at v6.11 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22 23#include <asm/mmu.h> 24 25#ifndef AT_VECTOR_SIZE_ARCH 26#define AT_VECTOR_SIZE_ARCH 0 27#endif 28#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30#define INIT_PASID 0 31 32struct address_space; 33struct mem_cgroup; 34 35/* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * The mapcount field must not be used for own purposes. 50 * 51 * If you want to use the refcount field, it must be used in such a way 52 * that other CPUs temporarily incrementing and then decrementing the 53 * refcount does not cause problems. On receiving the page from 54 * alloc_pages(), the refcount will be positive. 55 * 56 * If you allocate pages of order > 0, you can use some of the fields 57 * in each subpage, but you may need to restore some of their values 58 * afterwards. 59 * 60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 61 * That requires that freelist & counters in struct slab be adjacent and 62 * double-word aligned. Because struct slab currently just reinterprets the 63 * bits of struct page, we align all struct pages to double-word boundaries, 64 * and ensure that 'freelist' is aligned within struct slab. 65 */ 66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 68#else 69#define _struct_page_alignment __aligned(sizeof(unsigned long)) 70#endif 71 72struct page { 73 unsigned long flags; /* Atomic flags, some possibly 74 * updated asynchronously */ 75 /* 76 * Five words (20/40 bytes) are available in this union. 77 * WARNING: bit 0 of the first word is used for PageTail(). That 78 * means the other users of this union MUST NOT use the bit to 79 * avoid collision and false-positive PageTail(). 80 */ 81 union { 82 struct { /* Page cache and anonymous pages */ 83 /** 84 * @lru: Pageout list, eg. active_list protected by 85 * lruvec->lru_lock. Sometimes used as a generic list 86 * by the page owner. 87 */ 88 union { 89 struct list_head lru; 90 91 /* Or, for the Unevictable "LRU list" slot */ 92 struct { 93 /* Always even, to negate PageTail */ 94 void *__filler; 95 /* Count page's or folio's mlocks */ 96 unsigned int mlock_count; 97 }; 98 99 /* Or, free page */ 100 struct list_head buddy_list; 101 struct list_head pcp_list; 102 }; 103 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 104 struct address_space *mapping; 105 union { 106 pgoff_t index; /* Our offset within mapping. */ 107 unsigned long share; /* share count for fsdax */ 108 }; 109 /** 110 * @private: Mapping-private opaque data. 111 * Usually used for buffer_heads if PagePrivate. 112 * Used for swp_entry_t if PageSwapCache. 113 * Indicates order in the buddy system if PageBuddy. 114 */ 115 unsigned long private; 116 }; 117 struct { /* page_pool used by netstack */ 118 /** 119 * @pp_magic: magic value to avoid recycling non 120 * page_pool allocated pages. 121 */ 122 unsigned long pp_magic; 123 struct page_pool *pp; 124 unsigned long _pp_mapping_pad; 125 unsigned long dma_addr; 126 atomic_long_t pp_ref_count; 127 }; 128 struct { /* Tail pages of compound page */ 129 unsigned long compound_head; /* Bit zero is set */ 130 }; 131 struct { /* ZONE_DEVICE pages */ 132 /** @pgmap: Points to the hosting device page map. */ 133 struct dev_pagemap *pgmap; 134 void *zone_device_data; 135 /* 136 * ZONE_DEVICE private pages are counted as being 137 * mapped so the next 3 words hold the mapping, index, 138 * and private fields from the source anonymous or 139 * page cache page while the page is migrated to device 140 * private memory. 141 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 142 * use the mapping, index, and private fields when 143 * pmem backed DAX files are mapped. 144 */ 145 }; 146 147 /** @rcu_head: You can use this to free a page by RCU. */ 148 struct rcu_head rcu_head; 149 }; 150 151 union { /* This union is 4 bytes in size. */ 152 /* 153 * For head pages of typed folios, the value stored here 154 * allows for determining what this page is used for. The 155 * tail pages of typed folios will not store a type 156 * (page_type == _mapcount == -1). 157 * 158 * See page-flags.h for a list of page types which are currently 159 * stored here. 160 * 161 * Owners of typed folios may reuse the lower 16 bit of the 162 * head page page_type field after setting the page type, 163 * but must reset these 16 bit to -1 before clearing the 164 * page type. 165 */ 166 unsigned int page_type; 167 168 /* 169 * For pages that are part of non-typed folios for which mappings 170 * are tracked via the RMAP, encodes the number of times this page 171 * is directly referenced by a page table. 172 * 173 * Note that the mapcount is always initialized to -1, so that 174 * transitions both from it and to it can be tracked, using 175 * atomic_inc_and_test() and atomic_add_negative(-1). 176 */ 177 atomic_t _mapcount; 178 }; 179 180 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 181 atomic_t _refcount; 182 183#ifdef CONFIG_MEMCG 184 unsigned long memcg_data; 185#elif defined(CONFIG_SLAB_OBJ_EXT) 186 unsigned long _unused_slab_obj_exts; 187#endif 188 189 /* 190 * On machines where all RAM is mapped into kernel address space, 191 * we can simply calculate the virtual address. On machines with 192 * highmem some memory is mapped into kernel virtual memory 193 * dynamically, so we need a place to store that address. 194 * Note that this field could be 16 bits on x86 ... ;) 195 * 196 * Architectures with slow multiplication can define 197 * WANT_PAGE_VIRTUAL in asm/page.h 198 */ 199#if defined(WANT_PAGE_VIRTUAL) 200 void *virtual; /* Kernel virtual address (NULL if 201 not kmapped, ie. highmem) */ 202#endif /* WANT_PAGE_VIRTUAL */ 203 204#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 205 int _last_cpupid; 206#endif 207 208#ifdef CONFIG_KMSAN 209 /* 210 * KMSAN metadata for this page: 211 * - shadow page: every bit indicates whether the corresponding 212 * bit of the original page is initialized (0) or not (1); 213 * - origin page: every 4 bytes contain an id of the stack trace 214 * where the uninitialized value was created. 