at v6.11 964 lines 33 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21/* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25#define TMP_STR_BUF_LEN 320 26 27/* Liveness marks, used for registers and spilled-regs (in stack slots). 28 * Read marks propagate upwards until they find a write mark; they record that 29 * "one of this state's descendants read this reg" (and therefore the reg is 30 * relevant for states_equal() checks). 31 * Write marks collect downwards and do not propagate; they record that "the 32 * straight-line code that reached this state (from its parent) wrote this reg" 33 * (and therefore that reads propagated from this state or its descendants 34 * should not propagate to its parent). 35 * A state with a write mark can receive read marks; it just won't propagate 36 * them to its parent, since the write mark is a property, not of the state, 37 * but of the link between it and its parent. See mark_reg_read() and 38 * mark_stack_slot_read() in kernel/bpf/verifier.c. 39 */ 40enum bpf_reg_liveness { 41 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 42 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 43 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 44 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 45 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 46 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 47}; 48 49/* For every reg representing a map value or allocated object pointer, 50 * we consider the tuple of (ptr, id) for them to be unique in verifier 51 * context and conside them to not alias each other for the purposes of 52 * tracking lock state. 53 */ 54struct bpf_active_lock { 55 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, 56 * there's no active lock held, and other fields have no 57 * meaning. If non-NULL, it indicates that a lock is held and 58 * id member has the reg->id of the register which can be >= 0. 59 */ 60 void *ptr; 61 /* This will be reg->id */ 62 u32 id; 63}; 64 65#define ITER_PREFIX "bpf_iter_" 66 67enum bpf_iter_state { 68 BPF_ITER_STATE_INVALID, /* for non-first slot */ 69 BPF_ITER_STATE_ACTIVE, 70 BPF_ITER_STATE_DRAINED, 71}; 72 73struct bpf_reg_state { 74 /* Ordering of fields matters. See states_equal() */ 75 enum bpf_reg_type type; 76 /* 77 * Fixed part of pointer offset, pointer types only. 78 * Or constant delta between "linked" scalars with the same ID. 79 */ 80 s32 off; 81 union { 82 /* valid when type == PTR_TO_PACKET */ 83 int range; 84 85 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 86 * PTR_TO_MAP_VALUE_OR_NULL 87 */ 88 struct { 89 struct bpf_map *map_ptr; 90 /* To distinguish map lookups from outer map 91 * the map_uid is non-zero for registers 92 * pointing to inner maps. 93 */ 94 u32 map_uid; 95 }; 96 97 /* for PTR_TO_BTF_ID */ 98 struct { 99 struct btf *btf; 100 u32 btf_id; 101 }; 102 103 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 104 u32 mem_size; 105 u32 dynptr_id; /* for dynptr slices */ 106 }; 107 108 /* For dynptr stack slots */ 109 struct { 110 enum bpf_dynptr_type type; 111 /* A dynptr is 16 bytes so it takes up 2 stack slots. 112 * We need to track which slot is the first slot 113 * to protect against cases where the user may try to 114 * pass in an address starting at the second slot of the 115 * dynptr. 116 */ 117 bool first_slot; 118 } dynptr; 119 120 /* For bpf_iter stack slots */ 121 struct { 122 /* BTF container and BTF type ID describing 123 * struct bpf_iter_<type> of an iterator state 124 */ 125 struct btf *btf; 126 u32 btf_id; 127 /* packing following two fields to fit iter state into 16 bytes */ 128 enum bpf_iter_state state:2; 129 int depth:30; 130 } iter; 131 132 /* Max size from any of the above. */ 133 struct { 134 unsigned long raw1; 135 unsigned long raw2; 136 } raw; 137 138 u32 subprogno; /* for PTR_TO_FUNC */ 139 }; 140 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 141 * the actual value. 142 * For pointer types, this represents the variable part of the offset 143 * from the pointed-to object, and is shared with all bpf_reg_states 144 * with the same id as us. 145 */ 146 struct tnum var_off; 147 /* Used to determine if any memory access using this register will 148 * result in a bad access. 149 * These refer to the same value as var_off, not necessarily the actual 150 * contents of the register. 151 */ 152 s64 smin_value; /* minimum possible (s64)value */ 153 s64 smax_value; /* maximum possible (s64)value */ 154 u64 umin_value; /* minimum possible (u64)value */ 155 u64 umax_value; /* maximum possible (u64)value */ 156 s32 s32_min_value; /* minimum possible (s32)value */ 157 s32 s32_max_value; /* maximum possible (s32)value */ 158 u32 u32_min_value; /* minimum possible (u32)value */ 159 u32 u32_max_value; /* maximum possible (u32)value */ 160 /* For PTR_TO_PACKET, used to find other pointers with the same variable 161 * offset, so they can share range knowledge. 