Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1
2// SPDX-License-Identifier: GPL-2.0-only
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
45#include <linux/mm_inline.h>
46#include <linux/sched/mm.h>
47#include <linux/sched/coredump.h>
48#include <linux/sched/numa_balancing.h>
49#include <linux/sched/task.h>
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
55#include <linux/memremap.h>
56#include <linux/kmsan.h>
57#include <linux/ksm.h>
58#include <linux/rmap.h>
59#include <linux/export.h>
60#include <linux/delayacct.h>
61#include <linux/init.h>
62#include <linux/pfn_t.h>
63#include <linux/writeback.h>
64#include <linux/memcontrol.h>
65#include <linux/mmu_notifier.h>
66#include <linux/swapops.h>
67#include <linux/elf.h>
68#include <linux/gfp.h>
69#include <linux/migrate.h>
70#include <linux/string.h>
71#include <linux/memory-tiers.h>
72#include <linux/debugfs.h>
73#include <linux/userfaultfd_k.h>
74#include <linux/dax.h>
75#include <linux/oom.h>
76#include <linux/numa.h>
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
79#include <linux/vmalloc.h>
80#include <linux/sched/sysctl.h>
81
82#include <trace/events/kmem.h>
83
84#include <asm/io.h>
85#include <asm/mmu_context.h>
86#include <asm/pgalloc.h>
87#include <linux/uaccess.h>
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
90
91#include "pgalloc-track.h"
92#include "internal.h"
93#include "swap.h"
94
95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97#endif
98
99#ifndef CONFIG_NUMA
100unsigned long max_mapnr;
101EXPORT_SYMBOL(max_mapnr);
102
103struct page *mem_map;
104EXPORT_SYMBOL(mem_map);
105#endif
106
107static vm_fault_t do_fault(struct vm_fault *vmf);
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!userfaultfd_wp(vmf->vma))
118 return false;
119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return false;
121
122 return pte_marker_uffd_wp(vmf->orig_pte);
123}
124
125/*
126 * A number of key systems in x86 including ioremap() rely on the assumption
127 * that high_memory defines the upper bound on direct map memory, then end
128 * of ZONE_NORMAL.
129 */
130void *high_memory;
131EXPORT_SYMBOL(high_memory);
132
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
145
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
161 return 1;
162}
163__setup("norandmaps", disable_randmaps);
164
165unsigned long zero_pfn __read_mostly;
166EXPORT_SYMBOL(zero_pfn);
167
168unsigned long highest_memmap_pfn __read_mostly;
169
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
178early_initcall(init_zero_pfn);
179
180void mm_trace_rss_stat(struct mm_struct *mm, int member)
181{
182 trace_rss_stat(mm, member);
183}
184
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191{
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196}
197
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201{
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230}
231
232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235{
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 */
302void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
305{
306 pgd_t *pgd;
307 unsigned long next;
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
334
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
362}
363
364void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
367{
368 struct unlink_vma_file_batch vb;
369
370 do {
371 unsigned long addr = vma->vm_start;
372 struct vm_area_struct *next;
373
374 /*
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
377 */
378 next = mas_find(mas, ceiling - 1);
379 if (unlikely(xa_is_zero(next)))
380 next = NULL;
381
382 /*
383 * Hide vma from rmap and truncate_pagecache before freeing
384 * pgtables
385 */
386 if (mm_wr_locked)
387 vma_start_write(vma);
388 unlink_anon_vmas(vma);
389
390 if (is_vm_hugetlb_page(vma)) {
391 unlink_file_vma(vma);
392 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next ? next->vm_start : ceiling);
394 } else {
395 unlink_file_vma_batch_init(&vb);
396 unlink_file_vma_batch_add(&vb, vma);
397
398 /*
399 * Optimization: gather nearby vmas into one call down
400 */
401 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402 && !is_vm_hugetlb_page(next)) {
403 vma = next;
404 next = mas_find(mas, ceiling - 1);
405 if (unlikely(xa_is_zero(next)))
406 next = NULL;
407 if (mm_wr_locked)
408 vma_start_write(vma);
409 unlink_anon_vmas(vma);
410 unlink_file_vma_batch_add(&vb, vma);
411 }
412 unlink_file_vma_batch_final(&vb);
413 free_pgd_range(tlb, addr, vma->vm_end,
414 floor, next ? next->vm_start : ceiling);
415 }
416 vma = next;
417 } while (vma);
418}
419
420void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421{
422 spinlock_t *ptl = pmd_lock(mm, pmd);
423
424 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
425 mm_inc_nr_ptes(mm);
426 /*
427 * Ensure all pte setup (eg. pte page lock and page clearing) are
428 * visible before the pte is made visible to other CPUs by being
429 * put into page tables.
430 *
431 * The other side of the story is the pointer chasing in the page
432 * table walking code (when walking the page table without locking;
433 * ie. most of the time). Fortunately, these data accesses consist
434 * of a chain of data-dependent loads, meaning most CPUs (alpha
435 * being the notable exception) will already guarantee loads are
436 * seen in-order. See the alpha page table accessors for the
437 * smp_rmb() barriers in page table walking code.
438 */
439 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440 pmd_populate(mm, pmd, *pte);
441 *pte = NULL;
442 }
443 spin_unlock(ptl);
444}
445
446int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447{
448 pgtable_t new = pte_alloc_one(mm);
449 if (!new)
450 return -ENOMEM;
451
452 pmd_install(mm, pmd, &new);
453 if (new)
454 pte_free(mm, new);
455 return 0;
456}
457
458int __pte_alloc_kernel(pmd_t *pmd)
459{
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
461 if (!new)
462 return -ENOMEM;
463
464 spin_lock(&init_mm.page_table_lock);
465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
466 smp_wmb(); /* See comment in pmd_install() */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474}
475
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482{
483 int i;
484
485 for (i = 0; i < NR_MM_COUNTERS; i++)
486 if (rss[i])
487 add_mm_counter(mm, i, rss[i]);
488}
489
490/*
491 * This function is called to print an error when a bad pte
492 * is found. For example, we might have a PFN-mapped pte in
493 * a region that doesn't allow it.
494 *
495 * The calling function must still handle the error.
496 */
497static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498 pte_t pte, struct page *page)
499{
500 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501 p4d_t *p4d = p4d_offset(pgd, addr);
502 pud_t *pud = pud_offset(p4d, addr);
503 pmd_t *pmd = pmd_offset(pud, addr);
504 struct address_space *mapping;
505 pgoff_t index;
506 static unsigned long resume;
507 static unsigned long nr_shown;
508 static unsigned long nr_unshown;
509
510 /*
511 * Allow a burst of 60 reports, then keep quiet for that minute;
512 * or allow a steady drip of one report per second.
513 */
514 if (nr_shown == 60) {
515 if (time_before(jiffies, resume)) {
516 nr_unshown++;
517 return;
518 }
519 if (nr_unshown) {
520 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 nr_unshown);
522 nr_unshown = 0;
523 }
524 nr_shown = 0;
525 }
526 if (nr_shown++ == 0)
527 resume = jiffies + 60 * HZ;
528
529 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530 index = linear_page_index(vma, addr);
531
532 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
533 current->comm,
534 (long long)pte_val(pte), (long long)pmd_val(*pmd));
535 if (page)
536 dump_page(page, "bad pte");
537 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540 vma->vm_file,
541 vma->vm_ops ? vma->vm_ops->fault : NULL,
542 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543 mapping ? mapping->a_ops->read_folio : NULL);
544 dump_stack();
545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546}
547
548/*
549 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 *
551 * "Special" mappings do not wish to be associated with a "struct page" (either
552 * it doesn't exist, or it exists but they don't want to touch it). In this
553 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 *
555 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556 * pte bit, in which case this function is trivial. Secondly, an architecture
557 * may not have a spare pte bit, which requires a more complicated scheme,
558 * described below.
559 *
560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561 * special mapping (even if there are underlying and valid "struct pages").
562 * COWed pages of a VM_PFNMAP are always normal.
563 *
564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567 * mapping will always honor the rule
568 *
569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 *
571 * And for normal mappings this is false.
572 *
573 * This restricts such mappings to be a linear translation from virtual address
574 * to pfn. To get around this restriction, we allow arbitrary mappings so long
575 * as the vma is not a COW mapping; in that case, we know that all ptes are
576 * special (because none can have been COWed).
577 *
578 *
579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 *
581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582 * page" backing, however the difference is that _all_ pages with a struct
583 * page (that is, those where pfn_valid is true) are refcounted and considered
584 * normal pages by the VM. The only exception are zeropages, which are
585 * *never* refcounted.
586 *
587 * The disadvantage is that pages are refcounted (which can be slower and
588 * simply not an option for some PFNMAP users). The advantage is that we
589 * don't have to follow the strict linearity rule of PFNMAP mappings in
590 * order to support COWable mappings.
591 *
592 */
593struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
595{
596 unsigned long pfn = pte_pfn(pte);
597
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
600 goto check_pfn;
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (is_zero_pfn(pfn))
606 return NULL;
607 if (pte_devmap(pte))
608 /*
609 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610 * and will have refcounts incremented on their struct pages
611 * when they are inserted into PTEs, thus they are safe to
612 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613 * do not have refcounts. Example of legacy ZONE_DEVICE is
614 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615 */
616 return NULL;
617
618 print_bad_pte(vma, addr, pte, NULL);
619 return NULL;
620 }
621
622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623
624 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625 if (vma->vm_flags & VM_MIXEDMAP) {
626 if (!pfn_valid(pfn))
627 return NULL;
628 if (is_zero_pfn(pfn))
629 return NULL;
630 goto out;
631 } else {
632 unsigned long off;
633 off = (addr - vma->vm_start) >> PAGE_SHIFT;
634 if (pfn == vma->vm_pgoff + off)
635 return NULL;
636 if (!is_cow_mapping(vma->vm_flags))
637 return NULL;
638 }
639 }
640
641 if (is_zero_pfn(pfn))
642 return NULL;
643
644check_pfn:
645 if (unlikely(pfn > highest_memmap_pfn)) {
646 print_bad_pte(vma, addr, pte, NULL);
647 return NULL;
648 }
649
650 /*
651 * NOTE! We still have PageReserved() pages in the page tables.
652 * eg. VDSO mappings can cause them to exist.
653 */
654out:
655 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656 return pfn_to_page(pfn);
657}
658
659struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte)
661{
662 struct page *page = vm_normal_page(vma, addr, pte);
663
664 if (page)
665 return page_folio(page);
666 return NULL;
667}
668
669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
670struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671 pmd_t pmd)
672{
673 unsigned long pfn = pmd_pfn(pmd);
674
675 /*
676 * There is no pmd_special() but there may be special pmds, e.g.
677 * in a direct-access (dax) mapping, so let's just replicate the
678 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
679 */
680 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
681 if (vma->vm_flags & VM_MIXEDMAP) {
682 if (!pfn_valid(pfn))
683 return NULL;
684 goto out;
685 } else {
686 unsigned long off;
687 off = (addr - vma->vm_start) >> PAGE_SHIFT;
688 if (pfn == vma->vm_pgoff + off)
689 return NULL;
690 if (!is_cow_mapping(vma->vm_flags))
691 return NULL;
692 }
693 }
694
695 if (pmd_devmap(pmd))
696 return NULL;
697 if (is_huge_zero_pmd(pmd))
698 return NULL;
699 if (unlikely(pfn > highest_memmap_pfn))
700 return NULL;
701
702 /*
703 * NOTE! We still have PageReserved() pages in the page tables.
704 * eg. VDSO mappings can cause them to exist.
705 */
706out:
707 return pfn_to_page(pfn);
708}
709
710struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
711 unsigned long addr, pmd_t pmd)
712{
713 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
714
715 if (page)
716 return page_folio(page);
717 return NULL;
718}
719#endif
720
721static void restore_exclusive_pte(struct vm_area_struct *vma,
722 struct page *page, unsigned long address,
723 pte_t *ptep)
724{
725 struct folio *folio = page_folio(page);
726 pte_t orig_pte;
727 pte_t pte;
728 swp_entry_t entry;
729
730 orig_pte = ptep_get(ptep);
731 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
732 if (pte_swp_soft_dirty(orig_pte))
733 pte = pte_mksoft_dirty(pte);
734
735 entry = pte_to_swp_entry(orig_pte);
736 if (pte_swp_uffd_wp(orig_pte))
737 pte = pte_mkuffd_wp(pte);
738 else if (is_writable_device_exclusive_entry(entry))
739 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
740
741 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
742 PageAnonExclusive(page)), folio);
743
744 /*
745 * No need to take a page reference as one was already
746 * created when the swap entry was made.
747 */
748 if (folio_test_anon(folio))
749 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
750 else
751 /*
752 * Currently device exclusive access only supports anonymous
753 * memory so the entry shouldn't point to a filebacked page.
754 */
755 WARN_ON_ONCE(1);
756
757 set_pte_at(vma->vm_mm, address, ptep, pte);
758
759 /*
760 * No need to invalidate - it was non-present before. However
761 * secondary CPUs may have mappings that need invalidating.
762 */
763 update_mmu_cache(vma, address, ptep);
764}
765
766/*
767 * Tries to restore an exclusive pte if the page lock can be acquired without
768 * sleeping.
769 */
770static int
771try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
772 unsigned long addr)
773{
774 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
775 struct page *page = pfn_swap_entry_to_page(entry);
776
777 if (trylock_page(page)) {
778 restore_exclusive_pte(vma, page, addr, src_pte);
779 unlock_page(page);
780 return 0;
781 }
782
783 return -EBUSY;
784}
785
786/*
787 * copy one vm_area from one task to the other. Assumes the page tables
788 * already present in the new task to be cleared in the whole range
789 * covered by this vma.
790 */
791
792static unsigned long
793copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
794 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
795 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
796{
797 unsigned long vm_flags = dst_vma->vm_flags;
798 pte_t orig_pte = ptep_get(src_pte);
799 pte_t pte = orig_pte;
800 struct folio *folio;
801 struct page *page;
802 swp_entry_t entry = pte_to_swp_entry(orig_pte);
803
804 if (likely(!non_swap_entry(entry))) {
805 if (swap_duplicate(entry) < 0)
806 return -EIO;
807
808 /* make sure dst_mm is on swapoff's mmlist. */
809 if (unlikely(list_empty(&dst_mm->mmlist))) {
810 spin_lock(&mmlist_lock);
811 if (list_empty(&dst_mm->mmlist))
812 list_add(&dst_mm->mmlist,
813 &src_mm->mmlist);
814 spin_unlock(&mmlist_lock);
815 }
816 /* Mark the swap entry as shared. */
817 if (pte_swp_exclusive(orig_pte)) {
818 pte = pte_swp_clear_exclusive(orig_pte);
819 set_pte_at(src_mm, addr, src_pte, pte);
820 }
821 rss[MM_SWAPENTS]++;
822 } else if (is_migration_entry(entry)) {
823 folio = pfn_swap_entry_folio(entry);
824
825 rss[mm_counter(folio)]++;
826
827 if (!is_readable_migration_entry(entry) &&
828 is_cow_mapping(vm_flags)) {
829 /*
830 * COW mappings require pages in both parent and child
831 * to be set to read. A previously exclusive entry is
832 * now shared.
833 */
834 entry = make_readable_migration_entry(
835 swp_offset(entry));
836 pte = swp_entry_to_pte(entry);
837 if (pte_swp_soft_dirty(orig_pte))
838 pte = pte_swp_mksoft_dirty(pte);
839 if (pte_swp_uffd_wp(orig_pte))
840 pte = pte_swp_mkuffd_wp(pte);
841 set_pte_at(src_mm, addr, src_pte, pte);
842 }
843 } else if (is_device_private_entry(entry)) {
844 page = pfn_swap_entry_to_page(entry);
845 folio = page_folio(page);
846
847 /*
848 * Update rss count even for unaddressable pages, as
849 * they should treated just like normal pages in this
850 * respect.
851 *
852 * We will likely want to have some new rss counters
853 * for unaddressable pages, at some point. But for now
854 * keep things as they are.
855 */
856 folio_get(folio);
857 rss[mm_counter(folio)]++;
858 /* Cannot fail as these pages cannot get pinned. */
859 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
860
861 /*
862 * We do not preserve soft-dirty information, because so
863 * far, checkpoint/restore is the only feature that
864 * requires that. And checkpoint/restore does not work
865 * when a device driver is involved (you cannot easily
866 * save and restore device driver state).
867 */
868 if (is_writable_device_private_entry(entry) &&
869 is_cow_mapping(vm_flags)) {
870 entry = make_readable_device_private_entry(
871 swp_offset(entry));
872 pte = swp_entry_to_pte(entry);
873 if (pte_swp_uffd_wp(orig_pte))
874 pte = pte_swp_mkuffd_wp(pte);
875 set_pte_at(src_mm, addr, src_pte, pte);
876 }
877 } else if (is_device_exclusive_entry(entry)) {
878 /*
879 * Make device exclusive entries present by restoring the
880 * original entry then copying as for a present pte. Device
881 * exclusive entries currently only support private writable
882 * (ie. COW) mappings.
883 */
884 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
885 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
886 return -EBUSY;
887 return -ENOENT;
888 } else if (is_pte_marker_entry(entry)) {
889 pte_marker marker = copy_pte_marker(entry, dst_vma);
890
891 if (marker)
892 set_pte_at(dst_mm, addr, dst_pte,
893 make_pte_marker(marker));
894 return 0;
895 }
896 if (!userfaultfd_wp(dst_vma))
897 pte = pte_swp_clear_uffd_wp(pte);
898 set_pte_at(dst_mm, addr, dst_pte, pte);
899 return 0;
900}
901
902/*
903 * Copy a present and normal page.
904 *
905 * NOTE! The usual case is that this isn't required;
906 * instead, the caller can just increase the page refcount
907 * and re-use the pte the traditional way.
908 *
909 * And if we need a pre-allocated page but don't yet have
910 * one, return a negative error to let the preallocation
911 * code know so that it can do so outside the page table
912 * lock.
913 */
914static inline int
915copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
916 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
917 struct folio **prealloc, struct page *page)
918{
919 struct folio *new_folio;
920 pte_t pte;
921
922 new_folio = *prealloc;
923 if (!new_folio)
924 return -EAGAIN;
925
926 /*
927 * We have a prealloc page, all good! Take it
928 * over and copy the page & arm it.
929 */
930 *prealloc = NULL;
931 copy_user_highpage(&new_folio->page, page, addr, src_vma);
932 __folio_mark_uptodate(new_folio);
933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 folio_add_lru_vma(new_folio, dst_vma);
935 rss[MM_ANONPAGES]++;
936
937 /* All done, just insert the new page copy in the child */
938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 /* Uffd-wp needs to be delivered to dest pte as well */
942 pte = pte_mkuffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 return 0;
945}
946
947static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 pte_t pte, unsigned long addr, int nr)
950{
951 struct mm_struct *src_mm = src_vma->vm_mm;
952
953 /* If it's a COW mapping, write protect it both processes. */
954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 wrprotect_ptes(src_mm, addr, src_pte, nr);
956 pte = pte_wrprotect(pte);
957 }
958
959 /* If it's a shared mapping, mark it clean in the child. */
960 if (src_vma->vm_flags & VM_SHARED)
961 pte = pte_mkclean(pte);
962 pte = pte_mkold(pte);
963
964 if (!userfaultfd_wp(dst_vma))
965 pte = pte_clear_uffd_wp(pte);
966
967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968}
969
970/*
971 * Copy one present PTE, trying to batch-process subsequent PTEs that map
972 * consecutive pages of the same folio by copying them as well.
973 *
974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975 * Otherwise, returns the number of copied PTEs (at least 1).
976 */
977static inline int
978copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 int max_nr, int *rss, struct folio **prealloc)
981{
982 struct page *page;
983 struct folio *folio;
984 bool any_writable;
985 fpb_t flags = 0;
986 int err, nr;
987
988 page = vm_normal_page(src_vma, addr, pte);
989 if (unlikely(!page))
990 goto copy_pte;
991
992 folio = page_folio(page);
993
994 /*
995 * If we likely have to copy, just don't bother with batching. Make
996 * sure that the common "small folio" case is as fast as possible
997 * by keeping the batching logic separate.
998 */
999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 if (src_vma->vm_flags & VM_SHARED)
1001 flags |= FPB_IGNORE_DIRTY;
1002 if (!vma_soft_dirty_enabled(src_vma))
1003 flags |= FPB_IGNORE_SOFT_DIRTY;
1004
1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 &any_writable, NULL, NULL);
1007 folio_ref_add(folio, nr);
1008 if (folio_test_anon(folio)) {
1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 nr, src_vma))) {
1011 folio_ref_sub(folio, nr);
1012 return -EAGAIN;
1013 }
1014 rss[MM_ANONPAGES] += nr;
1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 } else {
1017 folio_dup_file_rmap_ptes(folio, page, nr);
1018 rss[mm_counter_file(folio)] += nr;
1019 }
1020 if (any_writable)
1021 pte = pte_mkwrite(pte, src_vma);
1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 addr, nr);
1024 return nr;
1025 }
1026
1027 folio_get(folio);
1028 if (folio_test_anon(folio)) {
1029 /*
1030 * If this page may have been pinned by the parent process,
1031 * copy the page immediately for the child so that we'll always
1032 * guarantee the pinned page won't be randomly replaced in the
1033 * future.
1034 */
1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 /* Page may be pinned, we have to copy. */
1037 folio_put(folio);
1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, prealloc, page);
1040 return err ? err : 1;
1041 }
1042 rss[MM_ANONPAGES]++;
1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 } else {
1045 folio_dup_file_rmap_pte(folio, page);
1046 rss[mm_counter_file(folio)]++;
1047 }
1048
1049copy_pte:
1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 return 1;
1052}
1053
1054static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056{
1057 struct folio *new_folio;
1058
1059 if (need_zero)
1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 else
1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1063 addr, false);
1064
1065 if (!new_folio)
1066 return NULL;
1067
1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069 folio_put(new_folio);
1070 return NULL;
1071 }
1072 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073
1074 return new_folio;
1075}
1076
1077static int
1078copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080 unsigned long end)
1081{
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1084 pte_t *orig_src_pte, *orig_dst_pte;
1085 pte_t *src_pte, *dst_pte;
1086 pte_t ptent;
1087 spinlock_t *src_ptl, *dst_ptl;
1088 int progress, max_nr, ret = 0;
1089 int rss[NR_MM_COUNTERS];
1090 swp_entry_t entry = (swp_entry_t){0};
1091 struct folio *prealloc = NULL;
1092 int nr;
1093
1094again:
1095 progress = 0;
1096 init_rss_vec(rss);
1097
1098 /*
1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 * error handling here, assume that exclusive mmap_lock on dst and src
1101 * protects anon from unexpected THP transitions; with shmem and file
1102 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1104 * can remove such assumptions later, but this is good enough for now.
1105 */
1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 if (!dst_pte) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1112 if (!src_pte) {
1113 pte_unmap_unlock(dst_pte, dst_ptl);
1114 /* ret == 0 */
1115 goto out;
1116 }
1117 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118 orig_src_pte = src_pte;
1119 orig_dst_pte = dst_pte;
1120 arch_enter_lazy_mmu_mode();
1121
1122 do {
1123 nr = 1;
1124
1125 /*
1126 * We are holding two locks at this point - either of them
1127 * could generate latencies in another task on another CPU.
1128 */
1129 if (progress >= 32) {
1130 progress = 0;
1131 if (need_resched() ||
1132 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1133 break;
1134 }
1135 ptent = ptep_get(src_pte);
1136 if (pte_none(ptent)) {
1137 progress++;
1138 continue;
1139 }
1140 if (unlikely(!pte_present(ptent))) {
1141 ret = copy_nonpresent_pte(dst_mm, src_mm,
1142 dst_pte, src_pte,
1143 dst_vma, src_vma,
1144 addr, rss);
1145 if (ret == -EIO) {
1146 entry = pte_to_swp_entry(ptep_get(src_pte));
1147 break;
1148 } else if (ret == -EBUSY) {
1149 break;
1150 } else if (!ret) {
1151 progress += 8;
1152 continue;
1153 }
1154 ptent = ptep_get(src_pte);
1155 VM_WARN_ON_ONCE(!pte_present(ptent));
1156
1157 /*
1158 * Device exclusive entry restored, continue by copying
1159 * the now present pte.
