at v6.11 48 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/kernel.h> 18#include <linux/page_counter.h> 19#include <linux/vmpressure.h> 20#include <linux/eventfd.h> 21#include <linux/mm.h> 22#include <linux/vmstat.h> 23#include <linux/writeback.h> 24#include <linux/page-flags.h> 25#include <linux/shrinker.h> 26 27struct mem_cgroup; 28struct obj_cgroup; 29struct page; 30struct mm_struct; 31struct kmem_cache; 32 33/* Cgroup-specific page state, on top of universal node page state */ 34enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43}; 44 45enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56}; 57 58struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 unsigned int generation; 61}; 62 63#ifdef CONFIG_MEMCG 64 65#define MEM_CGROUP_ID_SHIFT 16 66 67struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70}; 71 72struct memcg_vmstats_percpu; 73struct memcg_vmstats; 74struct lruvec_stats_percpu; 75struct lruvec_stats; 76 77struct mem_cgroup_reclaim_iter { 78 struct mem_cgroup *position; 79 /* scan generation, increased every round-trip */ 80 unsigned int generation; 81}; 82 83/* 84 * per-node information in memory controller. 85 */ 86struct mem_cgroup_per_node { 87 /* Keep the read-only fields at the start */ 88 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 89 /* use container_of */ 90 91 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 92 struct lruvec_stats *lruvec_stats; 93 struct shrinker_info __rcu *shrinker_info; 94 95#ifdef CONFIG_MEMCG_V1 96 /* 97 * Memcg-v1 only stuff in middle as buffer between read mostly fields 98 * and update often fields to avoid false sharing. If v1 stuff is 99 * not present, an explicit padding is needed. 100 */ 101 102 struct rb_node tree_node; /* RB tree node */ 103 unsigned long usage_in_excess;/* Set to the value by which */ 104 /* the soft limit is exceeded*/ 105 bool on_tree; 106#else 107 CACHELINE_PADDING(_pad1_); 108#endif 109 110 /* Fields which get updated often at the end. */ 111 struct lruvec lruvec; 112 CACHELINE_PADDING(_pad2_); 113 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 114 struct mem_cgroup_reclaim_iter iter; 115}; 116 117struct mem_cgroup_threshold { 118 struct eventfd_ctx *eventfd; 119 unsigned long threshold; 120}; 121 122/* For threshold */ 123struct mem_cgroup_threshold_ary { 124 /* An array index points to threshold just below or equal to usage. */ 125 int current_threshold; 126 /* Size of entries[] */ 127 unsigned int size; 128 /* Array of thresholds */ 129 struct mem_cgroup_threshold entries[] __counted_by(size); 130}; 131 132struct mem_cgroup_thresholds { 133 /* Primary thresholds array */ 134 struct mem_cgroup_threshold_ary *primary; 135 /* 136 * Spare threshold array. 137 * This is needed to make mem_cgroup_unregister_event() "never fail". 138 * It must be able to store at least primary->size - 1 entries. 139 */ 140 struct mem_cgroup_threshold_ary *spare; 141}; 142 143/* 144 * Remember four most recent foreign writebacks with dirty pages in this 145 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 146 * one in a given round, we're likely to catch it later if it keeps 147 * foreign-dirtying, so a fairly low count should be enough. 148 * 149 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 150 */ 151#define MEMCG_CGWB_FRN_CNT 4 152 153struct memcg_cgwb_frn { 154 u64 bdi_id; /* bdi->id of the foreign inode */ 155 int memcg_id; /* memcg->css.id of foreign inode */ 156 u64 at; /* jiffies_64 at the time of dirtying */ 157 struct wb_completion done; /* tracks in-flight foreign writebacks */ 158}; 159 160/* 161 * Bucket for arbitrarily byte-sized objects charged to a memory 162 * cgroup. The bucket can be reparented in one piece when the cgroup 163 * is destroyed, without having to round up the individual references 164 * of all live memory objects in the wild. 165 */ 166struct obj_cgroup { 167 struct percpu_ref refcnt; 168 struct mem_cgroup *memcg; 169 atomic_t nr_charged_bytes; 170 union { 171 struct list_head list; /* protected by objcg_lock */ 172 struct rcu_head rcu; 173 }; 174}; 175 176/* 177 * The memory controller data structure. The memory controller controls both 178 * page cache and RSS per cgroup. We would eventually like to provide 179 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 180 * to help the administrator determine what knobs to tune. 181 */ 182struct mem_cgroup { 183 struct cgroup_subsys_state css; 184 185 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 186 struct mem_cgroup_id id; 187 188 /* Accounted resources */ 189 struct page_counter memory; /* Both v1 & v2 */ 190 191 union { 192 struct page_counter swap; /* v2 only */ 193 struct page_counter memsw; /* v1 only */ 194 }; 195 196 /* Range enforcement for interrupt charges */ 197 struct work_struct high_work; 198 199#ifdef CONFIG_ZSWAP 200 unsigned long zswap_max; 201 202 /* 203 * Prevent pages from this memcg from being written back from zswap to 204 * swap, and from being swapped out on zswap store failures. 205 */ 206 bool zswap_writeback; 207#endif 208 209 /* vmpressure notifications */ 210 struct vmpressure vmpressure; 211 212 /* 213 * Should the OOM killer kill all belonging tasks, had it kill one? 214 */ 215 bool oom_group; 216 217 int swappiness; 218 219 /* memory.events and memory.events.local */ 220 struct cgroup_file events_file; 221 struct cgroup_file events_local_file; 222 223 /* handle for "memory.swap.events" */ 224 struct cgroup_file swap_events_file; 225 226 /* memory.stat */ 227 struct memcg_vmstats *vmstats; 228 229 /* memory.events */ 230 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 231 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 232 233 /* 234 * Hint of reclaim pressure for socket memroy management. Note 235 * that this indicator should NOT be used in legacy cgroup mode 236 * where socket memory is accounted/charged separately. 237 */ 238 unsigned long socket_pressure; 239 240 int kmemcg_id; 241 /* 242 * memcg->objcg is wiped out as a part of the objcg repaprenting 243 * process. memcg->orig_objcg preserves a pointer (and a reference) 244 * to the original objcg until the end of live of memcg. 