Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/cpu.h>
14#include <linux/errno.h>
15#include <linux/device.h>
16#include <linux/of.h>
17#include <linux/pm_domain.h>
18#include <linux/slab.h>
19#include <linux/export.h>
20#include <linux/energy_model.h>
21
22#include "opp.h"
23
24/*
25 * Returns opp descriptor node for a device node, caller must
26 * do of_node_put().
27 */
28static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 int index)
30{
31 /* "operating-points-v2" can be an array for power domain providers */
32 return of_parse_phandle(np, "operating-points-v2", index);
33}
34
35/* Returns opp descriptor node for a device, caller must do of_node_put() */
36struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37{
38 return _opp_of_get_opp_desc_node(dev->of_node, 0);
39}
40EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41
42struct opp_table *_managed_opp(struct device *dev, int index)
43{
44 struct opp_table *opp_table, *managed_table = NULL;
45 struct device_node *np;
46
47 np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 if (!np)
49 return NULL;
50
51 list_for_each_entry(opp_table, &opp_tables, node) {
52 if (opp_table->np == np) {
53 /*
54 * Multiple devices can point to the same OPP table and
55 * so will have same node-pointer, np.
56 *
57 * But the OPPs will be considered as shared only if the
58 * OPP table contains a "opp-shared" property.
59 */
60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 _get_opp_table_kref(opp_table);
62 managed_table = opp_table;
63 }
64
65 break;
66 }
67 }
68
69 of_node_put(np);
70
71 return managed_table;
72}
73
74/* The caller must call dev_pm_opp_put() after the OPP is used */
75static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 struct device_node *opp_np)
77{
78 struct dev_pm_opp *opp;
79
80 mutex_lock(&opp_table->lock);
81
82 list_for_each_entry(opp, &opp_table->opp_list, node) {
83 if (opp->np == opp_np) {
84 dev_pm_opp_get(opp);
85 mutex_unlock(&opp_table->lock);
86 return opp;
87 }
88 }
89
90 mutex_unlock(&opp_table->lock);
91
92 return NULL;
93}
94
95static struct device_node *of_parse_required_opp(struct device_node *np,
96 int index)
97{
98 return of_parse_phandle(np, "required-opps", index);
99}
100
101/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103{
104 struct opp_table *opp_table;
105 struct device_node *opp_table_np;
106
107 opp_table_np = of_get_parent(opp_np);
108 if (!opp_table_np)
109 goto err;
110
111 /* It is safe to put the node now as all we need now is its address */
112 of_node_put(opp_table_np);
113
114 mutex_lock(&opp_table_lock);
115 list_for_each_entry(opp_table, &opp_tables, node) {
116 if (opp_table_np == opp_table->np) {
117 _get_opp_table_kref(opp_table);
118 mutex_unlock(&opp_table_lock);
119 return opp_table;
120 }
121 }
122 mutex_unlock(&opp_table_lock);
123
124err:
125 return ERR_PTR(-ENODEV);
126}
127
128/* Free resources previously acquired by _opp_table_alloc_required_tables() */
129static void _opp_table_free_required_tables(struct opp_table *opp_table)
130{
131 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 int i;
133
134 if (!required_opp_tables)
135 return;
136
137 for (i = 0; i < opp_table->required_opp_count; i++) {
138 if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 continue;
140
141 dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 }
143
144 kfree(required_opp_tables);
145
146 opp_table->required_opp_count = 0;
147 opp_table->required_opp_tables = NULL;
148 list_del(&opp_table->lazy);
149}
150
151/*
152 * Populate all devices and opp tables which are part of "required-opps" list.
153 * Checking only the first OPP node should be enough.
154 */
155static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 struct device *dev,
157 struct device_node *opp_np)
158{
159 struct opp_table **required_opp_tables;
160 struct device_node *required_np, *np;
161 bool lazy = false;
162 int count, i;
163
164 /* Traversing the first OPP node is all we need */
165 np = of_get_next_available_child(opp_np, NULL);
166 if (!np) {
167 dev_warn(dev, "Empty OPP table\n");
168
169 return;
170 }
171
172 count = of_count_phandle_with_args(np, "required-opps", NULL);
173 if (count <= 0)
174 goto put_np;
175
176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 GFP_KERNEL);
178 if (!required_opp_tables)
179 goto put_np;
180
181 opp_table->required_opp_tables = required_opp_tables;
182 opp_table->required_opp_count = count;
183
184 for (i = 0; i < count; i++) {
185 required_np = of_parse_required_opp(np, i);
186 if (!required_np)
187 goto free_required_tables;
188
189 required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 of_node_put(required_np);
191
192 if (IS_ERR(required_opp_tables[i]))
193 lazy = true;
194 }
195
196 /* Let's do the linking later on */
197 if (lazy)
198 list_add(&opp_table->lazy, &lazy_opp_tables);
199 else
200 _update_set_required_opps(opp_table);
201
202 goto put_np;
203
204free_required_tables:
205 _opp_table_free_required_tables(opp_table);
206put_np:
207 of_node_put(np);
208}
209
210void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
211 int index)
212{
213 struct device_node *np, *opp_np;
214 u32 val;
215
216 /*
217 * Only required for backward compatibility with v1 bindings, but isn't
218 * harmful for other cases. And so we do it unconditionally.