1160 */
1161 WARN_ON_ONCE(ret != -ENOENT);
1162 }
1163 /* copy_present_ptes() will clear `*prealloc' if consumed */
1164 max_nr = (end - addr) / PAGE_SIZE;
1165 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1166 ptent, addr, max_nr, rss, &prealloc);
1167 /*
1168 * If we need a pre-allocated page for this pte, drop the
1169 * locks, allocate, and try again.
1170 */
1171 if (unlikely(ret == -EAGAIN))
1172 break;
1173 if (unlikely(prealloc)) {
1174 /*
1175 * pre-alloc page cannot be reused by next time so as
1176 * to strictly follow mempolicy (e.g., alloc_page_vma()
1177 * will allocate page according to address). This
1178 * could only happen if one pinned pte changed.
1179 */
1180 folio_put(prealloc);
1181 prealloc = NULL;
1182 }
1183 nr = ret;
1184 progress += 8 * nr;
1185 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1186 addr != end);
1187
1188 arch_leave_lazy_mmu_mode();
1189 pte_unmap_unlock(orig_src_pte, src_ptl);
1190 add_mm_rss_vec(dst_mm, rss);
1191 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1192 cond_resched();
1193
1194 if (ret == -EIO) {
1195 VM_WARN_ON_ONCE(!entry.val);
1196 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1197 ret = -ENOMEM;
1198 goto out;
1199 }
1200 entry.val = 0;
1201 } else if (ret == -EBUSY) {
1202 goto out;
1203 } else if (ret == -EAGAIN) {
1204 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1205 if (!prealloc)
1206 return -ENOMEM;
1207 } else if (ret < 0) {
1208 VM_WARN_ON_ONCE(1);
1209 }
1210
1211 /* We've captured and resolved the error. Reset, try again. */
1212 ret = 0;
1213
1214 if (addr != end)
1215 goto again;
1216out:
1217 if (unlikely(prealloc))
1218 folio_put(prealloc);
1219 return ret;
1220}
1221
1222static inline int
1223copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1224 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1225 unsigned long end)
1226{
1227 struct mm_struct *dst_mm = dst_vma->vm_mm;
1228 struct mm_struct *src_mm = src_vma->vm_mm;
1229 pmd_t *src_pmd, *dst_pmd;
1230 unsigned long next;
1231
1232 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1233 if (!dst_pmd)
1234 return -ENOMEM;
1235 src_pmd = pmd_offset(src_pud, addr);
1236 do {
1237 next = pmd_addr_end(addr, end);
1238 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1239 || pmd_devmap(*src_pmd)) {
1240 int err;
1241 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1242 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1243 addr, dst_vma, src_vma);
1244 if (err == -ENOMEM)
1245 return -ENOMEM;
1246 if (!err)
1247 continue;
1248 /* fall through */
1249 }
1250 if (pmd_none_or_clear_bad(src_pmd))
1251 continue;
1252 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1253 addr, next))
1254 return -ENOMEM;
1255 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1256 return 0;
1257}
1258
1259static inline int
1260copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1261 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1262 unsigned long end)
1263{
1264 struct mm_struct *dst_mm = dst_vma->vm_mm;
1265 struct mm_struct *src_mm = src_vma->vm_mm;
1266 pud_t *src_pud, *dst_pud;
1267 unsigned long next;
1268
1269 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1270 if (!dst_pud)
1271 return -ENOMEM;
1272 src_pud = pud_offset(src_p4d, addr);
1273 do {
1274 next = pud_addr_end(addr, end);
1275 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1276 int err;
1277
1278 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1279 err = copy_huge_pud(dst_mm, src_mm,
1280 dst_pud, src_pud, addr, src_vma);
1281 if (err == -ENOMEM)
1282 return -ENOMEM;
1283 if (!err)
1284 continue;
1285 /* fall through */
1286 }
1287 if (pud_none_or_clear_bad(src_pud))
1288 continue;
1289 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1290 addr, next))
1291 return -ENOMEM;
1292 } while (dst_pud++, src_pud++, addr = next, addr != end);
1293 return 0;
1294}
1295
1296static inline int
1297copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1298 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1299 unsigned long end)
1300{
1301 struct mm_struct *dst_mm = dst_vma->vm_mm;
1302 p4d_t *src_p4d, *dst_p4d;
1303 unsigned long next;
1304
1305 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1306 if (!dst_p4d)
1307 return -ENOMEM;
1308 src_p4d = p4d_offset(src_pgd, addr);
1309 do {
1310 next = p4d_addr_end(addr, end);
1311 if (p4d_none_or_clear_bad(src_p4d))
1312 continue;
1313 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1314 addr, next))
1315 return -ENOMEM;
1316 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1317 return 0;
1318}
1319
1320/*
1321 * Return true if the vma needs to copy the pgtable during this fork(). Return
1322 * false when we can speed up fork() by allowing lazy page faults later until
1323 * when the child accesses the memory range.
1324 */
1325static bool
1326vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1327{
1328 /*
1329 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1330 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1331 * contains uffd-wp protection information, that's something we can't
1332 * retrieve from page cache, and skip copying will lose those info.
1333 */
1334 if (userfaultfd_wp(dst_vma))
1335 return true;
1336
1337 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1338 return true;
1339
1340 if (src_vma->anon_vma)
1341 return true;
1342
1343 /*
1344 * Don't copy ptes where a page fault will fill them correctly. Fork
1345 * becomes much lighter when there are big shared or private readonly
1346 * mappings. The tradeoff is that copy_page_range is more efficient
1347 * than faulting.
1348 */
1349 return false;
1350}
1351
1352int
1353copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1354{
1355 pgd_t *src_pgd, *dst_pgd;
1356 unsigned long next;
1357 unsigned long addr = src_vma->vm_start;
1358 unsigned long end = src_vma->vm_end;
1359 struct mm_struct *dst_mm = dst_vma->vm_mm;
1360 struct mm_struct *src_mm = src_vma->vm_mm;
1361 struct mmu_notifier_range range;
1362 bool is_cow;
1363 int ret;
1364
1365 if (!vma_needs_copy(dst_vma, src_vma))
1366 return 0;
1367
1368 if (is_vm_hugetlb_page(src_vma))
1369 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1370
1371 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1372 /*
1373 * We do not free on error cases below as remove_vma
1374 * gets called on error from higher level routine
1375 */
1376 ret = track_pfn_copy(src_vma);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /*
1382 * We need to invalidate the secondary MMU mappings only when
1383 * there could be a permission downgrade on the ptes of the
1384 * parent mm. And a permission downgrade will only happen if
1385 * is_cow_mapping() returns true.
1386 */
1387 is_cow = is_cow_mapping(src_vma->vm_flags);
1388
1389 if (is_cow) {
1390 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1391 0, src_mm, addr, end);
1392 mmu_notifier_invalidate_range_start(&range);
1393 /*
1394 * Disabling preemption is not needed for the write side, as
1395 * the read side doesn't spin, but goes to the mmap_lock.
1396 *
1397 * Use the raw variant of the seqcount_t write API to avoid
1398 * lockdep complaining about preemptibility.
1399 */
1400 vma_assert_write_locked(src_vma);
1401 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1402 }
1403
1404 ret = 0;
1405 dst_pgd = pgd_offset(dst_mm, addr);
1406 src_pgd = pgd_offset(src_mm, addr);
1407 do {
1408 next = pgd_addr_end(addr, end);
1409 if (pgd_none_or_clear_bad(src_pgd))
1410 continue;
1411 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1412 addr, next))) {
1413 untrack_pfn_clear(dst_vma);
1414 ret = -ENOMEM;
1415 break;
1416 }
1417 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1418
1419 if (is_cow) {
1420 raw_write_seqcount_end(&src_mm->write_protect_seq);
1421 mmu_notifier_invalidate_range_end(&range);
1422 }
1423 return ret;
1424}
1425
1426/* Whether we should zap all COWed (private) pages too */
1427static inline bool should_zap_cows(struct zap_details *details)
1428{
1429 /* By default, zap all pages */
1430 if (!details)
1431 return true;
1432
1433 /* Or, we zap COWed pages only if the caller wants to */
1434 return details->even_cows;
1435}
1436
1437/* Decides whether we should zap this folio with the folio pointer specified */
1438static inline bool should_zap_folio(struct zap_details *details,
1439 struct folio *folio)
1440{
1441 /* If we can make a decision without *folio.. */
1442 if (should_zap_cows(details))
1443 return true;
1444
1445 /* Otherwise we should only zap non-anon folios */
1446 return !folio_test_anon(folio);
1447}
1448
1449static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1450{
1451 if (!details)
1452 return false;
1453
1454 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1455}
1456
1457/*
1458 * This function makes sure that we'll replace the none pte with an uffd-wp
1459 * swap special pte marker when necessary. Must be with the pgtable lock held.
1460 */
1461static inline void
1462zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1463 unsigned long addr, pte_t *pte, int nr,
1464 struct zap_details *details, pte_t pteval)
1465{
1466 /* Zap on anonymous always means dropping everything */
1467 if (vma_is_anonymous(vma))
1468 return;
1469
1470 if (zap_drop_file_uffd_wp(details))
1471 return;
1472
1473 for (;;) {
1474 /* the PFN in the PTE is irrelevant. */
1475 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1476 if (--nr == 0)
1477 break;
1478 pte++;
1479 addr += PAGE_SIZE;
1480 }
1481}
1482
1483static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1484 struct vm_area_struct *vma, struct folio *folio,
1485 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1486 unsigned long addr, struct zap_details *details, int *rss,
1487 bool *force_flush, bool *force_break)
1488{
1489 struct mm_struct *mm = tlb->mm;
1490 bool delay_rmap = false;
1491
1492 if (!folio_test_anon(folio)) {
1493 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1494 if (pte_dirty(ptent)) {
1495 folio_mark_dirty(folio);
1496 if (tlb_delay_rmap(tlb)) {
1497 delay_rmap = true;
1498 *force_flush = true;
1499 }
1500 }
1501 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1502 folio_mark_accessed(folio);
1503 rss[mm_counter(folio)] -= nr;
1504 } else {
1505 /* We don't need up-to-date accessed/dirty bits. */
1506 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1507 rss[MM_ANONPAGES] -= nr;
1508 }
1509 /* Checking a single PTE in a batch is sufficient. */
1510 arch_check_zapped_pte(vma, ptent);
1511 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1512 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1513 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1514 ptent);
1515
1516 if (!delay_rmap) {
1517 folio_remove_rmap_ptes(folio, page, nr, vma);
1518
1519 if (unlikely(folio_mapcount(folio) < 0))
1520 print_bad_pte(vma, addr, ptent, page);
1521 }
1522 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1523 *force_flush = true;
1524 *force_break = true;
1525 }
1526}
1527
1528/*
1529 * Zap or skip at least one present PTE, trying to batch-process subsequent
1530 * PTEs that map consecutive pages of the same folio.
1531 *
1532 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1533 */
1534static inline int zap_present_ptes(struct mmu_gather *tlb,
1535 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1536 unsigned int max_nr, unsigned long addr,
1537 struct zap_details *details, int *rss, bool *force_flush,
1538 bool *force_break)
1539{
1540 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1541 struct mm_struct *mm = tlb->mm;
1542 struct folio *folio;
1543 struct page *page;
1544 int nr;
1545
1546 page = vm_normal_page(vma, addr, ptent);
1547 if (!page) {
1548 /* We don't need up-to-date accessed/dirty bits. */
1549 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1550 arch_check_zapped_pte(vma, ptent);
1551 tlb_remove_tlb_entry(tlb, pte, addr);
1552 if (userfaultfd_pte_wp(vma, ptent))
1553 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1554 details, ptent);
1555 ksm_might_unmap_zero_page(mm, ptent);
1556 return 1;
1557 }
1558
1559 folio = page_folio(page);
1560 if (unlikely(!should_zap_folio(details, folio)))
1561 return 1;
1562
1563 /*
1564 * Make sure that the common "small folio" case is as fast as possible
1565 * by keeping the batching logic separate.
1566 */
1567 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1568 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1569 NULL, NULL, NULL);
1570
1571 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1572 addr, details, rss, force_flush,
1573 force_break);
1574 return nr;
1575 }
1576 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1577 details, rss, force_flush, force_break);
1578 return 1;
1579}
1580
1581static unsigned long zap_pte_range(struct mmu_gather *tlb,
1582 struct vm_area_struct *vma, pmd_t *pmd,
1583 unsigned long addr, unsigned long end,
1584 struct zap_details *details)
1585{
1586 bool force_flush = false, force_break = false;
1587 struct mm_struct *mm = tlb->mm;
1588 int rss[NR_MM_COUNTERS];
1589 spinlock_t *ptl;
1590 pte_t *start_pte;
1591 pte_t *pte;
1592 swp_entry_t entry;
1593 int nr;
1594
1595 tlb_change_page_size(tlb, PAGE_SIZE);
1596 init_rss_vec(rss);
1597 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1598 if (!pte)
1599 return addr;
1600
1601 flush_tlb_batched_pending(mm);
1602 arch_enter_lazy_mmu_mode();
1603 do {
1604 pte_t ptent = ptep_get(pte);
1605 struct folio *folio;
1606 struct page *page;
1607 int max_nr;
1608
1609 nr = 1;
1610 if (pte_none(ptent))
1611 continue;
1612
1613 if (need_resched())
1614 break;
1615
1616 if (pte_present(ptent)) {
1617 max_nr = (end - addr) / PAGE_SIZE;
1618 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1619 addr, details, rss, &force_flush,
1620 &force_break);
1621 if (unlikely(force_break)) {
1622 addr += nr * PAGE_SIZE;
1623 break;
1624 }
1625 continue;
1626 }
1627
1628 entry = pte_to_swp_entry(ptent);
1629 if (is_device_private_entry(entry) ||
1630 is_device_exclusive_entry(entry)) {
1631 page = pfn_swap_entry_to_page(entry);
1632 folio = page_folio(page);
1633 if (unlikely(!should_zap_folio(details, folio)))
1634 continue;
1635 /*
1636 * Both device private/exclusive mappings should only
1637 * work with anonymous page so far, so we don't need to
1638 * consider uffd-wp bit when zap. For more information,
1639 * see zap_install_uffd_wp_if_needed().
1640 */
1641 WARN_ON_ONCE(!vma_is_anonymous(vma));
1642 rss[mm_counter(folio)]--;
1643 if (is_device_private_entry(entry))
1644 folio_remove_rmap_pte(folio, page, vma);
1645 folio_put(folio);
1646 } else if (!non_swap_entry(entry)) {
1647 max_nr = (end - addr) / PAGE_SIZE;
1648 nr = swap_pte_batch(pte, max_nr, ptent);
1649 /* Genuine swap entries, hence a private anon pages */
1650 if (!should_zap_cows(details))
1651 continue;
1652 rss[MM_SWAPENTS] -= nr;
1653 free_swap_and_cache_nr(entry, nr);
1654 } else if (is_migration_entry(entry)) {
1655 folio = pfn_swap_entry_folio(entry);
1656 if (!should_zap_folio(details, folio))
1657 continue;
1658 rss[mm_counter(folio)]--;
1659 } else if (pte_marker_entry_uffd_wp(entry)) {
1660 /*
1661 * For anon: always drop the marker; for file: only
1662 * drop the marker if explicitly requested.
1663 */
1664 if (!vma_is_anonymous(vma) &&
1665 !zap_drop_file_uffd_wp(details))
1666 continue;
1667 } else if (is_hwpoison_entry(entry) ||
1668 is_poisoned_swp_entry(entry)) {
1669 if (!should_zap_cows(details))
1670 continue;
1671 } else {
1672 /* We should have covered all the swap entry types */
1673 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1674 WARN_ON_ONCE(1);
1675 }
1676 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1677 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1678 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1679
1680 add_mm_rss_vec(mm, rss);
1681 arch_leave_lazy_mmu_mode();
1682
1683 /* Do the actual TLB flush before dropping ptl */
1684 if (force_flush) {
1685 tlb_flush_mmu_tlbonly(tlb);
1686 tlb_flush_rmaps(tlb, vma);
1687 }
1688 pte_unmap_unlock(start_pte, ptl);
1689
1690 /*
1691 * If we forced a TLB flush (either due to running out of
1692 * batch buffers or because we needed to flush dirty TLB
1693 * entries before releasing the ptl), free the batched
1694 * memory too. Come back again if we didn't do everything.
1695 */
1696 if (force_flush)
1697 tlb_flush_mmu(tlb);
1698
1699 return addr;
1700}
1701
1702static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1703 struct vm_area_struct *vma, pud_t *pud,
1704 unsigned long addr, unsigned long end,
1705 struct zap_details *details)
1706{
1707 pmd_t *pmd;
1708 unsigned long next;
1709
1710 pmd = pmd_offset(pud, addr);
1711 do {
1712 next = pmd_addr_end(addr, end);
1713 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1714 if (next - addr != HPAGE_PMD_SIZE)
1715 __split_huge_pmd(vma, pmd, addr, false, NULL);
1716 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1717 addr = next;
1718 continue;
1719 }
1720 /* fall through */
1721 } else if (details && details->single_folio &&
1722 folio_test_pmd_mappable(details->single_folio) &&
1723 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1724 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1725 /*
1726 * Take and drop THP pmd lock so that we cannot return
1727 * prematurely, while zap_huge_pmd() has cleared *pmd,
1728 * but not yet decremented compound_mapcount().
1729 */
1730 spin_unlock(ptl);
1731 }
1732 if (pmd_none(*pmd)) {
1733 addr = next;
1734 continue;
1735 }
1736 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1737 if (addr != next)
1738 pmd--;
1739 } while (pmd++, cond_resched(), addr != end);
1740
1741 return addr;
1742}
1743
1744static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1745 struct vm_area_struct *vma, p4d_t *p4d,
1746 unsigned long addr, unsigned long end,
1747 struct zap_details *details)
1748{
1749 pud_t *pud;
1750 unsigned long next;
1751
1752 pud = pud_offset(p4d, addr);
1753 do {
1754 next = pud_addr_end(addr, end);
1755 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1756 if (next - addr != HPAGE_PUD_SIZE) {
1757 mmap_assert_locked(tlb->mm);
1758 split_huge_pud(vma, pud, addr);
1759 } else if (zap_huge_pud(tlb, vma, pud, addr))
1760 goto next;
1761 /* fall through */
1762 }
1763 if (pud_none_or_clear_bad(pud))
1764 continue;
1765 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1766next:
1767 cond_resched();
1768 } while (pud++, addr = next, addr != end);
1769
1770 return addr;
1771}
1772
1773static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1774 struct vm_area_struct *vma, pgd_t *pgd,
1775 unsigned long addr, unsigned long end,
1776 struct zap_details *details)
1777{
1778 p4d_t *p4d;
1779 unsigned long next;
1780
1781 p4d = p4d_offset(pgd, addr);
1782 do {
1783 next = p4d_addr_end(addr, end);
1784 if (p4d_none_or_clear_bad(p4d))
1785 continue;
1786 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1787 } while (p4d++, addr = next, addr != end);
1788
1789 return addr;
1790}
1791
1792void unmap_page_range(struct mmu_gather *tlb,
1793 struct vm_area_struct *vma,
1794 unsigned long addr, unsigned long end,
1795 struct zap_details *details)
1796{
1797 pgd_t *pgd;
1798 unsigned long next;
1799
1800 BUG_ON(addr >= end);
1801 tlb_start_vma(tlb, vma);
1802 pgd = pgd_offset(vma->vm_mm, addr);
1803 do {
1804 next = pgd_addr_end(addr, end);
1805 if (pgd_none_or_clear_bad(pgd))
1806 continue;
1807 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1808 } while (pgd++, addr = next, addr != end);
1809 tlb_end_vma(tlb, vma);
1810}
1811
1812
1813static void unmap_single_vma(struct mmu_gather *tlb,
1814 struct vm_area_struct *vma, unsigned long start_addr,
1815 unsigned long end_addr,
1816 struct zap_details *details, bool mm_wr_locked)
1817{
1818 unsigned long start = max(vma->vm_start, start_addr);
1819 unsigned long end;
1820
1821 if (start >= vma->vm_end)
1822 return;
1823 end = min(vma->vm_end, end_addr);
1824 if (end <= vma->vm_start)
1825 return;
1826
1827 if (vma->vm_file)
1828 uprobe_munmap(vma, start, end);
1829
1830 if (unlikely(vma->vm_flags & VM_PFNMAP))
1831 untrack_pfn(vma, 0, 0, mm_wr_locked);
1832
1833 if (start != end) {
1834 if (unlikely(is_vm_hugetlb_page(vma))) {
1835 /*
1836 * It is undesirable to test vma->vm_file as it
1837 * should be non-null for valid hugetlb area.
1838 * However, vm_file will be NULL in the error
1839 * cleanup path of mmap_region. When
1840 * hugetlbfs ->mmap method fails,
1841 * mmap_region() nullifies vma->vm_file
1842 * before calling this function to clean up.
1843 * Since no pte has actually been setup, it is
1844 * safe to do nothing in this case.
1845 */
1846 if (vma->vm_file) {
1847 zap_flags_t zap_flags = details ?
1848 details->zap_flags : 0;
1849 __unmap_hugepage_range(tlb, vma, start, end,
1850 NULL, zap_flags);
1851 }
1852 } else
1853 unmap_page_range(tlb, vma, start, end, details);
1854 }
1855}
1856
1857/**
1858 * unmap_vmas - unmap a range of memory covered by a list of vma's
1859 * @tlb: address of the caller's struct mmu_gather
1860 * @mas: the maple state
1861 * @vma: the starting vma
1862 * @start_addr: virtual address at which to start unmapping
1863 * @end_addr: virtual address at which to end unmapping
1864 * @tree_end: The maximum index to check
1865 * @mm_wr_locked: lock flag
1866 *
1867 * Unmap all pages in the vma list.
1868 *
1869 * Only addresses between `start' and `end' will be unmapped.
1870 *
1871 * The VMA list must be sorted in ascending virtual address order.
1872 *
1873 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1874 * range after unmap_vmas() returns. So the only responsibility here is to
1875 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1876 * drops the lock and schedules.
1877 */
1878void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1879 struct vm_area_struct *vma, unsigned long start_addr,
1880 unsigned long end_addr, unsigned long tree_end,
1881 bool mm_wr_locked)
1882{
1883 struct mmu_notifier_range range;
1884 struct zap_details details = {
1885 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1886 /* Careful - we need to zap private pages too! */
1887 .even_cows = true,
1888 };
1889
1890 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1891 start_addr, end_addr);
1892 mmu_notifier_invalidate_range_start(&range);
1893 do {
1894 unsigned long start = start_addr;
1895 unsigned long end = end_addr;
1896 hugetlb_zap_begin(vma, &start, &end);
1897 unmap_single_vma(tlb, vma, start, end, &details,
1898 mm_wr_locked);
1899 hugetlb_zap_end(vma, &details);
1900 vma = mas_find(mas, tree_end - 1);
1901 } while (vma && likely(!xa_is_zero(vma)));
1902 mmu_notifier_invalidate_range_end(&range);
1903}
1904
1905/**
1906 * zap_page_range_single - remove user pages in a given range
1907 * @vma: vm_area_struct holding the applicable pages
1908 * @address: starting address of pages to zap
1909 * @size: number of bytes to zap
1910 * @details: details of shared cache invalidation
1911 *
1912 * The range must fit into one VMA.