245 */ 246 struct obj_cgroup __rcu *objcg; 247 struct obj_cgroup *orig_objcg; 248 /* list of inherited objcgs, protected by objcg_lock */ 249 struct list_head objcg_list; 250 251 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 252 253#ifdef CONFIG_CGROUP_WRITEBACK 254 struct list_head cgwb_list; 255 struct wb_domain cgwb_domain; 256 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 257#endif 258 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 struct deferred_split deferred_split_queue; 261#endif 262 263#ifdef CONFIG_LRU_GEN_WALKS_MMU 264 /* per-memcg mm_struct list */ 265 struct lru_gen_mm_list mm_list; 266#endif 267 268#ifdef CONFIG_MEMCG_V1 269 /* Legacy consumer-oriented counters */ 270 struct page_counter kmem; /* v1 only */ 271 struct page_counter tcpmem; /* v1 only */ 272 273 unsigned long soft_limit; 274 275 /* protected by memcg_oom_lock */ 276 bool oom_lock; 277 int under_oom; 278 279 /* OOM-Killer disable */ 280 int oom_kill_disable; 281 282 /* protect arrays of thresholds */ 283 struct mutex thresholds_lock; 284 285 /* thresholds for memory usage. RCU-protected */ 286 struct mem_cgroup_thresholds thresholds; 287 288 /* thresholds for mem+swap usage. RCU-protected */ 289 struct mem_cgroup_thresholds memsw_thresholds; 290 291 /* For oom notifier event fd */ 292 struct list_head oom_notify; 293 294 /* 295 * Should we move charges of a task when a task is moved into this 296 * mem_cgroup ? And what type of charges should we move ? 297 */ 298 unsigned long move_charge_at_immigrate; 299 /* taken only while moving_account > 0 */ 300 spinlock_t move_lock; 301 unsigned long move_lock_flags; 302 303 /* Legacy tcp memory accounting */ 304 bool tcpmem_active; 305 int tcpmem_pressure; 306 307 /* 308 * set > 0 if pages under this cgroup are moving to other cgroup. 309 */ 310 atomic_t moving_account; 311 struct task_struct *move_lock_task; 312 313 /* List of events which userspace want to receive */ 314 struct list_head event_list; 315 spinlock_t event_list_lock; 316#endif /* CONFIG_MEMCG_V1 */ 317 318 struct mem_cgroup_per_node *nodeinfo[]; 319}; 320 321/* 322 * size of first charge trial. 323 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 324 * workload. 325 */ 326#define MEMCG_CHARGE_BATCH 64U 327 328extern struct mem_cgroup *root_mem_cgroup; 329 330enum page_memcg_data_flags { 331 /* page->memcg_data is a pointer to an slabobj_ext vector */ 332 MEMCG_DATA_OBJEXTS = (1UL << 0), 333 /* page has been accounted as a non-slab kernel page */ 334 MEMCG_DATA_KMEM = (1UL << 1), 335 /* the next bit after the last actual flag */ 336 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 337}; 338 339#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 340 341#else /* CONFIG_MEMCG */ 342 343#define __FIRST_OBJEXT_FLAG (1UL << 0) 344 345#endif /* CONFIG_MEMCG */ 346 347enum objext_flags { 348 /* slabobj_ext vector failed to allocate */ 349 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 350 /* the next bit after the last actual flag */ 351 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 352}; 353 354#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 355 356#ifdef CONFIG_MEMCG 357 358static inline bool folio_memcg_kmem(struct folio *folio); 359 360/* 361 * After the initialization objcg->memcg is always pointing at 362 * a valid memcg, but can be atomically swapped to the parent memcg. 363 * 364 * The caller must ensure that the returned memcg won't be released: 365 * e.g. acquire the rcu_read_lock or css_set_lock. 366 */ 367static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 368{ 369 return READ_ONCE(objcg->memcg); 370} 371 372/* 373 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 374 * @folio: Pointer to the folio. 375 * 376 * Returns a pointer to the memory cgroup associated with the folio, 377 * or NULL. This function assumes that the folio is known to have a 378 * proper memory cgroup pointer. It's not safe to call this function 379 * against some type of folios, e.g. slab folios or ex-slab folios or 380 * kmem folios. 381 */ 382static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 383{ 384 unsigned long memcg_data = folio->memcg_data; 385 386 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 387 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 388 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 389 390 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 391} 392 393/* 394 * __folio_objcg - get the object cgroup associated with a kmem folio. 395 * @folio: Pointer to the folio. 396 * 397 * Returns a pointer to the object cgroup associated with the folio, 398 * or NULL. This function assumes that the folio is known to have a 399 * proper object cgroup pointer. It's not safe to call this function 400 * against some type of folios, e.g. slab folios or ex-slab folios or 401 * LRU folios. 402 */ 403static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 404{ 405 unsigned long memcg_data = folio->memcg_data; 406 407 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 408 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 409 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 410 411 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 412} 413 414/* 415 * folio_memcg - Get the memory cgroup associated with a folio. 416 * @folio: Pointer to the folio. 417 * 418 * Returns a pointer to the memory cgroup associated with the folio, 419 * or NULL. This function assumes that the folio is known to have a 420 * proper memory cgroup pointer. It's not safe to call this function 421 * against some type of folios, e.g. slab folios or ex-slab folios. 422 * 423 * For a non-kmem folio any of the following ensures folio and memcg binding 424 * stability: 425 * 426 * - the folio lock 427 * - LRU isolation 428 * - folio_memcg_lock() 429 * - exclusive reference 430 * - mem_cgroup_trylock_pages() 431 * 432 * For a kmem folio a caller should hold an rcu read lock to protect memcg 433 * associated with a kmem folio from being released. 434 */ 435static inline struct mem_cgroup *folio_memcg(struct folio *folio) 436{ 437 if (folio_memcg_kmem(folio)) 438 return obj_cgroup_memcg(__folio_objcg(folio)); 439 return __folio_memcg(folio); 440} 441 442/** 443 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 444 * @folio: Pointer to the folio. 445 * 446 * This function assumes that the folio is known to have a 447 * proper memory cgroup pointer. It's not safe to call this function 448 * against some type of folios, e.g. slab folios or ex-slab folios. 