Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3*******************************************************************************
4**
5** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7**
8**
9*******************************************************************************
10******************************************************************************/
11
12/*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45#include <asm/ioctls.h>
46#include <net/sock.h>
47#include <net/tcp.h>
48#include <linux/pagemap.h>
49#include <linux/file.h>
50#include <linux/mutex.h>
51#include <linux/sctp.h>
52#include <linux/slab.h>
53#include <net/sctp/sctp.h>
54#include <net/ipv6.h>
55
56#include <trace/events/dlm.h>
57
58#include "dlm_internal.h"
59#include "lowcomms.h"
60#include "midcomms.h"
61#include "memory.h"
62#include "config.h"
63
64#define NEEDED_RMEM (4*1024*1024)
65
66struct connection {
67 struct socket *sock; /* NULL if not connected */
68 uint32_t nodeid; /* So we know who we are in the list */
69 /* this semaphore is used to allow parallel recv/send in read
70 * lock mode. When we release a sock we need to held the write lock.
71 *
72 * However this is locking code and not nice. When we remove the
73 * othercon handling we can look into other mechanism to synchronize
74 * io handling to call sock_release() at the right time.
75 */
76 struct rw_semaphore sock_lock;
77 unsigned long flags;
78#define CF_APP_LIMITED 0
79#define CF_RECV_PENDING 1
80#define CF_SEND_PENDING 2
81#define CF_RECV_INTR 3
82#define CF_IO_STOP 4
83#define CF_IS_OTHERCON 5
84 struct list_head writequeue; /* List of outgoing writequeue_entries */
85 spinlock_t writequeue_lock;
86 int retries;
87 struct hlist_node list;
88 /* due some connect()/accept() races we currently have this cross over
89 * connection attempt second connection for one node.
90 *
91 * There is a solution to avoid the race by introducing a connect
92 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
93 * connect. Otherside can connect but will only be considered that
94 * the other side wants to have a reconnect.
95 *
96 * However changing to this behaviour will break backwards compatible.
97 * In a DLM protocol major version upgrade we should remove this!
98 */
99 struct connection *othercon;
100 struct work_struct rwork; /* receive worker */
101 struct work_struct swork; /* send worker */
102 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
103 int rx_leftover;
104 int mark;
105 int addr_count;
106 int curr_addr_index;
107 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
108 spinlock_t addrs_lock;
109 struct rcu_head rcu;
110};
111#define sock2con(x) ((struct connection *)(x)->sk_user_data)
112
113struct listen_connection {
114 struct socket *sock;
115 struct work_struct rwork;
116};
117
118#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
119#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
120
121/* An entry waiting to be sent */
122struct writequeue_entry {
123 struct list_head list;
124 struct page *page;
125 int offset;
126 int len;
127 int end;
128 int users;
129 bool dirty;
130 struct connection *con;
131 struct list_head msgs;
132 struct kref ref;
133};
134
135struct dlm_msg {
136 struct writequeue_entry *entry;
137 struct dlm_msg *orig_msg;
138 bool retransmit;
139 void *ppc;
140 int len;
141 int idx; /* new()/commit() idx exchange */
142
143 struct list_head list;
144 struct kref ref;
145};
146
147struct processqueue_entry {
148 unsigned char *buf;
149 int nodeid;
150 int buflen;
151
152 struct list_head list;
153};
154
155struct dlm_proto_ops {
156 bool try_new_addr;
157 const char *name;
158 int proto;
159
160 int (*connect)(struct connection *con, struct socket *sock,
161 struct sockaddr *addr, int addr_len);
162 void (*sockopts)(struct socket *sock);
163 int (*bind)(struct socket *sock);
164 int (*listen_validate)(void);
165 void (*listen_sockopts)(struct socket *sock);
166 int (*listen_bind)(struct socket *sock);
167};
168
169static struct listen_sock_callbacks {
170 void (*sk_error_report)(struct sock *);
171 void (*sk_data_ready)(struct sock *);
172 void (*sk_state_change)(struct sock *);
173 void (*sk_write_space)(struct sock *);
174} listen_sock;
175
176static struct listen_connection listen_con;
177static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
178static int dlm_local_count;
179
180/* Work queues */
181static struct workqueue_struct *io_workqueue;
182static struct workqueue_struct *process_workqueue;
183
184static struct hlist_head connection_hash[CONN_HASH_SIZE];
185static DEFINE_SPINLOCK(connections_lock);
186DEFINE_STATIC_SRCU(connections_srcu);
187
188static const struct dlm_proto_ops *dlm_proto_ops;
189
190#define DLM_IO_SUCCESS 0
191#define DLM_IO_END 1
192#define DLM_IO_EOF 2
193#define DLM_IO_RESCHED 3
194
195static void process_recv_sockets(struct work_struct *work);
196static void process_send_sockets(struct work_struct *work);
197static void process_dlm_messages(struct work_struct *work);
198
199static DECLARE_WORK(process_work, process_dlm_messages);
200static DEFINE_SPINLOCK(processqueue_lock);
201static bool process_dlm_messages_pending;
202static LIST_HEAD(processqueue);
203
204bool dlm_lowcomms_is_running(void)
205{
206 return !!listen_con.sock;
207}
208
209static void lowcomms_queue_swork(struct connection *con)
210{
211 assert_spin_locked(&con->writequeue_lock);
212
213 if (!test_bit(CF_IO_STOP, &con->flags) &&
214 !test_bit(CF_APP_LIMITED, &con->flags) &&
215 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
216 queue_work(io_workqueue, &con->swork);
217}
218
219static void lowcomms_queue_rwork(struct connection *con)
220{
221#ifdef CONFIG_LOCKDEP
222 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
223#endif
224
225 if (!test_bit(CF_IO_STOP, &con->flags) &&
226 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
227 queue_work(io_workqueue, &con->rwork);
228}
229
230static void writequeue_entry_ctor(void *data)
231{
232 struct writequeue_entry *entry = data;
233
234 INIT_LIST_HEAD(&entry->msgs);
235}
236
237struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
238{
239 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
240 0, 0, writequeue_entry_ctor);
241}
242
243struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
244{
245 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
246}
247
248/* need to held writequeue_lock */
249static struct writequeue_entry *con_next_wq(struct connection *con)
250{
251 struct writequeue_entry *e;
252
253 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
254 list);
255 /* if len is zero nothing is to send, if there are users filling
256 * buffers we wait until the users are done so we can send more.
257 */
258 if (!e || e->users || e->len == 0)
259 return NULL;
260
261 return e;
262}
263
264static struct connection *__find_con(int nodeid, int r)
265{
266 struct connection *con;
267
268 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
269 if (con->nodeid == nodeid)
270 return con;
271 }
272
273 return NULL;
274}
275
276static void dlm_con_init(struct connection *con, int nodeid)
277{
278 con->nodeid = nodeid;
279 init_rwsem(&con->sock_lock);
280 INIT_LIST_HEAD(&con->writequeue);
281 spin_lock_init(&con->writequeue_lock);
282 INIT_WORK(&con->swork, process_send_sockets);
283 INIT_WORK(&con->rwork, process_recv_sockets);
284 spin_lock_init(&con->addrs_lock);
285}
286
287/*
288 * If 'allocation' is zero then we don't attempt to create a new
289 * connection structure for this node.
