Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/mm_types.h>
16#include <linux/mmap_lock.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25#include <linux/page-flags.h>
26#include <linux/page_ref.h>
27#include <linux/overflow.h>
28#include <linux/sizes.h>
29#include <linux/sched.h>
30#include <linux/pgtable.h>
31#include <linux/kasan.h>
32#include <linux/memremap.h>
33#include <linux/slab.h>
34
35struct mempolicy;
36struct anon_vma;
37struct anon_vma_chain;
38struct user_struct;
39struct pt_regs;
40struct folio_batch;
41
42extern int sysctl_page_lock_unfairness;
43
44void mm_core_init(void);
45void init_mm_internals(void);
46
47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48extern unsigned long max_mapnr;
49
50static inline void set_max_mapnr(unsigned long limit)
51{
52 max_mapnr = limit;
53}
54#else
55static inline void set_max_mapnr(unsigned long limit) { }
56#endif
57
58extern atomic_long_t _totalram_pages;
59static inline unsigned long totalram_pages(void)
60{
61 return (unsigned long)atomic_long_read(&_totalram_pages);
62}
63
64static inline void totalram_pages_inc(void)
65{
66 atomic_long_inc(&_totalram_pages);
67}
68
69static inline void totalram_pages_dec(void)
70{
71 atomic_long_dec(&_totalram_pages);
72}
73
74static inline void totalram_pages_add(long count)
75{
76 atomic_long_add(count, &_totalram_pages);
77}
78
79extern void * high_memory;
80extern int page_cluster;
81extern const int page_cluster_max;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern int mmap_rnd_bits_max __ro_after_init;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
100#ifndef PHYSMEM_END
101# define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
102#endif
103
104#include <asm/page.h>
105#include <asm/processor.h>
106
107#ifndef __pa_symbol
108#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
109#endif
110
111#ifndef page_to_virt
112#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
113#endif
114
115#ifndef lm_alias
116#define lm_alias(x) __va(__pa_symbol(x))
117#endif
118
119/*
120 * To prevent common memory management code establishing
121 * a zero page mapping on a read fault.
122 * This macro should be defined within <asm/pgtable.h>.
123 * s390 does this to prevent multiplexing of hardware bits
124 * related to the physical page in case of virtualization.
125 */
126#ifndef mm_forbids_zeropage
127#define mm_forbids_zeropage(X) (0)
128#endif
129
130/*
131 * On some architectures it is expensive to call memset() for small sizes.
132 * If an architecture decides to implement their own version of
133 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
134 * define their own version of this macro in <asm/pgtable.h>
135 */
136#if BITS_PER_LONG == 64
137/* This function must be updated when the size of struct page grows above 96
138 * or reduces below 56. The idea that compiler optimizes out switch()
139 * statement, and only leaves move/store instructions. Also the compiler can
140 * combine write statements if they are both assignments and can be reordered,
141 * this can result in several of the writes here being dropped.
142 */
143#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
144static inline void __mm_zero_struct_page(struct page *page)
145{
146 unsigned long *_pp = (void *)page;
147
148 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
149 BUILD_BUG_ON(sizeof(struct page) & 7);
150 BUILD_BUG_ON(sizeof(struct page) < 56);
151 BUILD_BUG_ON(sizeof(struct page) > 96);
152
153 switch (sizeof(struct page)) {
154 case 96:
155 _pp[11] = 0;
156 fallthrough;
157 case 88:
158 _pp[10] = 0;
159 fallthrough;
160 case 80:
161 _pp[9] = 0;
162 fallthrough;
163 case 72:
164 _pp[8] = 0;
165 fallthrough;
166 case 64:
167 _pp[7] = 0;
168 fallthrough;
169 case 56:
170 _pp[6] = 0;
171 _pp[5] = 0;
172 _pp[4] = 0;
173 _pp[3] = 0;
174 _pp[2] = 0;
175 _pp[1] = 0;
176 _pp[0] = 0;
177 }
178}
179#else
180#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
181#endif
182
183/*
184 * Default maximum number of active map areas, this limits the number of vmas
185 * per mm struct. Users can overwrite this number by sysctl but there is a
186 * problem.
187 *
188 * When a program's coredump is generated as ELF format, a section is created
189 * per a vma. In ELF, the number of sections is represented in unsigned short.
190 * This means the number of sections should be smaller than 65535 at coredump.
191 * Because the kernel adds some informative sections to a image of program at
192 * generating coredump, we need some margin. The number of extra sections is
193 * 1-3 now and depends on arch. We use "5" as safe margin, here.
194 *
195 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
196 * not a hard limit any more. Although some userspace tools can be surprised by
197 * that.
198 */
199#define MAPCOUNT_ELF_CORE_MARGIN (5)
200#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
201
202extern int sysctl_max_map_count;
203
204extern unsigned long sysctl_user_reserve_kbytes;
205extern unsigned long sysctl_admin_reserve_kbytes;
206
207extern int sysctl_overcommit_memory;
208extern int sysctl_overcommit_ratio;
209extern unsigned long sysctl_overcommit_kbytes;
210
211int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
212 loff_t *);
213int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217
218#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
221#else
222#define nth_page(page,n) ((page) + (n))
223#define folio_page_idx(folio, p) ((p) - &(folio)->page)
224#endif
225
226/* to align the pointer to the (next) page boundary */
227#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
228
229/* to align the pointer to the (prev) page boundary */
230#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
231
232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234
235static inline struct folio *lru_to_folio(struct list_head *head)
236{
237 return list_entry((head)->prev, struct folio, lru);
238}
239
240void setup_initial_init_mm(void *start_code, void *end_code,
241 void *end_data, void *brk);
242
243/*
244 * Linux kernel virtual memory manager primitives.
245 * The idea being to have a "virtual" mm in the same way
246 * we have a virtual fs - giving a cleaner interface to the
247 * mm details, and allowing different kinds of memory mappings
248 * (from shared memory to executable loading to arbitrary
249 * mmap() functions).
250 */
251
252struct vm_area_struct *vm_area_alloc(struct mm_struct *);
253struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
254void vm_area_free(struct vm_area_struct *);
255/* Use only if VMA has no other users */
256void __vm_area_free(struct vm_area_struct *vma);
257
258#ifndef CONFIG_MMU
259extern struct rb_root nommu_region_tree;
260extern struct rw_semaphore nommu_region_sem;
261
262extern unsigned int kobjsize(const void *objp);
263#endif
264
265/*
266 * vm_flags in vm_area_struct, see mm_types.h.
267 * When changing, update also include/trace/events/mmflags.h
268 */
269#define VM_NONE 0x00000000
270
271#define VM_READ 0x00000001 /* currently active flags */
272#define VM_WRITE 0x00000002
273#define VM_EXEC 0x00000004
274#define VM_SHARED 0x00000008
275
276/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
277#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
278#define VM_MAYWRITE 0x00000020
279#define VM_MAYEXEC 0x00000040
280#define VM_MAYSHARE 0x00000080
281
282#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
283#ifdef CONFIG_MMU
284#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
285#else /* CONFIG_MMU */
286#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
287#define VM_UFFD_MISSING 0
288#endif /* CONFIG_MMU */
289#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
290#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
291
292#define VM_LOCKED 0x00002000
293#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
294
295 /* Used by sys_madvise() */
296#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
297#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
298
299#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
300#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
301#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
302#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
303#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
304#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
305#define VM_SYNC 0x00800000 /* Synchronous page faults */
306#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
307#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
308#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
309
310#ifdef CONFIG_MEM_SOFT_DIRTY
311# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
312#else
313# define VM_SOFTDIRTY 0
314#endif
315
316#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
317#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
318#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
319#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
320
321#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
322#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
324#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
325#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
326#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
329#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
330#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
331#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
332#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
333#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
334#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
335
336#ifdef CONFIG_ARCH_HAS_PKEYS
337# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
338# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
339# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
340# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
341# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
342#ifdef CONFIG_PPC
343# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
344#else
345# define VM_PKEY_BIT4 0
346#endif
347#endif /* CONFIG_ARCH_HAS_PKEYS */
348
349#ifdef CONFIG_X86_USER_SHADOW_STACK
350/*
351 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
352 * support core mm.
353 *
354 * These VMAs will get a single end guard page. This helps userspace protect
355 * itself from attacks. A single page is enough for current shadow stack archs
356 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
357 * for more details on the guard size.
358 */
359# define VM_SHADOW_STACK VM_HIGH_ARCH_5
360#else
361# define VM_SHADOW_STACK VM_NONE
362#endif
363
364#if defined(CONFIG_X86)
365# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
366#elif defined(CONFIG_PPC)
367# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
368#elif defined(CONFIG_PARISC)
369# define VM_GROWSUP VM_ARCH_1
370#elif defined(CONFIG_SPARC64)
371# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
372# define VM_ARCH_CLEAR VM_SPARC_ADI
373#elif defined(CONFIG_ARM64)
374# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
375# define VM_ARCH_CLEAR VM_ARM64_BTI
376#elif !defined(CONFIG_MMU)
377# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
378#endif
379
380#if defined(CONFIG_ARM64_MTE)
381# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
382# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
383#else
384# define VM_MTE VM_NONE
385# define VM_MTE_ALLOWED VM_NONE
386#endif
387
388#ifndef VM_GROWSUP
389# define VM_GROWSUP VM_NONE
390#endif
391
392#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
393# define VM_UFFD_MINOR_BIT 38
394# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
395#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
396# define VM_UFFD_MINOR VM_NONE
397#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
398
399/*
400 * This flag is used to connect VFIO to arch specific KVM code. It
401 * indicates that the memory under this VMA is safe for use with any
402 * non-cachable memory type inside KVM. Some VFIO devices, on some
403 * platforms, are thought to be unsafe and can cause machine crashes
404 * if KVM does not lock down the memory type.
405 */
406#ifdef CONFIG_64BIT
407#define VM_ALLOW_ANY_UNCACHED_BIT 39
408#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
409#else
410#define VM_ALLOW_ANY_UNCACHED VM_NONE
411#endif
412
413#ifdef CONFIG_64BIT
414#define VM_DROPPABLE_BIT 40
415#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
416#else
417#define VM_DROPPABLE VM_NONE
418#endif
419
420#ifdef CONFIG_64BIT
421/* VM is sealed, in vm_flags */
422#define VM_SEALED _BITUL(63)
423#endif
424
425/* Bits set in the VMA until the stack is in its final location */
426#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
427
428#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
429
430/* Common data flag combinations */
431#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
434 VM_MAYWRITE | VM_MAYEXEC)
435#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
436 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
437
438#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
439#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
440#endif
441
442#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
443#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
444#endif
445
446#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
447
448#ifdef CONFIG_STACK_GROWSUP
449#define VM_STACK VM_GROWSUP
450#define VM_STACK_EARLY VM_GROWSDOWN
451#else
452#define VM_STACK VM_GROWSDOWN
453#define VM_STACK_EARLY 0
454#endif
455
456#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
457
458/* VMA basic access permission flags */
459#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
460
461
462/*
463 * Special vmas that are non-mergable, non-mlock()able.
464 */
465#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
466
467/* This mask prevents VMA from being scanned with khugepaged */
468#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
469
470/* This mask defines which mm->def_flags a process can inherit its parent */
471#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
472
473/* This mask represents all the VMA flag bits used by mlock */
474#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
475
476/* Arch-specific flags to clear when updating VM flags on protection change */
477#ifndef VM_ARCH_CLEAR
478# define VM_ARCH_CLEAR VM_NONE
479#endif
480#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
481
482/*
483 * mapping from the currently active vm_flags protection bits (the
484 * low four bits) to a page protection mask..
485 */
486
487/*
488 * The default fault flags that should be used by most of the
489 * arch-specific page fault handlers.
490 */
491#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
492 FAULT_FLAG_KILLABLE | \
493 FAULT_FLAG_INTERRUPTIBLE)
494
495/**
496 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
497 * @flags: Fault flags.
498 *
499 * This is mostly used for places where we want to try to avoid taking
500 * the mmap_lock for too long a time when waiting for another condition
501 * to change, in which case we can try to be polite to release the
502 * mmap_lock in the first round to avoid potential starvation of other
503 * processes that would also want the mmap_lock.
504 *
505 * Return: true if the page fault allows retry and this is the first
506 * attempt of the fault handling; false otherwise.
507 */
508static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
509{
510 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
511 (!(flags & FAULT_FLAG_TRIED));
512}
513
514#define FAULT_FLAG_TRACE \
515 { FAULT_FLAG_WRITE, "WRITE" }, \
516 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
517 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
518 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
519 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
520 { FAULT_FLAG_TRIED, "TRIED" }, \
521 { FAULT_FLAG_USER, "USER" }, \
522 { FAULT_FLAG_REMOTE, "REMOTE" }, \
523 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
524 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
525 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
526
527/*
528 * vm_fault is filled by the pagefault handler and passed to the vma's
529 * ->fault function. The vma's ->fault is responsible for returning a bitmask
530 * of VM_FAULT_xxx flags that give details about how the fault was handled.
531 *
532 * MM layer fills up gfp_mask for page allocations but fault handler might
533 * alter it if its implementation requires a different allocation context.
534 *
535 * pgoff should be used in favour of virtual_address, if possible.
536 */
537struct vm_fault {
538 const struct {
539 struct vm_area_struct *vma; /* Target VMA */
540 gfp_t gfp_mask; /* gfp mask to be used for allocations */
541 pgoff_t pgoff; /* Logical page offset based on vma */
542 unsigned long address; /* Faulting virtual address - masked */
543 unsigned long real_address; /* Faulting virtual address - unmasked */
544 };
545 enum fault_flag flags; /* FAULT_FLAG_xxx flags
546 * XXX: should really be 'const' */
547 pmd_t *pmd; /* Pointer to pmd entry matching
548 * the 'address' */
549 pud_t *pud; /* Pointer to pud entry matching
550 * the 'address'
551 */
552 union {
553 pte_t orig_pte; /* Value of PTE at the time of fault */
554 pmd_t orig_pmd; /* Value of PMD at the time of fault,
555 * used by PMD fault only.
556 */
557 };
558
559 struct page *cow_page; /* Page handler may use for COW fault */
560 struct page *page; /* ->fault handlers should return a
561 * page here, unless VM_FAULT_NOPAGE
562 * is set (which is also implied by
563 * VM_FAULT_ERROR).
564 */
565 /* These three entries are valid only while holding ptl lock */
566 pte_t *pte; /* Pointer to pte entry matching
567 * the 'address'. NULL if the page
568 * table hasn't been allocated.
569 */
570 spinlock_t *ptl; /* Page table lock.
571 * Protects pte page table if 'pte'
572 * is not NULL, otherwise pmd.
573 */
574 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
575 * vm_ops->map_pages() sets up a page
576 * table from atomic context.