449 * 450 * Return: A pointer to the memory cgroup associated with the folio, 451 * or NULL. 452 */ 453static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 454{ 455 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 456 457 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 458 WARN_ON_ONCE(!rcu_read_lock_held()); 459 460 if (memcg_data & MEMCG_DATA_KMEM) { 461 struct obj_cgroup *objcg; 462 463 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 464 return obj_cgroup_memcg(objcg); 465 } 466 467 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 468} 469 470/* 471 * folio_memcg_check - Get the memory cgroup associated with a folio. 472 * @folio: Pointer to the folio. 473 * 474 * Returns a pointer to the memory cgroup associated with the folio, 475 * or NULL. This function unlike folio_memcg() can take any folio 476 * as an argument. It has to be used in cases when it's not known if a folio 477 * has an associated memory cgroup pointer or an object cgroups vector or 478 * an object cgroup. 479 * 480 * For a non-kmem folio any of the following ensures folio and memcg binding 481 * stability: 482 * 483 * - the folio lock 484 * - LRU isolation 485 * - lock_folio_memcg() 486 * - exclusive reference 487 * - mem_cgroup_trylock_pages() 488 * 489 * For a kmem folio a caller should hold an rcu read lock to protect memcg 490 * associated with a kmem folio from being released. 491 */ 492static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 493{ 494 /* 495 * Because folio->memcg_data might be changed asynchronously 496 * for slabs, READ_ONCE() should be used here. 497 */ 498 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 499 500 if (memcg_data & MEMCG_DATA_OBJEXTS) 501 return NULL; 502 503 if (memcg_data & MEMCG_DATA_KMEM) { 504 struct obj_cgroup *objcg; 505 506 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 507 return obj_cgroup_memcg(objcg); 508 } 509 510 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 511} 512 513static inline struct mem_cgroup *page_memcg_check(struct page *page) 514{ 515 if (PageTail(page)) 516 return NULL; 517 return folio_memcg_check((struct folio *)page); 518} 519 520static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 521{ 522 struct mem_cgroup *memcg; 523 524 rcu_read_lock(); 525retry: 526 memcg = obj_cgroup_memcg(objcg); 527 if (unlikely(!css_tryget(&memcg->css))) 528 goto retry; 529 rcu_read_unlock(); 530 531 return memcg; 532} 533 534/* 535 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 536 * @folio: Pointer to the folio. 537 * 538 * Checks if the folio has MemcgKmem flag set. The caller must ensure 539 * that the folio has an associated memory cgroup. It's not safe to call 540 * this function against some types of folios, e.g. slab folios. 541 */ 542static inline bool folio_memcg_kmem(struct folio *folio) 543{ 544 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 545 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 546 return folio->memcg_data & MEMCG_DATA_KMEM; 547} 548 549static inline bool PageMemcgKmem(struct page *page) 550{ 551 return folio_memcg_kmem(page_folio(page)); 552} 553 554static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 555{ 556 return (memcg == root_mem_cgroup); 557} 558 559static inline bool mem_cgroup_disabled(void) 560{ 561 return !cgroup_subsys_enabled(memory_cgrp_subsys); 562} 563 564static inline void mem_cgroup_protection(struct mem_cgroup *root, 565 struct mem_cgroup *memcg, 566 unsigned long *min, 567 unsigned long *low) 568{ 569 *min = *low = 0; 570 571 if (mem_cgroup_disabled()) 572 return; 573 574 /* 575 * There is no reclaim protection applied to a targeted reclaim. 576 * We are special casing this specific case here because 577 * mem_cgroup_calculate_protection is not robust enough to keep 578 * the protection invariant for calculated effective values for 579 * parallel reclaimers with different reclaim target. This is 580 * especially a problem for tail memcgs (as they have pages on LRU) 581 * which would want to have effective values 0 for targeted reclaim 582 * but a different value for external reclaim. 583 * 584 * Example 585 * Let's have global and A's reclaim in parallel: 586 * | 587 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 588 * |\ 589 * | C (low = 1G, usage = 2.5G) 590 * B (low = 1G, usage = 0.5G) 591 * 592 * For the global reclaim 593 * A.elow = A.low 594 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 595 * C.elow = min(C.usage, C.low) 596 * 597 * With the effective values resetting we have A reclaim 598 * A.elow = 0 599 * B.elow = B.low 600 * C.elow = C.low 601 * 602 * If the global reclaim races with A's reclaim then 603 * B.elow = C.elow = 0 because children_low_usage > A.elow) 604 * is possible and reclaiming B would be violating the protection. 605 * 606 */ 607 if (root == memcg) 608 return; 609 610 *min = READ_ONCE(memcg->memory.emin); 611 *low = READ_ONCE(memcg->memory.elow); 612} 613 614void mem_cgroup_calculate_protection(struct mem_cgroup *root, 615 struct mem_cgroup *memcg); 616 617static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 618 struct mem_cgroup *memcg) 619{ 620 /* 621 * The root memcg doesn't account charges, and doesn't support 622 * protection. The target memcg's protection is ignored, see 623 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 624 */ 625 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 626 memcg == target; 627} 628 629static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 630 struct mem_cgroup *memcg) 631{ 632 if (mem_cgroup_unprotected(target, memcg)) 633 return false; 634 635 return READ_ONCE(memcg->memory.elow) >= 636 page_counter_read(&memcg->memory); 637} 638 639static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 640 struct mem_cgroup *memcg) 641{ 642 if (mem_cgroup_unprotected(target, memcg)) 643 return false; 644 645 return READ_ONCE(memcg->memory.emin) >= 646 page_counter_read(&memcg->memory); 647} 648 649void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 650 651int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 652 653/** 654 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 655 * @folio: Folio to charge. 656 * @mm: mm context of the allocating task. 657 * @gfp: Reclaim mode. 658 * 659 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 660 * pages according to @gfp if necessary. If @mm is NULL, try to 661 * charge to the active memcg. 662 * 663 * Do not use this for folios allocated for swapin. 