1913 */
1914void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1915 unsigned long size, struct zap_details *details)
1916{
1917 const unsigned long end = address + size;
1918 struct mmu_notifier_range range;
1919 struct mmu_gather tlb;
1920
1921 lru_add_drain();
1922 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1923 address, end);
1924 hugetlb_zap_begin(vma, &range.start, &range.end);
1925 tlb_gather_mmu(&tlb, vma->vm_mm);
1926 update_hiwater_rss(vma->vm_mm);
1927 mmu_notifier_invalidate_range_start(&range);
1928 /*
1929 * unmap 'address-end' not 'range.start-range.end' as range
1930 * could have been expanded for hugetlb pmd sharing.
1931 */
1932 unmap_single_vma(&tlb, vma, address, end, details, false);
1933 mmu_notifier_invalidate_range_end(&range);
1934 tlb_finish_mmu(&tlb);
1935 hugetlb_zap_end(vma, details);
1936}
1937
1938/**
1939 * zap_vma_ptes - remove ptes mapping the vma
1940 * @vma: vm_area_struct holding ptes to be zapped
1941 * @address: starting address of pages to zap
1942 * @size: number of bytes to zap
1943 *
1944 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1945 *
1946 * The entire address range must be fully contained within the vma.
1947 *
1948 */
1949void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1950 unsigned long size)
1951{
1952 if (!range_in_vma(vma, address, address + size) ||
1953 !(vma->vm_flags & VM_PFNMAP))
1954 return;
1955
1956 zap_page_range_single(vma, address, size, NULL);
1957}
1958EXPORT_SYMBOL_GPL(zap_vma_ptes);
1959
1960static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1961{
1962 pgd_t *pgd;
1963 p4d_t *p4d;
1964 pud_t *pud;
1965 pmd_t *pmd;
1966
1967 pgd = pgd_offset(mm, addr);
1968 p4d = p4d_alloc(mm, pgd, addr);
1969 if (!p4d)
1970 return NULL;
1971 pud = pud_alloc(mm, p4d, addr);
1972 if (!pud)
1973 return NULL;
1974 pmd = pmd_alloc(mm, pud, addr);
1975 if (!pmd)
1976 return NULL;
1977
1978 VM_BUG_ON(pmd_trans_huge(*pmd));
1979 return pmd;
1980}
1981
1982pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983 spinlock_t **ptl)
1984{
1985 pmd_t *pmd = walk_to_pmd(mm, addr);
1986
1987 if (!pmd)
1988 return NULL;
1989 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1990}
1991
1992static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1993{
1994 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1995 /*
1996 * Whoever wants to forbid the zeropage after some zeropages
1997 * might already have been mapped has to scan the page tables and
1998 * bail out on any zeropages. Zeropages in COW mappings can
1999 * be unshared using FAULT_FLAG_UNSHARE faults.
2000 */
2001 if (mm_forbids_zeropage(vma->vm_mm))
2002 return false;
2003 /* zeropages in COW mappings are common and unproblematic. */
2004 if (is_cow_mapping(vma->vm_flags))
2005 return true;
2006 /* Mappings that do not allow for writable PTEs are unproblematic. */
2007 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2008 return true;
2009 /*
2010 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2011 * find the shared zeropage and longterm-pin it, which would
2012 * be problematic as soon as the zeropage gets replaced by a different
2013 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2014 * now differ to what GUP looked up. FSDAX is incompatible to
2015 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2016 * check_vma_flags).
2017 */
2018 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2019 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2020}
2021
2022static int validate_page_before_insert(struct vm_area_struct *vma,
2023 struct page *page)
2024{
2025 struct folio *folio = page_folio(page);
2026
2027 if (!folio_ref_count(folio))
2028 return -EINVAL;
2029 if (unlikely(is_zero_folio(folio))) {
2030 if (!vm_mixed_zeropage_allowed(vma))
2031 return -EINVAL;
2032 return 0;
2033 }
2034 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2035 page_has_type(page))
2036 return -EINVAL;
2037 flush_dcache_folio(folio);
2038 return 0;
2039}
2040
2041static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2042 unsigned long addr, struct page *page, pgprot_t prot)
2043{
2044 struct folio *folio = page_folio(page);
2045 pte_t pteval;
2046
2047 if (!pte_none(ptep_get(pte)))
2048 return -EBUSY;
2049 /* Ok, finally just insert the thing.. */
2050 pteval = mk_pte(page, prot);
2051 if (unlikely(is_zero_folio(folio))) {
2052 pteval = pte_mkspecial(pteval);
2053 } else {
2054 folio_get(folio);
2055 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2056 folio_add_file_rmap_pte(folio, page, vma);
2057 }
2058 set_pte_at(vma->vm_mm, addr, pte, pteval);
2059 return 0;
2060}
2061
2062static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2063 struct page *page, pgprot_t prot)
2064{
2065 int retval;
2066 pte_t *pte;
2067 spinlock_t *ptl;
2068
2069 retval = validate_page_before_insert(vma, page);
2070 if (retval)
2071 goto out;
2072 retval = -ENOMEM;
2073 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2074 if (!pte)
2075 goto out;
2076 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2077 pte_unmap_unlock(pte, ptl);
2078out:
2079 return retval;
2080}
2081
2082static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2083 unsigned long addr, struct page *page, pgprot_t prot)
2084{
2085 int err;
2086
2087 err = validate_page_before_insert(vma, page);
2088 if (err)
2089 return err;
2090 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2091}
2092
2093/* insert_pages() amortizes the cost of spinlock operations
2094 * when inserting pages in a loop.
2095 */
2096static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2097 struct page **pages, unsigned long *num, pgprot_t prot)
2098{
2099 pmd_t *pmd = NULL;
2100 pte_t *start_pte, *pte;
2101 spinlock_t *pte_lock;
2102 struct mm_struct *const mm = vma->vm_mm;
2103 unsigned long curr_page_idx = 0;
2104 unsigned long remaining_pages_total = *num;
2105 unsigned long pages_to_write_in_pmd;
2106 int ret;
2107more:
2108 ret = -EFAULT;
2109 pmd = walk_to_pmd(mm, addr);
2110 if (!pmd)
2111 goto out;
2112
2113 pages_to_write_in_pmd = min_t(unsigned long,
2114 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2115
2116 /* Allocate the PTE if necessary; takes PMD lock once only. */
2117 ret = -ENOMEM;
2118 if (pte_alloc(mm, pmd))
2119 goto out;
2120
2121 while (pages_to_write_in_pmd) {
2122 int pte_idx = 0;
2123 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2124
2125 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2126 if (!start_pte) {
2127 ret = -EFAULT;
2128 goto out;
2129 }
2130 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2131 int err = insert_page_in_batch_locked(vma, pte,
2132 addr, pages[curr_page_idx], prot);
2133 if (unlikely(err)) {
2134 pte_unmap_unlock(start_pte, pte_lock);
2135 ret = err;
2136 remaining_pages_total -= pte_idx;
2137 goto out;
2138 }
2139 addr += PAGE_SIZE;
2140 ++curr_page_idx;
2141 }
2142 pte_unmap_unlock(start_pte, pte_lock);
2143 pages_to_write_in_pmd -= batch_size;
2144 remaining_pages_total -= batch_size;
2145 }
2146 if (remaining_pages_total)
2147 goto more;
2148 ret = 0;
2149out:
2150 *num = remaining_pages_total;
2151 return ret;
2152}
2153
2154/**
2155 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2156 * @vma: user vma to map to
2157 * @addr: target start user address of these pages
2158 * @pages: source kernel pages
2159 * @num: in: number of pages to map. out: number of pages that were *not*
2160 * mapped. (0 means all pages were successfully mapped).
2161 *
2162 * Preferred over vm_insert_page() when inserting multiple pages.
2163 *
2164 * In case of error, we may have mapped a subset of the provided
2165 * pages. It is the caller's responsibility to account for this case.
2166 *
2167 * The same restrictions apply as in vm_insert_page().
2168 */
2169int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2170 struct page **pages, unsigned long *num)
2171{
2172 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2173
2174 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2175 return -EFAULT;
2176 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2177 BUG_ON(mmap_read_trylock(vma->vm_mm));
2178 BUG_ON(vma->vm_flags & VM_PFNMAP);
2179 vm_flags_set(vma, VM_MIXEDMAP);
2180 }
2181 /* Defer page refcount checking till we're about to map that page. */
2182 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2183}
2184EXPORT_SYMBOL(vm_insert_pages);
2185
2186/**
2187 * vm_insert_page - insert single page into user vma
2188 * @vma: user vma to map to
2189 * @addr: target user address of this page
2190 * @page: source kernel page
2191 *
2192 * This allows drivers to insert individual pages they've allocated
2193 * into a user vma. The zeropage is supported in some VMAs,
2194 * see vm_mixed_zeropage_allowed().
2195 *
2196 * The page has to be a nice clean _individual_ kernel allocation.
2197 * If you allocate a compound page, you need to have marked it as
2198 * such (__GFP_COMP), or manually just split the page up yourself
2199 * (see split_page()).
2200 *
2201 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2202 * took an arbitrary page protection parameter. This doesn't allow
2203 * that. Your vma protection will have to be set up correctly, which
2204 * means that if you want a shared writable mapping, you'd better
2205 * ask for a shared writable mapping!
2206 *
2207 * The page does not need to be reserved.
2208 *
2209 * Usually this function is called from f_op->mmap() handler
2210 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2211 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2212 * function from other places, for example from page-fault handler.
2213 *
2214 * Return: %0 on success, negative error code otherwise.
2215 */
2216int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2217 struct page *page)
2218{
2219 if (addr < vma->vm_start || addr >= vma->vm_end)
2220 return -EFAULT;
2221 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2222 BUG_ON(mmap_read_trylock(vma->vm_mm));
2223 BUG_ON(vma->vm_flags & VM_PFNMAP);
2224 vm_flags_set(vma, VM_MIXEDMAP);
2225 }
2226 return insert_page(vma, addr, page, vma->vm_page_prot);
2227}
2228EXPORT_SYMBOL(vm_insert_page);
2229
2230/*
2231 * __vm_map_pages - maps range of kernel pages into user vma
2232 * @vma: user vma to map to
2233 * @pages: pointer to array of source kernel pages
2234 * @num: number of pages in page array
2235 * @offset: user's requested vm_pgoff
2236 *
2237 * This allows drivers to map range of kernel pages into a user vma.
2238 * The zeropage is supported in some VMAs, see
2239 * vm_mixed_zeropage_allowed().
2240 *
2241 * Return: 0 on success and error code otherwise.
2242 */
2243static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2244 unsigned long num, unsigned long offset)
2245{
2246 unsigned long count = vma_pages(vma);
2247 unsigned long uaddr = vma->vm_start;
2248 int ret, i;
2249
2250 /* Fail if the user requested offset is beyond the end of the object */
2251 if (offset >= num)
2252 return -ENXIO;
2253
2254 /* Fail if the user requested size exceeds available object size */
2255 if (count > num - offset)
2256 return -ENXIO;
2257
2258 for (i = 0; i < count; i++) {
2259 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2260 if (ret < 0)
2261 return ret;
2262 uaddr += PAGE_SIZE;
2263 }
2264
2265 return 0;
2266}
2267
2268/**
2269 * vm_map_pages - maps range of kernel pages starts with non zero offset
2270 * @vma: user vma to map to
2271 * @pages: pointer to array of source kernel pages
2272 * @num: number of pages in page array
2273 *
2274 * Maps an object consisting of @num pages, catering for the user's
2275 * requested vm_pgoff
2276 *
2277 * If we fail to insert any page into the vma, the function will return
2278 * immediately leaving any previously inserted pages present. Callers
2279 * from the mmap handler may immediately return the error as their caller
2280 * will destroy the vma, removing any successfully inserted pages. Other
2281 * callers should make their own arrangements for calling unmap_region().
2282 *
2283 * Context: Process context. Called by mmap handlers.
2284 * Return: 0 on success and error code otherwise.
2285 */
2286int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2287 unsigned long num)
2288{
2289 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2290}
2291EXPORT_SYMBOL(vm_map_pages);
2292
2293/**
2294 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2295 * @vma: user vma to map to
2296 * @pages: pointer to array of source kernel pages
2297 * @num: number of pages in page array
2298 *
2299 * Similar to vm_map_pages(), except that it explicitly sets the offset
2300 * to 0. This function is intended for the drivers that did not consider
2301 * vm_pgoff.
2302 *
2303 * Context: Process context. Called by mmap handlers.
2304 * Return: 0 on success and error code otherwise.
2305 */
2306int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2307 unsigned long num)
2308{
2309 return __vm_map_pages(vma, pages, num, 0);
2310}
2311EXPORT_SYMBOL(vm_map_pages_zero);
2312
2313static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2314 pfn_t pfn, pgprot_t prot, bool mkwrite)
2315{
2316 struct mm_struct *mm = vma->vm_mm;
2317 pte_t *pte, entry;
2318 spinlock_t *ptl;
2319
2320 pte = get_locked_pte(mm, addr, &ptl);
2321 if (!pte)
2322 return VM_FAULT_OOM;
2323 entry = ptep_get(pte);
2324 if (!pte_none(entry)) {
2325 if (mkwrite) {
2326 /*
2327 * For read faults on private mappings the PFN passed
2328 * in may not match the PFN we have mapped if the
2329 * mapped PFN is a writeable COW page. In the mkwrite
2330 * case we are creating a writable PTE for a shared
2331 * mapping and we expect the PFNs to match. If they
2332 * don't match, we are likely racing with block
2333 * allocation and mapping invalidation so just skip the
2334 * update.
2335 */
2336 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2337 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2338 goto out_unlock;
2339 }
2340 entry = pte_mkyoung(entry);
2341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2342 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2343 update_mmu_cache(vma, addr, pte);
2344 }
2345 goto out_unlock;
2346 }
2347
2348 /* Ok, finally just insert the thing.. */
2349 if (pfn_t_devmap(pfn))
2350 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2351 else
2352 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2353
2354 if (mkwrite) {
2355 entry = pte_mkyoung(entry);
2356 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2357 }
2358
2359 set_pte_at(mm, addr, pte, entry);
2360 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2361
2362out_unlock:
2363 pte_unmap_unlock(pte, ptl);
2364 return VM_FAULT_NOPAGE;
2365}
2366
2367/**
2368 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2369 * @vma: user vma to map to
2370 * @addr: target user address of this page
2371 * @pfn: source kernel pfn
2372 * @pgprot: pgprot flags for the inserted page
2373 *
2374 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2375 * to override pgprot on a per-page basis.
2376 *
2377 * This only makes sense for IO mappings, and it makes no sense for
2378 * COW mappings. In general, using multiple vmas is preferable;
2379 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2380 * impractical.
2381 *
2382 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2383 * caching- and encryption bits different than those of @vma->vm_page_prot,
2384 * because the caching- or encryption mode may not be known at mmap() time.
2385 *
2386 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2387 * to set caching and encryption bits for those vmas (except for COW pages).
2388 * This is ensured by core vm only modifying these page table entries using
2389 * functions that don't touch caching- or encryption bits, using pte_modify()
2390 * if needed. (See for example mprotect()).
2391 *
2392 * Also when new page-table entries are created, this is only done using the
2393 * fault() callback, and never using the value of vma->vm_page_prot,
2394 * except for page-table entries that point to anonymous pages as the result
2395 * of COW.
2396 *
2397 * Context: Process context. May allocate using %GFP_KERNEL.
2398 * Return: vm_fault_t value.
2399 */
2400vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2401 unsigned long pfn, pgprot_t pgprot)
2402{
2403 /*
2404 * Technically, architectures with pte_special can avoid all these
2405 * restrictions (same for remap_pfn_range). However we would like
2406 * consistency in testing and feature parity among all, so we should
2407 * try to keep these invariants in place for everybody.
2408 */
2409 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2410 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2411 (VM_PFNMAP|VM_MIXEDMAP));
2412 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2413 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2414
2415 if (addr < vma->vm_start || addr >= vma->vm_end)
2416 return VM_FAULT_SIGBUS;
2417
2418 if (!pfn_modify_allowed(pfn, pgprot))
2419 return VM_FAULT_SIGBUS;
2420
2421 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2422
2423 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2424 false);
2425}
2426EXPORT_SYMBOL(vmf_insert_pfn_prot);
2427
2428/**
2429 * vmf_insert_pfn - insert single pfn into user vma
2430 * @vma: user vma to map to
2431 * @addr: target user address of this page
2432 * @pfn: source kernel pfn
2433 *
2434 * Similar to vm_insert_page, this allows drivers to insert individual pages
2435 * they've allocated into a user vma. Same comments apply.
2436 *
2437 * This function should only be called from a vm_ops->fault handler, and
2438 * in that case the handler should return the result of this function.
2439 *
2440 * vma cannot be a COW mapping.
2441 *
2442 * As this is called only for pages that do not currently exist, we
2443 * do not need to flush old virtual caches or the TLB.
2444 *
2445 * Context: Process context. May allocate using %GFP_KERNEL.
2446 * Return: vm_fault_t value.
2447 */
2448vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2449 unsigned long pfn)
2450{
2451 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2452}
2453EXPORT_SYMBOL(vmf_insert_pfn);
2454
2455static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2456{
2457 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2458 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2459 return false;
2460 /* these checks mirror the abort conditions in vm_normal_page */
2461 if (vma->vm_flags & VM_MIXEDMAP)
2462 return true;
2463 if (pfn_t_devmap(pfn))
2464 return true;
2465 if (pfn_t_special(pfn))
2466 return true;
2467 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2468 return true;
2469 return false;
2470}
2471
2472static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2473 unsigned long addr, pfn_t pfn, bool mkwrite)
2474{
2475 pgprot_t pgprot = vma->vm_page_prot;
2476 int err;
2477
2478 if (!vm_mixed_ok(vma, pfn, mkwrite))
2479 return VM_FAULT_SIGBUS;
2480
2481 if (addr < vma->vm_start || addr >= vma->vm_end)
2482 return VM_FAULT_SIGBUS;
2483
2484 track_pfn_insert(vma, &pgprot, pfn);
2485
2486 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2487 return VM_FAULT_SIGBUS;
2488
2489 /*
2490 * If we don't have pte special, then we have to use the pfn_valid()
2491 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2492 * refcount the page if pfn_valid is true (hence insert_page rather
2493 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2494 * without pte special, it would there be refcounted as a normal page.
2495 */
2496 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2497 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2498 struct page *page;
2499
2500 /*
2501 * At this point we are committed to insert_page()
2502 * regardless of whether the caller specified flags that
2503 * result in pfn_t_has_page() == false.
2504 */
2505 page = pfn_to_page(pfn_t_to_pfn(pfn));
2506 err = insert_page(vma, addr, page, pgprot);
2507 } else {
2508 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2509 }
2510
2511 if (err == -ENOMEM)
2512 return VM_FAULT_OOM;
2513 if (err < 0 && err != -EBUSY)
2514 return VM_FAULT_SIGBUS;
2515
2516 return VM_FAULT_NOPAGE;
2517}
2518
2519vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2520 pfn_t pfn)
2521{
2522 return __vm_insert_mixed(vma, addr, pfn, false);
2523}
2524EXPORT_SYMBOL(vmf_insert_mixed);
2525
2526/*
2527 * If the insertion of PTE failed because someone else already added a
2528 * different entry in the mean time, we treat that as success as we assume
2529 * the same entry was actually inserted.
2530 */
2531vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2532 unsigned long addr, pfn_t pfn)
2533{
2534 return __vm_insert_mixed(vma, addr, pfn, true);
2535}
2536
2537/*
2538 * maps a range of physical memory into the requested pages. the old
2539 * mappings are removed. any references to nonexistent pages results
2540 * in null mappings (currently treated as "copy-on-access")
2541 */
2542static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2543 unsigned long addr, unsigned long end,
2544 unsigned long pfn, pgprot_t prot)
2545{
2546 pte_t *pte, *mapped_pte;
2547 spinlock_t *ptl;
2548 int err = 0;
2549
2550 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2551 if (!pte)
2552 return -ENOMEM;
2553 arch_enter_lazy_mmu_mode();
2554 do {
2555 BUG_ON(!pte_none(ptep_get(pte)));
2556 if (!pfn_modify_allowed(pfn, prot)) {
2557 err = -EACCES;
2558 break;
2559 }
2560 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2561 pfn++;
2562 } while (pte++, addr += PAGE_SIZE, addr != end);
2563 arch_leave_lazy_mmu_mode();
2564 pte_unmap_unlock(mapped_pte, ptl);
2565 return err;
2566}
2567
2568static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2569 unsigned long addr, unsigned long end,
2570 unsigned long pfn, pgprot_t prot)
2571{
2572 pmd_t *pmd;
2573 unsigned long next;
2574 int err;
2575
2576 pfn -= addr >> PAGE_SHIFT;
2577 pmd = pmd_alloc(mm, pud, addr);
2578 if (!pmd)
2579 return -ENOMEM;
2580 VM_BUG_ON(pmd_trans_huge(*pmd));
2581 do {
2582 next = pmd_addr_end(addr, end);
2583 err = remap_pte_range(mm, pmd, addr, next,
2584 pfn + (addr >> PAGE_SHIFT), prot);
2585 if (err)
2586 return err;
2587 } while (pmd++, addr = next, addr != end);
2588 return 0;
2589}
2590
2591static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2592 unsigned long addr, unsigned long end,
2593 unsigned long pfn, pgprot_t prot)
2594{
2595 pud_t *pud;
2596 unsigned long next;
2597 int err;
2598
2599 pfn -= addr >> PAGE_SHIFT;
2600 pud = pud_alloc(mm, p4d, addr);
2601 if (!pud)
2602 return -ENOMEM;
2603 do {
2604 next = pud_addr_end(addr, end);
2605 err = remap_pmd_range(mm, pud, addr, next,
2606 pfn + (addr >> PAGE_SHIFT), prot);
2607 if (err)
2608 return err;
2609 } while (pud++, addr = next, addr != end);
2610 return 0;
2611}
2612
2613static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2614 unsigned long addr, unsigned long end,
2615 unsigned long pfn, pgprot_t prot)
2616{
2617 p4d_t *p4d;
2618 unsigned long next;
2619 int err;
2620
2621 pfn -= addr >> PAGE_SHIFT;
2622 p4d = p4d_alloc(mm, pgd, addr);
2623 if (!p4d)
2624 return -ENOMEM;
2625 do {
2626 next = p4d_addr_end(addr, end);
2627 err = remap_pud_range(mm, p4d, addr, next,
2628 pfn + (addr >> PAGE_SHIFT), prot);
2629 if (err)
2630 return err;
2631 } while (p4d++, addr = next, addr != end);
2632 return 0;
2633}
2634
2635static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2636 unsigned long pfn, unsigned long size, pgprot_t prot)
2637{
2638 pgd_t *pgd;
2639 unsigned long next;
2640 unsigned long end = addr + PAGE_ALIGN(size);
2641 struct mm_struct *mm = vma->vm_mm;
2642 int err;
2643
2644 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2645 return -EINVAL;
2646
2647 /*
2648 * Physically remapped pages are special. Tell the
2649 * rest of the world about it:
2650 * VM_IO tells people not to look at these pages
2651 * (accesses can have side effects).
2652 * VM_PFNMAP tells the core MM that the base pages are just
2653 * raw PFN mappings, and do not have a "struct page" associated
2654 * with them.
2655 * VM_DONTEXPAND
2656 * Disable vma merging and expanding with mremap().
2657 * VM_DONTDUMP
2658 * Omit vma from core dump, even when VM_IO turned off.
2659 *
2660 * There's a horrible special case to handle copy-on-write
2661 * behaviour that some programs depend on. We mark the "original"
2662 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2663 * See vm_normal_page() for details.
