Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2020, Intel Corporation. */
3
4#include <linux/vmalloc.h>
5
6#include "ice.h"
7#include "ice_lib.h"
8#include "devlink.h"
9#include "ice_eswitch.h"
10#include "ice_fw_update.h"
11#include "ice_dcb_lib.h"
12
13/* context for devlink info version reporting */
14struct ice_info_ctx {
15 char buf[128];
16 struct ice_orom_info pending_orom;
17 struct ice_nvm_info pending_nvm;
18 struct ice_netlist_info pending_netlist;
19 struct ice_hw_dev_caps dev_caps;
20};
21
22/* The following functions are used to format specific strings for various
23 * devlink info versions. The ctx parameter is used to provide the storage
24 * buffer, as well as any ancillary information calculated when the info
25 * request was made.
26 *
27 * If a version does not exist, for example when attempting to get the
28 * inactive version of flash when there is no pending update, the function
29 * should leave the buffer in the ctx structure empty.
30 */
31
32static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
33{
34 u8 dsn[8];
35
36 /* Copy the DSN into an array in Big Endian format */
37 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
38
39 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
40}
41
42static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
43{
44 struct ice_hw *hw = &pf->hw;
45 int status;
46
47 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
48 if (status)
49 /* We failed to locate the PBA, so just skip this entry */
50 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
51 status);
52}
53
54static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
55{
56 struct ice_hw *hw = &pf->hw;
57
58 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
59 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
60}
61
62static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
63{
64 struct ice_hw *hw = &pf->hw;
65
66 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
67 hw->api_min_ver, hw->api_patch);
68}
69
70static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
71{
72 struct ice_hw *hw = &pf->hw;
73
74 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
75}
76
77static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
78{
79 struct ice_orom_info *orom = &pf->hw.flash.orom;
80
81 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
82 orom->major, orom->build, orom->patch);
83}
84
85static void
86ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
87 struct ice_info_ctx *ctx)
88{
89 struct ice_orom_info *orom = &ctx->pending_orom;
90
91 if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
92 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
93 orom->major, orom->build, orom->patch);
94}
95
96static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
97{
98 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
99
100 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
101}
102
103static void
104ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
105 struct ice_info_ctx *ctx)
106{
107 struct ice_nvm_info *nvm = &ctx->pending_nvm;
108
109 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
110 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
111 nvm->major, nvm->minor);
112}
113
114static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
115{
116 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
117
118 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
119}
120
121static void
122ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
123{
124 struct ice_nvm_info *nvm = &ctx->pending_nvm;
125
126 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
127 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
128}
129
130static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
131{
132 struct ice_hw *hw = &pf->hw;
133
134 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
135}
136
137static void
138ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
139{
140 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
141
142 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
143 pkg->major, pkg->minor, pkg->update, pkg->draft);
144}
145
146static void
147ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
148{
149 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
150}
151
152static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
153{
154 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
155
156 /* The netlist version fields are BCD formatted */
157 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
158 netlist->major, netlist->minor,
159 netlist->type >> 16, netlist->type & 0xFFFF,
160 netlist->rev, netlist->cust_ver);
161}
162
163static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
164{
165 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
166
167 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
168}
169
170static void
171ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
172 struct ice_info_ctx *ctx)
173{
174 struct ice_netlist_info *netlist = &ctx->pending_netlist;
175
176 /* The netlist version fields are BCD formatted */
177 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
178 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
179 netlist->major, netlist->minor,
180 netlist->type >> 16, netlist->type & 0xFFFF,
181 netlist->rev, netlist->cust_ver);
182}
183
184static void
185ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
186 struct ice_info_ctx *ctx)
187{
188 struct ice_netlist_info *netlist = &ctx->pending_netlist;
189
190 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
191 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
192}
193
194static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
195{
196 u32 id, cfg_ver, fw_ver;
197
198 if (!ice_is_feature_supported(pf, ICE_F_CGU))
199 return;
200 if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
201 return;
202 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
203}
204
205static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
206{
207 if (!ice_is_feature_supported(pf, ICE_F_CGU))
208 return;
209 snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
210}
211
212#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
213#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
214#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
215
216/* The combined() macro inserts both the running entry as well as a stored
217 * entry. The running entry will always report the version from the active
218 * handler. The stored entry will first try the pending handler, and fallback
219 * to the active handler if the pending function does not report a version.
220 * The pending handler should check the status of a pending update for the
221 * relevant flash component. It should only fill in the buffer in the case
222 * where a valid pending version is available. This ensures that the related
223 * stored and running versions remain in sync, and that stored versions are
224 * correctly reported as expected.
225 */
226#define combined(key, active, pending) \
227 running(key, active), \
228 stored(key, pending, active)
229
230enum ice_version_type {
231 ICE_VERSION_FIXED,
232 ICE_VERSION_RUNNING,
233 ICE_VERSION_STORED,
234};
235
236static const struct ice_devlink_version {
237 enum ice_version_type type;
238 const char *key;
239 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
240 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
241} ice_devlink_versions[] = {
242 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
243 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
244 running("fw.mgmt.api", ice_info_fw_api),
245 running("fw.mgmt.build", ice_info_fw_build),
246 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
247 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
248 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
249 running("fw.app.name", ice_info_ddp_pkg_name),
250 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
251 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
252 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
253 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
254 fixed("cgu.id", ice_info_cgu_id),
255 running("fw.cgu", ice_info_cgu_fw_build),
256};
257
258/**
259 * ice_devlink_info_get - .info_get devlink handler
260 * @devlink: devlink instance structure
261 * @req: the devlink info request
262 * @extack: extended netdev ack structure
263 *
264 * Callback for the devlink .info_get operation. Reports information about the
265 * device.
266 *
267 * Return: zero on success or an error code on failure.
