at v6.11 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11#ifndef __ASSEMBLY__ 12#ifdef CONFIG_MMU 13 14#include <linux/mm_types.h> 15#include <linux/bug.h> 16#include <linux/errno.h> 17#include <asm-generic/pgtable_uffd.h> 18#include <linux/page_table_check.h> 19 20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23#endif 24 25/* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31#ifndef USER_PGTABLES_CEILING 32#define USER_PGTABLES_CEILING 0UL 33#endif 34 35/* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40#ifndef FIRST_USER_ADDRESS 41#define FIRST_USER_ADDRESS 0UL 42#endif 43 44/* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49#ifndef pmd_pgtable 50#define pmd_pgtable(pmd) pmd_page(pmd) 51#endif 52 53#define pmd_folio(pmd) page_folio(pmd_page(pmd)) 54 55/* 56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 57 * 58 * The pXx_index() functions return the index of the entry in the page 59 * table page which would control the given virtual address 60 * 61 * As these functions may be used by the same code for different levels of 62 * the page table folding, they are always available, regardless of 63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 64 * because in such cases PTRS_PER_PxD equals 1. 65 */ 66 67static inline unsigned long pte_index(unsigned long address) 68{ 69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 70} 71 72#ifndef pmd_index 73static inline unsigned long pmd_index(unsigned long address) 74{ 75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 76} 77#define pmd_index pmd_index 78#endif 79 80#ifndef pud_index 81static inline unsigned long pud_index(unsigned long address) 82{ 83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 84} 85#define pud_index pud_index 86#endif 87 88#ifndef pgd_index 89/* Must be a compile-time constant, so implement it as a macro */ 90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 91#endif 92 93#ifndef pte_offset_kernel 94static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 95{ 96 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 97} 98#define pte_offset_kernel pte_offset_kernel 99#endif 100 101#ifdef CONFIG_HIGHPTE 102#define __pte_map(pmd, address) \ 103 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 104#define pte_unmap(pte) do { \ 105 kunmap_local((pte)); \ 106 rcu_read_unlock(); \ 107} while (0) 108#else 109static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 110{ 111 return pte_offset_kernel(pmd, address); 112} 113static inline void pte_unmap(pte_t *pte) 114{ 115 rcu_read_unlock(); 116} 117#endif 118 119void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 120 121/* Find an entry in the second-level page table.. */ 122#ifndef pmd_offset 123static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 124{ 125 return pud_pgtable(*pud) + pmd_index(address); 126} 127#define pmd_offset pmd_offset 128#endif 129 130#ifndef pud_offset 131static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 132{ 133 return p4d_pgtable(*p4d) + pud_index(address); 134} 135#define pud_offset pud_offset 136#endif 137 138static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 139{ 140 return (pgd + pgd_index(address)); 141}; 142 143/* 144 * a shortcut to get a pgd_t in a given mm 145 */ 146#ifndef pgd_offset 147#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 148#endif 149 150/* 151 * a shortcut which implies the use of the kernel's pgd, instead 152 * of a process's 153 */ 154#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 155 156/* 157 * In many cases it is known that a virtual address is mapped at PMD or PTE 158 * level, so instead of traversing all the page table levels, we can get a 159 * pointer to the PMD entry in user or kernel page table or translate a virtual 160 * address to the pointer in the PTE in the kernel page tables with simple 161 * helpers. 162 */ 163static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 164{ 165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 166} 167 168static inline pmd_t *pmd_off_k(unsigned long va) 169{ 170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 171} 172 173static inline pte_t *virt_to_kpte(unsigned long vaddr) 174{ 175 pmd_t *pmd = pmd_off_k(vaddr); 176 177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 178} 179 180#ifndef pmd_young 181static inline int pmd_young(pmd_t pmd) 182{ 183 return 0; 184} 185#endif 186 187#ifndef pmd_dirty 188static inline int pmd_dirty(pmd_t pmd) 189{ 190 return 0; 191} 192#endif 193 194/* 195 * A facility to provide lazy MMU batching. This allows PTE updates and 196 * page invalidations to be delayed until a call to leave lazy MMU mode 197 * is issued. Some architectures may benefit from doing this, and it is 198 * beneficial for both shadow and direct mode hypervisors, which may batch 199 * the PTE updates which happen during this window. Note that using this 200 * interface requires that read hazards be removed from the code. A read 201 * hazard could result in the direct mode hypervisor case, since the actual 202 * write to the page tables may not yet have taken place, so reads though 203 * a raw PTE pointer after it has been modified are not guaranteed to be 204 * up to date. This mode can only be entered and left under the protection of 205 * the page table locks for all page tables which may be modified. In the UP 206 * case, this is required so that preemption is disabled, and in the SMP case, 207 * it must synchronize the delayed page table writes properly on other CPUs. 208 */ 209#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 210#define arch_enter_lazy_mmu_mode() do {} while (0) 211#define arch_leave_lazy_mmu_mode() do {} while (0) 212#define arch_flush_lazy_mmu_mode() do {} while (0) 213#endif 214 215#ifndef pte_batch_hint 216/** 217 * pte_batch_hint - Number of pages that can be added to batch without scanning. 218 * @ptep: Page table pointer for the entry. 219 * @pte: Page table entry. 220 * 221 * Some architectures know that a set of contiguous ptes all map the same 222 * contiguous memory with the same permissions. In this case, it can provide a 223 * hint to aid pte batching without the core code needing to scan every pte. 224 * 225 * An architecture implementation may ignore the PTE accessed state. Further, 226 * the dirty state must apply atomically to all the PTEs described by the hint. 227 * 228 * May be overridden by the architecture, else pte_batch_hint is always 1. 229 */ 230static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 231{ 232 return 1; 233} 234#endif 235 236#ifndef pte_advance_pfn 237static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 238{ 239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 240} 241#endif 242 243#define pte_next_pfn(pte) pte_advance_pfn(pte, 1) 244 245#ifndef set_ptes 246/** 247 * set_ptes - Map consecutive pages to a contiguous range of addresses. 248 * @mm: Address space to map the pages into. 249 * @addr: Address to map the first page at. 250 * @ptep: Page table pointer for the first entry. 251 * @pte: Page table entry for the first page. 252 * @nr: Number of pages to map. 253 * 254 * When nr==1, initial state of pte may be present or not present, and new state 255 * may be present or not present. When nr>1, initial state of all ptes must be 256 * not present, and new state must be present. 