290 */
291static struct connection *nodeid2con(int nodeid, gfp_t alloc)
292{
293 struct connection *con, *tmp;
294 int r;
295
296 r = nodeid_hash(nodeid);
297 con = __find_con(nodeid, r);
298 if (con || !alloc)
299 return con;
300
301 con = kzalloc(sizeof(*con), alloc);
302 if (!con)
303 return NULL;
304
305 dlm_con_init(con, nodeid);
306
307 spin_lock(&connections_lock);
308 /* Because multiple workqueues/threads calls this function it can
309 * race on multiple cpu's. Instead of locking hot path __find_con()
310 * we just check in rare cases of recently added nodes again
311 * under protection of connections_lock. If this is the case we
312 * abort our connection creation and return the existing connection.
313 */
314 tmp = __find_con(nodeid, r);
315 if (tmp) {
316 spin_unlock(&connections_lock);
317 kfree(con);
318 return tmp;
319 }
320
321 hlist_add_head_rcu(&con->list, &connection_hash[r]);
322 spin_unlock(&connections_lock);
323
324 return con;
325}
326
327static int addr_compare(const struct sockaddr_storage *x,
328 const struct sockaddr_storage *y)
329{
330 switch (x->ss_family) {
331 case AF_INET: {
332 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
333 struct sockaddr_in *siny = (struct sockaddr_in *)y;
334 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
335 return 0;
336 if (sinx->sin_port != siny->sin_port)
337 return 0;
338 break;
339 }
340 case AF_INET6: {
341 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
342 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
343 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
344 return 0;
345 if (sinx->sin6_port != siny->sin6_port)
346 return 0;
347 break;
348 }
349 default:
350 return 0;
351 }
352 return 1;
353}
354
355static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
356 struct sockaddr *sa_out, bool try_new_addr,
357 unsigned int *mark)
358{
359 struct sockaddr_storage sas;
360 struct connection *con;
361 int idx;
362
363 if (!dlm_local_count)
364 return -1;
365
366 idx = srcu_read_lock(&connections_srcu);
367 con = nodeid2con(nodeid, 0);
368 if (!con) {
369 srcu_read_unlock(&connections_srcu, idx);
370 return -ENOENT;
371 }
372
373 spin_lock(&con->addrs_lock);
374 if (!con->addr_count) {
375 spin_unlock(&con->addrs_lock);
376 srcu_read_unlock(&connections_srcu, idx);
377 return -ENOENT;
378 }
379
380 memcpy(&sas, &con->addr[con->curr_addr_index],
381 sizeof(struct sockaddr_storage));
382
383 if (try_new_addr) {
384 con->curr_addr_index++;
385 if (con->curr_addr_index == con->addr_count)
386 con->curr_addr_index = 0;
387 }
388
389 *mark = con->mark;
390 spin_unlock(&con->addrs_lock);
391
392 if (sas_out)
393 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
394
395 if (!sa_out) {
396 srcu_read_unlock(&connections_srcu, idx);
397 return 0;
398 }
399
400 if (dlm_local_addr[0].ss_family == AF_INET) {
401 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
402 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
403 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
404 } else {
405 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
406 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
407 ret6->sin6_addr = in6->sin6_addr;
408 }
409
410 srcu_read_unlock(&connections_srcu, idx);
411 return 0;
412}
413
414static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
415 unsigned int *mark)
416{
417 struct connection *con;
418 int i, idx, addr_i;
419
420 idx = srcu_read_lock(&connections_srcu);
421 for (i = 0; i < CONN_HASH_SIZE; i++) {
422 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
423 WARN_ON_ONCE(!con->addr_count);
424
425 spin_lock(&con->addrs_lock);
426 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
427 if (addr_compare(&con->addr[addr_i], addr)) {
428 *nodeid = con->nodeid;
429 *mark = con->mark;
430 spin_unlock(&con->addrs_lock);
431 srcu_read_unlock(&connections_srcu, idx);
432 return 0;
433 }
434 }
435 spin_unlock(&con->addrs_lock);
436 }
437 }
438 srcu_read_unlock(&connections_srcu, idx);
439
440 return -ENOENT;
441}
442
443static bool dlm_lowcomms_con_has_addr(const struct connection *con,
444 const struct sockaddr_storage *addr)
445{
446 int i;
447
448 for (i = 0; i < con->addr_count; i++) {
449 if (addr_compare(&con->addr[i], addr))
450 return true;
451 }
452
453 return false;
454}
455
456int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
457{
458 struct connection *con;
459 bool ret, idx;
460
461 idx = srcu_read_lock(&connections_srcu);
462 con = nodeid2con(nodeid, GFP_NOFS);
463 if (!con) {
464 srcu_read_unlock(&connections_srcu, idx);
465 return -ENOMEM;
466 }
467
468 spin_lock(&con->addrs_lock);
469 if (!con->addr_count) {
470 memcpy(&con->addr[0], addr, sizeof(*addr));
471 con->addr_count = 1;
472 con->mark = dlm_config.ci_mark;
473 spin_unlock(&con->addrs_lock);
474 srcu_read_unlock(&connections_srcu, idx);
475 return 0;
476 }
477
478 ret = dlm_lowcomms_con_has_addr(con, addr);
479 if (ret) {
480 spin_unlock(&con->addrs_lock);
481 srcu_read_unlock(&connections_srcu, idx);
482 return -EEXIST;
483 }
484
485 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
486 spin_unlock(&con->addrs_lock);
487 srcu_read_unlock(&connections_srcu, idx);
488 return -ENOSPC;
489 }
490
491 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
492 srcu_read_unlock(&connections_srcu, idx);
493 spin_unlock(&con->addrs_lock);
494 return 0;
495}
496
497/* Data available on socket or listen socket received a connect */
498static void lowcomms_data_ready(struct sock *sk)
499{
500 struct connection *con = sock2con(sk);
501
502 set_bit(CF_RECV_INTR, &con->flags);
503 lowcomms_queue_rwork(con);
504}
505
506static void lowcomms_write_space(struct sock *sk)
507{
508 struct connection *con = sock2con(sk);
509
510 clear_bit(SOCK_NOSPACE, &con->sock->flags);
511
512 spin_lock_bh(&con->writequeue_lock);
513 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
514 con->sock->sk->sk_write_pending--;
515 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
516 }
517
518 lowcomms_queue_swork(con);
519 spin_unlock_bh(&con->writequeue_lock);
520}
521
522static void lowcomms_state_change(struct sock *sk)
523{
524 /* SCTP layer is not calling sk_data_ready when the connection
525 * is done, so we catch the signal through here.