215 */ 216 struct page *kmsan_shadow; 217 struct page *kmsan_origin; 218#endif 219} _struct_page_alignment; 220 221/* 222 * struct encoded_page - a nonexistent type marking this pointer 223 * 224 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 225 * with the low bits of the pointer indicating extra context-dependent 226 * information. Only used in mmu_gather handling, and this acts as a type 227 * system check on that use. 228 * 229 * We only really have two guaranteed bits in general, although you could 230 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 231 * for more. 232 * 233 * Use the supplied helper functions to endcode/decode the pointer and bits. 234 */ 235struct encoded_page; 236 237#define ENCODED_PAGE_BITS 3ul 238 239/* Perform rmap removal after we have flushed the TLB. */ 240#define ENCODED_PAGE_BIT_DELAY_RMAP 1ul 241 242/* 243 * The next item in an encoded_page array is the "nr_pages" argument, specifying 244 * the number of consecutive pages starting from this page, that all belong to 245 * the same folio. For example, "nr_pages" corresponds to the number of folio 246 * references that must be dropped. If this bit is not set, "nr_pages" is 247 * implicitly 1. 248 */ 249#define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul 250 251static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 252{ 253 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS); 254 return (struct encoded_page *)(flags | (unsigned long)page); 255} 256 257static inline unsigned long encoded_page_flags(struct encoded_page *page) 258{ 259 return ENCODED_PAGE_BITS & (unsigned long)page; 260} 261 262static inline struct page *encoded_page_ptr(struct encoded_page *page) 263{ 264 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page); 265} 266 267static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr) 268{ 269 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr); 270 return (struct encoded_page *)(nr << 2); 271} 272 273static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page) 274{ 275 return ((unsigned long)page) >> 2; 276} 277 278/* 279 * A swap entry has to fit into a "unsigned long", as the entry is hidden 280 * in the "index" field of the swapper address space. 281 */ 282typedef struct { 283 unsigned long val; 284} swp_entry_t; 285 286/** 287 * struct folio - Represents a contiguous set of bytes. 288 * @flags: Identical to the page flags. 289 * @lru: Least Recently Used list; tracks how recently this folio was used. 290 * @mlock_count: Number of times this folio has been pinned by mlock(). 291 * @mapping: The file this page belongs to, or refers to the anon_vma for 292 * anonymous memory. 293 * @index: Offset within the file, in units of pages. For anonymous memory, 294 * this is the index from the beginning of the mmap. 295 * @private: Filesystem per-folio data (see folio_attach_private()). 296 * @swap: Used for swp_entry_t if folio_test_swapcache(). 297 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 298 * find out how many times this folio is mapped by userspace. 299 * @_refcount: Do not access this member directly. Use folio_ref_count() 300 * to find how many references there are to this folio. 301 * @memcg_data: Memory Control Group data. 302 * @virtual: Virtual address in the kernel direct map. 303 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 304 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 305 * @_large_mapcount: Do not use directly, call folio_mapcount(). 306 * @_nr_pages_mapped: Do not use outside of rmap and debug code. 307 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 308 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 309 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 310 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 311 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 312 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 313 * @_deferred_list: Folios to be split under memory pressure. 314 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab. 315 * 316 * A folio is a physically, virtually and logically contiguous set 317 * of bytes. It is a power-of-two in size, and it is aligned to that 318 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 319 * in the page cache, it is at a file offset which is a multiple of that 320 * power-of-two. It may be mapped into userspace at an address which is 321 * at an arbitrary page offset, but its kernel virtual address is aligned 322 * to its size. 323 */ 324struct folio { 325 /* private: don't document the anon union */ 326 union { 327 struct { 328 /* public: */ 329 unsigned long flags; 330 union { 331 struct list_head lru; 332 /* private: avoid cluttering the output */ 333 struct { 334 void *__filler; 335 /* public: */ 336 unsigned int mlock_count; 337 /* private: */ 338 }; 339 /* public: */ 340 }; 341 struct address_space *mapping; 342 pgoff_t index; 343 union { 344 void *private; 345 swp_entry_t swap; 346 }; 347 atomic_t _mapcount; 348 atomic_t _refcount; 349#ifdef CONFIG_MEMCG 350 unsigned long memcg_data; 351#elif defined(CONFIG_SLAB_OBJ_EXT) 352 unsigned long _unused_slab_obj_exts; 353#endif 354#if defined(WANT_PAGE_VIRTUAL) 355 void *virtual; 356#endif 357#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 358 int _last_cpupid; 359#endif 360 /* private: the union with struct page is transitional */ 361 }; 362 struct page page; 363 }; 364 union { 365 struct { 366 unsigned long _flags_1; 367 unsigned long _head_1; 368 /* public: */ 369 atomic_t _large_mapcount; 370 atomic_t _entire_mapcount; 371 atomic_t _nr_pages_mapped; 372 atomic_t _pincount; 373#ifdef CONFIG_64BIT 374 unsigned int _folio_nr_pages; 375#endif 376 /* private: the union with struct page is transitional */ 377 }; 378 struct page __page_1; 379 }; 380 union { 381 struct { 382 unsigned long _flags_2; 383 unsigned long _head_2; 384 /* public: */ 385 void *_hugetlb_subpool; 386 void *_hugetlb_cgroup; 387 void *_hugetlb_cgroup_rsvd; 388 