2664 */
2665 if (is_cow_mapping(vma->vm_flags)) {
2666 if (addr != vma->vm_start || end != vma->vm_end)
2667 return -EINVAL;
2668 vma->vm_pgoff = pfn;
2669 }
2670
2671 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2672
2673 BUG_ON(addr >= end);
2674 pfn -= addr >> PAGE_SHIFT;
2675 pgd = pgd_offset(mm, addr);
2676 flush_cache_range(vma, addr, end);
2677 do {
2678 next = pgd_addr_end(addr, end);
2679 err = remap_p4d_range(mm, pgd, addr, next,
2680 pfn + (addr >> PAGE_SHIFT), prot);
2681 if (err)
2682 return err;
2683 } while (pgd++, addr = next, addr != end);
2684
2685 return 0;
2686}
2687
2688/*
2689 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2690 * must have pre-validated the caching bits of the pgprot_t.
2691 */
2692int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2693 unsigned long pfn, unsigned long size, pgprot_t prot)
2694{
2695 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2696
2697 if (!error)
2698 return 0;
2699
2700 /*
2701 * A partial pfn range mapping is dangerous: it does not
2702 * maintain page reference counts, and callers may free
2703 * pages due to the error. So zap it early.
2704 */
2705 zap_page_range_single(vma, addr, size, NULL);
2706 return error;
2707}
2708
2709/**
2710 * remap_pfn_range - remap kernel memory to userspace
2711 * @vma: user vma to map to
2712 * @addr: target page aligned user address to start at
2713 * @pfn: page frame number of kernel physical memory address
2714 * @size: size of mapping area
2715 * @prot: page protection flags for this mapping
2716 *
2717 * Note: this is only safe if the mm semaphore is held when called.
2718 *
2719 * Return: %0 on success, negative error code otherwise.
2720 */
2721int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2722 unsigned long pfn, unsigned long size, pgprot_t prot)
2723{
2724 int err;
2725
2726 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2727 if (err)
2728 return -EINVAL;
2729
2730 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2731 if (err)
2732 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2733 return err;
2734}
2735EXPORT_SYMBOL(remap_pfn_range);
2736
2737/**
2738 * vm_iomap_memory - remap memory to userspace
2739 * @vma: user vma to map to
2740 * @start: start of the physical memory to be mapped
2741 * @len: size of area
2742 *
2743 * This is a simplified io_remap_pfn_range() for common driver use. The
2744 * driver just needs to give us the physical memory range to be mapped,
2745 * we'll figure out the rest from the vma information.
2746 *
2747 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2748 * whatever write-combining details or similar.
2749 *
2750 * Return: %0 on success, negative error code otherwise.
2751 */
2752int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2753{
2754 unsigned long vm_len, pfn, pages;
2755
2756 /* Check that the physical memory area passed in looks valid */
2757 if (start + len < start)
2758 return -EINVAL;
2759 /*
2760 * You *really* shouldn't map things that aren't page-aligned,
2761 * but we've historically allowed it because IO memory might
2762 * just have smaller alignment.
2763 */
2764 len += start & ~PAGE_MASK;
2765 pfn = start >> PAGE_SHIFT;
2766 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2767 if (pfn + pages < pfn)
2768 return -EINVAL;
2769
2770 /* We start the mapping 'vm_pgoff' pages into the area */
2771 if (vma->vm_pgoff > pages)
2772 return -EINVAL;
2773 pfn += vma->vm_pgoff;
2774 pages -= vma->vm_pgoff;
2775
2776 /* Can we fit all of the mapping? */
2777 vm_len = vma->vm_end - vma->vm_start;
2778 if (vm_len >> PAGE_SHIFT > pages)
2779 return -EINVAL;
2780
2781 /* Ok, let it rip */
2782 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2783}
2784EXPORT_SYMBOL(vm_iomap_memory);
2785
2786static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2787 unsigned long addr, unsigned long end,
2788 pte_fn_t fn, void *data, bool create,
2789 pgtbl_mod_mask *mask)
2790{
2791 pte_t *pte, *mapped_pte;
2792 int err = 0;
2793 spinlock_t *ptl;
2794
2795 if (create) {
2796 mapped_pte = pte = (mm == &init_mm) ?
2797 pte_alloc_kernel_track(pmd, addr, mask) :
2798 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2799 if (!pte)
2800 return -ENOMEM;
2801 } else {
2802 mapped_pte = pte = (mm == &init_mm) ?
2803 pte_offset_kernel(pmd, addr) :
2804 pte_offset_map_lock(mm, pmd, addr, &ptl);
2805 if (!pte)
2806 return -EINVAL;
2807 }
2808
2809 arch_enter_lazy_mmu_mode();
2810
2811 if (fn) {
2812 do {
2813 if (create || !pte_none(ptep_get(pte))) {
2814 err = fn(pte++, addr, data);
2815 if (err)
2816 break;
2817 }
2818 } while (addr += PAGE_SIZE, addr != end);
2819 }
2820 *mask |= PGTBL_PTE_MODIFIED;
2821
2822 arch_leave_lazy_mmu_mode();
2823
2824 if (mm != &init_mm)
2825 pte_unmap_unlock(mapped_pte, ptl);
2826 return err;
2827}
2828
2829static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2830 unsigned long addr, unsigned long end,
2831 pte_fn_t fn, void *data, bool create,
2832 pgtbl_mod_mask *mask)
2833{
2834 pmd_t *pmd;
2835 unsigned long next;
2836 int err = 0;
2837
2838 BUG_ON(pud_leaf(*pud));
2839
2840 if (create) {
2841 pmd = pmd_alloc_track(mm, pud, addr, mask);
2842 if (!pmd)
2843 return -ENOMEM;
2844 } else {
2845 pmd = pmd_offset(pud, addr);
2846 }
2847 do {
2848 next = pmd_addr_end(addr, end);
2849 if (pmd_none(*pmd) && !create)
2850 continue;
2851 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2852 return -EINVAL;
2853 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2854 if (!create)
2855 continue;
2856 pmd_clear_bad(pmd);
2857 }
2858 err = apply_to_pte_range(mm, pmd, addr, next,
2859 fn, data, create, mask);
2860 if (err)
2861 break;
2862 } while (pmd++, addr = next, addr != end);
2863
2864 return err;
2865}
2866
2867static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2868 unsigned long addr, unsigned long end,
2869 pte_fn_t fn, void *data, bool create,
2870 pgtbl_mod_mask *mask)
2871{
2872 pud_t *pud;
2873 unsigned long next;
2874 int err = 0;
2875
2876 if (create) {
2877 pud = pud_alloc_track(mm, p4d, addr, mask);
2878 if (!pud)
2879 return -ENOMEM;
2880 } else {
2881 pud = pud_offset(p4d, addr);
2882 }
2883 do {
2884 next = pud_addr_end(addr, end);
2885 if (pud_none(*pud) && !create)
2886 continue;
2887 if (WARN_ON_ONCE(pud_leaf(*pud)))
2888 return -EINVAL;
2889 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2890 if (!create)
2891 continue;
2892 pud_clear_bad(pud);
2893 }
2894 err = apply_to_pmd_range(mm, pud, addr, next,
2895 fn, data, create, mask);
2896 if (err)
2897 break;
2898 } while (pud++, addr = next, addr != end);
2899
2900 return err;
2901}
2902
2903static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2904 unsigned long addr, unsigned long end,
2905 pte_fn_t fn, void *data, bool create,
2906 pgtbl_mod_mask *mask)
2907{
2908 p4d_t *p4d;
2909 unsigned long next;
2910 int err = 0;
2911
2912 if (create) {
2913 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2914 if (!p4d)
2915 return -ENOMEM;
2916 } else {
2917 p4d = p4d_offset(pgd, addr);
2918 }
2919 do {
2920 next = p4d_addr_end(addr, end);
2921 if (p4d_none(*p4d) && !create)
2922 continue;
2923 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2924 return -EINVAL;
2925 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2926 if (!create)
2927 continue;
2928 p4d_clear_bad(p4d);
2929 }
2930 err = apply_to_pud_range(mm, p4d, addr, next,
2931 fn, data, create, mask);
2932 if (err)
2933 break;
2934 } while (p4d++, addr = next, addr != end);
2935
2936 return err;
2937}
2938
2939static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2940 unsigned long size, pte_fn_t fn,
2941 void *data, bool create)
2942{
2943 pgd_t *pgd;
2944 unsigned long start = addr, next;
2945 unsigned long end = addr + size;
2946 pgtbl_mod_mask mask = 0;
2947 int err = 0;
2948
2949 if (WARN_ON(addr >= end))
2950 return -EINVAL;
2951
2952 pgd = pgd_offset(mm, addr);
2953 do {
2954 next = pgd_addr_end(addr, end);
2955 if (pgd_none(*pgd) && !create)
2956 continue;
2957 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2958 return -EINVAL;
2959 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2960 if (!create)
2961 continue;
2962 pgd_clear_bad(pgd);
2963 }
2964 err = apply_to_p4d_range(mm, pgd, addr, next,
2965 fn, data, create, &mask);
2966 if (err)
2967 break;
2968 } while (pgd++, addr = next, addr != end);
2969
2970 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2971 arch_sync_kernel_mappings(start, start + size);
2972
2973 return err;
2974}
2975
2976/*
2977 * Scan a region of virtual memory, filling in page tables as necessary
2978 * and calling a provided function on each leaf page table.
2979 */
2980int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2981 unsigned long size, pte_fn_t fn, void *data)
2982{
2983 return __apply_to_page_range(mm, addr, size, fn, data, true);
2984}
2985EXPORT_SYMBOL_GPL(apply_to_page_range);
2986
2987/*
2988 * Scan a region of virtual memory, calling a provided function on
2989 * each leaf page table where it exists.
2990 *
2991 * Unlike apply_to_page_range, this does _not_ fill in page tables
2992 * where they are absent.
2993 */
2994int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2995 unsigned long size, pte_fn_t fn, void *data)
2996{
2997 return __apply_to_page_range(mm, addr, size, fn, data, false);
2998}
2999EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3000
3001/*
3002 * handle_pte_fault chooses page fault handler according to an entry which was
3003 * read non-atomically. Before making any commitment, on those architectures
3004 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3005 * parts, do_swap_page must check under lock before unmapping the pte and
3006 * proceeding (but do_wp_page is only called after already making such a check;
3007 * and do_anonymous_page can safely check later on).
3008 */
3009static inline int pte_unmap_same(struct vm_fault *vmf)
3010{
3011 int same = 1;
3012#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3013 if (sizeof(pte_t) > sizeof(unsigned long)) {
3014 spin_lock(vmf->ptl);
3015 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3016 spin_unlock(vmf->ptl);
3017 }
3018#endif
3019 pte_unmap(vmf->pte);
3020 vmf->pte = NULL;
3021 return same;
3022}
3023
3024/*
3025 * Return:
3026 * 0: copied succeeded
3027 * -EHWPOISON: copy failed due to hwpoison in source page
3028 * -EAGAIN: copied failed (some other reason)
3029 */
3030static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3031 struct vm_fault *vmf)
3032{
3033 int ret;
3034 void *kaddr;
3035 void __user *uaddr;
3036 struct vm_area_struct *vma = vmf->vma;
3037 struct mm_struct *mm = vma->vm_mm;
3038 unsigned long addr = vmf->address;
3039
3040 if (likely(src)) {
3041 if (copy_mc_user_highpage(dst, src, addr, vma))
3042 return -EHWPOISON;
3043 return 0;
3044 }
3045
3046 /*
3047 * If the source page was a PFN mapping, we don't have
3048 * a "struct page" for it. We do a best-effort copy by
3049 * just copying from the original user address. If that
3050 * fails, we just zero-fill it. Live with it.
3051 */
3052 kaddr = kmap_local_page(dst);
3053 pagefault_disable();
3054 uaddr = (void __user *)(addr & PAGE_MASK);
3055
3056 /*
3057 * On architectures with software "accessed" bits, we would
3058 * take a double page fault, so mark it accessed here.
3059 */
3060 vmf->pte = NULL;
3061 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3062 pte_t entry;
3063
3064 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3065 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3066 /*
3067 * Other thread has already handled the fault
3068 * and update local tlb only
3069 */
3070 if (vmf->pte)
3071 update_mmu_tlb(vma, addr, vmf->pte);
3072 ret = -EAGAIN;
3073 goto pte_unlock;
3074 }
3075
3076 entry = pte_mkyoung(vmf->orig_pte);
3077 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3078 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3079 }
3080
3081 /*
3082 * This really shouldn't fail, because the page is there
3083 * in the page tables. But it might just be unreadable,
3084 * in which case we just give up and fill the result with
3085 * zeroes.
3086 */
3087 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3088 if (vmf->pte)
3089 goto warn;
3090
3091 /* Re-validate under PTL if the page is still mapped */
3092 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3093 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3094 /* The PTE changed under us, update local tlb */
3095 if (vmf->pte)
3096 update_mmu_tlb(vma, addr, vmf->pte);
3097 ret = -EAGAIN;
3098 goto pte_unlock;
3099 }
3100
3101 /*
3102 * The same page can be mapped back since last copy attempt.
3103 * Try to copy again under PTL.
3104 */
3105 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3106 /*
3107 * Give a warn in case there can be some obscure
3108 * use-case
3109 */
3110warn:
3111 WARN_ON_ONCE(1);
3112 clear_page(kaddr);
3113 }
3114 }
3115
3116 ret = 0;
3117
3118pte_unlock:
3119 if (vmf->pte)
3120 pte_unmap_unlock(vmf->pte, vmf->ptl);
3121 pagefault_enable();
3122 kunmap_local(kaddr);
3123 flush_dcache_page(dst);
3124
3125 return ret;
3126}
3127
3128static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3129{
3130 struct file *vm_file = vma->vm_file;
3131
3132 if (vm_file)
3133 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3134
3135 /*
3136 * Special mappings (e.g. VDSO) do not have any file so fake
3137 * a default GFP_KERNEL for them.
3138 */
3139 return GFP_KERNEL;
3140}
3141
3142/*
3143 * Notify the address space that the page is about to become writable so that
3144 * it can prohibit this or wait for the page to get into an appropriate state.
3145 *
3146 * We do this without the lock held, so that it can sleep if it needs to.
3147 */
3148static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3149{
3150 vm_fault_t ret;
3151 unsigned int old_flags = vmf->flags;
3152
3153 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3154
3155 if (vmf->vma->vm_file &&
3156 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3157 return VM_FAULT_SIGBUS;
3158
3159 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3160 /* Restore original flags so that caller is not surprised */
3161 vmf->flags = old_flags;
3162 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3163 return ret;
3164 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3165 folio_lock(folio);
3166 if (!folio->mapping) {
3167 folio_unlock(folio);
3168 return 0; /* retry */
3169 }
3170 ret |= VM_FAULT_LOCKED;
3171 } else
3172 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3173 return ret;
3174}
3175
3176/*
3177 * Handle dirtying of a page in shared file mapping on a write fault.
3178 *
3179 * The function expects the page to be locked and unlocks it.
3180 */
3181static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3182{
3183 struct vm_area_struct *vma = vmf->vma;
3184 struct address_space *mapping;
3185 struct folio *folio = page_folio(vmf->page);
3186 bool dirtied;
3187 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3188
3189 dirtied = folio_mark_dirty(folio);
3190 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3191 /*
3192 * Take a local copy of the address_space - folio.mapping may be zeroed
3193 * by truncate after folio_unlock(). The address_space itself remains
3194 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3195 * release semantics to prevent the compiler from undoing this copying.
3196 */
3197 mapping = folio_raw_mapping(folio);
3198 folio_unlock(folio);
3199
3200 if (!page_mkwrite)
3201 file_update_time(vma->vm_file);
3202
3203 /*
3204 * Throttle page dirtying rate down to writeback speed.
3205 *
3206 * mapping may be NULL here because some device drivers do not
3207 * set page.mapping but still dirty their pages
3208 *
3209 * Drop the mmap_lock before waiting on IO, if we can. The file
3210 * is pinning the mapping, as per above.
3211 */
3212 if ((dirtied || page_mkwrite) && mapping) {
3213 struct file *fpin;
3214
3215 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3216 balance_dirty_pages_ratelimited(mapping);
3217 if (fpin) {
3218 fput(fpin);
3219 return VM_FAULT_COMPLETED;
3220 }
3221 }
3222
3223 return 0;
3224}
3225
3226/*
3227 * Handle write page faults for pages that can be reused in the current vma
3228 *
3229 * This can happen either due to the mapping being with the VM_SHARED flag,
3230 * or due to us being the last reference standing to the page. In either
3231 * case, all we need to do here is to mark the page as writable and update
3232 * any related book-keeping.
3233 */
3234static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3235 __releases(vmf->ptl)
3236{
3237 struct vm_area_struct *vma = vmf->vma;
3238 pte_t entry;
3239
3240 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3241 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3242
3243 if (folio) {
3244 VM_BUG_ON(folio_test_anon(folio) &&
3245 !PageAnonExclusive(vmf->page));
3246 /*
3247 * Clear the folio's cpupid information as the existing
3248 * information potentially belongs to a now completely
3249 * unrelated process.
3250 */
3251 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3252 }
3253
3254 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3255 entry = pte_mkyoung(vmf->orig_pte);
3256 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3257 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3258 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3259 pte_unmap_unlock(vmf->pte, vmf->ptl);
3260 count_vm_event(PGREUSE);
3261}
3262
3263/*
3264 * We could add a bitflag somewhere, but for now, we know that all
3265 * vm_ops that have a ->map_pages have been audited and don't need
3266 * the mmap_lock to be held.
3267 */
3268static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3269{
3270 struct vm_area_struct *vma = vmf->vma;
3271
3272 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3273 return 0;
3274 vma_end_read(vma);
3275 return VM_FAULT_RETRY;
3276}
3277
3278/**
3279 * vmf_anon_prepare - Prepare to handle an anonymous fault.
3280 * @vmf: The vm_fault descriptor passed from the fault handler.
3281 *
3282 * When preparing to insert an anonymous page into a VMA from a
3283 * fault handler, call this function rather than anon_vma_prepare().
3284 * If this vma does not already have an associated anon_vma and we are
3285 * only protected by the per-VMA lock, the caller must retry with the
3286 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3287 * determine if this VMA can share its anon_vma, and that's not safe to
3288 * do with only the per-VMA lock held for this VMA.
3289 *
3290 * Return: 0 if fault handling can proceed. Any other value should be
3291 * returned to the caller.
3292 */
3293vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3294{
3295 struct vm_area_struct *vma = vmf->vma;
3296 vm_fault_t ret = 0;
3297
3298 if (likely(vma->anon_vma))
3299 return 0;
3300 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3301 if (!mmap_read_trylock(vma->vm_mm)) {
3302 vma_end_read(vma);
3303 return VM_FAULT_RETRY;
3304 }
3305 }
3306 if (__anon_vma_prepare(vma))
3307 ret = VM_FAULT_OOM;
3308 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3309 mmap_read_unlock(vma->vm_mm);
3310 return ret;
3311}
3312
3313/*
3314 * Handle the case of a page which we actually need to copy to a new page,
3315 * either due to COW or unsharing.
3316 *
3317 * Called with mmap_lock locked and the old page referenced, but
3318 * without the ptl held.
3319 *
3320 * High level logic flow:
3321 *
3322 * - Allocate a page, copy the content of the old page to the new one.
3323 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3324 * - Take the PTL. If the pte changed, bail out and release the allocated page
3325 * - If the pte is still the way we remember it, update the page table and all
3326 * relevant references. This includes dropping the reference the page-table
3327 * held to the old page, as well as updating the rmap.
3328 * - In any case, unlock the PTL and drop the reference we took to the old page.
3329 */
3330static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3331{
3332 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3333 struct vm_area_struct *vma = vmf->vma;
3334 struct mm_struct *mm = vma->vm_mm;
3335 struct folio *old_folio = NULL;
3336 struct folio *new_folio = NULL;
3337 pte_t entry;
3338 int page_copied = 0;
3339 struct mmu_notifier_range range;
3340 vm_fault_t ret;
3341 bool pfn_is_zero;
3342
3343 delayacct_wpcopy_start();
3344
3345 if (vmf->page)
3346 old_folio = page_folio(vmf->page);
3347 ret = vmf_anon_prepare(vmf);
3348 if (unlikely(ret))
3349 goto out;
3350
3351 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3352 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3353 if (!new_folio)
3354 goto oom;
3355
3356 if (!pfn_is_zero) {
3357 int err;
3358
3359 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3360 if (err) {
3361 /*
3362 * COW failed, if the fault was solved by other,
3363 * it's fine. If not, userspace would re-fault on
3364 * the same address and we will handle the fault
3365 * from the second attempt.
3366 * The -EHWPOISON case will not be retried.
3367 */
3368 folio_put(new_folio);
3369 if (old_folio)
3370 folio_put(old_folio);
3371
3372 delayacct_wpcopy_end();
3373 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3374 }
3375 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3376 }
3377
3378 __folio_mark_uptodate(new_folio);
3379
3380 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3381 vmf->address & PAGE_MASK,
3382 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3383 mmu_notifier_invalidate_range_start(&range);
3384
3385 /*
3386 * Re-check the pte - we dropped the lock
3387 */
3388 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3389 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3390 if (old_folio) {
3391 if (!folio_test_anon(old_folio)) {
3392 dec_mm_counter(mm, mm_counter_file(old_folio));
3393 inc_mm_counter(mm, MM_ANONPAGES);
3394 }
3395 } else {
3396 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3397 inc_mm_counter(mm, MM_ANONPAGES);
3398 }
3399 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3400 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3401 entry = pte_sw_mkyoung(entry);
3402 if (unlikely(unshare)) {
3403 if (pte_soft_dirty(vmf->orig_pte))
3404 entry = pte_mksoft_dirty(entry);
3405 if (pte_uffd_wp(vmf->orig_pte))
3406 entry = pte_mkuffd_wp(entry);
3407 } else {
3408 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3409 }
3410
3411 /*
3412 * Clear the pte entry and flush it first, before updating the
3413 * pte with the new entry, to keep TLBs on different CPUs in
3414 * sync. This code used to set the new PTE then flush TLBs, but
3415 * that left a window where the new PTE could be loaded into
3416 * some TLBs while the old PTE remains in others.
3417 */
3418 ptep_clear_flush(vma, vmf->address, vmf->pte);
3419 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3420 folio_add_lru_vma(new_folio, vma);
3421 BUG_ON(unshare && pte_write(entry));
3422 set_pte_at(mm, vmf->address, vmf->pte, entry);
3423 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3424 if (old_folio) {
3425 /*
3426 * Only after switching the pte to the new page may
3427 * we remove the mapcount here. Otherwise another
3428 * process may come and find the rmap count decremented
3429 * before the pte is switched to the new page, and
3430 * "reuse" the old page writing into it while our pte
3431 * here still points into it and can be read by other
3432 * threads.
3433 *
3434 * The critical issue is to order this
3435 * folio_remove_rmap_pte() with the ptp_clear_flush
3436 * above. Those stores are ordered by (if nothing else,)
3437 * the barrier present in the atomic_add_negative
3438 * in folio_remove_rmap_pte();
3439 *
3440 * Then the TLB flush in ptep_clear_flush ensures that
3441 * no process can access the old page before the
3442 * decremented mapcount is visible. And the old page
3443 * cannot be reused until after the decremented
3444 * mapcount is visible. So transitively, TLBs to
3445 * old page will be flushed before it can be reused.
3446 */
3447 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3448 }
3449
3450 /* Free the old page.. */
3451 new_folio = old_folio;
3452 page_copied = 1;
3453 pte_unmap_unlock(vmf->pte, vmf->ptl);
3454 } else if (vmf->pte) {
3455 update_mmu_tlb(vma, vmf->address, vmf->pte);
3456 pte_unmap_unlock(vmf->pte, vmf->ptl);
3457 }
3458
3459 mmu_notifier_invalidate_range_end(&range);
3460
3461 if (new_folio)
3462 folio_put(new_folio);
3463 if (old_folio) {
3464 if (page_copied)
3465 free_swap_cache(old_folio);
3466 folio_put(old_folio);
3467 }
3468
3469 delayacct_wpcopy_end();
3470 return 0;
3471oom:
3472 ret = VM_FAULT_OOM;
3473out:
3474 if (old_folio)
3475 folio_put(old_folio);
3476
3477 delayacct_wpcopy_end();
3478 return ret;
3479}
3480
3481/**
3482 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3483 * writeable once the page is prepared
3484 *
3485 * @vmf: structure describing the fault
3486 * @folio: the folio of vmf->page
3487 *
3488 * This function handles all that is needed to finish a write page fault in a
3489 * shared mapping due to PTE being read-only once the mapped page is prepared.