577 * do_fault_around() pre-allocates
578 * page table to avoid allocation from
579 * atomic context.
580 */
581};
582
583/*
584 * These are the virtual MM functions - opening of an area, closing and
585 * unmapping it (needed to keep files on disk up-to-date etc), pointer
586 * to the functions called when a no-page or a wp-page exception occurs.
587 */
588struct vm_operations_struct {
589 void (*open)(struct vm_area_struct * area);
590 /**
591 * @close: Called when the VMA is being removed from the MM.
592 * Context: User context. May sleep. Caller holds mmap_lock.
593 */
594 void (*close)(struct vm_area_struct * area);
595 /* Called any time before splitting to check if it's allowed */
596 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
597 int (*mremap)(struct vm_area_struct *area);
598 /*
599 * Called by mprotect() to make driver-specific permission
600 * checks before mprotect() is finalised. The VMA must not
601 * be modified. Returns 0 if mprotect() can proceed.
602 */
603 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
604 unsigned long end, unsigned long newflags);
605 vm_fault_t (*fault)(struct vm_fault *vmf);
606 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
607 vm_fault_t (*map_pages)(struct vm_fault *vmf,
608 pgoff_t start_pgoff, pgoff_t end_pgoff);
609 unsigned long (*pagesize)(struct vm_area_struct * area);
610
611 /* notification that a previously read-only page is about to become
612 * writable, if an error is returned it will cause a SIGBUS */
613 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
614
615 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
616 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
617
618 /* called by access_process_vm when get_user_pages() fails, typically
619 * for use by special VMAs. See also generic_access_phys() for a generic
620 * implementation useful for any iomem mapping.
621 */
622 int (*access)(struct vm_area_struct *vma, unsigned long addr,
623 void *buf, int len, int write);
624
625 /* Called by the /proc/PID/maps code to ask the vma whether it
626 * has a special name. Returning non-NULL will also cause this
627 * vma to be dumped unconditionally. */
628 const char *(*name)(struct vm_area_struct *vma);
629
630#ifdef CONFIG_NUMA
631 /*
632 * set_policy() op must add a reference to any non-NULL @new mempolicy
633 * to hold the policy upon return. Caller should pass NULL @new to
634 * remove a policy and fall back to surrounding context--i.e. do not
635 * install a MPOL_DEFAULT policy, nor the task or system default
636 * mempolicy.
637 */
638 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
639
640 /*
641 * get_policy() op must add reference [mpol_get()] to any policy at
642 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
643 * in mm/mempolicy.c will do this automatically.
644 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
645 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
646 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
647 * must return NULL--i.e., do not "fallback" to task or system default
648 * policy.
649 */
650 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
651 unsigned long addr, pgoff_t *ilx);
652#endif
653 /*
654 * Called by vm_normal_page() for special PTEs to find the
655 * page for @addr. This is useful if the default behavior
656 * (using pte_page()) would not find the correct page.
657 */
658 struct page *(*find_special_page)(struct vm_area_struct *vma,
659 unsigned long addr);
660};
661
662#ifdef CONFIG_NUMA_BALANCING
663static inline void vma_numab_state_init(struct vm_area_struct *vma)
664{
665 vma->numab_state = NULL;
666}
667static inline void vma_numab_state_free(struct vm_area_struct *vma)
668{
669 kfree(vma->numab_state);
670}
671#else
672static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
673static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
674#endif /* CONFIG_NUMA_BALANCING */
675
676#ifdef CONFIG_PER_VMA_LOCK
677/*
678 * Try to read-lock a vma. The function is allowed to occasionally yield false
679 * locked result to avoid performance overhead, in which case we fall back to
680 * using mmap_lock. The function should never yield false unlocked result.
681 */
682static inline bool vma_start_read(struct vm_area_struct *vma)
683{
684 /*
685 * Check before locking. A race might cause false locked result.
686 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
687 * ACQUIRE semantics, because this is just a lockless check whose result
688 * we don't rely on for anything - the mm_lock_seq read against which we
689 * need ordering is below.
690 */
691 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
692 return false;
693
694 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
695 return false;
696
697 /*
698 * Overflow might produce false locked result.
699 * False unlocked result is impossible because we modify and check
700 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
701 * modification invalidates all existing locks.
702 *
703 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
704 * racing with vma_end_write_all(), we only start reading from the VMA
705 * after it has been unlocked.
706 * This pairs with RELEASE semantics in vma_end_write_all().
707 */
708 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
709 up_read(&vma->vm_lock->lock);
710 return false;
711 }
712 return true;
713}
714
715static inline void vma_end_read(struct vm_area_struct *vma)
716{
717 rcu_read_lock(); /* keeps vma alive till the end of up_read */
718 up_read(&vma->vm_lock->lock);
719 rcu_read_unlock();
720}
721
722/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
723static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
724{
725 mmap_assert_write_locked(vma->vm_mm);
726
727 /*
728 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
729 * mm->mm_lock_seq can't be concurrently modified.
730 */
731 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
732 return (vma->vm_lock_seq == *mm_lock_seq);
733}
734
735/*
736 * Begin writing to a VMA.
737 * Exclude concurrent readers under the per-VMA lock until the currently
738 * write-locked mmap_lock is dropped or downgraded.
739 */
740static inline void vma_start_write(struct vm_area_struct *vma)
741{
742 int mm_lock_seq;
743
744 if (__is_vma_write_locked(vma, &mm_lock_seq))
745 return;
746
747 down_write(&vma->vm_lock->lock);
748 /*
749 * We should use WRITE_ONCE() here because we can have concurrent reads
750 * from the early lockless pessimistic check in vma_start_read().
751 * We don't really care about the correctness of that early check, but
752 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
753 */
754 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
755 up_write(&vma->vm_lock->lock);
756}
757
758static inline void vma_assert_write_locked(struct vm_area_struct *vma)
759{
760 int mm_lock_seq;
761
762 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
763}
764
765static inline void vma_assert_locked(struct vm_area_struct *vma)
766{
767 if (!rwsem_is_locked(&vma->vm_lock->lock))
768 vma_assert_write_locked(vma);
769}
770
771static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
772{
773 /* When detaching vma should be write-locked */
774 if (detached)
775 vma_assert_write_locked(vma);
776 vma->detached = detached;
777}
778
779static inline void release_fault_lock(struct vm_fault *vmf)
780{
781 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
782 vma_end_read(vmf->vma);
783 else
784 mmap_read_unlock(vmf->vma->vm_mm);
785}
786
787static inline void assert_fault_locked(struct vm_fault *vmf)
788{
789 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
790 vma_assert_locked(vmf->vma);
791 else
792 mmap_assert_locked(vmf->vma->vm_mm);
793}
794
795struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
796 unsigned long address);
797
798#else /* CONFIG_PER_VMA_LOCK */
799
800static inline bool vma_start_read(struct vm_area_struct *vma)
801 { return false; }
802static inline void vma_end_read(struct vm_area_struct *vma) {}
803static inline void vma_start_write(struct vm_area_struct *vma) {}
804static inline void vma_assert_write_locked(struct vm_area_struct *vma)
805 { mmap_assert_write_locked(vma->vm_mm); }
806static inline void vma_mark_detached(struct vm_area_struct *vma,
807 bool detached) {}
808
809static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
810 unsigned long address)
811{
812 return NULL;
813}
814
815static inline void vma_assert_locked(struct vm_area_struct *vma)
816{
817 mmap_assert_locked(vma->vm_mm);
818}
819
820static inline void release_fault_lock(struct vm_fault *vmf)
821{
822 mmap_read_unlock(vmf->vma->vm_mm);
823}
824
825static inline void assert_fault_locked(struct vm_fault *vmf)
826{
827 mmap_assert_locked(vmf->vma->vm_mm);
828}
829
830#endif /* CONFIG_PER_VMA_LOCK */
831
832extern const struct vm_operations_struct vma_dummy_vm_ops;
833
834/*
835 * WARNING: vma_init does not initialize vma->vm_lock.
836 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
837 */
838static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
839{
840 memset(vma, 0, sizeof(*vma));
841 vma->vm_mm = mm;
842 vma->vm_ops = &vma_dummy_vm_ops;
843 INIT_LIST_HEAD(&vma->anon_vma_chain);
844 vma_mark_detached(vma, false);
845 vma_numab_state_init(vma);
846}
847
848/* Use when VMA is not part of the VMA tree and needs no locking */
849static inline void vm_flags_init(struct vm_area_struct *vma,
850 vm_flags_t flags)
851{
852 ACCESS_PRIVATE(vma, __vm_flags) = flags;
853}
854
855/*
856 * Use when VMA is part of the VMA tree and modifications need coordination
857 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
858 * it should be locked explicitly beforehand.
859 */
860static inline void vm_flags_reset(struct vm_area_struct *vma,
861 vm_flags_t flags)
862{
863 vma_assert_write_locked(vma);
864 vm_flags_init(vma, flags);
865}
866
867static inline void vm_flags_reset_once(struct vm_area_struct *vma,
868 vm_flags_t flags)
869{
870 vma_assert_write_locked(vma);
871 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
872}
873
874static inline void vm_flags_set(struct vm_area_struct *vma,
875 vm_flags_t flags)
876{
877 vma_start_write(vma);
878 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
879}
880
881static inline void vm_flags_clear(struct vm_area_struct *vma,
882 vm_flags_t flags)
883{
884 vma_start_write(vma);
885 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
886}
887
888/*
889 * Use only if VMA is not part of the VMA tree or has no other users and
890 * therefore needs no locking.
891 */
892static inline void __vm_flags_mod(struct vm_area_struct *vma,
893 vm_flags_t set, vm_flags_t clear)
894{
895 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
896}
897
898/*
899 * Use only when the order of set/clear operations is unimportant, otherwise
900 * use vm_flags_{set|clear} explicitly.
901 */
902static inline void vm_flags_mod(struct vm_area_struct *vma,
903 vm_flags_t set, vm_flags_t clear)
904{
905 vma_start_write(vma);
906 __vm_flags_mod(vma, set, clear);
907}
908
909static inline void vma_set_anonymous(struct vm_area_struct *vma)
910{
911 vma->vm_ops = NULL;
912}
913
914static inline bool vma_is_anonymous(struct vm_area_struct *vma)
915{
916 return !vma->vm_ops;
917}
918
919/*
920 * Indicate if the VMA is a heap for the given task; for
921 * /proc/PID/maps that is the heap of the main task.
922 */
923static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
924{
925 return vma->vm_start < vma->vm_mm->brk &&
926 vma->vm_end > vma->vm_mm->start_brk;
927}
928
929/*
930 * Indicate if the VMA is a stack for the given task; for
931 * /proc/PID/maps that is the stack of the main task.
932 */
933static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
934{
935 /*
936 * We make no effort to guess what a given thread considers to be
937 * its "stack". It's not even well-defined for programs written
938 * languages like Go.
939 */
940 return vma->vm_start <= vma->vm_mm->start_stack &&
941 vma->vm_end >= vma->vm_mm->start_stack;
942}
943
944static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
945{
946 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
947
948 if (!maybe_stack)
949 return false;
950
951 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
952 VM_STACK_INCOMPLETE_SETUP)
953 return true;
954
955 return false;
956}
957
958static inline bool vma_is_foreign(struct vm_area_struct *vma)
959{
960 if (!current->mm)
961 return true;
962
963 if (current->mm != vma->vm_mm)
964 return true;
965
966 return false;
967}
968
969static inline bool vma_is_accessible(struct vm_area_struct *vma)
970{
971 return vma->vm_flags & VM_ACCESS_FLAGS;
972}
973
974static inline bool is_shared_maywrite(vm_flags_t vm_flags)
975{
976 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
977 (VM_SHARED | VM_MAYWRITE);
978}
979
980static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
981{
982 return is_shared_maywrite(vma->vm_flags);
983}
984
985static inline
986struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
987{
988 return mas_find(&vmi->mas, max - 1);
989}
990
991static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
992{
993 /*
994 * Uses mas_find() to get the first VMA when the iterator starts.
995 * Calling mas_next() could skip the first entry.
996 */
997 return mas_find(&vmi->mas, ULONG_MAX);
998}
999
1000static inline
1001struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1002{
1003 return mas_next_range(&vmi->mas, ULONG_MAX);
1004}
1005
1006
1007static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1008{
1009 return mas_prev(&vmi->mas, 0);
1010}
1011
1012static inline
1013struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1014{
1015 return mas_prev_range(&vmi->mas, 0);
1016}
1017
1018static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1019{
1020 return vmi->mas.index;
1021}
1022
1023static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1024{
1025 return vmi->mas.last + 1;
1026}
1027static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1028 unsigned long count)
1029{
1030 return mas_expected_entries(&vmi->mas, count);
1031}
1032
1033static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1034 unsigned long start, unsigned long end, gfp_t gfp)
1035{
1036 __mas_set_range(&vmi->mas, start, end - 1);
1037 mas_store_gfp(&vmi->mas, NULL, gfp);
1038 if (unlikely(mas_is_err(&vmi->mas)))
1039 return -ENOMEM;
1040
1041 return 0;
1042}
1043
1044/* Free any unused preallocations */
1045static inline void vma_iter_free(struct vma_iterator *vmi)
1046{
1047 mas_destroy(&vmi->mas);
1048}
1049
1050static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1051 struct vm_area_struct *vma)
1052{
1053 vmi->mas.index = vma->vm_start;
1054 vmi->mas.last = vma->vm_end - 1;
1055 mas_store(&vmi->mas, vma);
1056 if (unlikely(mas_is_err(&vmi->mas)))
1057 return -ENOMEM;
1058
1059 return 0;
1060}
1061
1062static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1063{
1064 mas_pause(&vmi->mas);
1065}
1066
1067static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1068{
1069 mas_set(&vmi->mas, addr);
1070}
1071
1072#define for_each_vma(__vmi, __vma) \
1073 while (((__vma) = vma_next(&(__vmi))) != NULL)
1074
1075/* The MM code likes to work with exclusive end addresses */
1076#define for_each_vma_range(__vmi, __vma, __end) \
1077 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1078
1079#ifdef CONFIG_SHMEM
1080/*
1081 * The vma_is_shmem is not inline because it is used only by slow
1082 * paths in userfault.
1083 */
1084bool vma_is_shmem(struct vm_area_struct *vma);
1085bool vma_is_anon_shmem(struct vm_area_struct *vma);
1086#else
1087static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1088static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1089#endif
1090
1091int vma_is_stack_for_current(struct vm_area_struct *vma);
1092
1093/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1094#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1095
1096struct mmu_gather;
1097struct inode;
1098
1099/*
1100 * compound_order() can be called without holding a reference, which means
1101 * that niceties like page_folio() don't work. These callers should be
1102 * prepared to handle wild return values. For example, PG_head may be
1103 * set before the order is initialised, or this may be a tail page.