664 * 665 * Return: 0 on success. Otherwise, an error code is returned. 666 */ 667static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 668 gfp_t gfp) 669{ 670 if (mem_cgroup_disabled()) 671 return 0; 672 return __mem_cgroup_charge(folio, mm, gfp); 673} 674 675int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 676 long nr_pages); 677 678int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 679 gfp_t gfp, swp_entry_t entry); 680void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 681 682void __mem_cgroup_uncharge(struct folio *folio); 683 684/** 685 * mem_cgroup_uncharge - Uncharge a folio. 686 * @folio: Folio to uncharge. 687 * 688 * Uncharge a folio previously charged with mem_cgroup_charge(). 689 */ 690static inline void mem_cgroup_uncharge(struct folio *folio) 691{ 692 if (mem_cgroup_disabled()) 693 return; 694 __mem_cgroup_uncharge(folio); 695} 696 697void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 698static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 699{ 700 if (mem_cgroup_disabled()) 701 return; 702 __mem_cgroup_uncharge_folios(folios); 703} 704 705void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 706void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 707void mem_cgroup_migrate(struct folio *old, struct folio *new); 708 709/** 710 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 711 * @memcg: memcg of the wanted lruvec 712 * @pgdat: pglist_data 713 * 714 * Returns the lru list vector holding pages for a given @memcg & 715 * @pgdat combination. This can be the node lruvec, if the memory 716 * controller is disabled. 717 */ 718static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 719 struct pglist_data *pgdat) 720{ 721 struct mem_cgroup_per_node *mz; 722 struct lruvec *lruvec; 723 724 if (mem_cgroup_disabled()) { 725 lruvec = &pgdat->__lruvec; 726 goto out; 727 } 728 729 if (!memcg) 730 memcg = root_mem_cgroup; 731 732 mz = memcg->nodeinfo[pgdat->node_id]; 733 lruvec = &mz->lruvec; 734out: 735 /* 736 * Since a node can be onlined after the mem_cgroup was created, 737 * we have to be prepared to initialize lruvec->pgdat here; 738 * and if offlined then reonlined, we need to reinitialize it. 739 */ 740 if (unlikely(lruvec->pgdat != pgdat)) 741 lruvec->pgdat = pgdat; 742 return lruvec; 743} 744 745/** 746 * folio_lruvec - return lruvec for isolating/putting an LRU folio 747 * @folio: Pointer to the folio. 748 * 749 * This function relies on folio->mem_cgroup being stable. 750 */ 751static inline struct lruvec *folio_lruvec(struct folio *folio) 752{ 753 struct mem_cgroup *memcg = folio_memcg(folio); 754 755 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 756 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 757} 758 759struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 760 761struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 762 763struct mem_cgroup *get_mem_cgroup_from_current(void); 764 765struct lruvec *folio_lruvec_lock(struct folio *folio); 766struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 767struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 768 unsigned long *flags); 769 770#ifdef CONFIG_DEBUG_VM 771void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 772#else 773static inline 774void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 775{ 776} 777#endif 778 779static inline 780struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 781 return css ? container_of(css, struct mem_cgroup, css) : NULL; 782} 783 784static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 785{ 786 return percpu_ref_tryget(&objcg->refcnt); 787} 788 789static inline void obj_cgroup_get(struct obj_cgroup *objcg) 790{ 791 percpu_ref_get(&objcg->refcnt); 792} 793 794static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 795 unsigned long nr) 796{ 797 percpu_ref_get_many(&objcg->refcnt, nr); 798} 799 800static inline void obj_cgroup_put(struct obj_cgroup *objcg) 801{ 802 if (objcg) 803 percpu_ref_put(&objcg->refcnt); 804} 805 806static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 807{ 808 return !memcg || css_tryget(&memcg->css); 809} 810 811static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 812{ 813 return !memcg || css_tryget_online(&memcg->css); 814} 815 816static inline void mem_cgroup_put(struct mem_cgroup *memcg) 817{ 818 if (memcg) 819 css_put(&memcg->css); 820} 821 822#define mem_cgroup_from_counter(counter, member) \ 823 container_of(counter, struct mem_cgroup, member) 824 825struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 826 struct mem_cgroup *, 827 struct mem_cgroup_reclaim_cookie *); 828void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 829void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 830 int (*)(struct task_struct *, void *), void *arg); 831 832static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 833{ 834 if (mem_cgroup_disabled()) 835 return 0; 836 837 return memcg->id.id; 838} 839struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 840 841#ifdef CONFIG_SHRINKER_DEBUG 842static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 843{ 844 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 845} 846 847struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 848#endif 849 850static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 851{ 852 return mem_cgroup_from_css(seq_css(m)); 853} 854 855static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 856{ 857 struct mem_cgroup_per_node *mz; 858 859 if (mem_cgroup_disabled()) 860 return NULL; 861 862 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 863 return mz->memcg; 864} 865 866/** 867 * parent_mem_cgroup - find the accounting parent of a memcg 868 * @memcg: memcg whose parent to find 869 * 870 * Returns the parent memcg, or NULL if this is the root. 871 */ 872static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 873{ 874 return mem_cgroup_from_css(memcg->css.parent); 875} 876 877static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 878 struct mem_cgroup *root) 879{ 880 if (root == memcg) 881 return true; 882 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 883} 884 885static inline bool mm_match_cgroup(struct mm_struct *mm, 886 struct mem_cgroup *memcg) 887{ 888 struct mem_cgroup *task_memcg; 889 bool match = false; 890 891 rcu_read_lock(); 892 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 893 if (task_memcg) 894 match = mem_cgroup_is_descendant(task_memcg, memcg); 895 rcu_read_unlock(); 896 return match; 897} 898 899struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 900ino_t page_cgroup_ino(struct page *page); 901 902static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 903{ 904 if (mem_cgroup_disabled()) 905 return true; 906 return !!