3490 * It handles locking of PTE and modifying it.
3491 *
3492 * The function expects the page to be locked or other protection against
3493 * concurrent faults / writeback (such as DAX radix tree locks).
3494 *
3495 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3496 * we acquired PTE lock.
3497 */
3498static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3499{
3500 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3501 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3502 &vmf->ptl);
3503 if (!vmf->pte)
3504 return VM_FAULT_NOPAGE;
3505 /*
3506 * We might have raced with another page fault while we released the
3507 * pte_offset_map_lock.
3508 */
3509 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3510 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3511 pte_unmap_unlock(vmf->pte, vmf->ptl);
3512 return VM_FAULT_NOPAGE;
3513 }
3514 wp_page_reuse(vmf, folio);
3515 return 0;
3516}
3517
3518/*
3519 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3520 * mapping
3521 */
3522static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3523{
3524 struct vm_area_struct *vma = vmf->vma;
3525
3526 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3527 vm_fault_t ret;
3528
3529 pte_unmap_unlock(vmf->pte, vmf->ptl);
3530 ret = vmf_can_call_fault(vmf);
3531 if (ret)
3532 return ret;
3533
3534 vmf->flags |= FAULT_FLAG_MKWRITE;
3535 ret = vma->vm_ops->pfn_mkwrite(vmf);
3536 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3537 return ret;
3538 return finish_mkwrite_fault(vmf, NULL);
3539 }
3540 wp_page_reuse(vmf, NULL);
3541 return 0;
3542}
3543
3544static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3545 __releases(vmf->ptl)
3546{
3547 struct vm_area_struct *vma = vmf->vma;
3548 vm_fault_t ret = 0;
3549
3550 folio_get(folio);
3551
3552 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3553 vm_fault_t tmp;
3554
3555 pte_unmap_unlock(vmf->pte, vmf->ptl);
3556 tmp = vmf_can_call_fault(vmf);
3557 if (tmp) {
3558 folio_put(folio);
3559 return tmp;
3560 }
3561
3562 tmp = do_page_mkwrite(vmf, folio);
3563 if (unlikely(!tmp || (tmp &
3564 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3565 folio_put(folio);
3566 return tmp;
3567 }
3568 tmp = finish_mkwrite_fault(vmf, folio);
3569 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3570 folio_unlock(folio);
3571 folio_put(folio);
3572 return tmp;
3573 }
3574 } else {
3575 wp_page_reuse(vmf, folio);
3576 folio_lock(folio);
3577 }
3578 ret |= fault_dirty_shared_page(vmf);
3579 folio_put(folio);
3580
3581 return ret;
3582}
3583
3584static bool wp_can_reuse_anon_folio(struct folio *folio,
3585 struct vm_area_struct *vma)
3586{
3587 /*
3588 * We could currently only reuse a subpage of a large folio if no
3589 * other subpages of the large folios are still mapped. However,
3590 * let's just consistently not reuse subpages even if we could
3591 * reuse in that scenario, and give back a large folio a bit
3592 * sooner.
3593 */
3594 if (folio_test_large(folio))
3595 return false;
3596
3597 /*
3598 * We have to verify under folio lock: these early checks are
3599 * just an optimization to avoid locking the folio and freeing
3600 * the swapcache if there is little hope that we can reuse.
3601 *
3602 * KSM doesn't necessarily raise the folio refcount.
3603 */
3604 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3605 return false;
3606 if (!folio_test_lru(folio))
3607 /*
3608 * We cannot easily detect+handle references from
3609 * remote LRU caches or references to LRU folios.
3610 */
3611 lru_add_drain();
3612 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3613 return false;
3614 if (!folio_trylock(folio))
3615 return false;
3616 if (folio_test_swapcache(folio))
3617 folio_free_swap(folio);
3618 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3619 folio_unlock(folio);
3620 return false;
3621 }
3622 /*
3623 * Ok, we've got the only folio reference from our mapping
3624 * and the folio is locked, it's dark out, and we're wearing
3625 * sunglasses. Hit it.
3626 */
3627 folio_move_anon_rmap(folio, vma);
3628 folio_unlock(folio);
3629 return true;
3630}
3631
3632/*
3633 * This routine handles present pages, when
3634 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3635 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3636 * (FAULT_FLAG_UNSHARE)
3637 *
3638 * It is done by copying the page to a new address and decrementing the
3639 * shared-page counter for the old page.
3640 *
3641 * Note that this routine assumes that the protection checks have been
3642 * done by the caller (the low-level page fault routine in most cases).
3643 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3644 * done any necessary COW.
3645 *
3646 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3647 * though the page will change only once the write actually happens. This
3648 * avoids a few races, and potentially makes it more efficient.
3649 *
3650 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3651 * but allow concurrent faults), with pte both mapped and locked.
3652 * We return with mmap_lock still held, but pte unmapped and unlocked.
3653 */
3654static vm_fault_t do_wp_page(struct vm_fault *vmf)
3655 __releases(vmf->ptl)
3656{
3657 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3658 struct vm_area_struct *vma = vmf->vma;
3659 struct folio *folio = NULL;
3660 pte_t pte;
3661
3662 if (likely(!unshare)) {
3663 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3664 if (!userfaultfd_wp_async(vma)) {
3665 pte_unmap_unlock(vmf->pte, vmf->ptl);
3666 return handle_userfault(vmf, VM_UFFD_WP);
3667 }
3668
3669 /*
3670 * Nothing needed (cache flush, TLB invalidations,
3671 * etc.) because we're only removing the uffd-wp bit,
3672 * which is completely invisible to the user.
3673 */
3674 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3675
3676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3677 /*
3678 * Update this to be prepared for following up CoW
3679 * handling
3680 */
3681 vmf->orig_pte = pte;
3682 }
3683
3684 /*
3685 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3686 * is flushed in this case before copying.
3687 */
3688 if (unlikely(userfaultfd_wp(vmf->vma) &&
3689 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3690 flush_tlb_page(vmf->vma, vmf->address);
3691 }
3692
3693 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3694
3695 if (vmf->page)
3696 folio = page_folio(vmf->page);
3697
3698 /*
3699 * Shared mapping: we are guaranteed to have VM_WRITE and
3700 * FAULT_FLAG_WRITE set at this point.
3701 */
3702 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3703 /*
3704 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3705 * VM_PFNMAP VMA.
3706 *
3707 * We should not cow pages in a shared writeable mapping.
3708 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3709 */
3710 if (!vmf->page)
3711 return wp_pfn_shared(vmf);
3712 return wp_page_shared(vmf, folio);
3713 }
3714
3715 /*
3716 * Private mapping: create an exclusive anonymous page copy if reuse
3717 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3718 *
3719 * If we encounter a page that is marked exclusive, we must reuse
3720 * the page without further checks.
3721 */
3722 if (folio && folio_test_anon(folio) &&
3723 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3724 if (!PageAnonExclusive(vmf->page))
3725 SetPageAnonExclusive(vmf->page);
3726 if (unlikely(unshare)) {
3727 pte_unmap_unlock(vmf->pte, vmf->ptl);
3728 return 0;
3729 }
3730 wp_page_reuse(vmf, folio);
3731 return 0;
3732 }
3733 /*
3734 * Ok, we need to copy. Oh, well..
3735 */
3736 if (folio)
3737 folio_get(folio);
3738
3739 pte_unmap_unlock(vmf->pte, vmf->ptl);
3740#ifdef CONFIG_KSM
3741 if (folio && folio_test_ksm(folio))
3742 count_vm_event(COW_KSM);
3743#endif
3744 return wp_page_copy(vmf);
3745}
3746
3747static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3748 unsigned long start_addr, unsigned long end_addr,
3749 struct zap_details *details)
3750{
3751 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3752}
3753
3754static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3755 pgoff_t first_index,
3756 pgoff_t last_index,
3757 struct zap_details *details)
3758{
3759 struct vm_area_struct *vma;
3760 pgoff_t vba, vea, zba, zea;
3761
3762 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3763 vba = vma->vm_pgoff;
3764 vea = vba + vma_pages(vma) - 1;
3765 zba = max(first_index, vba);
3766 zea = min(last_index, vea);
3767
3768 unmap_mapping_range_vma(vma,
3769 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3770 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3771 details);
3772 }
3773}
3774
3775/**
3776 * unmap_mapping_folio() - Unmap single folio from processes.
3777 * @folio: The locked folio to be unmapped.
3778 *
3779 * Unmap this folio from any userspace process which still has it mmaped.
3780 * Typically, for efficiency, the range of nearby pages has already been
3781 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3782 * truncation or invalidation holds the lock on a folio, it may find that
3783 * the page has been remapped again: and then uses unmap_mapping_folio()
3784 * to unmap it finally.
3785 */
3786void unmap_mapping_folio(struct folio *folio)
3787{
3788 struct address_space *mapping = folio->mapping;
3789 struct zap_details details = { };
3790 pgoff_t first_index;
3791 pgoff_t last_index;
3792
3793 VM_BUG_ON(!folio_test_locked(folio));
3794
3795 first_index = folio->index;
3796 last_index = folio_next_index(folio) - 1;
3797
3798 details.even_cows = false;
3799 details.single_folio = folio;
3800 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3801
3802 i_mmap_lock_read(mapping);
3803 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3804 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3805 last_index, &details);
3806 i_mmap_unlock_read(mapping);
3807}
3808
3809/**
3810 * unmap_mapping_pages() - Unmap pages from processes.
3811 * @mapping: The address space containing pages to be unmapped.
3812 * @start: Index of first page to be unmapped.
3813 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3814 * @even_cows: Whether to unmap even private COWed pages.
3815 *
3816 * Unmap the pages in this address space from any userspace process which
3817 * has them mmaped. Generally, you want to remove COWed pages as well when
3818 * a file is being truncated, but not when invalidating pages from the page
3819 * cache.
3820 */
3821void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3822 pgoff_t nr, bool even_cows)
3823{
3824 struct zap_details details = { };
3825 pgoff_t first_index = start;
3826 pgoff_t last_index = start + nr - 1;
3827
3828 details.even_cows = even_cows;
3829 if (last_index < first_index)
3830 last_index = ULONG_MAX;
3831
3832 i_mmap_lock_read(mapping);
3833 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3834 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3835 last_index, &details);
3836 i_mmap_unlock_read(mapping);
3837}
3838EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3839
3840/**
3841 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3842 * address_space corresponding to the specified byte range in the underlying
3843 * file.
3844 *
3845 * @mapping: the address space containing mmaps to be unmapped.
3846 * @holebegin: byte in first page to unmap, relative to the start of
3847 * the underlying file. This will be rounded down to a PAGE_SIZE
3848 * boundary. Note that this is different from truncate_pagecache(), which
3849 * must keep the partial page. In contrast, we must get rid of
3850 * partial pages.
3851 * @holelen: size of prospective hole in bytes. This will be rounded
3852 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3853 * end of the file.
3854 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3855 * but 0 when invalidating pagecache, don't throw away private data.
3856 */
3857void unmap_mapping_range(struct address_space *mapping,
3858 loff_t const holebegin, loff_t const holelen, int even_cows)
3859{
3860 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3861 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3862
3863 /* Check for overflow. */
3864 if (sizeof(holelen) > sizeof(hlen)) {
3865 long long holeend =
3866 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3867 if (holeend & ~(long long)ULONG_MAX)
3868 hlen = ULONG_MAX - hba + 1;
3869 }
3870
3871 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3872}
3873EXPORT_SYMBOL(unmap_mapping_range);
3874
3875/*
3876 * Restore a potential device exclusive pte to a working pte entry
3877 */
3878static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3879{
3880 struct folio *folio = page_folio(vmf->page);
3881 struct vm_area_struct *vma = vmf->vma;
3882 struct mmu_notifier_range range;
3883 vm_fault_t ret;
3884
3885 /*
3886 * We need a reference to lock the folio because we don't hold
3887 * the PTL so a racing thread can remove the device-exclusive
3888 * entry and unmap it. If the folio is free the entry must
3889 * have been removed already. If it happens to have already
3890 * been re-allocated after being freed all we do is lock and
3891 * unlock it.
3892 */
3893 if (!folio_try_get(folio))
3894 return 0;
3895
3896 ret = folio_lock_or_retry(folio, vmf);
3897 if (ret) {
3898 folio_put(folio);
3899 return ret;
3900 }
3901 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3902 vma->vm_mm, vmf->address & PAGE_MASK,
3903 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3904 mmu_notifier_invalidate_range_start(&range);
3905
3906 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3907 &vmf->ptl);
3908 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3909 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3910
3911 if (vmf->pte)
3912 pte_unmap_unlock(vmf->pte, vmf->ptl);
3913 folio_unlock(folio);
3914 folio_put(folio);
3915
3916 mmu_notifier_invalidate_range_end(&range);
3917 return 0;
3918}
3919
3920static inline bool should_try_to_free_swap(struct folio *folio,
3921 struct vm_area_struct *vma,
3922 unsigned int fault_flags)
3923{
3924 if (!folio_test_swapcache(folio))
3925 return false;
3926 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3927 folio_test_mlocked(folio))
3928 return true;
3929 /*
3930 * If we want to map a page that's in the swapcache writable, we
3931 * have to detect via the refcount if we're really the exclusive
3932 * user. Try freeing the swapcache to get rid of the swapcache
3933 * reference only in case it's likely that we'll be the exlusive user.
3934 */
3935 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3936 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3937}
3938
3939static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3940{
3941 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3942 vmf->address, &vmf->ptl);
3943 if (!vmf->pte)
3944 return 0;
3945 /*
3946 * Be careful so that we will only recover a special uffd-wp pte into a
3947 * none pte. Otherwise it means the pte could have changed, so retry.
3948 *
3949 * This should also cover the case where e.g. the pte changed
3950 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3951 * So is_pte_marker() check is not enough to safely drop the pte.
3952 */
3953 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3954 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3955 pte_unmap_unlock(vmf->pte, vmf->ptl);
3956 return 0;
3957}
3958
3959static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3960{
3961 if (vma_is_anonymous(vmf->vma))
3962 return do_anonymous_page(vmf);
3963 else
3964 return do_fault(vmf);
3965}
3966
3967/*
3968 * This is actually a page-missing access, but with uffd-wp special pte
3969 * installed. It means this pte was wr-protected before being unmapped.
3970 */
3971static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3972{
3973 /*
3974 * Just in case there're leftover special ptes even after the region
3975 * got unregistered - we can simply clear them.
3976 */
3977 if (unlikely(!userfaultfd_wp(vmf->vma)))
3978 return pte_marker_clear(vmf);
3979
3980 return do_pte_missing(vmf);
3981}
3982
3983static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3984{
3985 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3986 unsigned long marker = pte_marker_get(entry);
3987
3988 /*
3989 * PTE markers should never be empty. If anything weird happened,
3990 * the best thing to do is to kill the process along with its mm.
3991 */
3992 if (WARN_ON_ONCE(!marker))
3993 return VM_FAULT_SIGBUS;
3994
3995 /* Higher priority than uffd-wp when data corrupted */
3996 if (marker & PTE_MARKER_POISONED)
3997 return VM_FAULT_HWPOISON;
3998
3999 if (pte_marker_entry_uffd_wp(entry))
4000 return pte_marker_handle_uffd_wp(vmf);
4001
4002 /* This is an unknown pte marker */
4003 return VM_FAULT_SIGBUS;
4004}
4005
4006/*
4007 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4008 * but allow concurrent faults), and pte mapped but not yet locked.
4009 * We return with pte unmapped and unlocked.
4010 *
4011 * We return with the mmap_lock locked or unlocked in the same cases
4012 * as does filemap_fault().
4013 */
4014vm_fault_t do_swap_page(struct vm_fault *vmf)
4015{
4016 struct vm_area_struct *vma = vmf->vma;
4017 struct folio *swapcache, *folio = NULL;
4018 struct page *page;
4019 struct swap_info_struct *si = NULL;
4020 rmap_t rmap_flags = RMAP_NONE;
4021 bool need_clear_cache = false;
4022 bool exclusive = false;
4023 swp_entry_t entry;
4024 pte_t pte;
4025 vm_fault_t ret = 0;
4026 void *shadow = NULL;
4027 int nr_pages;
4028 unsigned long page_idx;
4029 unsigned long address;
4030 pte_t *ptep;
4031
4032 if (!pte_unmap_same(vmf))
4033 goto out;
4034
4035 entry = pte_to_swp_entry(vmf->orig_pte);
4036 if (unlikely(non_swap_entry(entry))) {
4037 if (is_migration_entry(entry)) {
4038 migration_entry_wait(vma->vm_mm, vmf->pmd,
4039 vmf->address);
4040 } else if (is_device_exclusive_entry(entry)) {
4041 vmf->page = pfn_swap_entry_to_page(entry);
4042 ret = remove_device_exclusive_entry(vmf);
4043 } else if (is_device_private_entry(entry)) {
4044 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4045 /*
4046 * migrate_to_ram is not yet ready to operate
4047 * under VMA lock.
4048 */
4049 vma_end_read(vma);
4050 ret = VM_FAULT_RETRY;
4051 goto out;
4052 }
4053
4054 vmf->page = pfn_swap_entry_to_page(entry);
4055 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4056 vmf->address, &vmf->ptl);
4057 if (unlikely(!vmf->pte ||
4058 !pte_same(ptep_get(vmf->pte),
4059 vmf->orig_pte)))
4060 goto unlock;
4061
4062 /*
4063 * Get a page reference while we know the page can't be
4064 * freed.
4065 */
4066 get_page(vmf->page);
4067 pte_unmap_unlock(vmf->pte, vmf->ptl);
4068 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4069 put_page(vmf->page);
4070 } else if (is_hwpoison_entry(entry)) {
4071 ret = VM_FAULT_HWPOISON;
4072 } else if (is_pte_marker_entry(entry)) {
4073 ret = handle_pte_marker(vmf);
4074 } else {
4075 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4076 ret = VM_FAULT_SIGBUS;
4077 }
4078 goto out;
4079 }
4080
4081 /* Prevent swapoff from happening to us. */
4082 si = get_swap_device(entry);
4083 if (unlikely(!si))
4084 goto out;
4085
4086 folio = swap_cache_get_folio(entry, vma, vmf->address);
4087 if (folio)
4088 page = folio_file_page(folio, swp_offset(entry));
4089 swapcache = folio;
4090
4091 if (!folio) {
4092 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4093 __swap_count(entry) == 1) {
4094 /*
4095 * Prevent parallel swapin from proceeding with
4096 * the cache flag. Otherwise, another thread may
4097 * finish swapin first, free the entry, and swapout
4098 * reusing the same entry. It's undetectable as
4099 * pte_same() returns true due to entry reuse.
4100 */
4101 if (swapcache_prepare(entry)) {
4102 /* Relax a bit to prevent rapid repeated page faults */
4103 schedule_timeout_uninterruptible(1);
4104 goto out;
4105 }
4106 need_clear_cache = true;
4107
4108 /* skip swapcache */
4109 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4110 vma, vmf->address, false);
4111 page = &folio->page;
4112 if (folio) {
4113 __folio_set_locked(folio);
4114 __folio_set_swapbacked(folio);
4115
4116 if (mem_cgroup_swapin_charge_folio(folio,
4117 vma->vm_mm, GFP_KERNEL,
4118 entry)) {
4119 ret = VM_FAULT_OOM;
4120 goto out_page;
4121 }
4122 mem_cgroup_swapin_uncharge_swap(entry);
4123
4124 shadow = get_shadow_from_swap_cache(entry);
4125 if (shadow)
4126 workingset_refault(folio, shadow);
4127
4128 folio_add_lru(folio);
4129
4130 /* To provide entry to swap_read_folio() */
4131 folio->swap = entry;
4132 swap_read_folio(folio, NULL);
4133 folio->private = NULL;
4134 }
4135 } else {
4136 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4137 vmf);
4138 if (page)
4139 folio = page_folio(page);
4140 swapcache = folio;
4141 }
4142
4143 if (!folio) {
4144 /*
4145 * Back out if somebody else faulted in this pte
4146 * while we released the pte lock.
4147 */
4148 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4149 vmf->address, &vmf->ptl);
4150 if (likely(vmf->pte &&
4151 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4152 ret = VM_FAULT_OOM;
4153 goto unlock;
4154 }
4155
4156 /* Had to read the page from swap area: Major fault */
4157 ret = VM_FAULT_MAJOR;
4158 count_vm_event(PGMAJFAULT);
4159 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4160 } else if (PageHWPoison(page)) {
4161 /*
4162 * hwpoisoned dirty swapcache pages are kept for killing
4163 * owner processes (which may be unknown at hwpoison time)
4164 */
4165 ret = VM_FAULT_HWPOISON;
4166 goto out_release;
4167 }
4168
4169 ret |= folio_lock_or_retry(folio, vmf);
4170 if (ret & VM_FAULT_RETRY)
4171 goto out_release;
4172
4173 if (swapcache) {
4174 /*
4175 * Make sure folio_free_swap() or swapoff did not release the
4176 * swapcache from under us. The page pin, and pte_same test
4177 * below, are not enough to exclude that. Even if it is still
4178 * swapcache, we need to check that the page's swap has not
4179 * changed.
4180 */
4181 if (unlikely(!folio_test_swapcache(folio) ||
4182 page_swap_entry(page).val != entry.val))
4183 goto out_page;
4184
4185 /*
4186 * KSM sometimes has to copy on read faults, for example, if
4187 * page->index of !PageKSM() pages would be nonlinear inside the
4188 * anon VMA -- PageKSM() is lost on actual swapout.
4189 */
4190 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4191 if (unlikely(!folio)) {
4192 ret = VM_FAULT_OOM;
4193 folio = swapcache;
4194 goto out_page;
4195 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4196 ret = VM_FAULT_HWPOISON;
4197 folio = swapcache;
4198 goto out_page;
4199 }
4200 if (folio != swapcache)
4201 page = folio_page(folio, 0);
4202
4203 /*
4204 * If we want to map a page that's in the swapcache writable, we
4205 * have to detect via the refcount if we're really the exclusive
4206 * owner. Try removing the extra reference from the local LRU
4207 * caches if required.
4208 */
4209 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4210 !folio_test_ksm(folio) && !folio_test_lru(folio))
4211 lru_add_drain();
4212 }
4213
4214 folio_throttle_swaprate(folio, GFP_KERNEL);
4215
4216 /*
4217 * Back out if somebody else already faulted in this pte.
4218 */
4219 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4220 &vmf->ptl);
4221 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4222 goto out_nomap;
4223
4224 if (unlikely(!folio_test_uptodate(folio))) {
4225 ret = VM_FAULT_SIGBUS;
4226 goto out_nomap;
4227 }
4228
4229 nr_pages = 1;
4230 page_idx = 0;
4231 address = vmf->address;
4232 ptep = vmf->pte;
4233 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4234 int nr = folio_nr_pages(folio);
4235 unsigned long idx = folio_page_idx(folio, page);
4236 unsigned long folio_start = address - idx * PAGE_SIZE;
4237 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4238 pte_t *folio_ptep;
4239 pte_t folio_pte;
4240
4241 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4242 goto check_folio;
4243 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4244 goto check_folio;
4245
4246 folio_ptep = vmf->pte - idx;
4247 folio_pte = ptep_get(folio_ptep);
4248 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4249 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4250 goto check_folio;
4251
4252 page_idx = idx;
4253 address = folio_start;
4254 ptep = folio_ptep;
4255 nr_pages = nr;
4256 entry = folio->swap;
4257 page = &folio->page;
4258 }
4259
4260check_folio:
4261 /*
4262 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4263 * must never point at an anonymous page in the swapcache that is
4264 * PG_anon_exclusive. Sanity check that this holds and especially, that
4265 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4266 * check after taking the PT lock and making sure that nobody
4267 * concurrently faulted in this page and set PG_anon_exclusive.
