Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * This header is for implementations of dma_map_ops and related code.
4 * It should not be included in drivers just using the DMA API.
5 */
6#ifndef _LINUX_DMA_MAP_OPS_H
7#define _LINUX_DMA_MAP_OPS_H
8
9#include <linux/dma-mapping.h>
10#include <linux/pgtable.h>
11#include <linux/slab.h>
12
13struct cma;
14struct iommu_ops;
15
16/*
17 * Values for struct dma_map_ops.flags:
18 *
19 * DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can
20 * handle PCI P2PDMA pages in the map_sg/unmap_sg operation.
21 * DMA_F_CAN_SKIP_SYNC: DMA sync operations can be skipped if the device is
22 * coherent and it's not an SWIOTLB buffer.
23 */
24#define DMA_F_PCI_P2PDMA_SUPPORTED (1 << 0)
25#define DMA_F_CAN_SKIP_SYNC (1 << 1)
26
27struct dma_map_ops {
28 unsigned int flags;
29
30 void *(*alloc)(struct device *dev, size_t size,
31 dma_addr_t *dma_handle, gfp_t gfp,
32 unsigned long attrs);
33 void (*free)(struct device *dev, size_t size, void *vaddr,
34 dma_addr_t dma_handle, unsigned long attrs);
35 struct page *(*alloc_pages_op)(struct device *dev, size_t size,
36 dma_addr_t *dma_handle, enum dma_data_direction dir,
37 gfp_t gfp);
38 void (*free_pages)(struct device *dev, size_t size, struct page *vaddr,
39 dma_addr_t dma_handle, enum dma_data_direction dir);
40 struct sg_table *(*alloc_noncontiguous)(struct device *dev, size_t size,
41 enum dma_data_direction dir, gfp_t gfp,
42 unsigned long attrs);
43 void (*free_noncontiguous)(struct device *dev, size_t size,
44 struct sg_table *sgt, enum dma_data_direction dir);
45 int (*mmap)(struct device *, struct vm_area_struct *,
46 void *, dma_addr_t, size_t, unsigned long attrs);
47
48 int (*get_sgtable)(struct device *dev, struct sg_table *sgt,
49 void *cpu_addr, dma_addr_t dma_addr, size_t size,
50 unsigned long attrs);
51
52 dma_addr_t (*map_page)(struct device *dev, struct page *page,
53 unsigned long offset, size_t size,
54 enum dma_data_direction dir, unsigned long attrs);
55 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
56 size_t size, enum dma_data_direction dir,
57 unsigned long attrs);
58 /*
59 * map_sg should return a negative error code on error. See
60 * dma_map_sgtable() for a list of appropriate error codes
61 * and their meanings.
62 */
63 int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
64 enum dma_data_direction dir, unsigned long attrs);
65 void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents,
66 enum dma_data_direction dir, unsigned long attrs);
67 dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
68 size_t size, enum dma_data_direction dir,
69 unsigned long attrs);
70 void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
71 size_t size, enum dma_data_direction dir,
72 unsigned long attrs);
73 void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle,
74 size_t size, enum dma_data_direction dir);
75 void (*sync_single_for_device)(struct device *dev,
76 dma_addr_t dma_handle, size_t size,
77 enum dma_data_direction dir);
78 void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
79 int nents, enum dma_data_direction dir);
80 void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg,
81 int nents, enum dma_data_direction dir);
82 void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
83 enum dma_data_direction direction);
84 int (*dma_supported)(struct device *dev, u64 mask);
85 u64 (*get_required_mask)(struct device *dev);
86 size_t (*max_mapping_size)(struct device *dev);
87 size_t (*opt_mapping_size)(void);
88 unsigned long (*get_merge_boundary)(struct device *dev);
89};
90
91#ifdef CONFIG_DMA_OPS
92#include <asm/dma-mapping.h>
93
94static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
95{
96 if (dev->dma_ops)
97 return dev->dma_ops;
98 return get_arch_dma_ops();
99}
100
101static inline void set_dma_ops(struct device *dev,
102 const struct dma_map_ops *dma_ops)
103{
104 dev->dma_ops = dma_ops;
105}
106#else /* CONFIG_DMA_OPS */
107static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
108{
109 return NULL;
110}
