Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/kernel_read_file.h>
27#include <linux/slab.h>
28#include <linux/file.h>
29#include <linux/fdtable.h>
30#include <linux/mm.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/oom.h>
62#include <linux/compat.h>
63#include <linux/vmalloc.h>
64#include <linux/io_uring.h>
65#include <linux/syscall_user_dispatch.h>
66#include <linux/coredump.h>
67#include <linux/time_namespace.h>
68#include <linux/user_events.h>
69#include <linux/rseq.h>
70#include <linux/ksm.h>
71
72#include <linux/uaccess.h>
73#include <asm/mmu_context.h>
74#include <asm/tlb.h>
75
76#include <trace/events/task.h>
77#include "internal.h"
78
79#include <trace/events/sched.h>
80
81static int bprm_creds_from_file(struct linux_binprm *bprm);
82
83int suid_dumpable = 0;
84
85static LIST_HEAD(formats);
86static DEFINE_RWLOCK(binfmt_lock);
87
88void __register_binfmt(struct linux_binfmt * fmt, int insert)
89{
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
94}
95
96EXPORT_SYMBOL(__register_binfmt);
97
98void unregister_binfmt(struct linux_binfmt * fmt)
99{
100 write_lock(&binfmt_lock);
101 list_del(&fmt->lh);
102 write_unlock(&binfmt_lock);
103}
104
105EXPORT_SYMBOL(unregister_binfmt);
106
107static inline void put_binfmt(struct linux_binfmt * fmt)
108{
109 module_put(fmt->module);
110}
111
112bool path_noexec(const struct path *path)
113{
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116}
117
118#ifdef CONFIG_USELIB
119/*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from the file itself.
124 */
125SYSCALL_DEFINE1(uselib, const char __user *, library)
126{
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 /*
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
151 */
152 error = -EACCES;
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 path_noexec(&file->f_path)))
155 goto exit;
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173exit:
174 fput(file);
175out:
176 return error;
177}
178#endif /* #ifdef CONFIG_USELIB */
179
180#ifdef CONFIG_MMU
181/*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188{
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197}
198
199static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201{
202 struct page *page;
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
205 int ret;
206
207 /*
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
211 */
212 if (write && pos < vma->vm_start) {
213 mmap_write_lock(mm);
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
217 return NULL;
218 }
219 mmap_write_downgrade(mm);
220 } else
221 mmap_read_lock(mm);
222
223 /*
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
226 */
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
229 &page, NULL);
230 mmap_read_unlock(mm);
231 if (ret <= 0)
232 return NULL;
233
234 if (write)
235 acct_arg_size(bprm, vma_pages(vma));
236
237 return page;
238}
239
240static void put_arg_page(struct page *page)
241{
242 put_page(page);
243}
244
245static void free_arg_pages(struct linux_binprm *bprm)
246{
247}
248
249static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 struct page *page)
251{
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253}
254
255static int __bprm_mm_init(struct linux_binprm *bprm)
256{
257 int err;
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
260
261 bprm->vma = vma = vm_area_alloc(mm);
262 if (!vma)
263 return -ENOMEM;
264 vma_set_anonymous(vma);
265
266 if (mmap_write_lock_killable(mm)) {
267 err = -EINTR;
268 goto err_free;
269 }
270
271 /*
272 * Need to be called with mmap write lock
273 * held, to avoid race with ksmd.
274 */
275 err = ksm_execve(mm);
276 if (err)
277 goto err_ksm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290
291 err = insert_vm_struct(mm, vma);
292 if (err)
293 goto err;
294
295 mm->stack_vm = mm->total_vm = 1;
296 mmap_write_unlock(mm);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299err:
300 ksm_exit(mm);
301err_ksm:
302 mmap_write_unlock(mm);
303err_free:
304 bprm->vma = NULL;
305 vm_area_free(vma);
306 return err;
307}
308
309static bool valid_arg_len(struct linux_binprm *bprm, long len)
310{
311 return len <= MAX_ARG_STRLEN;
312}
313
314#else
315
316static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317{
318}
319
320static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 int write)
322{
323 struct page *page;
324
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 if (!page)
329 return NULL;
330 bprm->page[pos / PAGE_SIZE] = page;
331 }
332
333 return page;
334}
335
336static void put_arg_page(struct page *page)
337{
338}
339
340static void free_arg_page(struct linux_binprm *bprm, int i)
341{
342 if (bprm->page[i]) {
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
345 }
346}
347
348static void free_arg_pages(struct linux_binprm *bprm)
349{
350 int i;
351
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
354}
355
356static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 struct page *page)
358{
359}
360
361static int __bprm_mm_init(struct linux_binprm *bprm)
362{
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 return 0;
365}
366
367static bool valid_arg_len(struct linux_binprm *bprm, long len)
368{
369 return len <= bprm->p;
370}
371
372#endif /* CONFIG_MMU */
373
374/*
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
379 */
380static int bprm_mm_init(struct linux_binprm *bprm)
381{
382 int err;
383 struct mm_struct *mm = NULL;
384
385 bprm->mm = mm = mm_alloc();
386 err = -ENOMEM;
387 if (!mm)
388 goto err;
389
390 /* Save current stack limit for all calculations made during exec. */
391 task_lock(current->group_leader);
392 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393 task_unlock(current->group_leader);
394
395 err = __bprm_mm_init(bprm);
396 if (err)
397 goto err;
398
399 return 0;
400
401err:
402 if (mm) {
403 bprm->mm = NULL;
404 mmdrop(mm);
405 }
406
407 return err;
408}
409
410struct user_arg_ptr {
411#ifdef CONFIG_COMPAT
412 bool is_compat;
413#endif
414 union {
415 const char __user *const __user *native;
416#ifdef CONFIG_COMPAT
417 const compat_uptr_t __user *compat;
418#endif
419 } ptr;
420};
421
422static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423{
424 const char __user *native;
425
426#ifdef CONFIG_COMPAT
427 if (unlikely(argv.is_compat)) {
428 compat_uptr_t compat;
429
430 if (get_user(compat, argv.ptr.compat + nr))
431 return ERR_PTR(-EFAULT);
432
433 return compat_ptr(compat);
434 }
435#endif
436
437 if (get_user(native, argv.ptr.native + nr))
438 return ERR_PTR(-EFAULT);
439
440 return native;
441}
442
443/*
444 * count() counts the number of strings in array ARGV.
445 */
446static int count(struct user_arg_ptr argv, int max)
447{
448 int i = 0;
449
450 if (argv.ptr.native != NULL) {
451 for (;;) {
452 const char __user *p = get_user_arg_ptr(argv, i);
453
454 if (!p)
455 break;
456
457 if (IS_ERR(p))
458 return -EFAULT;
459
460 if (i >= max)
461 return -E2BIG;
462 ++i;
463
464 if (fatal_signal_pending(current))
465 return -ERESTARTNOHAND;
466 cond_resched();
467 }
468 }
469 return i;
470}
471
472static int count_strings_kernel(const char *const *argv)
473{
474 int i;
475
476 if (!argv)
477 return 0;
478
479 for (i = 0; argv[i]; ++i) {
480 if (i >= MAX_ARG_STRINGS)
481 return -E2BIG;
482 if (fatal_signal_pending(current))
483 return -ERESTARTNOHAND;
484 cond_resched();
485 }
486 return i;
487}
488
489static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490 unsigned long limit)
491{
492#ifdef CONFIG_MMU
493 /* Avoid a pathological bprm->p. */
494 if (bprm->p < limit)
495 return -E2BIG;
496 bprm->argmin = bprm->p - limit;
497#endif
498 return 0;
499}
500static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501{
502#ifdef CONFIG_MMU
503 return bprm->p < bprm->argmin;
504#else
505 return false;
506#endif
507}
508
509/*
510 * Calculate bprm->argmin from:
511 * - _STK_LIM
512 * - ARG_MAX
513 * - bprm->rlim_stack.rlim_cur
514 * - bprm->argc
515 * - bprm->envc
516 * - bprm->p
517 */
518static int bprm_stack_limits(struct linux_binprm *bprm)
519{
520 unsigned long limit, ptr_size;
521
522 /*
523 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524 * (whichever is smaller) for the argv+env strings.