4268 */
4269 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4270 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4271
4272 /*
4273 * Check under PT lock (to protect against concurrent fork() sharing
4274 * the swap entry concurrently) for certainly exclusive pages.
4275 */
4276 if (!folio_test_ksm(folio)) {
4277 exclusive = pte_swp_exclusive(vmf->orig_pte);
4278 if (folio != swapcache) {
4279 /*
4280 * We have a fresh page that is not exposed to the
4281 * swapcache -> certainly exclusive.
4282 */
4283 exclusive = true;
4284 } else if (exclusive && folio_test_writeback(folio) &&
4285 data_race(si->flags & SWP_STABLE_WRITES)) {
4286 /*
4287 * This is tricky: not all swap backends support
4288 * concurrent page modifications while under writeback.
4289 *
4290 * So if we stumble over such a page in the swapcache
4291 * we must not set the page exclusive, otherwise we can
4292 * map it writable without further checks and modify it
4293 * while still under writeback.
4294 *
4295 * For these problematic swap backends, simply drop the
4296 * exclusive marker: this is perfectly fine as we start
4297 * writeback only if we fully unmapped the page and
4298 * there are no unexpected references on the page after
4299 * unmapping succeeded. After fully unmapped, no
4300 * further GUP references (FOLL_GET and FOLL_PIN) can
4301 * appear, so dropping the exclusive marker and mapping
4302 * it only R/O is fine.
4303 */
4304 exclusive = false;
4305 }
4306 }
4307
4308 /*
4309 * Some architectures may have to restore extra metadata to the page
4310 * when reading from swap. This metadata may be indexed by swap entry
4311 * so this must be called before swap_free().
4312 */
4313 arch_swap_restore(folio_swap(entry, folio), folio);
4314
4315 /*
4316 * Remove the swap entry and conditionally try to free up the swapcache.
4317 * We're already holding a reference on the page but haven't mapped it
4318 * yet.
4319 */
4320 swap_free_nr(entry, nr_pages);
4321 if (should_try_to_free_swap(folio, vma, vmf->flags))
4322 folio_free_swap(folio);
4323
4324 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4325 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4326 pte = mk_pte(page, vma->vm_page_prot);
4327 if (pte_swp_soft_dirty(vmf->orig_pte))
4328 pte = pte_mksoft_dirty(pte);
4329 if (pte_swp_uffd_wp(vmf->orig_pte))
4330 pte = pte_mkuffd_wp(pte);
4331
4332 /*
4333 * Same logic as in do_wp_page(); however, optimize for pages that are
4334 * certainly not shared either because we just allocated them without
4335 * exposing them to the swapcache or because the swap entry indicates
4336 * exclusivity.
4337 */
4338 if (!folio_test_ksm(folio) &&
4339 (exclusive || folio_ref_count(folio) == 1)) {
4340 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4341 !pte_needs_soft_dirty_wp(vma, pte)) {
4342 pte = pte_mkwrite(pte, vma);
4343 if (vmf->flags & FAULT_FLAG_WRITE) {
4344 pte = pte_mkdirty(pte);
4345 vmf->flags &= ~FAULT_FLAG_WRITE;
4346 }
4347 }
4348 rmap_flags |= RMAP_EXCLUSIVE;
4349 }
4350 folio_ref_add(folio, nr_pages - 1);
4351 flush_icache_pages(vma, page, nr_pages);
4352 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4353
4354 /* ksm created a completely new copy */
4355 if (unlikely(folio != swapcache && swapcache)) {
4356 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4357 folio_add_lru_vma(folio, vma);
4358 } else if (!folio_test_anon(folio)) {
4359 /*
4360 * We currently only expect small !anon folios, which are either
4361 * fully exclusive or fully shared. If we ever get large folios
4362 * here, we have to be careful.
4363 */
4364 VM_WARN_ON_ONCE(folio_test_large(folio));
4365 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4366 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4367 } else {
4368 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4369 rmap_flags);
4370 }
4371
4372 VM_BUG_ON(!folio_test_anon(folio) ||
4373 (pte_write(pte) && !PageAnonExclusive(page)));
4374 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4375 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4376 pte, pte, nr_pages);
4377
4378 folio_unlock(folio);
4379 if (folio != swapcache && swapcache) {
4380 /*
4381 * Hold the lock to avoid the swap entry to be reused
4382 * until we take the PT lock for the pte_same() check
4383 * (to avoid false positives from pte_same). For
4384 * further safety release the lock after the swap_free
4385 * so that the swap count won't change under a
4386 * parallel locked swapcache.
4387 */
4388 folio_unlock(swapcache);
4389 folio_put(swapcache);
4390 }
4391
4392 if (vmf->flags & FAULT_FLAG_WRITE) {
4393 ret |= do_wp_page(vmf);
4394 if (ret & VM_FAULT_ERROR)
4395 ret &= VM_FAULT_ERROR;
4396 goto out;
4397 }
4398
4399 /* No need to invalidate - it was non-present before */
4400 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4401unlock:
4402 if (vmf->pte)
4403 pte_unmap_unlock(vmf->pte, vmf->ptl);
4404out:
4405 /* Clear the swap cache pin for direct swapin after PTL unlock */
4406 if (need_clear_cache)
4407 swapcache_clear(si, entry);
4408 if (si)
4409 put_swap_device(si);
4410 return ret;
4411out_nomap:
4412 if (vmf->pte)
4413 pte_unmap_unlock(vmf->pte, vmf->ptl);
4414out_page:
4415 folio_unlock(folio);
4416out_release:
4417 folio_put(folio);
4418 if (folio != swapcache && swapcache) {
4419 folio_unlock(swapcache);
4420 folio_put(swapcache);
4421 }
4422 if (need_clear_cache)
4423 swapcache_clear(si, entry);
4424 if (si)
4425 put_swap_device(si);
4426 return ret;
4427}
4428
4429static bool pte_range_none(pte_t *pte, int nr_pages)
4430{
4431 int i;
4432
4433 for (i = 0; i < nr_pages; i++) {
4434 if (!pte_none(ptep_get_lockless(pte + i)))
4435 return false;
4436 }
4437
4438 return true;
4439}
4440
4441static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4442{
4443 struct vm_area_struct *vma = vmf->vma;
4444#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4445 unsigned long orders;
4446 struct folio *folio;
4447 unsigned long addr;
4448 pte_t *pte;
4449 gfp_t gfp;
4450 int order;
4451
4452 /*
4453 * If uffd is active for the vma we need per-page fault fidelity to
4454 * maintain the uffd semantics.
4455 */
4456 if (unlikely(userfaultfd_armed(vma)))
4457 goto fallback;
4458
4459 /*
4460 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4461 * for this vma. Then filter out the orders that can't be allocated over
4462 * the faulting address and still be fully contained in the vma.
4463 */
4464 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4465 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4466 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4467
4468 if (!orders)
4469 goto fallback;
4470
4471 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4472 if (!pte)
4473 return ERR_PTR(-EAGAIN);
4474
4475 /*
4476 * Find the highest order where the aligned range is completely
4477 * pte_none(). Note that all remaining orders will be completely
4478 * pte_none().
4479 */
4480 order = highest_order(orders);
4481 while (orders) {
4482 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4483 if (pte_range_none(pte + pte_index(addr), 1 << order))
4484 break;
4485 order = next_order(&orders, order);
4486 }
4487
4488 pte_unmap(pte);
4489
4490 if (!orders)
4491 goto fallback;
4492
4493 /* Try allocating the highest of the remaining orders. */
4494 gfp = vma_thp_gfp_mask(vma);
4495 while (orders) {
4496 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4497 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4498 if (folio) {
4499 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4500 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4501 folio_put(folio);
4502 goto next;
4503 }
4504 folio_throttle_swaprate(folio, gfp);
4505 folio_zero_user(folio, vmf->address);
4506 return folio;
4507 }
4508next:
4509 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4510 order = next_order(&orders, order);
4511 }
4512
4513fallback:
4514#endif
4515 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4516}
4517
4518/*
4519 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4520 * but allow concurrent faults), and pte mapped but not yet locked.
4521 * We return with mmap_lock still held, but pte unmapped and unlocked.
4522 */
4523static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4524{
4525 struct vm_area_struct *vma = vmf->vma;
4526 unsigned long addr = vmf->address;
4527 struct folio *folio;
4528 vm_fault_t ret = 0;
4529 int nr_pages = 1;
4530 pte_t entry;
4531
4532 /* File mapping without ->vm_ops ? */
4533 if (vma->vm_flags & VM_SHARED)
4534 return VM_FAULT_SIGBUS;
4535
4536 /*
4537 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4538 * be distinguished from a transient failure of pte_offset_map().
4539 */
4540 if (pte_alloc(vma->vm_mm, vmf->pmd))
4541 return VM_FAULT_OOM;
4542
4543 /* Use the zero-page for reads */
4544 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4545 !mm_forbids_zeropage(vma->vm_mm)) {
4546 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4547 vma->vm_page_prot));
4548 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4549 vmf->address, &vmf->ptl);
4550 if (!vmf->pte)
4551 goto unlock;
4552 if (vmf_pte_changed(vmf)) {
4553 update_mmu_tlb(vma, vmf->address, vmf->pte);
4554 goto unlock;
4555 }
4556 ret = check_stable_address_space(vma->vm_mm);
4557 if (ret)
4558 goto unlock;
4559 /* Deliver the page fault to userland, check inside PT lock */
4560 if (userfaultfd_missing(vma)) {
4561 pte_unmap_unlock(vmf->pte, vmf->ptl);
4562 return handle_userfault(vmf, VM_UFFD_MISSING);
4563 }
4564 goto setpte;
4565 }
4566
4567 /* Allocate our own private page. */
4568 ret = vmf_anon_prepare(vmf);
4569 if (ret)
4570 return ret;
4571 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4572 folio = alloc_anon_folio(vmf);
4573 if (IS_ERR(folio))
4574 return 0;
4575 if (!folio)
4576 goto oom;
4577
4578 nr_pages = folio_nr_pages(folio);
4579 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4580
4581 /*
4582 * The memory barrier inside __folio_mark_uptodate makes sure that
4583 * preceding stores to the page contents become visible before
4584 * the set_pte_at() write.
4585 */
4586 __folio_mark_uptodate(folio);
4587
4588 entry = mk_pte(&folio->page, vma->vm_page_prot);
4589 entry = pte_sw_mkyoung(entry);
4590 if (vma->vm_flags & VM_WRITE)
4591 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4592
4593 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4594 if (!vmf->pte)
4595 goto release;
4596 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4597 update_mmu_tlb(vma, addr, vmf->pte);
4598 goto release;
4599 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4600 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4601 goto release;
4602 }
4603
4604 ret = check_stable_address_space(vma->vm_mm);
4605 if (ret)
4606 goto release;
4607
4608 /* Deliver the page fault to userland, check inside PT lock */
4609 if (userfaultfd_missing(vma)) {
4610 pte_unmap_unlock(vmf->pte, vmf->ptl);
4611 folio_put(folio);
4612 return handle_userfault(vmf, VM_UFFD_MISSING);
4613 }
4614
4615 folio_ref_add(folio, nr_pages - 1);
4616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4617#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4618 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4619#endif
4620 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4621 folio_add_lru_vma(folio, vma);
4622setpte:
4623 if (vmf_orig_pte_uffd_wp(vmf))
4624 entry = pte_mkuffd_wp(entry);
4625 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4626
4627 /* No need to invalidate - it was non-present before */
4628 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4629unlock:
4630 if (vmf->pte)
4631 pte_unmap_unlock(vmf->pte, vmf->ptl);
4632 return ret;
4633release:
4634 folio_put(folio);
4635 goto unlock;
4636oom:
4637 return VM_FAULT_OOM;
4638}
4639
4640/*
4641 * The mmap_lock must have been held on entry, and may have been
4642 * released depending on flags and vma->vm_ops->fault() return value.
4643 * See filemap_fault() and __lock_page_retry().
4644 */
4645static vm_fault_t __do_fault(struct vm_fault *vmf)
4646{
4647 struct vm_area_struct *vma = vmf->vma;
4648 struct folio *folio;
4649 vm_fault_t ret;
4650
4651 /*
4652 * Preallocate pte before we take page_lock because this might lead to
4653 * deadlocks for memcg reclaim which waits for pages under writeback:
4654 * lock_page(A)
4655 * SetPageWriteback(A)
4656 * unlock_page(A)
4657 * lock_page(B)
4658 * lock_page(B)
4659 * pte_alloc_one
4660 * shrink_folio_list
4661 * wait_on_page_writeback(A)
4662 * SetPageWriteback(B)
4663 * unlock_page(B)
4664 * # flush A, B to clear the writeback
4665 */
4666 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4667 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4668 if (!vmf->prealloc_pte)
4669 return VM_FAULT_OOM;
4670 }
4671
4672 ret = vma->vm_ops->fault(vmf);
4673 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4674 VM_FAULT_DONE_COW)))
4675 return ret;
4676
4677 folio = page_folio(vmf->page);
4678 if (unlikely(PageHWPoison(vmf->page))) {
4679 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4680 if (ret & VM_FAULT_LOCKED) {
4681 if (page_mapped(vmf->page))
4682 unmap_mapping_folio(folio);
4683 /* Retry if a clean folio was removed from the cache. */
4684 if (mapping_evict_folio(folio->mapping, folio))
4685 poisonret = VM_FAULT_NOPAGE;
4686 folio_unlock(folio);
4687 }
4688 folio_put(folio);
4689 vmf->page = NULL;
4690 return poisonret;
4691 }
4692
4693 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4694 folio_lock(folio);
4695 else
4696 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4697
4698 return ret;
4699}
4700
4701#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4702static void deposit_prealloc_pte(struct vm_fault *vmf)
4703{
4704 struct vm_area_struct *vma = vmf->vma;
4705
4706 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4707 /*
4708 * We are going to consume the prealloc table,
4709 * count that as nr_ptes.
4710 */
4711 mm_inc_nr_ptes(vma->vm_mm);
4712 vmf->prealloc_pte = NULL;
4713}
4714
4715vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4716{
4717 struct folio *folio = page_folio(page);
4718 struct vm_area_struct *vma = vmf->vma;
4719 bool write = vmf->flags & FAULT_FLAG_WRITE;
4720 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4721 pmd_t entry;
4722 vm_fault_t ret = VM_FAULT_FALLBACK;
4723
4724 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4725 return ret;
4726
4727 if (folio_order(folio) != HPAGE_PMD_ORDER)
4728 return ret;
4729 page = &folio->page;
4730
4731 /*
4732 * Just backoff if any subpage of a THP is corrupted otherwise
4733 * the corrupted page may mapped by PMD silently to escape the
4734 * check. This kind of THP just can be PTE mapped. Access to
4735 * the corrupted subpage should trigger SIGBUS as expected.
4736 */
4737 if (unlikely(folio_test_has_hwpoisoned(folio)))
4738 return ret;
4739
4740 /*
4741 * Archs like ppc64 need additional space to store information
4742 * related to pte entry. Use the preallocated table for that.
4743 */
4744 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4745 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4746 if (!vmf->prealloc_pte)
4747 return VM_FAULT_OOM;
4748 }
4749
4750 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4751 if (unlikely(!pmd_none(*vmf->pmd)))
4752 goto out;
4753
4754 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4755
4756 entry = mk_huge_pmd(page, vma->vm_page_prot);
4757 if (write)
4758 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4759
4760 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4761 folio_add_file_rmap_pmd(folio, page, vma);
4762
4763 /*
4764 * deposit and withdraw with pmd lock held
4765 */
4766 if (arch_needs_pgtable_deposit())
4767 deposit_prealloc_pte(vmf);
4768
4769 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4770
4771 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4772
4773 /* fault is handled */
4774 ret = 0;
4775 count_vm_event(THP_FILE_MAPPED);
4776out:
4777 spin_unlock(vmf->ptl);
4778 return ret;
4779}
4780#else
4781vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4782{
4783 return VM_FAULT_FALLBACK;
4784}
4785#endif
4786
4787/**
4788 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4789 * @vmf: Fault decription.
4790 * @folio: The folio that contains @page.
4791 * @page: The first page to create a PTE for.
4792 * @nr: The number of PTEs to create.
4793 * @addr: The first address to create a PTE for.
4794 */
4795void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4796 struct page *page, unsigned int nr, unsigned long addr)
4797{
4798 struct vm_area_struct *vma = vmf->vma;
4799 bool write = vmf->flags & FAULT_FLAG_WRITE;
4800 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4801 pte_t entry;
4802
4803 flush_icache_pages(vma, page, nr);
4804 entry = mk_pte(page, vma->vm_page_prot);
4805
4806 if (prefault && arch_wants_old_prefaulted_pte())
4807 entry = pte_mkold(entry);
4808 else
4809 entry = pte_sw_mkyoung(entry);
4810
4811 if (write)
4812 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4813 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4814 entry = pte_mkuffd_wp(entry);
4815 /* copy-on-write page */
4816 if (write && !(vma->vm_flags & VM_SHARED)) {
4817 VM_BUG_ON_FOLIO(nr != 1, folio);
4818 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4819 folio_add_lru_vma(folio, vma);
4820 } else {
4821 folio_add_file_rmap_ptes(folio, page, nr, vma);
4822 }
4823 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4824
4825 /* no need to invalidate: a not-present page won't be cached */
4826 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4827}
4828
4829static bool vmf_pte_changed(struct vm_fault *vmf)
4830{
4831 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4832 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4833
4834 return !pte_none(ptep_get(vmf->pte));
4835}
4836
4837/**
4838 * finish_fault - finish page fault once we have prepared the page to fault
4839 *
4840 * @vmf: structure describing the fault
4841 *
4842 * This function handles all that is needed to finish a page fault once the
4843 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4844 * given page, adds reverse page mapping, handles memcg charges and LRU
4845 * addition.
4846 *
4847 * The function expects the page to be locked and on success it consumes a
4848 * reference of a page being mapped (for the PTE which maps it).
4849 *
4850 * Return: %0 on success, %VM_FAULT_ code in case of error.
4851 */
4852vm_fault_t finish_fault(struct vm_fault *vmf)
4853{
4854 struct vm_area_struct *vma = vmf->vma;
4855 struct page *page;
4856 struct folio *folio;
4857 vm_fault_t ret;
4858 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4859 !(vma->vm_flags & VM_SHARED);
4860 int type, nr_pages;
4861 unsigned long addr = vmf->address;
4862
4863 /* Did we COW the page? */
4864 if (is_cow)
4865 page = vmf->cow_page;
4866 else
4867 page = vmf->page;
4868
4869 /*
4870 * check even for read faults because we might have lost our CoWed
4871 * page
4872 */
4873 if (!(vma->vm_flags & VM_SHARED)) {
4874 ret = check_stable_address_space(vma->vm_mm);
4875 if (ret)
4876 return ret;
4877 }
4878
4879 if (pmd_none(*vmf->pmd)) {
4880 if (PageTransCompound(page)) {
4881 ret = do_set_pmd(vmf, page);
4882 if (ret != VM_FAULT_FALLBACK)
4883 return ret;
4884 }
4885
4886 if (vmf->prealloc_pte)
4887 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4888 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4889 return VM_FAULT_OOM;
4890 }
4891
4892 folio = page_folio(page);
4893 nr_pages = folio_nr_pages(folio);
4894
4895 /*
4896 * Using per-page fault to maintain the uffd semantics, and same
4897 * approach also applies to non-anonymous-shmem faults to avoid
4898 * inflating the RSS of the process.
4899 */
4900 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
4901 nr_pages = 1;
4902 } else if (nr_pages > 1) {
4903 pgoff_t idx = folio_page_idx(folio, page);
4904 /* The page offset of vmf->address within the VMA. */
4905 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4906 /* The index of the entry in the pagetable for fault page. */
4907 pgoff_t pte_off = pte_index(vmf->address);
4908
4909 /*
4910 * Fallback to per-page fault in case the folio size in page
4911 * cache beyond the VMA limits and PMD pagetable limits.
4912 */
4913 if (unlikely(vma_off < idx ||
4914 vma_off + (nr_pages - idx) > vma_pages(vma) ||
4915 pte_off < idx ||
4916 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
4917 nr_pages = 1;
4918 } else {
4919 /* Now we can set mappings for the whole large folio. */
4920 addr = vmf->address - idx * PAGE_SIZE;
4921 page = &folio->page;
4922 }
4923 }
4924
4925 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4926 addr, &vmf->ptl);
4927 if (!vmf->pte)
4928 return VM_FAULT_NOPAGE;
4929
4930 /* Re-check under ptl */
4931 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
4932 update_mmu_tlb(vma, addr, vmf->pte);
4933 ret = VM_FAULT_NOPAGE;
4934 goto unlock;
4935 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4936 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4937 ret = VM_FAULT_NOPAGE;
4938 goto unlock;
4939 }
4940
4941 folio_ref_add(folio, nr_pages - 1);
4942 set_pte_range(vmf, folio, page, nr_pages, addr);
4943 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4944 add_mm_counter(vma->vm_mm, type, nr_pages);
4945 ret = 0;
4946
4947unlock:
4948 pte_unmap_unlock(vmf->pte, vmf->ptl);
4949 return ret;
4950}
4951
4952static unsigned long fault_around_pages __read_mostly =
4953 65536 >> PAGE_SHIFT;
4954
4955#ifdef CONFIG_DEBUG_FS
4956static int fault_around_bytes_get(void *data, u64 *val)
4957{
4958 *val = fault_around_pages << PAGE_SHIFT;
4959 return 0;
4960}
4961
4962/*
4963 * fault_around_bytes must be rounded down to the nearest page order as it's
4964 * what do_fault_around() expects to see.
4965 */
4966static int fault_around_bytes_set(void *data, u64 val)
4967{
4968 if (val / PAGE_SIZE > PTRS_PER_PTE)
4969 return -EINVAL;
4970
4971 /*
4972 * The minimum value is 1 page, however this results in no fault-around
4973 * at all. See should_fault_around().
4974 */
4975 val = max(val, PAGE_SIZE);
4976 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4977
4978 return 0;
4979}
4980DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4981 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4982
4983static int __init fault_around_debugfs(void)
4984{
4985 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4986 &fault_around_bytes_fops);
4987 return 0;
4988}
4989late_initcall(fault_around_debugfs);
4990#endif
4991
4992/*
4993 * do_fault_around() tries to map few pages around the fault address. The hope
4994 * is that the pages will be needed soon and this will lower the number of
4995 * faults to handle.
4996 *
4997 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4998 * not ready to be mapped: not up-to-date, locked, etc.
4999 *
5000 * This function doesn't cross VMA or page table boundaries, in order to call
5001 * map_pages() and acquire a PTE lock only once.
5002 *
5003 * fault_around_pages defines how many pages we'll try to map.
5004 * do_fault_around() expects it to be set to a power of two less than or equal
5005 * to PTRS_PER_PTE.
5006 *
5007 * The virtual address of the area that we map is naturally aligned to
5008 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5009 * (and therefore to page order). This way it's easier to guarantee
5010 * that we don't cross page table boundaries.