111static inline void set_dma_ops(struct device *dev,
112 const struct dma_map_ops *dma_ops)
113{
114}
115#endif /* CONFIG_DMA_OPS */
116
117#ifdef CONFIG_DMA_CMA
118extern struct cma *dma_contiguous_default_area;
119
120static inline struct cma *dev_get_cma_area(struct device *dev)
121{
122 if (dev && dev->cma_area)
123 return dev->cma_area;
124 return dma_contiguous_default_area;
125}
126
127void dma_contiguous_reserve(phys_addr_t addr_limit);
128int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
129 phys_addr_t limit, struct cma **res_cma, bool fixed);
130
131struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
132 unsigned int order, bool no_warn);
133bool dma_release_from_contiguous(struct device *dev, struct page *pages,
134 int count);
135struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
136void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
137
138void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);
139#else /* CONFIG_DMA_CMA */
140static inline struct cma *dev_get_cma_area(struct device *dev)
141{
142 return NULL;
143}
144static inline void dma_contiguous_reserve(phys_addr_t limit)
145{
146}
147static inline int dma_contiguous_reserve_area(phys_addr_t size,
148 phys_addr_t base, phys_addr_t limit, struct cma **res_cma,
149 bool fixed)
150{
151 return -ENOSYS;
152}
153static inline struct page *dma_alloc_from_contiguous(struct device *dev,
154 size_t count, unsigned int order, bool no_warn)
155{
156 return NULL;
157}
158static inline bool dma_release_from_contiguous(struct device *dev,
159 struct page *pages, int count)
160{
161 return false;
162}
163/* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
164static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
165 gfp_t gfp)
166{
167 return NULL;
168}
169static inline void dma_free_contiguous(struct device *dev, struct page *page,
170 size_t size)
171{
172 __free_pages(page, get_order(size));
173}
174#endif /* CONFIG_DMA_CMA*/
175
176#ifdef CONFIG_DMA_DECLARE_COHERENT
177int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
178 dma_addr_t device_addr, size_t size);
179void dma_release_coherent_memory(struct device *dev);
180int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
181 dma_addr_t *dma_handle, void **ret);
182int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
183int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
184 void *cpu_addr, size_t size, int *ret);
185#else
186static inline int dma_declare_coherent_memory(struct device *dev,
187 phys_addr_t phys_addr, dma_addr_t device_addr, size_t size)
188{
189 return -ENOSYS;
190}
191
192#define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
193#define dma_release_from_dev_coherent(dev, order, vaddr) (0)
194#define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
195static inline void dma_release_coherent_memory(struct device *dev) { }
196#endif /* CONFIG_DMA_DECLARE_COHERENT */
197
198#ifdef CONFIG_DMA_GLOBAL_POOL
199void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
200 dma_addr_t *dma_handle);
201int dma_release_from_global_coherent(int order, void *vaddr);
202int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
203 size_t size, int *ret);
204int dma_init_global_coherent(phys_addr_t phys_addr, size_t size);
205#else
206static inline void *dma_alloc_from_global_coherent(struct device *dev,
207 ssize_t size, dma_addr_t *dma_handle)
208{
209 return NULL;
210}
211static inline int dma_release_from_global_coherent(int order, void *vaddr)
212{
213 return 0;
214}
215static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
216 void *cpu_addr, size_t size, int *ret)
217{
218 return 0;
219}
220#endif /* CONFIG_DMA_GLOBAL_POOL */
221
222/*
223 * This is the actual return value from the ->alloc_noncontiguous method.
224 * The users of the DMA API should only care about the sg_table, but to make
225 * the DMA-API internal vmaping and freeing easier we stash away the page
226 * array as well (except for the fallback case). This can go away any time,
227 * e.g. when a vmap-variant that takes a scatterlist comes along.