219 */
220 np = of_node_get(dev->of_node);
221 if (!np)
222 return;
223
224 if (!of_property_read_u32(np, "clock-latency", &val))
225 opp_table->clock_latency_ns_max = val;
226 of_property_read_u32(np, "voltage-tolerance",
227 &opp_table->voltage_tolerance_v1);
228
229 if (of_property_present(np, "#power-domain-cells"))
230 opp_table->is_genpd = true;
231
232 /* Get OPP table node */
233 opp_np = _opp_of_get_opp_desc_node(np, index);
234 of_node_put(np);
235
236 if (!opp_np)
237 return;
238
239 if (of_property_read_bool(opp_np, "opp-shared"))
240 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
241 else
242 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
243
244 opp_table->np = opp_np;
245
246 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
247}
248
249void _of_clear_opp_table(struct opp_table *opp_table)
250{
251 _opp_table_free_required_tables(opp_table);
252 of_node_put(opp_table->np);
253}
254
255/*
256 * Release all resources previously acquired with a call to
257 * _of_opp_alloc_required_opps().
258 */
259static void _of_opp_free_required_opps(struct opp_table *opp_table,
260 struct dev_pm_opp *opp)
261{
262 struct dev_pm_opp **required_opps = opp->required_opps;
263 int i;
264
265 if (!required_opps)
266 return;
267
268 for (i = 0; i < opp_table->required_opp_count; i++) {
269 if (!required_opps[i])
270 continue;
271
272 /* Put the reference back */
273 dev_pm_opp_put(required_opps[i]);
274 }
275
276 opp->required_opps = NULL;
277 kfree(required_opps);
278}
279
280void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
281{
282 _of_opp_free_required_opps(opp_table, opp);
283 of_node_put(opp->np);
284}
285
286/* Populate all required OPPs which are part of "required-opps" list */
287static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
288 struct dev_pm_opp *opp)
289{
290 struct dev_pm_opp **required_opps;
291 struct opp_table *required_table;
292 struct device_node *np;
293 int i, ret, count = opp_table->required_opp_count;
294
295 if (!count)
296 return 0;
297
298 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
299 if (!required_opps)
300 return -ENOMEM;
301
302 opp->required_opps = required_opps;
303
304 for (i = 0; i < count; i++) {
305 required_table = opp_table->required_opp_tables[i];
306
307 /* Required table not added yet, we will link later */
308 if (IS_ERR_OR_NULL(required_table))
309 continue;
310
311 np = of_parse_required_opp(opp->np, i);
312 if (unlikely(!np)) {
313 ret = -ENODEV;
314 goto free_required_opps;
315 }
316
317 required_opps[i] = _find_opp_of_np(required_table, np);
318 of_node_put(np);
319
320 if (!required_opps[i]) {
321 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
322 __func__, opp->np, i);
323 ret = -ENODEV;
324 goto free_required_opps;
325 }
326 }
327
328 return 0;
329
330free_required_opps:
331 _of_opp_free_required_opps(opp_table, opp);
332
333 return ret;
334}
335
336/* Link required OPPs for an individual OPP */
337static int lazy_link_required_opps(struct opp_table *opp_table,
338 struct opp_table *new_table, int index)
339{
340 struct device_node *required_np;
341 struct dev_pm_opp *opp;
342
343 list_for_each_entry(opp, &opp_table->opp_list, node) {
344 required_np = of_parse_required_opp(opp->np, index);
345 if (unlikely(!required_np))
346 return -ENODEV;
347
348 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
349 of_node_put(required_np);
350
351 if (!opp->required_opps[index]) {
352 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
353 __func__, opp->np, index);
354 return -ENODEV;
355 }
356 }
357
358 return 0;
359}
360
361/* Link required OPPs for all OPPs of the newly added OPP table */
362static void lazy_link_required_opp_table(struct opp_table *new_table)
363{
364 struct opp_table *opp_table, *temp, **required_opp_tables;
365 struct device_node *required_np, *opp_np, *required_table_np;
366 struct dev_pm_opp *opp;
367 int i, ret;
368
369 mutex_lock(&opp_table_lock);
370
371 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
372 bool lazy = false;
373
374 /* opp_np can't be invalid here */
375 opp_np = of_get_next_available_child(opp_table->np, NULL);
376
377 for (i = 0; i < opp_table->required_opp_count; i++) {
378 required_opp_tables = opp_table->required_opp_tables;
379
380 /* Required opp-table is already parsed */
381 if (!IS_ERR(required_opp_tables[i]))
382 continue;
383
384 /* required_np can't be invalid here */
385 required_np = of_parse_required_opp(opp_np, i);
386 required_table_np = of_get_parent(required_np);
387
388 of_node_put(required_table_np);
389 of_node_put(required_np);
390
391 /*
392 * Newly added table isn't the required opp-table for
393 * opp_table.