5011 */
5012static vm_fault_t do_fault_around(struct vm_fault *vmf)
5013{
5014 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5015 pgoff_t pte_off = pte_index(vmf->address);
5016 /* The page offset of vmf->address within the VMA. */
5017 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5018 pgoff_t from_pte, to_pte;
5019 vm_fault_t ret;
5020
5021 /* The PTE offset of the start address, clamped to the VMA. */
5022 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5023 pte_off - min(pte_off, vma_off));
5024
5025 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5026 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5027 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5028
5029 if (pmd_none(*vmf->pmd)) {
5030 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5031 if (!vmf->prealloc_pte)
5032 return VM_FAULT_OOM;
5033 }
5034
5035 rcu_read_lock();
5036 ret = vmf->vma->vm_ops->map_pages(vmf,
5037 vmf->pgoff + from_pte - pte_off,
5038 vmf->pgoff + to_pte - pte_off);
5039 rcu_read_unlock();
5040
5041 return ret;
5042}
5043
5044/* Return true if we should do read fault-around, false otherwise */
5045static inline bool should_fault_around(struct vm_fault *vmf)
5046{
5047 /* No ->map_pages? No way to fault around... */
5048 if (!vmf->vma->vm_ops->map_pages)
5049 return false;
5050
5051 if (uffd_disable_fault_around(vmf->vma))
5052 return false;
5053
5054 /* A single page implies no faulting 'around' at all. */
5055 return fault_around_pages > 1;
5056}
5057
5058static vm_fault_t do_read_fault(struct vm_fault *vmf)
5059{
5060 vm_fault_t ret = 0;
5061 struct folio *folio;
5062
5063 /*
5064 * Let's call ->map_pages() first and use ->fault() as fallback
5065 * if page by the offset is not ready to be mapped (cold cache or
5066 * something).
5067 */
5068 if (should_fault_around(vmf)) {
5069 ret = do_fault_around(vmf);
5070 if (ret)
5071 return ret;
5072 }
5073
5074 ret = vmf_can_call_fault(vmf);
5075 if (ret)
5076 return ret;
5077
5078 ret = __do_fault(vmf);
5079 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5080 return ret;
5081
5082 ret |= finish_fault(vmf);
5083 folio = page_folio(vmf->page);
5084 folio_unlock(folio);
5085 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5086 folio_put(folio);
5087 return ret;
5088}
5089
5090static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5091{
5092 struct vm_area_struct *vma = vmf->vma;
5093 struct folio *folio;
5094 vm_fault_t ret;
5095
5096 ret = vmf_can_call_fault(vmf);
5097 if (!ret)
5098 ret = vmf_anon_prepare(vmf);
5099 if (ret)
5100 return ret;
5101
5102 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5103 if (!folio)
5104 return VM_FAULT_OOM;
5105
5106 vmf->cow_page = &folio->page;
5107
5108 ret = __do_fault(vmf);
5109 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5110 goto uncharge_out;
5111 if (ret & VM_FAULT_DONE_COW)
5112 return ret;
5113
5114 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
5115 __folio_mark_uptodate(folio);
5116
5117 ret |= finish_fault(vmf);
5118 unlock_page(vmf->page);
5119 put_page(vmf->page);
5120 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5121 goto uncharge_out;
5122 return ret;
5123uncharge_out:
5124 folio_put(folio);
5125 return ret;
5126}
5127
5128static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5129{
5130 struct vm_area_struct *vma = vmf->vma;
5131 vm_fault_t ret, tmp;
5132 struct folio *folio;
5133
5134 ret = vmf_can_call_fault(vmf);
5135 if (ret)
5136 return ret;
5137
5138 ret = __do_fault(vmf);
5139 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5140 return ret;
5141
5142 folio = page_folio(vmf->page);
5143
5144 /*
5145 * Check if the backing address space wants to know that the page is
5146 * about to become writable
5147 */
5148 if (vma->vm_ops->page_mkwrite) {
5149 folio_unlock(folio);
5150 tmp = do_page_mkwrite(vmf, folio);
5151 if (unlikely(!tmp ||
5152 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5153 folio_put(folio);
5154 return tmp;
5155 }
5156 }
5157
5158 ret |= finish_fault(vmf);
5159 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5160 VM_FAULT_RETRY))) {
5161 folio_unlock(folio);
5162 folio_put(folio);
5163 return ret;
5164 }
5165
5166 ret |= fault_dirty_shared_page(vmf);
5167 return ret;
5168}
5169
5170/*
5171 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5172 * but allow concurrent faults).
5173 * The mmap_lock may have been released depending on flags and our
5174 * return value. See filemap_fault() and __folio_lock_or_retry().
5175 * If mmap_lock is released, vma may become invalid (for example
5176 * by other thread calling munmap()).
5177 */
5178static vm_fault_t do_fault(struct vm_fault *vmf)
5179{
5180 struct vm_area_struct *vma = vmf->vma;
5181 struct mm_struct *vm_mm = vma->vm_mm;
5182 vm_fault_t ret;
5183
5184 /*
5185 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5186 */
5187 if (!vma->vm_ops->fault) {
5188 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5189 vmf->address, &vmf->ptl);
5190 if (unlikely(!vmf->pte))
5191 ret = VM_FAULT_SIGBUS;
5192 else {
5193 /*
5194 * Make sure this is not a temporary clearing of pte
5195 * by holding ptl and checking again. A R/M/W update
5196 * of pte involves: take ptl, clearing the pte so that
5197 * we don't have concurrent modification by hardware
5198 * followed by an update.
5199 */
5200 if (unlikely(pte_none(ptep_get(vmf->pte))))
5201 ret = VM_FAULT_SIGBUS;
5202 else
5203 ret = VM_FAULT_NOPAGE;
5204
5205 pte_unmap_unlock(vmf->pte, vmf->ptl);
5206 }
5207 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5208 ret = do_read_fault(vmf);
5209 else if (!(vma->vm_flags & VM_SHARED))
5210 ret = do_cow_fault(vmf);
5211 else
5212 ret = do_shared_fault(vmf);
5213
5214 /* preallocated pagetable is unused: free it */
5215 if (vmf->prealloc_pte) {
5216 pte_free(vm_mm, vmf->prealloc_pte);
5217 vmf->prealloc_pte = NULL;
5218 }
5219 return ret;
5220}
5221
5222int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5223 unsigned long addr, int page_nid, int *flags)
5224{
5225 struct vm_area_struct *vma = vmf->vma;
5226
5227 /* Record the current PID acceesing VMA */
5228 vma_set_access_pid_bit(vma);
5229
5230 count_vm_numa_event(NUMA_HINT_FAULTS);
5231 if (page_nid == numa_node_id()) {
5232 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5233 *flags |= TNF_FAULT_LOCAL;
5234 }
5235
5236 return mpol_misplaced(folio, vmf, addr);
5237}
5238
5239static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5240 unsigned long fault_addr, pte_t *fault_pte,
5241 bool writable)
5242{
5243 pte_t pte, old_pte;
5244
5245 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5246 pte = pte_modify(old_pte, vma->vm_page_prot);
5247 pte = pte_mkyoung(pte);
5248 if (writable)
5249 pte = pte_mkwrite(pte, vma);
5250 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5251 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5252}
5253
5254static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5255 struct folio *folio, pte_t fault_pte,
5256 bool ignore_writable, bool pte_write_upgrade)
5257{
5258 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5259 unsigned long start, end, addr = vmf->address;
5260 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5261 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5262 pte_t *start_ptep;
5263
5264 /* Stay within the VMA and within the page table. */
5265 start = max3(addr_start, pt_start, vma->vm_start);
5266 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5267 vma->vm_end);
5268 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5269
5270 /* Restore all PTEs' mapping of the large folio */
5271 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5272 pte_t ptent = ptep_get(start_ptep);
5273 bool writable = false;
5274
5275 if (!pte_present(ptent) || !pte_protnone(ptent))
5276 continue;
5277
5278 if (pfn_folio(pte_pfn(ptent)) != folio)
5279 continue;
5280
5281 if (!ignore_writable) {
5282 ptent = pte_modify(ptent, vma->vm_page_prot);
5283 writable = pte_write(ptent);
5284 if (!writable && pte_write_upgrade &&
5285 can_change_pte_writable(vma, addr, ptent))
5286 writable = true;
5287 }
5288
5289 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5290 }
5291}
5292
5293static vm_fault_t do_numa_page(struct vm_fault *vmf)
5294{
5295 struct vm_area_struct *vma = vmf->vma;
5296 struct folio *folio = NULL;
5297 int nid = NUMA_NO_NODE;
5298 bool writable = false, ignore_writable = false;
5299 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5300 int last_cpupid;
5301 int target_nid;
5302 pte_t pte, old_pte;
5303 int flags = 0, nr_pages;
5304
5305 /*
5306 * The pte cannot be used safely until we verify, while holding the page
5307 * table lock, that its contents have not changed during fault handling.
5308 */
5309 spin_lock(vmf->ptl);
5310 /* Read the live PTE from the page tables: */
5311 old_pte = ptep_get(vmf->pte);
5312
5313 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5314 pte_unmap_unlock(vmf->pte, vmf->ptl);
5315 return 0;
5316 }
5317
5318 pte = pte_modify(old_pte, vma->vm_page_prot);
5319
5320 /*
5321 * Detect now whether the PTE could be writable; this information
5322 * is only valid while holding the PT lock.
5323 */
5324 writable = pte_write(pte);
5325 if (!writable && pte_write_upgrade &&
5326 can_change_pte_writable(vma, vmf->address, pte))
5327 writable = true;
5328
5329 folio = vm_normal_folio(vma, vmf->address, pte);
5330 if (!folio || folio_is_zone_device(folio))
5331 goto out_map;
5332
5333 /*
5334 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5335 * much anyway since they can be in shared cache state. This misses
5336 * the case where a mapping is writable but the process never writes
5337 * to it but pte_write gets cleared during protection updates and
5338 * pte_dirty has unpredictable behaviour between PTE scan updates,
5339 * background writeback, dirty balancing and application behaviour.
5340 */
5341 if (!writable)
5342 flags |= TNF_NO_GROUP;
5343
5344 /*
5345 * Flag if the folio is shared between multiple address spaces. This
5346 * is later used when determining whether to group tasks together
5347 */
5348 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5349 flags |= TNF_SHARED;
5350
5351 nid = folio_nid(folio);
5352 nr_pages = folio_nr_pages(folio);
5353 /*
5354 * For memory tiering mode, cpupid of slow memory page is used
5355 * to record page access time. So use default value.
5356 */
5357 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5358 !node_is_toptier(nid))
5359 last_cpupid = (-1 & LAST_CPUPID_MASK);
5360 else
5361 last_cpupid = folio_last_cpupid(folio);
5362 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5363 if (target_nid == NUMA_NO_NODE)
5364 goto out_map;
5365 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5366 flags |= TNF_MIGRATE_FAIL;
5367 goto out_map;
5368 }
5369 /* The folio is isolated and isolation code holds a folio reference. */
5370 pte_unmap_unlock(vmf->pte, vmf->ptl);
5371 writable = false;
5372 ignore_writable = true;
5373
5374 /* Migrate to the requested node */
5375 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5376 nid = target_nid;
5377 flags |= TNF_MIGRATED;
5378 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5379 return 0;
5380 }
5381
5382 flags |= TNF_MIGRATE_FAIL;
5383 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5384 vmf->address, &vmf->ptl);
5385 if (unlikely(!vmf->pte))
5386 return 0;
5387 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5388 pte_unmap_unlock(vmf->pte, vmf->ptl);
5389 return 0;
5390 }
5391out_map:
5392 /*
5393 * Make it present again, depending on how arch implements
5394 * non-accessible ptes, some can allow access by kernel mode.
5395 */
5396 if (folio && folio_test_large(folio))
5397 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5398 pte_write_upgrade);
5399 else
5400 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5401 writable);
5402 pte_unmap_unlock(vmf->pte, vmf->ptl);
5403
5404 if (nid != NUMA_NO_NODE)
5405 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5406 return 0;
5407}
5408
5409static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5410{
5411 struct vm_area_struct *vma = vmf->vma;
5412 if (vma_is_anonymous(vma))
5413 return do_huge_pmd_anonymous_page(vmf);
5414 if (vma->vm_ops->huge_fault)
5415 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5416 return VM_FAULT_FALLBACK;
5417}
5418
5419/* `inline' is required to avoid gcc 4.1.2 build error */
5420static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5421{
5422 struct vm_area_struct *vma = vmf->vma;
5423 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5424 vm_fault_t ret;
5425
5426 if (vma_is_anonymous(vma)) {
5427 if (likely(!unshare) &&
5428 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5429 if (userfaultfd_wp_async(vmf->vma))
5430 goto split;
5431 return handle_userfault(vmf, VM_UFFD_WP);
5432 }
5433 return do_huge_pmd_wp_page(vmf);
5434 }
5435
5436 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5437 if (vma->vm_ops->huge_fault) {
5438 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5439 if (!(ret & VM_FAULT_FALLBACK))
5440 return ret;
5441 }
5442 }
5443
5444split:
5445 /* COW or write-notify handled on pte level: split pmd. */
5446 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5447
5448 return VM_FAULT_FALLBACK;
5449}
5450
5451static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5452{
5453#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5454 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5455 struct vm_area_struct *vma = vmf->vma;
5456 /* No support for anonymous transparent PUD pages yet */
5457 if (vma_is_anonymous(vma))
5458 return VM_FAULT_FALLBACK;
5459 if (vma->vm_ops->huge_fault)
5460 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5461#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5462 return VM_FAULT_FALLBACK;
5463}
5464
5465static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5466{
5467#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5468 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5469 struct vm_area_struct *vma = vmf->vma;
5470 vm_fault_t ret;
5471
5472 /* No support for anonymous transparent PUD pages yet */
5473 if (vma_is_anonymous(vma))
5474 goto split;
5475 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5476 if (vma->vm_ops->huge_fault) {
5477 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5478 if (!(ret & VM_FAULT_FALLBACK))
5479 return ret;
5480 }
5481 }
5482split:
5483 /* COW or write-notify not handled on PUD level: split pud.*/
5484 __split_huge_pud(vma, vmf->pud, vmf->address);
5485#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5486 return VM_FAULT_FALLBACK;
5487}
5488
5489/*
5490 * These routines also need to handle stuff like marking pages dirty
5491 * and/or accessed for architectures that don't do it in hardware (most
5492 * RISC architectures). The early dirtying is also good on the i386.
5493 *
5494 * There is also a hook called "update_mmu_cache()" that architectures
5495 * with external mmu caches can use to update those (ie the Sparc or
5496 * PowerPC hashed page tables that act as extended TLBs).
5497 *
5498 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5499 * concurrent faults).
5500 *
5501 * The mmap_lock may have been released depending on flags and our return value.
5502 * See filemap_fault() and __folio_lock_or_retry().
5503 */
5504static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5505{
5506 pte_t entry;
5507
5508 if (unlikely(pmd_none(*vmf->pmd))) {
5509 /*
5510 * Leave __pte_alloc() until later: because vm_ops->fault may
5511 * want to allocate huge page, and if we expose page table
5512 * for an instant, it will be difficult to retract from
5513 * concurrent faults and from rmap lookups.
5514 */
5515 vmf->pte = NULL;
5516 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5517 } else {
5518 /*
5519 * A regular pmd is established and it can't morph into a huge
5520 * pmd by anon khugepaged, since that takes mmap_lock in write
5521 * mode; but shmem or file collapse to THP could still morph
5522 * it into a huge pmd: just retry later if so.
5523 */
5524 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5525 vmf->address, &vmf->ptl);
5526 if (unlikely(!vmf->pte))
5527 return 0;
5528 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5529 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5530
5531 if (pte_none(vmf->orig_pte)) {
5532 pte_unmap(vmf->pte);
5533 vmf->pte = NULL;
5534 }
5535 }
5536
5537 if (!vmf->pte)
5538 return do_pte_missing(vmf);
5539
5540 if (!pte_present(vmf->orig_pte))
5541 return do_swap_page(vmf);
5542
5543 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5544 return do_numa_page(vmf);
5545
5546 spin_lock(vmf->ptl);
5547 entry = vmf->orig_pte;
5548 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5549 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5550 goto unlock;
5551 }
5552 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5553 if (!pte_write(entry))
5554 return do_wp_page(vmf);
5555 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5556 entry = pte_mkdirty(entry);
5557 }
5558 entry = pte_mkyoung(entry);
5559 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5560 vmf->flags & FAULT_FLAG_WRITE)) {
5561 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5562 vmf->pte, 1);
5563 } else {
5564 /* Skip spurious TLB flush for retried page fault */
5565 if (vmf->flags & FAULT_FLAG_TRIED)
5566 goto unlock;
5567 /*
5568 * This is needed only for protection faults but the arch code
5569 * is not yet telling us if this is a protection fault or not.
5570 * This still avoids useless tlb flushes for .text page faults
5571 * with threads.
5572 */
5573 if (vmf->flags & FAULT_FLAG_WRITE)
5574 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5575 vmf->pte);
5576 }
5577unlock:
5578 pte_unmap_unlock(vmf->pte, vmf->ptl);
5579 return 0;
5580}
5581
5582/*
5583 * On entry, we hold either the VMA lock or the mmap_lock
5584 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5585 * the result, the mmap_lock is not held on exit. See filemap_fault()
5586 * and __folio_lock_or_retry().
5587 */
5588static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5589 unsigned long address, unsigned int flags)
5590{
5591 struct vm_fault vmf = {
5592 .vma = vma,
5593 .address = address & PAGE_MASK,
5594 .real_address = address,
5595 .flags = flags,
5596 .pgoff = linear_page_index(vma, address),
5597 .gfp_mask = __get_fault_gfp_mask(vma),
5598 };
5599 struct mm_struct *mm = vma->vm_mm;
5600 unsigned long vm_flags = vma->vm_flags;
5601 pgd_t *pgd;
5602 p4d_t *p4d;
5603 vm_fault_t ret;
5604
5605 pgd = pgd_offset(mm, address);
5606 p4d = p4d_alloc(mm, pgd, address);
5607 if (!p4d)
5608 return VM_FAULT_OOM;
5609
5610 vmf.pud = pud_alloc(mm, p4d, address);
5611 if (!vmf.pud)
5612 return VM_FAULT_OOM;
5613retry_pud:
5614 if (pud_none(*vmf.pud) &&
5615 thp_vma_allowable_order(vma, vm_flags,
5616 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5617 ret = create_huge_pud(&vmf);
5618 if (!(ret & VM_FAULT_FALLBACK))
5619 return ret;
5620 } else {
5621 pud_t orig_pud = *vmf.pud;
5622
5623 barrier();
5624 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5625
5626 /*
5627 * TODO once we support anonymous PUDs: NUMA case and
5628 * FAULT_FLAG_UNSHARE handling.
5629 */
5630 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5631 ret = wp_huge_pud(&vmf, orig_pud);
5632 if (!(ret & VM_FAULT_FALLBACK))
5633 return ret;
5634 } else {
5635 huge_pud_set_accessed(&vmf, orig_pud);
5636 return 0;
5637 }
5638 }
5639 }
5640
5641 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5642 if (!vmf.pmd)
5643 return VM_FAULT_OOM;
5644
5645 /* Huge pud page fault raced with pmd_alloc? */
5646 if (pud_trans_unstable(vmf.pud))
5647 goto retry_pud;
5648
5649 if (pmd_none(*vmf.pmd) &&
5650 thp_vma_allowable_order(vma, vm_flags,
5651 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5652 ret = create_huge_pmd(&vmf);
5653 if (!(ret & VM_FAULT_FALLBACK))
5654 return ret;
5655 } else {
5656 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5657
5658 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5659 VM_BUG_ON(thp_migration_supported() &&
5660 !is_pmd_migration_entry(vmf.orig_pmd));
5661 if (is_pmd_migration_entry(vmf.orig_pmd))
5662 pmd_migration_entry_wait(mm, vmf.pmd);
5663 return 0;
5664 }
5665 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5666 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5667 return do_huge_pmd_numa_page(&vmf);
5668
5669 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5670 !pmd_write(vmf.orig_pmd)) {
5671 ret = wp_huge_pmd(&vmf);
5672 if (!(ret & VM_FAULT_FALLBACK))
5673 return ret;
5674 } else {
5675 huge_pmd_set_accessed(&vmf);
5676 return 0;
5677 }
5678 }
5679 }
5680
5681 return handle_pte_fault(&vmf);
5682}
5683
5684/**
5685 * mm_account_fault - Do page fault accounting
5686 * @mm: mm from which memcg should be extracted. It can be NULL.
5687 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5688 * of perf event counters, but we'll still do the per-task accounting to
5689 * the task who triggered this page fault.
5690 * @address: the faulted address.
5691 * @flags: the fault flags.
5692 * @ret: the fault retcode.
5693 *
5694 * This will take care of most of the page fault accounting. Meanwhile, it
5695 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5696 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5697 * still be in per-arch page fault handlers at the entry of page fault.
5698 */
5699static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5700 unsigned long address, unsigned int flags,
5701 vm_fault_t ret)
5702{
5703 bool major;
5704
5705 /* Incomplete faults will be accounted upon completion. */
5706 if (ret & VM_FAULT_RETRY)
5707 return;
5708
5709 /*
5710 * To preserve the behavior of older kernels, PGFAULT counters record
5711 * both successful and failed faults, as opposed to perf counters,
5712 * which ignore failed cases.
5713 */
5714 count_vm_event(PGFAULT);
5715 count_memcg_event_mm(mm, PGFAULT);
5716
5717 /*
5718 * Do not account for unsuccessful faults (e.g. when the address wasn't
5719 * valid). That includes arch_vma_access_permitted() failing before
5720 * reaching here. So this is not a "this many hardware page faults"
5721 * counter. We should use the hw profiling for that.
5722 */
5723 if (ret & VM_FAULT_ERROR)
5724 return;
5725
5726 /*
5727 * We define the fault as a major fault when the final successful fault
5728 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5729 * handle it immediately previously).
5730 */
5731 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5732
5733 if (major)
5734 current->maj_flt++;
5735 else
5736 current->min_flt++;
5737
5738 /*
5739 * If the fault is done for GUP, regs will be NULL. We only do the
5740 * accounting for the per thread fault counters who triggered the
5741 * fault, and we skip the perf event updates.
5742 */
5743 if (!regs)
5744 return;
5745
5746 if (major)
5747 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5748 else
5749 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5750}
5751
5752#ifdef CONFIG_LRU_GEN
5753static void lru_gen_enter_fault(struct vm_area_struct *vma)
5754{
5755 /* the LRU algorithm only applies to accesses with recency */
5756 current->in_lru_fault = vma_has_recency(vma);
5757}
5758
5759static void lru_gen_exit_fault(void)
5760{
5761 current->in_lru_fault = false;
5762}
5763#else
5764static void lru_gen_enter_fault(struct vm_area_struct *vma)
5765{
5766}
5767
5768static void lru_gen_exit_fault(void)
5769{
5770}
5771#endif /* CONFIG_LRU_GEN */
5772
5773static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5774 unsigned int *flags)
5775{
5776 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5777 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5778 return VM_FAULT_SIGSEGV;
5779 /*
5780 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5781 * just treat it like an ordinary read-fault otherwise.
5782 */
5783 if (!is_cow_mapping(vma->vm_flags))
5784 *flags &= ~FAULT_FLAG_UNSHARE;
5785 } else if (*flags & FAULT_FLAG_WRITE) {
5786 /* Write faults on read-only mappings are impossible ... */
5787 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5788 return VM_FAULT_SIGSEGV;
5789 /* ... and FOLL_FORCE only applies to COW mappings. */
5790 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5791 !is_cow_mapping(vma->vm_flags)))
5792 return VM_FAULT_SIGSEGV;
5793 }
5794#ifdef CONFIG_PER_VMA_LOCK
5795 /*
5796 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5797 * the assumption that lock is dropped on VM_FAULT_RETRY.
5798 */
5799 if (WARN_ON_ONCE((*flags &
5800 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5801 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5802 return VM_FAULT_SIGSEGV;
5803#endif
5804
5805 return 0;
5806}
5807
5808/*
5809 * By the time we get here, we already hold the mm semaphore
5810 *
5811 * The mmap_lock may have been released depending on flags and our
5812 * return value. See filemap_fault() and __folio_lock_or_retry().