228 */
229struct dma_sgt_handle {
230 struct sg_table sgt;
231 struct page **pages;
232};
233#define sgt_handle(sgt) \
234 container_of((sgt), struct dma_sgt_handle, sgt)
235
236int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
237 void *cpu_addr, dma_addr_t dma_addr, size_t size,
238 unsigned long attrs);
239int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
240 void *cpu_addr, dma_addr_t dma_addr, size_t size,
241 unsigned long attrs);
242struct page *dma_common_alloc_pages(struct device *dev, size_t size,
243 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
244void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr,
245 dma_addr_t dma_handle, enum dma_data_direction dir);
246
247struct page **dma_common_find_pages(void *cpu_addr);
248void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot,
249 const void *caller);
250void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot,
251 const void *caller);
252void dma_common_free_remap(void *cpu_addr, size_t size);
253
254struct page *dma_alloc_from_pool(struct device *dev, size_t size,
255 void **cpu_addr, gfp_t flags,
256 bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
257bool dma_free_from_pool(struct device *dev, void *start, size_t size);
258
259int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
260 dma_addr_t dma_start, u64 size);
261
262#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
263 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
264 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
265extern bool dma_default_coherent;
266static inline bool dev_is_dma_coherent(struct device *dev)
267{
268 return dev->dma_coherent;
269}
270#else
271#define dma_default_coherent true
272
273static inline bool dev_is_dma_coherent(struct device *dev)
274{
275 return true;
276}
277#endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
278
279static inline void dma_reset_need_sync(struct device *dev)
280{
281#ifdef CONFIG_DMA_NEED_SYNC
282 /* Reset it only once so that the function can be called on hotpath */
283 if (unlikely(dev->dma_skip_sync))
284 dev->dma_skip_sync = false;
285#endif
286}
287
288/*
289 * Check whether potential kmalloc() buffers are safe for non-coherent DMA.
290 */
291static inline bool dma_kmalloc_safe(struct device *dev,
292 enum dma_data_direction dir)
293{
294 /*
295 * If DMA bouncing of kmalloc() buffers is disabled, the kmalloc()
296 * caches have already been aligned to a DMA-safe size.
297 */
298 if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
299 return true;
300
301 /*
302 * kmalloc() buffers are DMA-safe irrespective of size if the device
303 * is coherent or the direction is DMA_TO_DEVICE (non-desctructive
304 * cache maintenance and benign cache line evictions).
305 */
306 if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE)
307 return true;
308
309 return false;
310}
311
312/*
313 * Check whether the given size, assuming it is for a kmalloc()'ed buffer, is
314 * sufficiently aligned for non-coherent DMA.
315 */
316static inline bool dma_kmalloc_size_aligned(size_t size)
317{
318 /*
319 * Larger kmalloc() sizes are guaranteed to be aligned to
320 * ARCH_DMA_MINALIGN.
321 */
322 if (size >= 2 * ARCH_DMA_MINALIGN ||
323 IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment()))
324 return true;
325
326 return false;
327}
328
329/*
330 * Check whether the given object size may have originated from a kmalloc()
331 * buffer with a slab alignment below the DMA-safe alignment and needs
332 * bouncing for non-coherent DMA. The pointer alignment is not considered and
333 * in-structure DMA-safe offsets are the responsibility of the caller. Such
334 * code should use the static ARCH_DMA_MINALIGN for compiler annotations.
335 *
336 * The heuristics can have false positives, bouncing unnecessarily, though the
337 * buffers would be small. False negatives are theoretically possible if, for
338 * example, multiple small kmalloc() buffers are coalesced into a larger
339 * buffer that passes the alignment check. There are no such known constructs
340 * in the kernel.
341 */
342static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size,
343 enum dma_data_direction dir)
344{
345 return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size);
346}
347
348void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
349 gfp_t gfp, unsigned long attrs);
350void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
351 dma_addr_t dma_addr, unsigned long attrs);
352
353#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
354void arch_dma_set_mask(struct device *dev, u64 mask);
355#else
356#define arch_dma_set_mask(dev, mask) do { } while (0)
357#endif
358
359#ifdef CONFIG_MMU
360/*
361 * Page protection so that devices that can't snoop CPU caches can use the
362 * memory coherently. We default to pgprot_noncached which is usually used
363 * for ioremap as a safe bet, but architectures can override this with less
364 * strict semantics if possible.