257 * 258 * May be overridden by the architecture, or the architecture can define 259 * set_pte() and PFN_PTE_SHIFT. 260 * 261 * Context: The caller holds the page table lock. The pages all belong 262 * to the same folio. The PTEs are all in the same PMD. 263 */ 264static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 265 pte_t *ptep, pte_t pte, unsigned int nr) 266{ 267 page_table_check_ptes_set(mm, ptep, pte, nr); 268 269 arch_enter_lazy_mmu_mode(); 270 for (;;) { 271 set_pte(ptep, pte); 272 if (--nr == 0) 273 break; 274 ptep++; 275 pte = pte_next_pfn(pte); 276 } 277 arch_leave_lazy_mmu_mode(); 278} 279#endif 280#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 281 282#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 283extern int ptep_set_access_flags(struct vm_area_struct *vma, 284 unsigned long address, pte_t *ptep, 285 pte_t entry, int dirty); 286#endif 287 288#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 289#ifdef CONFIG_TRANSPARENT_HUGEPAGE 290extern int pmdp_set_access_flags(struct vm_area_struct *vma, 291 unsigned long address, pmd_t *pmdp, 292 pmd_t entry, int dirty); 293extern int pudp_set_access_flags(struct vm_area_struct *vma, 294 unsigned long address, pud_t *pudp, 295 pud_t entry, int dirty); 296#else 297static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 298 unsigned long address, pmd_t *pmdp, 299 pmd_t entry, int dirty) 300{ 301 BUILD_BUG(); 302 return 0; 303} 304static inline int pudp_set_access_flags(struct vm_area_struct *vma, 305 unsigned long address, pud_t *pudp, 306 pud_t entry, int dirty) 307{ 308 BUILD_BUG(); 309 return 0; 310} 311#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 312#endif 313 314#ifndef ptep_get 315static inline pte_t ptep_get(pte_t *ptep) 316{ 317 return READ_ONCE(*ptep); 318} 319#endif 320 321#ifndef pmdp_get 322static inline pmd_t pmdp_get(pmd_t *pmdp) 323{ 324 return READ_ONCE(*pmdp); 325} 326#endif 327 328#ifndef pudp_get 329static inline pud_t pudp_get(pud_t *pudp) 330{ 331 return READ_ONCE(*pudp); 332} 333#endif 334 335#ifndef p4dp_get 336static inline p4d_t p4dp_get(p4d_t *p4dp) 337{ 338 return READ_ONCE(*p4dp); 339} 340#endif 341 342#ifndef pgdp_get 343static inline pgd_t pgdp_get(pgd_t *pgdp) 344{ 345 return READ_ONCE(*pgdp); 346} 347#endif 348 349#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 350static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 351 unsigned long address, 352 pte_t *ptep) 353{ 354 pte_t pte = ptep_get(ptep); 355 int r = 1; 356 if (!pte_young(pte)) 357 r = 0; 358 else 359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 360 return r; 361} 362#endif 363 364#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 365#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 366static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 367 unsigned long address, 368 pmd_t *pmdp) 369{ 370 pmd_t pmd = *pmdp; 371 int r = 1; 372 if (!pmd_young(pmd)) 373 r = 0; 374 else 375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 376 return r; 377} 378#else 379static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 380 unsigned long address, 381 pmd_t *pmdp) 382{ 383 BUILD_BUG(); 384 return 0; 385} 386#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 387#endif 388 389#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 390int ptep_clear_flush_young(struct vm_area_struct *vma, 391 unsigned long address, pte_t *ptep); 392#endif 393 394#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 395#ifdef CONFIG_TRANSPARENT_HUGEPAGE 396extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 397 unsigned long address, pmd_t *pmdp); 398#else 399/* 400 * Despite relevant to THP only, this API is called from generic rmap code 401 * under PageTransHuge(), hence needs a dummy implementation for !THP 402 */ 403static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 404 unsigned long address, pmd_t *pmdp) 405{ 406 BUILD_BUG(); 407 return 0; 408} 409#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 410#endif 411 412#ifndef arch_has_hw_nonleaf_pmd_young 413/* 414 * Return whether the accessed bit in non-leaf PMD entries is supported on the 415 * local CPU. 416 */ 417static inline bool arch_has_hw_nonleaf_pmd_young(void) 418{ 419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 420} 421#endif 422 423#ifndef arch_has_hw_pte_young 424/* 425 * Return whether the accessed bit is supported on the local CPU. 426 * 427 * This stub assumes accessing through an old PTE triggers a page fault. 428 * Architectures that automatically set the access bit should overwrite it. 429 */ 430static inline bool arch_has_hw_pte_young(void) 431{ 432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); 433} 434#endif 435 436#ifndef arch_check_zapped_pte 437static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 438 pte_t pte) 439{ 440} 441#endif 442 443#ifndef arch_check_zapped_pmd 444static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 445 pmd_t pmd) 446{ 447} 448#endif 449 450#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 451static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 452 unsigned long address, 453 pte_t *ptep) 454{ 455 pte_t pte = ptep_get(ptep); 456 pte_clear(mm, address, ptep); 457 page_table_check_pte_clear(mm, pte); 458 return pte; 459} 460#endif 461 462#ifndef clear_young_dirty_ptes 463/** 464 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the 465 * same folio as old/clean. 466 * @mm: Address space the pages are mapped into. 467 * @addr: Address the first page is mapped at. 468 * @ptep: Page table pointer for the first entry. 469 * @nr: Number of entries to mark old/clean. 470 * @flags: Flags to modify the PTE batch semantics. 471 * 472 * May be overridden by the architecture; otherwise, implemented by 473 * get_and_clear/modify/set for each pte in the range. 474 * 475 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 476 * some PTEs might be write-protected. 477 * 478 * Context: The caller holds the page table lock. The PTEs map consecutive 479 * pages that belong to the same folio. The PTEs are all in the same PMD. 480 */ 481static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 482 unsigned long addr, pte_t *ptep, 483 unsigned int nr, cydp_t flags) 484{ 485 pte_t pte; 486 487 for (;;) { 488 if (flags == CYDP_CLEAR_YOUNG) 489 ptep_test_and_clear_young(vma, addr, ptep); 490 else { 491 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); 492 if (flags & CYDP_CLEAR_YOUNG) 493 pte = pte_mkold(pte); 494 if (flags & CYDP_CLEAR_DIRTY) 495 pte = pte_mkclean(pte); 496 set_pte_at(vma->vm_mm, addr, ptep, pte); 497 } 498 if (--nr == 0) 499 break; 500 ptep++; 501 addr += PAGE_SIZE; 502 } 503} 504#endif 505 506static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 507 pte_t *ptep) 508{ 509 ptep_get_and_clear(mm, addr, ptep); 510} 511 512#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 513/* 514 * For walking the pagetables without holding any locks. Some architectures 515 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 516 * instructions. We are guaranteed that a PTE will only either go from not 517 * present to present, or present to not present -- it will not switch to a 518 * completely different present