394 */
395 if (required_table_np != new_table->np) {
396 lazy = true;
397 continue;
398 }
399
400 required_opp_tables[i] = new_table;
401 _get_opp_table_kref(new_table);
402
403 /* Link OPPs now */
404 ret = lazy_link_required_opps(opp_table, new_table, i);
405 if (ret) {
406 /* The OPPs will be marked unusable */
407 lazy = false;
408 break;
409 }
410 }
411
412 of_node_put(opp_np);
413
414 /* All required opp-tables found, remove from lazy list */
415 if (!lazy) {
416 _update_set_required_opps(opp_table);
417 list_del_init(&opp_table->lazy);
418
419 list_for_each_entry(opp, &opp_table->opp_list, node)
420 _required_opps_available(opp, opp_table->required_opp_count);
421 }
422 }
423
424 mutex_unlock(&opp_table_lock);
425}
426
427static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
428{
429 struct device_node *np, *opp_np;
430 struct property *prop;
431
432 if (!opp_table) {
433 np = of_node_get(dev->of_node);
434 if (!np)
435 return -ENODEV;
436
437 opp_np = _opp_of_get_opp_desc_node(np, 0);
438 of_node_put(np);
439 } else {
440 opp_np = of_node_get(opp_table->np);
441 }
442
443 /* Lets not fail in case we are parsing opp-v1 bindings */
444 if (!opp_np)
445 return 0;
446
447 /* Checking only first OPP is sufficient */
448 np = of_get_next_available_child(opp_np, NULL);
449 of_node_put(opp_np);
450 if (!np) {
451 dev_err(dev, "OPP table empty\n");
452 return -EINVAL;
453 }
454
455 prop = of_find_property(np, "opp-peak-kBps", NULL);
456 of_node_put(np);
457
458 if (!prop || !prop->length)
459 return 0;
460
461 return 1;
462}
463
464int dev_pm_opp_of_find_icc_paths(struct device *dev,
465 struct opp_table *opp_table)
466{
467 struct device_node *np;
468 int ret, i, count, num_paths;
469 struct icc_path **paths;
470
471 ret = _bandwidth_supported(dev, opp_table);
472 if (ret == -EINVAL)
473 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
474 else if (ret <= 0)
475 return ret;
476
477 ret = 0;
478
479 np = of_node_get(dev->of_node);
480 if (!np)
481 return 0;
482
483 count = of_count_phandle_with_args(np, "interconnects",
484 "#interconnect-cells");
485 of_node_put(np);
486 if (count < 0)
487 return 0;
488
489 /* two phandles when #interconnect-cells = <1> */
490 if (count % 2) {
491 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
492 return -EINVAL;
493 }
494
495 num_paths = count / 2;
496 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
497 if (!paths)
498 return -ENOMEM;
499
500 for (i = 0; i < num_paths; i++) {
501 paths[i] = of_icc_get_by_index(dev, i);
502 if (IS_ERR(paths[i])) {
503 ret = PTR_ERR(paths[i]);
504 if (ret != -EPROBE_DEFER) {
505 dev_err(dev, "%s: Unable to get path%d: %d\n",
506 __func__, i, ret);
507 }
508 goto err;
509 }
510 }
511
512 if (opp_table) {
513 opp_table->paths = paths;
514 opp_table->path_count = num_paths;
515 return 0;
516 }
517
518err:
519 while (i--)
520 icc_put(paths[i]);
521
522 kfree(paths);
523
524 return ret;
525}
526EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
527
528static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
529 struct device_node *np)
530{
531 unsigned int levels = opp_table->supported_hw_count;
532 int count, versions, ret, i, j;
533 u32 val;
534
535 if (!opp_table->supported_hw) {
536 /*
537 * In the case that no supported_hw has been set by the
538 * platform but there is an opp-supported-hw value set for
539 * an OPP then the OPP should not be enabled as there is
540 * no way to see if the hardware supports it.
541 */
542 if (of_property_present(np, "opp-supported-hw"))
543 return false;
544 else
545 return true;
546 }
547
548 count = of_property_count_u32_elems(np, "opp-supported-hw");
549 if (count <= 0 || count % levels) {
550 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
551 __func__, count);
552 return false;
553 }
554
555 versions = count / levels;
556
557 /* All levels in at least one of the versions should match */
558 for (i = 0; i < versions; i++) {
559 bool supported = true;
560
561 for (j = 0; j < levels; j++) {
562 ret = of_property_read_u32_index(np, "opp-supported-hw",
563 i * levels + j, &val);
564 if (ret) {
565 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
566 __func__, i * levels + j, ret);
567 return false;
568 }
569
570 /* Check if the level is supported */
571 if (!(val & opp_table->supported_hw[j])) {
572 supported = false;
573 break;
574 }
575 }
576
577 if (supported)
578 return true;
579 }
580
581 return false;
582}
583
584static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
585 struct opp_table *opp_table,
586 const char *prop_type, bool *triplet)
587{
588 struct property *prop = NULL;
589 char name[NAME_MAX];
590 int count, ret;
591 u32 *out;
592
593 /* Search for "opp-<prop_type>-<name>" */
594 if (opp_table->prop_name) {
595 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
596 opp_table->prop_name);
597 prop = of_find_property(opp->np, name, NULL);
598 }
599
600 if (!prop) {
601 /* Search for "opp-<prop_type>" */
602 snprintf(name, sizeof(name), "opp-%s", prop_type);
603 prop = of_find_property(opp->np, name, NULL);
604 if (!prop)
605 return NULL;
606 }
607
608 count = of_property_count_u32_elems(opp->np, name);
609 if (count < 0) {
610 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
611 count);
612 return ERR_PTR(count);
613 }
614
615 /*
616 * Initialize regulator_count, if regulator information isn't provided
617 * by the platform. Now that one of the properties is available, fix the
618 * regulator_count to 1.