526 */
527 if (sk->sk_shutdown == RCV_SHUTDOWN)
528 lowcomms_data_ready(sk);
529}
530
531static void lowcomms_listen_data_ready(struct sock *sk)
532{
533 queue_work(io_workqueue, &listen_con.rwork);
534}
535
536int dlm_lowcomms_connect_node(int nodeid)
537{
538 struct connection *con;
539 int idx;
540
541 if (nodeid == dlm_our_nodeid())
542 return 0;
543
544 idx = srcu_read_lock(&connections_srcu);
545 con = nodeid2con(nodeid, 0);
546 if (WARN_ON_ONCE(!con)) {
547 srcu_read_unlock(&connections_srcu, idx);
548 return -ENOENT;
549 }
550
551 down_read(&con->sock_lock);
552 if (!con->sock) {
553 spin_lock_bh(&con->writequeue_lock);
554 lowcomms_queue_swork(con);
555 spin_unlock_bh(&con->writequeue_lock);
556 }
557 up_read(&con->sock_lock);
558 srcu_read_unlock(&connections_srcu, idx);
559
560 cond_resched();
561 return 0;
562}
563
564int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
565{
566 struct connection *con;
567 int idx;
568
569 idx = srcu_read_lock(&connections_srcu);
570 con = nodeid2con(nodeid, 0);
571 if (!con) {
572 srcu_read_unlock(&connections_srcu, idx);
573 return -ENOENT;
574 }
575
576 spin_lock(&con->addrs_lock);
577 con->mark = mark;
578 spin_unlock(&con->addrs_lock);
579 srcu_read_unlock(&connections_srcu, idx);
580 return 0;
581}
582
583static void lowcomms_error_report(struct sock *sk)
584{
585 struct connection *con = sock2con(sk);
586 struct inet_sock *inet;
587
588 inet = inet_sk(sk);
589 switch (sk->sk_family) {
590 case AF_INET:
591 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
592 "sending to node %d at %pI4, dport %d, "
593 "sk_err=%d/%d\n", dlm_our_nodeid(),
594 con->nodeid, &inet->inet_daddr,
595 ntohs(inet->inet_dport), sk->sk_err,
596 sk->sk_err_soft);
597 break;
598#if IS_ENABLED(CONFIG_IPV6)
599 case AF_INET6:
600 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
601 "sending to node %d at %pI6c, "
602 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
603 con->nodeid, &sk->sk_v6_daddr,
604 ntohs(inet->inet_dport), sk->sk_err,
605 sk->sk_err_soft);
606 break;
607#endif
608 default:
609 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
610 "invalid socket family %d set, "
611 "sk_err=%d/%d\n", dlm_our_nodeid(),
612 sk->sk_family, sk->sk_err, sk->sk_err_soft);
613 break;
614 }
615
616 dlm_midcomms_unack_msg_resend(con->nodeid);
617
618 listen_sock.sk_error_report(sk);
619}
620
621static void restore_callbacks(struct sock *sk)
622{
623#ifdef CONFIG_LOCKDEP
624 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
625#endif
626
627 sk->sk_user_data = NULL;
628 sk->sk_data_ready = listen_sock.sk_data_ready;
629 sk->sk_state_change = listen_sock.sk_state_change;
630 sk->sk_write_space = listen_sock.sk_write_space;
631 sk->sk_error_report = listen_sock.sk_error_report;
632}
633
634/* Make a socket active */
635static void add_sock(struct socket *sock, struct connection *con)
636{
637 struct sock *sk = sock->sk;
638
639 lock_sock(sk);
640 con->sock = sock;
641
642 sk->sk_user_data = con;
643 sk->sk_data_ready = lowcomms_data_ready;
644 sk->sk_write_space = lowcomms_write_space;
645 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
646 sk->sk_state_change = lowcomms_state_change;
647 sk->sk_allocation = GFP_NOFS;
648 sk->sk_use_task_frag = false;
649 sk->sk_error_report = lowcomms_error_report;
650 release_sock(sk);
651}
652
653/* Add the port number to an IPv6 or 4 sockaddr and return the address
654 length */
655static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
656 int *addr_len)
657{
658 saddr->ss_family = dlm_local_addr[0].ss_family;
659 if (saddr->ss_family == AF_INET) {
660 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
661 in4_addr->sin_port = cpu_to_be16(port);
662 *addr_len = sizeof(struct sockaddr_in);
663 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
664 } else {
665 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
666 in6_addr->sin6_port = cpu_to_be16(port);
667 *addr_len = sizeof(struct sockaddr_in6);
668 }
669 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
670}
671
672static void dlm_page_release(struct kref *kref)
673{
674 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
675 ref);
676
677 __free_page(e->page);
678 dlm_free_writequeue(e);
679}
680
681static void dlm_msg_release(struct kref *kref)
682{
683 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
684
685 kref_put(&msg->entry->ref, dlm_page_release);
686 dlm_free_msg(msg);
687}
688
689static void free_entry(struct writequeue_entry *e)
690{
691 struct dlm_msg *msg, *tmp;
692
693 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
694 if (msg->orig_msg) {
695 msg->orig_msg->retransmit = false;
696 kref_put(&msg->orig_msg->ref, dlm_msg_release);
697 }
698
699 list_del(&msg->list);
700 kref_put(&msg->ref, dlm_msg_release);
701 }
702
703 list_del(&e->list);
704 kref_put(&e->ref, dlm_page_release);
705}
706
707static void dlm_close_sock(struct socket **sock)
708{
709 lock_sock((*sock)->sk);
710 restore_callbacks((*sock)->sk);
711 release_sock((*sock)->sk);
712
713 sock_release(*sock);
714 *sock = NULL;
715}
716
717static void allow_connection_io(struct connection *con)
718{
719 if (con->othercon)
720 clear_bit(CF_IO_STOP, &con->othercon->flags);
721 clear_bit(CF_IO_STOP, &con->flags);
722}
723
724static void stop_connection_io(struct connection *con)
725{
726 if (con->othercon)
727 stop_connection_io(con->othercon);
728
729 down_write(&con->sock_lock);
730 if (con->sock) {
731 lock_sock(con->sock->sk);
732 restore_callbacks(con->sock->sk);
733
734 spin_lock_bh(&con->writequeue_lock);
735 set_bit(CF_IO_STOP, &con->flags);
736 spin_unlock_bh(&con->writequeue_lock);
737 release_sock(con->sock->sk);
738 } else {
739 spin_lock_bh(&con->writequeue_lock);
740 set_bit(CF_IO_STOP, &con->flags);
741 spin_unlock_bh(&con->writequeue_lock);
742 }
743 up_write(&con->sock_lock);
744
745 cancel_work_sync(&con->swork);
746 cancel_work_sync(&con->rwork);
747}
748
749/* Close a remote connection and tidy up */
750static void close_connection(struct connection *con, bool and_other)
751{
752 struct writequeue_entry *e;
753
754 if (con->othercon && and_other)
755 close_connection(con->othercon, false);
756
757 down_write(&con->sock_lock);
758 if (!con->sock) {
759 up_write(&con->sock_lock);
760 return;
761 }
762
763 dlm_close_sock(&con->sock);
764
765 /* if we send a writequeue entry only a half way, we drop the
766 * whole entry because reconnection and that we not start of the
767 * middle of a msg which will confuse the other end.
768 *
769 * we can always drop messages because retransmits, but what we
770 * cannot allow is to transmit half messages which may be processed
771 * at the other side.
772 *
773 * our policy is to start on a clean state when disconnects, we don't
774 * know what's send/received on transport layer in this case.
