Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_MAX_NR_ADDRESS_SPACES
84#define KVM_MAX_NR_ADDRESS_SPACES 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101/*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
105static inline bool is_error_pfn(kvm_pfn_t pfn)
106{
107 return !!(pfn & KVM_PFN_ERR_MASK);
108}
109
110/*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
114static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115{
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117}
118
119/*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
124static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125{
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127}
128
129/* noslot pfn indicates that the gfn is not in slot. */
130static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131{
132 return pfn == KVM_PFN_NOSLOT;
133}
134
135/*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139#ifndef KVM_HVA_ERR_BAD
140
141#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
144static inline bool kvm_is_error_hva(unsigned long addr)
145{
146 return addr >= PAGE_OFFSET;
147}
148
149#endif
150
151static inline bool kvm_is_error_gpa(gpa_t gpa)
152{
153 return gpa == INVALID_GPA;
154}
155
156#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
157
158static inline bool is_error_page(struct page *page)
159{
160 return IS_ERR(page);
161}
162
163#define KVM_REQUEST_MASK GENMASK(7,0)
164#define KVM_REQUEST_NO_WAKEUP BIT(8)
165#define KVM_REQUEST_WAIT BIT(9)
166#define KVM_REQUEST_NO_ACTION BIT(10)
167/*
168 * Architecture-independent vcpu->requests bit members
169 * Bits 3-7 are reserved for more arch-independent bits.
170 */
171#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173#define KVM_REQ_UNBLOCK 2
174#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
175#define KVM_REQUEST_ARCH_BASE 8
176
177/*
178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183 * guarantee the vCPU received an IPI and has actually exited guest mode.
184 */
185#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186
187#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190})
191#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
192
193bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 unsigned long *vcpu_bitmap);
195bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196
197#define KVM_USERSPACE_IRQ_SOURCE_ID 0
198#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
199
200extern struct mutex kvm_lock;
201extern struct list_head vm_list;
202
203struct kvm_io_range {
204 gpa_t addr;
205 int len;
206 struct kvm_io_device *dev;
207};
208
209#define NR_IOBUS_DEVS 1000
210
211struct kvm_io_bus {
212 int dev_count;
213 int ioeventfd_count;
214 struct kvm_io_range range[];
215};
216
217enum kvm_bus {
218 KVM_MMIO_BUS,
219 KVM_PIO_BUS,
220 KVM_VIRTIO_CCW_NOTIFY_BUS,
221 KVM_FAST_MMIO_BUS,
222 KVM_NR_BUSES
223};
224
225int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226 int len, const void *val);
227int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228 gpa_t addr, int len, const void *val, long cookie);
229int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230 int len, void *val);
231int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232 int len, struct kvm_io_device *dev);
233int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 struct kvm_io_device *dev);
235struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 gpa_t addr);
237
238#ifdef CONFIG_KVM_ASYNC_PF
239struct kvm_async_pf {
240 struct work_struct work;
241 struct list_head link;
242 struct list_head queue;
243 struct kvm_vcpu *vcpu;
244 gpa_t cr2_or_gpa;
245 unsigned long addr;
246 struct kvm_arch_async_pf arch;
247 bool wakeup_all;
248 bool notpresent_injected;
249};
250
251void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 unsigned long hva, struct kvm_arch_async_pf *arch);
255int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256#endif
257
258#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259union kvm_mmu_notifier_arg {
260 unsigned long attributes;
261};
262
263struct kvm_gfn_range {
264 struct kvm_memory_slot *slot;
265 gfn_t start;
266 gfn_t end;
267 union kvm_mmu_notifier_arg arg;
268 bool may_block;
269};
270bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273#endif
274
275enum {
276 OUTSIDE_GUEST_MODE,
277 IN_GUEST_MODE,
278 EXITING_GUEST_MODE,
279 READING_SHADOW_PAGE_TABLES,
280};
281
282#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
283
284struct kvm_host_map {
285 /*
286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 * a 'struct page' for it. When using mem= kernel parameter some memory
288 * can be used as guest memory but they are not managed by host
289 * kernel).
290 * If 'pfn' is not managed by the host kernel, this field is
291 * initialized to KVM_UNMAPPED_PAGE.
292 */
293 struct page *page;
294 void *hva;
295 kvm_pfn_t pfn;
296 kvm_pfn_t gfn;
297};
298
299/*
300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301 * directly to check for that.
302 */
303static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304{
305 return !!map->hva;
306}
307
308static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309{
310 return single_task_running() && !need_resched() && ktime_before(cur, stop);
311}
312
313/*
314 * Sometimes a large or cross-page mmio needs to be broken up into separate
315 * exits for userspace servicing.
316 */
317struct kvm_mmio_fragment {
318 gpa_t gpa;
319 void *data;
320 unsigned len;
321};
322
323struct kvm_vcpu {
324 struct kvm *kvm;
325#ifdef CONFIG_PREEMPT_NOTIFIERS
326 struct preempt_notifier preempt_notifier;
327#endif
328 int cpu;
329 int vcpu_id; /* id given by userspace at creation */
330 int vcpu_idx; /* index into kvm->vcpu_array */
331 int ____srcu_idx; /* Don't use this directly. You've been warned. */
332#ifdef CONFIG_PROVE_RCU
333 int srcu_depth;
334#endif
335 int mode;
336 u64 requests;
337 unsigned long guest_debug;
338
339 struct mutex mutex;
340 struct kvm_run *run;
341
342#ifndef __KVM_HAVE_ARCH_WQP
343 struct rcuwait wait;
344#endif
345 struct pid __rcu *pid;
346 int sigset_active;
347 sigset_t sigset;
348 unsigned int halt_poll_ns;
349 bool valid_wakeup;
350
351#ifdef CONFIG_HAS_IOMEM
352 int mmio_needed;
353 int mmio_read_completed;
354 int mmio_is_write;
355 int mmio_cur_fragment;
356 int mmio_nr_fragments;
357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358#endif
359
360#ifdef CONFIG_KVM_ASYNC_PF
361 struct {
362 u32 queued;
363 struct list_head queue;
364 struct list_head done;
365 spinlock_t lock;
366 } async_pf;
367#endif
368
369#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 /*
371 * Cpu relax intercept or pause loop exit optimization
372 * in_spin_loop: set when a vcpu does a pause loop exit
373 * or cpu relax intercepted.
374 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 */
376 struct {
377 bool in_spin_loop;
378 bool dy_eligible;
379 } spin_loop;
380#endif
381 bool wants_to_run;
382 bool preempted;
383 bool ready;
384 bool scheduled_out;
385 struct kvm_vcpu_arch arch;
386 struct kvm_vcpu_stat stat;
387 char stats_id[KVM_STATS_NAME_SIZE];
388 struct kvm_dirty_ring dirty_ring;
389
390 /*
391 * The most recently used memslot by this vCPU and the slots generation
392 * for which it is valid.
393 * No wraparound protection is needed since generations won't overflow in
394 * thousands of years, even assuming 1M memslot operations per second.
395 */
396 struct kvm_memory_slot *last_used_slot;
397 u64 last_used_slot_gen;
398};
399
400/*
401 * Start accounting time towards a guest.
402 * Must be called before entering guest context.
403 */
404static __always_inline void guest_timing_enter_irqoff(void)
405{
406 /*
407 * This is running in ioctl context so its safe to assume that it's the
408 * stime pending cputime to flush.
409 */
410 instrumentation_begin();
411 vtime_account_guest_enter();
412 instrumentation_end();
413}
414
415/*
416 * Enter guest context and enter an RCU extended quiescent state.
417 *
418 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419 * unsafe to use any code which may directly or indirectly use RCU, tracing
420 * (including IRQ flag tracing), or lockdep. All code in this period must be
421 * non-instrumentable.