268 */
269static int ice_devlink_info_get(struct devlink *devlink,
270 struct devlink_info_req *req,
271 struct netlink_ext_ack *extack)
272{
273 struct ice_pf *pf = devlink_priv(devlink);
274 struct device *dev = ice_pf_to_dev(pf);
275 struct ice_hw *hw = &pf->hw;
276 struct ice_info_ctx *ctx;
277 size_t i;
278 int err;
279
280 err = ice_wait_for_reset(pf, 10 * HZ);
281 if (err) {
282 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
283 return err;
284 }
285
286 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
287 if (!ctx)
288 return -ENOMEM;
289
290 /* discover capabilities first */
291 err = ice_discover_dev_caps(hw, &ctx->dev_caps);
292 if (err) {
293 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
294 err, ice_aq_str(hw->adminq.sq_last_status));
295 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
296 goto out_free_ctx;
297 }
298
299 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
300 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
301 if (err) {
302 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
303 err, ice_aq_str(hw->adminq.sq_last_status));
304
305 /* disable display of pending Option ROM */
306 ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
307 }
308 }
309
310 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
311 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
312 if (err) {
313 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
314 err, ice_aq_str(hw->adminq.sq_last_status));
315
316 /* disable display of pending Option ROM */
317 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
318 }
319 }
320
321 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
322 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
323 if (err) {
324 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
325 err, ice_aq_str(hw->adminq.sq_last_status));
326
327 /* disable display of pending Option ROM */
328 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
329 }
330 }
331
332 ice_info_get_dsn(pf, ctx);
333
334 err = devlink_info_serial_number_put(req, ctx->buf);
335 if (err) {
336 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
337 goto out_free_ctx;
338 }
339
340 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
341 enum ice_version_type type = ice_devlink_versions[i].type;
342 const char *key = ice_devlink_versions[i].key;
343
344 memset(ctx->buf, 0, sizeof(ctx->buf));
345
346 ice_devlink_versions[i].getter(pf, ctx);
347
348 /* If the default getter doesn't report a version, use the
349 * fallback function. This is primarily useful in the case of
350 * "stored" versions that want to report the same value as the
351 * running version in the normal case of no pending update.
352 */
353 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
354 ice_devlink_versions[i].fallback(pf, ctx);
355
356 /* Do not report missing versions */
357 if (ctx->buf[0] == '\0')
358 continue;
359
360 switch (type) {
361 case ICE_VERSION_FIXED:
362 err = devlink_info_version_fixed_put(req, key, ctx->buf);
363 if (err) {
364 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
365 goto out_free_ctx;
366 }
367 break;
368 case ICE_VERSION_RUNNING:
369 err = devlink_info_version_running_put(req, key, ctx->buf);
370 if (err) {
371 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
372 goto out_free_ctx;
373 }
374 break;
375 case ICE_VERSION_STORED:
376 err = devlink_info_version_stored_put(req, key, ctx->buf);
377 if (err) {
378 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
379 goto out_free_ctx;
380 }
381 break;
382 }
383 }
384
385out_free_ctx:
386 kfree(ctx);
387 return err;
388}
389
390/**
391 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
392 * @pf: pointer to the pf instance
393 * @extack: netlink extended ACK structure
394 *
395 * Allow user to activate new Embedded Management Processor firmware by
396 * issuing device specific EMP reset. Called in response to
397 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
398 *
399 * Note that teardown and rebuild of the driver state happens automatically as
400 * part of an interrupt and watchdog task. This is because all physical
401 * functions on the device must be able to reset when an EMP reset occurs from
402 * any source.
403 */
404static int
405ice_devlink_reload_empr_start(struct ice_pf *pf,
406 struct netlink_ext_ack *extack)
407{
408 struct device *dev = ice_pf_to_dev(pf);
409 struct ice_hw *hw = &pf->hw;
410 u8 pending;
411 int err;
412
413 err = ice_get_pending_updates(pf, &pending, extack);
414 if (err)
415 return err;
416
417 /* pending is a bitmask of which flash banks have a pending update,
418 * including the main NVM bank, the Option ROM bank, and the netlist
419 * bank. If any of these bits are set, then there is a pending update
420 * waiting to be activated.
421 */
422 if (!pending) {
423 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
424 return -ECANCELED;
425 }
426
427 if (pf->fw_emp_reset_disabled) {
428 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
429 return -ECANCELED;
430 }
431
432 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
433
434 err = ice_aq_nvm_update_empr(hw);
435 if (err) {
436 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
437 err, ice_aq_str(hw->adminq.sq_last_status));
438 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
439 return err;
440 }
441
442 return 0;
443}
444
445/**
446 * ice_devlink_reinit_down - unload given PF
447 * @pf: pointer to the PF struct
448 */
449static void ice_devlink_reinit_down(struct ice_pf *pf)
450{
451 /* No need to take devl_lock, it's already taken by devlink API */
452 ice_unload(pf);
453 rtnl_lock();
454 ice_vsi_decfg(ice_get_main_vsi(pf));
455 rtnl_unlock();
456 ice_deinit_dev(pf);
457}
458
459/**
460 * ice_devlink_reload_down - prepare for reload
461 * @devlink: pointer to the devlink instance to reload
462 * @netns_change: if true, the network namespace is changing
463 * @action: the action to perform
464 * @limit: limits on what reload should do, such as not resetting
465 * @extack: netlink extended ACK structure
466 */
467static int
468ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
469 enum devlink_reload_action action,
470 enum devlink_reload_limit limit,
471 struct netlink_ext_ack *extack)
472{
473 struct ice_pf *pf = devlink_priv(devlink);
474
475 switch (action) {
476 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
477 if (ice_is_eswitch_mode_switchdev(pf)) {
478 NL_SET_ERR_MSG_MOD(extack,
479 "Go to legacy mode before doing reinit");
480 return -EOPNOTSUPP;
481 }
482 if (ice_is_adq_active(pf)) {
483 NL_SET_ERR_MSG_MOD(extack,
484 "Turn off ADQ before doing reinit");
485 return -EOPNOTSUPP;
486 }
487 if (ice_has_vfs(pf)) {
488 NL_SET_ERR_MSG_MOD(extack,
489 "Remove all VFs before doing reinit");
490 return -EOPNOTSUPP;
491 }
492 ice_devlink_reinit_down(pf);
493 return 0;
494 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
495 return ice_devlink_reload_empr_start(pf, extack);
496 default:
497 WARN_ON(1);
498 return -EOPNOTSUPP;
499 }
500}
501
502/**
503 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
504 * @pf: pointer to the pf instance
505 * @extack: netlink extended ACK structure
506 *
507 * Wait for driver to finish rebuilding after EMP reset is completed. This
508 * includes time to wait for both the actual device reset as well as the time
509 * for the driver's rebuild to complete.