5813 */
5814vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5815 unsigned int flags, struct pt_regs *regs)
5816{
5817 /* If the fault handler drops the mmap_lock, vma may be freed */
5818 struct mm_struct *mm = vma->vm_mm;
5819 vm_fault_t ret;
5820 bool is_droppable;
5821
5822 __set_current_state(TASK_RUNNING);
5823
5824 ret = sanitize_fault_flags(vma, &flags);
5825 if (ret)
5826 goto out;
5827
5828 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5829 flags & FAULT_FLAG_INSTRUCTION,
5830 flags & FAULT_FLAG_REMOTE)) {
5831 ret = VM_FAULT_SIGSEGV;
5832 goto out;
5833 }
5834
5835 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
5836
5837 /*
5838 * Enable the memcg OOM handling for faults triggered in user
5839 * space. Kernel faults are handled more gracefully.
5840 */
5841 if (flags & FAULT_FLAG_USER)
5842 mem_cgroup_enter_user_fault();
5843
5844 lru_gen_enter_fault(vma);
5845
5846 if (unlikely(is_vm_hugetlb_page(vma)))
5847 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5848 else
5849 ret = __handle_mm_fault(vma, address, flags);
5850
5851 /*
5852 * Warning: It is no longer safe to dereference vma-> after this point,
5853 * because mmap_lock might have been dropped by __handle_mm_fault(), so
5854 * vma might be destroyed from underneath us.
5855 */
5856
5857 lru_gen_exit_fault();
5858
5859 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
5860 if (is_droppable)
5861 ret &= ~VM_FAULT_OOM;
5862
5863 if (flags & FAULT_FLAG_USER) {
5864 mem_cgroup_exit_user_fault();
5865 /*
5866 * The task may have entered a memcg OOM situation but
5867 * if the allocation error was handled gracefully (no
5868 * VM_FAULT_OOM), there is no need to kill anything.
5869 * Just clean up the OOM state peacefully.
5870 */
5871 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5872 mem_cgroup_oom_synchronize(false);
5873 }
5874out:
5875 mm_account_fault(mm, regs, address, flags, ret);
5876
5877 return ret;
5878}
5879EXPORT_SYMBOL_GPL(handle_mm_fault);
5880
5881#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5882#include <linux/extable.h>
5883
5884static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5885{
5886 if (likely(mmap_read_trylock(mm)))
5887 return true;
5888
5889 if (regs && !user_mode(regs)) {
5890 unsigned long ip = exception_ip(regs);
5891 if (!search_exception_tables(ip))
5892 return false;
5893 }
5894
5895 return !mmap_read_lock_killable(mm);
5896}
5897
5898static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5899{
5900 /*
5901 * We don't have this operation yet.
5902 *
5903 * It should be easy enough to do: it's basically a
5904 * atomic_long_try_cmpxchg_acquire()
5905 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5906 * it also needs the proper lockdep magic etc.
5907 */
5908 return false;
5909}
5910
5911static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5912{
5913 mmap_read_unlock(mm);
5914 if (regs && !user_mode(regs)) {
5915 unsigned long ip = exception_ip(regs);
5916 if (!search_exception_tables(ip))
5917 return false;
5918 }
5919 return !mmap_write_lock_killable(mm);
5920}
5921
5922/*
5923 * Helper for page fault handling.
5924 *
5925 * This is kind of equivalend to "mmap_read_lock()" followed
5926 * by "find_extend_vma()", except it's a lot more careful about
5927 * the locking (and will drop the lock on failure).
5928 *
5929 * For example, if we have a kernel bug that causes a page
5930 * fault, we don't want to just use mmap_read_lock() to get
5931 * the mm lock, because that would deadlock if the bug were
5932 * to happen while we're holding the mm lock for writing.
5933 *
5934 * So this checks the exception tables on kernel faults in
5935 * order to only do this all for instructions that are actually
5936 * expected to fault.
5937 *
5938 * We can also actually take the mm lock for writing if we
5939 * need to extend the vma, which helps the VM layer a lot.
5940 */
5941struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5942 unsigned long addr, struct pt_regs *regs)
5943{
5944 struct vm_area_struct *vma;
5945
5946 if (!get_mmap_lock_carefully(mm, regs))
5947 return NULL;
5948
5949 vma = find_vma(mm, addr);
5950 if (likely(vma && (vma->vm_start <= addr)))
5951 return vma;
5952
5953 /*
5954 * Well, dang. We might still be successful, but only
5955 * if we can extend a vma to do so.
5956 */
5957 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5958 mmap_read_unlock(mm);
5959 return NULL;
5960 }
5961
5962 /*
5963 * We can try to upgrade the mmap lock atomically,
5964 * in which case we can continue to use the vma
5965 * we already looked up.
5966 *
5967 * Otherwise we'll have to drop the mmap lock and
5968 * re-take it, and also look up the vma again,
5969 * re-checking it.
5970 */
5971 if (!mmap_upgrade_trylock(mm)) {
5972 if (!upgrade_mmap_lock_carefully(mm, regs))
5973 return NULL;
5974
5975 vma = find_vma(mm, addr);
5976 if (!vma)
5977 goto fail;
5978 if (vma->vm_start <= addr)
5979 goto success;
5980 if (!(vma->vm_flags & VM_GROWSDOWN))
5981 goto fail;
5982 }
5983
5984 if (expand_stack_locked(vma, addr))
5985 goto fail;
5986
5987success:
5988 mmap_write_downgrade(mm);
5989 return vma;
5990
5991fail:
5992 mmap_write_unlock(mm);
5993 return NULL;
5994}
5995#endif
5996
5997#ifdef CONFIG_PER_VMA_LOCK
5998/*
5999 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6000 * stable and not isolated. If the VMA is not found or is being modified the
6001 * function returns NULL.
6002 */
6003struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6004 unsigned long address)
6005{
6006 MA_STATE(mas, &mm->mm_mt, address, address);
6007 struct vm_area_struct *vma;
6008
6009 rcu_read_lock();
6010retry:
6011 vma = mas_walk(&mas);
6012 if (!vma)
6013 goto inval;
6014
6015 if (!vma_start_read(vma))
6016 goto inval;
6017
6018 /* Check since vm_start/vm_end might change before we lock the VMA */
6019 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6020 goto inval_end_read;
6021
6022 /* Check if the VMA got isolated after we found it */
6023 if (vma->detached) {
6024 vma_end_read(vma);
6025 count_vm_vma_lock_event(VMA_LOCK_MISS);
6026 /* The area was replaced with another one */
6027 goto retry;
6028 }
6029
6030 rcu_read_unlock();
6031 return vma;
6032
6033inval_end_read:
6034 vma_end_read(vma);
6035inval:
6036 rcu_read_unlock();
6037 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6038 return NULL;
6039}
6040#endif /* CONFIG_PER_VMA_LOCK */
6041
6042#ifndef __PAGETABLE_P4D_FOLDED
6043/*
6044 * Allocate p4d page table.
6045 * We've already handled the fast-path in-line.
6046 */
6047int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6048{
6049 p4d_t *new = p4d_alloc_one(mm, address);
6050 if (!new)
6051 return -ENOMEM;
6052
6053 spin_lock(&mm->page_table_lock);
6054 if (pgd_present(*pgd)) { /* Another has populated it */
6055 p4d_free(mm, new);
6056 } else {
6057 smp_wmb(); /* See comment in pmd_install() */
6058 pgd_populate(mm, pgd, new);
6059 }
6060 spin_unlock(&mm->page_table_lock);
6061 return 0;
6062}
6063#endif /* __PAGETABLE_P4D_FOLDED */
6064
6065#ifndef __PAGETABLE_PUD_FOLDED
6066/*
6067 * Allocate page upper directory.
6068 * We've already handled the fast-path in-line.
6069 */
6070int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6071{
6072 pud_t *new = pud_alloc_one(mm, address);
6073 if (!new)
6074 return -ENOMEM;
6075
6076 spin_lock(&mm->page_table_lock);
6077 if (!p4d_present(*p4d)) {
6078 mm_inc_nr_puds(mm);
6079 smp_wmb(); /* See comment in pmd_install() */
6080 p4d_populate(mm, p4d, new);
6081 } else /* Another has populated it */
6082 pud_free(mm, new);
6083 spin_unlock(&mm->page_table_lock);
6084 return 0;
6085}
6086#endif /* __PAGETABLE_PUD_FOLDED */
6087
6088#ifndef __PAGETABLE_PMD_FOLDED
6089/*
6090 * Allocate page middle directory.
6091 * We've already handled the fast-path in-line.
6092 */
6093int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6094{
6095 spinlock_t *ptl;
6096 pmd_t *new = pmd_alloc_one(mm, address);
6097 if (!new)
6098 return -ENOMEM;
6099
6100 ptl = pud_lock(mm, pud);
6101 if (!pud_present(*pud)) {
6102 mm_inc_nr_pmds(mm);
6103 smp_wmb(); /* See comment in pmd_install() */
6104 pud_populate(mm, pud, new);
6105 } else { /* Another has populated it */
6106 pmd_free(mm, new);
6107 }
6108 spin_unlock(ptl);
6109 return 0;
6110}
6111#endif /* __PAGETABLE_PMD_FOLDED */
6112
6113/**
6114 * follow_pte - look up PTE at a user virtual address
6115 * @vma: the memory mapping
6116 * @address: user virtual address
6117 * @ptepp: location to store found PTE
6118 * @ptlp: location to store the lock for the PTE
6119 *
6120 * On a successful return, the pointer to the PTE is stored in @ptepp;
6121 * the corresponding lock is taken and its location is stored in @ptlp.
6122 *
6123 * The contents of the PTE are only stable until @ptlp is released using
6124 * pte_unmap_unlock(). This function will fail if the PTE is non-present.
6125 * Present PTEs may include PTEs that map refcounted pages, such as
6126 * anonymous folios in COW mappings.
6127 *
6128 * Callers must be careful when relying on PTE content after
6129 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
6130 * callers must protect against invalidation with MMU notifiers; otherwise
6131 * access to the PFN at a later point in time can trigger use-after-free.
6132 *
6133 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6134 * should be taken for read.
6135 *
6136 * This function must not be used to modify PTE content.
6137 *
6138 * Return: zero on success, -ve otherwise.
6139 */
6140int follow_pte(struct vm_area_struct *vma, unsigned long address,
6141 pte_t **ptepp, spinlock_t **ptlp)
6142{
6143 struct mm_struct *mm = vma->vm_mm;
6144 pgd_t *pgd;
6145 p4d_t *p4d;
6146 pud_t *pud;
6147 pmd_t *pmd;
6148 pte_t *ptep;
6149
6150 mmap_assert_locked(mm);
6151 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6152 goto out;
6153
6154 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6155 goto out;
6156
6157 pgd = pgd_offset(mm, address);
6158 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
6159 goto out;
6160
6161 p4d = p4d_offset(pgd, address);
6162 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
6163 goto out;
6164
6165 pud = pud_offset(p4d, address);
6166 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
6167 goto out;
6168
6169 pmd = pmd_offset(pud, address);
6170 VM_BUG_ON(pmd_trans_huge(*pmd));
6171
6172 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6173 if (!ptep)
6174 goto out;
6175 if (!pte_present(ptep_get(ptep)))
6176 goto unlock;
6177 *ptepp = ptep;
6178 return 0;
6179unlock:
6180 pte_unmap_unlock(ptep, *ptlp);
6181out:
6182 return -EINVAL;
6183}
6184EXPORT_SYMBOL_GPL(follow_pte);
6185
6186#ifdef CONFIG_HAVE_IOREMAP_PROT
6187/**
6188 * generic_access_phys - generic implementation for iomem mmap access
6189 * @vma: the vma to access
6190 * @addr: userspace address, not relative offset within @vma
6191 * @buf: buffer to read/write
6192 * @len: length of transfer
6193 * @write: set to FOLL_WRITE when writing, otherwise reading
6194 *
6195 * This is a generic implementation for &vm_operations_struct.access for an
6196 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6197 * not page based.
6198 */
6199int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6200 void *buf, int len, int write)
6201{
6202 resource_size_t phys_addr;
6203 unsigned long prot = 0;
6204 void __iomem *maddr;
6205 pte_t *ptep, pte;
6206 spinlock_t *ptl;
6207 int offset = offset_in_page(addr);
6208 int ret = -EINVAL;
6209
6210retry:
6211 if (follow_pte(vma, addr, &ptep, &ptl))
6212 return -EINVAL;
6213 pte = ptep_get(ptep);
6214 pte_unmap_unlock(ptep, ptl);
6215
6216 prot = pgprot_val(pte_pgprot(pte));
6217 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6218
6219 if ((write & FOLL_WRITE) && !pte_write(pte))
6220 return -EINVAL;
6221
6222 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6223 if (!maddr)
6224 return -ENOMEM;
6225
6226 if (follow_pte(vma, addr, &ptep, &ptl))
6227 goto out_unmap;
6228
6229 if (!pte_same(pte, ptep_get(ptep))) {
6230 pte_unmap_unlock(ptep, ptl);
6231 iounmap(maddr);
6232
6233 goto retry;
6234 }
6235
6236 if (write)
6237 memcpy_toio(maddr + offset, buf, len);
6238 else
6239 memcpy_fromio(buf, maddr + offset, len);
6240 ret = len;
6241 pte_unmap_unlock(ptep, ptl);
6242out_unmap:
6243 iounmap(maddr);
6244
6245 return ret;
6246}
6247EXPORT_SYMBOL_GPL(generic_access_phys);
6248#endif
6249
6250/*
6251 * Access another process' address space as given in mm.
6252 */
6253static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6254 void *buf, int len, unsigned int gup_flags)
6255{
6256 void *old_buf = buf;
6257 int write = gup_flags & FOLL_WRITE;
6258
6259 if (mmap_read_lock_killable(mm))
6260 return 0;
6261
6262 /* Untag the address before looking up the VMA */
6263 addr = untagged_addr_remote(mm, addr);
6264
6265 /* Avoid triggering the temporary warning in __get_user_pages */
6266 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6267 return 0;
6268
6269 /* ignore errors, just check how much was successfully transferred */
6270 while (len) {
6271 int bytes, offset;
6272 void *maddr;
6273 struct vm_area_struct *vma = NULL;
6274 struct page *page = get_user_page_vma_remote(mm, addr,
6275 gup_flags, &vma);
6276
6277 if (IS_ERR(page)) {
6278 /* We might need to expand the stack to access it */
6279 vma = vma_lookup(mm, addr);
6280 if (!vma) {
6281 vma = expand_stack(mm, addr);
6282
6283 /* mmap_lock was dropped on failure */
6284 if (!vma)
6285 return buf - old_buf;
6286
6287 /* Try again if stack expansion worked */
6288 continue;
6289 }
6290
6291 /*
6292 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6293 * we can access using slightly different code.
6294 */
6295 bytes = 0;
6296#ifdef CONFIG_HAVE_IOREMAP_PROT
6297 if (vma->vm_ops && vma->vm_ops->access)
6298 bytes = vma->vm_ops->access(vma, addr, buf,
6299 len, write);
6300#endif
6301 if (bytes <= 0)
6302 break;
6303 } else {
6304 bytes = len;
6305 offset = addr & (PAGE_SIZE-1);
6306 if (bytes > PAGE_SIZE-offset)
6307 bytes = PAGE_SIZE-offset;
6308
6309 maddr = kmap_local_page(page);
6310 if (write) {
6311 copy_to_user_page(vma, page, addr,
6312 maddr + offset, buf, bytes);
6313 set_page_dirty_lock(page);
6314 } else {
6315 copy_from_user_page(vma, page, addr,
6316 buf, maddr + offset, bytes);
6317 }
6318 unmap_and_put_page(page, maddr);
6319 }
6320 len -= bytes;
6321 buf += bytes;
6322 addr += bytes;
6323 }
6324 mmap_read_unlock(mm);
6325
6326 return buf - old_buf;
6327}
6328
6329/**
6330 * access_remote_vm - access another process' address space
6331 * @mm: the mm_struct of the target address space
6332 * @addr: start address to access
6333 * @buf: source or destination buffer
6334 * @len: number of bytes to transfer
6335 * @gup_flags: flags modifying lookup behaviour
6336 *
6337 * The caller must hold a reference on @mm.
6338 *
6339 * Return: number of bytes copied from source to destination.
6340 */
6341int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6342 void *buf, int len, unsigned int gup_flags)
6343{
6344 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6345}
6346
6347/*
6348 * Access another process' address space.
6349 * Source/target buffer must be kernel space,
6350 * Do not walk the page table directly, use get_user_pages
6351 */
6352int access_process_vm(struct task_struct *tsk, unsigned long addr,
6353 void *buf, int len, unsigned int gup_flags)
6354{
6355 struct mm_struct *mm;
6356 int ret;
6357
6358 mm = get_task_mm(tsk);
6359 if (!mm)
6360 return 0;
6361
6362 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6363
6364 mmput(mm);
6365
6366 return ret;
6367}
6368EXPORT_SYMBOL_GPL(access_process_vm);
6369
6370/*
6371 * Print the name of a VMA.
6372 */
6373void print_vma_addr(char *prefix, unsigned long ip)
6374{
6375 struct mm_struct *mm = current->mm;
6376 struct vm_area_struct *vma;
6377
6378 /*
6379 * we might be running from an atomic context so we cannot sleep
6380 */
6381 if (!mmap_read_trylock(mm))
6382 return;
6383
6384 vma = vma_lookup(mm, ip);
6385 if (vma && vma->vm_file) {
6386 struct file *f = vma->vm_file;
6387 ip -= vma->vm_start;
6388 ip += vma->vm_pgoff << PAGE_SHIFT;
6389 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6390 vma->vm_start,
6391 vma->vm_end - vma->vm_start);
6392 }
6393 mmap_read_unlock(mm);
6394}
6395
6396#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6397void __might_fault(const char *file, int line)
6398{
6399 if (pagefault_disabled())
6400 return;
6401 __might_sleep(file, line);
6402#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6403 if (current->mm)
6404 might_lock_read(¤t->mm->mmap_lock);
6405#endif
6406}
6407EXPORT_SYMBOL(__might_fault);
6408#endif
6409
6410#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6411/*
6412 * Process all subpages of the specified huge page with the specified
6413 * operation. The target subpage will be processed last to keep its
6414 * cache lines hot.
6415 */
6416static inline int process_huge_page(
6417 unsigned long addr_hint, unsigned int nr_pages,
6418 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6419 void *arg)
6420{
6421 int i, n, base, l, ret;
6422 unsigned long addr = addr_hint &
6423 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6424
6425 /* Process target subpage last to keep its cache lines hot */
6426 might_sleep();
6427 n = (addr_hint - addr) / PAGE_SIZE;
6428 if (2 * n <= nr_pages) {
6429 /* If target subpage in first half of huge page */
6430 base = 0;
6431 l = n;
6432 /* Process subpages at the end of huge page */
6433 for (i = nr_pages - 1; i >= 2 * n; i--) {
6434 cond_resched();
6435 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6436 if (ret)
6437 return ret;
6438 }
6439 } else {
6440 /* If target subpage in second half of huge page */
6441 base = nr_pages - 2 * (nr_pages - n);
6442 l = nr_pages - n;
6443 /* Process subpages at the begin of huge page */
6444 for (i = 0; i < base; i++) {
6445 cond_resched();
6446 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6447 if (ret)
6448 return ret;
6449 }
6450 }
6451 /*
6452 * Process remaining subpages in left-right-left-right pattern
6453 * towards the target subpage
6454 */
6455 for (i = 0; i < l; i++) {
6456 int left_idx = base + i;
6457 int right_idx = base + 2 * l - 1 - i;
6458
6459 cond_resched();
6460 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6461 if (ret)
6462 return ret;
6463 cond_resched();
6464 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6465 if (ret)
6466 return ret;
6467 }
6468 return 0;
6469}
6470
6471static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6472 unsigned int nr_pages)
6473{
6474 int i;
6475
6476 might_sleep();
6477 for (i = 0; i < nr_pages; i++) {
6478 cond_resched();
6479 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6480 }
6481}
6482
6483static int clear_subpage(unsigned long addr, int idx, void *arg)
6484{
6485 struct folio *folio = arg;
6486
6487 clear_user_highpage(folio_page(folio, idx), addr);
6488 return 0;
6489}
6490
6491/**
6492 * folio_zero_user - Zero a folio which will be mapped to userspace.
6493 * @folio: The folio to zero.
6494 * @addr_hint: The address will be accessed or the base address if uncelar.
6495 */
6496void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6497{
6498 unsigned int nr_pages = folio_nr_pages(folio);
6499
6500 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6501 clear_gigantic_page(folio, addr_hint, nr_pages);
6502 else
6503 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6504}
6505
6506static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6507 unsigned long addr,
6508 struct vm_area_struct *vma,
6509 unsigned int nr_pages)
6510{
6511 int i;
6512 struct page *dst_page;
6513 struct page *src_page;
6514
6515 for (i = 0; i < nr_pages; i++) {
6516 dst_page = folio_page(dst, i);
6517 src_page = folio_page(src, i);
6518
6519 cond_resched();
6520 if (copy_mc_user_highpage(dst_page, src_page,
6521 addr + i*PAGE_SIZE, vma))
6522 return -EHWPOISON;
6523 }
6524 return 0;
6525}
6526
6527struct copy_subpage_arg {
6528 struct folio *dst;
6529 struct folio *src;
6530 struct vm_area_struct *vma;
6531};
6532
6533static int copy_subpage(unsigned long addr, int idx, void *arg)
6534{
6535 struct copy_subpage_arg *copy_arg = arg;
6536 struct page *dst = folio_page(copy_arg->dst, idx);
6537 struct page *src = folio_page(copy_arg->src, idx);
6538
6539 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6540 return -EHWPOISON;
6541 return 0;
6542}
6543
6544int copy_user_large_folio(struct folio *dst, struct folio *src,
6545 unsigned long addr_hint, struct vm_area_struct *vma)
6546{
6547 unsigned int nr_pages = folio_nr_pages(dst);
6548 struct copy_subpage_arg arg = {
6549 .dst = dst,
6550 .src = src,
6551 .vma = vma,
6552 };
6553
6554 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6555 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6556
6557 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6558}
6559
6560long copy_folio_from_user(struct folio *dst_folio,
6561 const void __user *usr_src,
6562 bool allow_pagefault)
6563{
6564 void *kaddr;
6565 unsigned long i, rc = 0;
6566 unsigned int nr_pages = folio_nr_pages(dst_folio);
6567 unsigned long ret_val = nr_pages * PAGE_SIZE;
6568 struct page *subpage;
6569
6570 for (i = 0; i < nr_pages; i++) {
6571 subpage = folio_page(dst_folio, i);
6572 kaddr = kmap_local_page(subpage);
6573 if (!allow_pagefault)
6574 pagefault_disable();
6575 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6576 if (!allow_pagefault)
6577 pagefault_enable();
6578 kunmap_local(kaddr);
6579
6580 ret_val -= (PAGE_SIZE - rc);
6581 if (rc)
6582 break;
6583
6584 flush_dcache_page(subpage);
6585
6586 cond_resched();
6587 }
6588 return ret_val;
6589}
6590#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6591
6592#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6593
6594static struct kmem_cache *page_ptl_cachep;
6595
6596void __init ptlock_cache_init(void)
6597{
6598 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6599 SLAB_PANIC, NULL);
6600}
6601
6602bool ptlock_alloc(struct ptdesc *ptdesc)
6603{
6604 spinlock_t *ptl;
6605
6606 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6607 if (!ptl)
6608 return false;
6609 ptdesc->ptl = ptl;
6610 return true;
6611}
6612
6613void ptlock_free(struct ptdesc *ptdesc)
6614{
6615 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6616}
6617#endif
6618
6619void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6620{
6621 if (is_vm_hugetlb_page(vma))
6622 hugetlb_vma_lock_read(vma);
6623}
6624
6625void vma_pgtable_walk_end(struct vm_area_struct *vma)
6626{
6627 if (is_vm_hugetlb_page(vma))
6628 hugetlb_vma_unlock_read(vma);
6629}