422 */
423static __always_inline void guest_context_enter_irqoff(void)
424{
425 /*
426 * KVM does not hold any references to rcu protected data when it
427 * switches CPU into a guest mode. In fact switching to a guest mode
428 * is very similar to exiting to userspace from rcu point of view. In
429 * addition CPU may stay in a guest mode for quite a long time (up to
430 * one time slice). Lets treat guest mode as quiescent state, just like
431 * we do with user-mode execution.
432 */
433 if (!context_tracking_guest_enter()) {
434 instrumentation_begin();
435 rcu_virt_note_context_switch();
436 instrumentation_end();
437 }
438}
439
440/*
441 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442 * guest_state_enter_irqoff().
443 */
444static __always_inline void guest_enter_irqoff(void)
445{
446 guest_timing_enter_irqoff();
447 guest_context_enter_irqoff();
448}
449
450/**
451 * guest_state_enter_irqoff - Fixup state when entering a guest
452 *
453 * Entry to a guest will enable interrupts, but the kernel state is interrupts
454 * disabled when this is invoked. Also tell RCU about it.
455 *
456 * 1) Trace interrupts on state
457 * 2) Invoke context tracking if enabled to adjust RCU state
458 * 3) Tell lockdep that interrupts are enabled
459 *
460 * Invoked from architecture specific code before entering a guest.
461 * Must be called with interrupts disabled and the caller must be
462 * non-instrumentable.
463 * The caller has to invoke guest_timing_enter_irqoff() before this.
464 *
465 * Note: this is analogous to exit_to_user_mode().
466 */
467static __always_inline void guest_state_enter_irqoff(void)
468{
469 instrumentation_begin();
470 trace_hardirqs_on_prepare();
471 lockdep_hardirqs_on_prepare();
472 instrumentation_end();
473
474 guest_context_enter_irqoff();
475 lockdep_hardirqs_on(CALLER_ADDR0);
476}
477
478/*
479 * Exit guest context and exit an RCU extended quiescent state.
480 *
481 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482 * unsafe to use any code which may directly or indirectly use RCU, tracing
483 * (including IRQ flag tracing), or lockdep. All code in this period must be
484 * non-instrumentable.
485 */
486static __always_inline void guest_context_exit_irqoff(void)
487{
488 /*
489 * Guest mode is treated as a quiescent state, see
490 * guest_context_enter_irqoff() for more details.
491 */
492 if (!context_tracking_guest_exit()) {
493 instrumentation_begin();
494 rcu_virt_note_context_switch();
495 instrumentation_end();
496 }
497}
498
499/*
500 * Stop accounting time towards a guest.
501 * Must be called after exiting guest context.
502 */
503static __always_inline void guest_timing_exit_irqoff(void)
504{
505 instrumentation_begin();
506 /* Flush the guest cputime we spent on the guest */
507 vtime_account_guest_exit();
508 instrumentation_end();
509}
510
511/*
512 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
513 * guest_timing_exit_irqoff().
514 */
515static __always_inline void guest_exit_irqoff(void)
516{
517 guest_context_exit_irqoff();
518 guest_timing_exit_irqoff();
519}
520
521static inline void guest_exit(void)
522{
523 unsigned long flags;
524
525 local_irq_save(flags);
526 guest_exit_irqoff();
527 local_irq_restore(flags);
528}
529
530/**
531 * guest_state_exit_irqoff - Establish state when returning from guest mode
532 *
533 * Entry from a guest disables interrupts, but guest mode is traced as
534 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
535 *
536 * 1) Tell lockdep that interrupts are disabled
537 * 2) Invoke context tracking if enabled to reactivate RCU
538 * 3) Trace interrupts off state
539 *
540 * Invoked from architecture specific code after exiting a guest.
541 * Must be invoked with interrupts disabled and the caller must be
542 * non-instrumentable.
543 * The caller has to invoke guest_timing_exit_irqoff() after this.
544 *
545 * Note: this is analogous to enter_from_user_mode().
546 */
547static __always_inline void guest_state_exit_irqoff(void)
548{
549 lockdep_hardirqs_off(CALLER_ADDR0);
550 guest_context_exit_irqoff();
551
552 instrumentation_begin();
553 trace_hardirqs_off_finish();
554 instrumentation_end();
555}
556
557static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
558{
559 /*
560 * The memory barrier ensures a previous write to vcpu->requests cannot
561 * be reordered with the read of vcpu->mode. It pairs with the general
562 * memory barrier following the write of vcpu->mode in VCPU RUN.
563 */
564 smp_mb__before_atomic();
565 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
566}
567
568/*
569 * Some of the bitops functions do not support too long bitmaps.
570 * This number must be determined not to exceed such limits.
571 */
572#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
573
574/*
575 * Since at idle each memslot belongs to two memslot sets it has to contain
576 * two embedded nodes for each data structure that it forms a part of.
577 *
578 * Two memslot sets (one active and one inactive) are necessary so the VM
579 * continues to run on one memslot set while the other is being modified.
580 *
581 * These two memslot sets normally point to the same set of memslots.
582 * They can, however, be desynchronized when performing a memslot management
583 * operation by replacing the memslot to be modified by its copy.
584 * After the operation is complete, both memslot sets once again point to
585 * the same, common set of memslot data.
586 *
587 * The memslots themselves are independent of each other so they can be
588 * individually added or deleted.
589 */
590struct kvm_memory_slot {
591 struct hlist_node id_node[2];
592 struct interval_tree_node hva_node[2];
593 struct rb_node gfn_node[2];
594 gfn_t base_gfn;
595 unsigned long npages;
596 unsigned long *dirty_bitmap;
597 struct kvm_arch_memory_slot arch;
598 unsigned long userspace_addr;
599 u32 flags;
600 short id;
601 u16 as_id;
602
603#ifdef CONFIG_KVM_PRIVATE_MEM
604 struct {
605 struct file __rcu *file;
606 pgoff_t pgoff;
607 } gmem;
608#endif
609};
610
611static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
612{
613 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
614}
615
616static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
617{
618 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
619}
620
621static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
622{
623 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
624}
625
626static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
627{
628 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
629
630 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
631}
632
633#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
634#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
635#endif
636
637struct kvm_s390_adapter_int {
638 u64 ind_addr;
639 u64 summary_addr;
640 u64 ind_offset;
641 u32 summary_offset;
642 u32 adapter_id;
643};
644
645struct kvm_hv_sint {
646 u32 vcpu;
647 u32 sint;
648};
649
650struct kvm_xen_evtchn {
651 u32 port;
652 u32 vcpu_id;
653 int vcpu_idx;
654 u32 priority;
655};
656
657struct kvm_kernel_irq_routing_entry {
658 u32 gsi;
659 u32 type;
660 int (*set)(struct kvm_kernel_irq_routing_entry *e,
661 struct kvm *kvm, int irq_source_id, int level,
662 bool line_status);
663 union {
664 struct {
665 unsigned irqchip;
666 unsigned pin;
667 } irqchip;
668 struct {
669 u32 address_lo;
670 u32 address_hi;
671 u32 data;
672 u32 flags;
673 u32 devid;
674 } msi;
675 struct kvm_s390_adapter_int adapter;
676 struct kvm_hv_sint hv_sint;
677 struct kvm_xen_evtchn xen_evtchn;
678 };
679 struct hlist_node link;
680};
681
682#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
683struct kvm_irq_routing_table {
684 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
685 u32 nr_rt_entries;
686 /*
687 * Array indexed by gsi. Each entry contains list of irq chips
688 * the gsi is connected to.