162 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 163 * came from, when one is tested for != NULL. 164 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 165 * for the purpose of tracking that it's freed. 166 * For PTR_TO_SOCKET this is used to share which pointers retain the 167 * same reference to the socket, to determine proper reference freeing. 168 * For stack slots that are dynptrs, this is used to track references to 169 * the dynptr to determine proper reference freeing. 170 * Similarly to dynptrs, we use ID to track "belonging" of a reference 171 * to a specific instance of bpf_iter. 172 */ 173 /* 174 * Upper bit of ID is used to remember relationship between "linked" 175 * registers. Example: 176 * r1 = r2; both will have r1->id == r2->id == N 177 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 178 */ 179#define BPF_ADD_CONST (1U << 31) 180 u32 id; 181 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 182 * from a pointer-cast helper, bpf_sk_fullsock() and 183 * bpf_tcp_sock(). 184 * 185 * Consider the following where "sk" is a reference counted 186 * pointer returned from "sk = bpf_sk_lookup_tcp();": 187 * 188 * 1: sk = bpf_sk_lookup_tcp(); 189 * 2: if (!sk) { return 0; } 190 * 3: fullsock = bpf_sk_fullsock(sk); 191 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 192 * 5: tp = bpf_tcp_sock(fullsock); 193 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 194 * 7: bpf_sk_release(sk); 195 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 196 * 197 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 198 * "tp" ptr should be invalidated also. In order to do that, 199 * the reg holding "fullsock" and "sk" need to remember 200 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 201 * such that the verifier can reset all regs which have 202 * ref_obj_id matching the sk_reg->id. 203 * 204 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 205 * sk_reg->id will stay as NULL-marking purpose only. 206 * After NULL-marking is done, sk_reg->id can be reset to 0. 207 * 208 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 209 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 210 * 211 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 212 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 213 * which is the same as sk_reg->ref_obj_id. 214 * 215 * From the verifier perspective, if sk, fullsock and tp 216 * are not NULL, they are the same ptr with different 217 * reg->type. In particular, bpf_sk_release(tp) is also 218 * allowed and has the same effect as bpf_sk_release(sk). 219 */ 220 u32 ref_obj_id; 221 /* parentage chain for liveness checking */ 222 struct bpf_reg_state *parent; 223 /* Inside the callee two registers can be both PTR_TO_STACK like 224 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 225 * while another to the caller's stack. To differentiate them 'frameno' 226 * is used which is an index in bpf_verifier_state->frame[] array 227 * pointing to bpf_func_state. 228 */ 229 u32 frameno; 230 /* Tracks subreg definition. The stored value is the insn_idx of the 231 * writing insn. This is safe because subreg_def is used before any insn 232 * patching which only happens after main verification finished. 233 */ 234 s32 subreg_def; 235 enum bpf_reg_liveness live; 236 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 237 bool precise; 238}; 239 240enum bpf_stack_slot_type { 241 STACK_INVALID, /* nothing was stored in this stack slot */ 242 STACK_SPILL, /* register spilled into stack */ 243 STACK_MISC, /* BPF program wrote some data into this slot */ 244 STACK_ZERO, /* BPF program wrote constant zero */ 245 /* A dynptr is stored in this stack slot. The type of dynptr 246 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 247 */ 248 STACK_DYNPTR, 249 STACK_ITER, 250}; 251 252#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 253 254#define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 255 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 256 (1 << BPF_REG_5)) 257 258#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 259#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 260 261struct bpf_stack_state { 262 struct bpf_reg_state spilled_ptr; 263 u8 slot_type[BPF_REG_SIZE]; 264}; 265 266struct bpf_reference_state { 267 /* Track each reference created with a unique id, even if the same 268 * instruction creates the reference multiple times (eg, via CALL). 