510 */
511static int
512ice_devlink_reload_empr_finish(struct ice_pf *pf,
513 struct netlink_ext_ack *extack)
514{
515 int err;
516
517 err = ice_wait_for_reset(pf, 60 * HZ);
518 if (err) {
519 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
520 return err;
521 }
522
523 return 0;
524}
525
526/**
527 * ice_get_tx_topo_user_sel - Read user's choice from flash
528 * @pf: pointer to pf structure
529 * @layers: value read from flash will be saved here
530 *
531 * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
532 *
533 * Return: zero when read was successful, negative values otherwise.
534 */
535static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
536{
537 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
538 struct ice_hw *hw = &pf->hw;
539 int err;
540
541 err = ice_acquire_nvm(hw, ICE_RES_READ);
542 if (err)
543 return err;
544
545 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
546 sizeof(usr_sel), &usr_sel, true, true, NULL);
547 if (err)
548 goto exit_release_res;
549
550 if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
551 *layers = ICE_SCHED_5_LAYERS;
552 else
553 *layers = ICE_SCHED_9_LAYERS;
554
555exit_release_res:
556 ice_release_nvm(hw);
557
558 return err;
559}
560
561/**
562 * ice_update_tx_topo_user_sel - Save user's preference in flash
563 * @pf: pointer to pf structure
564 * @layers: value to be saved in flash
565 *
566 * Variable "layers" defines user's preference about number of layers in Tx
567 * Scheduler Topology Tree. This choice should be stored in PFA TLV field
568 * and be picked up by driver, next time during init.
569 *
570 * Return: zero when save was successful, negative values otherwise.
571 */
572static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
573{
574 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
575 struct ice_hw *hw = &pf->hw;
576 int err;
577
578 err = ice_acquire_nvm(hw, ICE_RES_WRITE);
579 if (err)
580 return err;
581
582 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
583 sizeof(usr_sel), &usr_sel, true, true, NULL);
584 if (err)
585 goto exit_release_res;
586
587 if (layers == ICE_SCHED_5_LAYERS)
588 usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
589 else
590 usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
591
592 err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
593 sizeof(usr_sel.data), &usr_sel.data,
594 true, NULL, NULL);
595exit_release_res:
596 ice_release_nvm(hw);
597
598 return err;
599}
600
601/**
602 * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
603 * @devlink: pointer to the devlink instance
604 * @id: the parameter ID to set
605 * @ctx: context to store the parameter value
606 *
607 * Return: zero on success and negative value on failure.
608 */
609static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
610 struct devlink_param_gset_ctx *ctx)
611{
612 struct ice_pf *pf = devlink_priv(devlink);
613 int err;
614
615 err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
616 if (err)
617 return err;
618
619 return 0;
620}
621
622/**
623 * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
624 * @devlink: pointer to the devlink instance
625 * @id: the parameter ID to set
626 * @ctx: context to get the parameter value
627 * @extack: netlink extended ACK structure
628 *
629 * Return: zero on success and negative value on failure.
630 */
631static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
632 struct devlink_param_gset_ctx *ctx,
633 struct netlink_ext_ack *extack)
634{
635 struct ice_pf *pf = devlink_priv(devlink);
636 int err;
637
638 err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
639 if (err)
640 return err;
641
642 NL_SET_ERR_MSG_MOD(extack,
643 "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
644
645 return 0;
646}
647
648/**
649 * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
650 * parameter value
651 * @devlink: unused pointer to devlink instance
652 * @id: the parameter ID to validate
653 * @val: value to validate
654 * @extack: netlink extended ACK structure
655 *
656 * Supported values are:
657 * - 5 - five layers Tx Scheduler Topology Tree
658 * - 9 - nine layers Tx Scheduler Topology Tree
659 *
660 * Return: zero when passed parameter value is supported. Negative value on
661 * error.
662 */
663static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
664 union devlink_param_value val,
665 struct netlink_ext_ack *extack)
666{
667 if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
668 NL_SET_ERR_MSG_MOD(extack,
669 "Wrong number of tx scheduler layers provided.");
670 return -EINVAL;
671 }
672
673 return 0;
674}
675
676/**
677 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
678 * @pf: pf struct
679 *
680 * This function tears down tree exported during VF's creation.
681 */
682void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
683{
684 struct devlink *devlink;
685 struct ice_vf *vf;
686 unsigned int bkt;
687
688 devlink = priv_to_devlink(pf);
689
690 devl_lock(devlink);
691 mutex_lock(&pf->vfs.table_lock);
692 ice_for_each_vf(pf, bkt, vf) {
693 if (vf->devlink_port.devlink_rate)
694 devl_rate_leaf_destroy(&vf->devlink_port);
695 }
696 mutex_unlock(&pf->vfs.table_lock);
697
698 devl_rate_nodes_destroy(devlink);
699 devl_unlock(devlink);
700}
701
702/**
703 * ice_enable_custom_tx - try to enable custom Tx feature
704 * @pf: pf struct
705 *
706 * This function tries to enable custom Tx feature,
707 * it's not possible to enable it, if DCB or ADQ is active.