619 */
620 if (unlikely(opp_table->regulator_count == -1))
621 opp_table->regulator_count = 1;
622
623 if (count != opp_table->regulator_count &&
624 (!triplet || count != opp_table->regulator_count * 3)) {
625 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
626 __func__, prop_type, count, opp_table->regulator_count);
627 return ERR_PTR(-EINVAL);
628 }
629
630 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
631 if (!out)
632 return ERR_PTR(-EINVAL);
633
634 ret = of_property_read_u32_array(opp->np, name, out, count);
635 if (ret) {
636 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
637 kfree(out);
638 return ERR_PTR(-EINVAL);
639 }
640
641 if (triplet)
642 *triplet = count != opp_table->regulator_count;
643
644 return out;
645}
646
647static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
648 struct opp_table *opp_table, bool *triplet)
649{
650 u32 *microvolt;
651
652 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
653 if (IS_ERR(microvolt))
654 return microvolt;
655
656 if (!microvolt) {
657 /*
658 * Missing property isn't a problem, but an invalid
659 * entry is. This property isn't optional if regulator
660 * information is provided. Check only for the first OPP, as
661 * regulator_count may get initialized after that to a valid
662 * value.
663 */
664 if (list_empty(&opp_table->opp_list) &&
665 opp_table->regulator_count > 0) {
666 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
667 __func__);
668 return ERR_PTR(-EINVAL);
669 }
670 }
671
672 return microvolt;
673}
674
675static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
676 struct opp_table *opp_table)
677{
678 u32 *microvolt, *microamp, *microwatt;
679 int ret = 0, i, j;
680 bool triplet;
681
682 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
683 if (IS_ERR(microvolt))
684 return PTR_ERR(microvolt);
685
686 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
687 if (IS_ERR(microamp)) {
688 ret = PTR_ERR(microamp);
689 goto free_microvolt;
690 }
691
692 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
693 if (IS_ERR(microwatt)) {
694 ret = PTR_ERR(microwatt);
695 goto free_microamp;
696 }
697
698 /*
699 * Initialize regulator_count if it is uninitialized and no properties
700 * are found.
701 */
702 if (unlikely(opp_table->regulator_count == -1)) {
703 opp_table->regulator_count = 0;
704 return 0;
705 }
706
707 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
708 if (microvolt) {
709 opp->supplies[i].u_volt = microvolt[j++];
710
711 if (triplet) {
712 opp->supplies[i].u_volt_min = microvolt[j++];
713 opp->supplies[i].u_volt_max = microvolt[j++];
714 } else {
715 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
716 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
717 }
718 }
719
720 if (microamp)
721 opp->supplies[i].u_amp = microamp[i];
722
723 if (microwatt)
724 opp->supplies[i].u_watt = microwatt[i];
725 }
726
727 kfree(microwatt);
728free_microamp:
729 kfree(microamp);
730free_microvolt:
731 kfree(microvolt);
732
733 return ret;
734}
735
736/**
737 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
738 * entries
739 * @dev: device pointer used to lookup OPP table.
740 *
741 * Free OPPs created using static entries present in DT.
742 */
743void dev_pm_opp_of_remove_table(struct device *dev)
744{
745 dev_pm_opp_remove_table(dev);
746}
747EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
748
749static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
750 struct device_node *np)
751{
752 struct property *prop;
753 int i, count, ret;
754 u64 *rates;
755
756 prop = of_find_property(np, "opp-hz", NULL);
757 if (!prop)
758 return -ENODEV;
759
760 count = prop->length / sizeof(u64);
761 if (opp_table->clk_count != count) {
762 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
763 __func__, count, opp_table->clk_count);
764 return -EINVAL;
765 }
766
767 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
768 if (!rates)
769 return -ENOMEM;
770
771 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
772 if (ret) {
773 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
774 } else {
775 /*
776 * Rate is defined as an unsigned long in clk API, and so
777 * casting explicitly to its type. Must be fixed once rate is 64
778 * bit guaranteed in clk API.
779 */
780 for (i = 0; i < count; i++) {
781 new_opp->rates[i] = (unsigned long)rates[i];
782
783 /* This will happen for frequencies > 4.29 GHz */
784 WARN_ON(new_opp->rates[i] != rates[i]);
785 }
786 }
787
788 kfree(rates);
789
790 return ret;
791}
792
793static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
794 struct device_node *np, bool peak)
795{
796 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
797 struct property *prop;
798 int i, count, ret;
799 u32 *bw;
800
801 prop = of_find_property(np, name, NULL);
802 if (!prop)
803 return -ENODEV;
804
805 count = prop->length / sizeof(u32);
806 if (opp_table->path_count != count) {
807 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
808 __func__, name, count, opp_table->path_count);
809 return -EINVAL;
810 }
811
812 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
813 if (!bw)
814 return -ENOMEM;
815
816 ret = of_property_read_u32_array(np, name, bw, count);
817 if (ret) {
818 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
819 goto out;
820 }
821
822 for (i = 0; i < count; i++) {
823 if (peak)
824 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
825 else
826 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
827 }
828
829out:
830 kfree(bw);
831 return ret;
832}
833
834static int _read_opp_key(struct dev_pm_opp *new_opp,
835 struct opp_table *opp_table, struct device_node *np)
836{
837 bool found = false;
838 int ret;
839
840 ret = _read_rate(new_opp, opp_table, np);
841 if (!ret)
842 found = true;
843 else if (ret != -ENODEV)
844 return ret;
845
846 /*
847 * Bandwidth consists of peak and average (optional) values:
848 * opp-peak-kBps = <path1_value path2_value>;
849 * opp-avg-kBps = <path1_value path2_value>;
850 */
851 ret = _read_bw(new_opp, opp_table, np, true);
852 if (!ret) {
853 found = true;
854 ret = _read_bw(new_opp, opp_table, np, false);
855 }
856
857 /* The properties were found but we failed to parse them */
858 if (ret && ret != -ENODEV)
859 return ret;
860
861 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
862 found = true;
863
864 if (found)
865 return 0;
866
867 return ret;
868}
869
870/**
871 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
872 * @opp_table: OPP table
873 * @dev: device for which we do this operation
874 * @np: device node
875 *
876 * This function adds an opp definition to the opp table and returns status. The
877 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
878 * removed by dev_pm_opp_remove.