void *_hugetlb_hwpoison; 389 /* private: the union with struct page is transitional */ 390 }; 391 struct { 392 unsigned long _flags_2a; 393 unsigned long _head_2a; 394 /* public: */ 395 struct list_head _deferred_list; 396 /* private: the union with struct page is transitional */ 397 }; 398 struct page __page_2; 399 }; 400}; 401 402#define FOLIO_MATCH(pg, fl) \ 403 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 404FOLIO_MATCH(flags, flags); 405FOLIO_MATCH(lru, lru); 406FOLIO_MATCH(mapping, mapping); 407FOLIO_MATCH(compound_head, lru); 408FOLIO_MATCH(index, index); 409FOLIO_MATCH(private, private); 410FOLIO_MATCH(_mapcount, _mapcount); 411FOLIO_MATCH(_refcount, _refcount); 412#ifdef CONFIG_MEMCG 413FOLIO_MATCH(memcg_data, memcg_data); 414#endif 415#if defined(WANT_PAGE_VIRTUAL) 416FOLIO_MATCH(virtual, virtual); 417#endif 418#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 419FOLIO_MATCH(_last_cpupid, _last_cpupid); 420#endif 421#undef FOLIO_MATCH 422#define FOLIO_MATCH(pg, fl) \ 423 static_assert(offsetof(struct folio, fl) == \ 424 offsetof(struct page, pg) + sizeof(struct page)) 425FOLIO_MATCH(flags, _flags_1); 426FOLIO_MATCH(compound_head, _head_1); 427#undef FOLIO_MATCH 428#define FOLIO_MATCH(pg, fl) \ 429 static_assert(offsetof(struct folio, fl) == \ 430 offsetof(struct page, pg) + 2 * sizeof(struct page)) 431FOLIO_MATCH(flags, _flags_2); 432FOLIO_MATCH(compound_head, _head_2); 433FOLIO_MATCH(flags, _flags_2a); 434FOLIO_MATCH(compound_head, _head_2a); 435#undef FOLIO_MATCH 436 437/** 438 * struct ptdesc - Memory descriptor for page tables. 439 * @__page_flags: Same as page flags. Powerpc only. 440 * @pt_rcu_head: For freeing page table pages. 441 * @pt_list: List of used page tables. Used for s390 and x86. 442 * @_pt_pad_1: Padding that aliases with page's compound head. 443 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 444 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 445 * @pt_index: Used for s390 gmap. 446 * @pt_mm: Used for x86 pgds. 447 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 448 * @_pt_pad_2: Padding to ensure proper alignment. 449 * @ptl: Lock for the page table. 450 * @__page_type: Same as page->page_type. Unused for page tables. 451 * @__page_refcount: Same as page refcount. 452 * @pt_memcg_data: Memcg data. Tracked for page tables here. 453 * 454 * This struct overlays struct page for now. Do not modify without a good 455 * understanding of the issues. 456 */ 457struct ptdesc { 458 unsigned long __page_flags; 459 460 union { 461 struct rcu_head pt_rcu_head; 462 struct list_head pt_list; 463 struct { 464 unsigned long _pt_pad_1; 465 pgtable_t pmd_huge_pte; 466 }; 467 }; 468 unsigned long __page_mapping; 469 470 union { 471 pgoff_t pt_index; 472 struct mm_struct *pt_mm; 473 atomic_t pt_frag_refcount; 474 }; 475 476 union { 477 unsigned long _pt_pad_2; 478#if ALLOC_SPLIT_PTLOCKS 479 spinlock_t *ptl; 480#else 481 spinlock_t ptl; 482#endif 483 }; 484 unsigned int __page_type; 485 atomic_t __page_refcount; 486#ifdef CONFIG_MEMCG 487 unsigned long pt_memcg_data; 488#endif 489}; 490 491#define TABLE_MATCH(pg, pt) \ 492 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 493TABLE_MATCH(flags, __page_flags); 494TABLE_MATCH(compound_head, pt_list); 495TABLE_MATCH(compound_head, _pt_pad_1); 496TABLE_MATCH(mapping, __page_mapping); 497TABLE_MATCH(index, pt_index); 498TABLE_MATCH(rcu_head, pt_rcu_head); 499TABLE_MATCH(page_type, __page_type); 500TABLE_MATCH(_refcount, __page_refcount); 501#ifdef CONFIG_MEMCG 502TABLE_MATCH(memcg_data, pt_memcg_data); 503#endif 504#undef TABLE_MATCH 505static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 506 507#define ptdesc_page(pt) (_Generic((pt), \ 508 const struct ptdesc *: (const struct page *)(pt), \ 509 struct ptdesc *: (struct page *)(pt))) 510 511#define ptdesc_folio(pt) (_Generic((pt), \ 512 const struct ptdesc *: (const struct folio *)(pt), \ 513 struct ptdesc *: (struct folio *)(pt))) 514 515#define page_ptdesc(p) (_Generic((p), \ 516 const struct page *: (const struct ptdesc *)(p), \ 517 struct page *: (struct ptdesc *)(p))) 518 519/* 520 * Used for sizing the vmemmap region on some architectures 521 */ 522#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 523 524#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 525#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 526 527/* 528 * page_private can be used on tail pages. However, PagePrivate is only 529 * checked by the VM on the head page. So page_private on the tail pages 530 * should be used for data that's ancillary to the head page (eg attaching 531 * buffer heads to tail pages after attaching buffer heads to the head page) 532 */ 533#define page_private(page) ((page)->private) 534 535static inline void set_page_private(struct page *page, unsigned long private) 536{ 537 page->private = private; 538} 539 540static inline void *folio_get_private(struct folio *folio) 541{ 542 return folio->private; 543} 544 545struct page_frag_cache { 546 void * va; 547#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 548 __u16 offset; 549 __u16 size; 550#else 551 __u32 offset; 552#endif 553 /* we maintain a pagecount bias, so that we dont dirty cache line 554 * containing page->_refcount every time we allocate a fragment. 