525 * This ensures that:
526 * - the remaining binfmt code will not run out of stack space,
527 * - the program will have a reasonable amount of stack left
528 * to work from.
529 */
530 limit = _STK_LIM / 4 * 3;
531 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
532 /*
533 * We've historically supported up to 32 pages (ARG_MAX)
534 * of argument strings even with small stacks
535 */
536 limit = max_t(unsigned long, limit, ARG_MAX);
537 /* Reject totally pathological counts. */
538 if (bprm->argc < 0 || bprm->envc < 0)
539 return -E2BIG;
540 /*
541 * We must account for the size of all the argv and envp pointers to
542 * the argv and envp strings, since they will also take up space in
543 * the stack. They aren't stored until much later when we can't
544 * signal to the parent that the child has run out of stack space.
545 * Instead, calculate it here so it's possible to fail gracefully.
546 *
547 * In the case of argc = 0, make sure there is space for adding a
548 * empty string (which will bump argc to 1), to ensure confused
549 * userspace programs don't start processing from argv[1], thinking
550 * argc can never be 0, to keep them from walking envp by accident.
551 * See do_execveat_common().
552 */
553 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
555 return -E2BIG;
556 if (limit <= ptr_size)
557 return -E2BIG;
558 limit -= ptr_size;
559
560 return bprm_set_stack_limit(bprm, limit);
561}
562
563/*
564 * 'copy_strings()' copies argument/environment strings from the old
565 * processes's memory to the new process's stack. The call to get_user_pages()
566 * ensures the destination page is created and not swapped out.
567 */
568static int copy_strings(int argc, struct user_arg_ptr argv,
569 struct linux_binprm *bprm)
570{
571 struct page *kmapped_page = NULL;
572 char *kaddr = NULL;
573 unsigned long kpos = 0;
574 int ret;
575
576 while (argc-- > 0) {
577 const char __user *str;
578 int len;
579 unsigned long pos;
580
581 ret = -EFAULT;
582 str = get_user_arg_ptr(argv, argc);
583 if (IS_ERR(str))
584 goto out;
585
586 len = strnlen_user(str, MAX_ARG_STRLEN);
587 if (!len)
588 goto out;
589
590 ret = -E2BIG;
591 if (!valid_arg_len(bprm, len))
592 goto out;
593
594 /* We're going to work our way backwards. */
595 pos = bprm->p;
596 str += len;
597 bprm->p -= len;
598 if (bprm_hit_stack_limit(bprm))
599 goto out;
600
601 while (len > 0) {
602 int offset, bytes_to_copy;
603
604 if (fatal_signal_pending(current)) {
605 ret = -ERESTARTNOHAND;
606 goto out;
607 }
608 cond_resched();
609
610 offset = pos % PAGE_SIZE;
611 if (offset == 0)
612 offset = PAGE_SIZE;
613
614 bytes_to_copy = offset;
615 if (bytes_to_copy > len)
616 bytes_to_copy = len;
617
618 offset -= bytes_to_copy;
619 pos -= bytes_to_copy;
620 str -= bytes_to_copy;
621 len -= bytes_to_copy;
622
623 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624 struct page *page;
625
626 page = get_arg_page(bprm, pos, 1);
627 if (!page) {
628 ret = -E2BIG;
629 goto out;
630 }
631
632 if (kmapped_page) {
633 flush_dcache_page(kmapped_page);
634 kunmap_local(kaddr);
635 put_arg_page(kmapped_page);
636 }
637 kmapped_page = page;
638 kaddr = kmap_local_page(kmapped_page);
639 kpos = pos & PAGE_MASK;
640 flush_arg_page(bprm, kpos, kmapped_page);
641 }
642 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
643 ret = -EFAULT;
644 goto out;
645 }
646 }
647 }
648 ret = 0;
649out:
650 if (kmapped_page) {
651 flush_dcache_page(kmapped_page);
652 kunmap_local(kaddr);
653 put_arg_page(kmapped_page);
654 }
655 return ret;
656}
657
658/*
659 * Copy and argument/environment string from the kernel to the processes stack.
660 */
661int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
662{
663 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664 unsigned long pos = bprm->p;
665
666 if (len == 0)
667 return -EFAULT;
668 if (!valid_arg_len(bprm, len))
669 return -E2BIG;
670
671 /* We're going to work our way backwards. */
672 arg += len;
673 bprm->p -= len;
674 if (bprm_hit_stack_limit(bprm))
675 return -E2BIG;
676
677 while (len > 0) {
678 unsigned int bytes_to_copy = min_t(unsigned int, len,
679 min_not_zero(offset_in_page(pos), PAGE_SIZE));
680 struct page *page;
681
682 pos -= bytes_to_copy;
683 arg -= bytes_to_copy;
684 len -= bytes_to_copy;
685
686 page = get_arg_page(bprm, pos, 1);
687 if (!page)
688 return -E2BIG;
689 flush_arg_page(bprm, pos & PAGE_MASK, page);
690 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
691 put_arg_page(page);
692 }
693
694 return 0;
695}
696EXPORT_SYMBOL(copy_string_kernel);
697
698static int copy_strings_kernel(int argc, const char *const *argv,
699 struct linux_binprm *bprm)
700{
701 while (argc-- > 0) {
702 int ret = copy_string_kernel(argv[argc], bprm);
703 if (ret < 0)
704 return ret;
705 if (fatal_signal_pending(current))
706 return -ERESTARTNOHAND;
707 cond_resched();
708 }
709 return 0;
710}
711
712#ifdef CONFIG_MMU
713
714/*
715 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
716 * the binfmt code determines where the new stack should reside, we shift it to
717 * its final location. The process proceeds as follows:
718 *
719 * 1) Use shift to calculate the new vma endpoints.
720 * 2) Extend vma to cover both the old and new ranges. This ensures the
721 * arguments passed to subsequent functions are consistent.
722 * 3) Move vma's page tables to the new range.
723 * 4) Free up any cleared pgd range.
724 * 5) Shrink the vma to cover only the new range.
725 */
726static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
727{
728 struct mm_struct *mm = vma->vm_mm;
729 unsigned long old_start = vma->vm_start;
730 unsigned long old_end = vma->vm_end;
731 unsigned long length = old_end - old_start;
732 unsigned long new_start = old_start - shift;
733 unsigned long new_end = old_end - shift;
734 VMA_ITERATOR(vmi, mm, new_start);
735 struct vm_area_struct *next;
736 struct mmu_gather tlb;
737
738 BUG_ON(new_start > new_end);
739
740 /*
741 * ensure there are no vmas between where we want to go
742 * and where we are
743 */
744 if (vma != vma_next(&vmi))
745 return -EFAULT;
746
747 vma_iter_prev_range(&vmi);
748 /*
749 * cover the whole range: [new_start, old_end)
750 */
751 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
752 return -ENOMEM;
753
754 /*
755 * move the page tables downwards, on failure we rely on
756 * process cleanup to remove whatever mess we made.