(memcg->css.flags & CSS_ONLINE); 907} 908 909void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 910 int zid, int nr_pages); 911 912static inline 913unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 914 enum lru_list lru, int zone_idx) 915{ 916 struct mem_cgroup_per_node *mz; 917 918 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 919 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 920} 921 922void mem_cgroup_handle_over_high(gfp_t gfp_mask); 923 924unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 925 926unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 927 928void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 929 struct task_struct *p); 930 931void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 932 933struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 934 struct mem_cgroup *oom_domain); 935void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 936 937void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 938 int val); 939 940/* idx can be of type enum memcg_stat_item or node_stat_item */ 941static inline void mod_memcg_state(struct mem_cgroup *memcg, 942 enum memcg_stat_item idx, int val) 943{ 944 unsigned long flags; 945 946 local_irq_save(flags); 947 __mod_memcg_state(memcg, idx, val); 948 local_irq_restore(flags); 949} 950 951static inline void mod_memcg_page_state(struct page *page, 952 enum memcg_stat_item idx, int val) 953{ 954 struct mem_cgroup *memcg; 955 956 if (mem_cgroup_disabled()) 957 return; 958 959 rcu_read_lock(); 960 memcg = folio_memcg(page_folio(page)); 961 if (memcg) 962 mod_memcg_state(memcg, idx, val); 963 rcu_read_unlock(); 964} 965 966unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 967unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 968unsigned long lruvec_page_state_local(struct lruvec *lruvec, 969 enum node_stat_item idx); 970 971void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 972void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 973 974void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 975 976static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 977 int val) 978{ 979 unsigned long flags; 980 981 local_irq_save(flags); 982 __mod_lruvec_kmem_state(p, idx, val); 983 local_irq_restore(flags); 984} 985 986void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 987 unsigned long count); 988 989static inline void count_memcg_events(struct mem_cgroup *memcg, 990 enum vm_event_item idx, 991 unsigned long count) 992{ 993 unsigned long flags; 994 995 local_irq_save(flags); 996 __count_memcg_events(memcg, idx, count); 997 local_irq_restore(flags); 998} 999 1000static inline void count_memcg_folio_events(struct folio *folio, 1001 enum vm_event_item idx, unsigned long nr) 1002{ 1003 struct mem_cgroup *memcg = folio_memcg(folio); 1004 1005 if (memcg) 1006 count_memcg_events(memcg, idx, nr); 1007} 1008 1009static inline void count_memcg_event_mm(struct mm_struct *mm, 1010 enum vm_event_item idx) 1011{ 1012 struct mem_cgroup *memcg; 1013 1014 if (mem_cgroup_disabled()) 1015 return; 1016 1017 rcu_read_lock(); 1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1019 if (likely(memcg)) 1020 count_memcg_events(memcg, idx, 1); 1021 rcu_read_unlock(); 1022} 1023 1024static inline void memcg_memory_event(struct mem_cgroup *memcg, 1025 enum memcg_memory_event event) 1026{ 1027 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1028 event == MEMCG_SWAP_FAIL; 1029 1030 atomic_long_inc(&memcg->memory_events_local[event]); 1031 if (!swap_event) 1032 cgroup_file_notify(&memcg->events_local_file); 1033 1034 do { 1035 atomic_long_inc(&memcg->memory_events[event]); 1036 if (swap_event) 1037 cgroup_file_notify(&memcg->swap_events_file); 1038 else 1039 cgroup_file_notify(&memcg->events_file); 1040 1041 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1042 break; 1043 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1044 break; 1045 } while ((memcg = parent_mem_cgroup(memcg)) && 1046 !mem_cgroup_is_root(memcg)); 1047} 1048 1049static inline void memcg_memory_event_mm(struct mm_struct *mm, 1050 enum memcg_memory_event event) 1051{ 1052 struct mem_cgroup *memcg; 1053 1054 if (mem_cgroup_disabled()) 1055 return; 1056 1057 rcu_read_lock(); 1058 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1059 if (likely(memcg)) 1060 memcg_memory_event(memcg, event); 1061 rcu_read_unlock(); 1062} 1063 1064void split_page_memcg(struct page *head, int old_order, int new_order); 1065 1066#else /* CONFIG_MEMCG */ 1067 1068#define MEM_CGROUP_ID_SHIFT 0 1069 1070static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1071{ 1072 return NULL; 1073} 1074 1075static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1076{ 1077 WARN_ON_ONCE(!rcu_read_lock_held()); 1078 return NULL; 1079} 1080 1081static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1082{ 1083 return NULL; 1084} 1085 1086static inline struct mem_cgroup *page_memcg_check(struct page *page) 1087{ 1088 return NULL; 1089} 1090 1091static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1092{ 1093 return NULL; 1094} 1095 1096static inline bool folio_memcg_kmem(struct folio *folio) 1097{ 1098 return false; 1099} 1100 1101static inline bool PageMemcgKmem(struct page *page) 1102{ 1103 return false; 1104} 1105 1106static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1107{ 1108 return true; 1109} 1110 1111static inline bool mem_cgroup_disabled(void) 1112{ 1113 return true; 1114} 1115 1116static inline void memcg_memory_event(struct mem_cgroup *memcg, 1117 enum memcg_memory_event event) 1118{ 1119} 1120 1121static inline void memcg_memory_event_mm(struct mm_struct *mm, 1122 enum memcg_memory_event event) 1123{ 1124} 1125 1126static inline void mem_cgroup_protection(struct mem_cgroup *root, 1127 struct mem_cgroup *memcg, 1128 unsigned long *min, 1129 unsigned long *low) 1130{ 1131 *min = *low = 0; 1132} 1133 1134static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1135 struct mem_cgroup *memcg) 1136{ 1137} 1138 1139static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1140 