Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20#ifndef __LINUX_RCUPDATE_H
21#define __LINUX_RCUPDATE_H
22
23#include <linux/types.h>
24#include <linux/compiler.h>
25#include <linux/atomic.h>
26#include <linux/irqflags.h>
27#include <linux/preempt.h>
28#include <linux/bottom_half.h>
29#include <linux/lockdep.h>
30#include <linux/cleanup.h>
31#include <asm/processor.h>
32#include <linux/context_tracking_irq.h>
33
34#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
35#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
36
37/* Exported common interfaces */
38void call_rcu(struct rcu_head *head, rcu_callback_t func);
39void rcu_barrier_tasks(void);
40void rcu_barrier_tasks_rude(void);
41void synchronize_rcu(void);
42
43struct rcu_gp_oldstate;
44unsigned long get_completed_synchronize_rcu(void);
45void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
46
47// Maximum number of unsigned long values corresponding to
48// not-yet-completed RCU grace periods.
49#define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
50
51/**
52 * same_state_synchronize_rcu - Are two old-state values identical?
53 * @oldstate1: First old-state value.
54 * @oldstate2: Second old-state value.
55 *
56 * The two old-state values must have been obtained from either
57 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
58 * get_completed_synchronize_rcu(). Returns @true if the two values are
59 * identical and @false otherwise. This allows structures whose lifetimes
60 * are tracked by old-state values to push these values to a list header,
61 * allowing those structures to be slightly smaller.
62 */
63static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
64{
65 return oldstate1 == oldstate2;
66}
67
68#ifdef CONFIG_PREEMPT_RCU
69
70void __rcu_read_lock(void);
71void __rcu_read_unlock(void);
72
73/*
74 * Defined as a macro as it is a very low level header included from
75 * areas that don't even know about current. This gives the rcu_read_lock()
76 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
77 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
78 */
79#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
80
81#else /* #ifdef CONFIG_PREEMPT_RCU */
82
83#ifdef CONFIG_TINY_RCU
84#define rcu_read_unlock_strict() do { } while (0)
85#else
86void rcu_read_unlock_strict(void);
87#endif
88
89static inline void __rcu_read_lock(void)
90{
91 preempt_disable();
92}
93
94static inline void __rcu_read_unlock(void)
95{
96 preempt_enable();
97 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
98 rcu_read_unlock_strict();
99}
100
101static inline int rcu_preempt_depth(void)
102{
103 return 0;
104}
105
106#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
107
108#ifdef CONFIG_RCU_LAZY
109void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
110#else
111static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
112{
113 call_rcu(head, func);
114}
115#endif
116
117/* Internal to kernel */
118void rcu_init(void);
119extern int rcu_scheduler_active;
120void rcu_sched_clock_irq(int user);
121
122#ifdef CONFIG_TASKS_RCU_GENERIC
123void rcu_init_tasks_generic(void);
124#else
125static inline void rcu_init_tasks_generic(void) { }
126#endif
127
128#ifdef CONFIG_RCU_STALL_COMMON
129void rcu_sysrq_start(void);
130void rcu_sysrq_end(void);
131#else /* #ifdef CONFIG_RCU_STALL_COMMON */
132static inline void rcu_sysrq_start(void) { }
133static inline void rcu_sysrq_end(void) { }
134#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
135
136#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
137void rcu_irq_work_resched(void);
138#else
139static inline void rcu_irq_work_resched(void) { }
140#endif
141
142#ifdef CONFIG_RCU_NOCB_CPU
143void rcu_init_nohz(void);
144int rcu_nocb_cpu_offload(int cpu);
145int rcu_nocb_cpu_deoffload(int cpu);
146void rcu_nocb_flush_deferred_wakeup(void);
147#else /* #ifdef CONFIG_RCU_NOCB_CPU */
148static inline void rcu_init_nohz(void) { }
149static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
150static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
151static inline void rcu_nocb_flush_deferred_wakeup(void) { }
152#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
153
154/*
155 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
156 * This is a macro rather than an inline function to avoid #include hell.
157 */
158#ifdef CONFIG_TASKS_RCU_GENERIC
159
160# ifdef CONFIG_TASKS_RCU
161# define rcu_tasks_classic_qs(t, preempt) \
162 do { \
163 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
164 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
165 } while (0)
166void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
167void synchronize_rcu_tasks(void);
168# else
169# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
170# define call_rcu_tasks call_rcu
171# define synchronize_rcu_tasks synchronize_rcu
172# endif
173
174# ifdef CONFIG_TASKS_TRACE_RCU
175// Bits for ->trc_reader_special.b.need_qs field.
176#define TRC_NEED_QS 0x1 // Task needs a quiescent state.