879 *
880 * Return:
881 * Valid OPP pointer:
882 * On success
883 * NULL:
884 * Duplicate OPPs (both freq and volt are same) and opp->available
885 * OR if the OPP is not supported by hardware.
886 * ERR_PTR(-EEXIST):
887 * Freq are same and volt are different OR
888 * Duplicate OPPs (both freq and volt are same) and !opp->available
889 * ERR_PTR(-ENOMEM):
890 * Memory allocation failure
891 * ERR_PTR(-EINVAL):
892 * Failed parsing the OPP node
893 */
894static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
895 struct device *dev, struct device_node *np)
896{
897 struct dev_pm_opp *new_opp;
898 u32 val;
899 int ret;
900
901 new_opp = _opp_allocate(opp_table);
902 if (!new_opp)
903 return ERR_PTR(-ENOMEM);
904
905 ret = _read_opp_key(new_opp, opp_table, np);
906 if (ret < 0) {
907 dev_err(dev, "%s: opp key field not found\n", __func__);
908 goto free_opp;
909 }
910
911 /* Check if the OPP supports hardware's hierarchy of versions or not */
912 if (!_opp_is_supported(dev, opp_table, np)) {
913 dev_dbg(dev, "OPP not supported by hardware: %s\n",
914 of_node_full_name(np));
915 goto free_opp;
916 }
917
918 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
919
920 new_opp->np = of_node_get(np);
921 new_opp->dynamic = false;
922 new_opp->available = true;
923
924 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
925 if (ret)
926 goto free_opp;
927
928 if (!of_property_read_u32(np, "clock-latency-ns", &val))
929 new_opp->clock_latency_ns = val;
930
931 ret = opp_parse_supplies(new_opp, dev, opp_table);
932 if (ret)
933 goto free_required_opps;
934
935 if (opp_table->is_genpd)
936 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
937
938 ret = _opp_add(dev, new_opp, opp_table);
939 if (ret) {
940 /* Don't return error for duplicate OPPs */
941 if (ret == -EBUSY)
942 ret = 0;
943 goto free_required_opps;
944 }
945
946 /* OPP to select on device suspend */
947 if (of_property_read_bool(np, "opp-suspend")) {
948 if (opp_table->suspend_opp) {
949 /* Pick the OPP with higher rate/bw/level as suspend OPP */
950 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
951 opp_table->suspend_opp->suspend = false;
952 new_opp->suspend = true;
953 opp_table->suspend_opp = new_opp;
954 }
955 } else {
956 new_opp->suspend = true;
957 opp_table->suspend_opp = new_opp;
958 }
959 }
960
961 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
962 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
963
964 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
965 __func__, new_opp->turbo, new_opp->rates[0],
966 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
967 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
968 new_opp->level);
969
970 /*
971 * Notify the changes in the availability of the operable
972 * frequency/voltage list.
973 */
974 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
975 return new_opp;
976
977free_required_opps:
978 _of_opp_free_required_opps(opp_table, new_opp);
979free_opp:
980 _opp_free(new_opp);
981
982 return ret ? ERR_PTR(ret) : NULL;
983}
984
985/* Initializes OPP tables based on new bindings */
986static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
987{
988 struct device_node *np;
989 int ret, count = 0;
990 struct dev_pm_opp *opp;
991
992 /* OPP table is already initialized for the device */
993 mutex_lock(&opp_table->lock);
994 if (opp_table->parsed_static_opps) {
995 opp_table->parsed_static_opps++;
996 mutex_unlock(&opp_table->lock);
997 return 0;
998 }
999
1000 opp_table->parsed_static_opps = 1;
1001 mutex_unlock(&opp_table->lock);
1002
1003 /* We have opp-table node now, iterate over it and add OPPs */
1004 for_each_available_child_of_node(opp_table->np, np) {
1005 opp = _opp_add_static_v2(opp_table, dev, np);
1006 if (IS_ERR(opp)) {
1007 ret = PTR_ERR(opp);
1008 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1009 ret);
1010 of_node_put(np);
1011 goto remove_static_opp;
1012 } else if (opp) {
1013 count++;
1014 }
1015 }
1016
1017 /* There should be one or more OPPs defined */
1018 if (!count) {
1019 dev_err(dev, "%s: no supported OPPs", __func__);
1020 ret = -ENOENT;
1021 goto remove_static_opp;
1022 }
1023
1024 list_for_each_entry(opp, &opp_table->opp_list, node) {
1025 /* Any non-zero performance state would enable the feature */
1026 if (opp->pstate) {
1027 opp_table->genpd_performance_state = true;
1028 break;
1029 }
1030 }
1031
1032 lazy_link_required_opp_table(opp_table);
1033
1034 return 0;
1035
1036remove_static_opp:
1037 _opp_remove_all_static(opp_table);
1038
1039 return ret;
1040}
1041
1042/* Initializes OPP tables based on old-deprecated bindings */
1043static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1044{
1045 const struct property *prop;
1046 const __be32 *val;
1047 int nr, ret = 0;
1048
1049 mutex_lock(&opp_table->lock);
1050 if (opp_table->parsed_static_opps) {
1051 opp_table->parsed_static_opps++;
1052 mutex_unlock(&opp_table->lock);
1053 return 0;
1054 }
1055
1056 opp_table->parsed_static_opps = 1;
1057 mutex_unlock(&opp_table->lock);
1058
1059 prop = of_find_property(dev->of_node, "operating-points", NULL);
1060 if (!prop) {
1061 ret = -ENODEV;
1062 goto remove_static_opp;
1063 }
1064 if (!prop->value) {
1065 ret = -ENODATA;
1066 goto remove_static_opp;
1067 }
1068
1069 /*
1070 * Each OPP is a set of tuples consisting of frequency and
1071 * voltage like <freq-kHz vol-uV>.