708 */
709static bool ice_enable_custom_tx(struct ice_pf *pf)
710{
711 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
712 struct device *dev = ice_pf_to_dev(pf);
713
714 if (pi->is_custom_tx_enabled)
715 /* already enabled, return true */
716 return true;
717
718 if (ice_is_adq_active(pf)) {
719 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
720 return false;
721 }
722
723 if (ice_is_dcb_active(pf)) {
724 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
725 return false;
726 }
727
728 pi->is_custom_tx_enabled = true;
729
730 return true;
731}
732
733/**
734 * ice_traverse_tx_tree - traverse Tx scheduler tree
735 * @devlink: devlink struct
736 * @node: current node, used for recursion
737 * @tc_node: tc_node struct, that is treated as a root
738 * @pf: pf struct
739 *
740 * This function traverses Tx scheduler tree and exports
741 * entire structure to the devlink-rate.
742 */
743static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
744 struct ice_sched_node *tc_node, struct ice_pf *pf)
745{
746 struct devlink_rate *rate_node = NULL;
747 struct ice_vf *vf;
748 int i;
749
750 if (node->rate_node)
751 /* already added, skip to the next */
752 goto traverse_children;
753
754 if (node->parent == tc_node) {
755 /* create root node */
756 rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
757 } else if (node->vsi_handle &&
758 pf->vsi[node->vsi_handle]->vf) {
759 vf = pf->vsi[node->vsi_handle]->vf;
760 if (!vf->devlink_port.devlink_rate)
761 /* leaf nodes doesn't have children
762 * so we don't set rate_node
763 */
764 devl_rate_leaf_create(&vf->devlink_port, node,
765 node->parent->rate_node);
766 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
767 node->parent->rate_node) {
768 rate_node = devl_rate_node_create(devlink, node, node->name,
769 node->parent->rate_node);
770 }
771
772 if (rate_node && !IS_ERR(rate_node))
773 node->rate_node = rate_node;
774
775traverse_children:
776 for (i = 0; i < node->num_children; i++)
777 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
778}
779
780/**
781 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
782 * @devlink: devlink struct
783 * @vsi: main vsi struct
784 *
785 * This function finds a root node, then calls ice_traverse_tx tree, which
786 * traverses the tree and exports it's contents to devlink rate.
787 */
788int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
789{
790 struct ice_port_info *pi = vsi->port_info;
791 struct ice_sched_node *tc_node;
792 struct ice_pf *pf = vsi->back;
793 int i;
794
795 tc_node = pi->root->children[0];
796 mutex_lock(&pi->sched_lock);
797 for (i = 0; i < tc_node->num_children; i++)
798 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
799 mutex_unlock(&pi->sched_lock);
800
801 return 0;
802}
803
804static void ice_clear_rate_nodes(struct ice_sched_node *node)
805{
806 node->rate_node = NULL;
807
808 for (int i = 0; i < node->num_children; i++)
809 ice_clear_rate_nodes(node->children[i]);
810}
811
812/**
813 * ice_devlink_rate_clear_tx_topology - clear node->rate_node
814 * @vsi: main vsi struct
815 *
816 * Clear rate_node to cleanup creation of Tx topology.
817 *
818 */
819void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
820{
821 struct ice_port_info *pi = vsi->port_info;
822
823 mutex_lock(&pi->sched_lock);
824 ice_clear_rate_nodes(pi->root->children[0]);
825 mutex_unlock(&pi->sched_lock);
826}
827
828/**
829 * ice_set_object_tx_share - sets node scheduling parameter
830 * @pi: devlink struct instance
831 * @node: node struct instance
832 * @bw: bandwidth in bytes per second
833 * @extack: extended netdev ack structure
834 *
835 * This function sets ICE_MIN_BW scheduling BW limit.
836 */
837static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
838 u64 bw, struct netlink_ext_ack *extack)
839{
840 int status;
841
842 mutex_lock(&pi->sched_lock);
843 /* converts bytes per second to kilo bits per second */
844 node->tx_share = div_u64(bw, 125);
845 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
846 mutex_unlock(&pi->sched_lock);
847
848 if (status)
849 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
850
851 return status;
852}
853
854/**
855 * ice_set_object_tx_max - sets node scheduling parameter
856 * @pi: devlink struct instance
857 * @node: node struct instance
858 * @bw: bandwidth in bytes per second
859 * @extack: extended netdev ack structure
860 *
861 * This function sets ICE_MAX_BW scheduling BW limit.
862 */
863static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
864 u64 bw, struct netlink_ext_ack *extack)
865{
866 int status;
867
868 mutex_lock(&pi->sched_lock);
869 /* converts bytes per second value to kilo bits per second */
870 node->tx_max = div_u64(bw, 125);
871 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
872 mutex_unlock(&pi->sched_lock);
873
874 if (status)
875 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
876
877 return status;
878}
879
880/**
881 * ice_set_object_tx_priority - sets node scheduling parameter
882 * @pi: devlink struct instance
883 * @node: node struct instance
884 * @priority: value representing priority for strict priority arbitration
885 * @extack: extended netdev ack structure
886 *
887 * This function sets priority of node among siblings.
888 */
889static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
890 u32 priority, struct netlink_ext_ack *extack)
891{
892 int status;
893
894 if (priority >= 8) {
895 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
896 return -EINVAL;
897 }
898
899 mutex_lock(&pi->sched_lock);
900 node->tx_priority = priority;
901 status = ice_sched_set_node_priority(pi, node, node->tx_priority);
902 mutex_unlock(&pi->sched_lock);
903
904 if (status)
905 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
906
907 return status;
908}
909
910/**
911 * ice_set_object_tx_weight - sets node scheduling parameter
912 * @pi: devlink struct instance
913 * @node: node struct instance
914 * @weight: value represeting relative weight for WFQ arbitration
915 * @extack: extended netdev ack structure
916 *
917 * This function sets node weight for WFQ algorithm.