page without a TLB flush inbetween; which we 519 * are blocking by holding interrupts off. 520 * 521 * Setting ptes from not present to present goes: 522 * 523 * ptep->pte_high = h; 524 * smp_wmb(); 525 * ptep->pte_low = l; 526 * 527 * And present to not present goes: 528 * 529 * ptep->pte_low = 0; 530 * smp_wmb(); 531 * ptep->pte_high = 0; 532 * 533 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 534 * We load pte_high *after* loading pte_low, which ensures we don't see an older 535 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 536 * picked up a changed pte high. We might have gotten rubbish values from 537 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 538 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 539 * operates on present ptes we're safe. 540 */ 541static inline pte_t ptep_get_lockless(pte_t *ptep) 542{ 543 pte_t pte; 544 545 do { 546 pte.pte_low = ptep->pte_low; 547 smp_rmb(); 548 pte.pte_high = ptep->pte_high; 549 smp_rmb(); 550 } while (unlikely(pte.pte_low != ptep->pte_low)); 551 552 return pte; 553} 554#define ptep_get_lockless ptep_get_lockless 555 556#if CONFIG_PGTABLE_LEVELS > 2 557static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 558{ 559 pmd_t pmd; 560 561 do { 562 pmd.pmd_low = pmdp->pmd_low; 563 smp_rmb(); 564 pmd.pmd_high = pmdp->pmd_high; 565 smp_rmb(); 566 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 567 568 return pmd; 569} 570#define pmdp_get_lockless pmdp_get_lockless 571#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 572#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 573#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 574 575/* 576 * We require that the PTE can be read atomically. 577 */ 578#ifndef ptep_get_lockless 579static inline pte_t ptep_get_lockless(pte_t *ptep) 580{ 581 return ptep_get(ptep); 582} 583#endif 584 585#ifndef pmdp_get_lockless 586static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 587{ 588 return pmdp_get(pmdp); 589} 590static inline void pmdp_get_lockless_sync(void) 591{ 592} 593#endif 594 595#ifdef CONFIG_TRANSPARENT_HUGEPAGE 596#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 597static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 598 unsigned long address, 599 pmd_t *pmdp) 600{ 601 pmd_t pmd = *pmdp; 602 603 pmd_clear(pmdp); 604 page_table_check_pmd_clear(mm, pmd); 605 606 return pmd; 607} 608#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 609#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 610static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 611 unsigned long address, 612 pud_t *pudp) 613{ 614 pud_t pud = *pudp; 615 616 pud_clear(pudp); 617 page_table_check_pud_clear(mm, pud); 618 619 return pud; 620} 621#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 623 624#ifdef CONFIG_TRANSPARENT_HUGEPAGE 625#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 626static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 627 unsigned long address, pmd_t *pmdp, 628 int full) 629{ 630 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 631} 632#endif 633 634#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 635static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 636 unsigned long address, pud_t *pudp, 637 int full) 638{ 639 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 640} 641#endif 642#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 643 644#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 645static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 646 unsigned long address, pte_t *ptep, 647 int full) 648{ 649 return ptep_get_and_clear(mm, address, ptep); 650} 651#endif 652 653#ifndef get_and_clear_full_ptes 654/** 655 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of 656 * the same folio, collecting dirty/accessed bits. 657 * @mm: Address space the pages are mapped into. 658 * @addr: Address the first page is mapped at. 659 * @ptep: Page table pointer for the first entry. 660 * @nr: Number of entries to clear. 661 * @full: Whether we are clearing a full mm. 662 * 663 * May be overridden by the architecture; otherwise, implemented as a simple 664 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the 665 * returned PTE. 666 * 667 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 668 * some PTEs might be write-protected. 669 * 670 * Context: The caller holds the page table lock. The PTEs map consecutive 671 * pages that belong to the same folio. The PTEs are all in the same PMD. 672 */ 673static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 674 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 675{ 676 pte_t pte, tmp_pte; 677 678 pte = ptep_get_and_clear_full(mm, addr, ptep, full); 679 while (--nr) { 680 ptep++; 681 addr += PAGE_SIZE; 682 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); 683 if (pte_dirty(tmp_pte)) 684 pte = pte_mkdirty(pte); 685 if (pte_young(tmp_pte)) 686 pte = pte_mkyoung(pte); 687 } 688 return pte; 689} 690#endif 691 692#ifndef clear_full_ptes 693/** 694 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same 695 * folio. 696 * @mm: Address space the pages are mapped into. 697 * @addr: Address the first page is mapped at. 698 * @ptep: Page table pointer for the first entry. 699 * @nr: Number of entries to clear. 700 * @full: Whether we are clearing a full mm. 701 * 702 * May be overridden by the architecture; otherwise, implemented as a simple 703 * loop over ptep_get_and_clear_full(). 704 * 705 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 706 * some PTEs might be write-protected. 707 * 708 * Context: The caller holds the page table lock. The PTEs map consecutive 709 * pages that belong to the same folio. The PTEs are all in the same PMD. 710 */ 711static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 712 pte_t *ptep, unsigned int nr, int full) 713{ 714 for (;;) { 715 ptep_get_and_clear_full(mm, addr, ptep, full); 716 if (--nr == 0) 717 break; 718 ptep++; 719 addr += PAGE_SIZE; 720 } 721} 722#endif 723 724/* 725 * If two threads concurrently fault at the same page, the thread that 726 * won the race updates the PTE and its local TLB/Cache. The other thread 727 * gives up, simply does nothing, and continues; on architectures where 728 * software can update TLB, local TLB can be updated here to avoid next page 729 * fault. This function updates TLB only, do nothing with cache or others. 730 * It is the difference with function update_mmu_cache. 731 */ 732#ifndef update_mmu_tlb_range 733static inline void update_mmu_tlb_range(struct vm_area_struct *vma, 734 unsigned long address, pte_t *ptep, unsigned int nr) 735{ 736} 737#endif 738 739static inline void update_mmu_tlb(struct vm_area_struct *vma, 740 unsigned long address, pte_t *ptep) 741{ 742 update_mmu_tlb_range(vma, address, ptep, 1); 743} 744 745/* 746 * Some architectures may be able to avoid expensive synchronization 747 * primitives when modifications are made to PTE's which are already 748 * not present, or in the process of an address space destruction. 749 */ 750#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 751static inline void pte_clear_not_present_full(struct mm_struct *mm, 752 unsigned long address, 753 pte_t *ptep, 754 int full) 755{ 756 pte_clear(mm, address, ptep); 757} 758#endif 759 760#ifndef clear_not_present_full_ptes 761/** 762 * clear_not_present_full_ptes - Clear multiple not present PTEs which are 763 * consecutive in the pgtable. 