555 */ 556 unsigned int pagecnt_bias; 557 bool pfmemalloc; 558}; 559 560typedef unsigned long vm_flags_t; 561 562/* 563 * A region containing a mapping of a non-memory backed file under NOMMU 564 * conditions. These are held in a global tree and are pinned by the VMAs that 565 * map parts of them. 566 */ 567struct vm_region { 568 struct rb_node vm_rb; /* link in global region tree */ 569 vm_flags_t vm_flags; /* VMA vm_flags */ 570 unsigned long vm_start; /* start address of region */ 571 unsigned long vm_end; /* region initialised to here */ 572 unsigned long vm_top; /* region allocated to here */ 573 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 574 struct file *vm_file; /* the backing file or NULL */ 575 576 int vm_usage; /* region usage count (access under nommu_region_sem) */ 577 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 578 * this region */ 579}; 580 581#ifdef CONFIG_USERFAULTFD 582#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 583struct vm_userfaultfd_ctx { 584 struct userfaultfd_ctx *ctx; 585}; 586#else /* CONFIG_USERFAULTFD */ 587#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 588struct vm_userfaultfd_ctx {}; 589#endif /* CONFIG_USERFAULTFD */ 590 591struct anon_vma_name { 592 struct kref kref; 593 /* The name needs to be at the end because it is dynamically sized. */ 594 char name[]; 595}; 596 597#ifdef CONFIG_ANON_VMA_NAME 598/* 599 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 600 * either keep holding the lock while using the returned pointer or it should 601 * raise anon_vma_name refcount before releasing the lock. 602 */ 603struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 604struct anon_vma_name *anon_vma_name_alloc(const char *name); 605void anon_vma_name_free(struct kref *kref); 606#else /* CONFIG_ANON_VMA_NAME */ 607static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 608{ 609 return NULL; 610} 611 612static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 613{ 614 return NULL; 615} 616#endif 617 618struct vma_lock { 619 struct rw_semaphore lock; 620}; 621 622struct vma_numab_state { 623 /* 624 * Initialised as time in 'jiffies' after which VMA 625 * should be scanned. Delays first scan of new VMA by at 626 * least sysctl_numa_balancing_scan_delay: 627 */ 628 unsigned long next_scan; 629 630 /* 631 * Time in jiffies when pids_active[] is reset to 632 * detect phase change behaviour: 633 */ 634 unsigned long pids_active_reset; 635 636 /* 637 * Approximate tracking of PIDs that trapped a NUMA hinting 638 * fault. May produce false positives due to hash collisions. 639 * 640 * [0] Previous PID tracking 641 * [1] Current PID tracking 642 * 643 * Window moves after next_pid_reset has expired approximately 644 * every VMA_PID_RESET_PERIOD jiffies: 645 */ 646 unsigned long pids_active[2]; 647 648 /* MM scan sequence ID when scan first started after VMA creation */ 649 int start_scan_seq; 650 651 /* 652 * MM scan sequence ID when the VMA was last completely scanned. 653 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 654 */ 655 int prev_scan_seq; 656}; 657 658/* 659 * This struct describes a virtual memory area. There is one of these 660 * per VM-area/task. A VM area is any part of the process virtual memory 661 * space that has a special rule for the page-fault handlers (ie a shared 662 * library, the executable area etc). 663 */ 664struct vm_area_struct { 665 /* The first cache line has the info for VMA tree walking. */ 666 667 union { 668 struct { 669 /* VMA covers [vm_start; vm_end) addresses within mm */ 670 unsigned long vm_start; 671 unsigned long vm_end; 672 }; 673#ifdef CONFIG_PER_VMA_LOCK 674 struct rcu_head vm_rcu; /* Used for deferred freeing. */ 675#endif 676 }; 677 678 struct mm_struct *vm_mm; /* The address space we belong to. */ 679 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 680 681 /* 682 * Flags, see mm.h. 683 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 684 */ 685 union { 686 const vm_flags_t vm_flags; 687 vm_flags_t __private __vm_flags; 688 }; 689 690#ifdef CONFIG_PER_VMA_LOCK 691 /* Flag to indicate areas detached from the mm->mm_mt tree */ 692 bool detached; 693 694 /* 695 * Can only be written (using WRITE_ONCE()) while holding both: 696 * - mmap_lock (in write mode) 697 * - vm_lock->lock (in write mode) 698 * Can be read reliably while holding one of: 699 * - mmap_lock (in read or write mode) 700 * - vm_lock->lock (in read or write mode) 701 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 702 * while holding nothing (except RCU to keep the VMA struct allocated). 703 * 704 * This sequence counter is explicitly allowed to overflow; sequence 705 * counter reuse can only lead to occasional unnecessary use of the 706 * slowpath. 707 */ 708 int vm_lock_seq; 709 struct vma_lock *vm_lock; 710#endif 711 712 /* 713 * For areas with an address space and backing store, 714 * linkage into the address_space->i_mmap interval tree. 715 * 716 */ 717 struct { 718 struct rb_node rb; 719 unsigned long rb_subtree_last; 720 } shared; 721 722 /* 723 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 724 * list, after a COW of one of the file pages. A MAP_SHARED vma 725 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 726 * or brk vma (with NULL file) can only be in an anon_vma list. 727 */ 728 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 729 * page_table_lock */ 730 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 731 732 /* Function pointers to deal with this struct. */ 733 const struct vm_operations_struct *vm_ops; 734 735 /* Information about our backing store: */ 736 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 737 units */ 738 struct file * vm_file; /* File we map to (can be NULL). */ 739 void * vm_private_data; /* was vm_pte (shared mem) */ 740 741#ifdef CONFIG_ANON_VMA_NAME 742 /* 743 * For private and shared anonymous mappings, a pointer to a null 744 * terminated string containing the name given to the vma, or NULL if 745 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 746 */ 747 struct anon_vma_name *anon_name; 748#endif 749#ifdef CONFIG_SWAP 750 atomic_long_t swap_readahead_info; 751#endif 752#ifndef CONFIG_MMU 753 struct vm_region *vm_region; /* NOMMU mapping region */ 754#endif 755#ifdef CONFIG_NUMA 756 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 757#endif 758#ifdef CONFIG_NUMA_BALANCING 759 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 760#endif 761 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 762} __randomize_layout; 763 764#ifdef CONFIG_NUMA 765#define vma_policy(vma) ((vma)->vm_policy) 766#else 767#define vma_policy(vma) NULL 768#endif 769 770#ifdef CONFIG_SCHED_MM_CID 771struct mm_cid { 772 u64 time; 773 int cid; 774}; 775#endif 776 777struct kioctx_table; 778struct iommu_mm_data; 779struct mm_struct { 780 struct { 781 /* 782 * Fields which are often written to are placed in a separate 783 * cache line. 784 */ 785 struct { 786 /** 787 * @mm_count: The number of references to &struct 788 * mm_struct (@mm_users count as 1). 