757 */
758 if (length != move_page_tables(vma, old_start,
759 vma, new_start, length, false, true))
760 return -ENOMEM;
761
762 lru_add_drain();
763 tlb_gather_mmu(&tlb, mm);
764 next = vma_next(&vmi);
765 if (new_end > old_start) {
766 /*
767 * when the old and new regions overlap clear from new_end.
768 */
769 free_pgd_range(&tlb, new_end, old_end, new_end,
770 next ? next->vm_start : USER_PGTABLES_CEILING);
771 } else {
772 /*
773 * otherwise, clean from old_start; this is done to not touch
774 * the address space in [new_end, old_start) some architectures
775 * have constraints on va-space that make this illegal (IA64) -
776 * for the others its just a little faster.
777 */
778 free_pgd_range(&tlb, old_start, old_end, new_end,
779 next ? next->vm_start : USER_PGTABLES_CEILING);
780 }
781 tlb_finish_mmu(&tlb);
782
783 vma_prev(&vmi);
784 /* Shrink the vma to just the new range */
785 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
786}
787
788/*
789 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
790 * the stack is optionally relocated, and some extra space is added.
791 */
792int setup_arg_pages(struct linux_binprm *bprm,
793 unsigned long stack_top,
794 int executable_stack)
795{
796 unsigned long ret;
797 unsigned long stack_shift;
798 struct mm_struct *mm = current->mm;
799 struct vm_area_struct *vma = bprm->vma;
800 struct vm_area_struct *prev = NULL;
801 unsigned long vm_flags;
802 unsigned long stack_base;
803 unsigned long stack_size;
804 unsigned long stack_expand;
805 unsigned long rlim_stack;
806 struct mmu_gather tlb;
807 struct vma_iterator vmi;
808
809#ifdef CONFIG_STACK_GROWSUP
810 /* Limit stack size */
811 stack_base = bprm->rlim_stack.rlim_max;
812
813 stack_base = calc_max_stack_size(stack_base);
814
815 /* Add space for stack randomization. */
816 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
817
818 /* Make sure we didn't let the argument array grow too large. */
819 if (vma->vm_end - vma->vm_start > stack_base)
820 return -ENOMEM;
821
822 stack_base = PAGE_ALIGN(stack_top - stack_base);
823
824 stack_shift = vma->vm_start - stack_base;
825 mm->arg_start = bprm->p - stack_shift;
826 bprm->p = vma->vm_end - stack_shift;
827#else
828 stack_top = arch_align_stack(stack_top);
829 stack_top = PAGE_ALIGN(stack_top);
830
831 if (unlikely(stack_top < mmap_min_addr) ||
832 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
833 return -ENOMEM;
834
835 stack_shift = vma->vm_end - stack_top;
836
837 bprm->p -= stack_shift;
838 mm->arg_start = bprm->p;
839#endif
840
841 if (bprm->loader)
842 bprm->loader -= stack_shift;
843 bprm->exec -= stack_shift;
844
845 if (mmap_write_lock_killable(mm))
846 return -EINTR;
847
848 vm_flags = VM_STACK_FLAGS;
849
850 /*
851 * Adjust stack execute permissions; explicitly enable for
852 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
853 * (arch default) otherwise.
854 */
855 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
856 vm_flags |= VM_EXEC;
857 else if (executable_stack == EXSTACK_DISABLE_X)
858 vm_flags &= ~VM_EXEC;
859 vm_flags |= mm->def_flags;
860 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
861
862 vma_iter_init(&vmi, mm, vma->vm_start);
863
864 tlb_gather_mmu(&tlb, mm);
865 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
866 vm_flags);
867 tlb_finish_mmu(&tlb);
868
869 if (ret)
870 goto out_unlock;
871 BUG_ON(prev != vma);
872
873 if (unlikely(vm_flags & VM_EXEC)) {
874 pr_warn_once("process '%pD4' started with executable stack\n",
875 bprm->file);
876 }
877
878 /* Move stack pages down in memory. */
879 if (stack_shift) {
880 ret = shift_arg_pages(vma, stack_shift);
881 if (ret)
882 goto out_unlock;
883 }
884
885 /* mprotect_fixup is overkill to remove the temporary stack flags */
886 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
887
888 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
889 stack_size = vma->vm_end - vma->vm_start;
890 /*
891 * Align this down to a page boundary as expand_stack
892 * will align it up.
893 */
894 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
895
896 stack_expand = min(rlim_stack, stack_size + stack_expand);
897
898#ifdef CONFIG_STACK_GROWSUP
899 stack_base = vma->vm_start + stack_expand;
900#else
901 stack_base = vma->vm_end - stack_expand;
902#endif
903 current->mm->start_stack = bprm->p;
904 ret = expand_stack_locked(vma, stack_base);
905 if (ret)
906 ret = -EFAULT;
907
908out_unlock:
909 mmap_write_unlock(mm);
910 return ret;
911}
912EXPORT_SYMBOL(setup_arg_pages);
913
914#else
915
916/*
917 * Transfer the program arguments and environment from the holding pages
918 * onto the stack. The provided stack pointer is adjusted accordingly.
919 */
920int transfer_args_to_stack(struct linux_binprm *bprm,
921 unsigned long *sp_location)
922{
923 unsigned long index, stop, sp;
924 int ret = 0;
925
926 stop = bprm->p >> PAGE_SHIFT;
927 sp = *sp_location;
928
929 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
930 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
931 char *src = kmap_local_page(bprm->page[index]) + offset;
932 sp -= PAGE_SIZE - offset;
933 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
934 ret = -EFAULT;
935 kunmap_local(src);
936 if (ret)
937 goto out;
938 }
939
940 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
941 *sp_location = sp;
942
943out:
944 return ret;
945}
946EXPORT_SYMBOL(transfer_args_to_stack);
947
948#endif /* CONFIG_MMU */
949
950/*
951 * On success, caller must call do_close_execat() on the returned
952 * struct file to close it.
953 */
954static struct file *do_open_execat(int fd, struct filename *name, int flags)
955{
956 struct file *file;
957 int err;
958 struct open_flags open_exec_flags = {
959 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
960 .acc_mode = MAY_EXEC,
961 .intent = LOOKUP_OPEN,
962 .lookup_flags = LOOKUP_FOLLOW,
963 };
964
965 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
966 return ERR_PTR(-EINVAL);
967 if (flags & AT_SYMLINK_NOFOLLOW)
968 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
969 if (flags & AT_EMPTY_PATH)
970 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
971
972 file = do_filp_open(fd, name, &open_exec_flags);
973 if (IS_ERR(file))
974 goto out;
975
976 /*
977 * may_open() has already checked for this, so it should be
978 * impossible to trip now. But we need to be extra cautious
979 * and check again at the very end too.
980 */
981 err = -EACCES;
982 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
983 path_noexec(&file->f_path)))
984 goto exit;
985
986out:
987 return file;
988
989exit:
990 fput(file);
991 return ERR_PTR(err);
992}
993
994/**
995 * open_exec - Open a path name for execution
996 *
997 * @name: path name to open with the intent of executing it.
998 *
999 * Returns ERR_PTR on failure or allocated struct file on success.
1000 *
1001 * As this is a wrapper for the internal do_open_execat(). Also see
1002 * do_close_execat().
1003 */
1004struct file *open_exec(const char *name)
1005{
1006 struct filename *filename = getname_kernel(name);
1007 struct file *f = ERR_CAST(filename);
1008
1009 if (!IS_ERR(filename)) {
1010 f = do_open_execat(AT_FDCWD, filename, 0);
1011 putname(filename);
1012 }
1013 return f;
1014}
1015EXPORT_SYMBOL(open_exec);
1016
1017#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1018ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1019{
1020 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1021 if (res > 0)
1022 flush_icache_user_range(addr, addr + len);
1023 return res;
1024}
1025EXPORT_SYMBOL(read_code);
1026#endif
1027
1028/*
1029 * Maps the mm_struct mm into the current task struct.