365 */
366#ifndef pgprot_dmacoherent
367#define pgprot_dmacoherent(prot) pgprot_noncached(prot)
368#endif
369
370pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs);
371#else
372static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot,
373 unsigned long attrs)
374{
375 return prot; /* no protection bits supported without page tables */
376}
377#endif /* CONFIG_MMU */
378
379#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE
380void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
381 enum dma_data_direction dir);
382#else
383static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
384 enum dma_data_direction dir)
385{
386}
387#endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */
388
389#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
390void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
391 enum dma_data_direction dir);
392#else
393static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
394 enum dma_data_direction dir)
395{
396}
397#endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */
398
399#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
400void arch_sync_dma_for_cpu_all(void);
401#else
402static inline void arch_sync_dma_for_cpu_all(void)
403{
404}
405#endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */
406
407#ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT
408void arch_dma_prep_coherent(struct page *page, size_t size);
409#else
410static inline void arch_dma_prep_coherent(struct page *page, size_t size)
411{
412}
413#endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
414
415#ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN
416void arch_dma_mark_clean(phys_addr_t paddr, size_t size);
417#else
418static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
419{
420}
421#endif /* ARCH_HAS_DMA_MARK_CLEAN */
422
423void *arch_dma_set_uncached(void *addr, size_t size);
424void arch_dma_clear_uncached(void *addr, size_t size);
425
426#ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT
427bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr);
428bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle);
429bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg,
430 int nents);
431bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg,
432 int nents);
433#else
434#define arch_dma_map_page_direct(d, a) (false)
435#define arch_dma_unmap_page_direct(d, a) (false)
436#define arch_dma_map_sg_direct(d, s, n) (false)
437#define arch_dma_unmap_sg_direct(d, s, n) (false)
438#endif
439
440#ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
441void arch_setup_dma_ops(struct device *dev, bool coherent);
442#else
443static inline void arch_setup_dma_ops(struct device *dev, bool coherent)
444{
445}
446#endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
447
448#ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
449void arch_teardown_dma_ops(struct device *dev);
450#else
451static inline void arch_teardown_dma_ops(struct device *dev)
452{
453}
454#endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
455
456#ifdef CONFIG_DMA_API_DEBUG
457void dma_debug_add_bus(const struct bus_type *bus);
458void debug_dma_dump_mappings(struct device *dev);
459#else
460static inline void dma_debug_add_bus(const struct bus_type *bus)
461{
462}
463static inline void debug_dma_dump_mappings(struct device *dev)
464{
465}
466#endif /* CONFIG_DMA_API_DEBUG */
467
468extern const struct dma_map_ops dma_dummy_ops;
469
470enum pci_p2pdma_map_type {
471 /*
472 * PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping
473 * type hasn't been calculated yet. Functions that return this enum
474 * never return this value.
475 */
476 PCI_P2PDMA_MAP_UNKNOWN = 0,
477
478 /*
479 * PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will
480 * traverse the host bridge and the host bridge is not in the
481 * allowlist. DMA Mapping routines should return an error when
482 * this is returned.
483 */
484 PCI_P2PDMA_MAP_NOT_SUPPORTED,
485
486 /*
487 * PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to
488 * each other directly through a PCI switch and the transaction will
489 * not traverse the host bridge. Such a mapping should program
490 * the DMA engine with PCI bus addresses.
491 */
492 PCI_P2PDMA_MAP_BUS_ADDR,
493
494 /*
495 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk
496 * to each other, but the transaction traverses a host bridge on the
497 * allowlist. In this case, a normal mapping either with CPU physical
498 * addresses (in the case of dma-direct) or IOVA addresses (in the
499 * case of IOMMUs) should be used to program the DMA engine.
500 */
501 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
502};
503
504struct pci_p2pdma_map_state {
505 struct dev_pagemap *pgmap;
506 int map;
507 u64 bus_off;
508};
509
510#ifdef CONFIG_PCI_P2PDMA
511enum pci_p2pdma_map_type
512pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
513 struct scatterlist *sg);
514#else /* CONFIG_PCI_P2PDMA */
515static inline enum pci_p2pdma_map_type
516pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
517 struct scatterlist *sg)
518{
519 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
520}
521#endif /* CONFIG_PCI_P2PDMA */
522
523#endif /* _LINUX_DMA_MAP_OPS_H */