1072 */
1073 nr = prop->length / sizeof(u32);
1074 if (nr % 2) {
1075 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1076 ret = -EINVAL;
1077 goto remove_static_opp;
1078 }
1079
1080 val = prop->value;
1081 while (nr) {
1082 unsigned long freq = be32_to_cpup(val++) * 1000;
1083 unsigned long volt = be32_to_cpup(val++);
1084
1085 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1086 if (ret) {
1087 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1088 __func__, freq, ret);
1089 goto remove_static_opp;
1090 }
1091 nr -= 2;
1092 }
1093
1094 return 0;
1095
1096remove_static_opp:
1097 _opp_remove_all_static(opp_table);
1098
1099 return ret;
1100}
1101
1102static int _of_add_table_indexed(struct device *dev, int index)
1103{
1104 struct opp_table *opp_table;
1105 int ret, count;
1106
1107 if (index) {
1108 /*
1109 * If only one phandle is present, then the same OPP table
1110 * applies for all index requests.
1111 */
1112 count = of_count_phandle_with_args(dev->of_node,
1113 "operating-points-v2", NULL);
1114 if (count == 1)
1115 index = 0;
1116 }
1117
1118 opp_table = _add_opp_table_indexed(dev, index, true);
1119 if (IS_ERR(opp_table))
1120 return PTR_ERR(opp_table);
1121
1122 /*
1123 * OPPs have two version of bindings now. Also try the old (v1)
1124 * bindings for backward compatibility with older dtbs.
1125 */
1126 if (opp_table->np)
1127 ret = _of_add_opp_table_v2(dev, opp_table);
1128 else
1129 ret = _of_add_opp_table_v1(dev, opp_table);
1130
1131 if (ret)
1132 dev_pm_opp_put_opp_table(opp_table);
1133
1134 return ret;
1135}
1136
1137static void devm_pm_opp_of_table_release(void *data)
1138{
1139 dev_pm_opp_of_remove_table(data);
1140}
1141
1142static int _devm_of_add_table_indexed(struct device *dev, int index)
1143{
1144 int ret;
1145
1146 ret = _of_add_table_indexed(dev, index);
1147 if (ret)
1148 return ret;
1149
1150 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1151}
1152
1153/**
1154 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1155 * @dev: device pointer used to lookup OPP table.
1156 *
1157 * Register the initial OPP table with the OPP library for given device.
1158 *
1159 * The opp_table structure will be freed after the device is destroyed.
1160 *
1161 * Return:
1162 * 0 On success OR
1163 * Duplicate OPPs (both freq and volt are same) and opp->available
1164 * -EEXIST Freq are same and volt are different OR
1165 * Duplicate OPPs (both freq and volt are same) and !opp->available
1166 * -ENOMEM Memory allocation failure
1167 * -ENODEV when 'operating-points' property is not found or is invalid data
1168 * in device node.
1169 * -ENODATA when empty 'operating-points' property is found
1170 * -EINVAL when invalid entries are found in opp-v2 table
1171 */
1172int devm_pm_opp_of_add_table(struct device *dev)
1173{
1174 return _devm_of_add_table_indexed(dev, 0);
1175}
1176EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1177
1178/**
1179 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1180 * @dev: device pointer used to lookup OPP table.
1181 *
1182 * Register the initial OPP table with the OPP library for given device.
1183 *
1184 * Return:
1185 * 0 On success OR
1186 * Duplicate OPPs (both freq and volt are same) and opp->available
1187 * -EEXIST Freq are same and volt are different OR
1188 * Duplicate OPPs (both freq and volt are same) and !opp->available
1189 * -ENOMEM Memory allocation failure
1190 * -ENODEV when 'operating-points' property is not found or is invalid data
1191 * in device node.
1192 * -ENODATA when empty 'operating-points' property is found
1193 * -EINVAL when invalid entries are found in opp-v2 table
1194 */
1195int dev_pm_opp_of_add_table(struct device *dev)
1196{
1197 return _of_add_table_indexed(dev, 0);
1198}
1199EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1200
1201/**
1202 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1203 * @dev: device pointer used to lookup OPP table.