764 * @mm: Address space the ptes represent. 765 * @addr: Address of the first pte. 766 * @ptep: Page table pointer for the first entry. 767 * @nr: Number of entries to clear. 768 * @full: Whether we are clearing a full mm. 769 * 770 * May be overridden by the architecture; otherwise, implemented as a simple 771 * loop over pte_clear_not_present_full(). 772 * 773 * Context: The caller holds the page table lock. The PTEs are all not present. 774 * The PTEs are all in the same PMD. 775 */ 776static inline void clear_not_present_full_ptes(struct mm_struct *mm, 777 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 778{ 779 for (;;) { 780 pte_clear_not_present_full(mm, addr, ptep, full); 781 if (--nr == 0) 782 break; 783 ptep++; 784 addr += PAGE_SIZE; 785 } 786} 787#endif 788 789#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 790extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 791 unsigned long address, 792 pte_t *ptep); 793#endif 794 795#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 796extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 797 unsigned long address, 798 pmd_t *pmdp); 799extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 800 unsigned long address, 801 pud_t *pudp); 802#endif 803 804#ifndef pte_mkwrite 805static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 806{ 807 return pte_mkwrite_novma(pte); 808} 809#endif 810 811#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 812static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 813{ 814 return pmd_mkwrite_novma(pmd); 815} 816#endif 817 818#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 819struct mm_struct; 820static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 821{ 822 pte_t old_pte = ptep_get(ptep); 823 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 824} 825#endif 826 827#ifndef wrprotect_ptes 828/** 829 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same 830 * folio. 831 * @mm: Address space the pages are mapped into. 832 * @addr: Address the first page is mapped at. 833 * @ptep: Page table pointer for the first entry. 834 * @nr: Number of entries to write-protect. 835 * 836 * May be overridden by the architecture; otherwise, implemented as a simple 837 * loop over ptep_set_wrprotect(). 838 * 839 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 840 * some PTEs might be write-protected. 841 * 842 * Context: The caller holds the page table lock. The PTEs map consecutive 843 * pages that belong to the same folio. The PTEs are all in the same PMD. 844 */ 845static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 846 pte_t *ptep, unsigned int nr) 847{ 848 for (;;) { 849 ptep_set_wrprotect(mm, addr, ptep); 850 if (--nr == 0) 851 break; 852 ptep++; 853 addr += PAGE_SIZE; 854 } 855} 856#endif 857 858/* 859 * On some architectures hardware does not set page access bit when accessing 860 * memory page, it is responsibility of software setting this bit. It brings 861 * out extra page fault penalty to track page access bit. For optimization page 862 * access bit can be set during all page fault flow on these arches. 863 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 864 * where software maintains page access bit. 865 */ 866#ifndef pte_sw_mkyoung 867static inline pte_t pte_sw_mkyoung(pte_t pte) 868{ 869 return pte; 870} 871#define pte_sw_mkyoung pte_sw_mkyoung 872#endif 873 874#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 875#ifdef CONFIG_TRANSPARENT_HUGEPAGE 876static inline void pmdp_set_wrprotect(struct mm_struct *mm, 877 unsigned long address, pmd_t *pmdp) 878{ 879 pmd_t old_pmd = *pmdp; 880 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 881} 882#else 883static inline void pmdp_set_wrprotect(struct mm_struct *mm, 884 unsigned long address, pmd_t *pmdp) 885{ 886 BUILD_BUG(); 887} 888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 889#endif 890#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 891#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 892#ifdef CONFIG_TRANSPARENT_HUGEPAGE 893static inline void pudp_set_wrprotect(struct mm_struct *mm, 894 unsigned long address, pud_t *pudp) 895{ 896 pud_t old_pud = *pudp; 897 898 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 899} 900#else 901static inline void pudp_set_wrprotect(struct mm_struct *mm, 902 unsigned long address, pud_t *pudp) 903{ 904 BUILD_BUG(); 905} 906#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 907#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 908#endif 909 910#ifndef pmdp_collapse_flush 911#ifdef CONFIG_TRANSPARENT_HUGEPAGE 912extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 913 unsigned long address, pmd_t *pmdp); 914#else 915static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 916 unsigned long address, 917 pmd_t *pmdp) 918{ 919 BUILD_BUG(); 920 return *pmdp; 921} 922#define pmdp_collapse_flush pmdp_collapse_flush 923#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 924#endif 925 926#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 927extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 928 pgtable_t pgtable); 929#endif 930 931#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 932extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 933#endif 934 935#ifndef arch_needs_pgtable_deposit 936#define arch_needs_pgtable_deposit() (false) 937#endif 938 939#ifdef CONFIG_TRANSPARENT_HUGEPAGE 940/* 941 * This is an implementation of pmdp_establish() that is only suitable for an 942 * architecture that doesn't have hardware dirty/accessed bits. In this case we 943 * can't race with CPU which sets these bits and non-atomic approach is fine. 944 */ 945static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 946 unsigned long address, pmd_t *pmdp, pmd_t pmd) 947{ 948 pmd_t old_pmd = *pmdp; 949 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 950 return old_pmd; 951} 952#endif 953 954#ifndef __HAVE_ARCH_PMDP_INVALIDATE 955extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 956 pmd_t *pmdp); 957#endif 958 959#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 960 961/* 962 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 963 * hugepage mapping in the page tables. This function is similar to 964 * pmdp_invalidate(), but should only be used if the access and dirty bits would 965 * not be cleared by the software in the new PMD value. The function ensures 966 * that hardware changes of the access and dirty bits updates would not be lost. 967 * 968 * Doing so can allow in certain architectures to avoid a TLB flush in most 969 * cases. Yet, another TLB flush might be necessary later if the PMD update 970 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 971 * even when a TLB flush is needed because of the update, the caller may be able 972 * to batch these TLB flushing operations, so fewer TLB flush operations are 973 * needed. 