775 */
776 spin_lock_bh(&con->writequeue_lock);
777 if (!list_empty(&con->writequeue)) {
778 e = list_first_entry(&con->writequeue, struct writequeue_entry,
779 list);
780 if (e->dirty)
781 free_entry(e);
782 }
783 spin_unlock_bh(&con->writequeue_lock);
784
785 con->rx_leftover = 0;
786 con->retries = 0;
787 clear_bit(CF_APP_LIMITED, &con->flags);
788 clear_bit(CF_RECV_PENDING, &con->flags);
789 clear_bit(CF_SEND_PENDING, &con->flags);
790 up_write(&con->sock_lock);
791}
792
793static struct processqueue_entry *new_processqueue_entry(int nodeid,
794 int buflen)
795{
796 struct processqueue_entry *pentry;
797
798 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
799 if (!pentry)
800 return NULL;
801
802 pentry->buf = kmalloc(buflen, GFP_NOFS);
803 if (!pentry->buf) {
804 kfree(pentry);
805 return NULL;
806 }
807
808 pentry->nodeid = nodeid;
809 return pentry;
810}
811
812static void free_processqueue_entry(struct processqueue_entry *pentry)
813{
814 kfree(pentry->buf);
815 kfree(pentry);
816}
817
818struct dlm_processed_nodes {
819 int nodeid;
820
821 struct list_head list;
822};
823
824static void add_processed_node(int nodeid, struct list_head *processed_nodes)
825{
826 struct dlm_processed_nodes *n;
827
828 list_for_each_entry(n, processed_nodes, list) {
829 /* we already remembered this node */
830 if (n->nodeid == nodeid)
831 return;
832 }
833
834 /* if it's fails in worst case we simple don't send an ack back.
835 * We try it next time.
836 */
837 n = kmalloc(sizeof(*n), GFP_NOFS);
838 if (!n)
839 return;
840
841 n->nodeid = nodeid;
842 list_add(&n->list, processed_nodes);
843}
844
845static void process_dlm_messages(struct work_struct *work)
846{
847 struct dlm_processed_nodes *n, *n_tmp;
848 struct processqueue_entry *pentry;
849 LIST_HEAD(processed_nodes);
850
851 spin_lock(&processqueue_lock);
852 pentry = list_first_entry_or_null(&processqueue,
853 struct processqueue_entry, list);
854 if (WARN_ON_ONCE(!pentry)) {
855 spin_unlock(&processqueue_lock);
856 return;
857 }
858
859 list_del(&pentry->list);
860 spin_unlock(&processqueue_lock);
861
862 for (;;) {
863 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
864 pentry->buflen);
865 add_processed_node(pentry->nodeid, &processed_nodes);
866 free_processqueue_entry(pentry);
867
868 spin_lock(&processqueue_lock);
869 pentry = list_first_entry_or_null(&processqueue,
870 struct processqueue_entry, list);
871 if (!pentry) {
872 process_dlm_messages_pending = false;
873 spin_unlock(&processqueue_lock);
874 break;
875 }
876
877 list_del(&pentry->list);
878 spin_unlock(&processqueue_lock);
879 }
880
881 /* send ack back after we processed couple of messages */
882 list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
883 list_del(&n->list);
884 dlm_midcomms_receive_done(n->nodeid);
885 kfree(n);
886 }
887}
888
889/* Data received from remote end */
890static int receive_from_sock(struct connection *con, int buflen)
891{
892 struct processqueue_entry *pentry;
893 int ret, buflen_real;
894 struct msghdr msg;
895 struct kvec iov;
896
897 pentry = new_processqueue_entry(con->nodeid, buflen);
898 if (!pentry)
899 return DLM_IO_RESCHED;
900
901 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
902
903 /* calculate new buffer parameter regarding last receive and
904 * possible leftover bytes
905 */
906 iov.iov_base = pentry->buf + con->rx_leftover;
907 iov.iov_len = buflen - con->rx_leftover;
908
909 memset(&msg, 0, sizeof(msg));
910 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
911 clear_bit(CF_RECV_INTR, &con->flags);
912again:
913 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
914 msg.msg_flags);
915 trace_dlm_recv(con->nodeid, ret);
916 if (ret == -EAGAIN) {
917 lock_sock(con->sock->sk);
918 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
919 release_sock(con->sock->sk);
920 goto again;
921 }
922
923 clear_bit(CF_RECV_PENDING, &con->flags);
924 release_sock(con->sock->sk);
925 free_processqueue_entry(pentry);
926 return DLM_IO_END;
927 } else if (ret == 0) {
928 /* close will clear CF_RECV_PENDING */
929 free_processqueue_entry(pentry);
930 return DLM_IO_EOF;
931 } else if (ret < 0) {
932 free_processqueue_entry(pentry);
933 return ret;
934 }
935
936 /* new buflen according readed bytes and leftover from last receive */
937 buflen_real = ret + con->rx_leftover;
938 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
939 buflen_real);
940 if (ret < 0) {
941 free_processqueue_entry(pentry);
942 return ret;
943 }
944
945 pentry->buflen = ret;
946
947 /* calculate leftover bytes from process and put it into begin of
948 * the receive buffer, so next receive we have the full message
949 * at the start address of the receive buffer.
950 */
951 con->rx_leftover = buflen_real - ret;
952 memmove(con->rx_leftover_buf, pentry->buf + ret,
953 con->rx_leftover);
954
955 spin_lock(&processqueue_lock);
956 list_add_tail(&pentry->list, &processqueue);
957 if (!process_dlm_messages_pending) {
958 process_dlm_messages_pending = true;
959 queue_work(process_workqueue, &process_work);
960 }
961 spin_unlock(&processqueue_lock);
962
963 return DLM_IO_SUCCESS;
964}
965
966/* Listening socket is busy, accept a connection */
967static int accept_from_sock(void)
968{
969 struct sockaddr_storage peeraddr;
970 int len, idx, result, nodeid;
971 struct connection *newcon;
972 struct socket *newsock;
973 unsigned int mark;
974
975 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
976 if (result == -EAGAIN)
977 return DLM_IO_END;
978 else if (result < 0)
979 goto accept_err;
980
981 /* Get the connected socket's peer */
982 memset(&peeraddr, 0, sizeof(peeraddr));
983 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
984 if (len < 0) {
985 result = -ECONNABORTED;
986 goto accept_err;
987 }
988
989 /* Get the new node's NODEID */
990 make_sockaddr(&peeraddr, 0, &len);
991 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
992 switch (peeraddr.ss_family) {
993 case AF_INET: {
994 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
995
996 log_print("connect from non cluster IPv4 node %pI4",
997 &sin->sin_addr);
998 break;
999 }
1000#if IS_ENABLED(CONFIG_IPV6)
1001 case AF_INET6: {
1002 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1003
1004 log_print("connect from non cluster IPv6 node %pI6c",
1005 &sin6->sin6_addr);
1006 break;
1007 }
1008#endif
1009 default:
1010 log_print("invalid family from non cluster node");
1011 break;
1012 }
1013
1014 sock_release(newsock);
1015 return -1;
1016 }
1017
1018 log_print("got connection from %d", nodeid);
1019
1020 /* Check to see if we already have a connection to this node. This
1021 * could happen if the two nodes initiate a connection at roughly
1022 * the same time and the connections cross on the wire.