269 */ 270 int id; 271 /* Instruction where the allocation of this reference occurred. This 272 * is used purely to inform the user of a reference leak. 273 */ 274 int insn_idx; 275 /* There can be a case like: 276 * main (frame 0) 277 * cb (frame 1) 278 * func (frame 3) 279 * cb (frame 4) 280 * Hence for frame 4, if callback_ref just stored boolean, it would be 281 * impossible to distinguish nested callback refs. Hence store the 282 * frameno and compare that to callback_ref in check_reference_leak when 283 * exiting a callback function. 284 */ 285 int callback_ref; 286}; 287 288struct bpf_retval_range { 289 s32 minval; 290 s32 maxval; 291}; 292 293/* state of the program: 294 * type of all registers and stack info 295 */ 296struct bpf_func_state { 297 struct bpf_reg_state regs[MAX_BPF_REG]; 298 /* index of call instruction that called into this func */ 299 int callsite; 300 /* stack frame number of this function state from pov of 301 * enclosing bpf_verifier_state. 302 * 0 = main function, 1 = first callee. 303 */ 304 u32 frameno; 305 /* subprog number == index within subprog_info 306 * zero == main subprog 307 */ 308 u32 subprogno; 309 /* Every bpf_timer_start will increment async_entry_cnt. 310 * It's used to distinguish: 311 * void foo(void) { for(;;); } 312 * void foo(void) { bpf_timer_set_callback(,foo); } 313 */ 314 u32 async_entry_cnt; 315 struct bpf_retval_range callback_ret_range; 316 bool in_callback_fn; 317 bool in_async_callback_fn; 318 bool in_exception_callback_fn; 319 /* For callback calling functions that limit number of possible 320 * callback executions (e.g. bpf_loop) keeps track of current 321 * simulated iteration number. 322 * Value in frame N refers to number of times callback with frame 323 * N+1 was simulated, e.g. for the following call: 324 * 325 * bpf_loop(..., fn, ...); | suppose current frame is N 326 * | fn would be simulated in frame N+1 327 * | number of simulations is tracked in frame N 328 */ 329 u32 callback_depth; 330 331 /* The following fields should be last. See copy_func_state() */ 332 int acquired_refs; 333 struct bpf_reference_state *refs; 334 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 335 * (i.e. 8) bytes worth of stack memory. 336 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 337 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 338 * ... 339 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 340 */ 341 struct bpf_stack_state *stack; 342 /* Size of the current stack, in bytes. The stack state is tracked below, in 343 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 344 */ 345 int allocated_stack; 346}; 347 348#define MAX_CALL_FRAMES 8 349 350/* instruction history flags, used in bpf_jmp_history_entry.flags field */ 351enum { 352 /* instruction references stack slot through PTR_TO_STACK register; 353 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 354 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 355 * 8 bytes per slot, so slot index (spi) is [0, 63]) 356 */ 357 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 358 359 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 360 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 361 362 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */ 363}; 364 365static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 366static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 367 368struct bpf_jmp_history_entry { 369 u32 idx; 370 /* insn idx can't be bigger than 1 million */ 371 u32 prev_idx : 22; 372 /* special flags, e.g., whether insn is doing register stack spill/load */ 373 u32 flags : 10; 374}; 375 376/* Maximum number of register states that can exist at once */ 377#define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 378struct bpf_verifier_state { 379 /* call stack tracking */ 380 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 381 struct bpf_verifier_state *parent; 382 /* 383 * 'branches' field is the number of branches left to explore: 384 * 0 - all possible paths from this state reached bpf_exit or 385 * were safely pruned 386 * 1 - at least one path is being explored. 387 * This state hasn't reached bpf_exit 388 * 2 - at least two paths are being explored. 389 * This state is an immediate parent of two children. 390 * One is fallthrough branch with branches==1 and another 391 * state is pushed into stack (to be explored later) also with 392 * branches==1. The parent of this state has branches==1. 