1030 * On success, this function returns with exec_update_lock
1031 * held for writing.
1032 */
1033static int exec_mmap(struct mm_struct *mm)
1034{
1035 struct task_struct *tsk;
1036 struct mm_struct *old_mm, *active_mm;
1037 int ret;
1038
1039 /* Notify parent that we're no longer interested in the old VM */
1040 tsk = current;
1041 old_mm = current->mm;
1042 exec_mm_release(tsk, old_mm);
1043
1044 ret = down_write_killable(&tsk->signal->exec_update_lock);
1045 if (ret)
1046 return ret;
1047
1048 if (old_mm) {
1049 /*
1050 * If there is a pending fatal signal perhaps a signal
1051 * whose default action is to create a coredump get
1052 * out and die instead of going through with the exec.
1053 */
1054 ret = mmap_read_lock_killable(old_mm);
1055 if (ret) {
1056 up_write(&tsk->signal->exec_update_lock);
1057 return ret;
1058 }
1059 }
1060
1061 task_lock(tsk);
1062 membarrier_exec_mmap(mm);
1063
1064 local_irq_disable();
1065 active_mm = tsk->active_mm;
1066 tsk->active_mm = mm;
1067 tsk->mm = mm;
1068 mm_init_cid(mm);
1069 /*
1070 * This prevents preemption while active_mm is being loaded and
1071 * it and mm are being updated, which could cause problems for
1072 * lazy tlb mm refcounting when these are updated by context
1073 * switches. Not all architectures can handle irqs off over
1074 * activate_mm yet.
1075 */
1076 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1077 local_irq_enable();
1078 activate_mm(active_mm, mm);
1079 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1080 local_irq_enable();
1081 lru_gen_add_mm(mm);
1082 task_unlock(tsk);
1083 lru_gen_use_mm(mm);
1084 if (old_mm) {
1085 mmap_read_unlock(old_mm);
1086 BUG_ON(active_mm != old_mm);
1087 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1088 mm_update_next_owner(old_mm);
1089 mmput(old_mm);
1090 return 0;
1091 }
1092 mmdrop_lazy_tlb(active_mm);
1093 return 0;
1094}
1095
1096static int de_thread(struct task_struct *tsk)
1097{
1098 struct signal_struct *sig = tsk->signal;
1099 struct sighand_struct *oldsighand = tsk->sighand;
1100 spinlock_t *lock = &oldsighand->siglock;
1101
1102 if (thread_group_empty(tsk))
1103 goto no_thread_group;
1104
1105 /*
1106 * Kill all other threads in the thread group.
1107 */
1108 spin_lock_irq(lock);
1109 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1110 /*
1111 * Another group action in progress, just
1112 * return so that the signal is processed.
1113 */
1114 spin_unlock_irq(lock);
1115 return -EAGAIN;
1116 }
1117
1118 sig->group_exec_task = tsk;
1119 sig->notify_count = zap_other_threads(tsk);
1120 if (!thread_group_leader(tsk))
1121 sig->notify_count--;
1122
1123 while (sig->notify_count) {
1124 __set_current_state(TASK_KILLABLE);
1125 spin_unlock_irq(lock);
1126 schedule();
1127 if (__fatal_signal_pending(tsk))
1128 goto killed;
1129 spin_lock_irq(lock);
1130 }
1131 spin_unlock_irq(lock);
1132
1133 /*
1134 * At this point all other threads have exited, all we have to
1135 * do is to wait for the thread group leader to become inactive,
1136 * and to assume its PID:
1137 */
1138 if (!thread_group_leader(tsk)) {
1139 struct task_struct *leader = tsk->group_leader;
1140
1141 for (;;) {
1142 cgroup_threadgroup_change_begin(tsk);
1143 write_lock_irq(&tasklist_lock);
1144 /*
1145 * Do this under tasklist_lock to ensure that
1146 * exit_notify() can't miss ->group_exec_task
1147 */
1148 sig->notify_count = -1;
1149 if (likely(leader->exit_state))
1150 break;
1151 __set_current_state(TASK_KILLABLE);
1152 write_unlock_irq(&tasklist_lock);
1153 cgroup_threadgroup_change_end(tsk);
1154 schedule();
1155 if (__fatal_signal_pending(tsk))
1156 goto killed;
1157 }
1158
1159 /*
1160 * The only record we have of the real-time age of a
1161 * process, regardless of execs it's done, is start_time.
1162 * All the past CPU time is accumulated in signal_struct
1163 * from sister threads now dead. But in this non-leader
1164 * exec, nothing survives from the original leader thread,
1165 * whose birth marks the true age of this process now.
1166 * When we take on its identity by switching to its PID, we
1167 * also take its birthdate (always earlier than our own).
1168 */
1169 tsk->start_time = leader->start_time;
1170 tsk->start_boottime = leader->start_boottime;
1171
1172 BUG_ON(!same_thread_group(leader, tsk));
1173 /*
1174 * An exec() starts a new thread group with the
1175 * TGID of the previous thread group. Rehash the
1176 * two threads with a switched PID, and release
1177 * the former thread group leader:
1178 */
1179
1180 /* Become a process group leader with the old leader's pid.
1181 * The old leader becomes a thread of the this thread group.
1182 */
1183 exchange_tids(tsk, leader);
1184 transfer_pid(leader, tsk, PIDTYPE_TGID);
1185 transfer_pid(leader, tsk, PIDTYPE_PGID);
1186 transfer_pid(leader, tsk, PIDTYPE_SID);
1187
1188 list_replace_rcu(&leader->tasks, &tsk->tasks);
1189 list_replace_init(&leader->sibling, &tsk->sibling);
1190
1191 tsk->group_leader = tsk;
1192 leader->group_leader = tsk;
1193
1194 tsk->exit_signal = SIGCHLD;
1195 leader->exit_signal = -1;
1196
1197 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1198 leader->exit_state = EXIT_DEAD;
1199 /*
1200 * We are going to release_task()->ptrace_unlink() silently,
1201 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1202 * the tracer won't block again waiting for this thread.
1203 */
1204 if (unlikely(leader->ptrace))
1205 __wake_up_parent(leader, leader->parent);
1206 write_unlock_irq(&tasklist_lock);
1207 cgroup_threadgroup_change_end(tsk);
1208
1209 release_task(leader);
1210 }
1211
1212 sig->group_exec_task = NULL;
1213 sig->notify_count = 0;
1214
1215no_thread_group:
1216 /* we have changed execution domain */
1217 tsk->exit_signal = SIGCHLD;
1218
1219 BUG_ON(!thread_group_leader(tsk));
1220 return 0;
1221
1222killed:
1223 /* protects against exit_notify() and __exit_signal() */
1224 read_lock(&tasklist_lock);
1225 sig->group_exec_task = NULL;
1226 sig->notify_count = 0;
1227 read_unlock(&tasklist_lock);
1228 return -EAGAIN;
1229}
1230
1231
1232/*
1233 * This function makes sure the current process has its own signal table,
1234 * so that flush_signal_handlers can later reset the handlers without
1235 * disturbing other processes. (Other processes might share the signal
1236 * table via the CLONE_SIGHAND option to clone().)
1237 */
1238static int unshare_sighand(struct task_struct *me)
1239{
1240 struct sighand_struct *oldsighand = me->sighand;
1241
1242 if (refcount_read(&oldsighand->count) != 1) {
1243 struct sighand_struct *newsighand;
1244 /*
1245 * This ->sighand is shared with the CLONE_SIGHAND
1246 * but not CLONE_THREAD task, switch to the new one.