struct mem_cgroup *memcg) 1141{ 1142 return true; 1143} 1144static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1145 struct mem_cgroup *memcg) 1146{ 1147 return false; 1148} 1149 1150static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1151 struct mem_cgroup *memcg) 1152{ 1153 return false; 1154} 1155 1156static inline void mem_cgroup_commit_charge(struct folio *folio, 1157 struct mem_cgroup *memcg) 1158{ 1159} 1160 1161static inline int mem_cgroup_charge(struct folio *folio, 1162 struct mm_struct *mm, gfp_t gfp) 1163{ 1164 return 0; 1165} 1166 1167static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1168 gfp_t gfp, long nr_pages) 1169{ 1170 return 0; 1171} 1172 1173static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1174 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1175{ 1176 return 0; 1177} 1178 1179static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1180{ 1181} 1182 1183static inline void mem_cgroup_uncharge(struct folio *folio) 1184{ 1185} 1186 1187static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1188{ 1189} 1190 1191static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1192 unsigned int nr_pages) 1193{ 1194} 1195 1196static inline void mem_cgroup_replace_folio(struct folio *old, 1197 struct folio *new) 1198{ 1199} 1200 1201static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1202{ 1203} 1204 1205static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1206 struct pglist_data *pgdat) 1207{ 1208 return &pgdat->__lruvec; 1209} 1210 1211static inline struct lruvec *folio_lruvec(struct folio *folio) 1212{ 1213 struct pglist_data *pgdat = folio_pgdat(folio); 1214 return &pgdat->__lruvec; 1215} 1216 1217static inline 1218void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1219{ 1220} 1221 1222static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1223{ 1224 return NULL; 1225} 1226 1227static inline bool mm_match_cgroup(struct mm_struct *mm, 1228 struct mem_cgroup *memcg) 1229{ 1230 return true; 1231} 1232 1233static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1234{ 1235 return NULL; 1236} 1237 1238static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1239{ 1240 return NULL; 1241} 1242 1243static inline 1244struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1245{ 1246 return NULL; 1247} 1248 1249static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1250{ 1251} 1252 1253static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1254{ 1255 return true; 1256} 1257 1258static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1259{ 1260 return true; 1261} 1262 1263static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1264{ 1265} 1266 1267static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1268{ 1269 struct pglist_data *pgdat = folio_pgdat(folio); 1270 1271 spin_lock(&pgdat->__lruvec.lru_lock); 1272 return &pgdat->__lruvec; 1273} 1274 1275static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1276{ 1277 struct pglist_data *pgdat = folio_pgdat(folio); 1278 1279 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1280 return &pgdat->__lruvec; 1281} 1282 1283static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1284 unsigned long *flagsp) 1285{ 1286 struct pglist_data *pgdat = folio_pgdat(folio); 1287 1288 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1289 return &pgdat->__lruvec; 1290} 1291 1292static inline struct mem_cgroup * 1293mem_cgroup_iter(struct mem_cgroup *root, 1294 struct mem_cgroup *prev, 1295 struct mem_cgroup_reclaim_cookie *reclaim) 1296{ 1297 return NULL; 1298} 1299 1300static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1301 struct mem_cgroup *prev) 1302{ 1303} 1304 1305static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1306 int (*fn)(struct task_struct *, void *), void *arg) 1307{ 1308} 1309 1310static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1311{ 1312 return 0; 1313} 1314 1315static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1316{ 1317 WARN_ON_ONCE(id); 1318 /* XXX: This should always return root_mem_cgroup */ 1319 return NULL; 1320} 1321 1322#ifdef CONFIG_SHRINKER_DEBUG 1323static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1324{ 1325 return 0; 1326} 1327 1328static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1329{ 1330 return NULL; 1331} 1332#endif 1333 1334static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1335{ 1336 return NULL; 1337} 1338 1339static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1340{ 1341 return NULL; 1342} 1343 1344static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1345{ 1346 return true; 1347} 1348 1349static inline 1350unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1351 enum lru_list lru, int zone_idx) 1352{ 1353 return 0; 1354} 1355 1356static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1357{ 1358 return 0; 1359} 1360 1361static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1362{ 1363 return 0; 1364} 1365 1366static inline void 1367mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1368{ 1369} 1370 1371static inline void 1372mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1373{ 1374} 1375 1376static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1377{ 1378} 1379 1380static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1381 struct task_struct *victim, struct mem_cgroup *oom_domain) 1382{ 1383 return NULL; 1384} 1385 1386static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1387{ 1388} 1389 1390static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1391 enum memcg_stat_item idx, 1392 int nr) 1393{ 1394} 1395 1396static inline void mod_memcg_state(struct mem_cgroup *memcg, 1397 enum memcg_stat_item idx, 1398 int nr) 1399{ 1400} 1401 1402static inline void mod_memcg_page_state(struct page *page, 1403 enum memcg_stat_item idx, int val) 1404{ 1405} 1406 1407static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1408{ 1409 return 0; 1410} 1411 1412static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1413 enum node_stat_item idx) 1414{ 1415 return node_page_state(lruvec_pgdat(lruvec), idx); 1416} 1417 1418static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1419 enum node_stat_item idx) 1420{ 1421 return node_page_state(lruvec_pgdat(lruvec), idx); 1422} 1423 1424static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1425{ 1426} 1427 