1204 * @index: Index number.
1205 *
1206 * Register the initial OPP table with the OPP library for given device only
1207 * using the "operating-points-v2" property.
1208 *
1209 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1210 */
1211int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1212{
1213 return _of_add_table_indexed(dev, index);
1214}
1215EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1216
1217/**
1218 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1219 * @dev: device pointer used to lookup OPP table.
1220 * @index: Index number.
1221 *
1222 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1223 */
1224int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1225{
1226 return _devm_of_add_table_indexed(dev, index);
1227}
1228EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1229
1230/* CPU device specific helpers */
1231
1232/**
1233 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1234 * @cpumask: cpumask for which OPP table needs to be removed
1235 *
1236 * This removes the OPP tables for CPUs present in the @cpumask.
1237 * This should be used only to remove static entries created from DT.
1238 */
1239void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1240{
1241 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1242}
1243EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1244
1245/**
1246 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1247 * @cpumask: cpumask for which OPP table needs to be added.
1248 *
1249 * This adds the OPP tables for CPUs present in the @cpumask.
1250 */
1251int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1252{
1253 struct device *cpu_dev;
1254 int cpu, ret;
1255
1256 if (WARN_ON(cpumask_empty(cpumask)))
1257 return -ENODEV;
1258
1259 for_each_cpu(cpu, cpumask) {
1260 cpu_dev = get_cpu_device(cpu);
1261 if (!cpu_dev) {
1262 pr_err("%s: failed to get cpu%d device\n", __func__,
1263 cpu);
1264 ret = -ENODEV;
1265 goto remove_table;
1266 }
1267
1268 ret = dev_pm_opp_of_add_table(cpu_dev);
1269 if (ret) {
1270 /*
1271 * OPP may get registered dynamically, don't print error
1272 * message here.
1273 */
1274 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1275 __func__, cpu, ret);
1276
1277 goto remove_table;
1278 }
1279 }
1280
1281 return 0;
1282
1283remove_table:
1284 /* Free all other OPPs */
1285 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1286
1287 return ret;
1288}
1289EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1290
1291/*
1292 * Works only for OPP v2 bindings.
1293 *
1294 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1295 */
1296/**
1297 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1298 * @cpu_dev using operating-points-v2
1299 * bindings.
1300 *
1301 * @cpu_dev: CPU device for which we do this operation
1302 * @cpumask: cpumask to update with information of sharing CPUs
1303 *
1304 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1305 *
1306 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1307 */
1308int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1309 struct cpumask *cpumask)
1310{
1311 struct device_node *np, *tmp_np, *cpu_np;
1312 int cpu, ret = 0;
1313
1314 /* Get OPP descriptor node */
1315 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1316 if (!np) {
1317 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1318 return -ENOENT;
1319 }
1320
1321 cpumask_set_cpu(cpu_dev->id, cpumask);
1322
1323 /* OPPs are shared ? */
1324 if (!of_property_read_bool(np, "opp-shared"))
1325 goto put_cpu_node;
1326
1327 for_each_possible_cpu(cpu) {
1328 if (cpu == cpu_dev->id)
1329 continue;
1330
1331 cpu_np = of_cpu_device_node_get(cpu);
1332 if (!cpu_np) {
1333 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1334 __func__, cpu);
1335 ret = -ENOENT;
1336 goto put_cpu_node;
1337 }
1338
1339 /* Get OPP descriptor node */
1340 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1341 of_node_put(cpu_np);
1342 if (!tmp_np) {
1343 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1344 ret = -ENOENT;
1345 goto put_cpu_node;
1346 }
1347
1348 /* CPUs are sharing opp node */
1349 if (np == tmp_np)
1350 cpumask_set_cpu(cpu, cpumask);
1351
1352 of_node_put(tmp_np);
1353 }
1354
1355put_cpu_node:
1356 of_node_put(np);
1357 return ret;
1358}
1359EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1360
1361/**
1362 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1363 * @np: Node that contains the "required-opps" property.
1364 * @index: Index of the phandle to parse.
1365 *
1366 * Returns the performance state of the OPP pointed out by the "required-opps"
1367 * property at @index in @np.
1368 *
1369 * Return: Zero or positive performance state on success, otherwise negative
1370 * value on errors.
1371 */
1372int of_get_required_opp_performance_state(struct device_node *np, int index)
1373{
1374 struct dev_pm_opp *opp;
1375 struct device_node *required_np;
1376 struct opp_table *opp_table;
1377 int pstate = -EINVAL;
1378
1379 required_np = of_parse_required_opp(np, index);
1380 if (!required_np)
1381 return -ENODEV;
1382
1383 opp_table = _find_table_of_opp_np(required_np);
1384 if (IS_ERR(opp_table)) {
1385 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1386 __func__, np, PTR_ERR(opp_table));
1387 goto put_required_np;
1388 }
1389
1390 opp = _find_opp_of_np(opp_table, required_np);
1391 if (opp) {
1392 pstate = opp->pstate;
1393 dev_pm_opp_put(opp);
1394 }
1395
1396 dev_pm_opp_put_opp_table(opp_table);
1397
1398put_required_np:
1399 of_node_put(required_np);
1400
1401 return pstate;
1402}
1403EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1404
1405/**
1406 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1407 * @opp: opp for which DT node has to be returned for
1408 *
1409 * Return: DT node corresponding to the opp, else 0 on success.