177#define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
178
179u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
180void rcu_tasks_trace_qs_blkd(struct task_struct *t);
181
182# define rcu_tasks_trace_qs(t) \
183 do { \
184 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
185 \
186 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \
187 likely(!___rttq_nesting)) { \
188 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \
189 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
190 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
191 rcu_tasks_trace_qs_blkd(t); \
192 } \
193 } while (0)
194# else
195# define rcu_tasks_trace_qs(t) do { } while (0)
196# endif
197
198#define rcu_tasks_qs(t, preempt) \
199do { \
200 rcu_tasks_classic_qs((t), (preempt)); \
201 rcu_tasks_trace_qs(t); \
202} while (0)
203
204# ifdef CONFIG_TASKS_RUDE_RCU
205void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
206void synchronize_rcu_tasks_rude(void);
207# endif
208
209#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
210void exit_tasks_rcu_start(void);
211void exit_tasks_rcu_finish(void);
212#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
213#define rcu_tasks_classic_qs(t, preempt) do { } while (0)
214#define rcu_tasks_qs(t, preempt) do { } while (0)
215#define rcu_note_voluntary_context_switch(t) do { } while (0)
216#define call_rcu_tasks call_rcu
217#define synchronize_rcu_tasks synchronize_rcu
218static inline void exit_tasks_rcu_start(void) { }
219static inline void exit_tasks_rcu_finish(void) { }
220#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
221
222/**
223 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
224 *
225 * As an accident of implementation, an RCU Tasks Trace grace period also
226 * acts as an RCU grace period. However, this could change at any time.
227 * Code relying on this accident must call this function to verify that
228 * this accident is still happening.
229 *
230 * You have been warned!
231 */
232static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
233
234/**
235 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
236 *
237 * This macro resembles cond_resched(), except that it is defined to
238 * report potential quiescent states to RCU-tasks even if the cond_resched()
239 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
240 */
241#define cond_resched_tasks_rcu_qs() \
242do { \
243 rcu_tasks_qs(current, false); \
244 cond_resched(); \
245} while (0)
246
247/**
248 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
249 * @old_ts: jiffies at start of processing.
250 *
251 * This helper is for long-running softirq handlers, such as NAPI threads in
252 * networking. The caller should initialize the variable passed in as @old_ts
253 * at the beginning of the softirq handler. When invoked frequently, this macro
254 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
255 * provide both RCU and RCU-Tasks quiescent states. Note that this macro
256 * modifies its old_ts argument.
257 *
258 * Because regions of code that have disabled softirq act as RCU read-side
259 * critical sections, this macro should be invoked with softirq (and
260 * preemption) enabled.
261 *
262 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
263 * have more chance to invoke schedule() calls and provide necessary quiescent
264 * states. As a contrast, calling cond_resched() only won't achieve the same
265 * effect because cond_resched() does not provide RCU-Tasks quiescent states.
266 */
267#define rcu_softirq_qs_periodic(old_ts) \
268do { \
269 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
270 time_after(jiffies, (old_ts) + HZ / 10)) { \
271 preempt_disable(); \
272 rcu_softirq_qs(); \
273 preempt_enable(); \
274 (old_ts) = jiffies; \
275 } \
276} while (0)
277
278/*
279 * Infrastructure to implement the synchronize_() primitives in
280 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
281 */
282
283#if defined(CONFIG_TREE_RCU)
284#include <linux/rcutree.h>
285#elif defined(CONFIG_TINY_RCU)
286#include <linux/rcutiny.h>
287#else
288#error "Unknown RCU implementation specified to kernel configuration"
289#endif
290
291/*
292 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
293 * are needed for dynamic initialization and destruction of rcu_head
294 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
295 * dynamic initialization and destruction of statically allocated rcu_head
296 * structures. However, rcu_head structures allocated dynamically in the
297 * heap don't need any initialization.