974 */ 975extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 976 unsigned long address, pmd_t *pmdp); 977#endif 978 979#ifndef __HAVE_ARCH_PTE_SAME 980static inline int pte_same(pte_t pte_a, pte_t pte_b) 981{ 982 return pte_val(pte_a) == pte_val(pte_b); 983} 984#endif 985 986#ifndef __HAVE_ARCH_PTE_UNUSED 987/* 988 * Some architectures provide facilities to virtualization guests 989 * so that they can flag allocated pages as unused. This allows the 990 * host to transparently reclaim unused pages. This function returns 991 * whether the pte's page is unused. 992 */ 993static inline int pte_unused(pte_t pte) 994{ 995 return 0; 996} 997#endif 998 999#ifndef pte_access_permitted 1000#define pte_access_permitted(pte, write) \ 1001 (pte_present(pte) && (!(write) || pte_write(pte))) 1002#endif 1003 1004#ifndef pmd_access_permitted 1005#define pmd_access_permitted(pmd, write) \ 1006 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 1007#endif 1008 1009#ifndef pud_access_permitted 1010#define pud_access_permitted(pud, write) \ 1011 (pud_present(pud) && (!(write) || pud_write(pud))) 1012#endif 1013 1014#ifndef p4d_access_permitted 1015#define p4d_access_permitted(p4d, write) \ 1016 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 1017#endif 1018 1019#ifndef pgd_access_permitted 1020#define pgd_access_permitted(pgd, write) \ 1021 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 1022#endif 1023 1024#ifndef __HAVE_ARCH_PMD_SAME 1025static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1026{ 1027 return pmd_val(pmd_a) == pmd_val(pmd_b); 1028} 1029#endif 1030 1031#ifndef pud_same 1032static inline int pud_same(pud_t pud_a, pud_t pud_b) 1033{ 1034 return pud_val(pud_a) == pud_val(pud_b); 1035} 1036#define pud_same pud_same 1037#endif 1038 1039#ifndef __HAVE_ARCH_P4D_SAME 1040static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 1041{ 1042 return p4d_val(p4d_a) == p4d_val(p4d_b); 1043} 1044#endif 1045 1046#ifndef __HAVE_ARCH_PGD_SAME 1047static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 1048{ 1049 return pgd_val(pgd_a) == pgd_val(pgd_b); 1050} 1051#endif 1052 1053/* 1054 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 1055 * TLB flush will be required as a result of the "set". For example, use 1056 * in scenarios where it is known ahead of time that the routine is 1057 * setting non-present entries, or re-setting an existing entry to the 1058 * same value. Otherwise, use the typical "set" helpers and flush the 1059 * TLB. 1060 */ 1061#define set_pte_safe(ptep, pte) \ 1062({ \ 1063 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 1064 set_pte(ptep, pte); \ 1065}) 1066 1067#define set_pmd_safe(pmdp, pmd) \ 1068({ \ 1069 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 1070 set_pmd(pmdp, pmd); \ 1071}) 1072 1073#define set_pud_safe(pudp, pud) \ 1074({ \ 1075 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 1076 set_pud(pudp, pud); \ 1077}) 1078 1079#define set_p4d_safe(p4dp, p4d) \ 1080({ \ 1081 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 1082 set_p4d(p4dp, p4d); \ 1083}) 1084 1085#define set_pgd_safe(pgdp, pgd) \ 1086({ \ 1087 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 1088 set_pgd(pgdp, pgd); \ 1089}) 1090 1091#ifndef __HAVE_ARCH_DO_SWAP_PAGE 1092static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1093 struct vm_area_struct *vma, 1094 unsigned long addr, 1095 pte_t pte, pte_t oldpte, 1096 int nr) 1097{ 1098 1099} 1100#else 1101/* 1102 * Some architectures support metadata associated with a page. When a 1103 * page is being swapped out, this metadata must be saved so it can be 1104 * restored when the page is swapped back in. SPARC M7 and newer 1105 * processors support an ADI (Application Data Integrity) tag for the 1106 * page as metadata for the page. arch_do_swap_page() can restore this 1107 * metadata when a page is swapped back in. 1108 */ 1109static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1110 struct vm_area_struct *vma, 1111 unsigned long addr, 1112 pte_t pte, pte_t oldpte, 1113 int nr) 1114{ 1115 for (int i = 0; i < nr; i++) { 1116 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, 1117 pte_advance_pfn(pte, i), 1118 pte_advance_pfn(oldpte, i)); 1119 } 1120} 1121#endif 1122 1123#ifndef __HAVE_ARCH_UNMAP_ONE 1124/* 1125 * Some architectures support metadata associated with a page. When a 1126 * page is being swapped out, this metadata must be saved so it can be 1127 * restored when the page is swapped back in. SPARC M7 and newer 1128 * processors support an ADI (Application Data Integrity) tag for the 1129 * page as metadata for the page. arch_unmap_one() can save this 1130 * metadata on a swap-out of a page. 1131 */ 1132static inline int arch_unmap_one(struct mm_struct *mm, 1133 struct vm_area_struct *vma, 1134 unsigned long addr, 1135 pte_t orig_pte) 1136{ 1137 return 0; 1138} 1139#endif 1140 1141/* 1142 * Allow architectures to preserve additional metadata associated with 1143 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 1144 * prototypes must be defined in the arch-specific asm/pgtable.h file. 1145 */ 1146#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1147static inline int arch_prepare_to_swap(struct folio *folio) 1148{ 1149 return 0; 1150} 1151#endif 1152 1153#ifndef __HAVE_ARCH_SWAP_INVALIDATE 1154static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1155{ 1156} 1157 1158static inline void arch_swap_invalidate_area(int type) 1159{ 1160} 1161#endif 1162 1163#ifndef __HAVE_ARCH_SWAP_RESTORE 1164static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1165{ 1166} 1167#endif 1168 1169#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 1170#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 1171#endif 1172 1173#ifndef __HAVE_ARCH_MOVE_PTE 1174#define move_pte(pte, old_addr, new_addr) (pte) 1175#endif 1176 1177#ifndef pte_accessible 1178# define pte_accessible(mm, pte) ((void)(pte), 1) 1179#endif 1180 1181#ifndef flush_tlb_fix_spurious_fault 1182#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 1183#endif 1184 1185/* 1186 * When walking page tables, get the address of the next boundary, 1187 * or the end address of the range if that comes earlier. Although no 1188 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 1189 */ 1190 1191#define pgd_addr_end(addr, end) \ 1192({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 1193 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1194}) 1195 1196#ifndef p4d_addr_end 1197#define p4d_addr_end(addr, end) \ 1198({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 1199 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1200}) 1201#endif 1202 1203#ifndef pud_addr_end 1204#define pud_addr_end(addr, end) \ 1205({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 1206 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1207}) 1208#endif 1209 1210#ifndef pmd_addr_end 1211#define pmd_addr_end(addr, end) \ 1212({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 1213 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1214}) 1215#endif 1216 1217/* 1218 * When walking page tables, we usually want to skip any p?d_none entries; 1219 * and any p?d_bad entries - reporting the error before resetting to none. 1220 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 1221 */ 1222void pgd_clear_bad(pgd_t *); 1223 1224#ifndef __PAGETABLE_P4D_FOLDED 1225void p4d_clear_bad(p4d_t *); 1226#else 1227#define p4d_clear_bad(p4d) do { } while (0) 1228#endif 1229 1230#ifndef __PAGETABLE_PUD_FOLDED 1231void pud_clear_bad(pud_t *); 1232#else 1233#define pud_clear_bad(p4d) do { } while (0) 1234#endif 1235 1236void pmd_clear_bad(pmd_t *); 1237 1238static inline int pgd_none_or_clear_bad(pgd_t *pgd) 1239{ 1240 if (pgd_none(*pgd)) 1241 return 1; 1242 if (unlikely(pgd_bad(*pgd))) { 1243 pgd_clear_bad(pgd); 1244 return 1; 1245 } 1246 return 0; 1247} 1248 1249static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1250{ 1251 if (p4d_none(*p4d)) 1252 return 1; 1253 if (unlikely(p4d_bad(*p4d))) { 1254 p4d_clear_bad(p4d); 1255 return 1; 1256 } 1257 return 0; 1258} 1259 1260static inline int pud_none_or_clear_bad(pud_t *pud) 1261{ 1262 if (pud_none(*pud)) 1263 return 1; 1264 if (unlikely(pud_bad(*pud))) { 1265 pud_clear_bad(pud); 1266 return 1; 1267 } 1268 return 0; 1269} 1270 1271static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1272{ 1273 if (pmd_none(*pmd)) 1274 return 1; 1275 if (unlikely(pmd_bad(*pmd))) { 1276 pmd_clear_bad(pmd); 1277 return 1; 1278 } 1279 return 0; 1280} 1281 1282static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1283 unsigned long addr, 1284 pte_t *ptep) 1285{ 1286 /* 1287 * Get the current pte state, but zero it out to make it 1288 * non-present, preventing the hardware from asynchronously 1289 * updating it. 1290 */ 1291 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1292} 1293 1294static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1295 unsigned long addr, 1296 pte_t *ptep, pte_t pte) 1297{ 1298 /* 1299 * The pte is non-present, so there's no hardware state to 1300 * preserve. 1301 */ 1302 set_pte_at(vma->vm_mm, addr, ptep, pte); 1303} 1304 1305#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1306/* 1307 * Start a pte protection read-modify-write transaction, which 1308 * protects against asynchronous hardware modifications to the pte. 1309 * The intention is not to prevent the hardware from making pte 1310 * updates, but to prevent any updates it may make from being lost. 1311 * 1312 * This does not protect against other software modifications of the 1313 * pte; the appropriate pte lock must be held over the transaction. 1314 * 1315 * Note that this interface is intended to be batchable, meaning that 1316 * ptep_modify_prot_commit may not actually update the pte, but merely 1317 * queue the update to be done at some later time. The update must be 1318 * actually committed before the pte lock is released, however. 1319 */ 1320static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1321 unsigned long addr, 1322 pte_t *ptep) 1323{ 1324 return __ptep_modify_prot_start(vma, addr, ptep); 1325} 1326 1327/* 1328 * Commit an update to a pte, leaving any hardware-controlled bits in 1329 * the PTE unmodified. 1330 */ 1331static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1332 unsigned long addr, 1333 pte_t *ptep, pte_t old_pte, pte_t pte) 1334{ 1335 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1336} 1337#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1338#endif /* CONFIG_MMU */ 1339 1340/* 1341 * No-op macros that just return the current protection value. Defined here 1342 * because these macros can be used even if CONFIG_MMU is not defined. 1343 */ 1344 1345#ifndef pgprot_nx 1346#define pgprot_nx(prot) (prot) 1347#endif 1348 1349#ifndef pgprot_noncached 1350#define pgprot_noncached(prot) (prot) 1351#endif 1352 1353#ifndef pgprot_writecombine 1354#define pgprot_writecombine pgprot_noncached 1355#endif 1356 1357#ifndef pgprot_writethrough 1358#define pgprot_writethrough pgprot_noncached 1359#endif 1360 1361#ifndef pgprot_device 1362#define pgprot_device pgprot_noncached 1363#endif 1364 1365#ifndef pgprot_mhp 1366#define pgprot_mhp(prot) (prot) 1367#endif 1368 1369#ifdef CONFIG_MMU 1370#ifndef pgprot_modify 1371#define pgprot_modify pgprot_modify 1372static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1373{ 1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1375 newprot = pgprot_noncached(newprot); 1376 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1377 newprot = pgprot_writecombine(newprot); 1378 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1379 newprot = pgprot_device(newprot); 1380 return newprot; 1381} 1382#endif 1383#endif /* CONFIG_MMU */ 1384 1385#ifndef pgprot_encrypted 1386#define pgprot_encrypted(prot) (prot) 1387#endif 1388 1389#ifndef pgprot_decrypted 1390#define pgprot_decrypted(prot) (prot) 1391#endif 1392 1393/* 1394 * A facility to provide batching of the reload of page tables and 1395 * other process state with the actual context switch code for 1396 * paravirtualized guests. By convention, only one of the batched 1397 * update (lazy) modes (CPU, MMU) should be active at any given time, 1398 * entry should never be nested, and entry and exits should always be 1399 * paired. This is for sanity of maintaining and reasoning about the 1400 * kernel code. In this case, the exit (end of the context switch) is 1401 * in architecture-specific code, and so doesn't need a generic 1402 * definition. 1403 */ 1404#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1405#define arch_start_context_switch(prev) do {} while (0) 1406#endif 1407 1408#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1409#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1410static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1411{ 1412 return pmd; 1413} 1414 1415static inline int pmd_swp_soft_dirty(pmd_t pmd) 1416{ 1417 return 0; 1418} 1419 1420static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1421{ 1422 return pmd; 1423} 1424#endif 1425#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1426static inline int pte_soft_dirty(pte_t pte) 1427{ 1428 return 0; 1429} 1430 1431static inline int pmd_soft_dirty(pmd_t pmd) 1432{ 1433 return 0; 1434} 1435 1436static inline pte_t pte_mksoft_dirty(pte_t pte) 1437{ 1438 return pte; 1439} 1440 1441static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1442{ 1443 return pmd; 1444} 1445 1446static inline pte_t pte_clear_soft_dirty(pte_t pte) 1447{ 1448 return pte; 1449} 1450 1451static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1452{ 1453 return pmd; 1454} 1455 1456static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1457{ 1458 return pte; 1459} 1460 1461static inline int pte_swp_soft_dirty(pte_t pte) 1462{ 1463 return 0; 1464} 1465 1466static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1467{ 1468 return pte; 1469} 1470 1471static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1472{ 1473 return pmd; 1474} 1475 1476static inline int pmd_swp_soft_dirty(pmd_t pmd) 1477{ 1478 return 0; 1479} 1480 1481static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1482{ 1483 return pmd; 1484} 1485#endif 1486 1487#ifndef __HAVE_PFNMAP_TRACKING 1488/* 1489 * Interfaces that can be used by architecture code to keep track of 1490 * memory type of pfn mappings specified by the remap_pfn_range, 1491 * vmf_insert_pfn. 1492 */ 1493 1494/* 1495 * track_pfn_remap is called when a _new_ pfn mapping is being established 1496 * by remap_pfn_range() for physical range indicated by pfn and size. 1497 */ 1498static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1499 unsigned long pfn, unsigned long addr, 1500 unsigned long size) 1501{ 1502 return 0; 1503} 1504 1505/* 1506 * track_pfn_insert is called when a _new_ single pfn is established 1507 * by vmf_insert_pfn(). 