1023 * In this case we store the incoming one in "othercon"
1024 */
1025 idx = srcu_read_lock(&connections_srcu);
1026 newcon = nodeid2con(nodeid, 0);
1027 if (WARN_ON_ONCE(!newcon)) {
1028 srcu_read_unlock(&connections_srcu, idx);
1029 result = -ENOENT;
1030 goto accept_err;
1031 }
1032
1033 sock_set_mark(newsock->sk, mark);
1034
1035 down_write(&newcon->sock_lock);
1036 if (newcon->sock) {
1037 struct connection *othercon = newcon->othercon;
1038
1039 if (!othercon) {
1040 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1041 if (!othercon) {
1042 log_print("failed to allocate incoming socket");
1043 up_write(&newcon->sock_lock);
1044 srcu_read_unlock(&connections_srcu, idx);
1045 result = -ENOMEM;
1046 goto accept_err;
1047 }
1048
1049 dlm_con_init(othercon, nodeid);
1050 lockdep_set_subclass(&othercon->sock_lock, 1);
1051 newcon->othercon = othercon;
1052 set_bit(CF_IS_OTHERCON, &othercon->flags);
1053 } else {
1054 /* close other sock con if we have something new */
1055 close_connection(othercon, false);
1056 }
1057
1058 down_write(&othercon->sock_lock);
1059 add_sock(newsock, othercon);
1060
1061 /* check if we receved something while adding */
1062 lock_sock(othercon->sock->sk);
1063 lowcomms_queue_rwork(othercon);
1064 release_sock(othercon->sock->sk);
1065 up_write(&othercon->sock_lock);
1066 }
1067 else {
1068 /* accept copies the sk after we've saved the callbacks, so we
1069 don't want to save them a second time or comm errors will
1070 result in calling sk_error_report recursively. */
1071 add_sock(newsock, newcon);
1072
1073 /* check if we receved something while adding */
1074 lock_sock(newcon->sock->sk);
1075 lowcomms_queue_rwork(newcon);
1076 release_sock(newcon->sock->sk);
1077 }
1078 up_write(&newcon->sock_lock);
1079 srcu_read_unlock(&connections_srcu, idx);
1080
1081 return DLM_IO_SUCCESS;
1082
1083accept_err:
1084 if (newsock)
1085 sock_release(newsock);
1086
1087 return result;
1088}
1089
1090/*
1091 * writequeue_entry_complete - try to delete and free write queue entry
1092 * @e: write queue entry to try to delete
1093 * @completed: bytes completed
1094 *
1095 * writequeue_lock must be held.
1096 */
1097static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1098{
1099 e->offset += completed;
1100 e->len -= completed;
1101 /* signal that page was half way transmitted */
1102 e->dirty = true;
1103
1104 if (e->len == 0 && e->users == 0)
1105 free_entry(e);
1106}
1107
1108/*
1109 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1110 */
1111static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1112{
1113 struct sockaddr_storage localaddr;
1114 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1115 int i, addr_len, result = 0;
1116
1117 for (i = 0; i < dlm_local_count; i++) {
1118 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1119 make_sockaddr(&localaddr, port, &addr_len);
1120
1121 if (!i)
1122 result = kernel_bind(sock, addr, addr_len);
1123 else
1124 result = sock_bind_add(sock->sk, addr, addr_len);
1125
1126 if (result < 0) {
1127 log_print("Can't bind to %d addr number %d, %d.\n",
1128 port, i + 1, result);
1129 break;
1130 }
1131 }
1132 return result;
1133}
1134
1135/* Get local addresses */
1136static void init_local(void)
1137{
1138 struct sockaddr_storage sas;
1139 int i;
1140
1141 dlm_local_count = 0;
1142 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1143 if (dlm_our_addr(&sas, i))
1144 break;
1145
1146 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1147 }
1148}
1149
1150static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1151{
1152 struct writequeue_entry *entry;
1153
1154 entry = dlm_allocate_writequeue();
1155 if (!entry)
1156 return NULL;
1157
1158 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1159 if (!entry->page) {
1160 dlm_free_writequeue(entry);
1161 return NULL;
1162 }
1163
1164 entry->offset = 0;
1165 entry->len = 0;
1166 entry->end = 0;
1167 entry->dirty = false;
1168 entry->con = con;
1169 entry->users = 1;
1170 kref_init(&entry->ref);
1171 return entry;
1172}
1173
1174static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1175 char **ppc, void (*cb)(void *data),
1176 void *data)
1177{
1178 struct writequeue_entry *e;
1179
1180 spin_lock_bh(&con->writequeue_lock);
1181 if (!list_empty(&con->writequeue)) {
1182 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1183 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1184 kref_get(&e->ref);
1185
1186 *ppc = page_address(e->page) + e->end;
1187 if (cb)
1188 cb(data);
1189
1190 e->end += len;
1191 e->users++;
1192 goto out;
1193 }
1194 }
1195
1196 e = new_writequeue_entry(con);
1197 if (!e)
1198 goto out;
1199
1200 kref_get(&e->ref);
1201 *ppc = page_address(e->page);
1202 e->end += len;
1203 if (cb)
1204 cb(data);
1205
1206 list_add_tail(&e->list, &con->writequeue);
1207
1208out:
1209 spin_unlock_bh(&con->writequeue_lock);
1210 return e;
1211};
1212
1213static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1214 gfp_t allocation, char **ppc,
1215 void (*cb)(void *data),
1216 void *data)
1217{
1218 struct writequeue_entry *e;
1219 struct dlm_msg *msg;
1220
1221 msg = dlm_allocate_msg(allocation);
1222 if (!msg)
1223 return NULL;
1224
1225 kref_init(&msg->ref);
1226
1227 e = new_wq_entry(con, len, ppc, cb, data);
1228 if (!e) {
1229 dlm_free_msg(msg);
1230 return NULL;
1231 }
1232
1233 msg->retransmit = false;
1234 msg->orig_msg = NULL;
1235 msg->ppc = *ppc;
1236 msg->len = len;
1237 msg->entry = e;
1238
1239 return msg;
1240}
1241
1242/* avoid false positive for nodes_srcu, unlock happens in
1243 * dlm_lowcomms_commit_msg which is a must call if success
1244 */
1245#ifndef __CHECKER__
1246struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1247 char **ppc, void (*cb)(void *data),
1248 void *data)
1249{
1250 struct connection *con;
1251 struct dlm_msg *msg;
1252 int idx;
1253
1254 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1255 len < sizeof(struct dlm_header)) {
1256 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1257 log_print("failed to allocate a buffer of size %d", len);
1258 WARN_ON_ONCE(1);
1259 return NULL;
1260 }
1261
1262 idx = srcu_read_lock(&connections_srcu);
1263 con = nodeid2con(nodeid, 0);
1264 if (WARN_ON_ONCE(!con)) {
1265 srcu_read_unlock(&connections_srcu, idx);
1266 return NULL;
1267 }
1268
1269 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1270 if (!msg) {
1271 srcu_read_unlock(&connections_srcu, idx);
1272 return NULL;
1273 }
1274
1275 /* for dlm_lowcomms_commit_msg() */
1276 kref_get(&msg->ref);
1277 /* we assume if successful commit must called */
1278 msg->idx = idx;
1279 return msg;
1280}
1281#endif
1282