1104 * See compaction.c for some good examples.
1105 */
1106static inline unsigned int compound_order(struct page *page)
1107{
1108 struct folio *folio = (struct folio *)page;
1109
1110 if (!test_bit(PG_head, &folio->flags))
1111 return 0;
1112 return folio->_flags_1 & 0xff;
1113}
1114
1115/**
1116 * folio_order - The allocation order of a folio.
1117 * @folio: The folio.
1118 *
1119 * A folio is composed of 2^order pages. See get_order() for the definition
1120 * of order.
1121 *
1122 * Return: The order of the folio.
1123 */
1124static inline unsigned int folio_order(const struct folio *folio)
1125{
1126 if (!folio_test_large(folio))
1127 return 0;
1128 return folio->_flags_1 & 0xff;
1129}
1130
1131#include <linux/huge_mm.h>
1132
1133/*
1134 * Methods to modify the page usage count.
1135 *
1136 * What counts for a page usage:
1137 * - cache mapping (page->mapping)
1138 * - private data (page->private)
1139 * - page mapped in a task's page tables, each mapping
1140 * is counted separately
1141 *
1142 * Also, many kernel routines increase the page count before a critical
1143 * routine so they can be sure the page doesn't go away from under them.
1144 */
1145
1146/*
1147 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1148 */
1149static inline int put_page_testzero(struct page *page)
1150{
1151 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1152 return page_ref_dec_and_test(page);
1153}
1154
1155static inline int folio_put_testzero(struct folio *folio)
1156{
1157 return put_page_testzero(&folio->page);
1158}
1159
1160/*
1161 * Try to grab a ref unless the page has a refcount of zero, return false if
1162 * that is the case.
1163 * This can be called when MMU is off so it must not access
1164 * any of the virtual mappings.
1165 */
1166static inline bool get_page_unless_zero(struct page *page)
1167{
1168 return page_ref_add_unless(page, 1, 0);
1169}
1170
1171static inline struct folio *folio_get_nontail_page(struct page *page)
1172{
1173 if (unlikely(!get_page_unless_zero(page)))
1174 return NULL;
1175 return (struct folio *)page;
1176}
1177
1178extern int page_is_ram(unsigned long pfn);
1179
1180enum {
1181 REGION_INTERSECTS,
1182 REGION_DISJOINT,
1183 REGION_MIXED,
1184};
1185
1186int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1187 unsigned long desc);
1188
1189/* Support for virtually mapped pages */
1190struct page *vmalloc_to_page(const void *addr);
1191unsigned long vmalloc_to_pfn(const void *addr);
1192
1193/*
1194 * Determine if an address is within the vmalloc range
1195 *
1196 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1197 * is no special casing required.
1198 */
1199#ifdef CONFIG_MMU
1200extern bool is_vmalloc_addr(const void *x);
1201extern int is_vmalloc_or_module_addr(const void *x);
1202#else
1203static inline bool is_vmalloc_addr(const void *x)
1204{
1205 return false;
1206}
1207static inline int is_vmalloc_or_module_addr(const void *x)
1208{
1209 return 0;
1210}
1211#endif
1212
1213/*
1214 * How many times the entire folio is mapped as a single unit (eg by a
1215 * PMD or PUD entry). This is probably not what you want, except for
1216 * debugging purposes or implementation of other core folio_*() primitives.
1217 */
1218static inline int folio_entire_mapcount(const struct folio *folio)
1219{
1220 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1221 return atomic_read(&folio->_entire_mapcount) + 1;
1222}
1223
1224static inline int folio_large_mapcount(const struct folio *folio)
1225{
1226 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1227 return atomic_read(&folio->_large_mapcount) + 1;
1228}
1229
1230/**
1231 * folio_mapcount() - Number of mappings of this folio.
1232 * @folio: The folio.
1233 *
1234 * The folio mapcount corresponds to the number of present user page table
1235 * entries that reference any part of a folio. Each such present user page
1236 * table entry must be paired with exactly on folio reference.
1237 *
1238 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1239 * exactly once.
1240 *
1241 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1242 * references the entire folio counts exactly once, even when such special
1243 * page table entries are comprised of multiple ordinary page table entries.
1244 *
1245 * Will report 0 for pages which cannot be mapped into userspace, such as
1246 * slab, page tables and similar.
1247 *
1248 * Return: The number of times this folio is mapped.
1249 */
1250static inline int folio_mapcount(const struct folio *folio)
1251{
1252 int mapcount;
1253
1254 if (likely(!folio_test_large(folio))) {
1255 mapcount = atomic_read(&folio->_mapcount) + 1;
1256 /* Handle page_has_type() pages */
1257 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1258 mapcount = 0;
1259 return mapcount;
1260 }
1261 return folio_large_mapcount(folio);
1262}
1263
1264/**
1265 * folio_mapped - Is this folio mapped into userspace?
1266 * @folio: The folio.
1267 *
1268 * Return: True if any page in this folio is referenced by user page tables.
1269 */
1270static inline bool folio_mapped(const struct folio *folio)
1271{
1272 return folio_mapcount(folio) >= 1;
1273}
1274
1275/*
1276 * Return true if this page is mapped into pagetables.
1277 * For compound page it returns true if any sub-page of compound page is mapped,
1278 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1279 */
1280static inline bool page_mapped(const struct page *page)
1281{
1282 return folio_mapped(page_folio(page));
1283}
1284
1285static inline struct page *virt_to_head_page(const void *x)
1286{
1287 struct page *page = virt_to_page(x);
1288
1289 return compound_head(page);
1290}
1291
1292static inline struct folio *virt_to_folio(const void *x)
1293{
1294 struct page *page = virt_to_page(x);
1295
1296 return page_folio(page);
1297}
1298
1299void __folio_put(struct folio *folio);
1300
1301void put_pages_list(struct list_head *pages);
1302
1303void split_page(struct page *page, unsigned int order);
1304void folio_copy(struct folio *dst, struct folio *src);
1305int folio_mc_copy(struct folio *dst, struct folio *src);
1306
1307unsigned long nr_free_buffer_pages(void);
1308
1309/* Returns the number of bytes in this potentially compound page. */
1310static inline unsigned long page_size(struct page *page)
1311{
1312 return PAGE_SIZE << compound_order(page);
1313}
1314
1315/* Returns the number of bits needed for the number of bytes in a page */
1316static inline unsigned int page_shift(struct page *page)
1317{
1318 return PAGE_SHIFT + compound_order(page);
1319}
1320
1321/**
1322 * thp_order - Order of a transparent huge page.
1323 * @page: Head page of a transparent huge page.
1324 */
1325static inline unsigned int thp_order(struct page *page)
1326{
1327 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1328 return compound_order(page);
1329}
1330
1331/**
1332 * thp_size - Size of a transparent huge page.
1333 * @page: Head page of a transparent huge page.
1334 *
1335 * Return: Number of bytes in this page.
1336 */
1337static inline unsigned long thp_size(struct page *page)
1338{
1339 return PAGE_SIZE << thp_order(page);
1340}
1341
1342#ifdef CONFIG_MMU
1343/*
1344 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1345 * servicing faults for write access. In the normal case, do always want
1346 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1347 * that do not have writing enabled, when used by access_process_vm.
1348 */
1349static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1350{
1351 if (likely(vma->vm_flags & VM_WRITE))
1352 pte = pte_mkwrite(pte, vma);
1353 return pte;
1354}
1355
1356vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1357void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1358 struct page *page, unsigned int nr, unsigned long addr);
1359
1360vm_fault_t finish_fault(struct vm_fault *vmf);
1361#endif
1362
1363/*
1364 * Multiple processes may "see" the same page. E.g. for untouched
1365 * mappings of /dev/null, all processes see the same page full of
1366 * zeroes, and text pages of executables and shared libraries have
1367 * only one copy in memory, at most, normally.
1368 *
1369 * For the non-reserved pages, page_count(page) denotes a reference count.
1370 * page_count() == 0 means the page is free. page->lru is then used for
1371 * freelist management in the buddy allocator.
1372 * page_count() > 0 means the page has been allocated.
1373 *
1374 * Pages are allocated by the slab allocator in order to provide memory
1375 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1376 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1377 * unless a particular usage is carefully commented. (the responsibility of
1378 * freeing the kmalloc memory is the caller's, of course).
1379 *
1380 * A page may be used by anyone else who does a __get_free_page().
1381 * In this case, page_count still tracks the references, and should only
1382 * be used through the normal accessor functions. The top bits of page->flags
1383 * and page->virtual store page management information, but all other fields
1384 * are unused and could be used privately, carefully. The management of this
1385 * page is the responsibility of the one who allocated it, and those who have
1386 * subsequently been given references to it.
1387 *
1388 * The other pages (we may call them "pagecache pages") are completely
1389 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1390 * The following discussion applies only to them.
1391 *
1392 * A pagecache page contains an opaque `private' member, which belongs to the
1393 * page's address_space. Usually, this is the address of a circular list of
1394 * the page's disk buffers. PG_private must be set to tell the VM to call
1395 * into the filesystem to release these pages.
1396 *
1397 * A page may belong to an inode's memory mapping. In this case, page->mapping
1398 * is the pointer to the inode, and page->index is the file offset of the page,
1399 * in units of PAGE_SIZE.
1400 *
1401 * If pagecache pages are not associated with an inode, they are said to be
1402 * anonymous pages. These may become associated with the swapcache, and in that
1403 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1404 *
1405 * In either case (swapcache or inode backed), the pagecache itself holds one
1406 * reference to the page. Setting PG_private should also increment the
1407 * refcount. The each user mapping also has a reference to the page.
1408 *
1409 * The pagecache pages are stored in a per-mapping radix tree, which is
1410 * rooted at mapping->i_pages, and indexed by offset.
1411 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1412 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1413 *
1414 * All pagecache pages may be subject to I/O:
1415 * - inode pages may need to be read from disk,
1416 * - inode pages which have been modified and are MAP_SHARED may need
1417 * to be written back to the inode on disk,
1418 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1419 * modified may need to be swapped out to swap space and (later) to be read
1420 * back into memory.
1421 */
1422
1423#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1424DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1425
1426bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1427static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1428{
1429 if (!static_branch_unlikely(&devmap_managed_key))
1430 return false;
1431 if (!folio_is_zone_device(folio))
1432 return false;
1433 return __put_devmap_managed_folio_refs(folio, refs);
1434}
1435#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1436static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1437{
1438 return false;
1439}
1440#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1441
1442/* 127: arbitrary random number, small enough to assemble well */
1443#define folio_ref_zero_or_close_to_overflow(folio) \
1444 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1445
1446/**
1447 * folio_get - Increment the reference count on a folio.
1448 * @folio: The folio.
1449 *
1450 * Context: May be called in any context, as long as you know that
1451 * you have a refcount on the folio. If you do not already have one,
1452 * folio_try_get() may be the right interface for you to use.
1453 */
1454static inline void folio_get(struct folio *folio)
1455{
1456 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1457 folio_ref_inc(folio);
1458}
1459
1460static inline void get_page(struct page *page)
1461{
1462 folio_get(page_folio(page));
1463}
1464
1465static inline __must_check bool try_get_page(struct page *page)
1466{
1467 page = compound_head(page);
1468 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1469 return false;
1470 page_ref_inc(page);
1471 return true;
1472}
1473
1474/**
1475 * folio_put - Decrement the reference count on a folio.
1476 * @folio: The folio.
1477 *
1478 * If the folio's reference count reaches zero, the memory will be
1479 * released back to the page allocator and may be used by another
1480 * allocation immediately. Do not access the memory or the struct folio
1481 * after calling folio_put() unless you can be sure that it wasn't the
1482 * last reference.
1483 *
1484 * Context: May be called in process or interrupt context, but not in NMI
1485 * context. May be called while holding a spinlock.
1486 */
1487static inline void folio_put(struct folio *folio)
1488{
1489 if (folio_put_testzero(folio))
1490 __folio_put(folio);
1491}
1492
1493/**
1494 * folio_put_refs - Reduce the reference count on a folio.
1495 * @folio: The folio.
1496 * @refs: The amount to subtract from the folio's reference count.
1497 *
1498 * If the folio's reference count reaches zero, the memory will be
1499 * released back to the page allocator and may be used by another
1500 * allocation immediately. Do not access the memory or the struct folio
1501 * after calling folio_put_refs() unless you can be sure that these weren't
1502 * the last references.
1503 *
1504 * Context: May be called in process or interrupt context, but not in NMI
1505 * context. May be called while holding a spinlock.
1506 */
1507static inline void folio_put_refs(struct folio *folio, int refs)
1508{
1509 if (folio_ref_sub_and_test(folio, refs))
1510 __folio_put(folio);
1511}
1512
1513void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1514
1515/*
1516 * union release_pages_arg - an array of pages or folios
1517 *
1518 * release_pages() releases a simple array of multiple pages, and
1519 * accepts various different forms of said page array: either
1520 * a regular old boring array of pages, an array of folios, or
1521 * an array of encoded page pointers.
1522 *
1523 * The transparent union syntax for this kind of "any of these
1524 * argument types" is all kinds of ugly, so look away.
1525 */
1526typedef union {
1527 struct page **pages;
1528 struct folio **folios;
1529 struct encoded_page **encoded_pages;
1530} release_pages_arg __attribute__ ((__transparent_union__));
1531
1532void release_pages(release_pages_arg, int nr);
1533
1534/**
1535 * folios_put - Decrement the reference count on an array of folios.
1536 * @folios: The folios.
1537 *
1538 * Like folio_put(), but for a batch of folios. This is more efficient
1539 * than writing the loop yourself as it will optimise the locks which need
1540 * to be taken if the folios are freed. The folios batch is returned
1541 * empty and ready to be reused for another batch; there is no need to
1542 * reinitialise it.
1543 *
1544 * Context: May be called in process or interrupt context, but not in NMI
1545 * context. May be called while holding a spinlock.
1546 */
1547static inline void folios_put(struct folio_batch *folios)
1548{
1549 folios_put_refs(folios, NULL);
1550}
1551
1552static inline void put_page(struct page *page)
1553{
1554 struct folio *folio = page_folio(page);
1555
1556 /*
1557 * For some devmap managed pages we need to catch refcount transition
1558 * from 2 to 1:
1559 */
1560 if (put_devmap_managed_folio_refs(folio, 1))
1561 return;
1562 folio_put(folio);
1563}
1564
1565/*
1566 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1567 * the page's refcount so that two separate items are tracked: the original page
1568 * reference count, and also a new count of how many pin_user_pages() calls were
1569 * made against the page. ("gup-pinned" is another term for the latter).
1570 *
1571 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1572 * distinct from normal pages. As such, the unpin_user_page() call (and its
1573 * variants) must be used in order to release gup-pinned pages.