689 */
690 struct hlist_head map[] __counted_by(nr_rt_entries);
691};
692#endif
693
694bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
695
696#ifndef KVM_INTERNAL_MEM_SLOTS
697#define KVM_INTERNAL_MEM_SLOTS 0
698#endif
699
700#define KVM_MEM_SLOTS_NUM SHRT_MAX
701#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
702
703#if KVM_MAX_NR_ADDRESS_SPACES == 1
704static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
705{
706 return KVM_MAX_NR_ADDRESS_SPACES;
707}
708
709static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
710{
711 return 0;
712}
713#endif
714
715/*
716 * Arch code must define kvm_arch_has_private_mem if support for private memory
717 * is enabled.
718 */
719#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
720static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
721{
722 return false;
723}
724#endif
725
726#ifndef kvm_arch_has_readonly_mem
727static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
728{
729 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
730}
731#endif
732
733struct kvm_memslots {
734 u64 generation;
735 atomic_long_t last_used_slot;
736 struct rb_root_cached hva_tree;
737 struct rb_root gfn_tree;
738 /*
739 * The mapping table from slot id to memslot.
740 *
741 * 7-bit bucket count matches the size of the old id to index array for
742 * 512 slots, while giving good performance with this slot count.
743 * Higher bucket counts bring only small performance improvements but
744 * always result in higher memory usage (even for lower memslot counts).
745 */
746 DECLARE_HASHTABLE(id_hash, 7);
747 int node_idx;
748};
749
750struct kvm {
751#ifdef KVM_HAVE_MMU_RWLOCK
752 rwlock_t mmu_lock;
753#else
754 spinlock_t mmu_lock;
755#endif /* KVM_HAVE_MMU_RWLOCK */
756
757 struct mutex slots_lock;
758
759 /*
760 * Protects the arch-specific fields of struct kvm_memory_slots in
761 * use by the VM. To be used under the slots_lock (above) or in a
762 * kvm->srcu critical section where acquiring the slots_lock would
763 * lead to deadlock with the synchronize_srcu in
764 * kvm_swap_active_memslots().
765 */
766 struct mutex slots_arch_lock;
767 struct mm_struct *mm; /* userspace tied to this vm */
768 unsigned long nr_memslot_pages;
769 /* The two memslot sets - active and inactive (per address space) */
770 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
771 /* The current active memslot set for each address space */
772 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
773 struct xarray vcpu_array;
774 /*
775 * Protected by slots_lock, but can be read outside if an
776 * incorrect answer is acceptable.
777 */
778 atomic_t nr_memslots_dirty_logging;
779
780 /* Used to wait for completion of MMU notifiers. */
781 spinlock_t mn_invalidate_lock;
782 unsigned long mn_active_invalidate_count;
783 struct rcuwait mn_memslots_update_rcuwait;
784
785 /* For management / invalidation of gfn_to_pfn_caches */
786 spinlock_t gpc_lock;
787 struct list_head gpc_list;
788
789 /*
790 * created_vcpus is protected by kvm->lock, and is incremented
791 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
792 * incremented after storing the kvm_vcpu pointer in vcpus,
793 * and is accessed atomically.
794 */
795 atomic_t online_vcpus;
796 int max_vcpus;
797 int created_vcpus;
798 int last_boosted_vcpu;
799 struct list_head vm_list;
800 struct mutex lock;
801 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
802#ifdef CONFIG_HAVE_KVM_IRQCHIP
803 struct {
804 spinlock_t lock;
805 struct list_head items;
806 /* resampler_list update side is protected by resampler_lock. */
807 struct list_head resampler_list;
808 struct mutex resampler_lock;
809 } irqfds;
810#endif
811 struct list_head ioeventfds;
812 struct kvm_vm_stat stat;
813 struct kvm_arch arch;
814 refcount_t users_count;
815#ifdef CONFIG_KVM_MMIO
816 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
817 spinlock_t ring_lock;
818 struct list_head coalesced_zones;
819#endif
820
821 struct mutex irq_lock;
822#ifdef CONFIG_HAVE_KVM_IRQCHIP
823 /*
824 * Update side is protected by irq_lock.
825 */
826 struct kvm_irq_routing_table __rcu *irq_routing;
827
828 struct hlist_head irq_ack_notifier_list;
829#endif
830
831#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
832 struct mmu_notifier mmu_notifier;
833 unsigned long mmu_invalidate_seq;
834 long mmu_invalidate_in_progress;
835 gfn_t mmu_invalidate_range_start;
836 gfn_t mmu_invalidate_range_end;
837#endif
838 struct list_head devices;
839 u64 manual_dirty_log_protect;
840 struct dentry *debugfs_dentry;
841 struct kvm_stat_data **debugfs_stat_data;
842 struct srcu_struct srcu;
843 struct srcu_struct irq_srcu;
844 pid_t userspace_pid;
845 bool override_halt_poll_ns;
846 unsigned int max_halt_poll_ns;
847 u32 dirty_ring_size;
848 bool dirty_ring_with_bitmap;
849 bool vm_bugged;
850 bool vm_dead;
851
852#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
853 struct notifier_block pm_notifier;
854#endif
855#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
856 /* Protected by slots_locks (for writes) and RCU (for reads) */
857 struct xarray mem_attr_array;
858#endif
859 char stats_id[KVM_STATS_NAME_SIZE];
860};
861
862#define kvm_err(fmt, ...) \
863 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
864#define kvm_info(fmt, ...) \
865 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
866#define kvm_debug(fmt, ...) \
867 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
868#define kvm_debug_ratelimited(fmt, ...) \
869 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
870 ## __VA_ARGS__)
871#define kvm_pr_unimpl(fmt, ...) \
872 pr_err_ratelimited("kvm [%i]: " fmt, \
873 task_tgid_nr(current), ## __VA_ARGS__)
874
875/* The guest did something we don't support. */
876#define vcpu_unimpl(vcpu, fmt, ...) \
877 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
878 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
879
880#define vcpu_debug(vcpu, fmt, ...) \
881 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
882#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
883 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
884 ## __VA_ARGS__)
885#define vcpu_err(vcpu, fmt, ...) \
886 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
887
888static inline void kvm_vm_dead(struct kvm *kvm)
889{
890 kvm->vm_dead = true;
891 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
892}
893
894static inline void kvm_vm_bugged(struct kvm *kvm)
895{
896 kvm->vm_bugged = true;
897 kvm_vm_dead(kvm);
898}
899
900
901#define KVM_BUG(cond, kvm, fmt...) \
902({ \
903 bool __ret = !!(cond); \
904 \
905 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
906 kvm_vm_bugged(kvm); \
907 unlikely(__ret); \
908})
909
910#define KVM_BUG_ON(cond, kvm) \
911({ \
912 bool __ret = !!(cond); \
913 \
914 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
915 kvm_vm_bugged(kvm); \
916 unlikely(__ret); \
917})
918
919/*
920 * Note, "data corruption" refers to corruption of host kernel data structures,
921 * not guest data. Guest data corruption, suspected or confirmed, that is tied
922 * and contained to a single VM should *never* BUG() and potentially panic the
923 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
924 * is corrupted and that corruption can have a cascading effect to other parts
925 * of the hosts and/or to other VMs.