1247 */
1248 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1249 if (!newsighand)
1250 return -ENOMEM;
1251
1252 refcount_set(&newsighand->count, 1);
1253
1254 write_lock_irq(&tasklist_lock);
1255 spin_lock(&oldsighand->siglock);
1256 memcpy(newsighand->action, oldsighand->action,
1257 sizeof(newsighand->action));
1258 rcu_assign_pointer(me->sighand, newsighand);
1259 spin_unlock(&oldsighand->siglock);
1260 write_unlock_irq(&tasklist_lock);
1261
1262 __cleanup_sighand(oldsighand);
1263 }
1264 return 0;
1265}
1266
1267char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1268{
1269 task_lock(tsk);
1270 /* Always NUL terminated and zero-padded */
1271 strscpy_pad(buf, tsk->comm, buf_size);
1272 task_unlock(tsk);
1273 return buf;
1274}
1275EXPORT_SYMBOL_GPL(__get_task_comm);
1276
1277/*
1278 * These functions flushes out all traces of the currently running executable
1279 * so that a new one can be started
1280 */
1281
1282void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1283{
1284 task_lock(tsk);
1285 trace_task_rename(tsk, buf);
1286 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1287 task_unlock(tsk);
1288 perf_event_comm(tsk, exec);
1289}
1290
1291/*
1292 * Calling this is the point of no return. None of the failures will be
1293 * seen by userspace since either the process is already taking a fatal
1294 * signal (via de_thread() or coredump), or will have SEGV raised
1295 * (after exec_mmap()) by search_binary_handler (see below).
1296 */
1297int begin_new_exec(struct linux_binprm * bprm)
1298{
1299 struct task_struct *me = current;
1300 int retval;
1301
1302 /* Once we are committed compute the creds */
1303 retval = bprm_creds_from_file(bprm);
1304 if (retval)
1305 return retval;
1306
1307 /*
1308 * This tracepoint marks the point before flushing the old exec where
1309 * the current task is still unchanged, but errors are fatal (point of
1310 * no return). The later "sched_process_exec" tracepoint is called after
1311 * the current task has successfully switched to the new exec.
1312 */
1313 trace_sched_prepare_exec(current, bprm);
1314
1315 /*
1316 * Ensure all future errors are fatal.
1317 */
1318 bprm->point_of_no_return = true;
1319
1320 /*
1321 * Make this the only thread in the thread group.
1322 */
1323 retval = de_thread(me);
1324 if (retval)
1325 goto out;
1326
1327 /*
1328 * Cancel any io_uring activity across execve
1329 */
1330 io_uring_task_cancel();
1331
1332 /* Ensure the files table is not shared. */
1333 retval = unshare_files();
1334 if (retval)
1335 goto out;
1336
1337 /*
1338 * Must be called _before_ exec_mmap() as bprm->mm is
1339 * not visible until then. Doing it here also ensures
1340 * we don't race against replace_mm_exe_file().
1341 */
1342 retval = set_mm_exe_file(bprm->mm, bprm->file);
1343 if (retval)
1344 goto out;
1345
1346 /* If the binary is not readable then enforce mm->dumpable=0 */
1347 would_dump(bprm, bprm->file);
1348 if (bprm->have_execfd)
1349 would_dump(bprm, bprm->executable);
1350
1351 /*
1352 * Release all of the old mmap stuff
1353 */
1354 acct_arg_size(bprm, 0);
1355 retval = exec_mmap(bprm->mm);
1356 if (retval)
1357 goto out;
1358
1359 bprm->mm = NULL;
1360
1361 retval = exec_task_namespaces();
1362 if (retval)
1363 goto out_unlock;
1364
1365#ifdef CONFIG_POSIX_TIMERS
1366 spin_lock_irq(&me->sighand->siglock);
1367 posix_cpu_timers_exit(me);
1368 spin_unlock_irq(&me->sighand->siglock);
1369 exit_itimers(me);
1370 flush_itimer_signals();
1371#endif
1372
1373 /*
1374 * Make the signal table private.
1375 */
1376 retval = unshare_sighand(me);
1377 if (retval)
1378 goto out_unlock;
1379
1380 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1381 PF_NOFREEZE | PF_NO_SETAFFINITY);
1382 flush_thread();
1383 me->personality &= ~bprm->per_clear;
1384
1385 clear_syscall_work_syscall_user_dispatch(me);
1386
1387 /*
1388 * We have to apply CLOEXEC before we change whether the process is
1389 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1390 * trying to access the should-be-closed file descriptors of a process
1391 * undergoing exec(2).
1392 */
1393 do_close_on_exec(me->files);
1394
1395 if (bprm->secureexec) {
1396 /* Make sure parent cannot signal privileged process. */
1397 me->pdeath_signal = 0;
1398
1399 /*
1400 * For secureexec, reset the stack limit to sane default to
1401 * avoid bad behavior from the prior rlimits. This has to
1402 * happen before arch_pick_mmap_layout(), which examines
1403 * RLIMIT_STACK, but after the point of no return to avoid
1404 * needing to clean up the change on failure.
1405 */
1406 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1407 bprm->rlim_stack.rlim_cur = _STK_LIM;
1408 }
1409
1410 me->sas_ss_sp = me->sas_ss_size = 0;
1411
1412 /*
1413 * Figure out dumpability. Note that this checking only of current
1414 * is wrong, but userspace depends on it. This should be testing
1415 * bprm->secureexec instead.
1416 */
1417 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1418 !(uid_eq(current_euid(), current_uid()) &&
1419 gid_eq(current_egid(), current_gid())))
1420 set_dumpable(current->mm, suid_dumpable);
1421 else
1422 set_dumpable(current->mm, SUID_DUMP_USER);
1423
1424 perf_event_exec();
1425 __set_task_comm(me, kbasename(bprm->filename), true);
1426
1427 /* An exec changes our domain. We are no longer part of the thread
1428 group */
1429 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1430 flush_signal_handlers(me, 0);
1431
1432 retval = set_cred_ucounts(bprm->cred);
1433 if (retval < 0)
1434 goto out_unlock;
1435
1436 /*
1437 * install the new credentials for this executable
1438 */
1439 security_bprm_committing_creds(bprm);
1440
1441 commit_creds(bprm->cred);
1442 bprm->cred = NULL;
1443
1444 /*
1445 * Disable monitoring for regular users
1446 * when executing setuid binaries. Must
1447 * wait until new credentials are committed
1448 * by commit_creds() above
1449 */
1450 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1451 perf_event_exit_task(me);
1452 /*
1453 * cred_guard_mutex must be held at least to this point to prevent
1454 * ptrace_attach() from altering our determination of the task's
1455 * credentials; any time after this it may be unlocked.