1410 *
1411 * The caller needs to put the node with of_node_put() after using it.
1412 */
1413struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1414{
1415 if (IS_ERR_OR_NULL(opp)) {
1416 pr_err("%s: Invalid parameters\n", __func__);
1417 return NULL;
1418 }
1419
1420 return of_node_get(opp->np);
1421}
1422EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1423
1424/*
1425 * Callback function provided to the Energy Model framework upon registration.
1426 * It provides the power used by @dev at @kHz if it is the frequency of an
1427 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1428 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1429 * frequency and @uW to the associated power.
1430 *
1431 * Returns 0 on success or a proper -EINVAL value in case of error.
1432 */
1433static int __maybe_unused
1434_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1435{
1436 struct dev_pm_opp *opp;
1437 unsigned long opp_freq, opp_power;
1438
1439 /* Find the right frequency and related OPP */
1440 opp_freq = *kHz * 1000;
1441 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1442 if (IS_ERR(opp))
1443 return -EINVAL;
1444
1445 opp_power = dev_pm_opp_get_power(opp);
1446 dev_pm_opp_put(opp);
1447 if (!opp_power)
1448 return -EINVAL;
1449
1450 *kHz = opp_freq / 1000;
1451 *uW = opp_power;
1452
1453 return 0;
1454}
1455
1456/*
1457 * Callback function provided to the Energy Model framework upon registration.
1458 * This computes the power estimated by @dev at @kHz if it is the frequency
1459 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1460 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1461 * frequency and @uW to the associated power. The power is estimated as
1462 * P = C * V^2 * f with C being the device's capacitance and V and f
1463 * respectively the voltage and frequency of the OPP.
1464 *
1465 * Returns -EINVAL if the power calculation failed because of missing
1466 * parameters, 0 otherwise.
1467 */
1468static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1469 unsigned long *kHz)
1470{
1471 struct dev_pm_opp *opp;
1472 struct device_node *np;
1473 unsigned long mV, Hz;
1474 u32 cap;
1475 u64 tmp;
1476 int ret;
1477
1478 np = of_node_get(dev->of_node);
1479 if (!np)
1480 return -EINVAL;
1481
1482 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1483 of_node_put(np);
1484 if (ret)
1485 return -EINVAL;
1486
1487 Hz = *kHz * 1000;
1488 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1489 if (IS_ERR(opp))
1490 return -EINVAL;
1491
1492 mV = dev_pm_opp_get_voltage(opp) / 1000;
1493 dev_pm_opp_put(opp);
1494 if (!mV)
1495 return -EINVAL;
1496
1497 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1498 /* Provide power in micro-Watts */
1499 do_div(tmp, 1000000);
1500
1501 *uW = (unsigned long)tmp;
1502 *kHz = Hz / 1000;
1503
1504 return 0;
1505}
1506
1507static bool _of_has_opp_microwatt_property(struct device *dev)
1508{
1509 unsigned long power, freq = 0;
1510 struct dev_pm_opp *opp;
1511
1512 /* Check if at least one OPP has needed property */
1513 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1514 if (IS_ERR(opp))
1515 return false;
1516
1517 power = dev_pm_opp_get_power(opp);
1518 dev_pm_opp_put(opp);
1519 if (!power)
1520 return false;
1521
1522 return true;
1523}
1524
1525/**
1526 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1527 * @dev : Device for which an Energy Model has to be registered
1528 * @cpus : CPUs for which an Energy Model has to be registered. For
1529 * other type of devices it should be set to NULL.
1530 *
1531 * This checks whether the "dynamic-power-coefficient" devicetree property has
1532 * been specified, and tries to register an Energy Model with it if it has.
1533 * Having this property means the voltages are known for OPPs and the EM
1534 * might be calculated.
1535 */
1536int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1537{
1538 struct em_data_callback em_cb;
1539 struct device_node *np;
1540 int ret, nr_opp;
1541 u32 cap;
1542
1543 if (IS_ERR_OR_NULL(dev)) {
1544 ret = -EINVAL;
1545 goto failed;
1546 }
1547
1548 nr_opp = dev_pm_opp_get_opp_count(dev);
1549 if (nr_opp <= 0) {
1550 ret = -EINVAL;
1551 goto failed;
1552 }
1553
1554 /* First, try to find more precised Energy Model in DT */
1555 if (_of_has_opp_microwatt_property(dev)) {
1556 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1557 goto register_em;
1558 }
1559
1560 np = of_node_get(dev->of_node);
1561 if (!np) {
1562 ret = -EINVAL;
1563 goto failed;
1564 }
1565
1566 /*
1567 * Register an EM only if the 'dynamic-power-coefficient' property is
1568 * set in devicetree. It is assumed the voltage values are known if that
1569 * property is set since it is useless otherwise. If voltages are not
1570 * known, just let the EM registration fail with an error to alert the
1571 * user about the inconsistent configuration.
1572 */
1573 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1574 of_node_put(np);
1575 if (ret || !cap) {
1576 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1577 ret = -EINVAL;
1578 goto failed;
1579 }
1580
1581 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1582
1583register_em:
1584 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1585 if (ret)
1586 goto failed;
1587
1588 return 0;
1589
1590failed:
1591 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1592 return ret;
1593}
1594EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);