at v6.11 1295 lines 38 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPUs in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/cleanup.h> 11#include <linux/kernel.h> 12#include <linux/bitmap.h> 13#include <linux/cpumask_types.h> 14#include <linux/atomic.h> 15#include <linux/bug.h> 16#include <linux/gfp_types.h> 17#include <linux/numa.h> 18 19/** 20 * cpumask_pr_args - printf args to output a cpumask 21 * @maskp: cpumask to be printed 22 * 23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 24 */ 25#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 26 27#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 28#define nr_cpu_ids ((unsigned int)NR_CPUS) 29#else 30extern unsigned int nr_cpu_ids; 31#endif 32 33static inline void set_nr_cpu_ids(unsigned int nr) 34{ 35#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 36 WARN_ON(nr != nr_cpu_ids); 37#else 38 nr_cpu_ids = nr; 39#endif 40} 41 42/* 43 * We have several different "preferred sizes" for the cpumask 44 * operations, depending on operation. 45 * 46 * For example, the bitmap scanning and operating operations have 47 * optimized routines that work for the single-word case, but only when 48 * the size is constant. So if NR_CPUS fits in one single word, we are 49 * better off using that small constant, in order to trigger the 50 * optimized bit finding. That is 'small_cpumask_size'. 51 * 52 * The clearing and copying operations will similarly perform better 53 * with a constant size, but we limit that size arbitrarily to four 54 * words. We call this 'large_cpumask_size'. 55 * 56 * Finally, some operations just want the exact limit, either because 57 * they set bits or just don't have any faster fixed-sized versions. We 58 * call this just 'nr_cpumask_bits'. 59 * 60 * Note that these optional constants are always guaranteed to be at 61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 62 * allocations are at least that size (see cpumask_size()). The 63 * optimization comes from being able to potentially use a compile-time 64 * constant instead of a run-time generated exact number of CPUs. 65 */ 66#if NR_CPUS <= BITS_PER_LONG 67 #define small_cpumask_bits ((unsigned int)NR_CPUS) 68 #define large_cpumask_bits ((unsigned int)NR_CPUS) 69#elif NR_CPUS <= 4*BITS_PER_LONG 70 #define small_cpumask_bits nr_cpu_ids 71 #define large_cpumask_bits ((unsigned int)NR_CPUS) 72#else 73 #define small_cpumask_bits nr_cpu_ids 74 #define large_cpumask_bits nr_cpu_ids 75#endif 76#define nr_cpumask_bits nr_cpu_ids 77 78/* 79 * The following particular system cpumasks and operations manage 80 * possible, present, active and online cpus. 81 * 82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online 85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 87 * 88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 89 * 90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs 91 * that it is possible might ever be plugged in at anytime during the 92 * life of that system boot. The cpu_present_mask is dynamic(*), 93 * representing which CPUs are currently plugged in. And 94 * cpu_online_mask is the dynamic subset of cpu_present_mask, 95 * indicating those CPUs available for scheduling. 96 * 97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 98 * depending on what ACPI reports as currently plugged in, otherwise 99 * cpu_present_mask is just a copy of cpu_possible_mask. 100 * 101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 103 * 104 * Subtleties: 105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 106 * assumption that their single CPU is online. The UP 107 * cpu_{online,possible,present}_masks are placebos. Changing them 108 * will have no useful affect on the following num_*_cpus() 109 * and cpu_*() macros in the UP case. This ugliness is a UP 110 * optimization - don't waste any instructions or memory references 111 * asking if you're online or how many CPUs there are if there is 112 * only one CPU. 113 */ 114 115extern struct cpumask __cpu_possible_mask; 116extern struct cpumask __cpu_online_mask; 117extern struct cpumask __cpu_enabled_mask; 118extern struct cpumask __cpu_present_mask; 119extern struct cpumask __cpu_active_mask; 120extern struct cpumask __cpu_dying_mask; 121#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 122#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 123#define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask) 124#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 125#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 126#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 127 128extern atomic_t __num_online_cpus; 129 130extern cpumask_t cpus_booted_once_mask; 131 132static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 133{ 134#ifdef CONFIG_DEBUG_PER_CPU_MAPS 135 WARN_ON_ONCE(cpu >= bits); 136#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 137} 138 139/* verify cpu argument to cpumask_* operators */ 140static __always_inline unsigned int cpumask_check(unsigned int cpu) 141{ 142 cpu_max_bits_warn(cpu, small_cpumask_bits); 143 return cpu; 144} 145 146/** 147 * cpumask_first - get the first cpu in a cpumask 148 * @srcp: the cpumask pointer 149 * 150 * Return: >= nr_cpu_ids if no cpus set. 151 */ 152static inline unsigned int cpumask_first(const struct cpumask *srcp) 153{ 154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 155} 156 157/** 158 * cpumask_first_zero - get the first unset cpu in a cpumask 159 * @srcp: the cpumask pointer 160 * 161 * Return: >= nr_cpu_ids if all cpus are set. 162 */ 163static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 164{ 165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 166} 167 168/** 169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 170 * @srcp1: the first input 171 * @srcp2: the second input 172 * 173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 174 */ 175static inline 176unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 177{ 178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 179} 180 181/** 182 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3 183 * @srcp1: the first input 184 * @srcp2: the second input 185 * @srcp3: the third input 186 * 187 * Return: >= nr_cpu_ids if no cpus set in all. 188 */ 189static inline 190unsigned int cpumask_first_and_and(const struct cpumask *srcp1, 191 const struct cpumask *srcp2, 192 const struct cpumask *srcp3) 193{ 194 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 195 cpumask_bits(srcp3), small_cpumask_bits); 196} 197 198/** 199 * cpumask_last - get the last CPU in a cpumask 200 * @srcp: - the cpumask pointer 201 * 202 * Return: >= nr_cpumask_bits if no CPUs set. 203 */ 204static inline unsigned int cpumask_last(const struct cpumask *srcp) 205{ 206 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 207} 208 209/** 210 * cpumask_next - get the next cpu in a cpumask 211 * @n: the cpu prior to the place to search (i.e. return will be > @n) 212 * @srcp: the cpumask pointer 213 * 214 * Return: >= nr_cpu_ids if no further cpus set. 215 */ 216static inline 217unsigned int cpumask_next(int n, const struct cpumask *srcp) 218{ 219 /* -1 is a legal arg here. */ 220 if (n != -1) 221 cpumask_check(n); 222 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 223} 224 225/** 226 * cpumask_next_zero - get the next unset cpu in a cpumask 227 * @n: the cpu prior to the place to search (i.e. return will be > @n) 228 * @srcp: the cpumask pointer 229 * 230 * Return: >= nr_cpu_ids if no further cpus unset. 231 */ 232static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 233{ 234 /* -1 is a legal arg here. */ 235 if (n != -1) 236 cpumask_check(n); 237 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 238} 239 240#if NR_CPUS == 1 241/* Uniprocessor: there is only one valid CPU */ 242static inline unsigned int cpumask_local_spread(unsigned int i, int node) 243{ 244 return 0; 245} 246 247static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 248 const struct cpumask *src2p) 249{ 250 return cpumask_first_and(src1p, src2p); 251} 252 253static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp) 254{ 255 return cpumask_first(srcp); 256} 257#else 258unsigned int cpumask_local_spread(unsigned int i, int node); 259unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 260 const struct cpumask *src2p); 261unsigned int cpumask_any_distribute(const struct cpumask *srcp); 262#endif /* NR_CPUS */ 263 264/** 265 * cpumask_next_and - get the next cpu in *src1p & *src2p 266 * @n: the cpu prior to the place to search (i.e. return will be > @n) 267 * @src1p: the first cpumask pointer 268 * @src2p: the second cpumask pointer 269 * 270 * Return: >= nr_cpu_ids if no further cpus set in both. 271 */ 272static inline 273unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 274 const struct cpumask *src2p) 275{ 276 /* -1 is a legal arg here. */ 277 if (n != -1) 278 cpumask_check(n); 279 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 280 small_cpumask_bits, n + 1); 281} 282 283/** 284 * for_each_cpu - iterate over every cpu in a mask 285 * @cpu: the (optionally unsigned) integer iterator 286 * @mask: the cpumask pointer 287 * 288 * After the loop, cpu is >= nr_cpu_ids. 289 */ 290#define for_each_cpu(cpu, mask) \ 291 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 292 293#if NR_CPUS == 1 294static inline 295unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) 296{ 297 cpumask_check(start); 298 if (n != -1) 299 cpumask_check(n); 300 301 /* 302 * Return the first available CPU when wrapping, or when starting before cpu0, 303 * since there is only one valid option. 