1456 */
1457 security_bprm_committed_creds(bprm);
1458
1459 /* Pass the opened binary to the interpreter. */
1460 if (bprm->have_execfd) {
1461 retval = get_unused_fd_flags(0);
1462 if (retval < 0)
1463 goto out_unlock;
1464 fd_install(retval, bprm->executable);
1465 bprm->executable = NULL;
1466 bprm->execfd = retval;
1467 }
1468 return 0;
1469
1470out_unlock:
1471 up_write(&me->signal->exec_update_lock);
1472 if (!bprm->cred)
1473 mutex_unlock(&me->signal->cred_guard_mutex);
1474
1475out:
1476 return retval;
1477}
1478EXPORT_SYMBOL(begin_new_exec);
1479
1480void would_dump(struct linux_binprm *bprm, struct file *file)
1481{
1482 struct inode *inode = file_inode(file);
1483 struct mnt_idmap *idmap = file_mnt_idmap(file);
1484 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1485 struct user_namespace *old, *user_ns;
1486 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1487
1488 /* Ensure mm->user_ns contains the executable */
1489 user_ns = old = bprm->mm->user_ns;
1490 while ((user_ns != &init_user_ns) &&
1491 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1492 user_ns = user_ns->parent;
1493
1494 if (old != user_ns) {
1495 bprm->mm->user_ns = get_user_ns(user_ns);
1496 put_user_ns(old);
1497 }
1498 }
1499}
1500EXPORT_SYMBOL(would_dump);
1501
1502void setup_new_exec(struct linux_binprm * bprm)
1503{
1504 /* Setup things that can depend upon the personality */
1505 struct task_struct *me = current;
1506
1507 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1508
1509 arch_setup_new_exec();
1510
1511 /* Set the new mm task size. We have to do that late because it may
1512 * depend on TIF_32BIT which is only updated in flush_thread() on
1513 * some architectures like powerpc
1514 */
1515 me->mm->task_size = TASK_SIZE;
1516 up_write(&me->signal->exec_update_lock);
1517 mutex_unlock(&me->signal->cred_guard_mutex);
1518}
1519EXPORT_SYMBOL(setup_new_exec);
1520
1521/* Runs immediately before start_thread() takes over. */
1522void finalize_exec(struct linux_binprm *bprm)
1523{
1524 /* Store any stack rlimit changes before starting thread. */
1525 task_lock(current->group_leader);
1526 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1527 task_unlock(current->group_leader);
1528}
1529EXPORT_SYMBOL(finalize_exec);
1530
1531/*
1532 * Prepare credentials and lock ->cred_guard_mutex.
1533 * setup_new_exec() commits the new creds and drops the lock.
1534 * Or, if exec fails before, free_bprm() should release ->cred
1535 * and unlock.
1536 */
1537static int prepare_bprm_creds(struct linux_binprm *bprm)
1538{
1539 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1540 return -ERESTARTNOINTR;
1541
1542 bprm->cred = prepare_exec_creds();
1543 if (likely(bprm->cred))
1544 return 0;
1545
1546 mutex_unlock(¤t->signal->cred_guard_mutex);
1547 return -ENOMEM;
1548}
1549
1550/* Matches do_open_execat() */
1551static void do_close_execat(struct file *file)
1552{
1553 if (file)
1554 fput(file);
1555}
1556
1557static void free_bprm(struct linux_binprm *bprm)
1558{
1559 if (bprm->mm) {
1560 acct_arg_size(bprm, 0);
1561 mmput(bprm->mm);
1562 }
1563 free_arg_pages(bprm);
1564 if (bprm->cred) {
1565 mutex_unlock(¤t->signal->cred_guard_mutex);
1566 abort_creds(bprm->cred);
1567 }
1568 do_close_execat(bprm->file);
1569 if (bprm->executable)
1570 fput(bprm->executable);
1571 /* If a binfmt changed the interp, free it. */
1572 if (bprm->interp != bprm->filename)
1573 kfree(bprm->interp);
1574 kfree(bprm->fdpath);
1575 kfree(bprm);
1576}
1577
1578static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1579{
1580 struct linux_binprm *bprm;
1581 struct file *file;
1582 int retval = -ENOMEM;
1583
1584 file = do_open_execat(fd, filename, flags);
1585 if (IS_ERR(file))
1586 return ERR_CAST(file);
1587
1588 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1589 if (!bprm) {
1590 do_close_execat(file);
1591 return ERR_PTR(-ENOMEM);
1592 }
1593
1594 bprm->file = file;
1595
1596 if (fd == AT_FDCWD || filename->name[0] == '/') {
1597 bprm->filename = filename->name;
1598 } else {
1599 if (filename->name[0] == '\0')
1600 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1601 else
1602 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1603 fd, filename->name);
1604 if (!bprm->fdpath)
1605 goto out_free;
1606
1607 /*
1608 * Record that a name derived from an O_CLOEXEC fd will be
1609 * inaccessible after exec. This allows the code in exec to
1610 * choose to fail when the executable is not mmaped into the
1611 * interpreter and an open file descriptor is not passed to
1612 * the interpreter. This makes for a better user experience
1613 * than having the interpreter start and then immediately fail
1614 * when it finds the executable is inaccessible.
1615 */
1616 if (get_close_on_exec(fd))
1617 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1618
1619 bprm->filename = bprm->fdpath;
1620 }
1621 bprm->interp = bprm->filename;
1622
1623 retval = bprm_mm_init(bprm);
1624 if (!retval)
1625 return bprm;
1626
1627out_free:
1628 free_bprm(bprm);
1629 return ERR_PTR(retval);
1630}
1631
1632int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1633{
1634 /* If a binfmt changed the interp, free it first. */
1635 if (bprm->interp != bprm->filename)
1636 kfree(bprm->interp);
1637 bprm->interp = kstrdup(interp, GFP_KERNEL);
1638 if (!bprm->interp)
1639 return -ENOMEM;
1640 return 0;
1641}
1642EXPORT_SYMBOL(bprm_change_interp);
1643
1644/*
1645 * determine how safe it is to execute the proposed program
1646 * - the caller must hold ->cred_guard_mutex to protect against
1647 * PTRACE_ATTACH or seccomp thread-sync
1648 */
1649static void check_unsafe_exec(struct linux_binprm *bprm)
1650{
1651 struct task_struct *p = current, *t;
1652 unsigned n_fs;
1653
1654 if (p->ptrace)
1655 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1656
1657 /*
1658 * This isn't strictly necessary, but it makes it harder for LSMs to
1659 * mess up.
1660 */
1661 if (task_no_new_privs(current))
1662 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1663
1664 /*
1665 * If another task is sharing our fs, we cannot safely
1666 * suid exec because the differently privileged task
1667 * will be able to manipulate the current directory, etc.
1668 * It would be nice to force an unshare instead...
1669 */
1670 n_fs = 1;
1671 spin_lock(&p->fs->lock);
1672 rcu_read_lock();
1673 for_other_threads(p, t) {
1674 if (t->fs == p->fs)
1675 n_fs++;
1676 }
1677 rcu_read_unlock();
1678
1679 /* "users" and "in_exec" locked for copy_fs() */
1680 if (p->fs->users > n_fs)
1681 bprm->unsafe |= LSM_UNSAFE_SHARE;
1682 else
1683 p->fs->in_exec = 1;
1684 spin_unlock(&p->fs->lock);
1685}
1686
1687static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1688{
1689 /* Handle suid and sgid on files */
1690 struct mnt_idmap *idmap;
1691 struct inode *inode = file_inode(file);
1692 unsigned int mode;
1693 vfsuid_t vfsuid;
1694 vfsgid_t vfsgid;
1695 int err;
1696
1697 if (!mnt_may_suid(file->f_path.mnt))
1698 return;
1699
1700 if (task_no_new_privs(current))
1701 return;
1702
1703 mode = READ_ONCE(inode->i_mode);
1704 if (!(mode & (S_ISUID|S_ISGID)))
1705 return;
1706
1707 idmap = file_mnt_idmap(file);
1708
1709 /* Be careful if suid/sgid is set */
1710 inode_lock(inode);
1711
1712 /* Atomically reload and check mode/uid/gid now that lock held. */
1713 mode = inode->i_mode;
1714 vfsuid = i_uid_into_vfsuid(idmap, inode);
1715 vfsgid = i_gid_into_vfsgid(idmap, inode);
1716 err = inode_permission(idmap, inode, MAY_EXEC);
1717 inode_unlock(inode);
1718
1719 /* Did the exec bit vanish out from under us? Give up. */
1720 if (err)
1721 return;
1722
1723 /* We ignore suid/sgid if there are no mappings for them in the ns */
1724 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1725 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1726 return;
1727
1728 if (mode & S_ISUID) {
1729 bprm->per_clear |= PER_CLEAR_ON_SETID;
1730 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1731 }
1732
1733 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1734 bprm->per_clear |= PER_CLEAR_ON_SETID;
1735 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1736 }
1737}
1738
1739/*
1740 * Compute brpm->cred based upon the final binary.