393 * The verifier state tree connected via 'parent' pointer looks like: 394 * 1 395 * 1 396 * 2 -> 1 (first 'if' pushed into stack) 397 * 1 398 * 2 -> 1 (second 'if' pushed into stack) 399 * 1 400 * 1 401 * 1 bpf_exit. 402 * 403 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 404 * and the verifier state tree will look: 405 * 1 406 * 1 407 * 2 -> 1 (first 'if' pushed into stack) 408 * 1 409 * 1 -> 1 (second 'if' pushed into stack) 410 * 0 411 * 0 412 * 0 bpf_exit. 413 * After pop_stack() the do_check() will resume at second 'if'. 414 * 415 * If is_state_visited() sees a state with branches > 0 it means 416 * there is a loop. If such state is exactly equal to the current state 417 * it's an infinite loop. Note states_equal() checks for states 418 * equivalency, so two states being 'states_equal' does not mean 419 * infinite loop. The exact comparison is provided by 420 * states_maybe_looping() function. It's a stronger pre-check and 421 * much faster than states_equal(). 422 * 423 * This algorithm may not find all possible infinite loops or 424 * loop iteration count may be too high. 425 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 426 */ 427 u32 branches; 428 u32 insn_idx; 429 u32 curframe; 430 431 struct bpf_active_lock active_lock; 432 bool speculative; 433 bool active_rcu_lock; 434 u32 active_preempt_lock; 435 /* If this state was ever pointed-to by other state's loop_entry field 436 * this flag would be set to true. Used to avoid freeing such states 437 * while they are still in use. 438 */ 439 bool used_as_loop_entry; 440 bool in_sleepable; 441 442 /* first and last insn idx of this verifier state */ 443 u32 first_insn_idx; 444 u32 last_insn_idx; 445 /* If this state is a part of states loop this field points to some 446 * parent of this state such that: 447 * - it is also a member of the same states loop; 448 * - DFS states traversal starting from initial state visits loop_entry 449 * state before this state. 450 * Used to compute topmost loop entry for state loops. 451 * State loops might appear because of open coded iterators logic. 452 * See get_loop_entry() for more information. 453 */ 454 struct bpf_verifier_state *loop_entry; 455 /* jmp history recorded from first to last. 456 * backtracking is using it to go from last to first. 457 * For most states jmp_history_cnt is [0-3]. 458 * For loops can go up to ~40. 459 */ 460 struct bpf_jmp_history_entry *jmp_history; 461 u32 jmp_history_cnt; 462 u32 dfs_depth; 463 u32 callback_unroll_depth; 464 u32 may_goto_depth; 465}; 466 467#define bpf_get_spilled_reg(slot, frame, mask) \ 468 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 469 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 470 ? &frame->stack[slot].spilled_ptr : NULL) 471 472/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 473#define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 474 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 475 iter < frame->allocated_stack / BPF_REG_SIZE; \ 476 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 477 478#define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 479 ({ \ 480 struct bpf_verifier_state *___vstate = __vst; \ 481 int ___i, ___j; \ 482 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 483 struct bpf_reg_state *___regs; \ 484 __state = ___vstate->frame[___i]; \ 485 ___regs = __state->regs; \ 486 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 487 __reg = &___regs[___j]; \ 488 (void)(__expr); \ 489 } \ 490 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 491 if (!__reg) \ 492 continue; \ 493 (void)(__expr); \ 494 } \ 495 } \ 496 }) 497 498/* Invoke __expr over regsiters in __vst, setting __state and __reg */ 499#define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 500 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 501 502/* linked list of verifier states used to prune search */ 503struct bpf_verifier_state_list { 504 struct bpf_verifier_state state; 505 struct bpf_verifier_state_list *next; 506 int miss_cnt, hit_cnt; 507}; 508 509struct bpf_loop_inline_state { 510 unsigned int initialized:1; /* set to true upon first entry */ 511 unsigned int fit_for_inline:1; /* true if callback function is the same 512 * at each call and flags are always zero 513 */ 514 u32 callback_subprogno; /* valid when fit_for_inline is true */ 515}; 516 517/* pointer and state for maps */ 518struct bpf_map_ptr_state { 519 struct bpf_map *map_ptr; 520 bool poison; 521 bool unpriv; 522}; 523 524/* Possible states for alu_state member. */ 525#define BPF_ALU_SANITIZE_SRC (1U << 0) 526#define BPF_ALU_SANITIZE_DST (1U << 1) 527#define BPF_ALU_NEG_VALUE (1U << 2) 528#define BPF_ALU_NON_POINTER (1U << 3) 529#define BPF_ALU_IMMEDIATE (1U << 4) 530#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 