304 */ 305 if (wrap && n >= 0) 306 return nr_cpumask_bits; 307 308 return cpumask_first(mask); 309} 310#else 311unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); 312#endif 313 314/** 315 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 316 * @cpu: the (optionally unsigned) integer iterator 317 * @mask: the cpumask pointer 318 * @start: the start location 319 * 320 * The implementation does not assume any bit in @mask is set (including @start). 321 * 322 * After the loop, cpu is >= nr_cpu_ids. 323 */ 324#define for_each_cpu_wrap(cpu, mask, start) \ 325 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 326 327/** 328 * for_each_cpu_and - iterate over every cpu in both masks 329 * @cpu: the (optionally unsigned) integer iterator 330 * @mask1: the first cpumask pointer 331 * @mask2: the second cpumask pointer 332 * 333 * This saves a temporary CPU mask in many places. It is equivalent to: 334 * struct cpumask tmp; 335 * cpumask_and(&tmp, &mask1, &mask2); 336 * for_each_cpu(cpu, &tmp) 337 * ... 338 * 339 * After the loop, cpu is >= nr_cpu_ids. 340 */ 341#define for_each_cpu_and(cpu, mask1, mask2) \ 342 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 343 344/** 345 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 346 * those present in another. 347 * @cpu: the (optionally unsigned) integer iterator 348 * @mask1: the first cpumask pointer 349 * @mask2: the second cpumask pointer 350 * 351 * This saves a temporary CPU mask in many places. It is equivalent to: 352 * struct cpumask tmp; 353 * cpumask_andnot(&tmp, &mask1, &mask2); 354 * for_each_cpu(cpu, &tmp) 355 * ... 356 * 357 * After the loop, cpu is >= nr_cpu_ids. 358 */ 359#define for_each_cpu_andnot(cpu, mask1, mask2) \ 360 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 361 362/** 363 * for_each_cpu_or - iterate over every cpu present in either mask 364 * @cpu: the (optionally unsigned) integer iterator 365 * @mask1: the first cpumask pointer 366 * @mask2: the second cpumask pointer 367 * 368 * This saves a temporary CPU mask in many places. It is equivalent to: 369 * struct cpumask tmp; 370 * cpumask_or(&tmp, &mask1, &mask2); 371 * for_each_cpu(cpu, &tmp) 372 * ... 373 * 374 * After the loop, cpu is >= nr_cpu_ids. 375 */ 376#define for_each_cpu_or(cpu, mask1, mask2) \ 377 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 378 379/** 380 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask. 381 * @cpu: the (optionally unsigned) integer iterator 382 * @mask: the cpumask pointer 383 * 384 * After the loop, cpu is >= nr_cpu_ids. 385 */ 386#define for_each_cpu_from(cpu, mask) \ 387 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits) 388 389/** 390 * cpumask_any_but - return a "random" in a cpumask, but not this one. 391 * @mask: the cpumask to search 392 * @cpu: the cpu to ignore. 393 * 394 * Often used to find any cpu but smp_processor_id() in a mask. 395 * Return: >= nr_cpu_ids if no cpus set. 396 */ 397static inline 398unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) 399{ 400 unsigned int i; 401 402 cpumask_check(cpu); 403 for_each_cpu(i, mask) 404 if (i != cpu) 405 break; 406 return i; 407} 408 409/** 410 * cpumask_any_and_but - pick a "random" cpu from *mask1 & *mask2, but not this one. 411 * @mask1: the first input cpumask 412 * @mask2: the second input cpumask 413 * @cpu: the cpu to ignore 414 * 415 * Returns >= nr_cpu_ids if no cpus set. 416 */ 417static inline 418unsigned int cpumask_any_and_but(const struct cpumask *mask1, 419 const struct cpumask *mask2, 420 unsigned int cpu) 421{ 422 unsigned int i; 423 424 cpumask_check(cpu); 425 i = cpumask_first_and(mask1, mask2); 426 if (i != cpu) 427 return i; 428 429 return cpumask_next_and(cpu, mask1, mask2); 430} 431 432/** 433 * cpumask_nth - get the Nth cpu in a cpumask 434 * @srcp: the cpumask pointer 435 * @cpu: the Nth cpu to find, starting from 0 436 * 437 * Return: >= nr_cpu_ids if such cpu doesn't exist. 438 */ 439static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 440{ 441 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 442} 443 444/** 445 * cpumask_nth_and - get the Nth cpu in 2 cpumasks 446 * @srcp1: the cpumask pointer 447 * @srcp2: the cpumask pointer 448 * @cpu: the Nth cpu to find, starting from 0 449 * 450 * Return: >= nr_cpu_ids if such cpu doesn't exist. 451 */ 452static inline 453unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 454 const struct cpumask *srcp2) 455{ 456 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 457 small_cpumask_bits, cpumask_check(cpu)); 458} 459 460/** 461 * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. 462 * @srcp1: the cpumask pointer 463 * @srcp2: the cpumask pointer 464 * @cpu: the Nth cpu to find, starting from 0 465 * 466 * Return: >= nr_cpu_ids if such cpu doesn't exist. 