTI;
8411 dev->allmulti += inc;
8412 if (dev->allmulti == 0) {
8413 /*
8414 * Avoid overflow.
8415 * If inc causes overflow, untouch allmulti and return error.
8416 */
8417 if (inc < 0)
8418 dev->flags &= ~IFF_ALLMULTI;
8419 else {
8420 dev->allmulti -= inc;
8421 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8422 return -EOVERFLOW;
8423 }
8424 }
8425 if (dev->flags ^ old_flags) {
8426 netdev_info(dev, "%s allmulticast mode\n",
8427 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8428 dev_change_rx_flags(dev, IFF_ALLMULTI);
8429 dev_set_rx_mode(dev);
8430 if (notify)
8431 __dev_notify_flags(dev, old_flags,
8432 dev->gflags ^ old_gflags, 0, NULL);
8433 }
8434 return 0;
8435}
8436
8437/**
8438 * dev_set_allmulti - update allmulti count on a device
8439 * @dev: device
8440 * @inc: modifier
8441 *
8442 * Add or remove reception of all multicast frames to a device. While the
8443 * count in the device remains above zero the interface remains listening
8444 * to all interfaces. Once it hits zero the device reverts back to normal
8445 * filtering operation. A negative @inc value is used to drop the counter
8446 * when releasing a resource needing all multicasts.
8447 * Return 0 if successful or a negative errno code on error.
8448 */
8449
8450int dev_set_allmulti(struct net_device *dev, int inc)
8451{
8452 return __dev_set_allmulti(dev, inc, true);
8453}
8454EXPORT_SYMBOL(dev_set_allmulti);
8455
8456/*
8457 * Upload unicast and multicast address lists to device and
8458 * configure RX filtering. When the device doesn't support unicast
8459 * filtering it is put in promiscuous mode while unicast addresses
8460 * are present.
8461 */
8462void __dev_set_rx_mode(struct net_device *dev)
8463{
8464 const struct net_device_ops *ops = dev->netdev_ops;
8465
8466 /* dev_open will call this function so the list will stay sane. */
8467 if (!(dev->flags&IFF_UP))
8468 return;
8469
8470 if (!netif_device_present(dev))
8471 return;
8472
8473 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8474 /* Unicast addresses changes may only happen under the rtnl,
8475 * therefore calling __dev_set_promiscuity here is safe.
8476 */
8477 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8478 __dev_set_promiscuity(dev, 1, false);
8479 dev->uc_promisc = true;
8480 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8481 __dev_set_promiscuity(dev, -1, false);
8482 dev->uc_promisc = false;
8483 }
8484 }
8485
8486 if (ops->ndo_set_rx_mode)
8487 ops->ndo_set_rx_mode(dev);
8488}
8489
8490void dev_set_rx_mode(struct net_device *dev)
8491{
8492 netif_addr_lock_bh(dev);
8493 __dev_set_rx_mode(dev);
8494 netif_addr_unlock_bh(dev);
8495}
8496
8497/**
8498 * dev_get_flags - get flags reported to userspace
8499 * @dev: device
8500 *
8501 * Get the combination of flag bits exported through APIs to userspace.
8502 */
8503unsigned int dev_get_flags(const struct net_device *dev)
8504{
8505 unsigned int flags;
8506
8507 flags = (dev->flags & ~(IFF_PROMISC |
8508 IFF_ALLMULTI |
8509 IFF_RUNNING |
8510 IFF_LOWER_UP |
8511 IFF_DORMANT)) |
8512 (dev->gflags & (IFF_PROMISC |
8513 IFF_ALLMULTI));
8514
8515 if (netif_running(dev)) {
8516 if (netif_oper_up(dev))
8517 flags |= IFF_RUNNING;
8518 if (netif_carrier_ok(dev))
8519 flags |= IFF_LOWER_UP;
8520 if (netif_dormant(dev))
8521 flags |= IFF_DORMANT;
8522 }
8523
8524 return flags;
8525}
8526EXPORT_SYMBOL(dev_get_flags);
8527
8528int __dev_change_flags(struct net_device *dev, unsigned int flags,
8529 struct netlink_ext_ack *extack)
8530{
8531 unsigned int old_flags = dev->flags;
8532 int ret;
8533
8534 ASSERT_RTNL();
8535
8536 /*
8537 * Set the flags on our device.
8538 */
8539
8540 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8541 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8542 IFF_AUTOMEDIA)) |
8543 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8544 IFF_ALLMULTI));
8545
8546 /*
8547 * Load in the correct multicast list now the flags have changed.
8548 */
8549
8550 if ((old_flags ^ flags) & IFF_MULTICAST)
8551 dev_change_rx_flags(dev, IFF_MULTICAST);
8552
8553 dev_set_rx_mode(dev);
8554
8555 /*
8556 * Have we downed the interface. We handle IFF_UP ourselves
8557 * according to user attempts to set it, rather than blindly
8558 * setting it.
8559 */
8560
8561 ret = 0;
8562 if ((old_flags ^ flags) & IFF_UP) {
8563 if (old_flags & IFF_UP)
8564 __dev_close(dev);
8565 else
8566 ret = __dev_open(dev, extack);
8567 }
8568
8569 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8570 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8571 unsigned int old_flags = dev->flags;
8572
8573 dev->gflags ^= IFF_PROMISC;
8574
8575 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8576 if (dev->flags != old_flags)
8577 dev_set_rx_mode(dev);
8578 }
8579
8580 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8581 * is important. Some (broken) drivers set IFF_PROMISC, when
8582 * IFF_ALLMULTI is requested not asking us and not reporting.
8583 */
8584 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8585 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8586
8587 dev->gflags ^= IFF_ALLMULTI;
8588 __dev_set_allmulti(dev, inc, false);
8589 }
8590
8591 return ret;
8592}
8593
8594void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8595 unsigned int gchanges, u32 portid,
8596 const struct nlmsghdr *nlh)
8597{
8598 unsigned int changes = dev->flags ^ old_flags;
8599
8600 if (gchanges)
8601 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8602
8603 if (changes & IFF_UP) {
8604 if (dev->flags & IFF_UP)
8605 call_netdevice_notifiers(NETDEV_UP, dev);
8606 else
8607 call_netdevice_notifiers(NETDEV_DOWN, dev);
8608 }
8609
8610 if (dev->flags & IFF_UP &&
8611 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8612 struct netdev_notifier_change_info change_info = {
8613 .info = {
8614 .dev = dev,
8615 },
8616 .flags_changed = changes,
8617 };
8618
8619 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8620 }
8621}
8622
8623/**
8624 * dev_change_flags - change device settings
8625 * @dev: device
8626 * @flags: device state flags
8627 * @extack: netlink extended ack
8628 *
8629 * Change settings on device based state flags. The flags are
8630 * in the userspace exported format.
8631 */
8632int dev_change_flags(struct net_device *dev, unsigned int flags,
8633 struct netlink_ext_ack *extack)
8634{
8635 int ret;
8636 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8637
8638 ret = __dev_change_flags(dev, flags, extack);
8639 if (ret < 0)
8640 return ret;
8641
8642 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8643 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8644 return ret;
8645}
8646EXPORT_SYMBOL(dev_change_flags);
8647
8648int __dev_set_mtu(struct net_device *dev, int new_mtu)
8649{
8650 const struct net_device_ops *ops = dev->netdev_ops;
8651
8652 if (ops->ndo_change_mtu)
8653 return ops->ndo_change_mtu(dev, new_mtu);
8654
8655 /* Pairs with all the lockless reads of dev->mtu in the stack */
8656 WRITE_ONCE(dev->mtu, new_mtu);
8657 return 0;
8658}
8659EXPORT_SYMBOL(__dev_set_mtu);
8660
8661int dev_validate_mtu(struct net_device *dev, int new_mtu,
8662 struct netlink_ext_ack *extack)
8663{
8664 /* MTU must be positive, and in range */
8665 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8666 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8667 return -EINVAL;
8668 }
8669
8670 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8671 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8672 return -EINVAL;
8673 }
8674 return 0;
8675}
8676
8677/**
8678 * dev_set_mtu_ext - Change maximum transfer unit
8679 * @dev: device
8680 * @new_mtu: new transfer unit
8681 * @extack: netlink extended ack
8682 *
8683 * Change the maximum transfer size of the network device.
8684 */
8685int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8686 struct netlink_ext_ack *extack)
8687{
8688 int err, orig_mtu;
8689
8690 if (new_mtu == dev->mtu)
8691 return 0;
8692
8693 err = dev_validate_mtu(dev, new_mtu, extack);
8694 if (err)
8695 return err;
8696
8697 if (!netif_device_present(dev))
8698 return -ENODEV;
8699
8700 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8701 err = notifier_to_errno(err);
8702 if (err)
8703 return err;
8704
8705 orig_mtu = dev->mtu;
8706 err = __dev_set_mtu(dev, new_mtu);
8707
8708 if (!err) {
8709 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8710 orig_mtu);
8711 err = notifier_to_errno(err);
8712 if (err) {
8713 /* setting mtu back and notifying everyone again,
8714 * so that they have a chance to revert changes.