918 */
919static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
920 u32 weight, struct netlink_ext_ack *extack)
921{
922 int status;
923
924 if (weight > 200 || weight < 1) {
925 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
926 return -EINVAL;
927 }
928
929 mutex_lock(&pi->sched_lock);
930 node->tx_weight = weight;
931 status = ice_sched_set_node_weight(pi, node, node->tx_weight);
932 mutex_unlock(&pi->sched_lock);
933
934 if (status)
935 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
936
937 return status;
938}
939
940/**
941 * ice_get_pi_from_dev_rate - get port info from devlink_rate
942 * @rate_node: devlink struct instance
943 *
944 * This function returns corresponding port_info struct of devlink_rate
945 */
946static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
947{
948 struct ice_pf *pf = devlink_priv(rate_node->devlink);
949
950 return ice_get_main_vsi(pf)->port_info;
951}
952
953static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
954 struct netlink_ext_ack *extack)
955{
956 struct ice_sched_node *node;
957 struct ice_port_info *pi;
958
959 pi = ice_get_pi_from_dev_rate(rate_node);
960
961 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
962 return -EBUSY;
963
964 /* preallocate memory for ice_sched_node */
965 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
966 *priv = node;
967
968 return 0;
969}
970
971static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
972 struct netlink_ext_ack *extack)
973{
974 struct ice_sched_node *node, *tc_node;
975 struct ice_port_info *pi;
976
977 pi = ice_get_pi_from_dev_rate(rate_node);
978 tc_node = pi->root->children[0];
979 node = priv;
980
981 if (!rate_node->parent || !node || tc_node == node || !extack)
982 return 0;
983
984 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
985 return -EBUSY;
986
987 /* can't allow to delete a node with children */
988 if (node->num_children)
989 return -EINVAL;
990
991 mutex_lock(&pi->sched_lock);
992 ice_free_sched_node(pi, node);
993 mutex_unlock(&pi->sched_lock);
994
995 return 0;
996}
997
998static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
999 u64 tx_max, struct netlink_ext_ack *extack)
1000{
1001 struct ice_sched_node *node = priv;
1002
1003 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1004 return -EBUSY;
1005
1006 if (!node)
1007 return 0;
1008
1009 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1010 node, tx_max, extack);
1011}
1012
1013static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1014 u64 tx_share, struct netlink_ext_ack *extack)
1015{
1016 struct ice_sched_node *node = priv;
1017
1018 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1019 return -EBUSY;
1020
1021 if (!node)
1022 return 0;
1023
1024 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1025 tx_share, extack);
1026}
1027
1028static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1029 u32 tx_priority, struct netlink_ext_ack *extack)
1030{
1031 struct ice_sched_node *node = priv;
1032
1033 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1034 return -EBUSY;
1035
1036 if (!node)
1037 return 0;
1038
1039 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1040 tx_priority, extack);
1041}
1042
1043static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1044 u32 tx_weight, struct netlink_ext_ack *extack)
1045{
1046 struct ice_sched_node *node = priv;
1047
1048 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1049 return -EBUSY;
1050
1051 if (!node)
1052 return 0;
1053
1054 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1055 tx_weight, extack);
1056}
1057
1058static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1059 u64 tx_max, struct netlink_ext_ack *extack)
1060{
1061 struct ice_sched_node *node = priv;
1062
1063 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1064 return -EBUSY;
1065
1066 if (!node)
1067 return 0;
1068
1069 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1070 node, tx_max, extack);
1071}
1072
1073static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1074 u64 tx_share, struct netlink_ext_ack *extack)
1075{
1076 struct ice_sched_node *node = priv;
1077
1078 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1079 return -EBUSY;
1080
1081 if (!node)
1082 return 0;
1083
1084 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1085 node, tx_share, extack);
1086}
1087
1088static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1089 u32 tx_priority, struct netlink_ext_ack *extack)
1090{
1091 struct ice_sched_node *node = priv;
1092
1093 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1094 return -EBUSY;
1095
1096 if (!node)
1097 return 0;
1098
1099 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1100 node, tx_priority, extack);
1101}
1102
1103static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1104 u32 tx_weight, struct netlink_ext_ack *extack)
1105{
1106 struct ice_sched_node *node = priv;
1107
1108 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1109 return -EBUSY;
1110
1111 if (!node)
1112 return 0;
1113
1114 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1115 node, tx_weight, extack);
1116}
1117
1118static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1119 struct devlink_rate *parent,
1120 void *priv, void *parent_priv,
1121 struct netlink_ext_ack *extack)
1122{
1123 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1124 struct ice_sched_node *tc_node, *node, *parent_node;
1125 u16 num_nodes_added;
1126 u32 first_node_teid;
1127 u32 node_teid;
1128 int status;
1129
1130 tc_node = pi->root->children[0];
1131 node = priv;
1132
1133 if (!extack)
1134 return 0;
1135
1136 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1137 return -EBUSY;
1138
1139 if (!parent) {
1140 if (!node || tc_node == node || node->num_children)
1141 return -EINVAL;
1142
1143 mutex_lock(&pi->sched_lock);
1144 ice_free_sched_node(pi, node);
1145 mutex_unlock(&pi->sched_lock);
1146
1147 return 0;
1148 }
1149
1150 parent_node = parent_priv;
1151
1152 /* if the node doesn't exist, create it */
1153 if (!node->parent) {
1154 mutex_lock(&pi->sched_lock);
1155 status = ice_sched_add_elems(pi, tc_node, parent_node,
1156 parent_node->tx_sched_layer + 1,
1157 1, &num_nodes_added, &first_node_teid,
1158 &node);
1159 mutex_unlock(&pi->sched_lock);
1160
1161 if (status) {
1162 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1163 return status;
1164 }
1165
1166 if (devlink_rate->tx_share)
1167 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1168 if (devlink_rate->tx_max)
1169 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1170 if (devlink_rate->tx_priority)
1171 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1172 if (devlink_rate->tx_weight)
1173 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1174 } else {
1175 node_teid = le32_to_cpu(node->info.node_teid);