298 */
299#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
300void init_rcu_head(struct rcu_head *head);
301void destroy_rcu_head(struct rcu_head *head);
302void init_rcu_head_on_stack(struct rcu_head *head);
303void destroy_rcu_head_on_stack(struct rcu_head *head);
304#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
305static inline void init_rcu_head(struct rcu_head *head) { }
306static inline void destroy_rcu_head(struct rcu_head *head) { }
307static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
308static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
309#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
310
311#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
312bool rcu_lockdep_current_cpu_online(void);
313#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
314static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
315#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
316
317extern struct lockdep_map rcu_lock_map;
318extern struct lockdep_map rcu_bh_lock_map;
319extern struct lockdep_map rcu_sched_lock_map;
320extern struct lockdep_map rcu_callback_map;
321
322#ifdef CONFIG_DEBUG_LOCK_ALLOC
323
324static inline void rcu_lock_acquire(struct lockdep_map *map)
325{
326 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
327}
328
329static inline void rcu_try_lock_acquire(struct lockdep_map *map)
330{
331 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
332}
333
334static inline void rcu_lock_release(struct lockdep_map *map)
335{
336 lock_release(map, _THIS_IP_);
337}
338
339int debug_lockdep_rcu_enabled(void);
340int rcu_read_lock_held(void);
341int rcu_read_lock_bh_held(void);
342int rcu_read_lock_sched_held(void);
343int rcu_read_lock_any_held(void);
344
345#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
346
347# define rcu_lock_acquire(a) do { } while (0)
348# define rcu_try_lock_acquire(a) do { } while (0)
349# define rcu_lock_release(a) do { } while (0)
350
351static inline int rcu_read_lock_held(void)
352{
353 return 1;
354}
355
356static inline int rcu_read_lock_bh_held(void)
357{
358 return 1;
359}
360
361static inline int rcu_read_lock_sched_held(void)
362{
363 return !preemptible();
364}
365
366static inline int rcu_read_lock_any_held(void)
367{
368 return !preemptible();
369}
370
371static inline int debug_lockdep_rcu_enabled(void)
372{
373 return 0;
374}
375
376#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
377
378#ifdef CONFIG_PROVE_RCU
379
380/**
381 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
382 * @c: condition to check
383 * @s: informative message
384 *
385 * This checks debug_lockdep_rcu_enabled() before checking (c) to
386 * prevent early boot splats due to lockdep not yet being initialized,
387 * and rechecks it after checking (c) to prevent false-positive splats
388 * due to races with lockdep being disabled. See commit 3066820034b5dd
389 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
390 */
391#define RCU_LOCKDEP_WARN(c, s) \
392 do { \
393 static bool __section(".data.unlikely") __warned; \
394 if (debug_lockdep_rcu_enabled() && (c) && \
395 debug_lockdep_rcu_enabled() && !__warned) { \
396 __warned = true; \
397 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
398 } \
399 } while (0)
400
401#ifndef CONFIG_PREEMPT_RCU
402static inline void rcu_preempt_sleep_check(void)
403{
404 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
405 "Illegal context switch in RCU read-side critical section");
406}
407#else // #ifndef CONFIG_PREEMPT_RCU
408static inline void rcu_preempt_sleep_check(void) { }
409#endif // #else // #ifndef CONFIG_PREEMPT_RCU
410
411#define rcu_sleep_check() \
412 do { \
413 rcu_preempt_sleep_check(); \
414 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
415 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
416 "Illegal context switch in RCU-bh read-side critical section"); \
417 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
418 "Illegal context switch in RCU-sched read-side critical section"); \
419 } while (0)
420
421// See RCU_LOCKDEP_WARN() for an explanation of the double call to
422// debug_lockdep_rcu_enabled().
423static inline bool lockdep_assert_rcu_helper(bool c)
424{
425 return debug_lockdep_rcu_enabled() &&
426 (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) &&
427 debug_lockdep_rcu_enabled();
428}
429
430/**
431 * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock()
432 *
433 * Splats if lockdep is enabled and there is no rcu_read_lock() in effect.
434 */
435#define lockdep_assert_in_rcu_read_lock() \
436 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map)))
437
438/**
439 * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh()
440 *
441 * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect.
442 * Note that local_bh_disable() and friends do not suffice here, instead an
443 * actual rcu_read_lock_bh() is required.
444 */
445#define lockdep_assert_in_rcu_read_lock_bh() \
446 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map)))
447
448/**
449 * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched()
450 *
451 * Splats if lockdep is enabled and there is no rcu_read_lock_sched()
452 * in effect. Note that preempt_disable() and friends do not suffice here,
453 * instead an actual rcu_read_lock_sched() is required.
454 */
455#define lockdep_assert_in_rcu_read_lock_sched() \
456 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map)))
457
458/**
459 * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader
460 *
461 * Splats if lockdep is enabled and there is no RCU reader of any
462 * type in effect. Note that regions of code protected by things like
463 * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify
464 * as RCU readers.
465 *
466 * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY
467 * kernels that are not also built with PREEMPT_COUNT. But if you have
468 * lockdep enabled, you might as well also enable PREEMPT_COUNT.
469 */
470#define lockdep_assert_in_rcu_reader() \
471 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) && \
472 !lock_is_held(&rcu_bh_lock_map) && \
473 !lock_is_held(&rcu_sched_lock_map) && \
474 preemptible()))
475
476#else /* #ifdef CONFIG_PROVE_RCU */
477
478#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
479#define rcu_sleep_check() do { } while (0)
480
481#define lockdep_assert_in_rcu_read_lock() do { } while (0)
482#define lockdep_assert_in_rcu_read_lock_bh() do { } while (0)
483#define lockdep_assert_in_rcu_read_lock_sched() do { } while (0)
484#define lockdep_assert_in_rcu_reader() do { } while (0)
485
486#endif /* #else #ifdef CONFIG_PROVE_RCU */
487
488/*
489 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
490 * and rcu_assign_pointer(). Some of these could be folded into their
491 * callers, but they are left separate in order to ease introduction of
492 * multiple pointers markings to match different RCU implementations
493 * (e.g., __srcu), should this make sense in the future.