1574 *
1575 * Choice of value:
1576 *
1577 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1578 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1579 * simpler, due to the fact that adding an even power of two to the page
1580 * refcount has the effect of using only the upper N bits, for the code that
1581 * counts up using the bias value. This means that the lower bits are left for
1582 * the exclusive use of the original code that increments and decrements by one
1583 * (or at least, by much smaller values than the bias value).
1584 *
1585 * Of course, once the lower bits overflow into the upper bits (and this is
1586 * OK, because subtraction recovers the original values), then visual inspection
1587 * no longer suffices to directly view the separate counts. However, for normal
1588 * applications that don't have huge page reference counts, this won't be an
1589 * issue.
1590 *
1591 * Locking: the lockless algorithm described in folio_try_get_rcu()
1592 * provides safe operation for get_user_pages(), folio_mkclean() and
1593 * other calls that race to set up page table entries.
1594 */
1595#define GUP_PIN_COUNTING_BIAS (1U << 10)
1596
1597void unpin_user_page(struct page *page);
1598void unpin_folio(struct folio *folio);
1599void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1600 bool make_dirty);
1601void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1602 bool make_dirty);
1603void unpin_user_pages(struct page **pages, unsigned long npages);
1604void unpin_folios(struct folio **folios, unsigned long nfolios);
1605
1606static inline bool is_cow_mapping(vm_flags_t flags)
1607{
1608 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1609}
1610
1611#ifndef CONFIG_MMU
1612static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1613{
1614 /*
1615 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1616 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1617 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1618 * underlying memory if ptrace is active, so this is only possible if
1619 * ptrace does not apply. Note that there is no mprotect() to upgrade
1620 * write permissions later.
1621 */
1622 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1623}
1624#endif
1625
1626#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1627#define SECTION_IN_PAGE_FLAGS
1628#endif
1629
1630/*
1631 * The identification function is mainly used by the buddy allocator for
1632 * determining if two pages could be buddies. We are not really identifying
1633 * the zone since we could be using the section number id if we do not have
1634 * node id available in page flags.
1635 * We only guarantee that it will return the same value for two combinable
1636 * pages in a zone.
1637 */
1638static inline int page_zone_id(struct page *page)
1639{
1640 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1641}
1642
1643#ifdef NODE_NOT_IN_PAGE_FLAGS
1644int page_to_nid(const struct page *page);
1645#else
1646static inline int page_to_nid(const struct page *page)
1647{
1648 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1649}
1650#endif
1651
1652static inline int folio_nid(const struct folio *folio)
1653{
1654 return page_to_nid(&folio->page);
1655}
1656
1657#ifdef CONFIG_NUMA_BALANCING
1658/* page access time bits needs to hold at least 4 seconds */
1659#define PAGE_ACCESS_TIME_MIN_BITS 12
1660#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1661#define PAGE_ACCESS_TIME_BUCKETS \
1662 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1663#else
1664#define PAGE_ACCESS_TIME_BUCKETS 0
1665#endif
1666
1667#define PAGE_ACCESS_TIME_MASK \
1668 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1669
1670static inline int cpu_pid_to_cpupid(int cpu, int pid)
1671{
1672 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1673}
1674
1675static inline int cpupid_to_pid(int cpupid)
1676{
1677 return cpupid & LAST__PID_MASK;
1678}
1679
1680static inline int cpupid_to_cpu(int cpupid)
1681{
1682 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1683}
1684
1685static inline int cpupid_to_nid(int cpupid)
1686{
1687 return cpu_to_node(cpupid_to_cpu(cpupid));
1688}
1689
1690static inline bool cpupid_pid_unset(int cpupid)
1691{
1692 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1693}
1694
1695static inline bool cpupid_cpu_unset(int cpupid)
1696{
1697 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1698}
1699
1700static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1701{
1702 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1703}
1704
1705#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1706#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1707static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1708{
1709 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1710}
1711
1712static inline int folio_last_cpupid(struct folio *folio)
1713{
1714 return folio->_last_cpupid;
1715}
1716static inline void page_cpupid_reset_last(struct page *page)
1717{
1718 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1719}
1720#else
1721static inline int folio_last_cpupid(struct folio *folio)
1722{
1723 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1724}
1725
1726int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1727
1728static inline void page_cpupid_reset_last(struct page *page)
1729{
1730 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1731}
1732#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1733
1734static inline int folio_xchg_access_time(struct folio *folio, int time)
1735{
1736 int last_time;
1737
1738 last_time = folio_xchg_last_cpupid(folio,
1739 time >> PAGE_ACCESS_TIME_BUCKETS);
1740 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1741}
1742
1743static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1744{
1745 unsigned int pid_bit;
1746
1747 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1748 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1749 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1750 }
1751}
1752#else /* !CONFIG_NUMA_BALANCING */
1753static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1754{
1755 return folio_nid(folio); /* XXX */
1756}
1757
1758static inline int folio_xchg_access_time(struct folio *folio, int time)
1759{
1760 return 0;
1761}
1762
1763static inline int folio_last_cpupid(struct folio *folio)
1764{
1765 return folio_nid(folio); /* XXX */
1766}
1767
1768static inline int cpupid_to_nid(int cpupid)
1769{
1770 return -1;
1771}
1772
1773static inline int cpupid_to_pid(int cpupid)
1774{
1775 return -1;
1776}
1777
1778static inline int cpupid_to_cpu(int cpupid)
1779{
1780 return -1;
1781}
1782
1783static inline int cpu_pid_to_cpupid(int nid, int pid)
1784{
1785 return -1;
1786}
1787
1788static inline bool cpupid_pid_unset(int cpupid)
1789{
1790 return true;
1791}
1792
1793static inline void page_cpupid_reset_last(struct page *page)
1794{
1795}
1796
1797static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1798{
1799 return false;
1800}
1801
1802static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1803{
1804}
1805#endif /* CONFIG_NUMA_BALANCING */
1806
1807#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1808
1809/*
1810 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1811 * setting tags for all pages to native kernel tag value 0xff, as the default
1812 * value 0x00 maps to 0xff.
1813 */
1814
1815static inline u8 page_kasan_tag(const struct page *page)
1816{
1817 u8 tag = KASAN_TAG_KERNEL;
1818
1819 if (kasan_enabled()) {
1820 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1821 tag ^= 0xff;
1822 }
1823
1824 return tag;
1825}
1826
1827static inline void page_kasan_tag_set(struct page *page, u8 tag)
1828{
1829 unsigned long old_flags, flags;
1830
1831 if (!kasan_enabled())
1832 return;
1833
1834 tag ^= 0xff;
1835 old_flags = READ_ONCE(page->flags);
1836 do {
1837 flags = old_flags;
1838 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1839 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1840 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1841}
1842
1843static inline void page_kasan_tag_reset(struct page *page)
1844{
1845 if (kasan_enabled())
1846 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1847}
1848
1849#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1850
1851static inline u8 page_kasan_tag(const struct page *page)
1852{
1853 return 0xff;
1854}
1855
1856static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1857static inline void page_kasan_tag_reset(struct page *page) { }
1858
1859#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1860
1861static inline struct zone *page_zone(const struct page *page)
1862{
1863 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1864}
1865
1866static inline pg_data_t *page_pgdat(const struct page *page)
1867{
1868 return NODE_DATA(page_to_nid(page));
1869}
1870
1871static inline struct zone *folio_zone(const struct folio *folio)
1872{
1873 return page_zone(&folio->page);
1874}
1875
1876static inline pg_data_t *folio_pgdat(const struct folio *folio)
1877{
1878 return page_pgdat(&folio->page);
1879}
1880
1881#ifdef SECTION_IN_PAGE_FLAGS
1882static inline void set_page_section(struct page *page, unsigned long section)
1883{
1884 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1885 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1886}
1887
1888static inline unsigned long page_to_section(const struct page *page)
1889{
1890 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1891}
1892#endif
1893
1894/**
1895 * folio_pfn - Return the Page Frame Number of a folio.
1896 * @folio: The folio.
1897 *
1898 * A folio may contain multiple pages. The pages have consecutive
1899 * Page Frame Numbers.
1900 *
1901 * Return: The Page Frame Number of the first page in the folio.
1902 */
1903static inline unsigned long folio_pfn(struct folio *folio)
1904{
1905 return page_to_pfn(&folio->page);
1906}
1907
1908static inline struct folio *pfn_folio(unsigned long pfn)
1909{
1910 return page_folio(pfn_to_page(pfn));
1911}
1912
1913/**
1914 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1915 * @folio: The folio.
1916 *
1917 * This function checks if a folio has been pinned via a call to
1918 * a function in the pin_user_pages() family.
1919 *
1920 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1921 * because it means "definitely not pinned for DMA", but true means "probably
1922 * pinned for DMA, but possibly a false positive due to having at least
1923 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1924 *
1925 * False positives are OK, because: a) it's unlikely for a folio to
1926 * get that many refcounts, and b) all the callers of this routine are
1927 * expected to be able to deal gracefully with a false positive.
1928 *
1929 * For large folios, the result will be exactly correct. That's because
1930 * we have more tracking data available: the _pincount field is used
1931 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1932 *
1933 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1934 *
1935 * Return: True, if it is likely that the folio has been "dma-pinned".
1936 * False, if the folio is definitely not dma-pinned.
1937 */
1938static inline bool folio_maybe_dma_pinned(struct folio *folio)
1939{
1940 if (folio_test_large(folio))
1941 return atomic_read(&folio->_pincount) > 0;
1942
1943 /*
1944 * folio_ref_count() is signed. If that refcount overflows, then
1945 * folio_ref_count() returns a negative value, and callers will avoid
1946 * further incrementing the refcount.
1947 *
1948 * Here, for that overflow case, use the sign bit to count a little
1949 * bit higher via unsigned math, and thus still get an accurate result.
1950 */
1951 return ((unsigned int)folio_ref_count(folio)) >=
1952 GUP_PIN_COUNTING_BIAS;
1953}
1954
1955/*
1956 * This should most likely only be called during fork() to see whether we
1957 * should break the cow immediately for an anon page on the src mm.
1958 *
1959 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1960 */
1961static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1962 struct folio *folio)
1963{
1964 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1965
1966 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1967 return false;
1968
1969 return folio_maybe_dma_pinned(folio);
1970}
1971
1972/**
1973 * is_zero_page - Query if a page is a zero page
1974 * @page: The page to query
1975 *
1976 * This returns true if @page is one of the permanent zero pages.
1977 */
1978static inline bool is_zero_page(const struct page *page)
1979{
1980 return is_zero_pfn(page_to_pfn(page));
1981}
1982
1983/**
1984 * is_zero_folio - Query if a folio is a zero page
1985 * @folio: The folio to query
1986 *
1987 * This returns true if @folio is one of the permanent zero pages.
1988 */
1989static inline bool is_zero_folio(const struct folio *folio)
1990{
1991 return is_zero_page(&folio->page);
1992}
1993
1994/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1995#ifdef CONFIG_MIGRATION
1996static inline bool folio_is_longterm_pinnable(struct folio *folio)
1997{
1998#ifdef CONFIG_CMA
1999 int mt = folio_migratetype(folio);
2000
2001 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2002 return false;
2003#endif
2004 /* The zero page can be "pinned" but gets special handling. */
2005 if (is_zero_folio(folio))
2006 return true;
2007
2008 /* Coherent device memory must always allow eviction. */
2009 if (folio_is_device_coherent(folio))
2010 return false;
2011
2012 /* Otherwise, non-movable zone folios can be pinned. */
2013 return !folio_is_zone_movable(folio);
2014
2015}
2016#else
2017static inline bool folio_is_longterm_pinnable(struct folio *folio)
2018{
2019 return true;
2020}
2021#endif
2022
2023static inline void set_page_zone(struct page *page, enum zone_type zone)
2024{
2025 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2026 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2027}
2028
2029static inline void set_page_node(struct page *page, unsigned long node)
2030{
2031 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2032 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2033}
2034
2035static inline void set_page_links(struct page *page, enum zone_type zone,
2036 unsigned long node, unsigned long pfn)
2037{
2038 set_page_zone(page, zone);
2039 set_page_node(page, node);
2040#ifdef SECTION_IN_PAGE_FLAGS
2041 set_page_section(page, pfn_to_section_nr(pfn));
2042#endif
2043}
2044
2045/**
2046 * folio_nr_pages - The number of pages in the folio.
2047 * @folio: The folio.
2048 *
2049 * Return: A positive power of two.
2050 */
2051static inline long folio_nr_pages(const struct folio *folio)
2052{
2053 if (!folio_test_large(folio))
2054 return 1;
2055#ifdef CONFIG_64BIT
2056 return folio->_folio_nr_pages;
2057#else
2058 return 1L << (folio->_flags_1 & 0xff);
2059#endif
2060}
2061
2062/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2063#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2064#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2065#else
2066#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2067#endif
2068
2069/*
2070 * compound_nr() returns the number of pages in this potentially compound
2071 * page. compound_nr() can be called on a tail page, and is defined to
2072 * return 1 in that case.
2073 */
2074static inline unsigned long compound_nr(struct page *page)
2075{
2076 struct folio *folio = (struct folio *)page;
2077
2078 if (!test_bit(PG_head, &folio->flags))
2079 return 1;
2080#ifdef CONFIG_64BIT
2081 return folio->_folio_nr_pages;
2082#else
2083 return 1L << (folio->_flags_1 & 0xff);
2084#endif
2085}
2086
2087/**
2088 * thp_nr_pages - The number of regular pages in this huge page.
2089 * @page: The head page of a huge page.
2090 */
2091static inline int thp_nr_pages(struct page *page)
2092{
2093 return folio_nr_pages((struct folio *)page);
2094}
2095
2096/**
2097 * folio_next - Move to the next physical folio.
2098 * @folio: The folio we're currently operating on.
2099 *
2100 * If you have physically contiguous memory which may span more than
2101 * one folio (eg a &struct bio_vec), use this function to move from one
2102 * folio to the next. Do not use it if the memory is only virtually
2103 * contiguous as the folios are almost certainly not adjacent to each
2104 * other. This is the folio equivalent to writing ``page++``.
2105 *
2106 * Context: We assume that the folios are refcounted and/or locked at a
2107 * higher level and do not adjust the reference counts.
2108 * Return: The next struct folio.
2109 */
2110static inline struct folio *folio_next(struct folio *folio)
2111{
2112 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2113}
2114
2115/**
2116 * folio_shift - The size of the memory described by this folio.
2117 * @folio: The folio.
2118 *
2119 * A folio represents a number of bytes which is a power-of-two in size.
2120 * This function tells you which power-of-two the folio is. See also
2121 * folio_size() and folio_order().
2122 *
2123 * Context: The caller should have a reference on the folio to prevent
2124 * it from being split. It is not necessary for the folio to be locked.
2125 * Return: The base-2 logarithm of the size of this folio.