8715 */
8716 __dev_set_mtu(dev, orig_mtu);
8717 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8718 new_mtu);
8719 }
8720 }
8721 return err;
8722}
8723
8724int dev_set_mtu(struct net_device *dev, int new_mtu)
8725{
8726 struct netlink_ext_ack extack;
8727 int err;
8728
8729 memset(&extack, 0, sizeof(extack));
8730 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8731 if (err && extack._msg)
8732 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8733 return err;
8734}
8735EXPORT_SYMBOL(dev_set_mtu);
8736
8737/**
8738 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8739 * @dev: device
8740 * @new_len: new tx queue length
8741 */
8742int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8743{
8744 unsigned int orig_len = dev->tx_queue_len;
8745 int res;
8746
8747 if (new_len != (unsigned int)new_len)
8748 return -ERANGE;
8749
8750 if (new_len != orig_len) {
8751 dev->tx_queue_len = new_len;
8752 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8753 res = notifier_to_errno(res);
8754 if (res)
8755 goto err_rollback;
8756 res = dev_qdisc_change_tx_queue_len(dev);
8757 if (res)
8758 goto err_rollback;
8759 }
8760
8761 return 0;
8762
8763err_rollback:
8764 netdev_err(dev, "refused to change device tx_queue_len\n");
8765 dev->tx_queue_len = orig_len;
8766 return res;
8767}
8768
8769/**
8770 * dev_set_group - Change group this device belongs to
8771 * @dev: device
8772 * @new_group: group this device should belong to
8773 */
8774void dev_set_group(struct net_device *dev, int new_group)
8775{
8776 dev->group = new_group;
8777}
8778
8779/**
8780 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8781 * @dev: device
8782 * @addr: new address
8783 * @extack: netlink extended ack
8784 */
8785int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8786 struct netlink_ext_ack *extack)
8787{
8788 struct netdev_notifier_pre_changeaddr_info info = {
8789 .info.dev = dev,
8790 .info.extack = extack,
8791 .dev_addr = addr,
8792 };
8793 int rc;
8794
8795 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8796 return notifier_to_errno(rc);
8797}
8798EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8799
8800/**
8801 * dev_set_mac_address - Change Media Access Control Address
8802 * @dev: device
8803 * @sa: new address
8804 * @extack: netlink extended ack
8805 *
8806 * Change the hardware (MAC) address of the device
8807 */
8808int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8809 struct netlink_ext_ack *extack)
8810{
8811 const struct net_device_ops *ops = dev->netdev_ops;
8812 int err;
8813
8814 if (!ops->ndo_set_mac_address)
8815 return -EOPNOTSUPP;
8816 if (sa->sa_family != dev->type)
8817 return -EINVAL;
8818 if (!netif_device_present(dev))
8819 return -ENODEV;
8820 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8821 if (err)
8822 return err;
8823 err = ops->ndo_set_mac_address(dev, sa);
8824 if (err)
8825 return err;
8826 dev->addr_assign_type = NET_ADDR_SET;
8827 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8828 add_device_randomness(dev->dev_addr, dev->addr_len);
8829 return 0;
8830}
8831EXPORT_SYMBOL(dev_set_mac_address);
8832
8833static DECLARE_RWSEM(dev_addr_sem);
8834
8835int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8836 struct netlink_ext_ack *extack)
8837{
8838 int ret;
8839
8840 down_write(&dev_addr_sem);
8841 ret = dev_set_mac_address(dev, sa, extack);
8842 up_write(&dev_addr_sem);
8843 return ret;
8844}
8845EXPORT_SYMBOL(dev_set_mac_address_user);
8846
8847int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8848{
8849 size_t size = sizeof(sa->sa_data_min);
8850 struct net_device *dev;
8851 int ret = 0;
8852
8853 down_read(&dev_addr_sem);
8854 rcu_read_lock();
8855
8856 dev = dev_get_by_name_rcu(net, dev_name);
8857 if (!dev) {
8858 ret = -ENODEV;
8859 goto unlock;
8860 }
8861 if (!dev->addr_len)
8862 memset(sa->sa_data, 0, size);
8863 else
8864 memcpy(sa->sa_data, dev->dev_addr,
8865 min_t(size_t, size, dev->addr_len));
8866 sa->sa_family = dev->type;
8867
8868unlock:
8869 rcu_read_unlock();
8870 up_read(&dev_addr_sem);
8871 return ret;
8872}
8873EXPORT_SYMBOL(dev_get_mac_address);
8874
8875/**
8876 * dev_change_carrier - Change device carrier
8877 * @dev: device
8878 * @new_carrier: new value
8879 *
8880 * Change device carrier
8881 */
8882int dev_change_carrier(struct net_device *dev, bool new_carrier)
8883{
8884 const struct net_device_ops *ops = dev->netdev_ops;
8885
8886 if (!ops->ndo_change_carrier)
8887 return -EOPNOTSUPP;
8888 if (!netif_device_present(dev))
8889 return -ENODEV;
8890 return ops->ndo_change_carrier(dev, new_carrier);
8891}
8892
8893/**
8894 * dev_get_phys_port_id - Get device physical port ID
8895 * @dev: device
8896 * @ppid: port ID
8897 *
8898 * Get device physical port ID
8899 */
8900int dev_get_phys_port_id(struct net_device *dev,
8901 struct netdev_phys_item_id *ppid)
8902{
8903 const struct net_device_ops *ops = dev->netdev_ops;
8904
8905 if (!ops->ndo_get_phys_port_id)
8906 return -EOPNOTSUPP;
8907 return ops->ndo_get_phys_port_id(dev, ppid);
8908}
8909
8910/**
8911 * dev_get_phys_port_name - Get device physical port name
8912 * @dev: device
8913 * @name: port name
8914 * @len: limit of bytes to copy to name
8915 *
8916 * Get device physical port name
8917 */
8918int dev_get_phys_port_name(struct net_device *dev,
8919 char *name, size_t len)
8920{
8921 const struct net_device_ops *ops = dev->netdev_ops;
8922 int err;
8923
8924 if (ops->ndo_get_phys_port_name) {
8925 err = ops->ndo_get_phys_port_name(dev, name, len);
8926 if (err != -EOPNOTSUPP)
8927 return err;
8928 }
8929 return devlink_compat_phys_port_name_get(dev, name, len);
8930}
8931
8932/**
8933 * dev_get_port_parent_id - Get the device's port parent identifier
8934 * @dev: network device
8935 * @ppid: pointer to a storage for the port's parent identifier
8936 * @recurse: allow/disallow recursion to lower devices
8937 *
8938 * Get the devices's port parent identifier
8939 */
8940int dev_get_port_parent_id(struct net_device *dev,
8941 struct netdev_phys_item_id *ppid,
8942 bool recurse)
8943{
8944 const struct net_device_ops *ops = dev->netdev_ops;
8945 struct netdev_phys_item_id first = { };
8946 struct net_device *lower_dev;
8947 struct list_head *iter;
8948 int err;
8949
8950 if (ops->ndo_get_port_parent_id) {
8951 err = ops->ndo_get_port_parent_id(dev, ppid);
8952 if (err != -EOPNOTSUPP)
8953 return err;
8954 }
8955
8956 err = devlink_compat_switch_id_get(dev, ppid);
8957 if (!recurse || err != -EOPNOTSUPP)
8958 return err;
8959
8960 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8961 err = dev_get_port_parent_id(lower_dev, ppid, true);
8962 if (err)
8963 break;
8964 if (!first.id_len)
8965 first = *ppid;
8966 else if (memcmp(&first, ppid, sizeof(*ppid)))
8967 return -EOPNOTSUPP;
8968 }
8969
8970 return err;
8971}
8972EXPORT_SYMBOL(dev_get_port_parent_id);
8973
8974/**
8975 * netdev_port_same_parent_id - Indicate if two network devices have
8976 * the same port parent identifier
8977 * @a: first network device
8978 * @b: second network device
8979 */
8980bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8981{
8982 struct netdev_phys_item_id a_id = { };
8983 struct netdev_phys_item_id b_id = { };
8984
8985 if (dev_get_port_parent_id(a, &a_id, true) ||
8986 dev_get_port_parent_id(b, &b_id, true))
8987 return false;
8988
8989 return netdev_phys_item_id_same(&a_id, &b_id);
8990}
8991EXPORT_SYMBOL(netdev_port_same_parent_id);
8992
8993/**
8994 * dev_change_proto_down - set carrier according to proto_down.
8995 *
8996 * @dev: device
8997 * @proto_down: new value
8998 */
8999int dev_change_proto_down(struct net_device *dev, bool proto_down)
9000{
9001 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9002 return -EOPNOTSUPP;
9003 if (!netif_device_present(dev))
9004 return -ENODEV;
9005 if (proto_down)
9006 netif_carrier_off(dev);
9007 else
9008 netif_carrier_on(dev);
9009 dev->proto_down = proto_down;
9010 return 0;
9011}
9012
9013/**
9014 * dev_change_proto_down_reason - proto down reason
9015 *
9016 * @dev: device
9017 * @mask: proto down mask
9018 * @value: proto down value
9019 */
9020void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9021 u32 value)
9022{
9023 int b;
9024
9025 if (!mask) {
9026 dev->proto_down_reason = value;
9027 } else {
9028 for_each_set_bit(b, &mask, 32) {
9029 if (value & (1 << b))
9030 dev->proto_down_reason |= BIT(b);
9031 else
9032 dev->proto_down_reason &= ~BIT(b);
9033 }
9034 }
9035}
9036
9037struct bpf_xdp_link {
9038 struct bpf_link link;
9039 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9040 int flags;
9041};
9042
9043static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9044{
9045 if (flags & XDP_FLAGS_HW_MODE)
9046 return XDP_MODE_HW;
9047 if (flags & XDP_FLAGS_DRV_MODE)
9048 return XDP_MODE_DRV;
9049 if (flags & XDP_FLAGS_SKB_MODE)
9050 return XDP_MODE_SKB;
9051 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9052}
9053
9054static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9055{
9056 switch (mode) {
9057 case XDP_MODE_SKB:
9058 return generic_xdp_install;
9059 case XDP_MODE_DRV:
9060 case XDP_MODE_HW:
9061 return dev->netdev_ops->ndo_bpf;
9062 default:
9063 return NULL;
9064 }
9065}
9066
9067static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9068 enum bpf_xdp_mode mode)
9069{
9070 return dev->xdp_state[mode].link;
9071}
9072
9073static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9074 enum bpf_xdp_mode mode)
9075{
9076 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9077
9078 if (link)
9079 return link->link.prog;
9080 return dev->xdp_state[mode].prog;
9081}
9082
9083u8 dev_xdp_prog_count(struct net_device *dev)
9084{
9085 u8 count = 0;
9086 int i;
9087
9088 for (i = 0; i < __MAX_XDP_MODE; i++)
9089 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9090 count++;
9091 return count;
9092}
9093EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9094
9095u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9096{
9097 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9098
9099 return prog ? prog->aux->id : 0;
9100}
9101
9102static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9103 struct bpf_xdp_link *link)
9104{
9105 dev->xdp_state[mode].link = link;
9106 dev->xdp_state[mode].prog = NULL;
9107}
9108
9109static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9110 struct bpf_prog *prog)
9111{
9112 dev->xdp_state[mode].link = NULL;
9113 dev->xdp_state[mode].prog = prog;
9114}
9115
9116static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9117 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9118 u32 flags, struct bpf_prog *prog)
9119{
9120 struct netdev_bpf xdp;
9121 int err;
9122
9123 memset(&xdp, 0, sizeof(xdp));
9124 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9125 xdp.extack = extack;
9126 xdp.flags = flags;
9127 xdp.prog = prog;
9128
9129 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9130 * "moved" into driver), so they don't increment it on their own, but
9131 * they do decrement refcnt when program is detached or replaced.
9132 * Given net_device also owns link/prog, we need to bump refcnt here
9133 * to prevent drivers from underflowing it.