467 */ 468static inline 469unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 470 const struct cpumask *srcp2) 471{ 472 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 473 small_cpumask_bits, cpumask_check(cpu)); 474} 475 476/** 477 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 478 * @srcp1: the cpumask pointer 479 * @srcp2: the cpumask pointer 480 * @srcp3: the cpumask pointer 481 * @cpu: the Nth cpu to find, starting from 0 482 * 483 * Return: >= nr_cpu_ids if such cpu doesn't exist. 484 */ 485static __always_inline 486unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 487 const struct cpumask *srcp2, 488 const struct cpumask *srcp3) 489{ 490 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 491 cpumask_bits(srcp2), 492 cpumask_bits(srcp3), 493 small_cpumask_bits, cpumask_check(cpu)); 494} 495 496#define CPU_BITS_NONE \ 497{ \ 498 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 499} 500 501#define CPU_BITS_CPU0 \ 502{ \ 503 [0] = 1UL \ 504} 505 506/** 507 * cpumask_set_cpu - set a cpu in a cpumask 508 * @cpu: cpu number (< nr_cpu_ids) 509 * @dstp: the cpumask pointer 510 */ 511static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 512{ 513 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 514} 515 516static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 517{ 518 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 519} 520 521 522/** 523 * cpumask_clear_cpu - clear a cpu in a cpumask 524 * @cpu: cpu number (< nr_cpu_ids) 525 * @dstp: the cpumask pointer 526 */ 527static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 528{ 529 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 530} 531 532static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 533{ 534 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 535} 536 537/** 538 * cpumask_assign_cpu - assign a cpu in a cpumask 539 * @cpu: cpu number (< nr_cpu_ids) 540 * @dstp: the cpumask pointer 541 * @bool: the value to assign 542 */ 543static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 544{ 545 assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 546} 547 548static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) 549{ 550 __assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); 551} 552 553/** 554 * cpumask_test_cpu - test for a cpu in a cpumask 555 * @cpu: cpu number (< nr_cpu_ids) 556 * @cpumask: the cpumask pointer 557 * 558 * Return: true if @cpu is set in @cpumask, else returns false 559 */ 560static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 561{ 562 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 563} 564 565/** 566 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 567 * @cpu: cpu number (< nr_cpu_ids) 568 * @cpumask: the cpumask pointer 569 * 570 * test_and_set_bit wrapper for cpumasks. 571 * 572 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 573 */ 574static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 575{ 576 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 577} 578 579/** 580 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 581 * @cpu: cpu number (< nr_cpu_ids) 582 * @cpumask: the cpumask pointer 583 * 584 * test_and_clear_bit wrapper for cpumasks. 585 * 586 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false 587 */ 588static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 589{ 590 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 591} 592 593/** 594 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 595 * @dstp: the cpumask pointer 596 */ 597static inline void cpumask_setall(struct cpumask *dstp) 598{ 599 if (small_const_nbits(small_cpumask_bits)) { 600 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 601 return; 602 } 603 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 604} 605 606/** 607 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 608 * @dstp: the cpumask pointer 609 */ 610static inline void cpumask_clear(struct cpumask *dstp) 611{ 612 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 613} 614 615/** 616 * cpumask_and - *dstp = *src1p & *src2p 617 * @dstp: the cpumask result 618 * @src1p: the first input 619 * @src2p: the second input 620 * 621 * Return: false if *@dstp is empty, else returns true 622 */ 623static inline bool cpumask_and(struct cpumask *dstp, 624 const struct cpumask *src1p, 625 const struct cpumask *src2p) 626{ 627 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 628 cpumask_bits(src2p), small_cpumask_bits); 629} 630 631/** 632 * cpumask_or - *dstp = *src1p | *src2p 633 * @dstp: the cpumask result 634 * @src1p: the first input 635 * @src2p: the second input 636 */ 637static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 638 const struct cpumask *src2p) 639{ 640 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 