1508 */ 1509static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1510 pfn_t pfn) 1511{ 1512} 1513 1514/* 1515 * track_pfn_copy is called when vma that is covering the pfnmap gets 1516 * copied through copy_page_range(). 1517 */ 1518static inline int track_pfn_copy(struct vm_area_struct *vma) 1519{ 1520 return 0; 1521} 1522 1523/* 1524 * untrack_pfn is called while unmapping a pfnmap for a region. 1525 * untrack can be called for a specific region indicated by pfn and size or 1526 * can be for the entire vma (in which case pfn, size are zero). 1527 */ 1528static inline void untrack_pfn(struct vm_area_struct *vma, 1529 unsigned long pfn, unsigned long size, 1530 bool mm_wr_locked) 1531{ 1532} 1533 1534/* 1535 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1536 * or fails to copy pgtable during duplicate vm area. 1537 */ 1538static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1539{ 1540} 1541#else 1542extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1543 unsigned long pfn, unsigned long addr, 1544 unsigned long size); 1545extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1546 pfn_t pfn); 1547extern int track_pfn_copy(struct vm_area_struct *vma); 1548extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1549 unsigned long size, bool mm_wr_locked); 1550extern void untrack_pfn_clear(struct vm_area_struct *vma); 1551#endif 1552 1553#ifdef CONFIG_MMU 1554#ifdef __HAVE_COLOR_ZERO_PAGE 1555static inline int is_zero_pfn(unsigned long pfn) 1556{ 1557 extern unsigned long zero_pfn; 1558 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1559 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1560} 1561 1562#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1563 1564#else 1565static inline int is_zero_pfn(unsigned long pfn) 1566{ 1567 extern unsigned long zero_pfn; 1568 return pfn == zero_pfn; 1569} 1570 1571static inline unsigned long my_zero_pfn(unsigned long addr) 1572{ 1573 extern unsigned long zero_pfn; 1574 return zero_pfn; 1575} 1576#endif 1577#else 1578static inline int is_zero_pfn(unsigned long pfn) 1579{ 1580 return 0; 1581} 1582 1583static inline unsigned long my_zero_pfn(unsigned long addr) 1584{ 1585 return 0; 1586} 1587#endif /* CONFIG_MMU */ 1588 1589#ifdef CONFIG_MMU 1590 1591#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1592static inline int pmd_trans_huge(pmd_t pmd) 1593{ 1594 return 0; 1595} 1596#ifndef pmd_write 1597static inline int pmd_write(pmd_t pmd) 1598{ 1599 BUG(); 1600 return 0; 1601} 1602#endif /* pmd_write */ 1603#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1604 1605#ifndef pud_write 1606static inline int pud_write(pud_t pud) 1607{ 1608 BUG(); 1609 return 0; 1610} 1611#endif /* pud_write */ 1612 1613#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1614static inline int pmd_devmap(pmd_t pmd) 1615{ 1616 return 0; 1617} 1618static inline int pud_devmap(pud_t pud) 1619{ 1620 return 0; 1621} 1622static inline int pgd_devmap(pgd_t pgd) 1623{ 1624 return 0; 1625} 1626#endif 1627 1628#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1629 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1630static inline int pud_trans_huge(pud_t pud) 1631{ 1632 return 0; 1633} 1634#endif 1635 1636static inline int pud_trans_unstable(pud_t *pud) 1637{ 1638#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1639 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1640 pud_t pudval = READ_ONCE(*pud); 1641 1642 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1643 return 1; 1644 if (unlikely(pud_bad(pudval))) { 1645 pud_clear_bad(pud); 1646 return 1; 1647 } 1648#endif 1649 return 0; 1650} 1651 1652#ifndef CONFIG_NUMA_BALANCING 1653/* 1654 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1655 * perfectly valid to indicate "no" in that case, which is why our default 1656 * implementation defaults to "always no". 1657 * 1658 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1659 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1660 * accessible VMAs. 1661 * 1662 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1663 * looking at the VMA accessibility is sufficient. 1664 */ 1665static inline int pte_protnone(pte_t pte) 1666{ 1667 return 0; 1668} 1669 1670static inline int pmd_protnone(pmd_t pmd) 1671{ 1672 return 0; 1673} 1674#endif /* CONFIG_NUMA_BALANCING */ 1675 1676#endif /* CONFIG_MMU */ 1677 1678#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1679 1680#ifndef __PAGETABLE_P4D_FOLDED 1681int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1682void p4d_clear_huge(p4d_t *p4d); 1683#else 1684static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1685{ 1686 return 0; 1687} 1688static inline void p4d_clear_huge(p4d_t *p4d) { } 1689#endif /* !__PAGETABLE_P4D_FOLDED */ 1690 1691int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1692int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1693int pud_clear_huge(pud_t *pud); 1694int pmd_clear_huge(pmd_t *pmd); 1695int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1696int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1697int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1698#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1699static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1700{ 1701 return 0; 1702} 1703static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1704{ 1705 return 0; 1706} 1707static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1708{ 1709 return 0; 1710} 1711static inline void p4d_clear_huge(p4d_t *p4d) { } 1712static inline int pud_clear_huge(pud_t *pud) 1713{ 1714 return 0; 1715} 1716static inline int pmd_clear_huge(pmd_t *pmd) 1717{ 1718 return 0; 1719} 1720static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1721{ 1722 return 0; 1723} 1724static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1725{ 1726 return 0; 1727} 1728static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1729{ 1730 return 0; 1731} 1732#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1733 1734#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1735#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1736/* 1737 * ARCHes with special requirements for evicting THP backing TLB entries can 1738 * implement this. Otherwise also, it can help optimize normal TLB flush in 1739 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1740 * entire TLB if flush span is greater than a threshold, which will 1741 * likely be true for a single huge page. Thus a single THP flush will 1742 * invalidate the entire TLB which is not desirable. 