926 */
927#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
928({ \
929 bool __ret = !!(cond); \
930 \
931 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
932 BUG_ON(__ret); \
933 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
934 kvm_vm_bugged(kvm); \
935 unlikely(__ret); \
936})
937
938static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
939{
940#ifdef CONFIG_PROVE_RCU
941 WARN_ONCE(vcpu->srcu_depth++,
942 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
943#endif
944 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
945}
946
947static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
948{
949 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
950
951#ifdef CONFIG_PROVE_RCU
952 WARN_ONCE(--vcpu->srcu_depth,
953 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
954#endif
955}
956
957static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
958{
959 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
960}
961
962static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
963{
964 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
965 lockdep_is_held(&kvm->slots_lock) ||
966 !refcount_read(&kvm->users_count));
967}
968
969static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
970{
971 int num_vcpus = atomic_read(&kvm->online_vcpus);
972 i = array_index_nospec(i, num_vcpus);
973
974 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
975 smp_rmb();
976 return xa_load(&kvm->vcpu_array, i);
977}
978
979#define kvm_for_each_vcpu(idx, vcpup, kvm) \
980 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
981 (atomic_read(&kvm->online_vcpus) - 1))
982
983static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
984{
985 struct kvm_vcpu *vcpu = NULL;
986 unsigned long i;
987
988 if (id < 0)
989 return NULL;
990 if (id < KVM_MAX_VCPUS)
991 vcpu = kvm_get_vcpu(kvm, id);
992 if (vcpu && vcpu->vcpu_id == id)
993 return vcpu;
994 kvm_for_each_vcpu(i, vcpu, kvm)
995 if (vcpu->vcpu_id == id)
996 return vcpu;
997 return NULL;
998}
999
1000void kvm_destroy_vcpus(struct kvm *kvm);
1001
1002void vcpu_load(struct kvm_vcpu *vcpu);
1003void vcpu_put(struct kvm_vcpu *vcpu);
1004
1005#ifdef __KVM_HAVE_IOAPIC
1006void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1007void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1008#else
1009static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1010{
1011}
1012static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1013{
1014}
1015#endif
1016
1017#ifdef CONFIG_HAVE_KVM_IRQCHIP
1018int kvm_irqfd_init(void);
1019void kvm_irqfd_exit(void);
1020#else
1021static inline int kvm_irqfd_init(void)
1022{
1023 return 0;
1024}
1025
1026static inline void kvm_irqfd_exit(void)
1027{
1028}
1029#endif
1030int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1031void kvm_exit(void);
1032
1033void kvm_get_kvm(struct kvm *kvm);
1034bool kvm_get_kvm_safe(struct kvm *kvm);
1035void kvm_put_kvm(struct kvm *kvm);
1036bool file_is_kvm(struct file *file);
1037void kvm_put_kvm_no_destroy(struct kvm *kvm);
1038
1039static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1040{
1041 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1042 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1043 lockdep_is_held(&kvm->slots_lock) ||
1044 !refcount_read(&kvm->users_count));
1045}
1046
1047static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1048{
1049 return __kvm_memslots(kvm, 0);
1050}
1051
1052static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1053{
1054 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1055
1056 return __kvm_memslots(vcpu->kvm, as_id);
1057}
1058
1059static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1060{
1061 return RB_EMPTY_ROOT(&slots->gfn_tree);
1062}
1063
1064bool kvm_are_all_memslots_empty(struct kvm *kvm);
1065
1066#define kvm_for_each_memslot(memslot, bkt, slots) \
1067 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1068 if (WARN_ON_ONCE(!memslot->npages)) { \
1069 } else
1070
1071static inline
1072struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1073{
1074 struct kvm_memory_slot *slot;
1075 int idx = slots->node_idx;
1076
1077 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1078 if (slot->id == id)
1079 return slot;
1080 }
1081
1082 return NULL;
1083}
1084
1085/* Iterator used for walking memslots that overlap a gfn range. */
1086struct kvm_memslot_iter {
1087 struct kvm_memslots *slots;
1088 struct rb_node *node;
1089 struct kvm_memory_slot *slot;
1090};
1091
1092static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1093{
1094 iter->node = rb_next(iter->node);
1095 if (!iter->node)
1096 return;
1097
1098 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1099}
1100
1101static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1102 struct kvm_memslots *slots,
1103 gfn_t start)
1104{
1105 int idx = slots->node_idx;
1106 struct rb_node *tmp;
1107 struct kvm_memory_slot *slot;
1108
1109 iter->slots = slots;
1110
1111 /*
1112 * Find the so called "upper bound" of a key - the first node that has
1113 * its key strictly greater than the searched one (the start gfn in our case).
1114 */
1115 iter->node = NULL;
1116 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1117 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1118 if (start < slot->base_gfn) {
1119 iter->node = tmp;
1120 tmp = tmp->rb_left;
1121 } else {
1122 tmp = tmp->rb_right;
1123 }
1124 }
1125
1126 /*
1127 * Find the slot with the lowest gfn that can possibly intersect with
1128 * the range, so we'll ideally have slot start <= range start
1129 */
1130 if (iter->node) {
1131 /*
1132 * A NULL previous node means that the very first slot
1133 * already has a higher start gfn.
1134 * In this case slot start > range start.
1135 */
1136 tmp = rb_prev(iter->node);
1137 if (tmp)
1138 iter->node = tmp;
1139 } else {
1140 /* a NULL node below means no slots */
1141 iter->node = rb_last(&slots->gfn_tree);
1142 }
1143
1144 if (iter->node) {
1145 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1146
1147 /*
1148 * It is possible in the slot start < range start case that the
1149 * found slot ends before or at range start (slot end <= range start)
1150 * and so it does not overlap the requested range.
1151 *
1152 * In such non-overlapping case the next slot (if it exists) will
1153 * already have slot start > range start, otherwise the logic above
1154 * would have found it instead of the current slot.
1155 */
1156 if (iter->slot->base_gfn + iter->slot->npages <= start)
1157 kvm_memslot_iter_next(iter);
1158 }
1159}
1160
1161static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1162{
1163 if (!iter->node)
1164 return false;
1165
1166 /*
1167 * If this slot starts beyond or at the end of the range so does
1168 * every next one
1169 */
1170 return iter->slot->base_gfn < end;
1171}
1172
1173/* Iterate over each memslot at least partially intersecting [start, end) range */
1174#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1175 for (kvm_memslot_iter_start(iter, slots, start); \
1176 kvm_memslot_iter_is_valid(iter, end); \
1177 kvm_memslot_iter_next(iter))
1178
1179/*
1180 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1181 * - create a new memory slot
1182 * - delete an existing memory slot
1183 * - modify an existing memory slot
1184 * -- move it in the guest physical memory space
1185 * -- just change its flags
1186 *
1187 * Since flags can be changed by some of these operations, the following
1188 * differentiation is the best we can do for __kvm_set_memory_region():
1189 */
1190enum kvm_mr_change {
1191 KVM_MR_CREATE,
1192 KVM_MR_DELETE,
1193 KVM_MR_MOVE,
1194 KVM_MR_FLAGS_ONLY,
1195};
1196
1197int kvm_set_memory_region(struct kvm *kvm,
1198 const struct kvm_userspace_memory_region2 *mem);
1199int __kvm_set_memory_region(struct kvm *kvm,
1200 const struct kvm_userspace_memory_region2 *mem);
1201void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1202void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1203int kvm_arch_prepare_memory_region(struct kvm *kvm,
1204 const struct kvm_memory_slot *old,
1205 struct kvm_memory_slot *new,
1206 enum kvm_mr_change change);
1207void kvm_arch_commit_memory_region(struct kvm *kvm,
1208 struct kvm_memory_slot *old,
1209 const struct kvm_memory_slot *new,
1210 enum kvm_mr_change change);
1211/* flush all memory translations */
1212void kvm_arch_flush_shadow_all(struct kvm *kvm);
1213/* flush memory translations pointing to 'slot' */
1214void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1215 struct kvm_memory_slot *slot);
1216
1217int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1218 struct page **pages, int nr_pages);
1219
1220struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1221unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1222unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1223unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1224unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1225 bool *writable);
1226void kvm_release_page_clean(struct page *page);
1227void kvm_release_page_dirty(struct page *page);
1228
1229kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1230kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1231 bool *writable);
1232kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1233kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1234kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1235 bool atomic, bool interruptible, bool *async,
1236 bool write_fault, bool *writable, hva_t *hva);
1237
1238void kvm_release_pfn_clean(kvm_pfn_t pfn);
1239void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1240void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1241void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1242
1243void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1244int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1245 int len);
1246int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1247int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1248 void *data, unsigned long len);
1249int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1250 void *data, unsigned int offset,
1251 unsigned long len);
1252int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1253 int offset, int len);
1254int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1255 unsigned long len);
1256int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1257 void *data, unsigned long len);
1258int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1259 void *data, unsigned int offset,
1260 unsigned long len);
1261int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1262 gpa_t gpa, unsigned long len);
1263
1264#define __kvm_get_guest(kvm, gfn, offset, v) \
1265({ \
1266 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1267 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1268 int __ret = -EFAULT; \
1269 \
1270 if (!kvm_is_error_hva(__addr)) \
1271 __ret = get_user(v, __uaddr); \