641 cpumask_bits(src2p), small_cpumask_bits); 642} 643 644/** 645 * cpumask_xor - *dstp = *src1p ^ *src2p 646 * @dstp: the cpumask result 647 * @src1p: the first input 648 * @src2p: the second input 649 */ 650static inline void cpumask_xor(struct cpumask *dstp, 651 const struct cpumask *src1p, 652 const struct cpumask *src2p) 653{ 654 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 655 cpumask_bits(src2p), small_cpumask_bits); 656} 657 658/** 659 * cpumask_andnot - *dstp = *src1p & ~*src2p 660 * @dstp: the cpumask result 661 * @src1p: the first input 662 * @src2p: the second input 663 * 664 * Return: false if *@dstp is empty, else returns true 665 */ 666static inline bool cpumask_andnot(struct cpumask *dstp, 667 const struct cpumask *src1p, 668 const struct cpumask *src2p) 669{ 670 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 671 cpumask_bits(src2p), small_cpumask_bits); 672} 673 674/** 675 * cpumask_equal - *src1p == *src2p 676 * @src1p: the first input 677 * @src2p: the second input 678 * 679 * Return: true if the cpumasks are equal, false if not 680 */ 681static inline bool cpumask_equal(const struct cpumask *src1p, 682 const struct cpumask *src2p) 683{ 684 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 685 small_cpumask_bits); 686} 687 688/** 689 * cpumask_or_equal - *src1p | *src2p == *src3p 690 * @src1p: the first input 691 * @src2p: the second input 692 * @src3p: the third input 693 * 694 * Return: true if first cpumask ORed with second cpumask == third cpumask, 695 * otherwise false 696 */ 697static inline bool cpumask_or_equal(const struct cpumask *src1p, 698 const struct cpumask *src2p, 699 const struct cpumask *src3p) 700{ 701 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 702 cpumask_bits(src3p), small_cpumask_bits); 703} 704 705/** 706 * cpumask_intersects - (*src1p & *src2p) != 0 707 * @src1p: the first input 708 * @src2p: the second input 709 * 710 * Return: true if first cpumask ANDed with second cpumask is non-empty, 711 * otherwise false 712 */ 713static inline bool cpumask_intersects(const struct cpumask *src1p, 714 const struct cpumask *src2p) 715{ 716 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 717 small_cpumask_bits); 718} 719 720/** 721 * cpumask_subset - (*src1p & ~*src2p) == 0 722 * @src1p: the first input 723 * @src2p: the second input 724 * 725 * Return: true if *@src1p is a subset of *@src2p, else returns false 726 */ 727static inline bool cpumask_subset(const struct cpumask *src1p, 728 const struct cpumask *src2p) 729{ 730 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 731 small_cpumask_bits); 732} 733 734/** 735 * cpumask_empty - *srcp == 0 736 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 737 * 738 * Return: true if srcp is empty (has no bits set), else false 739 */ 740static inline bool cpumask_empty(const struct cpumask *srcp) 741{ 742 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 743} 744 745/** 746 * cpumask_full - *srcp == 0xFFFFFFFF... 747 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 748 * 749 * Return: true if srcp is full (has all bits set), else false 750 */ 751static inline bool cpumask_full(const struct cpumask *srcp) 752{ 753 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 754} 755 756/** 757 * cpumask_weight - Count of bits in *srcp 758 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 759 * 760 * Return: count of bits set in *srcp 761 */ 762static inline unsigned int cpumask_weight(const struct cpumask *srcp) 763{ 764 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 765} 766 767/** 768 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 769 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 770 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 771 * 772 * Return: count of bits set in both *srcp1 and *srcp2 773 */ 774static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1, 775 const struct cpumask *srcp2) 776{ 777 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 778} 779 780/** 781 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2) 782 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 783 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 784 * 785 * Return: count of bits set in both *srcp1 and *srcp2 786 */ 787static inline unsigned int cpumask_weight_andnot(const struct cpumask *srcp1, 788 const struct cpumask *srcp2) 789{ 790 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 791} 792 793/** 794 * cpumask_shift_right - *dstp = *srcp >> n 795 * @dstp: the cpumask result 796 * @srcp: the input to shift 797 * @n: the number of bits to shift by 798 */ 799static inline void cpumask_shift_right(struct cpumask *dstp, 800 const struct cpumask *srcp, int n) 801{ 802 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 803 small_cpumask_bits); 