1741 */
1742static int bprm_creds_from_file(struct linux_binprm *bprm)
1743{
1744 /* Compute creds based on which file? */
1745 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1746
1747 bprm_fill_uid(bprm, file);
1748 return security_bprm_creds_from_file(bprm, file);
1749}
1750
1751/*
1752 * Fill the binprm structure from the inode.
1753 * Read the first BINPRM_BUF_SIZE bytes
1754 *
1755 * This may be called multiple times for binary chains (scripts for example).
1756 */
1757static int prepare_binprm(struct linux_binprm *bprm)
1758{
1759 loff_t pos = 0;
1760
1761 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1762 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1763}
1764
1765/*
1766 * Arguments are '\0' separated strings found at the location bprm->p
1767 * points to; chop off the first by relocating brpm->p to right after
1768 * the first '\0' encountered.
1769 */
1770int remove_arg_zero(struct linux_binprm *bprm)
1771{
1772 unsigned long offset;
1773 char *kaddr;
1774 struct page *page;
1775
1776 if (!bprm->argc)
1777 return 0;
1778
1779 do {
1780 offset = bprm->p & ~PAGE_MASK;
1781 page = get_arg_page(bprm, bprm->p, 0);
1782 if (!page)
1783 return -EFAULT;
1784 kaddr = kmap_local_page(page);
1785
1786 for (; offset < PAGE_SIZE && kaddr[offset];
1787 offset++, bprm->p++)
1788 ;
1789
1790 kunmap_local(kaddr);
1791 put_arg_page(page);
1792 } while (offset == PAGE_SIZE);
1793
1794 bprm->p++;
1795 bprm->argc--;
1796
1797 return 0;
1798}
1799EXPORT_SYMBOL(remove_arg_zero);
1800
1801#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1802/*
1803 * cycle the list of binary formats handler, until one recognizes the image
1804 */
1805static int search_binary_handler(struct linux_binprm *bprm)
1806{
1807 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1808 struct linux_binfmt *fmt;
1809 int retval;
1810
1811 retval = prepare_binprm(bprm);
1812 if (retval < 0)
1813 return retval;
1814
1815 retval = security_bprm_check(bprm);
1816 if (retval)
1817 return retval;
1818
1819 retval = -ENOENT;
1820 retry:
1821 read_lock(&binfmt_lock);
1822 list_for_each_entry(fmt, &formats, lh) {
1823 if (!try_module_get(fmt->module))
1824 continue;
1825 read_unlock(&binfmt_lock);
1826
1827 retval = fmt->load_binary(bprm);
1828
1829 read_lock(&binfmt_lock);
1830 put_binfmt(fmt);
1831 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1832 read_unlock(&binfmt_lock);
1833 return retval;
1834 }
1835 }
1836 read_unlock(&binfmt_lock);
1837
1838 if (need_retry) {
1839 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1840 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1841 return retval;
1842 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1843 return retval;
1844 need_retry = false;
1845 goto retry;
1846 }
1847
1848 return retval;
1849}
1850
1851/* binfmt handlers will call back into begin_new_exec() on success. */
1852static int exec_binprm(struct linux_binprm *bprm)
1853{
1854 pid_t old_pid, old_vpid;
1855 int ret, depth;
1856
1857 /* Need to fetch pid before load_binary changes it */
1858 old_pid = current->pid;
1859 rcu_read_lock();
1860 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1861 rcu_read_unlock();
1862
1863 /* This allows 4 levels of binfmt rewrites before failing hard. */
1864 for (depth = 0;; depth++) {
1865 struct file *exec;
1866 if (depth > 5)
1867 return -ELOOP;
1868
1869 ret = search_binary_handler(bprm);
1870 if (ret < 0)
1871 return ret;
1872 if (!bprm->interpreter)
1873 break;
1874
1875 exec = bprm->file;
1876 bprm->file = bprm->interpreter;
1877 bprm->interpreter = NULL;
1878
1879 if (unlikely(bprm->have_execfd)) {
1880 if (bprm->executable) {
1881 fput(exec);
1882 return -ENOEXEC;
1883 }
1884 bprm->executable = exec;
1885 } else
1886 fput(exec);
1887 }
1888
1889 audit_bprm(bprm);
1890 trace_sched_process_exec(current, old_pid, bprm);
1891 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1892 proc_exec_connector(current);
1893 return 0;
1894}
1895
1896static int bprm_execve(struct linux_binprm *bprm)
1897{
1898 int retval;
1899
1900 retval = prepare_bprm_creds(bprm);
1901 if (retval)
1902 return retval;
1903
1904 /*
1905 * Check for unsafe execution states before exec_binprm(), which
1906 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1907 * where setuid-ness is evaluated.
1908 */
1909 check_unsafe_exec(bprm);
1910 current->in_execve = 1;
1911 sched_mm_cid_before_execve(current);
1912
1913 sched_exec();
1914
1915 /* Set the unchanging part of bprm->cred */
1916 retval = security_bprm_creds_for_exec(bprm);
1917 if (retval)
1918 goto out;
1919
1920 retval = exec_binprm(bprm);
1921 if (retval < 0)
1922 goto out;
1923
1924 sched_mm_cid_after_execve(current);
1925 /* execve succeeded */
1926 current->fs->in_exec = 0;
1927 current->in_execve = 0;
1928 rseq_execve(current);
1929 user_events_execve(current);
1930 acct_update_integrals(current);
1931 task_numa_free(current, false);
1932 return retval;
1933
1934out:
1935 /*
1936 * If past the point of no return ensure the code never
1937 * returns to the userspace process. Use an existing fatal
1938 * signal if present otherwise terminate the process with
1939 * SIGSEGV.
1940 */
1941 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1942 force_fatal_sig(SIGSEGV);
1943
1944 sched_mm_cid_after_execve(current);
1945 current->fs->in_exec = 0;
1946 current->in_execve = 0;
1947
1948 return retval;
1949}
1950
1951static int do_execveat_common(int fd, struct filename *filename,
1952 struct user_arg_ptr argv,
1953 struct user_arg_ptr envp,
1954 int flags)
1955{
1956 struct linux_binprm *bprm;
1957 int retval;
1958
1959 if (IS_ERR(filename))
1960 return PTR_ERR(filename);
1961
1962 /*
1963 * We move the actual failure in case of RLIMIT_NPROC excess from
1964 * set*uid() to execve() because too many poorly written programs
1965 * don't check setuid() return code. Here we additionally recheck
1966 * whether NPROC limit is still exceeded.