2126 */
2127static inline unsigned int folio_shift(const struct folio *folio)
2128{
2129 return PAGE_SHIFT + folio_order(folio);
2130}
2131
2132/**
2133 * folio_size - The number of bytes in a folio.
2134 * @folio: The folio.
2135 *
2136 * Context: The caller should have a reference on the folio to prevent
2137 * it from being split. It is not necessary for the folio to be locked.
2138 * Return: The number of bytes in this folio.
2139 */
2140static inline size_t folio_size(const struct folio *folio)
2141{
2142 return PAGE_SIZE << folio_order(folio);
2143}
2144
2145/**
2146 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2147 * tables of more than one MM
2148 * @folio: The folio.
2149 *
2150 * This function checks if the folio is currently mapped into more than one
2151 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2152 * ("mapped exclusively").
2153 *
2154 * As precise information is not easily available for all folios, this function
2155 * estimates the number of MMs ("sharers") that are currently mapping a folio
2156 * using the number of times the first page of the folio is currently mapped
2157 * into page tables.
2158 *
2159 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2160 * the return value will be exactly correct, because they can only be mapped
2161 * at most once into an MM, and they cannot be partially mapped.
2162 *
2163 * For other folios, the result can be fuzzy:
2164 * #. For partially-mappable large folios (THP), the return value can wrongly
2165 * indicate "mapped exclusively" (false negative) when the folio is
2166 * only partially mapped into at least one MM.
2167 * #. For pagecache folios (including hugetlb), the return value can wrongly
2168 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2169 * cover the same file range.
2170 * #. For (small) KSM folios, the return value can wrongly indicate "mapped
2171 * shared" (false positive), when the folio is mapped multiple times into
2172 * the same MM.
2173 *
2174 * Further, this function only considers current page table mappings that
2175 * are tracked using the folio mapcount(s).
2176 *
2177 * This function does not consider:
2178 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2179 * pagecache, temporary unmapping for migration).
2180 * #. If the folio is mapped differently (VM_PFNMAP).
2181 * #. If hugetlb page table sharing applies. Callers might want to check
2182 * hugetlb_pmd_shared().
2183 *
2184 * Return: Whether the folio is estimated to be mapped into more than one MM.
2185 */
2186static inline bool folio_likely_mapped_shared(struct folio *folio)
2187{
2188 int mapcount = folio_mapcount(folio);
2189
2190 /* Only partially-mappable folios require more care. */
2191 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2192 return mapcount > 1;
2193
2194 /* A single mapping implies "mapped exclusively". */
2195 if (mapcount <= 1)
2196 return false;
2197
2198 /* If any page is mapped more than once we treat it "mapped shared". */
2199 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2200 return true;
2201
2202 /* Let's guess based on the first subpage. */
2203 return atomic_read(&folio->_mapcount) > 0;
2204}
2205
2206#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2207static inline int arch_make_page_accessible(struct page *page)
2208{
2209 return 0;
2210}
2211#endif
2212
2213#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2214static inline int arch_make_folio_accessible(struct folio *folio)
2215{
2216 int ret;
2217 long i, nr = folio_nr_pages(folio);
2218
2219 for (i = 0; i < nr; i++) {
2220 ret = arch_make_page_accessible(folio_page(folio, i));
2221 if (ret)
2222 break;
2223 }
2224
2225 return ret;
2226}
2227#endif
2228
2229/*
2230 * Some inline functions in vmstat.h depend on page_zone()
2231 */
2232#include <linux/vmstat.h>
2233
2234#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2235#define HASHED_PAGE_VIRTUAL
2236#endif
2237
2238#if defined(WANT_PAGE_VIRTUAL)
2239static inline void *page_address(const struct page *page)
2240{
2241 return page->virtual;
2242}
2243static inline void set_page_address(struct page *page, void *address)
2244{
2245 page->virtual = address;
2246}
2247#define page_address_init() do { } while(0)
2248#endif
2249
2250#if defined(HASHED_PAGE_VIRTUAL)
2251void *page_address(const struct page *page);
2252void set_page_address(struct page *page, void *virtual);
2253void page_address_init(void);
2254#endif
2255
2256static __always_inline void *lowmem_page_address(const struct page *page)
2257{
2258 return page_to_virt(page);
2259}
2260
2261#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2262#define page_address(page) lowmem_page_address(page)
2263#define set_page_address(page, address) do { } while(0)
2264#define page_address_init() do { } while(0)
2265#endif
2266
2267static inline void *folio_address(const struct folio *folio)
2268{
2269 return page_address(&folio->page);
2270}
2271
2272/*
2273 * Return true only if the page has been allocated with
2274 * ALLOC_NO_WATERMARKS and the low watermark was not
2275 * met implying that the system is under some pressure.
2276 */
2277static inline bool page_is_pfmemalloc(const struct page *page)
2278{
2279 /*
2280 * lru.next has bit 1 set if the page is allocated from the
2281 * pfmemalloc reserves. Callers may simply overwrite it if
2282 * they do not need to preserve that information.
2283 */
2284 return (uintptr_t)page->lru.next & BIT(1);
2285}
2286
2287/*
2288 * Return true only if the folio has been allocated with
2289 * ALLOC_NO_WATERMARKS and the low watermark was not
2290 * met implying that the system is under some pressure.
2291 */
2292static inline bool folio_is_pfmemalloc(const struct folio *folio)
2293{
2294 /*
2295 * lru.next has bit 1 set if the page is allocated from the
2296 * pfmemalloc reserves. Callers may simply overwrite it if
2297 * they do not need to preserve that information.
2298 */
2299 return (uintptr_t)folio->lru.next & BIT(1);
2300}
2301
2302/*
2303 * Only to be called by the page allocator on a freshly allocated
2304 * page.
2305 */
2306static inline void set_page_pfmemalloc(struct page *page)
2307{
2308 page->lru.next = (void *)BIT(1);
2309}
2310
2311static inline void clear_page_pfmemalloc(struct page *page)
2312{
2313 page->lru.next = NULL;
2314}
2315
2316/*
2317 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2318 */
2319extern void pagefault_out_of_memory(void);
2320
2321#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2322#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2323#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2324
2325/*
2326 * Parameter block passed down to zap_pte_range in exceptional cases.
2327 */
2328struct zap_details {
2329 struct folio *single_folio; /* Locked folio to be unmapped */
2330 bool even_cows; /* Zap COWed private pages too? */
2331 zap_flags_t zap_flags; /* Extra flags for zapping */
2332};
2333
2334/*
2335 * Whether to drop the pte markers, for example, the uffd-wp information for
2336 * file-backed memory. This should only be specified when we will completely
2337 * drop the page in the mm, either by truncation or unmapping of the vma. By
2338 * default, the flag is not set.
2339 */
2340#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2341/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2342#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2343
2344#ifdef CONFIG_SCHED_MM_CID
2345void sched_mm_cid_before_execve(struct task_struct *t);
2346void sched_mm_cid_after_execve(struct task_struct *t);
2347void sched_mm_cid_fork(struct task_struct *t);
2348void sched_mm_cid_exit_signals(struct task_struct *t);
2349static inline int task_mm_cid(struct task_struct *t)
2350{
2351 return t->mm_cid;
2352}
2353#else
2354static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2355static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2356static inline void sched_mm_cid_fork(struct task_struct *t) { }
2357static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2358static inline int task_mm_cid(struct task_struct *t)
2359{
2360 /*
2361 * Use the processor id as a fall-back when the mm cid feature is
2362 * disabled. This provides functional per-cpu data structure accesses
2363 * in user-space, althrough it won't provide the memory usage benefits.
2364 */
2365 return raw_smp_processor_id();
2366}
2367#endif
2368
2369#ifdef CONFIG_MMU
2370extern bool can_do_mlock(void);
2371#else
2372static inline bool can_do_mlock(void) { return false; }
2373#endif
2374extern int user_shm_lock(size_t, struct ucounts *);
2375extern void user_shm_unlock(size_t, struct ucounts *);
2376
2377struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2378 pte_t pte);
2379struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2380 pte_t pte);
2381struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2382 unsigned long addr, pmd_t pmd);
2383struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2384 pmd_t pmd);
2385
2386void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2387 unsigned long size);
2388void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2389 unsigned long size, struct zap_details *details);
2390static inline void zap_vma_pages(struct vm_area_struct *vma)
2391{
2392 zap_page_range_single(vma, vma->vm_start,
2393 vma->vm_end - vma->vm_start, NULL);
2394}
2395void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2396 struct vm_area_struct *start_vma, unsigned long start,
2397 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2398
2399struct mmu_notifier_range;
2400
2401void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2402 unsigned long end, unsigned long floor, unsigned long ceiling);
2403int
2404copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2405int follow_pte(struct vm_area_struct *vma, unsigned long address,
2406 pte_t **ptepp, spinlock_t **ptlp);
2407int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2408 void *buf, int len, int write);
2409
2410extern void truncate_pagecache(struct inode *inode, loff_t new);
2411extern void truncate_setsize(struct inode *inode, loff_t newsize);
2412void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2413void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2414int generic_error_remove_folio(struct address_space *mapping,
2415 struct folio *folio);
2416
2417struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2418 unsigned long address, struct pt_regs *regs);
2419
2420#ifdef CONFIG_MMU
2421extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2422 unsigned long address, unsigned int flags,
2423 struct pt_regs *regs);
2424extern int fixup_user_fault(struct mm_struct *mm,
2425 unsigned long address, unsigned int fault_flags,
2426 bool *unlocked);
2427void unmap_mapping_pages(struct address_space *mapping,
2428 pgoff_t start, pgoff_t nr, bool even_cows);
2429void unmap_mapping_range(struct address_space *mapping,
2430 loff_t const holebegin, loff_t const holelen, int even_cows);
2431#else
2432static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2433 unsigned long address, unsigned int flags,
2434 struct pt_regs *regs)
2435{
2436 /* should never happen if there's no MMU */
2437 BUG();
2438 return VM_FAULT_SIGBUS;
2439}
2440static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2441 unsigned int fault_flags, bool *unlocked)
2442{
2443 /* should never happen if there's no MMU */
2444 BUG();
2445 return -EFAULT;
2446}
2447static inline void unmap_mapping_pages(struct address_space *mapping,
2448 pgoff_t start, pgoff_t nr, bool even_cows) { }
2449static inline void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2451#endif
2452
2453static inline void unmap_shared_mapping_range(struct address_space *mapping,
2454 loff_t const holebegin, loff_t const holelen)
2455{
2456 unmap_mapping_range(mapping, holebegin, holelen, 0);
2457}
2458
2459static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2460 unsigned long addr);
2461
2462extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2463 void *buf, int len, unsigned int gup_flags);
2464extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2465 void *buf, int len, unsigned int gup_flags);
2466
2467long get_user_pages_remote(struct mm_struct *mm,
2468 unsigned long start, unsigned long nr_pages,
2469 unsigned int gup_flags, struct page **pages,
2470 int *locked);
2471long pin_user_pages_remote(struct mm_struct *mm,
2472 unsigned long start, unsigned long nr_pages,
2473 unsigned int gup_flags, struct page **pages,
2474 int *locked);
2475
2476/*
2477 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2478 */
2479static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2480 unsigned long addr,
2481 int gup_flags,
2482 struct vm_area_struct **vmap)
2483{
2484 struct page *page;
2485 struct vm_area_struct *vma;
2486 int got;
2487
2488 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2489 return ERR_PTR(-EINVAL);
2490
2491 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2492
2493 if (got < 0)
2494 return ERR_PTR(got);
2495
2496 vma = vma_lookup(mm, addr);
2497 if (WARN_ON_ONCE(!vma)) {
2498 put_page(page);
2499 return ERR_PTR(-EINVAL);
2500 }
2501
2502 *vmap = vma;
2503 return page;
2504}
2505
2506long get_user_pages(unsigned long start, unsigned long nr_pages,
2507 unsigned int gup_flags, struct page **pages);
2508long pin_user_pages(unsigned long start, unsigned long nr_pages,
2509 unsigned int gup_flags, struct page **pages);
2510long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2511 struct page **pages, unsigned int gup_flags);
2512long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2513 struct page **pages, unsigned int gup_flags);
2514long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2515 struct folio **folios, unsigned int max_folios,
2516 pgoff_t *offset);
2517
2518int get_user_pages_fast(unsigned long start, int nr_pages,
2519 unsigned int gup_flags, struct page **pages);
2520int pin_user_pages_fast(unsigned long start, int nr_pages,
2521 unsigned int gup_flags, struct page **pages);
2522void folio_add_pin(struct folio *folio);
2523
2524int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2525int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2526 struct task_struct *task, bool bypass_rlim);
2527
2528struct kvec;
2529struct page *get_dump_page(unsigned long addr);
2530
2531bool folio_mark_dirty(struct folio *folio);
2532bool set_page_dirty(struct page *page);
2533int set_page_dirty_lock(struct page *page);
2534
2535int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2536
2537extern unsigned long move_page_tables(struct vm_area_struct *vma,
2538 unsigned long old_addr, struct vm_area_struct *new_vma,
2539 unsigned long new_addr, unsigned long len,
2540 bool need_rmap_locks, bool for_stack);
2541
2542/*
2543 * Flags used by change_protection(). For now we make it a bitmap so
2544 * that we can pass in multiple flags just like parameters. However
2545 * for now all the callers are only use one of the flags at the same
2546 * time.
2547 */
2548/*
2549 * Whether we should manually check if we can map individual PTEs writable,
2550 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2551 * PTEs automatically in a writable mapping.
2552 */
2553#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2554/* Whether this protection change is for NUMA hints */
2555#define MM_CP_PROT_NUMA (1UL << 1)
2556/* Whether this change is for write protecting */
2557#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2558#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2559#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2560 MM_CP_UFFD_WP_RESOLVE)
2561
2562bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2563bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2564static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2565{
2566 /*
2567 * We want to check manually if we can change individual PTEs writable
2568 * if we can't do that automatically for all PTEs in a mapping. For
2569 * private mappings, that's always the case when we have write
2570 * permissions as we properly have to handle COW.
2571 */
2572 if (vma->vm_flags & VM_SHARED)
2573 return vma_wants_writenotify(vma, vma->vm_page_prot);
2574 return !!(vma->vm_flags & VM_WRITE);
2575
2576}
2577bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2578 pte_t pte);
2579extern long change_protection(struct mmu_gather *tlb,
2580 struct vm_area_struct *vma, unsigned long start,
2581 unsigned long end, unsigned long cp_flags);
2582extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2583 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2584 unsigned long start, unsigned long end, unsigned long newflags);
2585
2586/*
2587 * doesn't attempt to fault and will return short.