789 * 790 * Use mmgrab()/mmdrop() to modify. When this drops to 791 * 0, the &struct mm_struct is freed. 792 */ 793 atomic_t mm_count; 794 } ____cacheline_aligned_in_smp; 795 796 struct maple_tree mm_mt; 797 798 unsigned long mmap_base; /* base of mmap area */ 799 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 800#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 801 /* Base addresses for compatible mmap() */ 802 unsigned long mmap_compat_base; 803 unsigned long mmap_compat_legacy_base; 804#endif 805 unsigned long task_size; /* size of task vm space */ 806 pgd_t * pgd; 807 808#ifdef CONFIG_MEMBARRIER 809 /** 810 * @membarrier_state: Flags controlling membarrier behavior. 811 * 812 * This field is close to @pgd to hopefully fit in the same 813 * cache-line, which needs to be touched by switch_mm(). 814 */ 815 atomic_t membarrier_state; 816#endif 817 818 /** 819 * @mm_users: The number of users including userspace. 820 * 821 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 822 * drops to 0 (i.e. when the task exits and there are no other 823 * temporary reference holders), we also release a reference on 824 * @mm_count (which may then free the &struct mm_struct if 825 * @mm_count also drops to 0). 826 */ 827 atomic_t mm_users; 828 829#ifdef CONFIG_SCHED_MM_CID 830 /** 831 * @pcpu_cid: Per-cpu current cid. 832 * 833 * Keep track of the currently allocated mm_cid for each cpu. 834 * The per-cpu mm_cid values are serialized by their respective 835 * runqueue locks. 836 */ 837 struct mm_cid __percpu *pcpu_cid; 838 /* 839 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 840 * 841 * When the next mm_cid scan is due (in jiffies). 842 */ 843 unsigned long mm_cid_next_scan; 844#endif 845#ifdef CONFIG_MMU 846 atomic_long_t pgtables_bytes; /* size of all page tables */ 847#endif 848 int map_count; /* number of VMAs */ 849 850 spinlock_t page_table_lock; /* Protects page tables and some 851 * counters 852 */ 853 /* 854 * With some kernel config, the current mmap_lock's offset 855 * inside 'mm_struct' is at 0x120, which is very optimal, as 856 * its two hot fields 'count' and 'owner' sit in 2 different 857 * cachelines, and when mmap_lock is highly contended, both 858 * of the 2 fields will be accessed frequently, current layout 859 * will help to reduce cache bouncing. 860 * 861 * So please be careful with adding new fields before 862 * mmap_lock, which can easily push the 2 fields into one 863 * cacheline. 864 */ 865 struct rw_semaphore mmap_lock; 866 867 struct list_head mmlist; /* List of maybe swapped mm's. These 868 * are globally strung together off 869 * init_mm.mmlist, and are protected 870 * by mmlist_lock 871 */ 872#ifdef CONFIG_PER_VMA_LOCK 873 /* 874 * This field has lock-like semantics, meaning it is sometimes 875 * accessed with ACQUIRE/RELEASE semantics. 876 * Roughly speaking, incrementing the sequence number is 877 * equivalent to releasing locks on VMAs; reading the sequence 878 * number can be part of taking a read lock on a VMA. 879 * 880 * Can be modified under write mmap_lock using RELEASE 881 * semantics. 882 * Can be read with no other protection when holding write 883 * mmap_lock. 884 * Can be read with ACQUIRE semantics if not holding write 885 * mmap_lock. 886 */ 887 int mm_lock_seq; 888#endif 889 890 891 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 892 unsigned long hiwater_vm; /* High-water virtual memory usage */ 893 894 unsigned long total_vm; /* Total pages mapped */ 895 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 896 atomic64_t pinned_vm; /* Refcount permanently increased */ 897 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 898 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 899 unsigned long stack_vm; /* VM_STACK */ 900 unsigned long def_flags; 901 902 /** 903 * @write_protect_seq: Locked when any thread is write 904 * protecting pages mapped by this mm to enforce a later COW, 905 * for instance during page table copying for fork(). 906 */ 907 seqcount_t write_protect_seq; 908 909 spinlock_t arg_lock; /* protect the below fields */ 910 911 unsigned long start_code, end_code, start_data, end_data; 912 unsigned long start_brk, brk, start_stack; 913 unsigned long arg_start, arg_end, env_start, env_end; 914 915 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 916 917 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 918 919 struct linux_binfmt *binfmt; 920 921 /* Architecture-specific MM context */ 922 mm_context_t context; 923 924 unsigned long flags; /* Must use atomic bitops to access */ 925 926#ifdef CONFIG_AIO 927 spinlock_t ioctx_lock; 928 struct kioctx_table __rcu *ioctx_table; 929#endif 930#ifdef CONFIG_MEMCG 931 /* 932 * "owner" points to a task that is regarded as the canonical 933 * user/owner of this mm. All of the following must be true in 934 * order for it to be changed: 935 * 936 * current == mm->owner 937 * current->mm != mm 938 * new_owner->mm == mm 939 * new_owner->alloc_lock is held 940 */ 941 struct task_struct __rcu *owner; 942#endif 943 struct user_namespace *user_ns; 944 945 /* store ref to file /proc/<pid>/exe symlink points to */ 946 struct file __rcu *exe_file; 947#ifdef CONFIG_MMU_NOTIFIER 948 struct mmu_notifier_subscriptions *notifier_subscriptions; 949#endif 950#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 951 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 952#endif 953#ifdef CONFIG_NUMA_BALANCING 954 /* 955 * numa_next_scan is the next time that PTEs will be remapped 956 * PROT_NONE to trigger NUMA hinting faults; such faults gather 957 * statistics and migrate pages to new nodes if necessary. 