494 */
495
496#ifdef __CHECKER__
497#define rcu_check_sparse(p, space) \
498 ((void)(((typeof(*p) space *)p) == p))
499#else /* #ifdef __CHECKER__ */
500#define rcu_check_sparse(p, space)
501#endif /* #else #ifdef __CHECKER__ */
502
503#define __unrcu_pointer(p, local) \
504({ \
505 typeof(*p) *local = (typeof(*p) *__force)(p); \
506 rcu_check_sparse(p, __rcu); \
507 ((typeof(*p) __force __kernel *)(local)); \
508})
509/**
510 * unrcu_pointer - mark a pointer as not being RCU protected
511 * @p: pointer needing to lose its __rcu property
512 *
513 * Converts @p from an __rcu pointer to a __kernel pointer.
514 * This allows an __rcu pointer to be used with xchg() and friends.
515 */
516#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
517
518#define __rcu_access_pointer(p, local, space) \
519({ \
520 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
521 rcu_check_sparse(p, space); \
522 ((typeof(*p) __force __kernel *)(local)); \
523})
524#define __rcu_dereference_check(p, local, c, space) \
525({ \
526 /* Dependency order vs. p above. */ \
527 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
528 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
529 rcu_check_sparse(p, space); \
530 ((typeof(*p) __force __kernel *)(local)); \
531})
532#define __rcu_dereference_protected(p, local, c, space) \
533({ \
534 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
535 rcu_check_sparse(p, space); \
536 ((typeof(*p) __force __kernel *)(p)); \
537})
538#define __rcu_dereference_raw(p, local) \
539({ \
540 /* Dependency order vs. p above. */ \
541 typeof(p) local = READ_ONCE(p); \
542 ((typeof(*p) __force __kernel *)(local)); \
543})
544#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
545
546/**
547 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
548 * @v: The value to statically initialize with.
549 */
550#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
551
552/**
553 * rcu_assign_pointer() - assign to RCU-protected pointer
554 * @p: pointer to assign to
555 * @v: value to assign (publish)
556 *
557 * Assigns the specified value to the specified RCU-protected
558 * pointer, ensuring that any concurrent RCU readers will see
559 * any prior initialization.
560 *
561 * Inserts memory barriers on architectures that require them
562 * (which is most of them), and also prevents the compiler from
563 * reordering the code that initializes the structure after the pointer
564 * assignment. More importantly, this call documents which pointers
565 * will be dereferenced by RCU read-side code.
566 *
567 * In some special cases, you may use RCU_INIT_POINTER() instead
568 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
569 * to the fact that it does not constrain either the CPU or the compiler.
570 * That said, using RCU_INIT_POINTER() when you should have used
571 * rcu_assign_pointer() is a very bad thing that results in
572 * impossible-to-diagnose memory corruption. So please be careful.
573 * See the RCU_INIT_POINTER() comment header for details.
574 *
575 * Note that rcu_assign_pointer() evaluates each of its arguments only
576 * once, appearances notwithstanding. One of the "extra" evaluations
577 * is in typeof() and the other visible only to sparse (__CHECKER__),
578 * neither of which actually execute the argument. As with most cpp
579 * macros, this execute-arguments-only-once property is important, so
580 * please be careful when making changes to rcu_assign_pointer() and the
581 * other macros that it invokes.
582 */
583#define rcu_assign_pointer(p, v) \
584do { \
585 uintptr_t _r_a_p__v = (uintptr_t)(v); \
586 rcu_check_sparse(p, __rcu); \
587 \
588 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
589 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
590 else \
591 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
592} while (0)
593
594/**
595 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
596 * @rcu_ptr: RCU pointer, whose old value is returned
597 * @ptr: regular pointer
598 * @c: the lockdep conditions under which the dereference will take place
599 *
600 * Perform a replacement, where @rcu_ptr is an RCU-annotated
601 * pointer and @c is the lockdep argument that is passed to the
602 * rcu_dereference_protected() call used to read that pointer. The old
603 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
604 */
605#define rcu_replace_pointer(rcu_ptr, ptr, c) \
606({ \
607 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
608 rcu_assign_pointer((rcu_ptr), (ptr)); \
609 __tmp; \
610})
611
612/**
613 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
614 * @p: The pointer to read
615 *
616 * Return the value of the specified RCU-protected pointer, but omit the
617 * lockdep checks for being in an RCU read-side critical section. This is
618 * useful when the value of this pointer is accessed, but the pointer is
619 * not dereferenced, for example, when testing an RCU-protected pointer
620 * against NULL. Although rcu_access_pointer() may also be used in cases
621 * where update-side locks prevent the value of the pointer from changing,
622 * you should instead use rcu_dereference_protected() for this use case.