1272 __ret; \
1273})
1274
1275#define kvm_get_guest(kvm, gpa, v) \
1276({ \
1277 gpa_t __gpa = gpa; \
1278 struct kvm *__kvm = kvm; \
1279 \
1280 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1281 offset_in_page(__gpa), v); \
1282})
1283
1284#define __kvm_put_guest(kvm, gfn, offset, v) \
1285({ \
1286 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1287 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1288 int __ret = -EFAULT; \
1289 \
1290 if (!kvm_is_error_hva(__addr)) \
1291 __ret = put_user(v, __uaddr); \
1292 if (!__ret) \
1293 mark_page_dirty(kvm, gfn); \
1294 __ret; \
1295})
1296
1297#define kvm_put_guest(kvm, gpa, v) \
1298({ \
1299 gpa_t __gpa = gpa; \
1300 struct kvm *__kvm = kvm; \
1301 \
1302 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1303 offset_in_page(__gpa), v); \
1304})
1305
1306int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1307struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1308bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1309bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1310unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1311void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1312void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1313
1314struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1315struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1316kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1317kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1318int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1319void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1320unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1321unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1322int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1323 int len);
1324int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1325 unsigned long len);
1326int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1327 unsigned long len);
1328int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1329 int offset, int len);
1330int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1331 unsigned long len);
1332void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1333
1334/**
1335 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1336 *
1337 * @gpc: struct gfn_to_pfn_cache object.
1338 * @kvm: pointer to kvm instance.
1339 *
1340 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1341 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1342 * the caller before init).
1343 */
1344void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1345
1346/**
1347 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1348 * physical address.
1349 *
1350 * @gpc: struct gfn_to_pfn_cache object.
1351 * @gpa: guest physical address to map.
1352 * @len: sanity check; the range being access must fit a single page.
1353 *
1354 * @return: 0 for success.
1355 * -EINVAL for a mapping which would cross a page boundary.
1356 * -EFAULT for an untranslatable guest physical address.
1357 *
1358 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1359 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1360 * to ensure that the cache is valid before accessing the target page.
1361 */
1362int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1363
1364/**
1365 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1366 *
1367 * @gpc: struct gfn_to_pfn_cache object.
1368 * @hva: userspace virtual address to map.
1369 * @len: sanity check; the range being access must fit a single page.
1370 *
1371 * @return: 0 for success.
1372 * -EINVAL for a mapping which would cross a page boundary.
1373 * -EFAULT for an untranslatable guest physical address.
1374 *
1375 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1376 * merely bypasses a layer of address translation.
1377 */
1378int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1379
1380/**
1381 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1382 *
1383 * @gpc: struct gfn_to_pfn_cache object.
1384 * @len: sanity check; the range being access must fit a single page.
1385 *
1386 * @return: %true if the cache is still valid and the address matches.
1387 * %false if the cache is not valid.
1388 *
1389 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1390 * while calling this function, and then continue to hold the lock until the
1391 * access is complete.
1392 *
1393 * Callers in IN_GUEST_MODE may do so without locking, although they should
1394 * still hold a read lock on kvm->scru for the memslot checks.
1395 */
1396bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1397
1398/**
1399 * kvm_gpc_refresh - update a previously initialized cache.
1400 *
1401 * @gpc: struct gfn_to_pfn_cache object.
1402 * @len: sanity check; the range being access must fit a single page.
1403 *
1404 * @return: 0 for success.
1405 * -EINVAL for a mapping which would cross a page boundary.
1406 * -EFAULT for an untranslatable guest physical address.
1407 *
1408 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1409 * return from this function does not mean the page can be immediately
1410 * accessed because it may have raced with an invalidation. Callers must
1411 * still lock and check the cache status, as this function does not return
1412 * with the lock still held to permit access.
1413 */
1414int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1415
1416/**
1417 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1418 *
1419 * @gpc: struct gfn_to_pfn_cache object.
1420 *
1421 * This removes a cache from the VM's list to be processed on MMU notifier
1422 * invocation.
1423 */
1424void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1425
1426static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1427{
1428 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1429}
1430
1431static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1432{
1433 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1434}
1435
1436void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1437void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1438
1439void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1440bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1441void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1442void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1443bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1444void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1445int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1446void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1447
1448void kvm_flush_remote_tlbs(struct kvm *kvm);
1449void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1450void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1451 const struct kvm_memory_slot *memslot);
1452
1453#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1454int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1455int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1456int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1457void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1458void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1459#endif
1460
1461void kvm_mmu_invalidate_begin(struct kvm *kvm);
1462void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1463void kvm_mmu_invalidate_end(struct kvm *kvm);
1464bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1465
1466long kvm_arch_dev_ioctl(struct file *filp,
1467 unsigned int ioctl, unsigned long arg);
1468long kvm_arch_vcpu_ioctl(struct file *filp,
1469 unsigned int ioctl, unsigned long arg);
1470vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1471
1472int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1473
1474void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1475 struct kvm_memory_slot *slot,
1476 gfn_t gfn_offset,
1477 unsigned long mask);
1478void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1479
1480#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1481int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1482int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1483 int *is_dirty, struct kvm_memory_slot **memslot);
1484#endif
1485
1486int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1487 bool line_status);
1488int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1489 struct kvm_enable_cap *cap);
1490int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1491long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1492 unsigned long arg);
1493
1494int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1495int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1496
1497int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1498 struct kvm_translation *tr);
1499
1500int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1501int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1502int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1503 struct kvm_sregs *sregs);
1504int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1505 struct kvm_sregs *sregs);
1506int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1507 struct kvm_mp_state *mp_state);
1508int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1509 struct kvm_mp_state *mp_state);
1510int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1511 struct kvm_guest_debug *dbg);
1512int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1513
1514void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1515void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1516int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1517int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1518void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1519void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1520
1521#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1522int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1523#endif
1524
1525#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1526void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1527#else
1528static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1529#endif
1530
1531#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1532int kvm_arch_hardware_enable(void);
1533void kvm_arch_hardware_disable(void);
1534#endif
1535int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1536bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1537int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1538bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1539bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1540bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1541int kvm_arch_post_init_vm(struct kvm *kvm);
1542void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1543void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1544
1545#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1546/*
1547 * All architectures that want to use vzalloc currently also
1548 * need their own kvm_arch_alloc_vm implementation.