958 */ 959 unsigned long numa_next_scan; 960 961 /* Restart point for scanning and remapping PTEs. */ 962 unsigned long numa_scan_offset; 963 964 /* numa_scan_seq prevents two threads remapping PTEs. */ 965 int numa_scan_seq; 966#endif 967 /* 968 * An operation with batched TLB flushing is going on. Anything 969 * that can move process memory needs to flush the TLB when 970 * moving a PROT_NONE mapped page. 971 */ 972 atomic_t tlb_flush_pending; 973#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 974 /* See flush_tlb_batched_pending() */ 975 atomic_t tlb_flush_batched; 976#endif 977 struct uprobes_state uprobes_state; 978#ifdef CONFIG_PREEMPT_RT 979 struct rcu_head delayed_drop; 980#endif 981#ifdef CONFIG_HUGETLB_PAGE 982 atomic_long_t hugetlb_usage; 983#endif 984 struct work_struct async_put_work; 985 986#ifdef CONFIG_IOMMU_MM_DATA 987 struct iommu_mm_data *iommu_mm; 988#endif 989#ifdef CONFIG_KSM 990 /* 991 * Represent how many pages of this process are involved in KSM 992 * merging (not including ksm_zero_pages). 993 */ 994 unsigned long ksm_merging_pages; 995 /* 996 * Represent how many pages are checked for ksm merging 997 * including merged and not merged. 998 */ 999 unsigned long ksm_rmap_items; 1000 /* 1001 * Represent how many empty pages are merged with kernel zero 1002 * pages when enabling KSM use_zero_pages. 1003 */ 1004 atomic_long_t ksm_zero_pages; 1005#endif /* CONFIG_KSM */ 1006#ifdef CONFIG_LRU_GEN_WALKS_MMU 1007 struct { 1008 /* this mm_struct is on lru_gen_mm_list */ 1009 struct list_head list; 1010 /* 1011 * Set when switching to this mm_struct, as a hint of 1012 * whether it has been used since the last time per-node 1013 * page table walkers cleared the corresponding bits. 1014 */ 1015 unsigned long bitmap; 1016#ifdef CONFIG_MEMCG 1017 /* points to the memcg of "owner" above */ 1018 struct mem_cgroup *memcg; 1019#endif 1020 } lru_gen; 1021#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1022 } __randomize_layout; 1023 1024 /* 1025 * The mm_cpumask needs to be at the end of mm_struct, because it 1026 * is dynamically sized based on nr_cpu_ids. 1027 */ 1028 unsigned long cpu_bitmap[]; 1029}; 1030 1031#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 1032 MT_FLAGS_USE_RCU) 1033extern struct mm_struct init_mm; 1034 1035/* Pointer magic because the dynamic array size confuses some compilers. */ 1036static inline void mm_init_cpumask(struct mm_struct *mm) 1037{ 1038 unsigned long cpu_bitmap = (unsigned long)mm; 1039 1040 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1041 cpumask_clear((struct cpumask *)cpu_bitmap); 1042} 1043 1044/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1045static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1046{ 1047 return (struct cpumask *)&mm->cpu_bitmap; 1048} 1049 1050#ifdef CONFIG_LRU_GEN 1051 1052struct lru_gen_mm_list { 1053 /* mm_struct list for page table walkers */ 1054 struct list_head fifo; 1055 /* protects the list above */ 1056 spinlock_t lock; 1057}; 1058 1059#endif /* CONFIG_LRU_GEN */ 1060 1061#ifdef CONFIG_LRU_GEN_WALKS_MMU 1062 1063void lru_gen_add_mm(struct mm_struct *mm); 1064void lru_gen_del_mm(struct mm_struct *mm); 1065void lru_gen_migrate_mm(struct mm_struct *mm); 1066 1067static inline void lru_gen_init_mm(struct mm_struct *mm) 1068{ 1069 INIT_LIST_HEAD(&mm->lru_gen.list); 1070 mm->lru_gen.bitmap = 0; 1071#ifdef CONFIG_MEMCG 1072 mm->lru_gen.memcg = NULL; 1073#endif 1074} 1075 1076static inline void lru_gen_use_mm(struct mm_struct *mm) 1077{ 1078 /* 1079 * When the bitmap is set, page reclaim knows this mm_struct has been 1080 * used since the last time it cleared the bitmap. So it might be worth 1081 * walking the page tables of this mm_struct to clear the accessed bit. 1082 */ 1083 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1084} 1085 1086#else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1087 1088static inline void lru_gen_add_mm(struct mm_struct *mm) 1089{ 1090} 1091 1092static inline void lru_gen_del_mm(struct mm_struct *mm) 1093{ 1094} 1095 1096static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1097{ 1098} 1099 1100static inline void lru_gen_init_mm(struct mm_struct *mm) 1101{ 1102} 1103 1104static inline void lru_gen_use_mm(struct mm_struct *mm) 1105{ 1106} 1107 1108#endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1109 1110struct vma_iterator { 1111 struct ma_state mas; 1112}; 1113 1114#define VMA_ITERATOR(name, __mm, __addr) \ 1115 struct vma_iterator name = { \ 1116 .mas = { \ 1117 .tree = &(__mm)->mm_mt, \ 1118 .index = __addr, \ 1119 .node = NULL, \ 1120 .status = ma_start, \ 1121 }, \ 1122 } 1123 1124static inline void vma_iter_init(struct vma_iterator *vmi, 1125 struct mm_struct *mm, unsigned long addr) 1126{ 1127 mas_init(&vmi->mas, &mm->mm_mt, addr); 1128} 1129 1130#ifdef CONFIG_SCHED_MM_CID 1131 1132enum mm_cid_state { 1133 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1134 MM_CID_LAZY_PUT = (1U << 31), 1135}; 1136 1137static inline bool mm_cid_is_unset(int cid) 1138{ 1139 return cid == MM_CID_UNSET; 1140} 1141 1142static inline bool mm_cid_is_lazy_put(int cid) 1143{ 1144 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1145} 1146 1147static inline bool mm_cid_is_valid(int cid) 1148{ 1149 return !