9134 */
9135 if (prog)
9136 bpf_prog_inc(prog);
9137 err = bpf_op(dev, &xdp);
9138 if (err) {
9139 if (prog)
9140 bpf_prog_put(prog);
9141 return err;
9142 }
9143
9144 if (mode != XDP_MODE_HW)
9145 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9146
9147 return 0;
9148}
9149
9150static void dev_xdp_uninstall(struct net_device *dev)
9151{
9152 struct bpf_xdp_link *link;
9153 struct bpf_prog *prog;
9154 enum bpf_xdp_mode mode;
9155 bpf_op_t bpf_op;
9156
9157 ASSERT_RTNL();
9158
9159 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9160 prog = dev_xdp_prog(dev, mode);
9161 if (!prog)
9162 continue;
9163
9164 bpf_op = dev_xdp_bpf_op(dev, mode);
9165 if (!bpf_op)
9166 continue;
9167
9168 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9169
9170 /* auto-detach link from net device */
9171 link = dev_xdp_link(dev, mode);
9172 if (link)
9173 link->dev = NULL;
9174 else
9175 bpf_prog_put(prog);
9176
9177 dev_xdp_set_link(dev, mode, NULL);
9178 }
9179}
9180
9181static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9182 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9183 struct bpf_prog *old_prog, u32 flags)
9184{
9185 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9186 struct bpf_prog *cur_prog;
9187 struct net_device *upper;
9188 struct list_head *iter;
9189 enum bpf_xdp_mode mode;
9190 bpf_op_t bpf_op;
9191 int err;
9192
9193 ASSERT_RTNL();
9194
9195 /* either link or prog attachment, never both */
9196 if (link && (new_prog || old_prog))
9197 return -EINVAL;
9198 /* link supports only XDP mode flags */
9199 if (link && (flags & ~XDP_FLAGS_MODES)) {
9200 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9201 return -EINVAL;
9202 }
9203 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9204 if (num_modes > 1) {
9205 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9206 return -EINVAL;
9207 }
9208 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9209 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9210 NL_SET_ERR_MSG(extack,
9211 "More than one program loaded, unset mode is ambiguous");
9212 return -EINVAL;
9213 }
9214 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9215 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9216 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9217 return -EINVAL;
9218 }
9219
9220 mode = dev_xdp_mode(dev, flags);
9221 /* can't replace attached link */
9222 if (dev_xdp_link(dev, mode)) {
9223 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9224 return -EBUSY;
9225 }
9226
9227 /* don't allow if an upper device already has a program */
9228 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9229 if (dev_xdp_prog_count(upper) > 0) {
9230 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9231 return -EEXIST;
9232 }
9233 }
9234
9235 cur_prog = dev_xdp_prog(dev, mode);
9236 /* can't replace attached prog with link */
9237 if (link && cur_prog) {
9238 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9239 return -EBUSY;
9240 }
9241 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9242 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9243 return -EEXIST;
9244 }
9245
9246 /* put effective new program into new_prog */
9247 if (link)
9248 new_prog = link->link.prog;
9249
9250 if (new_prog) {
9251 bool offload = mode == XDP_MODE_HW;
9252 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9253 ? XDP_MODE_DRV : XDP_MODE_SKB;
9254
9255 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9256 NL_SET_ERR_MSG(extack, "XDP program already attached");
9257 return -EBUSY;
9258 }
9259 if (!offload && dev_xdp_prog(dev, other_mode)) {
9260 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9261 return -EEXIST;
9262 }
9263 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9264 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9265 return -EINVAL;
9266 }
9267 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9268 NL_SET_ERR_MSG(extack, "Program bound to different device");
9269 return -EINVAL;
9270 }
9271 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9272 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9273 return -EINVAL;
9274 }
9275 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9276 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9277 return -EINVAL;
9278 }
9279 }
9280
9281 /* don't call drivers if the effective program didn't change */
9282 if (new_prog != cur_prog) {
9283 bpf_op = dev_xdp_bpf_op(dev, mode);
9284 if (!bpf_op) {
9285 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9286 return -EOPNOTSUPP;
9287 }
9288
9289 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9290 if (err)
9291 return err;
9292 }
9293
9294 if (link)
9295 dev_xdp_set_link(dev, mode, link);
9296 else
9297 dev_xdp_set_prog(dev, mode, new_prog);
9298 if (cur_prog)
9299 bpf_prog_put(cur_prog);
9300
9301 return 0;
9302}
9303
9304static int dev_xdp_attach_link(struct net_device *dev,
9305 struct netlink_ext_ack *extack,
9306 struct bpf_xdp_link *link)
9307{
9308 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9309}
9310
9311static int dev_xdp_detach_link(struct net_device *dev,
9312 struct netlink_ext_ack *extack,
9313 struct bpf_xdp_link *link)
9314{
9315 enum bpf_xdp_mode mode;
9316 bpf_op_t bpf_op;
9317
9318 ASSERT_RTNL();
9319
9320 mode = dev_xdp_mode(dev, link->flags);
9321 if (dev_xdp_link(dev, mode) != link)
9322 return -EINVAL;
9323
9324 bpf_op = dev_xdp_bpf_op(dev, mode);
9325 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9326 dev_xdp_set_link(dev, mode, NULL);
9327 return 0;
9328}
9329
9330static void bpf_xdp_link_release(struct bpf_link *link)
9331{
9332 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9333
9334 rtnl_lock();
9335
9336 /* if racing with net_device's tear down, xdp_link->dev might be
9337 * already NULL, in which case link was already auto-detached
9338 */
9339 if (xdp_link->dev) {
9340 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9341 xdp_link->dev = NULL;
9342 }
9343
9344 rtnl_unlock();
9345}
9346
9347static int bpf_xdp_link_detach(struct bpf_link *link)
9348{
9349 bpf_xdp_link_release(link);
9350 return 0;
9351}
9352
9353static void bpf_xdp_link_dealloc(struct bpf_link *link)
9354{
9355 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9356
9357 kfree(xdp_link);
9358}
9359
9360static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9361 struct seq_file *seq)
9362{
9363 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9364 u32 ifindex = 0;
9365
9366 rtnl_lock();
9367 if (xdp_link->dev)
9368 ifindex = xdp_link->dev->ifindex;
9369 rtnl_unlock();
9370
9371 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9372}
9373
9374static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9375 struct bpf_link_info *info)
9376{
9377 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9378 u32 ifindex = 0;
9379
9380 rtnl_lock();
9381 if (xdp_link->dev)
9382 ifindex = xdp_link->dev->ifindex;
9383 rtnl_unlock();
9384
9385 info->xdp.ifindex = ifindex;
9386 return 0;
9387}
9388
9389static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9390 struct bpf_prog *old_prog)
9391{
9392 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9393 enum bpf_xdp_mode mode;
9394 bpf_op_t bpf_op;
9395 int err = 0;
9396
9397 rtnl_lock();
9398
9399 /* link might have been auto-released already, so fail */
9400 if (!xdp_link->dev) {
9401 err = -ENOLINK;
9402 goto out_unlock;
9403 }
9404
9405 if (old_prog && link->prog != old_prog) {
9406 err = -EPERM;
9407 goto out_unlock;
9408 }
9409 old_prog = link->prog;
9410 if (old_prog->type != new_prog->type ||
9411 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9412 err = -EINVAL;
9413 goto out_unlock;
9414 }
9415
9416 if (old_prog == new_prog) {
9417 /* no-op, don't disturb drivers */
9418 bpf_prog_put(new_prog);
9419 goto out_unlock;
9420 }
9421
9422 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9423 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9424 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9425 xdp_link->flags, new_prog);
9426 if (err)
9427 goto out_unlock;
9428
9429 old_prog = xchg(&link->prog, new_prog);
9430 bpf_prog_put(old_prog);
9431
9432out_unlock:
9433 rtnl_unlock();
9434 return err;
9435}
9436
9437static const struct bpf_link_ops bpf_xdp_link_lops = {
9438 .release = bpf_xdp_link_release,
9439 .dealloc = bpf_xdp_link_dealloc,
9440 .detach = bpf_xdp_link_detach,
9441 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9442 .fill_link_info = bpf_xdp_link_fill_link_info,
9443 .update_prog = bpf_xdp_link_update,
9444};
9445
9446int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9447{
9448 struct net *net = current->nsproxy->net_ns;
9449 struct bpf_link_primer link_primer;
9450 struct bpf_xdp_link *link;
9451 struct net_device *dev;
9452 int err, fd;
9453
9454 rtnl_lock();
9455 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9456 if (!dev) {
9457 rtnl_unlock();
9458 return -EINVAL;
9459 }
9460
9461 link = kzalloc(sizeof(*link), GFP_USER);
9462 if (!link) {
9463 err = -ENOMEM;
9464 goto unlock;
9465 }
9466
9467 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9468 link->dev = dev;
9469 link->flags = attr->link_create.flags;
9470
9471 err = bpf_link_prime(&link->link, &link_primer);
9472 if (err) {
9473 kfree(link);
9474 goto unlock;
9475 }
9476
9477 err = dev_xdp_attach_link(dev, NULL, link);
9478 rtnl_unlock();
9479
9480 if (err) {
9481 link->dev = NULL;
9482 bpf_link_cleanup(&link_primer);
9483 goto out_put_dev;
9484 }
9485
9486 fd = bpf_link_settle(&link_primer);
9487 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9488 dev_put(dev);
9489 return fd;
9490
9491unlock:
9492 rtnl_unlock();
9493
9494out_put_dev:
9495 dev_put(dev);
9496 return err;
9497}
9498
9499/**
9500 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9501 * @dev: device
9502 * @extack: netlink extended ack
9503 * @fd: new program fd or negative value to clear
9504 * @expected_fd: old program fd that userspace expects to replace or clear
9505 * @flags: xdp-related flags
9506 *
9507 * Set or clear a bpf program for a device
9508 */
9509int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9510 int fd, int expected_fd, u32 flags)
9511{
9512 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9513 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9514 int err;
9515
9516 ASSERT_RTNL();
9517
9518 if (fd >= 0) {
9519 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9520 mode != XDP_MODE_SKB);
9521 if (IS_ERR(new_prog))
9522 return PTR_ERR(new_prog);
9523 }
9524
9525 if (expected_fd >= 0) {
9526 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9527 mode != XDP_MODE_SKB);
9528 if (IS_ERR(old_prog)) {
9529 err = PTR_ERR(old_prog);
9530 old_prog = NULL;
9531 goto err_out;
9532 }
9533 }
9534
9535 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9536
9537err_out:
9538 if (err && new_prog)
9539 bpf_prog_put(new_prog);
9540 if (old_prog)
9541 bpf_prog_put(old_prog);
9542 return err;
9543}
9544
9545/**
9546 * dev_new_index - allocate an ifindex
9547 * @net: the applicable net namespace
9548 *
9549 * Returns a suitable unique value for a new device interface
9550 * number. The caller must hold the rtnl semaphore or the
9551 * dev_base_lock to be sure it remains unique.
9552 */
9553static int dev_new_index(struct net *net)
9554{
9555 int ifindex = net->ifindex;
9556
9557 for (;;) {
9558 if (++ifindex <= 0)
9559 ifindex = 1;
9560 if (!__dev_get_by_index(net, ifindex))
9561 return net->ifindex = ifindex;
9562 }
9563}
9564
9565/* Delayed registration/unregisteration */
9566LIST_HEAD(net_todo_list);
9567DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9568
9569static void net_set_todo(struct net_device *dev)
9570{
9571 list_add_tail(&dev->todo_list, &net_todo_list);
9572 atomic_inc(&dev_net(dev)->dev_unreg_count);
9573}
9574
9575static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9576 struct net_device *upper, netdev_features_t features)
9577{
9578 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9579 netdev_features_t feature;
9580 int feature_bit;
9581
9582 for_each_netdev_feature(upper_disables, feature_bit) {
9583 feature = __NETIF_F_BIT(feature_bit);
9584 if (!(upper->wanted_features & feature)
9585 && (features & feature)) {
9586 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9587 &feature, upper->name);
9588 features &= ~feature;
9589 }
9590 }
9591
9592 return features;
9593}
9594
9595static void netdev_sync_lower_features(struct net_device *upper,
9596 struct net_device *lower, netdev_features_t features)
9597{
9598 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9599 netdev_features_t feature;
9600 int feature_bit;
9601
9602 for_each_netdev_feature(upper_disables, feature_bit) {
9603 feature = __NETIF_F_BIT(feature_bit);
9604 if (!(features & feature) && (lower->features & feature)) {
9605 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9606 &feature, lower->name);
9607 lower->wanted_features &= ~feature;
9608 __netdev_update_features(lower);
9609
9610 if (unlikely(lower->features & feature))
9611 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9612 &feature, lower->name);
9613 else
9614 netdev_features_change(lower);
9615 }
9616 }
9617}
9618
9619static netdev_features_t netdev_fix_features(struct net_device *dev,
9620 netdev_features_t features)
9621{
9622 /* Fix illegal checksum combinations */
9623 if ((features & NETIF_F_HW_CSUM) &&
9624 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9625 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9626 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9627 }
9628
9629 /* TSO requires that SG is present as well. */
9630 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9631 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9632 features &= ~NETIF_F_ALL_TSO;
9633 }
9634
9635 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9636 !(features & NETIF_F_IP_CSUM)) {
9637 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9638 features &= ~NETIF_F_TSO;
9639 features &= ~NETIF_F_TSO_ECN;
9640 }
9641
9642 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9643 !(features & NETIF_F_IPV6_CSUM)) {
9644 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9645 features &= ~NETIF_F_TSO6;
9646 }
9647
9648 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9649 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9650 features &= ~NETIF_F_TSO_MANGLEID;
9651
9652 /* TSO ECN requires that TSO is present as well. */
9653 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9654 features &= ~NETIF_F_TSO_ECN;
9655
9656 /* Software GSO depends on SG. */
9657 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9658 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9659 features &= ~NETIF_F_GSO;
9660 }
9661
9662 /* GSO partial features require GSO partial be set */
9663 if ((features & dev->gso_partial_features) &&
9664 !(features & NETIF_F_GSO_PARTIAL)) {
9665 netdev_dbg(dev,
9666 "Dropping partially supported GSO features since no GSO partial.\n");
9667 features &= ~dev->gso_partial_features;
9668 }
9669
9670 if (!(features & NETIF_F_RXCSUM)) {
9671 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9672 * successfully merged by hardware must also have the
9673 * checksum verified by hardware. If the user does not
9674 * want to enable RXCSUM, logically, we should disable GRO_HW.