2588 */
2589int get_user_pages_fast_only(unsigned long start, int nr_pages,
2590 unsigned int gup_flags, struct page **pages);
2591
2592static inline bool get_user_page_fast_only(unsigned long addr,
2593 unsigned int gup_flags, struct page **pagep)
2594{
2595 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2596}
2597/*
2598 * per-process(per-mm_struct) statistics.
2599 */
2600static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2601{
2602 return percpu_counter_read_positive(&mm->rss_stat[member]);
2603}
2604
2605void mm_trace_rss_stat(struct mm_struct *mm, int member);
2606
2607static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2608{
2609 percpu_counter_add(&mm->rss_stat[member], value);
2610
2611 mm_trace_rss_stat(mm, member);
2612}
2613
2614static inline void inc_mm_counter(struct mm_struct *mm, int member)
2615{
2616 percpu_counter_inc(&mm->rss_stat[member]);
2617
2618 mm_trace_rss_stat(mm, member);
2619}
2620
2621static inline void dec_mm_counter(struct mm_struct *mm, int member)
2622{
2623 percpu_counter_dec(&mm->rss_stat[member]);
2624
2625 mm_trace_rss_stat(mm, member);
2626}
2627
2628/* Optimized variant when folio is already known not to be anon */
2629static inline int mm_counter_file(struct folio *folio)
2630{
2631 if (folio_test_swapbacked(folio))
2632 return MM_SHMEMPAGES;
2633 return MM_FILEPAGES;
2634}
2635
2636static inline int mm_counter(struct folio *folio)
2637{
2638 if (folio_test_anon(folio))
2639 return MM_ANONPAGES;
2640 return mm_counter_file(folio);
2641}
2642
2643static inline unsigned long get_mm_rss(struct mm_struct *mm)
2644{
2645 return get_mm_counter(mm, MM_FILEPAGES) +
2646 get_mm_counter(mm, MM_ANONPAGES) +
2647 get_mm_counter(mm, MM_SHMEMPAGES);
2648}
2649
2650static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2651{
2652 return max(mm->hiwater_rss, get_mm_rss(mm));
2653}
2654
2655static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2656{
2657 return max(mm->hiwater_vm, mm->total_vm);
2658}
2659
2660static inline void update_hiwater_rss(struct mm_struct *mm)
2661{
2662 unsigned long _rss = get_mm_rss(mm);
2663
2664 if ((mm)->hiwater_rss < _rss)
2665 (mm)->hiwater_rss = _rss;
2666}
2667
2668static inline void update_hiwater_vm(struct mm_struct *mm)
2669{
2670 if (mm->hiwater_vm < mm->total_vm)
2671 mm->hiwater_vm = mm->total_vm;
2672}
2673
2674static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2675{
2676 mm->hiwater_rss = get_mm_rss(mm);
2677}
2678
2679static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2680 struct mm_struct *mm)
2681{
2682 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2683
2684 if (*maxrss < hiwater_rss)
2685 *maxrss = hiwater_rss;
2686}
2687
2688#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2689static inline int pte_special(pte_t pte)
2690{
2691 return 0;
2692}
2693
2694static inline pte_t pte_mkspecial(pte_t pte)
2695{
2696 return pte;
2697}
2698#endif
2699
2700#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2701static inline int pte_devmap(pte_t pte)
2702{
2703 return 0;
2704}
2705#endif
2706
2707extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2708 spinlock_t **ptl);
2709static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2710 spinlock_t **ptl)
2711{
2712 pte_t *ptep;
2713 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2714 return ptep;
2715}
2716
2717#ifdef __PAGETABLE_P4D_FOLDED
2718static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2719 unsigned long address)
2720{
2721 return 0;
2722}
2723#else
2724int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2725#endif
2726
2727#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2728static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2729 unsigned long address)
2730{
2731 return 0;
2732}
2733static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2734static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2735
2736#else
2737int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2738
2739static inline void mm_inc_nr_puds(struct mm_struct *mm)
2740{
2741 if (mm_pud_folded(mm))
2742 return;
2743 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2744}
2745
2746static inline void mm_dec_nr_puds(struct mm_struct *mm)
2747{
2748 if (mm_pud_folded(mm))
2749 return;
2750 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2751}
2752#endif
2753
2754#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2755static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2756 unsigned long address)
2757{
2758 return 0;
2759}
2760
2761static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2762static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2763
2764#else
2765int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2766
2767static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2768{
2769 if (mm_pmd_folded(mm))
2770 return;
2771 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2772}
2773
2774static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2775{
2776 if (mm_pmd_folded(mm))
2777 return;
2778 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2779}
2780#endif
2781
2782#ifdef CONFIG_MMU
2783static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2784{
2785 atomic_long_set(&mm->pgtables_bytes, 0);
2786}
2787
2788static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2789{
2790 return atomic_long_read(&mm->pgtables_bytes);
2791}
2792
2793static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2794{
2795 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2796}
2797
2798static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2799{
2800 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2801}
2802#else
2803
2804static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2805static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2806{
2807 return 0;
2808}
2809
2810static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2811static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2812#endif
2813
2814int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2815int __pte_alloc_kernel(pmd_t *pmd);
2816
2817#if defined(CONFIG_MMU)
2818
2819static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2820 unsigned long address)
2821{
2822 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2823 NULL : p4d_offset(pgd, address);
2824}
2825
2826static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2827 unsigned long address)
2828{
2829 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2830 NULL : pud_offset(p4d, address);
2831}
2832
2833static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2834{
2835 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2836 NULL: pmd_offset(pud, address);
2837}
2838#endif /* CONFIG_MMU */
2839
2840static inline struct ptdesc *virt_to_ptdesc(const void *x)
2841{
2842 return page_ptdesc(virt_to_page(x));
2843}
2844
2845static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2846{
2847 return page_to_virt(ptdesc_page(pt));
2848}
2849
2850static inline void *ptdesc_address(const struct ptdesc *pt)
2851{
2852 return folio_address(ptdesc_folio(pt));
2853}
2854
2855static inline bool pagetable_is_reserved(struct ptdesc *pt)
2856{
2857 return folio_test_reserved(ptdesc_folio(pt));
2858}
2859
2860/**
2861 * pagetable_alloc - Allocate pagetables
2862 * @gfp: GFP flags
2863 * @order: desired pagetable order
2864 *
2865 * pagetable_alloc allocates memory for page tables as well as a page table
2866 * descriptor to describe that memory.
2867 *
2868 * Return: The ptdesc describing the allocated page tables.
2869 */
2870static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2871{
2872 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2873
2874 return page_ptdesc(page);
2875}
2876#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2877
2878/**
2879 * pagetable_free - Free pagetables
2880 * @pt: The page table descriptor
2881 *
2882 * pagetable_free frees the memory of all page tables described by a page
2883 * table descriptor and the memory for the descriptor itself.
2884 */
2885static inline void pagetable_free(struct ptdesc *pt)
2886{
2887 struct page *page = ptdesc_page(pt);
2888
2889 __free_pages(page, compound_order(page));
2890}
2891
2892#if USE_SPLIT_PTE_PTLOCKS
2893#if ALLOC_SPLIT_PTLOCKS
2894void __init ptlock_cache_init(void);
2895bool ptlock_alloc(struct ptdesc *ptdesc);
2896void ptlock_free(struct ptdesc *ptdesc);
2897
2898static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2899{
2900 return ptdesc->ptl;
2901}
2902#else /* ALLOC_SPLIT_PTLOCKS */
2903static inline void ptlock_cache_init(void)
2904{
2905}
2906
2907static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2908{
2909 return true;
2910}
2911
2912static inline void ptlock_free(struct ptdesc *ptdesc)
2913{
2914}
2915
2916static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2917{
2918 return &ptdesc->ptl;
2919}
2920#endif /* ALLOC_SPLIT_PTLOCKS */
2921
2922static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2923{
2924 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2925}
2926
2927static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2928{
2929 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2930 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2931 return ptlock_ptr(virt_to_ptdesc(pte));
2932}
2933
2934static inline bool ptlock_init(struct ptdesc *ptdesc)
2935{
2936 /*
2937 * prep_new_page() initialize page->private (and therefore page->ptl)
2938 * with 0. Make sure nobody took it in use in between.
2939 *
2940 * It can happen if arch try to use slab for page table allocation:
2941 * slab code uses page->slab_cache, which share storage with page->ptl.
2942 */
2943 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2944 if (!ptlock_alloc(ptdesc))
2945 return false;
2946 spin_lock_init(ptlock_ptr(ptdesc));
2947 return true;
2948}
2949
2950#else /* !USE_SPLIT_PTE_PTLOCKS */
2951/*
2952 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2953 */
2954static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2955{
2956 return &mm->page_table_lock;
2957}
2958static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2959{
2960 return &mm->page_table_lock;
2961}
2962static inline void ptlock_cache_init(void) {}
2963static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2964static inline void ptlock_free(struct ptdesc *ptdesc) {}
2965#endif /* USE_SPLIT_PTE_PTLOCKS */
2966
2967static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2968{
2969 struct folio *folio = ptdesc_folio(ptdesc);
2970
2971 if (!ptlock_init(ptdesc))
2972 return false;
2973 __folio_set_pgtable(folio);
2974 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2975 return true;
2976}
2977
2978static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2979{
2980 struct folio *folio = ptdesc_folio(ptdesc);
2981
2982 ptlock_free(ptdesc);
2983 __folio_clear_pgtable(folio);
2984 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2985}
2986
2987pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2988static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2989{
2990 return __pte_offset_map(pmd, addr, NULL);
2991}
2992
2993pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2994 unsigned long addr, spinlock_t **ptlp);
2995static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2996 unsigned long addr, spinlock_t **ptlp)
2997{
2998 pte_t *pte;
2999
3000 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3001 return pte;
3002}
3003
3004pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3005 unsigned long addr, spinlock_t **ptlp);
3006
3007#define pte_unmap_unlock(pte, ptl) do { \
3008 spin_unlock(ptl); \
3009 pte_unmap(pte); \
3010} while (0)
3011
3012#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3013
3014#define pte_alloc_map(mm, pmd, address) \
3015 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3016
3017#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3018 (pte_alloc(mm, pmd) ? \
3019 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3020
3021#define pte_alloc_kernel(pmd, address) \
3022 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3023 NULL: pte_offset_kernel(pmd, address))
3024
3025#if USE_SPLIT_PMD_PTLOCKS
3026
3027static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3028{
3029 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3030 return virt_to_page((void *)((unsigned long) pmd & mask));
3031}
3032
3033static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3034{
3035 return page_ptdesc(pmd_pgtable_page(pmd));
3036}
3037
3038static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3039{
3040 return ptlock_ptr(pmd_ptdesc(pmd));
3041}
3042
3043static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3044{
3045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3046 ptdesc->pmd_huge_pte = NULL;
3047#endif
3048 return ptlock_init(ptdesc);
3049}
3050
3051static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3052{
3053#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3054 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3055#endif
3056 ptlock_free(ptdesc);
3057}
3058
3059#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3060
3061#else
3062
3063static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3064{
3065 return &mm->page_table_lock;
3066}
3067
3068static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3069static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3070
3071#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3072
3073#endif
3074
3075static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3076{
3077 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3078 spin_lock(ptl);
3079 return ptl;
3080}
3081
3082static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3083{
3084 struct folio *folio = ptdesc_folio(ptdesc);
3085
3086 if (!pmd_ptlock_init(ptdesc))
3087 return false;
3088 __folio_set_pgtable(folio);
3089 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3090 return true;
3091}
3092
3093static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3094{
3095 struct folio *folio = ptdesc_folio(ptdesc);
3096
3097 pmd_ptlock_free(ptdesc);
3098 __folio_clear_pgtable(folio);
3099 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3100}
3101
3102/*
3103 * No scalability reason to split PUD locks yet, but follow the same pattern
3104 * as the PMD locks to make it easier if we decide to. The VM should not be
3105 * considered ready to switch to split PUD locks yet; there may be places
3106 * which need to be converted from page_table_lock.
3107 */
3108static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3109{
3110 return &mm->page_table_lock;
3111}
3112
3113static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3114{
3115 spinlock_t *ptl = pud_lockptr(mm, pud);
3116
3117 spin_lock(ptl);
3118 return ptl;
3119}
3120
3121static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3122{
3123 struct folio *folio = ptdesc_folio(ptdesc);
3124
3125 __folio_set_pgtable(folio);
3126 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3127}
3128
3129static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3130{
3131 struct folio *folio = ptdesc_folio(ptdesc);
3132
3133 __folio_clear_pgtable(folio);
3134 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3135}
3136
3137extern void __init pagecache_init(void);
3138extern void free_initmem(void);
3139
3140/*
3141 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3142 * into the buddy system. The freed pages will be poisoned with pattern
3143 * "poison" if it's within range [0, UCHAR_MAX].
3144 * Return pages freed into the buddy system.
3145 */
3146extern unsigned long free_reserved_area(void *start, void *end,
3147 int poison, const char *s);
3148
3149extern void adjust_managed_page_count(struct page *page, long count);
3150
3151extern void reserve_bootmem_region(phys_addr_t start,
3152 phys_addr_t end, int nid);
3153
3154/* Free the reserved page into the buddy system, so it gets managed. */
3155void free_reserved_page(struct page *page);
3156#define free_highmem_page(page) free_reserved_page(page)
3157
3158static inline void mark_page_reserved(struct page *page)
3159{
3160 SetPageReserved(page);
3161 adjust_managed_page_count(page, -1);
3162}
3163
3164static inline void free_reserved_ptdesc(struct ptdesc *pt)
3165{
3166 free_reserved_page(ptdesc_page(pt));
3167}
3168
3169/*
3170 * Default method to free all the __init memory into the buddy system.
3171 * The freed pages will be poisoned with pattern "poison" if it's within
3172 * range [0, UCHAR_MAX].
3173 * Return pages freed into the buddy system.
3174 */
3175static inline unsigned long free_initmem_default(int poison)
3176{
3177 extern char __init_begin[], __init_end[];
3178
3179 return free_reserved_area(&__init_begin, &__init_end,
3180 poison, "unused kernel image (initmem)");
3181}
3182
3183static inline unsigned long get_num_physpages(void)
3184{
3185 int nid;
3186 unsigned long phys_pages = 0;
3187
3188 for_each_online_node(nid)
3189 phys_pages += node_present_pages(nid);
3190
3191 return phys_pages;
3192}
3193
3194/*
3195 * Using memblock node mappings, an architecture may initialise its
3196 * zones, allocate the backing mem_map and account for memory holes in an
3197 * architecture independent manner.