1428static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1429{ 1430} 1431 1432static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1433 int val) 1434{ 1435 struct page *page = virt_to_head_page(p); 1436 1437 __mod_node_page_state(page_pgdat(page), idx, val); 1438} 1439 1440static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1441 int val) 1442{ 1443 struct page *page = virt_to_head_page(p); 1444 1445 mod_node_page_state(page_pgdat(page), idx, val); 1446} 1447 1448static inline void count_memcg_events(struct mem_cgroup *memcg, 1449 enum vm_event_item idx, 1450 unsigned long count) 1451{ 1452} 1453 1454static inline void __count_memcg_events(struct mem_cgroup *memcg, 1455 enum vm_event_item idx, 1456 unsigned long count) 1457{ 1458} 1459 1460static inline void count_memcg_folio_events(struct folio *folio, 1461 enum vm_event_item idx, unsigned long nr) 1462{ 1463} 1464 1465static inline 1466void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1467{ 1468} 1469 1470static inline void split_page_memcg(struct page *head, int old_order, int new_order) 1471{ 1472} 1473#endif /* CONFIG_MEMCG */ 1474 1475/* 1476 * Extended information for slab objects stored as an array in page->memcg_data 1477 * if MEMCG_DATA_OBJEXTS is set. 1478 */ 1479struct slabobj_ext { 1480#ifdef CONFIG_MEMCG 1481 struct obj_cgroup *objcg; 1482#endif 1483#ifdef CONFIG_MEM_ALLOC_PROFILING 1484 union codetag_ref ref; 1485#endif 1486} __aligned(8); 1487 1488static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1489{ 1490 __mod_lruvec_kmem_state(p, idx, 1); 1491} 1492 1493static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1494{ 1495 __mod_lruvec_kmem_state(p, idx, -1); 1496} 1497 1498static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1499{ 1500 struct mem_cgroup *memcg; 1501 1502 memcg = lruvec_memcg(lruvec); 1503 if (!memcg) 1504 return NULL; 1505 memcg = parent_mem_cgroup(memcg); 1506 if (!memcg) 1507 return NULL; 1508 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1509} 1510 1511static inline void unlock_page_lruvec(struct lruvec *lruvec) 1512{ 1513 spin_unlock(&lruvec->lru_lock); 1514} 1515 1516static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1517{ 1518 spin_unlock_irq(&lruvec->lru_lock); 1519} 1520 1521static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1522 unsigned long flags) 1523{ 1524 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1525} 1526 1527/* Test requires a stable folio->memcg binding, see folio_memcg() */ 1528static inline bool folio_matches_lruvec(struct folio *folio, 1529 struct lruvec *lruvec) 1530{ 1531 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1532 lruvec_memcg(lruvec) == folio_memcg(folio); 1533} 1534 1535/* Don't lock again iff page's lruvec locked */ 1536static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1537 struct lruvec *locked_lruvec) 1538{ 1539 if (locked_lruvec) { 1540 if (folio_matches_lruvec(folio, locked_lruvec)) 1541 return locked_lruvec; 1542 1543 unlock_page_lruvec_irq(locked_lruvec); 1544 } 1545 1546 return folio_lruvec_lock_irq(folio); 1547} 1548 1549/* Don't lock again iff folio's lruvec locked */ 1550static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1551 struct lruvec **lruvecp, unsigned long *flags) 1552{ 1553 if (*lruvecp) { 1554 if (folio_matches_lruvec(folio, *lruvecp)) 1555 return; 1556 1557 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1558 } 1559 1560 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1561} 1562 1563#ifdef CONFIG_CGROUP_WRITEBACK 1564 1565struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1566void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1567 unsigned long *pheadroom, unsigned long *pdirty, 1568 unsigned long *pwriteback); 1569 1570void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1571 struct bdi_writeback *wb); 1572 1573static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1574 struct bdi_writeback *wb) 1575{ 1576 struct mem_cgroup *memcg; 1577 1578 if (mem_cgroup_disabled()) 1579 return; 1580 1581 memcg = folio_memcg(folio); 1582 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1583 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1584} 1585 1586void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1587 1588#else /* CONFIG_CGROUP_WRITEBACK */ 1589 1590static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1591{ 1592 return NULL; 1593} 1594 1595static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1596 unsigned long *pfilepages, 1597 unsigned long *pheadroom, 1598 unsigned long *pdirty, 1599 unsigned long *pwriteback) 1600{ 1601} 1602 1603static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1604 struct bdi_writeback *wb) 1605{ 1606} 1607 1608static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1609{ 1610} 1611 1612#endif /* CONFIG_CGROUP_WRITEBACK */ 1613 1614struct sock; 1615bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1616 gfp_t gfp_mask); 1617void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1618#ifdef CONFIG_MEMCG 1619extern struct static_key_false memcg_sockets_enabled_key; 1620#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1621void mem_cgroup_sk_alloc(struct sock *sk); 1622void mem_cgroup_sk_free(struct sock *sk); 1623static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1624{ 1625#ifdef CONFIG_MEMCG_V1 1626 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1627 return !!memcg->tcpmem_pressure; 1628#endif /* CONFIG_MEMCG_V1 */ 1629 do { 1630 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1631 return true; 1632 } while ((memcg = parent_mem_cgroup(memcg))); 1633 return false; 1634} 1635 1636int alloc_shrinker_info(struct mem_cgroup *memcg); 1637void free_shrinker_info(struct mem_cgroup *memcg); 1638void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1639void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1640#else 1641#define mem_cgroup_sockets_enabled 0 1642static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1643static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1644static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1645{ 1646 return false; 1647} 1648 1649static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1650 int nid, int shrinker_id) 1651{ 1652} 1653#endif 1654 1655#ifdef CONFIG_MEMCG 1656bool mem_cgroup_kmem_disabled(void); 1657int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1658void __memcg_kmem_uncharge_page(struct page *page, int order); 1659 1660/* 1661 * The returned objcg pointer is safe to use without additional 1662 * protection within a scope. The scope is defined either by 1663 * the current task (similar to the "current" global variable) 1664 * or by set_active_memcg() pair. 1665 * Please, use obj_cgroup_get() to get a reference if the pointer 1666 * needs to be used outside of the local scope. 