1176 mutex_lock(&pi->sched_lock);
1177 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1178 mutex_unlock(&pi->sched_lock);
1179
1180 if (status)
1181 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1182 }
1183
1184 return status;
1185}
1186
1187/**
1188 * ice_devlink_reinit_up - do reinit of the given PF
1189 * @pf: pointer to the PF struct
1190 */
1191static int ice_devlink_reinit_up(struct ice_pf *pf)
1192{
1193 struct ice_vsi *vsi = ice_get_main_vsi(pf);
1194 int err;
1195
1196 err = ice_init_dev(pf);
1197 if (err)
1198 return err;
1199
1200 vsi->flags = ICE_VSI_FLAG_INIT;
1201
1202 rtnl_lock();
1203 err = ice_vsi_cfg(vsi);
1204 rtnl_unlock();
1205 if (err)
1206 goto err_vsi_cfg;
1207
1208 /* No need to take devl_lock, it's already taken by devlink API */
1209 err = ice_load(pf);
1210 if (err)
1211 goto err_load;
1212
1213 return 0;
1214
1215err_load:
1216 rtnl_lock();
1217 ice_vsi_decfg(vsi);
1218 rtnl_unlock();
1219err_vsi_cfg:
1220 ice_deinit_dev(pf);
1221 return err;
1222}
1223
1224/**
1225 * ice_devlink_reload_up - do reload up after reinit
1226 * @devlink: pointer to the devlink instance reloading
1227 * @action: the action requested
1228 * @limit: limits imposed by userspace, such as not resetting
1229 * @actions_performed: on return, indicate what actions actually performed
1230 * @extack: netlink extended ACK structure
1231 */
1232static int
1233ice_devlink_reload_up(struct devlink *devlink,
1234 enum devlink_reload_action action,
1235 enum devlink_reload_limit limit,
1236 u32 *actions_performed,
1237 struct netlink_ext_ack *extack)
1238{
1239 struct ice_pf *pf = devlink_priv(devlink);
1240
1241 switch (action) {
1242 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1243 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1244 return ice_devlink_reinit_up(pf);
1245 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1246 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1247 return ice_devlink_reload_empr_finish(pf, extack);
1248 default:
1249 WARN_ON(1);
1250 return -EOPNOTSUPP;
1251 }
1252}
1253
1254static const struct devlink_ops ice_devlink_ops = {
1255 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1256 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1257 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1258 .reload_down = ice_devlink_reload_down,
1259 .reload_up = ice_devlink_reload_up,
1260 .eswitch_mode_get = ice_eswitch_mode_get,
1261 .eswitch_mode_set = ice_eswitch_mode_set,
1262 .info_get = ice_devlink_info_get,
1263 .flash_update = ice_devlink_flash_update,
1264
1265 .rate_node_new = ice_devlink_rate_node_new,
1266 .rate_node_del = ice_devlink_rate_node_del,
1267
1268 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1269 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1270 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1271 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1272
1273 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1274 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1275 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1276 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1277
1278 .rate_leaf_parent_set = ice_devlink_set_parent,
1279 .rate_node_parent_set = ice_devlink_set_parent,
1280};
1281
1282static int
1283ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1284 struct devlink_param_gset_ctx *ctx)
1285{
1286 struct ice_pf *pf = devlink_priv(devlink);
1287
1288 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1289
1290 return 0;
1291}
1292
1293static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1294 struct devlink_param_gset_ctx *ctx,
1295 struct netlink_ext_ack *extack)
1296{
1297 struct ice_pf *pf = devlink_priv(devlink);
1298 bool roce_ena = ctx->val.vbool;
1299 int ret;
1300
1301 if (!roce_ena) {
1302 ice_unplug_aux_dev(pf);
1303 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1304 return 0;
1305 }
1306
1307 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1308 ret = ice_plug_aux_dev(pf);
1309 if (ret)
1310 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1311
1312 return ret;
1313}
1314
1315static int
1316ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1317 union devlink_param_value val,
1318 struct netlink_ext_ack *extack)
1319{
1320 struct ice_pf *pf = devlink_priv(devlink);
1321
1322 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1323 return -EOPNOTSUPP;
1324
1325 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1326 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1327 return -EOPNOTSUPP;
1328 }
1329
1330 return 0;
1331}
1332
1333static int
1334ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1335 struct devlink_param_gset_ctx *ctx)
1336{
1337 struct ice_pf *pf = devlink_priv(devlink);
1338
1339 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1340
1341 return 0;
1342}
1343
1344static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1345 struct devlink_param_gset_ctx *ctx,
1346 struct netlink_ext_ack *extack)
1347{
1348 struct ice_pf *pf = devlink_priv(devlink);
1349 bool iw_ena = ctx->val.vbool;
1350 int ret;
1351
1352 if (!iw_ena) {
1353 ice_unplug_aux_dev(pf);
1354 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1355 return 0;
1356 }
1357
1358 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1359 ret = ice_plug_aux_dev(pf);
1360 if (ret)
1361 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1362
1363 return ret;
1364}
1365
1366static int
1367ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1368 union devlink_param_value val,
1369 struct netlink_ext_ack *extack)
1370{
1371 struct ice_pf *pf = devlink_priv(devlink);
1372
1373 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1374 return -EOPNOTSUPP;
1375
1376 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1377 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1378 return -EOPNOTSUPP;
1379 }
1380
1381 return 0;
1382}
1383
1384#define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1385#define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1386#define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1387
1388/**
1389 * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1390 * @mode: local forwarding for mode used in port_info struct.
1391 *
1392 * Return: Mode respective string or "Invalid".
1393 */
1394static const char *
1395ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1396{
1397 switch (mode) {
1398 case ICE_LOCAL_FWD_MODE_ENABLED:
1399 return DEVLINK_LOCAL_FWD_ENABLED_STR;
1400 case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1401 return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1402 case ICE_LOCAL_FWD_MODE_DISABLED:
1403 return DEVLINK_LOCAL_FWD_DISABLED_STR;
1404 }
1405
1406 return "Invalid";
1407}
1408
1409/**
1410 * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1411 * @mode_str: local forwarding mode string.