804} 805 806/** 807 * cpumask_shift_left - *dstp = *srcp << n 808 * @dstp: the cpumask result 809 * @srcp: the input to shift 810 * @n: the number of bits to shift by 811 */ 812static inline void cpumask_shift_left(struct cpumask *dstp, 813 const struct cpumask *srcp, int n) 814{ 815 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 816 nr_cpumask_bits); 817} 818 819/** 820 * cpumask_copy - *dstp = *srcp 821 * @dstp: the result 822 * @srcp: the input cpumask 823 */ 824static inline void cpumask_copy(struct cpumask *dstp, 825 const struct cpumask *srcp) 826{ 827 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 828} 829 830/** 831 * cpumask_any - pick a "random" cpu from *srcp 832 * @srcp: the input cpumask 833 * 834 * Return: >= nr_cpu_ids if no cpus set. 835 */ 836#define cpumask_any(srcp) cpumask_first(srcp) 837 838/** 839 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 840 * @mask1: the first input cpumask 841 * @mask2: the second input cpumask 842 * 843 * Return: >= nr_cpu_ids if no cpus set. 844 */ 845#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 846 847/** 848 * cpumask_of - the cpumask containing just a given cpu 849 * @cpu: the cpu (<= nr_cpu_ids) 850 */ 851#define cpumask_of(cpu) (get_cpu_mask(cpu)) 852 853/** 854 * cpumask_parse_user - extract a cpumask from a user string 855 * @buf: the buffer to extract from 856 * @len: the length of the buffer 857 * @dstp: the cpumask to set. 858 * 859 * Return: -errno, or 0 for success. 860 */ 861static inline int cpumask_parse_user(const char __user *buf, int len, 862 struct cpumask *dstp) 863{ 864 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 865} 866 867/** 868 * cpumask_parselist_user - extract a cpumask from a user string 869 * @buf: the buffer to extract from 870 * @len: the length of the buffer 871 * @dstp: the cpumask to set. 872 * 873 * Return: -errno, or 0 for success. 874 */ 875static inline int cpumask_parselist_user(const char __user *buf, int len, 876 struct cpumask *dstp) 877{ 878 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 879 nr_cpumask_bits); 880} 881 882/** 883 * cpumask_parse - extract a cpumask from a string 884 * @buf: the buffer to extract from 885 * @dstp: the cpumask to set. 886 * 887 * Return: -errno, or 0 for success. 888 */ 889static inline int cpumask_parse(const char *buf, struct cpumask *dstp) 890{ 891 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 892} 893 894/** 895 * cpulist_parse - extract a cpumask from a user string of ranges 896 * @buf: the buffer to extract from 897 * @dstp: the cpumask to set. 898 * 899 * Return: -errno, or 0 for success. 900 */ 901static inline int cpulist_parse(const char *buf, struct cpumask *dstp) 902{ 903 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 904} 905 906/** 907 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes 908 * 909 * Return: size to allocate for a &struct cpumask in bytes 910 */ 911static inline unsigned int cpumask_size(void) 912{ 913 return bitmap_size(large_cpumask_bits); 914} 915 916#ifdef CONFIG_CPUMASK_OFFSTACK 917 918#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 919#define __cpumask_var_read_mostly __read_mostly 920 921bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 922 923static inline 924bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 925{ 926 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 927} 928 929/** 930 * alloc_cpumask_var - allocate a struct cpumask 931 * @mask: pointer to cpumask_var_t where the cpumask is returned 932 * @flags: GFP_ flags 933 * 934 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 935 * a nop returning a constant 1 (in <linux/cpumask.h>). 936 * 937 * See alloc_cpumask_var_node. 938 * 939 * Return: %true if allocation succeeded, %false if not 940 */ 941static inline 942bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 943{ 944 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 945} 946 947static inline 948bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 949{ 950 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 951} 952 953void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 954void free_cpumask_var(cpumask_var_t mask); 955void free_bootmem_cpumask_var(cpumask_var_t mask); 956 957static inline bool cpumask_available(cpumask_var_t mask) 958{ 959 return mask != NULL; 960} 961 962#else 963 964#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 965#define __cpumask_var_read_mostly 966 967static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 968{ 969 return true; 970} 971 972static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 973 int node) 974{ 975 return true; 976} 977 978static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 979{ 980 cpumask_clear(*mask); 981 return true; 982} 983 