9675 */
9676 if (features & NETIF_F_GRO_HW) {
9677 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9678 features &= ~NETIF_F_GRO_HW;
9679 }
9680 }
9681
9682 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9683 if (features & NETIF_F_RXFCS) {
9684 if (features & NETIF_F_LRO) {
9685 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9686 features &= ~NETIF_F_LRO;
9687 }
9688
9689 if (features & NETIF_F_GRO_HW) {
9690 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9691 features &= ~NETIF_F_GRO_HW;
9692 }
9693 }
9694
9695 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9696 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9697 features &= ~NETIF_F_LRO;
9698 }
9699
9700 if (features & NETIF_F_HW_TLS_TX) {
9701 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9702 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9703 bool hw_csum = features & NETIF_F_HW_CSUM;
9704
9705 if (!ip_csum && !hw_csum) {
9706 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9707 features &= ~NETIF_F_HW_TLS_TX;
9708 }
9709 }
9710
9711 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9712 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9713 features &= ~NETIF_F_HW_TLS_RX;
9714 }
9715
9716 return features;
9717}
9718
9719int __netdev_update_features(struct net_device *dev)
9720{
9721 struct net_device *upper, *lower;
9722 netdev_features_t features;
9723 struct list_head *iter;
9724 int err = -1;
9725
9726 ASSERT_RTNL();
9727
9728 features = netdev_get_wanted_features(dev);
9729
9730 if (dev->netdev_ops->ndo_fix_features)
9731 features = dev->netdev_ops->ndo_fix_features(dev, features);
9732
9733 /* driver might be less strict about feature dependencies */
9734 features = netdev_fix_features(dev, features);
9735
9736 /* some features can't be enabled if they're off on an upper device */
9737 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9738 features = netdev_sync_upper_features(dev, upper, features);
9739
9740 if (dev->features == features)
9741 goto sync_lower;
9742
9743 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9744 &dev->features, &features);
9745
9746 if (dev->netdev_ops->ndo_set_features)
9747 err = dev->netdev_ops->ndo_set_features(dev, features);
9748 else
9749 err = 0;
9750
9751 if (unlikely(err < 0)) {
9752 netdev_err(dev,
9753 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9754 err, &features, &dev->features);
9755 /* return non-0 since some features might have changed and
9756 * it's better to fire a spurious notification than miss it
9757 */
9758 return -1;
9759 }
9760
9761sync_lower:
9762 /* some features must be disabled on lower devices when disabled
9763 * on an upper device (think: bonding master or bridge)
9764 */
9765 netdev_for_each_lower_dev(dev, lower, iter)
9766 netdev_sync_lower_features(dev, lower, features);
9767
9768 if (!err) {
9769 netdev_features_t diff = features ^ dev->features;
9770
9771 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9772 /* udp_tunnel_{get,drop}_rx_info both need
9773 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9774 * device, or they won't do anything.
9775 * Thus we need to update dev->features
9776 * *before* calling udp_tunnel_get_rx_info,
9777 * but *after* calling udp_tunnel_drop_rx_info.
9778 */
9779 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9780 dev->features = features;
9781 udp_tunnel_get_rx_info(dev);
9782 } else {
9783 udp_tunnel_drop_rx_info(dev);
9784 }
9785 }
9786
9787 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9788 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9789 dev->features = features;
9790 err |= vlan_get_rx_ctag_filter_info(dev);
9791 } else {
9792 vlan_drop_rx_ctag_filter_info(dev);
9793 }
9794 }
9795
9796 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9797 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9798 dev->features = features;
9799 err |= vlan_get_rx_stag_filter_info(dev);
9800 } else {
9801 vlan_drop_rx_stag_filter_info(dev);
9802 }
9803 }
9804
9805 dev->features = features;
9806 }
9807
9808 return err < 0 ? 0 : 1;
9809}
9810
9811/**
9812 * netdev_update_features - recalculate device features
9813 * @dev: the device to check
9814 *
9815 * Recalculate dev->features set and send notifications if it
9816 * has changed. Should be called after driver or hardware dependent
9817 * conditions might have changed that influence the features.
9818 */
9819void netdev_update_features(struct net_device *dev)
9820{
9821 if (__netdev_update_features(dev))
9822 netdev_features_change(dev);
9823}
9824EXPORT_SYMBOL(netdev_update_features);
9825
9826/**
9827 * netdev_change_features - recalculate device features
9828 * @dev: the device to check
9829 *
9830 * Recalculate dev->features set and send notifications even
9831 * if they have not changed. Should be called instead of
9832 * netdev_update_features() if also dev->vlan_features might
9833 * have changed to allow the changes to be propagated to stacked
9834 * VLAN devices.
9835 */
9836void netdev_change_features(struct net_device *dev)
9837{
9838 __netdev_update_features(dev);
9839 netdev_features_change(dev);
9840}
9841EXPORT_SYMBOL(netdev_change_features);
9842
9843/**
9844 * netif_stacked_transfer_operstate - transfer operstate
9845 * @rootdev: the root or lower level device to transfer state from
9846 * @dev: the device to transfer operstate to
9847 *
9848 * Transfer operational state from root to device. This is normally
9849 * called when a stacking relationship exists between the root
9850 * device and the device(a leaf device).
9851 */
9852void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9853 struct net_device *dev)
9854{
9855 if (rootdev->operstate == IF_OPER_DORMANT)
9856 netif_dormant_on(dev);
9857 else
9858 netif_dormant_off(dev);
9859
9860 if (rootdev->operstate == IF_OPER_TESTING)
9861 netif_testing_on(dev);
9862 else
9863 netif_testing_off(dev);
9864
9865 if (netif_carrier_ok(rootdev))
9866 netif_carrier_on(dev);
9867 else
9868 netif_carrier_off(dev);
9869}
9870EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9871
9872static int netif_alloc_rx_queues(struct net_device *dev)
9873{
9874 unsigned int i, count = dev->num_rx_queues;
9875 struct netdev_rx_queue *rx;
9876 size_t sz = count * sizeof(*rx);
9877 int err = 0;
9878
9879 BUG_ON(count < 1);
9880
9881 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9882 if (!rx)
9883 return -ENOMEM;
9884
9885 dev->_rx = rx;
9886
9887 for (i = 0; i < count; i++) {
9888 rx[i].dev = dev;
9889
9890 /* XDP RX-queue setup */
9891 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9892 if (err < 0)
9893 goto err_rxq_info;
9894 }
9895 return 0;
9896
9897err_rxq_info:
9898 /* Rollback successful reg's and free other resources */
9899 while (i--)
9900 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9901 kvfree(dev->_rx);
9902 dev->_rx = NULL;
9903 return err;
9904}
9905
9906static void netif_free_rx_queues(struct net_device *dev)
9907{
9908 unsigned int i, count = dev->num_rx_queues;
9909
9910 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9911 if (!dev->_rx)
9912 return;
9913
9914 for (i = 0; i < count; i++)
9915 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9916
9917 kvfree(dev->_rx);
9918}
9919
9920static void netdev_init_one_queue(struct net_device *dev,
9921 struct netdev_queue *queue, void *_unused)
9922{
9923 /* Initialize queue lock */
9924 spin_lock_init(&queue->_xmit_lock);
9925 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9926 queue->xmit_lock_owner = -1;
9927 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9928 queue->dev = dev;
9929#ifdef CONFIG_BQL
9930 dql_init(&queue->dql, HZ);
9931#endif
9932}
9933
9934static void netif_free_tx_queues(struct net_device *dev)
9935{
9936 kvfree(dev->_tx);
9937}
9938
9939static int netif_alloc_netdev_queues(struct net_device *dev)
9940{
9941 unsigned int count = dev->num_tx_queues;
9942 struct netdev_queue *tx;
9943 size_t sz = count * sizeof(*tx);
9944
9945 if (count < 1 || count > 0xffff)
9946 return -EINVAL;
9947
9948 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9949 if (!tx)
9950 return -ENOMEM;
9951
9952 dev->_tx = tx;
9953
9954 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9955 spin_lock_init(&dev->tx_global_lock);
9956
9957 return 0;
9958}
9959
9960void netif_tx_stop_all_queues(struct net_device *dev)
9961{
9962 unsigned int i;
9963
9964 for (i = 0; i < dev->num_tx_queues; i++) {
9965 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9966
9967 netif_tx_stop_queue(txq);
9968 }
9969}
9970EXPORT_SYMBOL(netif_tx_stop_all_queues);
9971
9972/**
9973 * register_netdevice() - register a network device
9974 * @dev: device to register
9975 *
9976 * Take a prepared network device structure and make it externally accessible.
9977 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9978 * Callers must hold the rtnl lock - you may want register_netdev()
9979 * instead of this.
9980 */
9981int register_netdevice(struct net_device *dev)
9982{
9983 int ret;
9984 struct net *net = dev_net(dev);
9985
9986 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9987 NETDEV_FEATURE_COUNT);
9988 BUG_ON(dev_boot_phase);
9989 ASSERT_RTNL();
9990
9991 might_sleep();
9992
9993 /* When net_device's are persistent, this will be fatal. */
9994 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9995 BUG_ON(!net);
9996
9997 ret = ethtool_check_ops(dev->ethtool_ops);
9998 if (ret)
9999 return ret;
10000
10001 spin_lock_init(&dev->addr_list_lock);
10002 netdev_set_addr_lockdep_class(dev);
10003
10004 ret = dev_get_valid_name(net, dev, dev->name);
10005 if (ret < 0)
10006 goto out;
10007
10008 ret = -ENOMEM;
10009 dev->name_node = netdev_name_node_head_alloc(dev);
10010 if (!dev->name_node)
10011 goto out;
10012
10013 /* Init, if this function is available */
10014 if (dev->netdev_ops->ndo_init) {
10015 ret = dev->netdev_ops->ndo_init(dev);
10016 if (ret) {
10017 if (ret > 0)
10018 ret = -EIO;
10019 goto err_free_name;
10020 }
10021 }
10022
10023 if (((dev->hw_features | dev->features) &
10024 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10025 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10026 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10027 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10028 ret = -EINVAL;
10029 goto err_uninit;
10030 }
10031
10032 ret = -EBUSY;
10033 if (!dev->ifindex)
10034 dev->ifindex = dev_new_index(net);
10035 else if (__dev_get_by_index(net, dev->ifindex))
10036 goto err_uninit;
10037
10038 /* Transfer changeable features to wanted_features and enable
10039 * software offloads (GSO and GRO).