(cid & MM_CID_LAZY_PUT); 1150} 1151 1152static inline int mm_cid_set_lazy_put(int cid) 1153{ 1154 return cid | MM_CID_LAZY_PUT; 1155} 1156 1157static inline int mm_cid_clear_lazy_put(int cid) 1158{ 1159 return cid & ~MM_CID_LAZY_PUT; 1160} 1161 1162/* Accessor for struct mm_struct's cidmask. */ 1163static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1164{ 1165 unsigned long cid_bitmap = (unsigned long)mm; 1166 1167 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1168 /* Skip cpu_bitmap */ 1169 cid_bitmap += cpumask_size(); 1170 return (struct cpumask *)cid_bitmap; 1171} 1172 1173static inline void mm_init_cid(struct mm_struct *mm) 1174{ 1175 int i; 1176 1177 for_each_possible_cpu(i) { 1178 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1179 1180 pcpu_cid->cid = MM_CID_UNSET; 1181 pcpu_cid->time = 0; 1182 } 1183 cpumask_clear(mm_cidmask(mm)); 1184} 1185 1186static inline int mm_alloc_cid_noprof(struct mm_struct *mm) 1187{ 1188 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid); 1189 if (!mm->pcpu_cid) 1190 return -ENOMEM; 1191 mm_init_cid(mm); 1192 return 0; 1193} 1194#define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__)) 1195 1196static inline void mm_destroy_cid(struct mm_struct *mm) 1197{ 1198 free_percpu(mm->pcpu_cid); 1199 mm->pcpu_cid = NULL; 1200} 1201 1202static inline unsigned int mm_cid_size(void) 1203{ 1204 return cpumask_size(); 1205} 1206#else /* CONFIG_SCHED_MM_CID */ 1207static inline void mm_init_cid(struct mm_struct *mm) { } 1208static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; } 1209static inline void mm_destroy_cid(struct mm_struct *mm) { } 1210static inline unsigned int mm_cid_size(void) 1211{ 1212 return 0; 1213} 1214#endif /* CONFIG_SCHED_MM_CID */ 1215 1216struct mmu_gather; 1217extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1218extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1219extern void tlb_finish_mmu(struct mmu_gather *tlb); 1220 1221struct vm_fault; 1222 1223/** 1224 * typedef vm_fault_t - Return type for page fault handlers. 1225 * 1226 * Page fault handlers return a bitmask of %VM_FAULT values. 1227 */ 1228typedef __bitwise unsigned int vm_fault_t; 1229 1230/** 1231 * enum vm_fault_reason - Page fault handlers return a bitmask of 1232 * these values to tell the core VM what happened when handling the 1233 * fault. Used to decide whether a process gets delivered SIGBUS or 1234 * just gets major/minor fault counters bumped up. 1235 * 1236 * @VM_FAULT_OOM: Out Of Memory 1237 * @VM_FAULT_SIGBUS: Bad access 1238 * @VM_FAULT_MAJOR: Page read from storage 1239 * @VM_FAULT_HWPOISON: Hit poisoned small page 1240 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1241 * in upper bits 1242 * @VM_FAULT_SIGSEGV: segmentation fault 1243 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1244 * @VM_FAULT_LOCKED: ->fault locked the returned page 1245 * @VM_FAULT_RETRY: ->fault blocked, must retry 1246 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1247 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1248 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1249 * fsync() to complete (for synchronous page faults 1250 * in DAX) 1251 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1252 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1253 * 1254 */ 1255enum vm_fault_reason { 1256 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1257 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1258 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1259 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1260 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1261 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1262 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1263 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1264 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1265 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1266 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1267 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1268 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1269 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1270}; 1271 1272/* Encode hstate index for a hwpoisoned large page */ 1273#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1274#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1275 1276#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1277 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1278 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1279 1280#define VM_FAULT_RESULT_TRACE \ 1281 { VM_FAULT_OOM, "OOM" }, \ 1282 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1283 { VM_FAULT_MAJOR, "MAJOR" }, \ 1284 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1285 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1286 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1287 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1288 { VM_FAULT_LOCKED, "LOCKED" }, \ 1289 { VM_FAULT_RETRY, "RETRY" }, \ 1290 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1291 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1292 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1293 { VM_FAULT_COMPLETED, "COMPLETED" } 1294 1295struct vm_special_mapping { 1296 const char *name; /* The name, e.g. "[vdso]". */ 1297 1298 /* 1299 * If .fault is not provided, this points to a 1300 * NULL-terminated array of pages that back the special mapping. 1301 * 1302 * This must not be NULL unless .fault is provided. 1303 */ 1304 struct page **pages; 1305 1306 /* 1307 * If non-NULL, then this is called to resolve page faults 1308 * on the special mapping. If used, .pages is not checked. 1309 */ 1310 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1311 struct vm_area_struct *vma, 1312 struct vm_fault *vmf); 1313 1314 int (*mremap)(const struct vm_special_mapping *sm, 1315 struct vm_area_struct *new_vma); 1316}; 1317 1318enum tlb_flush_reason { 1319 TLB_FLUSH_ON_TASK_SWITCH, 1320 TLB_REMOTE_SHOOTDOWN, 1321 TLB_LOCAL_SHOOTDOWN, 1322 TLB_LOCAL_MM_SHOOTDOWN, 1323 TLB_REMOTE_SEND_IPI, 1324 NR_TLB_FLUSH_REASONS, 1325}; 1326 1327/** 1328 * enum fault_flag - Fault flag definitions. 1329 * @FAULT_FLAG_WRITE: Fault was a write fault. 1330 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1331 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1332 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1333 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1334 * @FAULT_FLAG_TRIED: The fault has been tried once. 1335 * @FAULT_FLAG_USER: The fault originated in userspace. 1336 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1337 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1338 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1339 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1340 * COW mapping, making sure that an exclusive anon page is 1341 * mapped after the fault. 