1549 */
1550static inline struct kvm *kvm_arch_alloc_vm(void)
1551{
1552 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1553}
1554#endif
1555
1556static inline void __kvm_arch_free_vm(struct kvm *kvm)
1557{
1558 kvfree(kvm);
1559}
1560
1561#ifndef __KVM_HAVE_ARCH_VM_FREE
1562static inline void kvm_arch_free_vm(struct kvm *kvm)
1563{
1564 __kvm_arch_free_vm(kvm);
1565}
1566#endif
1567
1568#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1569static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1570{
1571 return -ENOTSUPP;
1572}
1573#else
1574int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1575#endif
1576
1577#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1578static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1579 gfn_t gfn, u64 nr_pages)
1580{
1581 return -EOPNOTSUPP;
1582}
1583#else
1584int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1585#endif
1586
1587#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1588void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1589void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1590bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1591#else
1592static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1593{
1594}
1595
1596static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1597{
1598}
1599
1600static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1601{
1602 return false;
1603}
1604#endif
1605#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1606void kvm_arch_start_assignment(struct kvm *kvm);
1607void kvm_arch_end_assignment(struct kvm *kvm);
1608bool kvm_arch_has_assigned_device(struct kvm *kvm);
1609#else
1610static inline void kvm_arch_start_assignment(struct kvm *kvm)
1611{
1612}
1613
1614static inline void kvm_arch_end_assignment(struct kvm *kvm)
1615{
1616}
1617
1618static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1619{
1620 return false;
1621}
1622#endif
1623
1624static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1625{
1626#ifdef __KVM_HAVE_ARCH_WQP
1627 return vcpu->arch.waitp;
1628#else
1629 return &vcpu->wait;
1630#endif
1631}
1632
1633/*
1634 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1635 * true if the vCPU was blocking and was awakened, false otherwise.
1636 */
1637static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1638{
1639 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1640}
1641
1642static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1643{
1644 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1645}
1646
1647#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1648/*
1649 * returns true if the virtual interrupt controller is initialized and
1650 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1651 * controller is dynamically instantiated and this is not always true.
1652 */
1653bool kvm_arch_intc_initialized(struct kvm *kvm);
1654#else
1655static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1656{
1657 return true;
1658}
1659#endif
1660
1661#ifdef CONFIG_GUEST_PERF_EVENTS
1662unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1663
1664void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1665void kvm_unregister_perf_callbacks(void);
1666#else
1667static inline void kvm_register_perf_callbacks(void *ign) {}
1668static inline void kvm_unregister_perf_callbacks(void) {}
1669#endif /* CONFIG_GUEST_PERF_EVENTS */
1670
1671int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1672void kvm_arch_destroy_vm(struct kvm *kvm);
1673void kvm_arch_sync_events(struct kvm *kvm);
1674
1675int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1676
1677struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1678bool kvm_is_zone_device_page(struct page *page);
1679
1680struct kvm_irq_ack_notifier {
1681 struct hlist_node link;
1682 unsigned gsi;
1683 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1684};
1685
1686int kvm_irq_map_gsi(struct kvm *kvm,
1687 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1688int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1689
1690int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1691 bool line_status);
1692int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1693 int irq_source_id, int level, bool line_status);
1694int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1695 struct kvm *kvm, int irq_source_id,
1696 int level, bool line_status);
1697bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1698void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1699void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1700void kvm_register_irq_ack_notifier(struct kvm *kvm,
1701 struct kvm_irq_ack_notifier *kian);
1702void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1703 struct kvm_irq_ack_notifier *kian);
1704int kvm_request_irq_source_id(struct kvm *kvm);
1705void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1706bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1707
1708/*
1709 * Returns a pointer to the memslot if it contains gfn.
1710 * Otherwise returns NULL.
1711 */
1712static inline struct kvm_memory_slot *
1713try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1714{
1715 if (!slot)
1716 return NULL;
1717
1718 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1719 return slot;
1720 else
1721 return NULL;
1722}
1723
1724/*
1725 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1726 *
1727 * With "approx" set returns the memslot also when the address falls
1728 * in a hole. In that case one of the memslots bordering the hole is
1729 * returned.
1730 */
1731static inline struct kvm_memory_slot *
1732search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1733{
1734 struct kvm_memory_slot *slot;
1735 struct rb_node *node;
1736 int idx = slots->node_idx;
1737
1738 slot = NULL;
1739 for (node = slots->gfn_tree.rb_node; node; ) {
1740 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1741 if (gfn >= slot->base_gfn) {
1742 if (gfn < slot->base_gfn + slot->npages)
1743 return slot;
1744 node = node->rb_right;
1745 } else
1746 node = node->rb_left;
1747 }
1748
1749 return approx ? slot : NULL;
1750}
1751
1752static inline struct kvm_memory_slot *
1753____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1754{
1755 struct kvm_memory_slot *slot;
1756
1757 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1758 slot = try_get_memslot(slot, gfn);
1759 if (slot)
1760 return slot;
1761
1762 slot = search_memslots(slots, gfn, approx);
1763 if (slot) {
1764 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1765 return slot;
1766 }
1767
1768 return NULL;
1769}
1770
1771/*
1772 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1773 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1774 * because that would bloat other code too much.
1775 */
1776static inline struct kvm_memory_slot *
1777__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1778{
1779 return ____gfn_to_memslot(slots, gfn, false);
1780}
1781
1782static inline unsigned long
1783__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1784{
1785 /*
1786 * The index was checked originally in search_memslots. To avoid
1787 * that a malicious guest builds a Spectre gadget out of e.g. page
1788 * table walks, do not let the processor speculate loads outside
1789 * the guest's registered memslots.
1790 */
1791 unsigned long offset = gfn - slot->base_gfn;
1792 offset = array_index_nospec(offset, slot->npages);
1793 return slot->userspace_addr + offset * PAGE_SIZE;
1794}
1795
1796static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1797{
1798 return gfn_to_memslot(kvm, gfn)->id;
1799}
1800
1801static inline gfn_t
1802hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1803{
1804 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1805
1806 return slot->base_gfn + gfn_offset;
1807}
1808
1809static inline gpa_t gfn_to_gpa(gfn_t gfn)
1810{
1811 return (gpa_t)gfn << PAGE_SHIFT;
1812}
1813
1814static inline gfn_t gpa_to_gfn(gpa_t gpa)
1815{
1816 return (gfn_t)(gpa >> PAGE_SHIFT);
1817}
1818
1819static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1820{
1821 return (hpa_t)pfn << PAGE_SHIFT;
1822}
1823
1824static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1825{
1826 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1827
1828 return !kvm_is_error_hva(hva);
1829}
1830
1831static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1832{
1833 lockdep_assert_held(&gpc->lock);
1834
1835 if (!gpc->memslot)
1836 return;
1837
1838 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1839}
1840
1841enum kvm_stat_kind {
1842 KVM_STAT_VM,
1843 KVM_STAT_VCPU,
1844};
1845
1846struct kvm_stat_data {
1847 struct kvm *kvm;
1848 const struct _kvm_stats_desc *desc;
1849 enum kvm_stat_kind kind;
1850};
1851
1852struct _kvm_stats_desc {
1853 struct kvm_stats_desc desc;
1854 char name[KVM_STATS_NAME_SIZE];
1855};
1856
1857#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1858 .flags = type | unit | base | \
1859 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1860 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1861 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1862 .exponent = exp, \
1863 .size = sz, \
1864 .bucket_size = bsz
1865
1866#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1867 { \
1868 { \
1869 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1870 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1871 }, \
1872 .name = #stat, \
1873 }
1874#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1875 { \
1876 { \
1877 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1878 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1879 }, \
1880 .name = #stat, \
1881 }
1882#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1883 { \
1884 { \
1885 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1886 .offset = offsetof(struct kvm_vm_stat, stat) \
1887 }, \
1888 .name = #stat, \
1889 }
1890#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1891 { \
1892 { \
1893 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1894 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1895 }, \
1896 .name = #stat, \
1897 }
1898/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1899#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1900 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1901
1902#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1903 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1904 unit, base, exponent, 1, 0)
1905#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1906 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1907 unit, base, exponent, 1, 0)
1908#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1909 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1910 unit, base, exponent, 1, 0)
1911#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1912 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1913 unit, base, exponent, sz, bsz)
1914#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1915 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1916 unit, base, exponent, sz, 0)
1917
1918/* Cumulative counter, read/write */
1919#define STATS_DESC_COUNTER(SCOPE, name) \
1920 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1921 KVM_STATS_BASE_POW10, 0)
1922/* Instantaneous counter, read only */
1923#define STATS_DESC_ICOUNTER(SCOPE, name) \
1924 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1925 KVM_STATS_BASE_POW10, 0)
1926/* Peak counter, read/write */
1927#define STATS_DESC_PCOUNTER(SCOPE, name) \
1928 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1929 KVM_STATS_BASE_POW10, 0)
1930
1931/* Instantaneous boolean value, read only */
1932#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1933 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1934 KVM_STATS_BASE_POW10, 0)
1935/* Peak (sticky) boolean value, read/write */
1936#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1937 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1938 KVM_STATS_BASE_POW10, 0)
1939
1940/* Cumulative time in nanosecond */
1941#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1942 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1943 KVM_STATS_BASE_POW10, -9)
1944/* Linear histogram for time in nanosecond */
1945#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1946 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1947 KVM_STATS_BASE_POW10, -9, sz, bsz)
1948/* Logarithmic histogram for time in nanosecond */
1949#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1950 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1951 KVM_STATS_BASE_POW10, -9, sz)
1952
1953#define KVM_GENERIC_VM_STATS() \
1954 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1955 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1956
1957#define KVM_GENERIC_VCPU_STATS() \
1958 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1959 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1960 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1961 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1962 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1963 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1964 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1965 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1966 HALT_POLL_HIST_COUNT), \
1967 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1968 HALT_POLL_HIST_COUNT), \
1969 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1970 HALT_POLL_HIST_COUNT), \
1971 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1972
1973ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1974 const struct _kvm_stats_desc *desc,
1975 void *stats, size_t size_stats,
1976 char __user *user_buffer, size_t size, loff_t *offset);
1977
1978/**
1979 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1980 * statistics data.