10040 */
10041 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10042 dev->features |= NETIF_F_SOFT_FEATURES;
10043
10044 if (dev->udp_tunnel_nic_info) {
10045 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10046 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10047 }
10048
10049 dev->wanted_features = dev->features & dev->hw_features;
10050
10051 if (!(dev->flags & IFF_LOOPBACK))
10052 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10053
10054 /* If IPv4 TCP segmentation offload is supported we should also
10055 * allow the device to enable segmenting the frame with the option
10056 * of ignoring a static IP ID value. This doesn't enable the
10057 * feature itself but allows the user to enable it later.
10058 */
10059 if (dev->hw_features & NETIF_F_TSO)
10060 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10061 if (dev->vlan_features & NETIF_F_TSO)
10062 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10063 if (dev->mpls_features & NETIF_F_TSO)
10064 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10065 if (dev->hw_enc_features & NETIF_F_TSO)
10066 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10067
10068 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10069 */
10070 dev->vlan_features |= NETIF_F_HIGHDMA;
10071
10072 /* Make NETIF_F_SG inheritable to tunnel devices.
10073 */
10074 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10075
10076 /* Make NETIF_F_SG inheritable to MPLS.
10077 */
10078 dev->mpls_features |= NETIF_F_SG;
10079
10080 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10081 ret = notifier_to_errno(ret);
10082 if (ret)
10083 goto err_uninit;
10084
10085 ret = netdev_register_kobject(dev);
10086 write_lock(&dev_base_lock);
10087 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10088 write_unlock(&dev_base_lock);
10089 if (ret)
10090 goto err_uninit_notify;
10091
10092 __netdev_update_features(dev);
10093
10094 /*
10095 * Default initial state at registry is that the
10096 * device is present.
10097 */
10098
10099 set_bit(__LINK_STATE_PRESENT, &dev->state);
10100
10101 linkwatch_init_dev(dev);
10102
10103 dev_init_scheduler(dev);
10104
10105 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10106 list_netdevice(dev);
10107
10108 add_device_randomness(dev->dev_addr, dev->addr_len);
10109
10110 /* If the device has permanent device address, driver should
10111 * set dev_addr and also addr_assign_type should be set to
10112 * NET_ADDR_PERM (default value).
10113 */
10114 if (dev->addr_assign_type == NET_ADDR_PERM)
10115 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10116
10117 /* Notify protocols, that a new device appeared. */
10118 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10119 ret = notifier_to_errno(ret);
10120 if (ret) {
10121 /* Expect explicit free_netdev() on failure */
10122 dev->needs_free_netdev = false;
10123 unregister_netdevice_queue(dev, NULL);
10124 goto out;
10125 }
10126 /*
10127 * Prevent userspace races by waiting until the network
10128 * device is fully setup before sending notifications.
10129 */
10130 if (!dev->rtnl_link_ops ||
10131 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10132 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10133
10134out:
10135 return ret;
10136
10137err_uninit_notify:
10138 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10139err_uninit:
10140 if (dev->netdev_ops->ndo_uninit)
10141 dev->netdev_ops->ndo_uninit(dev);
10142 if (dev->priv_destructor)
10143 dev->priv_destructor(dev);
10144err_free_name:
10145 netdev_name_node_free(dev->name_node);
10146 goto out;
10147}
10148EXPORT_SYMBOL(register_netdevice);
10149
10150/**
10151 * init_dummy_netdev - init a dummy network device for NAPI
10152 * @dev: device to init
10153 *
10154 * This takes a network device structure and initialize the minimum
10155 * amount of fields so it can be used to schedule NAPI polls without
10156 * registering a full blown interface. This is to be used by drivers
10157 * that need to tie several hardware interfaces to a single NAPI
10158 * poll scheduler due to HW limitations.
10159 */
10160int init_dummy_netdev(struct net_device *dev)
10161{
10162 /* Clear everything. Note we don't initialize spinlocks
10163 * are they aren't supposed to be taken by any of the
10164 * NAPI code and this dummy netdev is supposed to be
10165 * only ever used for NAPI polls
10166 */
10167 memset(dev, 0, sizeof(struct net_device));
10168
10169 /* make sure we BUG if trying to hit standard
10170 * register/unregister code path
10171 */
10172 dev->reg_state = NETREG_DUMMY;
10173
10174 /* NAPI wants this */
10175 INIT_LIST_HEAD(&dev->napi_list);
10176
10177 /* a dummy interface is started by default */
10178 set_bit(__LINK_STATE_PRESENT, &dev->state);
10179 set_bit(__LINK_STATE_START, &dev->state);
10180
10181 /* napi_busy_loop stats accounting wants this */
10182 dev_net_set(dev, &init_net);
10183
10184 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10185 * because users of this 'device' dont need to change
10186 * its refcount.
10187 */
10188
10189 return 0;
10190}
10191EXPORT_SYMBOL_GPL(init_dummy_netdev);
10192
10193
10194/**
10195 * register_netdev - register a network device
10196 * @dev: device to register
10197 *
10198 * Take a completed network device structure and add it to the kernel
10199 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10200 * chain. 0 is returned on success. A negative errno code is returned
10201 * on a failure to set up the device, or if the name is a duplicate.
10202 *
10203 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10204 * and expands the device name if you passed a format string to
10205 * alloc_netdev.
10206 */
10207int register_netdev(struct net_device *dev)
10208{
10209 int err;
10210
10211 if (rtnl_lock_killable())
10212 return -EINTR;
10213 err = register_netdevice(dev);
10214 rtnl_unlock();
10215 return err;
10216}
10217EXPORT_SYMBOL(register_netdev);
10218
10219int netdev_refcnt_read(const struct net_device *dev)
10220{
10221#ifdef CONFIG_PCPU_DEV_REFCNT
10222 int i, refcnt = 0;
10223
10224 for_each_possible_cpu(i)
10225 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10226 return refcnt;
10227#else
10228 return refcount_read(&dev->dev_refcnt);
10229#endif
10230}
10231EXPORT_SYMBOL(netdev_refcnt_read);
10232
10233int netdev_unregister_timeout_secs __read_mostly = 10;
10234
10235#define WAIT_REFS_MIN_MSECS 1
10236#define WAIT_REFS_MAX_MSECS 250
10237/**
10238 * netdev_wait_allrefs_any - wait until all references are gone.
10239 * @list: list of net_devices to wait on
10240 *
10241 * This is called when unregistering network devices.
10242 *
10243 * Any protocol or device that holds a reference should register
10244 * for netdevice notification, and cleanup and put back the
10245 * reference if they receive an UNREGISTER event.
10246 * We can get stuck here if buggy protocols don't correctly
10247 * call dev_put.
10248 */
10249static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10250{
10251 unsigned long rebroadcast_time, warning_time;
10252 struct net_device *dev;
10253 int wait = 0;
10254
10255 rebroadcast_time = warning_time = jiffies;
10256
10257 list_for_each_entry(dev, list, todo_list)
10258 if (netdev_refcnt_read(dev) == 1)
10259 return dev;
10260
10261 while (true) {
10262 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10263 rtnl_lock();
10264
10265 /* Rebroadcast unregister notification */
10266 list_for_each_entry(dev, list, todo_list)
10267 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10268
10269 __rtnl_unlock();
10270 rcu_barrier();
10271 rtnl_lock();
10272
10273 list_for_each_entry(dev, list, todo_list)
10274 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10275 &dev->state)) {
10276 /* We must not have linkwatch events
10277 * pending on unregister. If this
10278 * happens, we simply run the queue
10279 * unscheduled, resulting in a noop
10280 * for this device.
10281 */
10282 linkwatch_run_queue();
10283 break;
10284 }
10285
10286 __rtnl_unlock();
10287
10288 rebroadcast_time = jiffies;
10289 }
10290
10291 if (!wait) {
10292 rcu_barrier();
10293 wait = WAIT_REFS_MIN_MSECS;
10294 } else {
10295 msleep(wait);
10296 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10297 }
10298
10299 list_for_each_entry(dev, list, todo_list)
10300 if (netdev_refcnt_read(dev) == 1)
10301 return dev;
10302
10303 if (time_after(jiffies, warning_time +
10304 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10305 list_for_each_entry(dev, list, todo_list) {
10306 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10307 dev->name, netdev_refcnt_read(dev));
10308 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10309 }
10310
10311 warning_time = jiffies;
10312 }
10313 }
10314}
10315
10316/* The sequence is:
10317 *
10318 * rtnl_lock();
10319 * ...
10320 * register_netdevice(x1);
10321 * register_netdevice(x2);
10322 * ...
10323 * unregister_netdevice(y1);
10324 * unregister_netdevice(y2);
10325 * ...
10326 * rtnl_unlock();
10327 * free_netdev(y1);
10328 * free_netdev(y2);
10329 *
10330 * We are invoked by rtnl_unlock().
10331 * This allows us to deal with problems:
10332 * 1) We can delete sysfs objects which invoke hotplug
10333 * without deadlocking with linkwatch via keventd.
10334 * 2) Since we run with the RTNL semaphore not held, we can sleep
10335 * safely in order to wait for the netdev refcnt to drop to zero.
10336 *
10337 * We must not return until all unregister events added during
10338 * the interval the lock was held have been completed.
10339 */
10340void netdev_run_todo(void)
10341{
10342 struct net_device *dev, *tmp;
10343 struct list_head list;
10344#ifdef CONFIG_LOCKDEP
10345 struct list_head unlink_list;
10346
10347 list_replace_init(&net_unlink_list, &unlink_list);
10348
10349 while (!list_empty(&unlink_list)) {
10350 struct net_device *dev = list_first_entry(&unlink_list,
10351 struct net_device,
10352 unlink_list);
10353 list_del_init(&dev->unlink_list);
10354 dev->nested_level = dev->lower_level - 1;
10355 }
10356#endif
10357
10358 /* Snapshot list, allow later requests */
10359 list_replace_init(&net_todo_list, &list);
10360
10361 __rtnl_unlock();
10362
10363 /* Wait for rcu callbacks to finish before next phase */
10364 if (!list_empty(&list))
10365 rcu_barrier();
10366
10367 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10368 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10369 netdev_WARN(dev, "run_todo but not unregistering\n");
10370 list_del(&dev->todo_list);
10371 continue;
10372 }
10373
10374 write_lock(&dev_base_lock);
10375 dev->reg_state = NETREG_UNREGISTERED;
10376 write_unlock(&dev_base_lock);
10377 linkwatch_forget_dev(dev);
10378 }
10379
10380 while (!list_empty(&list)) {
10381 dev = netdev_wait_allrefs_any(&list);
10382 list_del(&dev->todo_list);
10383
10384 /* paranoia */
10385 BUG_ON(netdev_refcnt_read(dev) != 1);
10386 BUG_ON(!list_empty(&dev->ptype_all));
10387 BUG_ON(!list_empty(&dev->ptype_specific));
10388 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10389 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10390
10391 if (dev->priv_destructor)
10392 dev->priv_destructor(dev);
10393 if (dev->needs_free_netdev)
10394 free_netdev(dev);
10395
10396 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10397 wake_up(&netdev_unregistering_wq);
10398
10399 /* Free network device */
10400 kobject_put(&dev->dev.kobj);
10401 }
10402}
10403
10404/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10405 * all the same fields in the same order as net_device_stats, with only
10406 * the type differing, but rtnl_link_stats64 may have additional fields
10407 * at the end for newer counters.