531 BPF_ALU_SANITIZE_DST) 532 533struct bpf_insn_aux_data { 534 union { 535 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 536 struct bpf_map_ptr_state map_ptr_state; 537 s32 call_imm; /* saved imm field of call insn */ 538 u32 alu_limit; /* limit for add/sub register with pointer */ 539 struct { 540 u32 map_index; /* index into used_maps[] */ 541 u32 map_off; /* offset from value base address */ 542 }; 543 struct { 544 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 545 union { 546 struct { 547 struct btf *btf; 548 u32 btf_id; /* btf_id for struct typed var */ 549 }; 550 u32 mem_size; /* mem_size for non-struct typed var */ 551 }; 552 } btf_var; 553 /* if instruction is a call to bpf_loop this field tracks 554 * the state of the relevant registers to make decision about inlining 555 */ 556 struct bpf_loop_inline_state loop_inline_state; 557 }; 558 union { 559 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 560 u64 obj_new_size; 561 /* remember the offset of node field within type to rewrite */ 562 u64 insert_off; 563 }; 564 struct btf_struct_meta *kptr_struct_meta; 565 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 566 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 567 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 568 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 569 bool zext_dst; /* this insn zero extends dst reg */ 570 bool needs_zext; /* alu op needs to clear upper bits */ 571 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 572 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 573 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 574 u8 alu_state; /* used in combination with alu_limit */ 575 576 /* below fields are initialized once */ 577 unsigned int orig_idx; /* original instruction index */ 578 bool jmp_point; 579 bool prune_point; 580 /* ensure we check state equivalence and save state checkpoint and 581 * this instruction, regardless of any heuristics 582 */ 583 bool force_checkpoint; 584 /* true if instruction is a call to a helper function that 585 * accepts callback function as a parameter. 586 */ 587 bool calls_callback; 588}; 589 590#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 591#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 592 593#define BPF_VERIFIER_TMP_LOG_SIZE 1024 594 595struct bpf_verifier_log { 596 /* Logical start and end positions of a "log window" of the verifier log. 597 * start_pos == 0 means we haven't truncated anything. 598 * Once truncation starts to happen, start_pos + len_total == end_pos, 599 * except during log reset situations, in which (end_pos - start_pos) 600 * might get smaller than len_total (see bpf_vlog_reset()). 601 * Generally, (end_pos - start_pos) gives number of useful data in 602 * user log buffer. 603 */ 604 u64 start_pos; 605 u64 end_pos; 606 char __user *ubuf; 607 u32 level; 608 u32 len_total; 609 u32 len_max; 610 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 611}; 612 613#define BPF_LOG_LEVEL1 1 614#define BPF_LOG_LEVEL2 2 615#define BPF_LOG_STATS 4 616#define BPF_LOG_FIXED 8 617#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 618#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 619#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 620#define BPF_LOG_MIN_ALIGNMENT 8U 621#define BPF_LOG_ALIGNMENT 40U 622 623static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 624{ 625 return log && log->level; 626} 627 628#define BPF_MAX_SUBPROGS 256 629 630struct bpf_subprog_arg_info { 631 enum bpf_arg_type arg_type; 632 union { 633 u32 mem_size; 634 u32 btf_id; 635 }; 636}; 637 638struct bpf_subprog_info { 639 /* 'start' has to be the first field otherwise find_subprog() won't work */ 640 u32 start; /* insn idx of function entry point */ 641 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 642 u16 stack_depth; /* max. stack depth used by this function */ 643 u16 stack_extra; 644 bool has_tail_call: 1; 645 bool tail_call_reachable: 1; 646 bool has_ld_abs: 1; 647 bool is_cb: 1; 648 bool is_async_cb: 1; 649 bool is_exception_cb: 1; 650 bool args_cached: 1; 651 652 u8 arg_cnt; 653 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 654}; 655 656struct bpf_verifier_env; 657 658struct backtrack_state { 659 struct bpf_verifier_env *env; 660 u32 frame; 661 u32 reg_masks[MAX_CALL_FRAMES]; 662 u64 stack_masks[MAX_CALL_FRAMES]; 663}; 664 665struct bpf_id_pair { 666 u32 old; 667 u32 cur; 668}; 669 670struct bpf_idmap { 671 u32 tmp_id_gen; 672 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 673}; 674 675struct bpf_idset { 676 u32 count; 677 u32 ids[BPF_ID_MAP_SIZE]; 678}; 679 680/* single container for