3198 *
3199 * An architecture is expected to register range of page frames backed by
3200 * physical memory with memblock_add[_node]() before calling
3201 * free_area_init() passing in the PFN each zone ends at. At a basic
3202 * usage, an architecture is expected to do something like
3203 *
3204 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3205 * max_highmem_pfn};
3206 * for_each_valid_physical_page_range()
3207 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3208 * free_area_init(max_zone_pfns);
3209 */
3210void free_area_init(unsigned long *max_zone_pfn);
3211unsigned long node_map_pfn_alignment(void);
3212extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3213 unsigned long end_pfn);
3214extern void get_pfn_range_for_nid(unsigned int nid,
3215 unsigned long *start_pfn, unsigned long *end_pfn);
3216
3217#ifndef CONFIG_NUMA
3218static inline int early_pfn_to_nid(unsigned long pfn)
3219{
3220 return 0;
3221}
3222#else
3223/* please see mm/page_alloc.c */
3224extern int __meminit early_pfn_to_nid(unsigned long pfn);
3225#endif
3226
3227extern void mem_init(void);
3228extern void __init mmap_init(void);
3229
3230extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3231static inline void show_mem(void)
3232{
3233 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3234}
3235extern long si_mem_available(void);
3236extern void si_meminfo(struct sysinfo * val);
3237extern void si_meminfo_node(struct sysinfo *val, int nid);
3238
3239extern __printf(3, 4)
3240void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3241
3242extern void setup_per_cpu_pageset(void);
3243
3244/* nommu.c */
3245extern atomic_long_t mmap_pages_allocated;
3246extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3247
3248/* interval_tree.c */
3249void vma_interval_tree_insert(struct vm_area_struct *node,
3250 struct rb_root_cached *root);
3251void vma_interval_tree_insert_after(struct vm_area_struct *node,
3252 struct vm_area_struct *prev,
3253 struct rb_root_cached *root);
3254void vma_interval_tree_remove(struct vm_area_struct *node,
3255 struct rb_root_cached *root);
3256struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3257 unsigned long start, unsigned long last);
3258struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3259 unsigned long start, unsigned long last);
3260
3261#define vma_interval_tree_foreach(vma, root, start, last) \
3262 for (vma = vma_interval_tree_iter_first(root, start, last); \
3263 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3264
3265void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3266 struct rb_root_cached *root);
3267void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3268 struct rb_root_cached *root);
3269struct anon_vma_chain *
3270anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3271 unsigned long start, unsigned long last);
3272struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3273 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3274#ifdef CONFIG_DEBUG_VM_RB
3275void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3276#endif
3277
3278#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3279 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3280 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3281
3282/* mmap.c */
3283extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3284extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3285 unsigned long start, unsigned long end, pgoff_t pgoff,
3286 struct vm_area_struct *next);
3287extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3288 unsigned long start, unsigned long end, pgoff_t pgoff);
3289extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3290extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3291extern void unlink_file_vma(struct vm_area_struct *);
3292extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3293 unsigned long addr, unsigned long len, pgoff_t pgoff,
3294 bool *need_rmap_locks);
3295extern void exit_mmap(struct mm_struct *);
3296struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3297 struct vm_area_struct *prev,
3298 struct vm_area_struct *vma,
3299 unsigned long start, unsigned long end,
3300 unsigned long vm_flags,
3301 struct mempolicy *policy,
3302 struct vm_userfaultfd_ctx uffd_ctx,
3303 struct anon_vma_name *anon_name);
3304
3305/* We are about to modify the VMA's flags. */
3306static inline struct vm_area_struct
3307*vma_modify_flags(struct vma_iterator *vmi,
3308 struct vm_area_struct *prev,
3309 struct vm_area_struct *vma,
3310 unsigned long start, unsigned long end,
3311 unsigned long new_flags)
3312{
3313 return vma_modify(vmi, prev, vma, start, end, new_flags,
3314 vma_policy(vma), vma->vm_userfaultfd_ctx,
3315 anon_vma_name(vma));
3316}
3317
3318/* We are about to modify the VMA's flags and/or anon_name. */
3319static inline struct vm_area_struct
3320*vma_modify_flags_name(struct vma_iterator *vmi,
3321 struct vm_area_struct *prev,
3322 struct vm_area_struct *vma,
3323 unsigned long start,
3324 unsigned long end,
3325 unsigned long new_flags,
3326 struct anon_vma_name *new_name)
3327{
3328 return vma_modify(vmi, prev, vma, start, end, new_flags,
3329 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3330}
3331
3332/* We are about to modify the VMA's memory policy. */
3333static inline struct vm_area_struct
3334*vma_modify_policy(struct vma_iterator *vmi,
3335 struct vm_area_struct *prev,
3336 struct vm_area_struct *vma,
3337 unsigned long start, unsigned long end,
3338 struct mempolicy *new_pol)
3339{
3340 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3341 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3342}
3343
3344/* We are about to modify the VMA's flags and/or uffd context. */
3345static inline struct vm_area_struct
3346*vma_modify_flags_uffd(struct vma_iterator *vmi,
3347 struct vm_area_struct *prev,
3348 struct vm_area_struct *vma,
3349 unsigned long start, unsigned long end,
3350 unsigned long new_flags,
3351 struct vm_userfaultfd_ctx new_ctx)
3352{
3353 return vma_modify(vmi, prev, vma, start, end, new_flags,
3354 vma_policy(vma), new_ctx, anon_vma_name(vma));
3355}
3356
3357static inline int check_data_rlimit(unsigned long rlim,
3358 unsigned long new,
3359 unsigned long start,
3360 unsigned long end_data,
3361 unsigned long start_data)
3362{
3363 if (rlim < RLIM_INFINITY) {
3364 if (((new - start) + (end_data - start_data)) > rlim)
3365 return -ENOSPC;
3366 }
3367
3368 return 0;
3369}
3370
3371extern int mm_take_all_locks(struct mm_struct *mm);
3372extern void mm_drop_all_locks(struct mm_struct *mm);
3373
3374extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3375extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3376extern struct file *get_mm_exe_file(struct mm_struct *mm);
3377extern struct file *get_task_exe_file(struct task_struct *task);
3378
3379extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3380extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3381
3382extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3383 const struct vm_special_mapping *sm);
3384extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3385 unsigned long addr, unsigned long len,
3386 unsigned long flags,
3387 const struct vm_special_mapping *spec);
3388/* This is an obsolete alternative to _install_special_mapping. */
3389extern int install_special_mapping(struct mm_struct *mm,
3390 unsigned long addr, unsigned long len,
3391 unsigned long flags, struct page **pages);
3392
3393unsigned long randomize_stack_top(unsigned long stack_top);
3394unsigned long randomize_page(unsigned long start, unsigned long range);
3395
3396unsigned long
3397__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3398 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3399
3400static inline unsigned long
3401get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3402 unsigned long pgoff, unsigned long flags)
3403{
3404 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3405}
3406
3407extern unsigned long mmap_region(struct file *file, unsigned long addr,
3408 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3409 struct list_head *uf);
3410extern unsigned long do_mmap(struct file *file, unsigned long addr,
3411 unsigned long len, unsigned long prot, unsigned long flags,
3412 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3413 struct list_head *uf);
3414extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3415 unsigned long start, size_t len, struct list_head *uf,
3416 bool unlock);
3417extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3418 struct list_head *uf);
3419extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3420
3421#ifdef CONFIG_MMU
3422extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3423 unsigned long start, unsigned long end,
3424 struct list_head *uf, bool unlock);
3425extern int __mm_populate(unsigned long addr, unsigned long len,
3426 int ignore_errors);
3427static inline void mm_populate(unsigned long addr, unsigned long len)
3428{
3429 /* Ignore errors */
3430 (void) __mm_populate(addr, len, 1);
3431}
3432#else
3433static inline void mm_populate(unsigned long addr, unsigned long len) {}
3434#endif
3435
3436/* This takes the mm semaphore itself */
3437extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3438extern int vm_munmap(unsigned long, size_t);
3439extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3440 unsigned long, unsigned long,
3441 unsigned long, unsigned long);
3442
3443struct vm_unmapped_area_info {
3444#define VM_UNMAPPED_AREA_TOPDOWN 1
3445 unsigned long flags;
3446 unsigned long length;
3447 unsigned long low_limit;
3448 unsigned long high_limit;
3449 unsigned long align_mask;
3450 unsigned long align_offset;
3451 unsigned long start_gap;
3452};
3453
3454extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3455
3456/* truncate.c */
3457extern void truncate_inode_pages(struct address_space *, loff_t);
3458extern void truncate_inode_pages_range(struct address_space *,
3459 loff_t lstart, loff_t lend);
3460extern void truncate_inode_pages_final(struct address_space *);
3461
3462/* generic vm_area_ops exported for stackable file systems */
3463extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3464extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3465 pgoff_t start_pgoff, pgoff_t end_pgoff);
3466extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3467
3468extern unsigned long stack_guard_gap;
3469/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3470int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3471struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3472
3473/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3474int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3475
3476/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3477extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3478extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3479 struct vm_area_struct **pprev);
3480
3481/*
3482 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3483 * NULL if none. Assume start_addr < end_addr.
3484 */
3485struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3486 unsigned long start_addr, unsigned long end_addr);
3487
3488/**
3489 * vma_lookup() - Find a VMA at a specific address
3490 * @mm: The process address space.
3491 * @addr: The user address.
3492 *
3493 * Return: The vm_area_struct at the given address, %NULL otherwise.
3494 */
3495static inline
3496struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3497{
3498 return mtree_load(&mm->mm_mt, addr);
3499}
3500
3501static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3502{
3503 if (vma->vm_flags & VM_GROWSDOWN)
3504 return stack_guard_gap;
3505
3506 /* See reasoning around the VM_SHADOW_STACK definition */
3507 if (vma->vm_flags & VM_SHADOW_STACK)
3508 return PAGE_SIZE;
3509
3510 return 0;
3511}
3512
3513static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3514{
3515 unsigned long gap = stack_guard_start_gap(vma);
3516 unsigned long vm_start = vma->vm_start;
3517
3518 vm_start -= gap;
3519 if (vm_start > vma->vm_start)
3520 vm_start = 0;
3521 return vm_start;
3522}
3523
3524static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3525{
3526 unsigned long vm_end = vma->vm_end;
3527
3528 if (vma->vm_flags & VM_GROWSUP) {
3529 vm_end += stack_guard_gap;
3530 if (vm_end < vma->vm_end)
3531 vm_end = -PAGE_SIZE;
3532 }
3533 return vm_end;
3534}
3535
3536static inline unsigned long vma_pages(struct vm_area_struct *vma)
3537{
3538 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3539}
3540
3541/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3542static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3543 unsigned long vm_start, unsigned long vm_end)
3544{
3545 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3546
3547 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3548 vma = NULL;
3549
3550 return vma;
3551}
3552
3553static inline bool range_in_vma(struct vm_area_struct *vma,
3554 unsigned long start, unsigned long end)
3555{
3556 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3557}
3558
3559#ifdef CONFIG_MMU
3560pgprot_t vm_get_page_prot(unsigned long vm_flags);
3561void vma_set_page_prot(struct vm_area_struct *vma);
3562#else
3563static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3564{
3565 return __pgprot(0);
3566}
3567static inline void vma_set_page_prot(struct vm_area_struct *vma)
3568{
3569 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3570}
3571#endif
3572
3573void vma_set_file(struct vm_area_struct *vma, struct file *file);
3574
3575#ifdef CONFIG_NUMA_BALANCING
3576unsigned long change_prot_numa(struct vm_area_struct *vma,
3577 unsigned long start, unsigned long end);
3578#endif
3579
3580struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3581 unsigned long addr);
3582int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3583 unsigned long pfn, unsigned long size, pgprot_t);
3584int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3585 unsigned long pfn, unsigned long size, pgprot_t prot);
3586int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3587int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3588 struct page **pages, unsigned long *num);
3589int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3590 unsigned long num);
3591int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3592 unsigned long num);
3593vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3594 unsigned long pfn);
3595vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3596 unsigned long pfn, pgprot_t pgprot);
3597vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3598 pfn_t pfn);
3599vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3600 unsigned long addr, pfn_t pfn);
3601int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3602
3603static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3604 unsigned long addr, struct page *page)
3605{
3606 int err = vm_insert_page(vma, addr, page);
3607
3608 if (err == -ENOMEM)
3609 return VM_FAULT_OOM;
3610 if (err < 0 && err != -EBUSY)
3611 return VM_FAULT_SIGBUS;
3612
3613 return VM_FAULT_NOPAGE;
3614}
3615
3616#ifndef io_remap_pfn_range
3617static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3618 unsigned long addr, unsigned long pfn,
3619 unsigned long size, pgprot_t prot)
3620{
3621 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3622}
3623#endif
3624
3625static inline vm_fault_t vmf_error(int err)
3626{
3627 if (err == -ENOMEM)
3628 return VM_FAULT_OOM;
3629 else if (err == -EHWPOISON)
3630 return VM_FAULT_HWPOISON;
3631 return VM_FAULT_SIGBUS;
3632}
3633
3634/*
3635 * Convert errno to return value for ->page_mkwrite() calls.
3636 *
3637 * This should eventually be merged with vmf_error() above, but will need a
3638 * careful audit of all vmf_error() callers.
3639 */
3640static inline vm_fault_t vmf_fs_error(int err)
3641{
3642 if (err == 0)
3643 return VM_FAULT_LOCKED;
3644 if (err == -EFAULT || err == -EAGAIN)
3645 return VM_FAULT_NOPAGE;
3646 if (err == -ENOMEM)
3647 return VM_FAULT_OOM;
3648 /* -ENOSPC, -EDQUOT, -EIO ... */
3649 return VM_FAULT_SIGBUS;
3650}
3651
3652struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3653 unsigned int foll_flags);
3654
3655static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3656{
3657 if (vm_fault & VM_FAULT_OOM)
3658 return -ENOMEM;
3659 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3660 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3661 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3662 return -EFAULT;
3663 return 0;
3664}
3665
3666/*
3667 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3668 * a (NUMA hinting) fault is required.
3669 */
3670static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3671 unsigned int flags)
3672{
3673 /*
3674 * If callers don't want to honor NUMA hinting faults, no need to
3675 * determine if we would actually have to trigger a NUMA hinting fault.
3676 */
3677 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3678 return true;
3679
3680 /*
3681 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3682 *
3683 * Requiring a fault here even for inaccessible VMAs would mean that
3684 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3685 * refuses to process NUMA hinting faults in inaccessible VMAs.
3686 */
3687 return !vma_is_accessible(vma);
3688}
3689
3690typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3691extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3692 unsigned long size, pte_fn_t fn, void *data);
3693extern int apply_to_existing_page_range(struct mm_struct *mm,
3694 unsigned long address, unsigned long size,
3695 pte_fn_t fn, void *data);
3696
3697#ifdef CONFIG_PAGE_POISONING
3698extern void __kernel_poison_pages(struct page *page, int numpages);
3699extern void __kernel_unpoison_pages(struct page *page, int numpages);
3700extern bool _page_poisoning_enabled_early;
3701DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3702static inline bool page_poisoning_enabled(void)
3703{
3704 return _page_poisoning_enabled_early;
3705}
3706/*
3707 * For use in fast paths after init_mem_debugging() has run, or when a
3708 * false negative result is not harmful when called too early.