1412 *
1413 * Return: Mode value or negative number if invalid.
1414 */
1415static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1416{
1417 if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1418 return ICE_LOCAL_FWD_MODE_ENABLED;
1419 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1420 return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1421 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1422 return ICE_LOCAL_FWD_MODE_DISABLED;
1423
1424 return -EINVAL;
1425}
1426
1427/**
1428 * ice_devlink_local_fwd_get - Get local_fwd parameter.
1429 * @devlink: Pointer to the devlink instance.
1430 * @id: The parameter ID to set.
1431 * @ctx: Context to store the parameter value.
1432 *
1433 * Return: Zero.
1434 */
1435static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1436 struct devlink_param_gset_ctx *ctx)
1437{
1438 struct ice_pf *pf = devlink_priv(devlink);
1439 struct ice_port_info *pi;
1440 const char *mode_str;
1441
1442 pi = pf->hw.port_info;
1443 mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1444 snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1445
1446 return 0;
1447}
1448
1449/**
1450 * ice_devlink_local_fwd_set - Set local_fwd parameter.
1451 * @devlink: Pointer to the devlink instance.
1452 * @id: The parameter ID to set.
1453 * @ctx: Context to get the parameter value.
1454 * @extack: Netlink extended ACK structure.
1455 *
1456 * Return: Zero.
1457 */
1458static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1459 struct devlink_param_gset_ctx *ctx,
1460 struct netlink_ext_ack *extack)
1461{
1462 int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1463 struct ice_pf *pf = devlink_priv(devlink);
1464 struct device *dev = ice_pf_to_dev(pf);
1465 struct ice_port_info *pi;
1466
1467 pi = pf->hw.port_info;
1468 if (pi->local_fwd_mode != new_local_fwd_mode) {
1469 pi->local_fwd_mode = new_local_fwd_mode;
1470 dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1471 ice_schedule_reset(pf, ICE_RESET_CORER);
1472 }
1473
1474 return 0;
1475}
1476
1477/**
1478 * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1479 * @devlink: Unused pointer to devlink instance.
1480 * @id: The parameter ID to validate.
1481 * @val: Value to validate.
1482 * @extack: Netlink extended ACK structure.
1483 *
1484 * Supported values are:
1485 * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1486 * "prioritized" - local_fwd traffic is prioritized in scheduling.
1487 *
1488 * Return: Zero when passed parameter value is supported. Negative value on
1489 * error.
1490 */
1491static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1492 union devlink_param_value val,
1493 struct netlink_ext_ack *extack)
1494{
1495 if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1496 NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1497 return -EINVAL;
1498 }
1499
1500 return 0;
1501}
1502
1503enum ice_param_id {
1504 ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1505 ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1506 ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1507};
1508
1509static const struct devlink_param ice_dvl_rdma_params[] = {
1510 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1511 ice_devlink_enable_roce_get,
1512 ice_devlink_enable_roce_set,
1513 ice_devlink_enable_roce_validate),
1514 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1515 ice_devlink_enable_iw_get,
1516 ice_devlink_enable_iw_set,
1517 ice_devlink_enable_iw_validate),
1518};
1519
1520static const struct devlink_param ice_dvl_sched_params[] = {
1521 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1522 "tx_scheduling_layers",
1523 DEVLINK_PARAM_TYPE_U8,
1524 BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1525 ice_devlink_tx_sched_layers_get,
1526 ice_devlink_tx_sched_layers_set,
1527 ice_devlink_tx_sched_layers_validate),
1528 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1529 "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1530 BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1531 ice_devlink_local_fwd_get,
1532 ice_devlink_local_fwd_set,
1533 ice_devlink_local_fwd_validate),
1534};
1535
1536static void ice_devlink_free(void *devlink_ptr)
1537{
1538 devlink_free((struct devlink *)devlink_ptr);
1539}
1540
1541/**
1542 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1543 * @dev: the device to allocate for
1544 *
1545 * Allocate a devlink instance for this device and return the private area as
1546 * the PF structure. The devlink memory is kept track of through devres by
1547 * adding an action to remove it when unwinding.
1548 */
1549struct ice_pf *ice_allocate_pf(struct device *dev)
1550{
1551 struct devlink *devlink;
1552
1553 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1554 if (!devlink)
1555 return NULL;
1556
1557 /* Add an action to teardown the devlink when unwinding the driver */
1558 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1559 return NULL;
1560
1561 return devlink_priv(devlink);
1562}
1563
1564/**
1565 * ice_devlink_register - Register devlink interface for this PF
1566 * @pf: the PF to register the devlink for.
1567 *
1568 * Register the devlink instance associated with this physical function.
1569 *
1570 * Return: zero on success or an error code on failure.
1571 */
1572void ice_devlink_register(struct ice_pf *pf)
1573{
1574 struct devlink *devlink = priv_to_devlink(pf);
1575
1576 devl_register(devlink);
1577}
1578
1579/**
1580 * ice_devlink_unregister - Unregister devlink resources for this PF.
1581 * @pf: the PF structure to cleanup
1582 *
1583 * Releases resources used by devlink and cleans up associated memory.