623 * Within an RCU read-side critical section, there is little reason to
624 * use rcu_access_pointer().
625 *
626 * It is usually best to test the rcu_access_pointer() return value
627 * directly in order to avoid accidental dereferences being introduced
628 * by later inattentive changes. In other words, assigning the
629 * rcu_access_pointer() return value to a local variable results in an
630 * accident waiting to happen.
631 *
632 * It is also permissible to use rcu_access_pointer() when read-side
633 * access to the pointer was removed at least one grace period ago, as is
634 * the case in the context of the RCU callback that is freeing up the data,
635 * or after a synchronize_rcu() returns. This can be useful when tearing
636 * down multi-linked structures after a grace period has elapsed. However,
637 * rcu_dereference_protected() is normally preferred for this use case.
638 */
639#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
640
641/**
642 * rcu_dereference_check() - rcu_dereference with debug checking
643 * @p: The pointer to read, prior to dereferencing
644 * @c: The conditions under which the dereference will take place
645 *
646 * Do an rcu_dereference(), but check that the conditions under which the
647 * dereference will take place are correct. Typically the conditions
648 * indicate the various locking conditions that should be held at that
649 * point. The check should return true if the conditions are satisfied.
650 * An implicit check for being in an RCU read-side critical section
651 * (rcu_read_lock()) is included.
652 *
653 * For example:
654 *
655 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
656 *
657 * could be used to indicate to lockdep that foo->bar may only be dereferenced
658 * if either rcu_read_lock() is held, or that the lock required to replace
659 * the bar struct at foo->bar is held.
660 *
661 * Note that the list of conditions may also include indications of when a lock
662 * need not be held, for example during initialisation or destruction of the
663 * target struct:
664 *
665 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
666 * atomic_read(&foo->usage) == 0);
667 *
668 * Inserts memory barriers on architectures that require them
669 * (currently only the Alpha), prevents the compiler from refetching
670 * (and from merging fetches), and, more importantly, documents exactly
671 * which pointers are protected by RCU and checks that the pointer is
672 * annotated as __rcu.
673 */
674#define rcu_dereference_check(p, c) \
675 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
676 (c) || rcu_read_lock_held(), __rcu)
677
678/**
679 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
680 * @p: The pointer to read, prior to dereferencing
681 * @c: The conditions under which the dereference will take place
682 *
683 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
684 * please note that starting in v5.0 kernels, vanilla RCU grace periods
685 * wait for local_bh_disable() regions of code in addition to regions of
686 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
687 * that synchronize_rcu(), call_rcu, and friends all take not only
688 * rcu_read_lock() but also rcu_read_lock_bh() into account.
689 */
690#define rcu_dereference_bh_check(p, c) \
691 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
692 (c) || rcu_read_lock_bh_held(), __rcu)
693
694/**
695 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
696 * @p: The pointer to read, prior to dereferencing
697 * @c: The conditions under which the dereference will take place
698 *
699 * This is the RCU-sched counterpart to rcu_dereference_check().
700 * However, please note that starting in v5.0 kernels, vanilla RCU grace
701 * periods wait for preempt_disable() regions of code in addition to
702 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
703 * This means that synchronize_rcu(), call_rcu, and friends all take not
704 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
705 */
706#define rcu_dereference_sched_check(p, c) \
707 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
708 (c) || rcu_read_lock_sched_held(), \
709 __rcu)
710
711/*
712 * The tracing infrastructure traces RCU (we want that), but unfortunately
713 * some of the RCU checks causes tracing to lock up the system.
714 *
715 * The no-tracing version of rcu_dereference_raw() must not call
716 * rcu_read_lock_held().
717 */
718#define rcu_dereference_raw_check(p) \
719 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
720
721/**
722 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
723 * @p: The pointer to read, prior to dereferencing
724 * @c: The conditions under which the dereference will take place
725 *
726 * Return the value of the specified RCU-protected pointer, but omit
727 * the READ_ONCE(). This is useful in cases where update-side locks
728 * prevent the value of the pointer from changing. Please note that this
729 * primitive does *not* prevent the compiler from repeating this reference
730 * or combining it with other references, so it should not be used without
731 * protection of appropriate locks.
732 *
733 * This function is only for update-side use. Using this function
734 * when protected only by rcu_read_lock() will result in infrequent
735 * but very ugly failures.
736 */
737#define rcu_dereference_protected(p, c) \
738 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
739
740
741/**
742 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
743 * @p: The pointer to read, prior to dereferencing
744 *
745 * This is a simple wrapper around rcu_dereference_check().