1342 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1343 * We should only access orig_pte if this flag set. 1344 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1345 * 1346 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1347 * whether we would allow page faults to retry by specifying these two 1348 * fault flags correctly. Currently there can be three legal combinations: 1349 * 1350 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1351 * this is the first try 1352 * 1353 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1354 * we've already tried at least once 1355 * 1356 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1357 * 1358 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1359 * be used. Note that page faults can be allowed to retry for multiple times, 1360 * in which case we'll have an initial fault with flags (a) then later on 1361 * continuous faults with flags (b). We should always try to detect pending 1362 * signals before a retry to make sure the continuous page faults can still be 1363 * interrupted if necessary. 1364 * 1365 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1366 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1367 * applied to mappings that are not COW mappings. 1368 */ 1369enum fault_flag { 1370 FAULT_FLAG_WRITE = 1 << 0, 1371 FAULT_FLAG_MKWRITE = 1 << 1, 1372 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1373 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1374 FAULT_FLAG_KILLABLE = 1 << 4, 1375 FAULT_FLAG_TRIED = 1 << 5, 1376 FAULT_FLAG_USER = 1 << 6, 1377 FAULT_FLAG_REMOTE = 1 << 7, 1378 FAULT_FLAG_INSTRUCTION = 1 << 8, 1379 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1380 FAULT_FLAG_UNSHARE = 1 << 10, 1381 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1382 FAULT_FLAG_VMA_LOCK = 1 << 12, 1383}; 1384 1385typedef unsigned int __bitwise zap_flags_t; 1386 1387/* Flags for clear_young_dirty_ptes(). */ 1388typedef int __bitwise cydp_t; 1389 1390/* Clear the access bit */ 1391#define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0)) 1392 1393/* Clear the dirty bit */ 1394#define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1)) 1395 1396/* 1397 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1398 * other. Here is what they mean, and how to use them: 1399 * 1400 * 1401 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1402 * lifetime enforced by the filesystem and we need guarantees that longterm 1403 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1404 * the filesystem. Ideas for this coordination include revoking the longterm 1405 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1406 * added after the problem with filesystems was found FS DAX VMAs are 1407 * specifically failed. Filesystem pages are still subject to bugs and use of 1408 * FOLL_LONGTERM should be avoided on those pages. 1409 * 1410 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1411 * that region. And so, CMA attempts to migrate the page before pinning, when 1412 * FOLL_LONGTERM is specified. 1413 * 1414 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1415 * but an additional pin counting system) will be invoked. This is intended for 1416 * anything that gets a page reference and then touches page data (for example, 1417 * Direct IO). This lets the filesystem know that some non-file-system entity is 1418 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1419 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1420 * a call to unpin_user_page(). 1421 * 1422 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1423 * and separate refcounting mechanisms, however, and that means that each has 1424 * its own acquire and release mechanisms: 1425 * 1426 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1427 * 1428 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1429 * 1430 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1431 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1432 * calls applied to them, and that's perfectly OK. This is a constraint on the 1433 * callers, not on the pages.) 1434 * 1435 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1436 * directly by the caller. That's in order to help avoid mismatches when 1437 * releasing pages: get_user_pages*() pages must be released via put_page(), 1438 * while pin_user_pages*() pages must be released via unpin_user_page(). 1439 * 1440 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1441 */ 1442 1443enum { 1444 /* check pte is writable */ 1445 FOLL_WRITE = 1 << 0, 1446 /* do get_page on page */ 1447 FOLL_GET = 1 << 1, 1448 /* give error on hole if it would be zero */ 1449 FOLL_DUMP = 1 << 2, 1450 /* get_user_pages read/write w/o permission */ 1451 FOLL_FORCE = 1 << 3, 1452 /* 1453 * if a disk transfer is needed, start the IO and return without waiting 1454 * upon it 1455 */ 1456 FOLL_NOWAIT = 1 << 4, 1457 /* do not fault in pages */ 1458 FOLL_NOFAULT = 1 << 5, 1459 /* check page is hwpoisoned */ 1460 FOLL_HWPOISON = 1 << 6, 1461 /* don't do file mappings */ 1462 FOLL_ANON = 1 << 7, 1463 /* 1464 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1465 * time period _often_ under userspace control. This is in contrast to 1466 * iov_iter_get_pages(), whose usages are transient. 1467 */ 1468 FOLL_LONGTERM = 1 << 8, 1469 /* split huge pmd before returning */ 1470 FOLL_SPLIT_PMD = 1 << 9, 1471 /* allow returning PCI P2PDMA pages */ 1472 FOLL_PCI_P2PDMA = 1 << 10, 1473 /* allow interrupts from generic signals */ 1474 FOLL_INTERRUPTIBLE = 1 << 11, 1475 /* 1476 * Always honor (trigger) NUMA hinting faults. 1477 * 1478 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1479 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1480 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1481 * hinting faults. 1482 */ 1483 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1484 1485 /* See also internal only FOLL flags in mm/internal.h */ 1486}; 1487 1488#endif /* _LINUX_MM_TYPES_H */