10408 */
10409void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10410 const struct net_device_stats *netdev_stats)
10411{
10412 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10413 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10414 u64 *dst = (u64 *)stats64;
10415
10416 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10417 for (i = 0; i < n; i++)
10418 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10419 /* zero out counters that only exist in rtnl_link_stats64 */
10420 memset((char *)stats64 + n * sizeof(u64), 0,
10421 sizeof(*stats64) - n * sizeof(u64));
10422}
10423EXPORT_SYMBOL(netdev_stats_to_stats64);
10424
10425struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10426{
10427 struct net_device_core_stats __percpu *p;
10428
10429 p = alloc_percpu_gfp(struct net_device_core_stats,
10430 GFP_ATOMIC | __GFP_NOWARN);
10431
10432 if (p && cmpxchg(&dev->core_stats, NULL, p))
10433 free_percpu(p);
10434
10435 /* This READ_ONCE() pairs with the cmpxchg() above */
10436 return READ_ONCE(dev->core_stats);
10437}
10438EXPORT_SYMBOL(netdev_core_stats_alloc);
10439
10440/**
10441 * dev_get_stats - get network device statistics
10442 * @dev: device to get statistics from
10443 * @storage: place to store stats
10444 *
10445 * Get network statistics from device. Return @storage.
10446 * The device driver may provide its own method by setting
10447 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10448 * otherwise the internal statistics structure is used.
10449 */
10450struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10451 struct rtnl_link_stats64 *storage)
10452{
10453 const struct net_device_ops *ops = dev->netdev_ops;
10454 const struct net_device_core_stats __percpu *p;
10455
10456 if (ops->ndo_get_stats64) {
10457 memset(storage, 0, sizeof(*storage));
10458 ops->ndo_get_stats64(dev, storage);
10459 } else if (ops->ndo_get_stats) {
10460 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10461 } else {
10462 netdev_stats_to_stats64(storage, &dev->stats);
10463 }
10464
10465 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10466 p = READ_ONCE(dev->core_stats);
10467 if (p) {
10468 const struct net_device_core_stats *core_stats;
10469 int i;
10470
10471 for_each_possible_cpu(i) {
10472 core_stats = per_cpu_ptr(p, i);
10473 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10474 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10475 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10476 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10477 }
10478 }
10479 return storage;
10480}
10481EXPORT_SYMBOL(dev_get_stats);
10482
10483/**
10484 * dev_fetch_sw_netstats - get per-cpu network device statistics
10485 * @s: place to store stats
10486 * @netstats: per-cpu network stats to read from
10487 *
10488 * Read per-cpu network statistics and populate the related fields in @s.
10489 */
10490void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10491 const struct pcpu_sw_netstats __percpu *netstats)
10492{
10493 int cpu;
10494
10495 for_each_possible_cpu(cpu) {
10496 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10497 const struct pcpu_sw_netstats *stats;
10498 unsigned int start;
10499
10500 stats = per_cpu_ptr(netstats, cpu);
10501 do {
10502 start = u64_stats_fetch_begin(&stats->syncp);
10503 rx_packets = u64_stats_read(&stats->rx_packets);
10504 rx_bytes = u64_stats_read(&stats->rx_bytes);
10505 tx_packets = u64_stats_read(&stats->tx_packets);
10506 tx_bytes = u64_stats_read(&stats->tx_bytes);
10507 } while (u64_stats_fetch_retry(&stats->syncp, start));
10508
10509 s->rx_packets += rx_packets;
10510 s->rx_bytes += rx_bytes;
10511 s->tx_packets += tx_packets;
10512 s->tx_bytes += tx_bytes;
10513 }
10514}
10515EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10516
10517/**
10518 * dev_get_tstats64 - ndo_get_stats64 implementation
10519 * @dev: device to get statistics from
10520 * @s: place to store stats
10521 *
10522 * Populate @s from dev->stats and dev->tstats. Can be used as
10523 * ndo_get_stats64() callback.
10524 */
10525void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10526{
10527 netdev_stats_to_stats64(s, &dev->stats);
10528 dev_fetch_sw_netstats(s, dev->tstats);
10529}
10530EXPORT_SYMBOL_GPL(dev_get_tstats64);
10531
10532struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10533{
10534 struct netdev_queue *queue = dev_ingress_queue(dev);
10535
10536#ifdef CONFIG_NET_CLS_ACT
10537 if (queue)
10538 return queue;
10539 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10540 if (!queue)
10541 return NULL;
10542 netdev_init_one_queue(dev, queue, NULL);
10543 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10544 queue->qdisc_sleeping = &noop_qdisc;
10545 rcu_assign_pointer(dev->ingress_queue, queue);
10546#endif
10547 return queue;
10548}
10549
10550static const struct ethtool_ops default_ethtool_ops;
10551
10552void netdev_set_default_ethtool_ops(struct net_device *dev,
10553 const struct ethtool_ops *ops)
10554{
10555 if (dev->ethtool_ops == &default_ethtool_ops)
10556 dev->ethtool_ops = ops;
10557}
10558EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10559
10560/**
10561 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10562 * @dev: netdev to enable the IRQ coalescing on
10563 *
10564 * Sets a conservative default for SW IRQ coalescing. Users can use
10565 * sysfs attributes to override the default values.
10566 */
10567void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10568{
10569 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10570
10571 dev->gro_flush_timeout = 20000;
10572 dev->napi_defer_hard_irqs = 1;
10573}
10574EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10575
10576void netdev_freemem(struct net_device *dev)
10577{
10578 char *addr = (char *)dev - dev->padded;
10579
10580 kvfree(addr);
10581}
10582
10583/**
10584 * alloc_netdev_mqs - allocate network device
10585 * @sizeof_priv: size of private data to allocate space for
10586 * @name: device name format string
10587 * @name_assign_type: origin of device name
10588 * @setup: callback to initialize device
10589 * @txqs: the number of TX subqueues to allocate
10590 * @rxqs: the number of RX subqueues to allocate
10591 *
10592 * Allocates a struct net_device with private data area for driver use
10593 * and performs basic initialization. Also allocates subqueue structs
10594 * for each queue on the device.
10595 */
10596struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10597 unsigned char name_assign_type,
10598 void (*setup)(struct net_device *),
10599 unsigned int txqs, unsigned int rxqs)
10600{
10601 struct net_device *dev;
10602 unsigned int alloc_size;
10603 struct net_device *p;
10604
10605 BUG_ON(strlen(name) >= sizeof(dev->name));
10606
10607 if (txqs < 1) {
10608 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10609 return NULL;
10610 }
10611
10612 if (rxqs < 1) {
10613 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10614 return NULL;
10615 }
10616
10617 alloc_size = sizeof(struct net_device);
10618 if (sizeof_priv) {
10619 /* ensure 32-byte alignment of private area */
10620 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10621 alloc_size += sizeof_priv;
10622 }
10623 /* ensure 32-byte alignment of whole construct */
10624 alloc_size += NETDEV_ALIGN - 1;
10625
10626 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10627 if (!p)
10628 return NULL;
10629
10630 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10631 dev->padded = (char *)dev - (char *)p;
10632
10633 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10634#ifdef CONFIG_PCPU_DEV_REFCNT
10635 dev->pcpu_refcnt = alloc_percpu(int);
10636 if (!dev->pcpu_refcnt)
10637 goto free_dev;
10638 __dev_hold(dev);
10639#else
10640 refcount_set(&dev->dev_refcnt, 1);
10641#endif
10642
10643 if (dev_addr_init(dev))
10644 goto free_pcpu;
10645
10646 dev_mc_init(dev);
10647 dev_uc_init(dev);
10648
10649 dev_net_set(dev, &init_net);
10650
10651 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10652 dev->gso_max_segs = GSO_MAX_SEGS;
10653 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10654 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10655 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10656 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10657 dev->tso_max_segs = TSO_MAX_SEGS;
10658 dev->upper_level = 1;
10659 dev->lower_level = 1;
10660#ifdef CONFIG_LOCKDEP
10661 dev->nested_level = 0;
10662 INIT_LIST_HEAD(&dev->unlink_list);
10663#endif
10664
10665 INIT_LIST_HEAD(&dev->napi_list);
10666 INIT_LIST_HEAD(&dev->unreg_list);
10667 INIT_LIST_HEAD(&dev->close_list);
10668 INIT_LIST_HEAD(&dev->link_watch_list);
10669 INIT_LIST_HEAD(&dev->adj_list.upper);
10670 INIT_LIST_HEAD(&dev->adj_list.lower);
10671 INIT_LIST_HEAD(&dev->ptype_all);
10672 INIT_LIST_HEAD(&dev->ptype_specific);
10673 INIT_LIST_HEAD(&dev->net_notifier_list);
10674#ifdef CONFIG_NET_SCHED
10675 hash_init(dev->qdisc_hash);
10676#endif
10677 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10678 setup(dev);
10679
10680 if (!dev->tx_queue_len) {
10681 dev->priv_flags |= IFF_NO_QUEUE;
10682 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10683 }
10684
10685 dev->num_tx_queues = txqs;
10686 dev->real_num_tx_queues = txqs;
10687 if (netif_alloc_netdev_queues(dev))
10688 goto free_all;
10689
10690 dev->num_rx_queues = rxqs;
10691 dev->real_num_rx_queues = rxqs;
10692 if (netif_alloc_rx_queues(dev))
10693 goto free_all;
10694
10695 strcpy(dev->name, name);
10696 dev->name_assign_type = name_assign_type;
10697 dev->group = INIT_NETDEV_GROUP;
10698 if (!dev->ethtool_ops)
10699 dev->ethtool_ops = &default_ethtool_ops;
10700
10701 nf_hook_netdev_init(dev);
10702
10703 return dev;
10704
10705free_all:
10706 free_netdev(dev);
10707 return NULL;
10708
10709free_pcpu:
10710#ifdef CONFIG_PCPU_DEV_REFCNT
10711 free_percpu(dev->pcpu_refcnt);
10712free_dev:
10713#endif
10714 netdev_freemem(dev);
10715 return NULL;
10716}
10717EXPORT_SYMBOL(alloc_netdev_mqs);
10718
10719/**
10720 * free_netdev - free network device
10721 * @dev: device
10722 *
10723 * This function does the last stage of destroying an allocated device
10724 * interface. The reference to the device object is released. If this
10725 * is the last reference then it will be freed.Must be called in process
10726 * context.
10727 */
10728void free_netdev(struct net_device *dev)
10729{
10730 struct napi_struct *p, *n;
10731
10732 might_sleep();
10733
10734 /* When called immediately after register_netdevice() failed the unwind
10735 * handling may still be dismantling the device. Handle that case by
10736 * deferring the free.