746 */
747#define rcu_dereference(p) rcu_dereference_check(p, 0)
748
749/**
750 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
751 * @p: The pointer to read, prior to dereferencing
752 *
753 * Makes rcu_dereference_check() do the dirty work.
754 */
755#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
756
757/**
758 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
759 * @p: The pointer to read, prior to dereferencing
760 *
761 * Makes rcu_dereference_check() do the dirty work.
762 */
763#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
764
765/**
766 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
767 * @p: The pointer to hand off
768 *
769 * This is simply an identity function, but it documents where a pointer
770 * is handed off from RCU to some other synchronization mechanism, for
771 * example, reference counting or locking. In C11, it would map to
772 * kill_dependency(). It could be used as follows::
773 *
774 * rcu_read_lock();
775 * p = rcu_dereference(gp);
776 * long_lived = is_long_lived(p);
777 * if (long_lived) {
778 * if (!atomic_inc_not_zero(p->refcnt))
779 * long_lived = false;
780 * else
781 * p = rcu_pointer_handoff(p);
782 * }
783 * rcu_read_unlock();
784 */
785#define rcu_pointer_handoff(p) (p)
786
787/**
788 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
789 *
790 * When synchronize_rcu() is invoked on one CPU while other CPUs
791 * are within RCU read-side critical sections, then the
792 * synchronize_rcu() is guaranteed to block until after all the other
793 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
794 * on one CPU while other CPUs are within RCU read-side critical
795 * sections, invocation of the corresponding RCU callback is deferred
796 * until after the all the other CPUs exit their critical sections.
797 *
798 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
799 * wait for regions of code with preemption disabled, including regions of
800 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
801 * define synchronize_sched(), only code enclosed within rcu_read_lock()
802 * and rcu_read_unlock() are guaranteed to be waited for.
803 *
804 * Note, however, that RCU callbacks are permitted to run concurrently
805 * with new RCU read-side critical sections. One way that this can happen
806 * is via the following sequence of events: (1) CPU 0 enters an RCU
807 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
808 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
809 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
810 * callback is invoked. This is legal, because the RCU read-side critical
811 * section that was running concurrently with the call_rcu() (and which
812 * therefore might be referencing something that the corresponding RCU
813 * callback would free up) has completed before the corresponding
814 * RCU callback is invoked.
815 *
816 * RCU read-side critical sections may be nested. Any deferred actions
817 * will be deferred until the outermost RCU read-side critical section
818 * completes.
819 *
820 * You can avoid reading and understanding the next paragraph by
821 * following this rule: don't put anything in an rcu_read_lock() RCU
822 * read-side critical section that would block in a !PREEMPTION kernel.
823 * But if you want the full story, read on!
824 *
825 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
826 * it is illegal to block while in an RCU read-side critical section.
827 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
828 * kernel builds, RCU read-side critical sections may be preempted,
829 * but explicit blocking is illegal. Finally, in preemptible RCU
830 * implementations in real-time (with -rt patchset) kernel builds, RCU
831 * read-side critical sections may be preempted and they may also block, but
832 * only when acquiring spinlocks that are subject to priority inheritance.
833 */
834static __always_inline void rcu_read_lock(void)
835{
836 __rcu_read_lock();
837 __acquire(RCU);
838 rcu_lock_acquire(&rcu_lock_map);
839 RCU_LOCKDEP_WARN(!rcu_is_watching(),
840 "rcu_read_lock() used illegally while idle");
841}
842
843/*
844 * So where is rcu_write_lock()? It does not exist, as there is no
845 * way for writers to lock out RCU readers. This is a feature, not
846 * a bug -- this property is what provides RCU's performance benefits.
847 * Of course, writers must coordinate with each other. The normal
848 * spinlock primitives work well for this, but any other technique may be
849 * used as well. RCU does not care how the writers keep out of each
850 * others' way, as long as they do so.
851 */
852
853/**
854 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
855 *
856 * In almost all situations, rcu_read_unlock() is immune from deadlock.
857 * In recent kernels that have consolidated synchronize_sched() and
858 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
859 * also extends to the scheduler's runqueue and priority-inheritance
860 * spinlocks, courtesy of the quiescent-state deferral that is carried
861 * out when rcu_read_unlock() is invoked with interrupts disabled.
862 *
863 * See rcu_read_lock() for more information.
864 */
865static inline void rcu_read_unlock(void)
866{
867 RCU_LOCKDEP_WARN(!rcu_is_watching(),
868 "rcu_read_unlock() used illegally while idle");
869 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
870 __release(RCU);
871 __rcu_read_unlock();
872}
873
874/**
875 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
876 *
877 * This is equivalent to rcu_read_lock(), but also disables softirqs.
878 * Note that anything else that disables softirqs can also serve as an RCU
879 * read-side critical section. However, please note that this equivalence
880 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
881 * rcu_read_lock_bh() were unrelated.