1967 */
1968 if ((current->flags & PF_NPROC_EXCEEDED) &&
1969 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1970 retval = -EAGAIN;
1971 goto out_ret;
1972 }
1973
1974 /* We're below the limit (still or again), so we don't want to make
1975 * further execve() calls fail. */
1976 current->flags &= ~PF_NPROC_EXCEEDED;
1977
1978 bprm = alloc_bprm(fd, filename, flags);
1979 if (IS_ERR(bprm)) {
1980 retval = PTR_ERR(bprm);
1981 goto out_ret;
1982 }
1983
1984 retval = count(argv, MAX_ARG_STRINGS);
1985 if (retval == 0)
1986 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1987 current->comm, bprm->filename);
1988 if (retval < 0)
1989 goto out_free;
1990 bprm->argc = retval;
1991
1992 retval = count(envp, MAX_ARG_STRINGS);
1993 if (retval < 0)
1994 goto out_free;
1995 bprm->envc = retval;
1996
1997 retval = bprm_stack_limits(bprm);
1998 if (retval < 0)
1999 goto out_free;
2000
2001 retval = copy_string_kernel(bprm->filename, bprm);
2002 if (retval < 0)
2003 goto out_free;
2004 bprm->exec = bprm->p;
2005
2006 retval = copy_strings(bprm->envc, envp, bprm);
2007 if (retval < 0)
2008 goto out_free;
2009
2010 retval = copy_strings(bprm->argc, argv, bprm);
2011 if (retval < 0)
2012 goto out_free;
2013
2014 /*
2015 * When argv is empty, add an empty string ("") as argv[0] to
2016 * ensure confused userspace programs that start processing
2017 * from argv[1] won't end up walking envp. See also
2018 * bprm_stack_limits().
2019 */
2020 if (bprm->argc == 0) {
2021 retval = copy_string_kernel("", bprm);
2022 if (retval < 0)
2023 goto out_free;
2024 bprm->argc = 1;
2025 }
2026
2027 retval = bprm_execve(bprm);
2028out_free:
2029 free_bprm(bprm);
2030
2031out_ret:
2032 putname(filename);
2033 return retval;
2034}
2035
2036int kernel_execve(const char *kernel_filename,
2037 const char *const *argv, const char *const *envp)
2038{
2039 struct filename *filename;
2040 struct linux_binprm *bprm;
2041 int fd = AT_FDCWD;
2042 int retval;
2043
2044 /* It is non-sense for kernel threads to call execve */
2045 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2046 return -EINVAL;
2047
2048 filename = getname_kernel(kernel_filename);
2049 if (IS_ERR(filename))
2050 return PTR_ERR(filename);
2051
2052 bprm = alloc_bprm(fd, filename, 0);
2053 if (IS_ERR(bprm)) {
2054 retval = PTR_ERR(bprm);
2055 goto out_ret;
2056 }
2057
2058 retval = count_strings_kernel(argv);
2059 if (WARN_ON_ONCE(retval == 0))
2060 retval = -EINVAL;
2061 if (retval < 0)
2062 goto out_free;
2063 bprm->argc = retval;
2064
2065 retval = count_strings_kernel(envp);
2066 if (retval < 0)
2067 goto out_free;
2068 bprm->envc = retval;
2069
2070 retval = bprm_stack_limits(bprm);
2071 if (retval < 0)
2072 goto out_free;
2073
2074 retval = copy_string_kernel(bprm->filename, bprm);
2075 if (retval < 0)
2076 goto out_free;
2077 bprm->exec = bprm->p;
2078
2079 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2080 if (retval < 0)
2081 goto out_free;
2082
2083 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2084 if (retval < 0)
2085 goto out_free;
2086
2087 retval = bprm_execve(bprm);
2088out_free:
2089 free_bprm(bprm);
2090out_ret:
2091 putname(filename);
2092 return retval;
2093}
2094
2095static int do_execve(struct filename *filename,
2096 const char __user *const __user *__argv,
2097 const char __user *const __user *__envp)
2098{
2099 struct user_arg_ptr argv = { .ptr.native = __argv };
2100 struct user_arg_ptr envp = { .ptr.native = __envp };
2101 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2102}
2103
2104static int do_execveat(int fd, struct filename *filename,
2105 const char __user *const __user *__argv,
2106 const char __user *const __user *__envp,
2107 int flags)
2108{
2109 struct user_arg_ptr argv = { .ptr.native = __argv };
2110 struct user_arg_ptr envp = { .ptr.native = __envp };
2111
2112 return do_execveat_common(fd, filename, argv, envp, flags);
2113}
2114
2115#ifdef CONFIG_COMPAT
2116static int compat_do_execve(struct filename *filename,
2117 const compat_uptr_t __user *__argv,
2118 const compat_uptr_t __user *__envp)
2119{
2120 struct user_arg_ptr argv = {
2121 .is_compat = true,
2122 .ptr.compat = __argv,
2123 };
2124 struct user_arg_ptr envp = {
2125 .is_compat = true,
2126 .ptr.compat = __envp,
2127 };
2128 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2129}
2130
2131static int compat_do_execveat(int fd, struct filename *filename,
2132 const compat_uptr_t __user *__argv,
2133 const compat_uptr_t __user *__envp,
2134 int flags)
2135{
2136 struct user_arg_ptr argv = {
2137 .is_compat = true,
2138 .ptr.compat = __argv,
2139 };
2140 struct user_arg_ptr envp = {
2141 .is_compat = true,
2142 .ptr.compat = __envp,
2143 };
2144 return do_execveat_common(fd, filename, argv, envp, flags);
2145}
2146#endif
2147
2148void set_binfmt(struct linux_binfmt *new)
2149{
2150 struct mm_struct *mm = current->mm;
2151
2152 if (mm->binfmt)
2153 module_put(mm->binfmt->module);
2154
2155 mm->binfmt = new;
2156 if (new)
2157 __module_get(new->module);
2158}
2159EXPORT_SYMBOL(set_binfmt);
2160
2161/*
2162 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2163 */
2164void set_dumpable(struct mm_struct *mm, int value)
2165{
2166 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2167 return;
2168
2169 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2170}
2171
2172SYSCALL_DEFINE3(execve,
2173 const char __user *, filename,
2174 const char __user *const __user *, argv,
2175 const char __user *const __user *, envp)
2176{
2177 return do_execve(getname(filename), argv, envp);
2178}
2179
2180SYSCALL_DEFINE5(execveat,
2181 int, fd, const char __user *, filename,
2182 const char __user *const __user *, argv,
2183 const char __user *const __user *, envp,
2184 int, flags)
2185{
2186 return do_execveat(fd,
2187 getname_uflags(filename, flags),
2188 argv, envp, flags);
2189}
2190
2191#ifdef CONFIG_COMPAT
2192COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2193 const compat_uptr_t __user *, argv,
2194 const compat_uptr_t __user *, envp)
2195{
2196 return compat_do_execve(getname(filename), argv, envp);
2197}
2198
2199COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2200 const char __user *, filename,
2201 const compat_uptr_t __user *, argv,
2202 const compat_uptr_t __user *, envp,
2203 int, flags)
2204{
2205 return compat_do_execveat(fd,
2206 getname_uflags(filename, flags),
2207 argv, envp, flags);
2208}
2209#endif
2210
2211#ifdef CONFIG_SYSCTL
2212
2213static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2214 void *buffer, size_t *lenp, loff_t *ppos)
2215{
2216 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2217
2218 if (!error)
2219 validate_coredump_safety();
2220 return error;
2221}
2222
2223static struct ctl_table fs_exec_sysctls[] = {
2224 {
2225 .procname = "suid_dumpable",
2226 .data = &suid_dumpable,
2227 .maxlen = sizeof(int),
2228 .mode = 0644,
2229 .proc_handler = proc_dointvec_minmax_coredump,
2230 .extra1 = SYSCTL_ZERO,
2231 .extra2 = SYSCTL_TWO,
2232 },
2233};
2234
2235static int __init init_fs_exec_sysctls(void)
2236{
2237 register_sysctl_init("fs", fs_exec_sysctls);
2238 return 0;
2239}
2240
2241fs_initcall(init_fs_exec_sysctls);
2242#endif /* CONFIG_SYSCTL */
2243
2244#ifdef CONFIG_EXEC_KUNIT_TEST
2245#include "tests/exec_kunit.c"
2246#endif