10737 */
10738 if (dev->reg_state == NETREG_UNREGISTERING) {
10739 ASSERT_RTNL();
10740 dev->needs_free_netdev = true;
10741 return;
10742 }
10743
10744 netif_free_tx_queues(dev);
10745 netif_free_rx_queues(dev);
10746
10747 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10748
10749 /* Flush device addresses */
10750 dev_addr_flush(dev);
10751
10752 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10753 netif_napi_del(p);
10754
10755 ref_tracker_dir_exit(&dev->refcnt_tracker);
10756#ifdef CONFIG_PCPU_DEV_REFCNT
10757 free_percpu(dev->pcpu_refcnt);
10758 dev->pcpu_refcnt = NULL;
10759#endif
10760 free_percpu(dev->core_stats);
10761 dev->core_stats = NULL;
10762 free_percpu(dev->xdp_bulkq);
10763 dev->xdp_bulkq = NULL;
10764
10765 /* Compatibility with error handling in drivers */
10766 if (dev->reg_state == NETREG_UNINITIALIZED) {
10767 netdev_freemem(dev);
10768 return;
10769 }
10770
10771 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10772 dev->reg_state = NETREG_RELEASED;
10773
10774 /* will free via device release */
10775 put_device(&dev->dev);
10776}
10777EXPORT_SYMBOL(free_netdev);
10778
10779/**
10780 * synchronize_net - Synchronize with packet receive processing
10781 *
10782 * Wait for packets currently being received to be done.
10783 * Does not block later packets from starting.
10784 */
10785void synchronize_net(void)
10786{
10787 might_sleep();
10788 if (rtnl_is_locked())
10789 synchronize_rcu_expedited();
10790 else
10791 synchronize_rcu();
10792}
10793EXPORT_SYMBOL(synchronize_net);
10794
10795/**
10796 * unregister_netdevice_queue - remove device from the kernel
10797 * @dev: device
10798 * @head: list
10799 *
10800 * This function shuts down a device interface and removes it
10801 * from the kernel tables.
10802 * If head not NULL, device is queued to be unregistered later.
10803 *
10804 * Callers must hold the rtnl semaphore. You may want
10805 * unregister_netdev() instead of this.
10806 */
10807
10808void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10809{
10810 ASSERT_RTNL();
10811
10812 if (head) {
10813 list_move_tail(&dev->unreg_list, head);
10814 } else {
10815 LIST_HEAD(single);
10816
10817 list_add(&dev->unreg_list, &single);
10818 unregister_netdevice_many(&single);
10819 }
10820}
10821EXPORT_SYMBOL(unregister_netdevice_queue);
10822
10823void unregister_netdevice_many_notify(struct list_head *head,
10824 u32 portid, const struct nlmsghdr *nlh)
10825{
10826 struct net_device *dev, *tmp;
10827 LIST_HEAD(close_head);
10828
10829 BUG_ON(dev_boot_phase);
10830 ASSERT_RTNL();
10831
10832 if (list_empty(head))
10833 return;
10834
10835 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10836 /* Some devices call without registering
10837 * for initialization unwind. Remove those
10838 * devices and proceed with the remaining.
10839 */
10840 if (dev->reg_state == NETREG_UNINITIALIZED) {
10841 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10842 dev->name, dev);
10843
10844 WARN_ON(1);
10845 list_del(&dev->unreg_list);
10846 continue;
10847 }
10848 dev->dismantle = true;
10849 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10850 }
10851
10852 /* If device is running, close it first. */
10853 list_for_each_entry(dev, head, unreg_list)
10854 list_add_tail(&dev->close_list, &close_head);
10855 dev_close_many(&close_head, true);
10856
10857 list_for_each_entry(dev, head, unreg_list) {
10858 /* And unlink it from device chain. */
10859 write_lock(&dev_base_lock);
10860 unlist_netdevice(dev, false);
10861 dev->reg_state = NETREG_UNREGISTERING;
10862 write_unlock(&dev_base_lock);
10863 }
10864 flush_all_backlogs();
10865
10866 synchronize_net();
10867
10868 list_for_each_entry(dev, head, unreg_list) {
10869 struct sk_buff *skb = NULL;
10870
10871 /* Shutdown queueing discipline. */
10872 dev_shutdown(dev);
10873
10874 dev_xdp_uninstall(dev);
10875 bpf_dev_bound_netdev_unregister(dev);
10876
10877 netdev_offload_xstats_disable_all(dev);
10878
10879 /* Notify protocols, that we are about to destroy
10880 * this device. They should clean all the things.
10881 */
10882 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10883
10884 if (!dev->rtnl_link_ops ||
10885 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10886 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10887 GFP_KERNEL, NULL, 0,
10888 portid, nlh);
10889
10890 /*
10891 * Flush the unicast and multicast chains
10892 */
10893 dev_uc_flush(dev);
10894 dev_mc_flush(dev);
10895
10896 netdev_name_node_alt_flush(dev);
10897 netdev_name_node_free(dev->name_node);
10898
10899 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10900
10901 if (dev->netdev_ops->ndo_uninit)
10902 dev->netdev_ops->ndo_uninit(dev);
10903
10904 if (skb)
10905 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10906
10907 /* Notifier chain MUST detach us all upper devices. */
10908 WARN_ON(netdev_has_any_upper_dev(dev));
10909 WARN_ON(netdev_has_any_lower_dev(dev));
10910
10911 /* Remove entries from kobject tree */
10912 netdev_unregister_kobject(dev);
10913#ifdef CONFIG_XPS
10914 /* Remove XPS queueing entries */
10915 netif_reset_xps_queues_gt(dev, 0);
10916#endif
10917 }
10918
10919 synchronize_net();
10920
10921 list_for_each_entry(dev, head, unreg_list) {
10922 netdev_put(dev, &dev->dev_registered_tracker);
10923 net_set_todo(dev);
10924 }
10925
10926 list_del(head);
10927}
10928
10929/**
10930 * unregister_netdevice_many - unregister many devices
10931 * @head: list of devices
10932 *
10933 * Note: As most callers use a stack allocated list_head,
10934 * we force a list_del() to make sure stack wont be corrupted later.
10935 */
10936void unregister_netdevice_many(struct list_head *head)
10937{
10938 unregister_netdevice_many_notify(head, 0, NULL);
10939}
10940EXPORT_SYMBOL(unregister_netdevice_many);
10941
10942/**
10943 * unregister_netdev - remove device from the kernel
10944 * @dev: device
10945 *
10946 * This function shuts down a device interface and removes it
10947 * from the kernel tables.
10948 *
10949 * This is just a wrapper for unregister_netdevice that takes
10950 * the rtnl semaphore. In general you want to use this and not
10951 * unregister_netdevice.
10952 */
10953void unregister_netdev(struct net_device *dev)
10954{
10955 rtnl_lock();
10956 unregister_netdevice(dev);
10957 rtnl_unlock();
10958}
10959EXPORT_SYMBOL(unregister_netdev);
10960
10961/**
10962 * __dev_change_net_namespace - move device to different nethost namespace
10963 * @dev: device
10964 * @net: network namespace
10965 * @pat: If not NULL name pattern to try if the current device name
10966 * is already taken in the destination network namespace.
10967 * @new_ifindex: If not zero, specifies device index in the target
10968 * namespace.
10969 *
10970 * This function shuts down a device interface and moves it
10971 * to a new network namespace. On success 0 is returned, on
10972 * a failure a netagive errno code is returned.
10973 *
10974 * Callers must hold the rtnl semaphore.
10975 */
10976
10977int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10978 const char *pat, int new_ifindex)
10979{
10980 struct net *net_old = dev_net(dev);
10981 int err, new_nsid;
10982
10983 ASSERT_RTNL();
10984
10985 /* Don't allow namespace local devices to be moved. */
10986 err = -EINVAL;
10987 if (dev->features & NETIF_F_NETNS_LOCAL)
10988 goto out;
10989
10990 /* Ensure the device has been registrered */
10991 if (dev->reg_state != NETREG_REGISTERED)
10992 goto out;
10993
10994 /* Get out if there is nothing todo */
10995 err = 0;
10996 if (net_eq(net_old, net))
10997 goto out;
10998
10999 /* Pick the destination device name, and ensure
11000 * we can use it in the destination network namespace.
11001 */
11002 err = -EEXIST;
11003 if (netdev_name_in_use(net, dev->name)) {
11004 /* We get here if we can't use the current device name */
11005 if (!pat)
11006 goto out;
11007 err = dev_get_valid_name(net, dev, pat);
11008 if (err < 0)
11009 goto out;
11010 }
11011
11012 /* Check that new_ifindex isn't used yet. */
11013 err = -EBUSY;
11014 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11015 goto out;
11016
11017 /*
11018 * And now a mini version of register_netdevice unregister_netdevice.
11019 */
11020
11021 /* If device is running close it first. */
11022 dev_close(dev);
11023
11024 /* And unlink it from device chain */
11025 unlist_netdevice(dev, true);
11026
11027 synchronize_net();
11028
11029 /* Shutdown queueing discipline. */
11030 dev_shutdown(dev);
11031
11032 /* Notify protocols, that we are about to destroy
11033 * this device. They should clean all the things.
11034 *
11035 * Note that dev->reg_state stays at NETREG_REGISTERED.
11036 * This is wanted because this way 8021q and macvlan know
11037 * the device is just moving and can keep their slaves up.
11038 */
11039 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11040 rcu_barrier();
11041
11042 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11043 /* If there is an ifindex conflict assign a new one */
11044 if (!new_ifindex) {
11045 if (__dev_get_by_index(net, dev->ifindex))
11046 new_ifindex = dev_new_index(net);
11047 else
11048 new_ifindex = dev->ifindex;
11049 }
11050
11051 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11052 new_ifindex);
11053
11054 /*
11055 * Flush the unicast and multicast chains
11056 */
11057 dev_uc_flush(dev);
11058 dev_mc_flush(dev);
11059
11060 /* Send a netdev-removed uevent to the old namespace */
11061 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11062 netdev_adjacent_del_links(dev);
11063
11064 /* Move per-net netdevice notifiers that are following the netdevice */
11065 move_netdevice_notifiers_dev_net(dev, net);
11066
11067 /* Actually switch the network namespace */
11068 dev_net_set(dev, net);
11069 dev->ifindex = new_ifindex;
11070
11071 /* Send a netdev-add uevent to the new namespace */
11072 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11073 netdev_adjacent_add_links(dev);
11074
11075 /* Fixup kobjects */
11076 err = device_rename(&dev->dev, dev->name);
11077 WARN_ON(err);
11078
11079 /* Adapt owner in case owning user namespace of target network
11080 * namespace is different from the original one.
11081 */
11082 err = netdev_change_owner(dev, net_old, net);
11083 WARN_ON(err);
11084
11085 /* Add the device back in the hashes */
11086 list_netdevice(dev);
11087
11088 /* Notify protocols, that a new device appeared. */
11089 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11090
11091 /*
11092 * Prevent userspace races by waiting until the network
11093 * device is fully setup before sending notifications.
11094 */
11095 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11096
11097 synchronize_net();
11098 err = 0;
11099out:
11100 return err;
11101}
11102EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11103
11104static int dev_cpu_dead(unsigned int oldcpu)
11105{
11106 struct sk_buff **list_skb;
11107 struct sk_buff *skb;
11108 unsigned int cpu;
11109 struct softnet_data *sd, *oldsd, *remsd = NULL;
11110
11111 local_irq_disable();
11112 cpu = smp_processor_id();
11113 sd = &per_cpu(softnet_data, cpu);
11114 oldsd = &per_cpu(softnet_data, oldcpu);
11115
11116 /* Find end of our completion_queue. */
11117 list_skb = &sd->completion_queue;
11118 while (*list_skb)
11119 list_skb = &(*list_skb)->next;
11120 /* Append completion queue from offline CPU. */
11121 *list_skb = oldsd->completion_queue;
11122 oldsd->completion_queue = NULL;
11123
11124 /* Append output queue from offline CPU. */
11125 if (oldsd->output_queue) {
11126 *sd->output_queue_tailp = oldsd->output_queue;
11127 sd->output_queue_tailp = oldsd->output_queue_tailp;
11128 oldsd->output_queue = NULL;
11129 oldsd->output_queue_tailp = &oldsd->output_queue;
11130 }
11131 /* Append NAPI poll list from offline CPU, with one exception :
11132 * process_backlog() must be called by cpu owning percpu backlog.