882 *
883 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
884 * must occur in the same context, for example, it is illegal to invoke
885 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
886 * was invoked from some other task.
887 */
888static inline void rcu_read_lock_bh(void)
889{
890 local_bh_disable();
891 __acquire(RCU_BH);
892 rcu_lock_acquire(&rcu_bh_lock_map);
893 RCU_LOCKDEP_WARN(!rcu_is_watching(),
894 "rcu_read_lock_bh() used illegally while idle");
895}
896
897/**
898 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
899 *
900 * See rcu_read_lock_bh() for more information.
901 */
902static inline void rcu_read_unlock_bh(void)
903{
904 RCU_LOCKDEP_WARN(!rcu_is_watching(),
905 "rcu_read_unlock_bh() used illegally while idle");
906 rcu_lock_release(&rcu_bh_lock_map);
907 __release(RCU_BH);
908 local_bh_enable();
909}
910
911/**
912 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
913 *
914 * This is equivalent to rcu_read_lock(), but also disables preemption.
915 * Read-side critical sections can also be introduced by anything else that
916 * disables preemption, including local_irq_disable() and friends. However,
917 * please note that the equivalence to rcu_read_lock() applies only to
918 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
919 * were unrelated.
920 *
921 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
922 * must occur in the same context, for example, it is illegal to invoke
923 * rcu_read_unlock_sched() from process context if the matching
924 * rcu_read_lock_sched() was invoked from an NMI handler.
925 */
926static inline void rcu_read_lock_sched(void)
927{
928 preempt_disable();
929 __acquire(RCU_SCHED);
930 rcu_lock_acquire(&rcu_sched_lock_map);
931 RCU_LOCKDEP_WARN(!rcu_is_watching(),
932 "rcu_read_lock_sched() used illegally while idle");
933}
934
935/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
936static inline notrace void rcu_read_lock_sched_notrace(void)
937{
938 preempt_disable_notrace();
939 __acquire(RCU_SCHED);
940}
941
942/**
943 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
944 *
945 * See rcu_read_lock_sched() for more information.
946 */
947static inline void rcu_read_unlock_sched(void)
948{
949 RCU_LOCKDEP_WARN(!rcu_is_watching(),
950 "rcu_read_unlock_sched() used illegally while idle");
951 rcu_lock_release(&rcu_sched_lock_map);
952 __release(RCU_SCHED);
953 preempt_enable();
954}
955
956/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
957static inline notrace void rcu_read_unlock_sched_notrace(void)
958{
959 __release(RCU_SCHED);
960 preempt_enable_notrace();
961}
962
963/**
964 * RCU_INIT_POINTER() - initialize an RCU protected pointer
965 * @p: The pointer to be initialized.
966 * @v: The value to initialized the pointer to.
967 *
968 * Initialize an RCU-protected pointer in special cases where readers
969 * do not need ordering constraints on the CPU or the compiler. These
970 * special cases are:
971 *
972 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
973 * 2. The caller has taken whatever steps are required to prevent
974 * RCU readers from concurrently accessing this pointer *or*
975 * 3. The referenced data structure has already been exposed to
976 * readers either at compile time or via rcu_assign_pointer() *and*
977 *
978 * a. You have not made *any* reader-visible changes to
979 * this structure since then *or*
980 * b. It is OK for readers accessing this structure from its
981 * new location to see the old state of the structure. (For
982 * example, the changes were to statistical counters or to
983 * other state where exact synchronization is not required.)
984 *
985 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
986 * result in impossible-to-diagnose memory corruption. As in the structures
987 * will look OK in crash dumps, but any concurrent RCU readers might
988 * see pre-initialized values of the referenced data structure. So
989 * please be very careful how you use RCU_INIT_POINTER()!!!
990 *
991 * If you are creating an RCU-protected linked structure that is accessed
992 * by a single external-to-structure RCU-protected pointer, then you may
993 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
994 * pointers, but you must use rcu_assign_pointer() to initialize the
995 * external-to-structure pointer *after* you have completely initialized
996 * the reader-accessible portions of the linked structure.
997 *
998 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
999 * ordering guarantees for either the CPU or the compiler.
1000 */
1001#define RCU_INIT_POINTER(p, v) \
1002 do { \
1003 rcu_check_sparse(p, __rcu); \
1004 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1005 } while (0)
1006
1007/**
1008 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1009 * @p: The pointer to be initialized.
1010 * @v: The value to initialized the pointer to.
1011 *
1012 * GCC-style initialization for an RCU-protected pointer in a structure field.
1013 */
1014#define RCU_POINTER_INITIALIZER(p, v) \
1015 .p = RCU_INITIALIZER(v)
1016
1017/*
1018 * Does the specified offset indicate that the corresponding rcu_head
1019 * structure can be handled by kvfree_rcu()?
1020 */
1021#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
1022
1023/**
1024 * kfree_rcu() - kfree an object after a grace period.