984static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 985 int node) 986{ 987 cpumask_clear(*mask); 988 return true; 989} 990 991static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 992{ 993} 994 995static inline void free_cpumask_var(cpumask_var_t mask) 996{ 997} 998 999static inline void free_bootmem_cpumask_var(cpumask_var_t mask) 1000{ 1001} 1002 1003static inline bool cpumask_available(cpumask_var_t mask) 1004{ 1005 return true; 1006} 1007#endif /* CONFIG_CPUMASK_OFFSTACK */ 1008 1009DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T)); 1010 1011/* It's common to want to use cpu_all_mask in struct member initializers, 1012 * so it has to refer to an address rather than a pointer. */ 1013extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 1014#define cpu_all_mask to_cpumask(cpu_all_bits) 1015 1016/* First bits of cpu_bit_bitmap are in fact unset. */ 1017#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 1018 1019#if NR_CPUS == 1 1020/* Uniprocessor: the possible/online/present masks are always "1" */ 1021#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1022#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1023#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 1024#else 1025#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 1026#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 1027#define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask) 1028#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 1029#endif 1030 1031/* Wrappers for arch boot code to manipulate normally-constant masks */ 1032void init_cpu_present(const struct cpumask *src); 1033void init_cpu_possible(const struct cpumask *src); 1034void init_cpu_online(const struct cpumask *src); 1035 1036#define assign_cpu(cpu, mask, val) \ 1037 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) 1038 1039#define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible)) 1040#define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled)) 1041#define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present)) 1042#define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active)) 1043#define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying)) 1044 1045void set_cpu_online(unsigned int cpu, bool online); 1046 1047/** 1048 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * 1049 * @bitmap: the bitmap 1050 * 1051 * There are a few places where cpumask_var_t isn't appropriate and 1052 * static cpumasks must be used (eg. very early boot), yet we don't 1053 * expose the definition of 'struct cpumask'. 1054 * 1055 * This does the conversion, and can be used as a constant initializer. 1056 */ 1057#define to_cpumask(bitmap) \ 1058 ((struct cpumask *)(1 ? (bitmap) \ 1059 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1060 1061static inline int __check_is_bitmap(const unsigned long *bitmap) 1062{ 1063 return 1; 1064} 1065 1066/* 1067 * Special-case data structure for "single bit set only" constant CPU masks. 1068 * 1069 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1070 * padding to the left and the right, and return the constant pointer 1071 * appropriately offset. 1072 */ 1073extern const unsigned long 1074 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1075 1076static inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1077{ 1078 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1079 p -= cpu / BITS_PER_LONG; 1080 return to_cpumask(p); 1081} 1082 1083#if NR_CPUS > 1 1084/** 1085 * num_online_cpus() - Read the number of online CPUs 1086 * 1087 * Despite the fact that __num_online_cpus is of type atomic_t, this 1088 * interface gives only a momentary snapshot and is not protected against 1089 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1090 * region. 1091 * 1092 * Return: momentary snapshot of the number of online CPUs 1093 */ 1094static __always_inline unsigned int num_online_cpus(void) 1095{ 1096 return raw_atomic_read(&__num_online_cpus); 1097} 1098#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1099#define num_enabled_cpus() cpumask_weight(cpu_enabled_mask) 1100#define num_present_cpus() cpumask_weight(cpu_present_mask) 1101#define num_active_cpus() cpumask_weight(cpu_active_mask) 1102 1103static inline bool cpu_online(unsigned int cpu) 1104{ 1105 return cpumask_test_cpu(cpu, cpu_online_mask); 1106} 1107 1108static inline bool cpu_enabled(unsigned int cpu) 1109{ 1110 return cpumask_test_cpu(cpu, cpu_enabled_mask); 1111} 1112 1113static inline bool cpu_possible(unsigned int cpu) 1114{ 1115 return cpumask_test_cpu(cpu, cpu_possible_mask); 1116} 1117 1118static inline bool cpu_present(unsigned int cpu) 1119{ 1120 return cpumask_test_cpu(cpu, cpu_present_mask); 1121} 1122 1123static inline bool cpu_active(unsigned int cpu) 1124{ 1125 return cpumask_test_cpu(cpu, cpu_active_mask); 