all structs 681 * one verifier_env per bpf_check() call 682 */ 683struct bpf_verifier_env { 684 u32 insn_idx; 685 u32 prev_insn_idx; 686 struct bpf_prog *prog; /* eBPF program being verified */ 687 const struct bpf_verifier_ops *ops; 688 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 689 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 690 int stack_size; /* number of states to be processed */ 691 bool strict_alignment; /* perform strict pointer alignment checks */ 692 bool test_state_freq; /* test verifier with different pruning frequency */ 693 bool test_reg_invariants; /* fail verification on register invariants violations */ 694 struct bpf_verifier_state *cur_state; /* current verifier state */ 695 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 696 struct bpf_verifier_state_list *free_list; 697 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 698 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 699 u32 used_map_cnt; /* number of used maps */ 700 u32 used_btf_cnt; /* number of used BTF objects */ 701 u32 id_gen; /* used to generate unique reg IDs */ 702 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 703 int exception_callback_subprog; 704 bool explore_alu_limits; 705 bool allow_ptr_leaks; 706 /* Allow access to uninitialized stack memory. Writes with fixed offset are 707 * always allowed, so this refers to reads (with fixed or variable offset), 708 * to writes with variable offset and to indirect (helper) accesses. 709 */ 710 bool allow_uninit_stack; 711 bool bpf_capable; 712 bool bypass_spec_v1; 713 bool bypass_spec_v4; 714 bool seen_direct_write; 715 bool seen_exception; 716 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 717 const struct bpf_line_info *prev_linfo; 718 struct bpf_verifier_log log; 719 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 720 union { 721 struct bpf_idmap idmap_scratch; 722 struct bpf_idset idset_scratch; 723 }; 724 struct { 725 int *insn_state; 726 int *insn_stack; 727 int cur_stack; 728 } cfg; 729 struct backtrack_state bt; 730 struct bpf_jmp_history_entry *cur_hist_ent; 731 u32 pass_cnt; /* number of times do_check() was called */ 732 u32 subprog_cnt; 733 /* number of instructions analyzed by the verifier */ 734 u32 prev_insn_processed, insn_processed; 735 /* number of jmps, calls, exits analyzed so far */ 736 u32 prev_jmps_processed, jmps_processed; 737 /* total verification time */ 738 u64 verification_time; 739 /* maximum number of verifier states kept in 'branching' instructions */ 740 u32 max_states_per_insn; 741 /* total number of allocated verifier states */ 742 u32 total_states; 743 /* some states are freed during program analysis. 744 * this is peak number of states. this number dominates kernel 745 * memory consumption during verification 746 */ 747 u32 peak_states; 748 /* longest register parentage chain walked for liveness marking */ 749 u32 longest_mark_read_walk; 750 bpfptr_t fd_array; 751 752 /* bit mask to keep track of whether a register has been accessed 753 * since the last time the function state was printed 754 */ 755 u32 scratched_regs; 756 /* Same as scratched_regs but for stack slots */ 757 u64 scratched_stack_slots; 758 u64 prev_log_pos, prev_insn_print_pos; 759 /* buffer used to temporary hold constants as scalar registers */ 760 struct bpf_reg_state fake_reg[2]; 761 /* buffer used to generate temporary string representations, 762 * e.g., in reg_type_str() to generate reg_type string 763 */ 764 char tmp_str_buf[TMP_STR_BUF_LEN]; 765}; 766 767static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 768{ 769 return &env->prog->aux->func_info_aux[subprog]; 770} 771 772static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 773{ 774 return &env->subprog_info[subprog]; 775} 776 777__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 778 const char *fmt, va_list args); 779__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 780 const char *fmt, ...); 781__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 782 const char *fmt, ...); 783int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 784 char __user *log_buf, u32 log_size); 785void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 786int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 787 788__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 789 u32 insn_off, 790 const char *prefix_fmt, ...); 791 792static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 793{ 794 struct bpf_verifier_state *cur = env->cur_state; 795 796 return cur->frame[cur->curframe]; 797} 798 799static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 800{ 801 return cur_func(env)->regs; 802} 803 