1743 * e.g. see arch/arc: flush_pmd_tlb_range 1744 */ 1745#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1746#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1747#else 1748#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1749#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1750#endif 1751#endif 1752 1753struct file; 1754int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1755 unsigned long size, pgprot_t *vma_prot); 1756 1757#ifndef CONFIG_X86_ESPFIX64 1758static inline void init_espfix_bsp(void) { } 1759#endif 1760 1761extern void __init pgtable_cache_init(void); 1762 1763#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1764static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1765{ 1766 return true; 1767} 1768 1769static inline bool arch_has_pfn_modify_check(void) 1770{ 1771 return false; 1772} 1773#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1774 1775/* 1776 * Architecture PAGE_KERNEL_* fallbacks 1777 * 1778 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1779 * because they really don't support them, or the port needs to be updated to 1780 * reflect the required functionality. Below are a set of relatively safe 1781 * fallbacks, as best effort, which we can count on in lieu of the architectures 1782 * not defining them on their own yet. 1783 */ 1784 1785#ifndef PAGE_KERNEL_RO 1786# define PAGE_KERNEL_RO PAGE_KERNEL 1787#endif 1788 1789#ifndef PAGE_KERNEL_EXEC 1790# define PAGE_KERNEL_EXEC PAGE_KERNEL 1791#endif 1792 1793/* 1794 * Page Table Modification bits for pgtbl_mod_mask. 1795 * 1796 * These are used by the p?d_alloc_track*() set of functions an in the generic 1797 * vmalloc/ioremap code to track at which page-table levels entries have been 1798 * modified. Based on that the code can better decide when vmalloc and ioremap 1799 * mapping changes need to be synchronized to other page-tables in the system. 1800 */ 1801#define __PGTBL_PGD_MODIFIED 0 1802#define __PGTBL_P4D_MODIFIED 1 1803#define __PGTBL_PUD_MODIFIED 2 1804#define __PGTBL_PMD_MODIFIED 3 1805#define __PGTBL_PTE_MODIFIED 4 1806 1807#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1808#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1809#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1810#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1811#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1812 1813/* Page-Table Modification Mask */ 1814typedef unsigned int pgtbl_mod_mask; 1815 1816#endif /* !__ASSEMBLY__ */ 1817 1818#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1819#ifdef CONFIG_PHYS_ADDR_T_64BIT 1820/* 1821 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1822 * with physical address space extension, but falls back to 1823 * BITS_PER_LONG otherwise. 1824 */ 1825#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1826#else 1827#define MAX_POSSIBLE_PHYSMEM_BITS 32 1828#endif 1829#endif 1830 1831#ifndef has_transparent_hugepage 1832#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1833#endif 1834 1835#ifndef has_transparent_pud_hugepage 1836#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1837#endif 1838/* 1839 * On some architectures it depends on the mm if the p4d/pud or pmd 1840 * layer of the page table hierarchy is folded or not. 1841 */ 1842#ifndef mm_p4d_folded 1843#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1844#endif 1845 1846#ifndef mm_pud_folded 1847#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1848#endif 1849 1850#ifndef mm_pmd_folded 1851#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1852#endif 1853 1854#ifndef p4d_offset_lockless 1855#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1856#endif 1857#ifndef pud_offset_lockless 1858#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1859#endif 1860#ifndef pmd_offset_lockless 1861#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1862#endif 1863 1864/* 1865 * pXd_leaf() is the API to check whether a pgtable entry is a huge page 1866 * mapping. It should work globally across all archs, without any 1867 * dependency on CONFIG_* options. For architectures that do not support 1868 * huge mappings on specific levels, below fallbacks will be used. 1869 * 1870 * A leaf pgtable entry should always imply the following: 1871 * 1872 * - It is a "present" entry. IOW, before using this API, please check it 1873 * with pXd_present() first. NOTE: it may not always mean the "present 1874 * bit" is set. For example, PROT_NONE entries are always "present". 1875 * 1876 * - It should _never_ be a swap entry of any type. Above "present" check 1877 * should have guarded this, but let's be crystal clear on this. 1878 * 1879 * - It should contain a huge PFN, which points to a huge page larger than 1880 * PAGE_SIZE of the platform. The PFN format isn't important here. 1881 * 1882 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), 1883 * pXd_devmap(), or hugetlb mappings). 1884 */ 1885#ifndef pgd_leaf 1886#define pgd_leaf(x) false 1887#endif 1888#ifndef p4d_leaf 1889#define p4d_leaf(x) false 1890#endif 1891#ifndef pud_leaf 1892#define pud_leaf(x) false 1893#endif 1894#ifndef pmd_leaf 1895#define pmd_leaf(x) false 1896#endif 1897 1898#ifndef pgd_leaf_size 1899#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1900#endif 1901#ifndef p4d_leaf_size 1902#define p4d_leaf_size(x) P4D_SIZE 1903#endif 1904#ifndef pud_leaf_size 1905#define pud_leaf_size(x) PUD_SIZE 1906#endif 1907#ifndef pmd_leaf_size 1908#define pmd_leaf_size(x) PMD_SIZE 1909#endif 1910#ifndef __pte_leaf_size 1911#ifndef pte_leaf_size 1912#define pte_leaf_size(x) PAGE_SIZE 1913#endif 1914#define __pte_leaf_size(x,y) pte_leaf_size(y) 1915#endif 1916 1917/* 1918 * We always define pmd_pfn for all archs as it's used in lots of generic 1919 * code. Now it happens too for pud_pfn (and can happen for larger 1920 * mappings too in the future; we're not there yet). Instead of defining 1921 * it for all archs (like pmd_pfn), provide a fallback. 1922 * 1923 * Note that returning 0 here means any arch that didn't define this can 1924 * get severely wrong when it hits a real pud leaf. It's arch's 1925 * responsibility to properly define it when a huge pud is possible. 1926 */ 1927#ifndef pud_pfn 1928#define pud_pfn(x) 0 1929#endif 1930 1931/* 1932 * Some architectures have MMUs that are configurable or selectable at boot 1933 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1934 * helps to have a static maximum value. 1935 */ 1936 1937#ifndef MAX_PTRS_PER_PTE 1938#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1939#endif 1940 1941#ifndef MAX_PTRS_PER_PMD 1942#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1943#endif 1944 1945#ifndef MAX_PTRS_PER_PUD 1946#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1947#endif 1948 1949#ifndef MAX_PTRS_PER_P4D 1950#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1951#endif 1952 1953/* description of effects of mapping type and prot in current implementation. 1954 * this is due to the limited x86 page protection hardware. The expected 1955 * behavior is in parens: 1956 * 1957 * map_type prot 1958 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1959 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1960 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1961 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1962 * 1963 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1964 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1965 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1966 * 1967 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1968 * MAP_PRIVATE (with Enhanced PAN supported): 1969 * r: (no) no 1970 * w: (no) no 1971 * x: (yes) yes 1972 */ 1973#define DECLARE_VM_GET_PAGE_PROT \ 1974pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1975{ \ 1976 return protection_map[vm_flags & \ 1977 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1978} \ 1979EXPORT_SYMBOL(vm_get_page_prot); 1980 1981#endif /* _LINUX_PGTABLE_H */