1283static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1284{
1285 struct writequeue_entry *e = msg->entry;
1286 struct connection *con = e->con;
1287 int users;
1288
1289 spin_lock_bh(&con->writequeue_lock);
1290 kref_get(&msg->ref);
1291 list_add(&msg->list, &e->msgs);
1292
1293 users = --e->users;
1294 if (users)
1295 goto out;
1296
1297 e->len = DLM_WQ_LENGTH_BYTES(e);
1298
1299 lowcomms_queue_swork(con);
1300
1301out:
1302 spin_unlock_bh(&con->writequeue_lock);
1303 return;
1304}
1305
1306/* avoid false positive for nodes_srcu, lock was happen in
1307 * dlm_lowcomms_new_msg
1308 */
1309#ifndef __CHECKER__
1310void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1311{
1312 _dlm_lowcomms_commit_msg(msg);
1313 srcu_read_unlock(&connections_srcu, msg->idx);
1314 /* because dlm_lowcomms_new_msg() */
1315 kref_put(&msg->ref, dlm_msg_release);
1316}
1317#endif
1318
1319void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1320{
1321 kref_put(&msg->ref, dlm_msg_release);
1322}
1323
1324/* does not held connections_srcu, usage lowcomms_error_report only */
1325int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1326{
1327 struct dlm_msg *msg_resend;
1328 char *ppc;
1329
1330 if (msg->retransmit)
1331 return 1;
1332
1333 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1334 GFP_ATOMIC, &ppc, NULL, NULL);
1335 if (!msg_resend)
1336 return -ENOMEM;
1337
1338 msg->retransmit = true;
1339 kref_get(&msg->ref);
1340 msg_resend->orig_msg = msg;
1341
1342 memcpy(ppc, msg->ppc, msg->len);
1343 _dlm_lowcomms_commit_msg(msg_resend);
1344 dlm_lowcomms_put_msg(msg_resend);
1345
1346 return 0;
1347}
1348
1349/* Send a message */
1350static int send_to_sock(struct connection *con)
1351{
1352 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1353 struct writequeue_entry *e;
1354 int len, offset, ret;
1355
1356 spin_lock_bh(&con->writequeue_lock);
1357 e = con_next_wq(con);
1358 if (!e) {
1359 clear_bit(CF_SEND_PENDING, &con->flags);
1360 spin_unlock_bh(&con->writequeue_lock);
1361 return DLM_IO_END;
1362 }
1363
1364 len = e->len;
1365 offset = e->offset;
1366 WARN_ON_ONCE(len == 0 && e->users == 0);
1367 spin_unlock_bh(&con->writequeue_lock);
1368
1369 ret = kernel_sendpage(con->sock, e->page, offset, len,
1370 msg_flags);
1371 trace_dlm_send(con->nodeid, ret);
1372 if (ret == -EAGAIN || ret == 0) {
1373 lock_sock(con->sock->sk);
1374 spin_lock_bh(&con->writequeue_lock);
1375 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1376 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1377 /* Notify TCP that we're limited by the
1378 * application window size.
1379 */
1380 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1381 con->sock->sk->sk_write_pending++;
1382
1383 clear_bit(CF_SEND_PENDING, &con->flags);
1384 spin_unlock_bh(&con->writequeue_lock);
1385 release_sock(con->sock->sk);
1386
1387 /* wait for write_space() event */
1388 return DLM_IO_END;
1389 }
1390 spin_unlock_bh(&con->writequeue_lock);
1391 release_sock(con->sock->sk);
1392
1393 return DLM_IO_RESCHED;
1394 } else if (ret < 0) {
1395 return ret;
1396 }
1397
1398 spin_lock_bh(&con->writequeue_lock);
1399 writequeue_entry_complete(e, ret);
1400 spin_unlock_bh(&con->writequeue_lock);
1401
1402 return DLM_IO_SUCCESS;
1403}
1404
1405static void clean_one_writequeue(struct connection *con)
1406{
1407 struct writequeue_entry *e, *safe;
1408
1409 spin_lock_bh(&con->writequeue_lock);
1410 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1411 free_entry(e);
1412 }
1413 spin_unlock_bh(&con->writequeue_lock);
1414}
1415
1416static void connection_release(struct rcu_head *rcu)
1417{
1418 struct connection *con = container_of(rcu, struct connection, rcu);
1419
1420 WARN_ON_ONCE(!list_empty(&con->writequeue));
1421 WARN_ON_ONCE(con->sock);
1422 kfree(con);
1423}
1424
1425/* Called from recovery when it knows that a node has
1426 left the cluster */
1427int dlm_lowcomms_close(int nodeid)
1428{
1429 struct connection *con;
1430 int idx;
1431
1432 log_print("closing connection to node %d", nodeid);
1433
1434 idx = srcu_read_lock(&connections_srcu);
1435 con = nodeid2con(nodeid, 0);
1436 if (WARN_ON_ONCE(!con)) {
1437 srcu_read_unlock(&connections_srcu, idx);
1438 return -ENOENT;
1439 }
1440
1441 stop_connection_io(con);
1442 log_print("io handling for node: %d stopped", nodeid);
1443 close_connection(con, true);
1444
1445 spin_lock(&connections_lock);
1446 hlist_del_rcu(&con->list);
1447 spin_unlock(&connections_lock);
1448
1449 clean_one_writequeue(con);
1450 call_srcu(&connections_srcu, &con->rcu, connection_release);
1451 if (con->othercon) {
1452 clean_one_writequeue(con->othercon);
1453 if (con->othercon)
1454 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1455 }
1456 srcu_read_unlock(&connections_srcu, idx);
1457
1458 /* for debugging we print when we are done to compare with other
1459 * messages in between. This function need to be correctly synchronized
1460 * with io handling
1461 */
1462 log_print("closing connection to node %d done", nodeid);
1463
1464 return 0;
1465}
1466
1467/* Receive worker function */
1468static void process_recv_sockets(struct work_struct *work)
1469{
1470 struct connection *con = container_of(work, struct connection, rwork);
1471 int ret, buflen;
1472
1473 down_read(&con->sock_lock);
1474 if (!con->sock) {
1475 up_read(&con->sock_lock);
1476 return;
1477 }
1478
1479 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1480 do {
1481 ret = receive_from_sock(con, buflen);
1482 } while (ret == DLM_IO_SUCCESS);
1483 up_read(&con->sock_lock);
1484
1485 switch (ret) {
1486 case DLM_IO_END:
1487 /* CF_RECV_PENDING cleared */
1488 break;
1489 case DLM_IO_EOF:
1490 close_connection(con, false);
1491 /* CF_RECV_PENDING cleared */
1492 break;
1493 case DLM_IO_RESCHED:
1494 cond_resched();
1495 queue_work(io_workqueue, &con->rwork);
1496 /* CF_RECV_PENDING not cleared */
1497 break;
1498 default:
1499 if (ret < 0) {
1500 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1501 close_connection(con, false);
1502 } else {
1503 spin_lock_bh(&con->writequeue_lock);
1504 lowcomms_queue_swork(con);
1505 spin_unlock_bh(&con->writequeue_lock);
1506 }
1507
1508 /* CF_RECV_PENDING cleared for othercon
1509 * we trigger send queue if not already done
1510 * and process_send_sockets will handle it
1511 */
1512 break;
1513 }
1514
1515 WARN_ON_ONCE(1);
1516 break;
1517 }
1518}
1519
1520static void process_listen_recv_socket(struct work_struct *work)
1521{
1522 int ret;
1523
1524 if (WARN_ON_ONCE(!listen_con.sock))
1525 return;
1526
1527 do {
1528 ret = accept_from_sock();
1529 } while (ret == DLM_IO_SUCCESS);
1530
1531 if (ret < 0)
1532 log_print("critical error accepting connection: %d", ret);
1533}