804int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 805int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 806 int insn_idx, int prev_insn_idx); 807int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 808void 809bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 810 struct bpf_insn *insn); 811void 812bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 813 814/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 815static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 816 struct btf *btf, u32 btf_id) 817{ 818 if (tgt_prog) 819 return ((u64)tgt_prog->aux->id << 32) | btf_id; 820 else 821 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 822} 823 824/* unpack the IDs from the key as constructed above */ 825static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 826{ 827 if (obj_id) 828 *obj_id = key >> 32; 829 if (btf_id) 830 *btf_id = key & 0x7FFFFFFF; 831} 832 833int bpf_check_attach_target(struct bpf_verifier_log *log, 834 const struct bpf_prog *prog, 835 const struct bpf_prog *tgt_prog, 836 u32 btf_id, 837 struct bpf_attach_target_info *tgt_info); 838void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 839 840int mark_chain_precision(struct bpf_verifier_env *env, int regno); 841 842#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 843 844/* extract base type from bpf_{arg, return, reg}_type. */ 845static inline u32 base_type(u32 type) 846{ 847 return type & BPF_BASE_TYPE_MASK; 848} 849 850/* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 851static inline u32 type_flag(u32 type) 852{ 853 return type & ~BPF_BASE_TYPE_MASK; 854} 855 856/* only use after check_attach_btf_id() */ 857static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 858{ 859 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? 860 prog->aux->saved_dst_prog_type : prog->type; 861} 862 863static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 864{ 865 switch (resolve_prog_type(prog)) { 866 case BPF_PROG_TYPE_TRACING: 867 return prog->expected_attach_type != BPF_TRACE_ITER; 868 case BPF_PROG_TYPE_STRUCT_OPS: 869 case BPF_PROG_TYPE_LSM: 870 return false; 871 default: 872 return true; 873 } 874} 875 876#define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 877 878static inline bool bpf_type_has_unsafe_modifiers(u32 type) 879{ 880 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 881} 882 883static inline bool type_is_ptr_alloc_obj(u32 type) 884{ 885 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 886} 887 888static inline bool type_is_non_owning_ref(u32 type) 889{ 890 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 891} 892 893static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 894{ 895 type = base_type(type); 896 return type == PTR_TO_PACKET || 897 type == PTR_TO_PACKET_META; 898} 899 900static inline bool type_is_sk_pointer(enum bpf_reg_type type) 901{ 902 return type == PTR_TO_SOCKET || 903 type == PTR_TO_SOCK_COMMON || 904 type == PTR_TO_TCP_SOCK || 905 type == PTR_TO_XDP_SOCK; 906} 907 908static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 909{ 910 env->scratched_regs |= 1U << regno; 911} 912 913static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 914{ 915 env->scratched_stack_slots |= 1ULL << spi; 916} 917 918static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 919{ 920 return (env->scratched_regs >> regno) & 1; 921} 922 923static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 924{ 925 return (env->scratched_stack_slots >> regno) & 1; 926} 927 928static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 929{ 930 return env->scratched_regs || env->scratched_stack_slots; 931} 932 933static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 934{ 935 env->scratched_regs = 0U; 936 env->scratched_stack_slots = 0ULL; 937} 938 939/* Used for printing the entire verifier state. */ 940static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 941{ 942 env->scratched_regs = ~0U; 943 env->scratched_stack_slots = ~0ULL; 944} 945 946static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 947{ 948#ifdef __BIG_ENDIAN 949 off -= spill_size - fill_size; 950#endif 951 952 return !(off % BPF_REG_SIZE); 953} 954 955const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 956const char *dynptr_type_str(enum bpf_dynptr_type type); 957const char *iter_type_str(const struct btf *btf, u32 btf_id); 958const char *iter_state_str(enum bpf_iter_state state); 959 960void print_verifier_state(struct bpf_verifier_env *env, 961 const struct bpf_func_state *state, bool print_all); 962void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state); 963 964#endif /* _LINUX_BPF_VERIFIER_H */