1126} 1127 1128static inline bool cpu_dying(unsigned int cpu) 1129{ 1130 return cpumask_test_cpu(cpu, cpu_dying_mask); 1131} 1132 1133#else 1134 1135#define num_online_cpus() 1U 1136#define num_possible_cpus() 1U 1137#define num_enabled_cpus() 1U 1138#define num_present_cpus() 1U 1139#define num_active_cpus() 1U 1140 1141static inline bool cpu_online(unsigned int cpu) 1142{ 1143 return cpu == 0; 1144} 1145 1146static inline bool cpu_possible(unsigned int cpu) 1147{ 1148 return cpu == 0; 1149} 1150 1151static inline bool cpu_enabled(unsigned int cpu) 1152{ 1153 return cpu == 0; 1154} 1155 1156static inline bool cpu_present(unsigned int cpu) 1157{ 1158 return cpu == 0; 1159} 1160 1161static inline bool cpu_active(unsigned int cpu) 1162{ 1163 return cpu == 0; 1164} 1165 1166static inline bool cpu_dying(unsigned int cpu) 1167{ 1168 return false; 1169} 1170 1171#endif /* NR_CPUS > 1 */ 1172 1173#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1174 1175#if NR_CPUS <= BITS_PER_LONG 1176#define CPU_BITS_ALL \ 1177{ \ 1178 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1179} 1180 1181#else /* NR_CPUS > BITS_PER_LONG */ 1182 1183#define CPU_BITS_ALL \ 1184{ \ 1185 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1186 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1187} 1188#endif /* NR_CPUS > BITS_PER_LONG */ 1189 1190/** 1191 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1192 * as comma-separated list of cpus or hex values of cpumask 1193 * @list: indicates whether the cpumap must be list 1194 * @mask: the cpumask to copy 1195 * @buf: the buffer to copy into 1196 * 1197 * Return: the length of the (null-terminated) @buf string, zero if 1198 * nothing is copied. 1199 */ 1200static inline ssize_t 1201cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1202{ 1203 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1204 nr_cpu_ids); 1205} 1206 1207/** 1208 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1209 * hex values of cpumask 1210 * 1211 * @buf: the buffer to copy into 1212 * @mask: the cpumask to copy 1213 * @off: in the string from which we are copying, we copy to @buf 1214 * @count: the maximum number of bytes to print 1215 * 1216 * The function prints the cpumask into the buffer as hex values of 1217 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1218 * ABI. 1219 * 1220 * Return: the length of how many bytes have been copied, excluding 1221 * terminating '\0'. 1222 */ 1223static inline ssize_t 1224cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1225 loff_t off, size_t count) 1226{ 1227 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1228 nr_cpu_ids, off, count) - 1; 1229} 1230 1231/** 1232 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1233 * comma-separated list of cpus 1234 * @buf: the buffer to copy into 1235 * @mask: the cpumask to copy 1236 * @off: in the string from which we are copying, we copy to @buf 1237 * @count: the maximum number of bytes to print 1238 * 1239 * Everything is same with the above cpumap_print_bitmask_to_buf() 1240 * except the print format. 1241 * 1242 * Return: the length of how many bytes have been copied, excluding 1243 * terminating '\0'. 1244 */ 1245static inline ssize_t 1246cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1247 loff_t off, size_t count) 1248{ 1249 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1250 nr_cpu_ids, off, count) - 1; 1251} 1252 1253#if NR_CPUS <= BITS_PER_LONG 1254#define CPU_MASK_ALL \ 1255(cpumask_t) { { \ 1256 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1257} } 1258#else 1259#define CPU_MASK_ALL \ 1260(cpumask_t) { { \ 1261 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1262 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1263} } 1264#endif /* NR_CPUS > BITS_PER_LONG */ 1265 1266#define CPU_MASK_NONE \ 1267(cpumask_t) { { \ 1268 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1269} } 1270 1271#define CPU_MASK_CPU0 \ 1272(cpumask_t) { { \ 1273 [0] = 1UL \ 1274} } 1275 1276/* 1277 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1278 * to avoid breaking userspace which may allocate a buffer based on the size 1279 * reported by e.g. fstat. 1280 * 1281 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1282 * 1283 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1284 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1285 * cover a worst-case of every other cpu being on one of two nodes for a 1286 * very large NR_CPUS. 1287 * 1288 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1289 * unsigned comparison to -1. 1290 */ 1291#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1292 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1293#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1294 1295#endif /* __LINUX_CPUMASK_H */