1667 */ 1668struct obj_cgroup *current_obj_cgroup(void); 1669struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1670 1671static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1672{ 1673 struct obj_cgroup *objcg = current_obj_cgroup(); 1674 1675 if (objcg) 1676 obj_cgroup_get(objcg); 1677 1678 return objcg; 1679} 1680 1681int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1682void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1683 1684extern struct static_key_false memcg_bpf_enabled_key; 1685static inline bool memcg_bpf_enabled(void) 1686{ 1687 return static_branch_likely(&memcg_bpf_enabled_key); 1688} 1689 1690extern struct static_key_false memcg_kmem_online_key; 1691 1692static inline bool memcg_kmem_online(void) 1693{ 1694 return static_branch_likely(&memcg_kmem_online_key); 1695} 1696 1697static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1698 int order) 1699{ 1700 if (memcg_kmem_online()) 1701 return __memcg_kmem_charge_page(page, gfp, order); 1702 return 0; 1703} 1704 1705static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1706{ 1707 if (memcg_kmem_online()) 1708 __memcg_kmem_uncharge_page(page, order); 1709} 1710 1711/* 1712 * A helper for accessing memcg's kmem_id, used for getting 1713 * corresponding LRU lists. 1714 */ 1715static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1716{ 1717 return memcg ? memcg->kmemcg_id : -1; 1718} 1719 1720struct mem_cgroup *mem_cgroup_from_obj(void *p); 1721struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1722 1723static inline void count_objcg_event(struct obj_cgroup *objcg, 1724 enum vm_event_item idx) 1725{ 1726 struct mem_cgroup *memcg; 1727 1728 if (!memcg_kmem_online()) 1729 return; 1730 1731 rcu_read_lock(); 1732 memcg = obj_cgroup_memcg(objcg); 1733 count_memcg_events(memcg, idx, 1); 1734 rcu_read_unlock(); 1735} 1736 1737#else 1738static inline bool mem_cgroup_kmem_disabled(void) 1739{ 1740 return true; 1741} 1742 1743static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1744 int order) 1745{ 1746 return 0; 1747} 1748 1749static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1750{ 1751} 1752 1753static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1754 int order) 1755{ 1756 return 0; 1757} 1758 1759static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1760{ 1761} 1762 1763static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1764{ 1765 return NULL; 1766} 1767 1768static inline bool memcg_bpf_enabled(void) 1769{ 1770 return false; 1771} 1772 1773static inline bool memcg_kmem_online(void) 1774{ 1775 return false; 1776} 1777 1778static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1779{ 1780 return -1; 1781} 1782 1783static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1784{ 1785 return NULL; 1786} 1787 1788static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1789{ 1790 return NULL; 1791} 1792 1793static inline void count_objcg_event(struct obj_cgroup *objcg, 1794 enum vm_event_item idx) 1795{ 1796} 1797 1798#endif /* CONFIG_MEMCG */ 1799 1800#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1801bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1802void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1803void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1804bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1805#else 1806static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1807{ 1808 return true; 1809} 1810static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1811 size_t size) 1812{ 1813} 1814static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1815 size_t size) 1816{ 1817} 1818static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1819{ 1820 /* if zswap is disabled, do not block pages going to the swapping device */ 1821 return true; 1822} 1823#endif 1824 1825 1826/* Cgroup v1-related declarations */ 1827 1828#ifdef CONFIG_MEMCG_V1 1829unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1830 gfp_t gfp_mask, 1831 unsigned long *total_scanned); 1832 1833bool mem_cgroup_oom_synchronize(bool wait); 1834 1835static inline bool task_in_memcg_oom(struct task_struct *p) 1836{ 1837 return p->memcg_in_oom; 1838} 1839 1840void folio_memcg_lock(struct folio *folio); 1841void folio_memcg_unlock(struct folio *folio); 1842 1843/* try to stablize folio_memcg() for all the pages in a memcg */ 1844static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1845{ 1846 rcu_read_lock(); 1847 1848 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 1849 return true; 1850 1851 rcu_read_unlock(); 1852 return false; 1853} 1854 1855static inline void mem_cgroup_unlock_pages(void) 1856{ 1857 rcu_read_unlock(); 1858} 1859 1860static inline void mem_cgroup_enter_user_fault(void) 1861{ 1862 WARN_ON(current->in_user_fault); 1863 current->in_user_fault = 1; 1864} 1865 1866static inline void mem_cgroup_exit_user_fault(void) 1867{ 1868 WARN_ON(!current->in_user_fault); 1869 current->in_user_fault = 0; 1870} 1871 1872#else /* CONFIG_MEMCG_V1 */ 1873static inline 1874unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1875 gfp_t gfp_mask, 1876 unsigned long *total_scanned) 1877{ 1878 return 0; 1879} 1880 1881static inline void folio_memcg_lock(struct folio *folio) 1882{ 1883} 1884 1885static inline void folio_memcg_unlock(struct folio *folio) 1886{ 1887} 1888 1889static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1890{ 1891 /* to match folio_memcg_rcu() */ 1892 rcu_read_lock(); 1893 return true; 1894} 1895 1896static inline void mem_cgroup_unlock_pages(void) 1897{ 1898 rcu_read_unlock(); 1899} 1900 1901static inline bool task_in_memcg_oom(struct task_struct *p) 1902{ 1903 return false; 1904} 1905 1906static inline bool mem_cgroup_oom_synchronize(bool wait) 1907{ 1908 return false; 1909} 1910 1911static inline void mem_cgroup_enter_user_fault(void) 1912{ 1913} 1914 1915static inline void mem_cgroup_exit_user_fault(void) 1916{ 1917} 1918 1919#endif /* CONFIG_MEMCG_V1 */ 1920 1921#endif /* _LINUX_MEMCONTROL_H */