1025 * @ptr: pointer to kfree for double-argument invocations.
1026 * @rhf: the name of the struct rcu_head within the type of @ptr.
1027 *
1028 * Many rcu callbacks functions just call kfree() on the base structure.
1029 * These functions are trivial, but their size adds up, and furthermore
1030 * when they are used in a kernel module, that module must invoke the
1031 * high-latency rcu_barrier() function at module-unload time.
1032 *
1033 * The kfree_rcu() function handles this issue. Rather than encoding a
1034 * function address in the embedded rcu_head structure, kfree_rcu() instead
1035 * encodes the offset of the rcu_head structure within the base structure.
1036 * Because the functions are not allowed in the low-order 4096 bytes of
1037 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1038 * If the offset is larger than 4095 bytes, a compile-time error will
1039 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
1040 * either fall back to use of call_rcu() or rearrange the structure to
1041 * position the rcu_head structure into the first 4096 bytes.
1042 *
1043 * The object to be freed can be allocated either by kmalloc() or
1044 * kmem_cache_alloc().
1045 *
1046 * Note that the allowable offset might decrease in the future.
1047 *
1048 * The BUILD_BUG_ON check must not involve any function calls, hence the
1049 * checks are done in macros here.
1050 */
1051#define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1052#define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1053
1054/**
1055 * kfree_rcu_mightsleep() - kfree an object after a grace period.
1056 * @ptr: pointer to kfree for single-argument invocations.
1057 *
1058 * When it comes to head-less variant, only one argument
1059 * is passed and that is just a pointer which has to be
1060 * freed after a grace period. Therefore the semantic is
1061 *
1062 * kfree_rcu_mightsleep(ptr);
1063 *
1064 * where @ptr is the pointer to be freed by kvfree().
1065 *
1066 * Please note, head-less way of freeing is permitted to
1067 * use from a context that has to follow might_sleep()
1068 * annotation. Otherwise, please switch and embed the
1069 * rcu_head structure within the type of @ptr.
1070 */
1071#define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1072#define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1073
1074#define kvfree_rcu_arg_2(ptr, rhf) \
1075do { \
1076 typeof (ptr) ___p = (ptr); \
1077 \
1078 if (___p) { \
1079 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
1080 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
1081 } \
1082} while (0)
1083
1084#define kvfree_rcu_arg_1(ptr) \
1085do { \
1086 typeof(ptr) ___p = (ptr); \
1087 \
1088 if (___p) \
1089 kvfree_call_rcu(NULL, (void *) (___p)); \
1090} while (0)
1091
1092/*
1093 * Place this after a lock-acquisition primitive to guarantee that
1094 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1095 * if the UNLOCK and LOCK are executed by the same CPU or if the
1096 * UNLOCK and LOCK operate on the same lock variable.
1097 */
1098#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1099#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1100#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1101#define smp_mb__after_unlock_lock() do { } while (0)
1102#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1103
1104
1105/* Has the specified rcu_head structure been handed to call_rcu()? */
1106
1107/**
1108 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1109 * @rhp: The rcu_head structure to initialize.
1110 *
1111 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1112 * given rcu_head structure has already been passed to call_rcu(), then
1113 * you must also invoke this rcu_head_init() function on it just after
1114 * allocating that structure. Calls to this function must not race with
1115 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1116 */
1117static inline void rcu_head_init(struct rcu_head *rhp)
1118{
1119 rhp->func = (rcu_callback_t)~0L;
1120}
1121
1122/**
1123 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1124 * @rhp: The rcu_head structure to test.
1125 * @f: The function passed to call_rcu() along with @rhp.
1126 *
1127 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1128 * and @false otherwise. Emits a warning in any other case, including
1129 * the case where @rhp has already been invoked after a grace period.
1130 * Calls to this function must not race with callback invocation. One way
1131 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1132 * in an RCU read-side critical section that includes a read-side fetch
1133 * of the pointer to the structure containing @rhp.
1134 */
1135static inline bool
1136rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1137{
1138 rcu_callback_t func = READ_ONCE(rhp->func);
1139
1140 if (func == f)
1141 return true;
1142 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1143 return false;
1144}
1145
1146/* kernel/ksysfs.c definitions */
1147extern int rcu_expedited;
1148extern int rcu_normal;
1149
1150DEFINE_LOCK_GUARD_0(rcu,
1151 do {
1152 rcu_read_lock();
1153 /*
1154 * sparse doesn't call the cleanup function,
1155 * so just release immediately and don't track
1156 * the context. We don't need to anyway, since
1157 * the whole point of the guard is to not need
1158 * the explicit unlock.
1159 */
1160 __release(RCU);
1161 } while (0),
1162 rcu_read_unlock())
1163
1164#endif /* __LINUX_RCUPDATE_H */