1534
1535static int dlm_connect(struct connection *con)
1536{
1537 struct sockaddr_storage addr;
1538 int result, addr_len;
1539 struct socket *sock;
1540 unsigned int mark;
1541
1542 memset(&addr, 0, sizeof(addr));
1543 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1544 dlm_proto_ops->try_new_addr, &mark);
1545 if (result < 0) {
1546 log_print("no address for nodeid %d", con->nodeid);
1547 return result;
1548 }
1549
1550 /* Create a socket to communicate with */
1551 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1552 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1553 if (result < 0)
1554 return result;
1555
1556 sock_set_mark(sock->sk, mark);
1557 dlm_proto_ops->sockopts(sock);
1558
1559 result = dlm_proto_ops->bind(sock);
1560 if (result < 0) {
1561 sock_release(sock);
1562 return result;
1563 }
1564
1565 add_sock(sock, con);
1566
1567 log_print_ratelimited("connecting to %d", con->nodeid);
1568 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1569 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1570 addr_len);
1571 switch (result) {
1572 case -EINPROGRESS:
1573 /* not an error */
1574 fallthrough;
1575 case 0:
1576 break;
1577 default:
1578 if (result < 0)
1579 dlm_close_sock(&con->sock);
1580
1581 break;
1582 }
1583
1584 return result;
1585}
1586
1587/* Send worker function */
1588static void process_send_sockets(struct work_struct *work)
1589{
1590 struct connection *con = container_of(work, struct connection, swork);
1591 int ret;
1592
1593 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1594
1595 down_read(&con->sock_lock);
1596 if (!con->sock) {
1597 up_read(&con->sock_lock);
1598 down_write(&con->sock_lock);
1599 if (!con->sock) {
1600 ret = dlm_connect(con);
1601 switch (ret) {
1602 case 0:
1603 break;
1604 case -EINPROGRESS:
1605 /* avoid spamming resched on connection
1606 * we might can switch to a state_change
1607 * event based mechanism if established
1608 */
1609 msleep(100);
1610 break;
1611 default:
1612 /* CF_SEND_PENDING not cleared */
1613 up_write(&con->sock_lock);
1614 log_print("connect to node %d try %d error %d",
1615 con->nodeid, con->retries++, ret);
1616 msleep(1000);
1617 /* For now we try forever to reconnect. In
1618 * future we should send a event to cluster
1619 * manager to fence itself after certain amount
1620 * of retries.
1621 */
1622 queue_work(io_workqueue, &con->swork);
1623 return;
1624 }
1625 }
1626 downgrade_write(&con->sock_lock);
1627 }
1628
1629 do {
1630 ret = send_to_sock(con);
1631 } while (ret == DLM_IO_SUCCESS);
1632 up_read(&con->sock_lock);
1633
1634 switch (ret) {
1635 case DLM_IO_END:
1636 /* CF_SEND_PENDING cleared */
1637 break;
1638 case DLM_IO_RESCHED:
1639 /* CF_SEND_PENDING not cleared */
1640 cond_resched();
1641 queue_work(io_workqueue, &con->swork);
1642 break;
1643 default:
1644 if (ret < 0) {
1645 close_connection(con, false);
1646
1647 /* CF_SEND_PENDING cleared */
1648 spin_lock_bh(&con->writequeue_lock);
1649 lowcomms_queue_swork(con);
1650 spin_unlock_bh(&con->writequeue_lock);
1651 break;
1652 }
1653
1654 WARN_ON_ONCE(1);
1655 break;
1656 }
1657}
1658
1659static void work_stop(void)
1660{
1661 if (io_workqueue) {
1662 destroy_workqueue(io_workqueue);
1663 io_workqueue = NULL;
1664 }
1665
1666 if (process_workqueue) {
1667 destroy_workqueue(process_workqueue);
1668 process_workqueue = NULL;
1669 }
1670}
1671
1672static int work_start(void)
1673{
1674 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM,
1675 0);
1676 if (!io_workqueue) {
1677 log_print("can't start dlm_io");
1678 return -ENOMEM;
1679 }
1680
1681 /* ordered dlm message process queue,
1682 * should be converted to a tasklet
1683 */
1684 process_workqueue = alloc_ordered_workqueue("dlm_process",
1685 WQ_HIGHPRI | WQ_MEM_RECLAIM);
1686 if (!process_workqueue) {
1687 log_print("can't start dlm_process");
1688 destroy_workqueue(io_workqueue);
1689 io_workqueue = NULL;
1690 return -ENOMEM;
1691 }
1692
1693 return 0;
1694}
1695
1696void dlm_lowcomms_shutdown(void)
1697{
1698 /* stop lowcomms_listen_data_ready calls */
1699 lock_sock(listen_con.sock->sk);
1700 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1701 release_sock(listen_con.sock->sk);
1702
1703 cancel_work_sync(&listen_con.rwork);
1704 dlm_close_sock(&listen_con.sock);
1705
1706 flush_workqueue(process_workqueue);
1707}
1708
1709void dlm_lowcomms_shutdown_node(int nodeid, bool force)
1710{
1711 struct connection *con;
1712 int idx;
1713
1714 idx = srcu_read_lock(&connections_srcu);
1715 con = nodeid2con(nodeid, 0);
1716 if (WARN_ON_ONCE(!con)) {
1717 srcu_read_unlock(&connections_srcu, idx);
1718 return;
1719 }
1720
1721 flush_work(&con->swork);
1722 stop_connection_io(con);
1723 WARN_ON_ONCE(!force && !list_empty(&con->writequeue));
1724 close_connection(con, true);
1725 clean_one_writequeue(con);
1726 if (con->othercon)
1727 clean_one_writequeue(con->othercon);
1728 allow_connection_io(con);
1729 srcu_read_unlock(&connections_srcu, idx);
1730}
1731
1732void dlm_lowcomms_stop(void)
1733{
1734 work_stop();
1735 dlm_proto_ops = NULL;
1736}
1737
1738static int dlm_listen_for_all(void)
1739{
1740 struct socket *sock;
1741 int result;
1742
1743 log_print("Using %s for communications",
1744 dlm_proto_ops->name);
1745
1746 result = dlm_proto_ops->listen_validate();
1747 if (result < 0)
1748 return result;
1749
1750 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1751 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1752 if (result < 0) {
1753 log_print("Can't create comms socket: %d", result);
1754 return result;
1755 }
1756
1757 sock_set_mark(sock->sk, dlm_config.ci_mark);
1758 dlm_proto_ops->listen_sockopts(sock);
1759
1760 result = dlm_proto_ops->listen_bind(sock);
1761 if (result < 0)
1762 goto out;
1763
1764 lock_sock(sock->sk);
1765 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1766 listen_sock.sk_write_space = sock->sk->sk_write_space;
1767 listen_sock.sk_error_report = sock->sk->sk_error_report;
1768 listen_sock.sk_state_change = sock->sk->sk_state_change;
1769
1770 listen_con.sock = sock;
1771
1772 sock->sk->sk_allocation = GFP_NOFS;
1773 sock->sk->sk_use_task_frag = false;
1774 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1775 release_sock(sock->sk);
1776
1777 result = sock->ops->listen(sock, 5);
1778 if (result < 0) {
1779 dlm_close_sock(&listen_con.sock);
1780 return result;
1781 }
1782
1783 return 0;
1784
1785out:
1786 sock_release(sock);
1787 return result;
1788}
1789
1790static int dlm_tcp_bind(struct socket *sock)
1791{
1792 struct sockaddr_storage src_addr;
1793 int result, addr_len;
1794
1795 /* Bind to our cluster-known address connecting to avoid
1796 * routing problems.