1981 *
1982 * @data: start address of the stats data
1983 * @size: the number of bucket of the stats data
1984 * @value: the new value used to update the linear histogram's bucket
1985 * @bucket_size: the size (width) of a bucket
1986 */
1987static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1988 u64 value, size_t bucket_size)
1989{
1990 size_t index = div64_u64(value, bucket_size);
1991
1992 index = min(index, size - 1);
1993 ++data[index];
1994}
1995
1996/**
1997 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1998 * statistics data.
1999 *
2000 * @data: start address of the stats data
2001 * @size: the number of bucket of the stats data
2002 * @value: the new value used to update the logarithmic histogram's bucket
2003 */
2004static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2005{
2006 size_t index = fls64(value);
2007
2008 index = min(index, size - 1);
2009 ++data[index];
2010}
2011
2012#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2013 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2014#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2015 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2016
2017
2018extern const struct kvm_stats_header kvm_vm_stats_header;
2019extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2020extern const struct kvm_stats_header kvm_vcpu_stats_header;
2021extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2022
2023#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2024static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2025{
2026 if (unlikely(kvm->mmu_invalidate_in_progress))
2027 return 1;
2028 /*
2029 * Ensure the read of mmu_invalidate_in_progress happens before
2030 * the read of mmu_invalidate_seq. This interacts with the
2031 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2032 * that the caller either sees the old (non-zero) value of
2033 * mmu_invalidate_in_progress or the new (incremented) value of
2034 * mmu_invalidate_seq.
2035 *
2036 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2037 * than under kvm->mmu_lock, for scalability, so can't rely on
2038 * kvm->mmu_lock to keep things ordered.
2039 */
2040 smp_rmb();
2041 if (kvm->mmu_invalidate_seq != mmu_seq)
2042 return 1;
2043 return 0;
2044}
2045
2046static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2047 unsigned long mmu_seq,
2048 gfn_t gfn)
2049{
2050 lockdep_assert_held(&kvm->mmu_lock);
2051 /*
2052 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2053 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2054 * that might be being invalidated. Note that it may include some false
2055 * positives, due to shortcuts when handing concurrent invalidations.
2056 */
2057 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2058 /*
2059 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2060 * but before updating the range is a KVM bug.
2061 */
2062 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2063 kvm->mmu_invalidate_range_end == INVALID_GPA))
2064 return 1;
2065
2066 if (gfn >= kvm->mmu_invalidate_range_start &&
2067 gfn < kvm->mmu_invalidate_range_end)
2068 return 1;
2069 }
2070
2071 if (kvm->mmu_invalidate_seq != mmu_seq)
2072 return 1;
2073 return 0;
2074}
2075
2076/*
2077 * This lockless version of the range-based retry check *must* be paired with a
2078 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2079 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2080 * get false negatives and false positives.
2081 */
2082static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2083 unsigned long mmu_seq,
2084 gfn_t gfn)
2085{
2086 /*
2087 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2088 * are always read from memory, e.g. so that checking for retry in a
2089 * loop won't result in an infinite retry loop. Don't force loads for
2090 * start+end, as the key to avoiding infinite retry loops is observing
2091 * the 1=>0 transition of in-progress, i.e. getting false negatives
2092 * due to stale start+end values is acceptable.
2093 */
2094 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2095 gfn >= kvm->mmu_invalidate_range_start &&
2096 gfn < kvm->mmu_invalidate_range_end)
2097 return true;
2098
2099 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2100}
2101#endif
2102
2103#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2104
2105#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2106
2107bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2108int kvm_set_irq_routing(struct kvm *kvm,
2109 const struct kvm_irq_routing_entry *entries,
2110 unsigned nr,
2111 unsigned flags);
2112int kvm_init_irq_routing(struct kvm *kvm);
2113int kvm_set_routing_entry(struct kvm *kvm,
2114 struct kvm_kernel_irq_routing_entry *e,
2115 const struct kvm_irq_routing_entry *ue);
2116void kvm_free_irq_routing(struct kvm *kvm);
2117
2118#else
2119
2120static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2121
2122static inline int kvm_init_irq_routing(struct kvm *kvm)
2123{
2124 return 0;
2125}
2126
2127#endif
2128
2129int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2130
2131void kvm_eventfd_init(struct kvm *kvm);
2132int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2133
2134#ifdef CONFIG_HAVE_KVM_IRQCHIP
2135int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2136void kvm_irqfd_release(struct kvm *kvm);
2137bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2138 unsigned int irqchip,
2139 unsigned int pin);
2140void kvm_irq_routing_update(struct kvm *);
2141#else
2142static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2143{
2144 return -EINVAL;
2145}
2146
2147static inline void kvm_irqfd_release(struct kvm *kvm) {}
2148
2149static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2150 unsigned int irqchip,
2151 unsigned int pin)
2152{
2153 return false;
2154}
2155#endif /* CONFIG_HAVE_KVM_IRQCHIP */
2156
2157void kvm_arch_irq_routing_update(struct kvm *kvm);
2158
2159static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2160{
2161 /*
2162 * Ensure the rest of the request is published to kvm_check_request's
2163 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2164 */
2165 smp_wmb();
2166 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2167}
2168
2169static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2170{
2171 /*
2172 * Request that don't require vCPU action should never be logged in
2173 * vcpu->requests. The vCPU won't clear the request, so it will stay
2174 * logged indefinitely and prevent the vCPU from entering the guest.