11133 * We properly handle process_queue & input_pkt_queue later.
11134 */
11135 while (!list_empty(&oldsd->poll_list)) {
11136 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11137 struct napi_struct,
11138 poll_list);
11139
11140 list_del_init(&napi->poll_list);
11141 if (napi->poll == process_backlog)
11142 napi->state = 0;
11143 else
11144 ____napi_schedule(sd, napi);
11145 }
11146
11147 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11148 local_irq_enable();
11149
11150#ifdef CONFIG_RPS
11151 remsd = oldsd->rps_ipi_list;
11152 oldsd->rps_ipi_list = NULL;
11153#endif
11154 /* send out pending IPI's on offline CPU */
11155 net_rps_send_ipi(remsd);
11156
11157 /* Process offline CPU's input_pkt_queue */
11158 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11159 netif_rx(skb);
11160 input_queue_head_incr(oldsd);
11161 }
11162 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11163 netif_rx(skb);
11164 input_queue_head_incr(oldsd);
11165 }
11166
11167 return 0;
11168}
11169
11170/**
11171 * netdev_increment_features - increment feature set by one
11172 * @all: current feature set
11173 * @one: new feature set
11174 * @mask: mask feature set
11175 *
11176 * Computes a new feature set after adding a device with feature set
11177 * @one to the master device with current feature set @all. Will not
11178 * enable anything that is off in @mask. Returns the new feature set.
11179 */
11180netdev_features_t netdev_increment_features(netdev_features_t all,
11181 netdev_features_t one, netdev_features_t mask)
11182{
11183 if (mask & NETIF_F_HW_CSUM)
11184 mask |= NETIF_F_CSUM_MASK;
11185 mask |= NETIF_F_VLAN_CHALLENGED;
11186
11187 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11188 all &= one | ~NETIF_F_ALL_FOR_ALL;
11189
11190 /* If one device supports hw checksumming, set for all. */
11191 if (all & NETIF_F_HW_CSUM)
11192 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11193
11194 return all;
11195}
11196EXPORT_SYMBOL(netdev_increment_features);
11197
11198static struct hlist_head * __net_init netdev_create_hash(void)
11199{
11200 int i;
11201 struct hlist_head *hash;
11202
11203 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11204 if (hash != NULL)
11205 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11206 INIT_HLIST_HEAD(&hash[i]);
11207
11208 return hash;
11209}
11210
11211/* Initialize per network namespace state */
11212static int __net_init netdev_init(struct net *net)
11213{
11214 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11215 8 * sizeof_field(struct napi_struct, gro_bitmask));
11216
11217 INIT_LIST_HEAD(&net->dev_base_head);
11218
11219 net->dev_name_head = netdev_create_hash();
11220 if (net->dev_name_head == NULL)
11221 goto err_name;
11222
11223 net->dev_index_head = netdev_create_hash();
11224 if (net->dev_index_head == NULL)
11225 goto err_idx;
11226
11227 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11228
11229 return 0;
11230
11231err_idx:
11232 kfree(net->dev_name_head);
11233err_name:
11234 return -ENOMEM;
11235}
11236
11237/**
11238 * netdev_drivername - network driver for the device
11239 * @dev: network device
11240 *
11241 * Determine network driver for device.
11242 */
11243const char *netdev_drivername(const struct net_device *dev)
11244{
11245 const struct device_driver *driver;
11246 const struct device *parent;
11247 const char *empty = "";
11248
11249 parent = dev->dev.parent;
11250 if (!parent)
11251 return empty;
11252
11253 driver = parent->driver;
11254 if (driver && driver->name)
11255 return driver->name;
11256 return empty;
11257}
11258
11259static void __netdev_printk(const char *level, const struct net_device *dev,
11260 struct va_format *vaf)
11261{
11262 if (dev && dev->dev.parent) {
11263 dev_printk_emit(level[1] - '0',
11264 dev->dev.parent,
11265 "%s %s %s%s: %pV",
11266 dev_driver_string(dev->dev.parent),
11267 dev_name(dev->dev.parent),
11268 netdev_name(dev), netdev_reg_state(dev),
11269 vaf);
11270 } else if (dev) {
11271 printk("%s%s%s: %pV",
11272 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11273 } else {
11274 printk("%s(NULL net_device): %pV", level, vaf);
11275 }
11276}
11277
11278void netdev_printk(const char *level, const struct net_device *dev,
11279 const char *format, ...)
11280{
11281 struct va_format vaf;
11282 va_list args;
11283
11284 va_start(args, format);
11285
11286 vaf.fmt = format;
11287 vaf.va = &args;
11288
11289 __netdev_printk(level, dev, &vaf);
11290
11291 va_end(args);
11292}
11293EXPORT_SYMBOL(netdev_printk);
11294
11295#define define_netdev_printk_level(func, level) \
11296void func(const struct net_device *dev, const char *fmt, ...) \
11297{ \
11298 struct va_format vaf; \
11299 va_list args; \
11300 \
11301 va_start(args, fmt); \
11302 \
11303 vaf.fmt = fmt; \
11304 vaf.va = &args; \
11305 \
11306 __netdev_printk(level, dev, &vaf); \
11307 \
11308 va_end(args); \
11309} \
11310EXPORT_SYMBOL(func);
11311
11312define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11313define_netdev_printk_level(netdev_alert, KERN_ALERT);
11314define_netdev_printk_level(netdev_crit, KERN_CRIT);
11315define_netdev_printk_level(netdev_err, KERN_ERR);
11316define_netdev_printk_level(netdev_warn, KERN_WARNING);
11317define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11318define_netdev_printk_level(netdev_info, KERN_INFO);
11319
11320static void __net_exit netdev_exit(struct net *net)
11321{
11322 kfree(net->dev_name_head);
11323 kfree(net->dev_index_head);
11324 if (net != &init_net)
11325 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11326}
11327
11328static struct pernet_operations __net_initdata netdev_net_ops = {
11329 .init = netdev_init,
11330 .exit = netdev_exit,
11331};
11332
11333static void __net_exit default_device_exit_net(struct net *net)
11334{
11335 struct net_device *dev, *aux;
11336 /*
11337 * Push all migratable network devices back to the
11338 * initial network namespace
11339 */
11340 ASSERT_RTNL();
11341 for_each_netdev_safe(net, dev, aux) {
11342 int err;
11343 char fb_name[IFNAMSIZ];
11344
11345 /* Ignore unmoveable devices (i.e. loopback) */
11346 if (dev->features & NETIF_F_NETNS_LOCAL)
11347 continue;
11348
11349 /* Leave virtual devices for the generic cleanup */
11350 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11351 continue;
11352
11353 /* Push remaining network devices to init_net */
11354 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11355 if (netdev_name_in_use(&init_net, fb_name))
11356 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11357 err = dev_change_net_namespace(dev, &init_net, fb_name);
11358 if (err) {
11359 pr_emerg("%s: failed to move %s to init_net: %d\n",
11360 __func__, dev->name, err);
11361 BUG();
11362 }
11363 }
11364}
11365
11366static void __net_exit default_device_exit_batch(struct list_head *net_list)
11367{
11368 /* At exit all network devices most be removed from a network
11369 * namespace. Do this in the reverse order of registration.
11370 * Do this across as many network namespaces as possible to
11371 * improve batching efficiency.
11372 */
11373 struct net_device *dev;
11374 struct net *net;
11375 LIST_HEAD(dev_kill_list);
11376
11377 rtnl_lock();
11378 list_for_each_entry(net, net_list, exit_list) {
11379 default_device_exit_net(net);
11380 cond_resched();
11381 }
11382
11383 list_for_each_entry(net, net_list, exit_list) {
11384 for_each_netdev_reverse(net, dev) {
11385 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11386 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11387 else
11388 unregister_netdevice_queue(dev, &dev_kill_list);
11389 }
11390 }
11391 unregister_netdevice_many(&dev_kill_list);
11392 rtnl_unlock();
11393}
11394
11395static struct pernet_operations __net_initdata default_device_ops = {
11396 .exit_batch = default_device_exit_batch,
11397};
11398
11399/*
11400 * Initialize the DEV module. At boot time this walks the device list and
11401 * unhooks any devices that fail to initialise (normally hardware not
11402 * present) and leaves us with a valid list of present and active devices.
11403 *
11404 */
11405
11406/*
11407 * This is called single threaded during boot, so no need
11408 * to take the rtnl semaphore.
11409 */
11410static int __init net_dev_init(void)
11411{
11412 int i, rc = -ENOMEM;
11413
11414 BUG_ON(!dev_boot_phase);
11415
11416 if (dev_proc_init())
11417 goto out;
11418
11419 if (netdev_kobject_init())
11420 goto out;
11421
11422 INIT_LIST_HEAD(&ptype_all);
11423 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11424 INIT_LIST_HEAD(&ptype_base[i]);
11425
11426 if (register_pernet_subsys(&netdev_net_ops))
11427 goto out;
11428
11429 /*
11430 * Initialise the packet receive queues.
11431 */
11432
11433 for_each_possible_cpu(i) {
11434 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11435 struct softnet_data *sd = &per_cpu(softnet_data, i);
11436
11437 INIT_WORK(flush, flush_backlog);
11438
11439 skb_queue_head_init(&sd->input_pkt_queue);
11440 skb_queue_head_init(&sd->process_queue);
11441#ifdef CONFIG_XFRM_OFFLOAD
11442 skb_queue_head_init(&sd->xfrm_backlog);
11443#endif
11444 INIT_LIST_HEAD(&sd->poll_list);
11445 sd->output_queue_tailp = &sd->output_queue;
11446#ifdef CONFIG_RPS
11447 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11448 sd->cpu = i;
11449#endif
11450 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11451 spin_lock_init(&sd->defer_lock);
11452
11453 init_gro_hash(&sd->backlog);
11454 sd->backlog.poll = process_backlog;
11455 sd->backlog.weight = weight_p;
11456 }
11457
11458 dev_boot_phase = 0;
11459
11460 /* The loopback device is special if any other network devices
11461 * is present in a network namespace the loopback device must
11462 * be present. Since we now dynamically allocate and free the
11463 * loopback device ensure this invariant is maintained by
11464 * keeping the loopback device as the first device on the
11465 * list of network devices. Ensuring the loopback devices
11466 * is the first device that appears and the last network device
11467 * that disappears.
11468 */
11469 if (register_pernet_device(&loopback_net_ops))
11470 goto out;
11471
11472 if (register_pernet_device(&default_device_ops))
11473 goto out;
11474
11475 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11476 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11477
11478 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11479 NULL, dev_cpu_dead);
11480 WARN_ON(rc < 0);
11481 rc = 0;
11482out:
11483 return rc;
11484}
11485
11486subsys_initcall(net_dev_init);