1797 */
1798 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1799 make_sockaddr(&src_addr, 0, &addr_len);
1800
1801 result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1802 addr_len);
1803 if (result < 0) {
1804 /* This *may* not indicate a critical error */
1805 log_print("could not bind for connect: %d", result);
1806 }
1807
1808 return 0;
1809}
1810
1811static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1812 struct sockaddr *addr, int addr_len)
1813{
1814 return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1815}
1816
1817static int dlm_tcp_listen_validate(void)
1818{
1819 /* We don't support multi-homed hosts */
1820 if (dlm_local_count > 1) {
1821 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1822 return -EINVAL;
1823 }
1824
1825 return 0;
1826}
1827
1828static void dlm_tcp_sockopts(struct socket *sock)
1829{
1830 /* Turn off Nagle's algorithm */
1831 tcp_sock_set_nodelay(sock->sk);
1832}
1833
1834static void dlm_tcp_listen_sockopts(struct socket *sock)
1835{
1836 dlm_tcp_sockopts(sock);
1837 sock_set_reuseaddr(sock->sk);
1838}
1839
1840static int dlm_tcp_listen_bind(struct socket *sock)
1841{
1842 int addr_len;
1843
1844 /* Bind to our port */
1845 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1846 return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1847 addr_len);
1848}
1849
1850static const struct dlm_proto_ops dlm_tcp_ops = {
1851 .name = "TCP",
1852 .proto = IPPROTO_TCP,
1853 .connect = dlm_tcp_connect,
1854 .sockopts = dlm_tcp_sockopts,
1855 .bind = dlm_tcp_bind,
1856 .listen_validate = dlm_tcp_listen_validate,
1857 .listen_sockopts = dlm_tcp_listen_sockopts,
1858 .listen_bind = dlm_tcp_listen_bind,
1859};
1860
1861static int dlm_sctp_bind(struct socket *sock)
1862{
1863 return sctp_bind_addrs(sock, 0);
1864}
1865
1866static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1867 struct sockaddr *addr, int addr_len)
1868{
1869 int ret;
1870
1871 /*
1872 * Make sock->ops->connect() function return in specified time,
1873 * since O_NONBLOCK argument in connect() function does not work here,
1874 * then, we should restore the default value of this attribute.
1875 */
1876 sock_set_sndtimeo(sock->sk, 5);
1877 ret = sock->ops->connect(sock, addr, addr_len, 0);
1878 sock_set_sndtimeo(sock->sk, 0);
1879 return ret;
1880}
1881
1882static int dlm_sctp_listen_validate(void)
1883{
1884 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1885 log_print("SCTP is not enabled by this kernel");
1886 return -EOPNOTSUPP;
1887 }
1888
1889 request_module("sctp");
1890 return 0;
1891}
1892
1893static int dlm_sctp_bind_listen(struct socket *sock)
1894{
1895 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1896}
1897
1898static void dlm_sctp_sockopts(struct socket *sock)
1899{
1900 /* Turn off Nagle's algorithm */
1901 sctp_sock_set_nodelay(sock->sk);
1902 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1903}
1904
1905static const struct dlm_proto_ops dlm_sctp_ops = {
1906 .name = "SCTP",
1907 .proto = IPPROTO_SCTP,
1908 .try_new_addr = true,
1909 .connect = dlm_sctp_connect,
1910 .sockopts = dlm_sctp_sockopts,
1911 .bind = dlm_sctp_bind,
1912 .listen_validate = dlm_sctp_listen_validate,
1913 .listen_sockopts = dlm_sctp_sockopts,
1914 .listen_bind = dlm_sctp_bind_listen,
1915};
1916
1917int dlm_lowcomms_start(void)
1918{
1919 int error;
1920
1921 init_local();
1922 if (!dlm_local_count) {
1923 error = -ENOTCONN;
1924 log_print("no local IP address has been set");
1925 goto fail;
1926 }
1927
1928 error = work_start();
1929 if (error)
1930 goto fail;
1931
1932 /* Start listening */
1933 switch (dlm_config.ci_protocol) {
1934 case DLM_PROTO_TCP:
1935 dlm_proto_ops = &dlm_tcp_ops;
1936 break;
1937 case DLM_PROTO_SCTP:
1938 dlm_proto_ops = &dlm_sctp_ops;
1939 break;
1940 default:
1941 log_print("Invalid protocol identifier %d set",
1942 dlm_config.ci_protocol);
1943 error = -EINVAL;
1944 goto fail_proto_ops;
1945 }
1946
1947 error = dlm_listen_for_all();
1948 if (error)
1949 goto fail_listen;
1950
1951 return 0;
1952
1953fail_listen:
1954 dlm_proto_ops = NULL;
1955fail_proto_ops:
1956 work_stop();
1957fail:
1958 return error;
1959}
1960
1961void dlm_lowcomms_init(void)
1962{
1963 int i;
1964
1965 for (i = 0; i < CONN_HASH_SIZE; i++)
1966 INIT_HLIST_HEAD(&connection_hash[i]);
1967
1968 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1969}
1970
1971void dlm_lowcomms_exit(void)
1972{
1973 struct connection *con;
1974 int i, idx;
1975
1976 idx = srcu_read_lock(&connections_srcu);
1977 for (i = 0; i < CONN_HASH_SIZE; i++) {
1978 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1979 spin_lock(&connections_lock);
1980 hlist_del_rcu(&con->list);
1981 spin_unlock(&connections_lock);
1982
1983 if (con->othercon)
1984 call_srcu(&connections_srcu, &con->othercon->rcu,
1985 connection_release);
1986 call_srcu(&connections_srcu, &con->rcu, connection_release);
1987 }
1988 }
1989 srcu_read_unlock(&connections_srcu, idx);
1990}