2175 */
2176 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2177 (req & KVM_REQUEST_NO_ACTION));
2178
2179 __kvm_make_request(req, vcpu);
2180}
2181
2182static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2183{
2184 return READ_ONCE(vcpu->requests);
2185}
2186
2187static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2188{
2189 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2190}
2191
2192static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2193{
2194 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2195}
2196
2197static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2198{
2199 if (kvm_test_request(req, vcpu)) {
2200 kvm_clear_request(req, vcpu);
2201
2202 /*
2203 * Ensure the rest of the request is visible to kvm_check_request's
2204 * caller. Paired with the smp_wmb in kvm_make_request.
2205 */
2206 smp_mb__after_atomic();
2207 return true;
2208 } else {
2209 return false;
2210 }
2211}
2212
2213#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2214extern bool kvm_rebooting;
2215#endif
2216
2217extern unsigned int halt_poll_ns;
2218extern unsigned int halt_poll_ns_grow;
2219extern unsigned int halt_poll_ns_grow_start;
2220extern unsigned int halt_poll_ns_shrink;
2221
2222struct kvm_device {
2223 const struct kvm_device_ops *ops;
2224 struct kvm *kvm;
2225 void *private;
2226 struct list_head vm_node;
2227};
2228
2229/* create, destroy, and name are mandatory */
2230struct kvm_device_ops {
2231 const char *name;
2232
2233 /*
2234 * create is called holding kvm->lock and any operations not suitable
2235 * to do while holding the lock should be deferred to init (see
2236 * below).
2237 */
2238 int (*create)(struct kvm_device *dev, u32 type);
2239
2240 /*
2241 * init is called after create if create is successful and is called
2242 * outside of holding kvm->lock.
2243 */
2244 void (*init)(struct kvm_device *dev);
2245
2246 /*
2247 * Destroy is responsible for freeing dev.
2248 *
2249 * Destroy may be called before or after destructors are called
2250 * on emulated I/O regions, depending on whether a reference is
2251 * held by a vcpu or other kvm component that gets destroyed
2252 * after the emulated I/O.
2253 */
2254 void (*destroy)(struct kvm_device *dev);
2255
2256 /*
2257 * Release is an alternative method to free the device. It is
2258 * called when the device file descriptor is closed. Once
2259 * release is called, the destroy method will not be called
2260 * anymore as the device is removed from the device list of
2261 * the VM. kvm->lock is held.
2262 */
2263 void (*release)(struct kvm_device *dev);
2264
2265 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2266 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2267 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2268 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2269 unsigned long arg);
2270 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2271};
2272
2273struct kvm_device *kvm_device_from_filp(struct file *filp);
2274int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2275void kvm_unregister_device_ops(u32 type);
2276
2277extern struct kvm_device_ops kvm_mpic_ops;
2278extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2279extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2280
2281#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2282
2283static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2284{
2285 vcpu->spin_loop.in_spin_loop = val;
2286}
2287static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2288{
2289 vcpu->spin_loop.dy_eligible = val;
2290}
2291
2292#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2293
2294static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2295{
2296}
2297
2298static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2299{
2300}
2301#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2302
2303static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2304{
2305 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2306 !(memslot->flags & KVM_MEMSLOT_INVALID));
2307}
2308
2309struct kvm_vcpu *kvm_get_running_vcpu(void);
2310struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2311
2312#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2313bool kvm_arch_has_irq_bypass(void);
2314int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2315 struct irq_bypass_producer *);
2316void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2317 struct irq_bypass_producer *);
2318void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2319void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2320int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2321 uint32_t guest_irq, bool set);
2322bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2323 struct kvm_kernel_irq_routing_entry *);
2324#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2325
2326#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2327/* If we wakeup during the poll time, was it a sucessful poll? */
2328static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2329{
2330 return vcpu->valid_wakeup;
2331}
2332
2333#else
2334static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2335{
2336 return true;
2337}
2338#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2339
2340#ifdef CONFIG_HAVE_KVM_NO_POLL
2341/* Callback that tells if we must not poll */
2342bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2343#else
2344static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2345{
2346 return false;
2347}
2348#endif /* CONFIG_HAVE_KVM_NO_POLL */
2349
2350#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2351long kvm_arch_vcpu_async_ioctl(struct file *filp,
2352 unsigned int ioctl, unsigned long arg);
2353#else
2354static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2355 unsigned int ioctl,
2356 unsigned long arg)
2357{
2358 return -ENOIOCTLCMD;
2359}
2360#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2361
2362void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2363
2364#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2365int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2366#else
2367static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2368{
2369 return 0;
2370}
2371#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2372
2373typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2374
2375int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2376 uintptr_t data, const char *name,
2377 struct task_struct **thread_ptr);
2378
2379#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2380static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2381{
2382 vcpu->run->exit_reason = KVM_EXIT_INTR;
2383 vcpu->stat.signal_exits++;
2384}
2385#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2386
2387/*
2388 * If more than one page is being (un)accounted, @virt must be the address of
2389 * the first page of a block of pages what were allocated together (i.e
2390 * accounted together).
2391 *
2392 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2393 * is thread-safe.
2394 */
2395static inline void kvm_account_pgtable_pages(void *virt, int nr)
2396{
2397 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2398}
2399
2400/*
2401 * This defines how many reserved entries we want to keep before we
2402 * kick the vcpu to the userspace to avoid dirty ring full. This
2403 * value can be tuned to higher if e.g. PML is enabled on the host.
2404 */
2405#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2406
2407/* Max number of entries allowed for each kvm dirty ring */
2408#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2409
2410static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2411 gpa_t gpa, gpa_t size,
2412 bool is_write, bool is_exec,
2413 bool is_private)
2414{
2415 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2416 vcpu->run->memory_fault.gpa = gpa;
2417 vcpu->run->memory_fault.size = size;
2418
2419 /* RWX flags are not (yet) defined or communicated to userspace. */
2420 vcpu->run->memory_fault.flags = 0;
2421 if (is_private)
2422 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2423}
2424
2425#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2426static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2427{
2428 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2429}
2430
2431bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2432 unsigned long mask, unsigned long attrs);
2433bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2434 struct kvm_gfn_range *range);
2435bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2436 struct kvm_gfn_range *range);
2437
2438static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2439{
2440 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2441 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2442}
2443#else
2444static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2445{
2446 return false;
2447}
2448#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2449
2450#ifdef CONFIG_KVM_PRIVATE_MEM
2451int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2452 gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2453#else
2454static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2455 struct kvm_memory_slot *slot, gfn_t gfn,
2456 kvm_pfn_t *pfn, int *max_order)
2457{
2458 KVM_BUG_ON(1, kvm);
2459 return -EIO;
2460}
2461#endif /* CONFIG_KVM_PRIVATE_MEM */
2462
2463#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2464int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2465#endif
2466
2467#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2468/**
2469 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2470 *
2471 * @kvm: KVM instance
2472 * @gfn: starting GFN to be populated
2473 * @src: userspace-provided buffer containing data to copy into GFN range
2474 * (passed to @post_populate, and incremented on each iteration
2475 * if not NULL)
2476 * @npages: number of pages to copy from userspace-buffer
2477 * @post_populate: callback to issue for each gmem page that backs the GPA
2478 * range
2479 * @opaque: opaque data to pass to @post_populate callback
2480 *
2481 * This is primarily intended for cases where a gmem-backed GPA range needs
2482 * to be initialized with userspace-provided data prior to being mapped into
2483 * the guest as a private page. This should be called with the slots->lock
2484 * held so that caller-enforced invariants regarding the expected memory
2485 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2486 *
2487 * Returns the number of pages that were populated.
2488 */
2489typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2490 void __user *src, int order, void *opaque);
2491
2492long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2493 kvm_gmem_populate_cb post_populate, void *opaque);
2494#endif
2495
2496#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2497void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2498#endif
2499
2500#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2501long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2502 struct kvm_pre_fault_memory *range);
2503#endif
2504
2505#endif