3709 */
3710static inline bool page_poisoning_enabled_static(void)
3711{
3712 return static_branch_unlikely(&_page_poisoning_enabled);
3713}
3714static inline void kernel_poison_pages(struct page *page, int numpages)
3715{
3716 if (page_poisoning_enabled_static())
3717 __kernel_poison_pages(page, numpages);
3718}
3719static inline void kernel_unpoison_pages(struct page *page, int numpages)
3720{
3721 if (page_poisoning_enabled_static())
3722 __kernel_unpoison_pages(page, numpages);
3723}
3724#else
3725static inline bool page_poisoning_enabled(void) { return false; }
3726static inline bool page_poisoning_enabled_static(void) { return false; }
3727static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3728static inline void kernel_poison_pages(struct page *page, int numpages) { }
3729static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3730#endif
3731
3732DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3733static inline bool want_init_on_alloc(gfp_t flags)
3734{
3735 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3736 &init_on_alloc))
3737 return true;
3738 return flags & __GFP_ZERO;
3739}
3740
3741DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3742static inline bool want_init_on_free(void)
3743{
3744 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3745 &init_on_free);
3746}
3747
3748extern bool _debug_pagealloc_enabled_early;
3749DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3750
3751static inline bool debug_pagealloc_enabled(void)
3752{
3753 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3754 _debug_pagealloc_enabled_early;
3755}
3756
3757/*
3758 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3759 * or when a false negative result is not harmful when called too early.
3760 */
3761static inline bool debug_pagealloc_enabled_static(void)
3762{
3763 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3764 return false;
3765
3766 return static_branch_unlikely(&_debug_pagealloc_enabled);
3767}
3768
3769/*
3770 * To support DEBUG_PAGEALLOC architecture must ensure that
3771 * __kernel_map_pages() never fails
3772 */
3773extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3774#ifdef CONFIG_DEBUG_PAGEALLOC
3775static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3776{
3777 if (debug_pagealloc_enabled_static())
3778 __kernel_map_pages(page, numpages, 1);
3779}
3780
3781static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3782{
3783 if (debug_pagealloc_enabled_static())
3784 __kernel_map_pages(page, numpages, 0);
3785}
3786
3787extern unsigned int _debug_guardpage_minorder;
3788DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3789
3790static inline unsigned int debug_guardpage_minorder(void)
3791{
3792 return _debug_guardpage_minorder;
3793}
3794
3795static inline bool debug_guardpage_enabled(void)
3796{
3797 return static_branch_unlikely(&_debug_guardpage_enabled);
3798}
3799
3800static inline bool page_is_guard(struct page *page)
3801{
3802 if (!debug_guardpage_enabled())
3803 return false;
3804
3805 return PageGuard(page);
3806}
3807
3808bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3809static inline bool set_page_guard(struct zone *zone, struct page *page,
3810 unsigned int order)
3811{
3812 if (!debug_guardpage_enabled())
3813 return false;
3814 return __set_page_guard(zone, page, order);
3815}
3816
3817void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3818static inline void clear_page_guard(struct zone *zone, struct page *page,
3819 unsigned int order)
3820{
3821 if (!debug_guardpage_enabled())
3822 return;
3823 __clear_page_guard(zone, page, order);
3824}
3825
3826#else /* CONFIG_DEBUG_PAGEALLOC */
3827static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3828static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3829static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3830static inline bool debug_guardpage_enabled(void) { return false; }
3831static inline bool page_is_guard(struct page *page) { return false; }
3832static inline bool set_page_guard(struct zone *zone, struct page *page,
3833 unsigned int order) { return false; }
3834static inline void clear_page_guard(struct zone *zone, struct page *page,
3835 unsigned int order) {}
3836#endif /* CONFIG_DEBUG_PAGEALLOC */
3837
3838#ifdef __HAVE_ARCH_GATE_AREA
3839extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3840extern int in_gate_area_no_mm(unsigned long addr);
3841extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3842#else
3843static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3844{
3845 return NULL;
3846}
3847static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3848static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3849{
3850 return 0;
3851}
3852#endif /* __HAVE_ARCH_GATE_AREA */
3853
3854extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3855
3856#ifdef CONFIG_SYSCTL
3857extern int sysctl_drop_caches;
3858int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3859 loff_t *);
3860#endif
3861
3862void drop_slab(void);
3863
3864#ifndef CONFIG_MMU
3865#define randomize_va_space 0
3866#else
3867extern int randomize_va_space;
3868#endif
3869
3870const char * arch_vma_name(struct vm_area_struct *vma);
3871#ifdef CONFIG_MMU
3872void print_vma_addr(char *prefix, unsigned long rip);
3873#else
3874static inline void print_vma_addr(char *prefix, unsigned long rip)
3875{
3876}
3877#endif
3878
3879void *sparse_buffer_alloc(unsigned long size);
3880struct page * __populate_section_memmap(unsigned long pfn,
3881 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3882 struct dev_pagemap *pgmap);
3883void pmd_init(void *addr);
3884void pud_init(void *addr);
3885pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3886p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3887pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3888pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3889pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3890 struct vmem_altmap *altmap, struct page *reuse);
3891void *vmemmap_alloc_block(unsigned long size, int node);
3892struct vmem_altmap;
3893void *vmemmap_alloc_block_buf(unsigned long size, int node,
3894 struct vmem_altmap *altmap);
3895void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3896void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3897 unsigned long addr, unsigned long next);
3898int vmemmap_check_pmd(pmd_t *pmd, int node,
3899 unsigned long addr, unsigned long next);
3900int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3901 int node, struct vmem_altmap *altmap);
3902int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3903 int node, struct vmem_altmap *altmap);
3904int vmemmap_populate(unsigned long start, unsigned long end, int node,
3905 struct vmem_altmap *altmap);
3906void vmemmap_populate_print_last(void);
3907#ifdef CONFIG_MEMORY_HOTPLUG
3908void vmemmap_free(unsigned long start, unsigned long end,
3909 struct vmem_altmap *altmap);
3910#endif
3911
3912#ifdef CONFIG_SPARSEMEM_VMEMMAP
3913static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3914{
3915 /* number of pfns from base where pfn_to_page() is valid */
3916 if (altmap)
3917 return altmap->reserve + altmap->free;
3918 return 0;
3919}
3920
3921static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3922 unsigned long nr_pfns)
3923{
3924 altmap->alloc -= nr_pfns;
3925}
3926#else
3927static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3928{
3929 return 0;
3930}
3931
3932static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3933 unsigned long nr_pfns)
3934{
3935}
3936#endif
3937
3938#define VMEMMAP_RESERVE_NR 2
3939#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3940static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3941 struct dev_pagemap *pgmap)
3942{
3943 unsigned long nr_pages;
3944 unsigned long nr_vmemmap_pages;
3945
3946 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3947 return false;
3948
3949 nr_pages = pgmap_vmemmap_nr(pgmap);
3950 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3951 /*
3952 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3953 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3954 */
3955 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3956}
3957/*
3958 * If we don't have an architecture override, use the generic rule
3959 */
3960#ifndef vmemmap_can_optimize
3961#define vmemmap_can_optimize __vmemmap_can_optimize
3962#endif
3963
3964#else
3965static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3966 struct dev_pagemap *pgmap)
3967{
3968 return false;
3969}
3970#endif
3971
3972void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3973 unsigned long nr_pages);
3974
3975enum mf_flags {
3976 MF_COUNT_INCREASED = 1 << 0,
3977 MF_ACTION_REQUIRED = 1 << 1,
3978 MF_MUST_KILL = 1 << 2,
3979 MF_SOFT_OFFLINE = 1 << 3,
3980 MF_UNPOISON = 1 << 4,
3981 MF_SW_SIMULATED = 1 << 5,
3982 MF_NO_RETRY = 1 << 6,
3983 MF_MEM_PRE_REMOVE = 1 << 7,
3984};
3985int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3986 unsigned long count, int mf_flags);
3987extern int memory_failure(unsigned long pfn, int flags);
3988extern void memory_failure_queue_kick(int cpu);
3989extern int unpoison_memory(unsigned long pfn);
3990extern atomic_long_t num_poisoned_pages __read_mostly;
3991extern int soft_offline_page(unsigned long pfn, int flags);
3992#ifdef CONFIG_MEMORY_FAILURE
3993/*
3994 * Sysfs entries for memory failure handling statistics.
3995 */
3996extern const struct attribute_group memory_failure_attr_group;
3997extern void memory_failure_queue(unsigned long pfn, int flags);
3998extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3999 bool *migratable_cleared);
4000void num_poisoned_pages_inc(unsigned long pfn);
4001void num_poisoned_pages_sub(unsigned long pfn, long i);
4002#else
4003static inline void memory_failure_queue(unsigned long pfn, int flags)
4004{
4005}
4006
4007static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4008 bool *migratable_cleared)
4009{
4010 return 0;
4011}
4012
4013static inline void num_poisoned_pages_inc(unsigned long pfn)
4014{
4015}
4016
4017static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4018{
4019}
4020#endif
4021
4022#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4023extern void memblk_nr_poison_inc(unsigned long pfn);
4024extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4025#else
4026static inline void memblk_nr_poison_inc(unsigned long pfn)
4027{
4028}
4029
4030static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4031{
4032}
4033#endif
4034
4035#ifndef arch_memory_failure
4036static inline int arch_memory_failure(unsigned long pfn, int flags)
4037{
4038 return -ENXIO;
4039}
4040#endif
4041
4042#ifndef arch_is_platform_page
4043static inline bool arch_is_platform_page(u64 paddr)
4044{
4045 return false;
4046}
4047#endif
4048
4049/*
4050 * Error handlers for various types of pages.
4051 */
4052enum mf_result {
4053 MF_IGNORED, /* Error: cannot be handled */
4054 MF_FAILED, /* Error: handling failed */
4055 MF_DELAYED, /* Will be handled later */
4056 MF_RECOVERED, /* Successfully recovered */
4057};
4058
4059enum mf_action_page_type {
4060 MF_MSG_KERNEL,
4061 MF_MSG_KERNEL_HIGH_ORDER,
4062 MF_MSG_DIFFERENT_COMPOUND,
4063 MF_MSG_HUGE,
4064 MF_MSG_FREE_HUGE,
4065 MF_MSG_GET_HWPOISON,
4066 MF_MSG_UNMAP_FAILED,
4067 MF_MSG_DIRTY_SWAPCACHE,
4068 MF_MSG_CLEAN_SWAPCACHE,
4069 MF_MSG_DIRTY_MLOCKED_LRU,
4070 MF_MSG_CLEAN_MLOCKED_LRU,
4071 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4072 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4073 MF_MSG_DIRTY_LRU,
4074 MF_MSG_CLEAN_LRU,
4075 MF_MSG_TRUNCATED_LRU,
4076 MF_MSG_BUDDY,
4077 MF_MSG_DAX,
4078 MF_MSG_UNSPLIT_THP,
4079 MF_MSG_ALREADY_POISONED,
4080 MF_MSG_UNKNOWN,
4081};
4082
4083#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4084void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4085int copy_user_large_folio(struct folio *dst, struct folio *src,
4086 unsigned long addr_hint,
4087 struct vm_area_struct *vma);
4088long copy_folio_from_user(struct folio *dst_folio,
4089 const void __user *usr_src,
4090 bool allow_pagefault);
4091
4092/**
4093 * vma_is_special_huge - Are transhuge page-table entries considered special?
4094 * @vma: Pointer to the struct vm_area_struct to consider
4095 *
4096 * Whether transhuge page-table entries are considered "special" following
4097 * the definition in vm_normal_page().
4098 *
4099 * Return: true if transhuge page-table entries should be considered special,
4100 * false otherwise.
4101 */
4102static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4103{
4104 return vma_is_dax(vma) || (vma->vm_file &&
4105 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4106}
4107
4108#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4109
4110#if MAX_NUMNODES > 1
4111void __init setup_nr_node_ids(void);
4112#else
4113static inline void setup_nr_node_ids(void) {}
4114#endif
4115
4116extern int memcmp_pages(struct page *page1, struct page *page2);
4117
4118static inline int pages_identical(struct page *page1, struct page *page2)
4119{
4120 return !memcmp_pages(page1, page2);
4121}
4122
4123#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4124unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4125 pgoff_t first_index, pgoff_t nr,
4126 pgoff_t bitmap_pgoff,
4127 unsigned long *bitmap,
4128 pgoff_t *start,
4129 pgoff_t *end);
4130
4131unsigned long wp_shared_mapping_range(struct address_space *mapping,
4132 pgoff_t first_index, pgoff_t nr);
4133#endif
4134
4135extern int sysctl_nr_trim_pages;
4136
4137#ifdef CONFIG_PRINTK
4138void mem_dump_obj(void *object);
4139#else
4140static inline void mem_dump_obj(void *object) {}
4141#endif
4142
4143/**
4144 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4145 * handle them.
4146 * @seals: the seals to check
4147 * @vma: the vma to operate on
4148 *
4149 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4150 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4151 */
4152static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4153{
4154 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4155 /*
4156 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4157 * write seals are active.
4158 */
4159 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4160 return -EPERM;
4161
4162 /*
4163 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4164 * MAP_SHARED and read-only, take care to not allow mprotect to
4165 * revert protections on such mappings. Do this only for shared
4166 * mappings. For private mappings, don't need to mask
4167 * VM_MAYWRITE as we still want them to be COW-writable.
4168 */
4169 if (vma->vm_flags & VM_SHARED)
4170 vm_flags_clear(vma, VM_MAYWRITE);
4171 }
4172
4173 return 0;
4174}
4175
4176#ifdef CONFIG_ANON_VMA_NAME
4177int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4178 unsigned long len_in,
4179 struct anon_vma_name *anon_name);
4180#else
4181static inline int
4182madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4183 unsigned long len_in, struct anon_vma_name *anon_name) {
4184 return 0;
4185}
4186#endif
4187
4188#ifdef CONFIG_UNACCEPTED_MEMORY
4189
4190bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4191void accept_memory(phys_addr_t start, phys_addr_t end);
4192
4193#else
4194
4195static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4196 phys_addr_t end)
4197{
4198 return false;
4199}
4200
4201static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4202{
4203}
4204
4205#endif
4206
4207static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4208{
4209 phys_addr_t paddr = pfn << PAGE_SHIFT;
4210
4211 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4212}
4213
4214void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4215void vma_pgtable_walk_end(struct vm_area_struct *vma);
4216
4217int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4218
4219#endif /* _LINUX_MM_H */