1584 */
1585void ice_devlink_unregister(struct ice_pf *pf)
1586{
1587 devl_unregister(priv_to_devlink(pf));
1588}
1589
1590int ice_devlink_register_params(struct ice_pf *pf)
1591{
1592 struct devlink *devlink = priv_to_devlink(pf);
1593 struct ice_hw *hw = &pf->hw;
1594 int status;
1595
1596 status = devl_params_register(devlink, ice_dvl_rdma_params,
1597 ARRAY_SIZE(ice_dvl_rdma_params));
1598 if (status)
1599 return status;
1600
1601 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1602 status = devl_params_register(devlink, ice_dvl_sched_params,
1603 ARRAY_SIZE(ice_dvl_sched_params));
1604
1605 return status;
1606}
1607
1608void ice_devlink_unregister_params(struct ice_pf *pf)
1609{
1610 struct devlink *devlink = priv_to_devlink(pf);
1611 struct ice_hw *hw = &pf->hw;
1612
1613 devl_params_unregister(devlink, ice_dvl_rdma_params,
1614 ARRAY_SIZE(ice_dvl_rdma_params));
1615
1616 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1617 devl_params_unregister(devlink, ice_dvl_sched_params,
1618 ARRAY_SIZE(ice_dvl_sched_params));
1619}
1620
1621#define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1622
1623static const struct devlink_region_ops ice_nvm_region_ops;
1624static const struct devlink_region_ops ice_sram_region_ops;
1625
1626/**
1627 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1628 * @devlink: the devlink instance
1629 * @ops: the devlink region to snapshot
1630 * @extack: extended ACK response structure
1631 * @data: on exit points to snapshot data buffer
1632 *
1633 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1634 * the nvm-flash or shadow-ram region.
1635 *
1636 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1637 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1638 * interface.
1639 *
1640 * @returns zero on success, and updates the data pointer. Returns a non-zero
1641 * error code on failure.
1642 */
1643static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1644 const struct devlink_region_ops *ops,
1645 struct netlink_ext_ack *extack, u8 **data)
1646{
1647 struct ice_pf *pf = devlink_priv(devlink);
1648 struct device *dev = ice_pf_to_dev(pf);
1649 struct ice_hw *hw = &pf->hw;
1650 bool read_shadow_ram;
1651 u8 *nvm_data, *tmp, i;
1652 u32 nvm_size, left;
1653 s8 num_blks;
1654 int status;
1655
1656 if (ops == &ice_nvm_region_ops) {
1657 read_shadow_ram = false;
1658 nvm_size = hw->flash.flash_size;
1659 } else if (ops == &ice_sram_region_ops) {
1660 read_shadow_ram = true;
1661 nvm_size = hw->flash.sr_words * 2u;
1662 } else {
1663 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1664 return -EOPNOTSUPP;
1665 }
1666
1667 nvm_data = vzalloc(nvm_size);
1668 if (!nvm_data)
1669 return -ENOMEM;
1670
1671 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1672 tmp = nvm_data;
1673 left = nvm_size;
1674
1675 /* Some systems take longer to read the NVM than others which causes the
1676 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1677 * this by breaking the reads of the NVM into smaller chunks that will
1678 * probably not take as long. This has some overhead since we are
1679 * increasing the number of AQ commands, but it should always work
1680 */
1681 for (i = 0; i < num_blks; i++) {
1682 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1683
1684 status = ice_acquire_nvm(hw, ICE_RES_READ);
1685 if (status) {
1686 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1687 status, hw->adminq.sq_last_status);
1688 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1689 vfree(nvm_data);
1690 return -EIO;
1691 }
1692
1693 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1694 &read_sz, tmp, read_shadow_ram);
1695 if (status) {
1696 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1697 read_sz, status, hw->adminq.sq_last_status);
1698 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1699 ice_release_nvm(hw);
1700 vfree(nvm_data);
1701 return -EIO;
1702 }
1703 ice_release_nvm(hw);
1704
1705 tmp += read_sz;
1706 left -= read_sz;
1707 }
1708
1709 *data = nvm_data;
1710
1711 return 0;
1712}
1713
1714/**
1715 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1716 * @devlink: the devlink instance
1717 * @ops: the devlink region to snapshot
1718 * @extack: extended ACK response structure
1719 * @offset: the offset to start at
1720 * @size: the amount to read
1721 * @data: the data buffer to read into
1722 *
1723 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1724 * read a section of the NVM contents.
1725 *
1726 * It reads from either the nvm-flash or shadow-ram region contents.
1727 *
1728 * @returns zero on success, and updates the data pointer. Returns a non-zero
1729 * error code on failure.
1730 */
1731static int ice_devlink_nvm_read(struct devlink *devlink,
1732 const struct devlink_region_ops *ops,
1733 struct netlink_ext_ack *extack,
1734 u64 offset, u32 size, u8 *data)
1735{
1736 struct ice_pf *pf = devlink_priv(devlink);
1737 struct device *dev = ice_pf_to_dev(pf);
1738 struct ice_hw *hw = &pf->hw;
1739 bool read_shadow_ram;
1740 u64 nvm_size;
1741 int status;
1742
1743 if (ops == &ice_nvm_region_ops) {
1744 read_shadow_ram = false;
1745 nvm_size = hw->flash.flash_size;
1746 } else if (ops == &ice_sram_region_ops) {
1747 read_shadow_ram = true;
1748 nvm_size = hw->flash.sr_words * 2u;
1749 } else {
1750 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1751 return -EOPNOTSUPP;
1752 }
1753
1754 if (offset + size >= nvm_size) {
1755 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1756 return -ERANGE;
1757 }
1758
1759 status = ice_acquire_nvm(hw, ICE_RES_READ);
1760 if (status) {
1761 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1762 status, hw->adminq.sq_last_status);
1763 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1764 return -EIO;
1765 }
1766
1767 status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1768 read_shadow_ram);
1769 if (status) {
1770 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1771 size, status, hw->adminq.sq_last_status);
1772 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1773 ice_release_nvm(hw);
1774 return -EIO;
1775 }
1776 ice_release_nvm(hw);
1777
1778 return 0;
1779}
1780
1781/**
1782 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1783 * @devlink: the devlink instance
1784 * @ops: the devlink region being snapshotted
1785 * @extack: extended ACK response structure
1786 * @data: on exit points to snapshot data buffer
1787 *
1788 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1789 * the device-caps devlink region. It captures a snapshot of the device
1790 * capabilities reported by firmware.
1791 *
1792 * @returns zero on success, and updates the data pointer. Returns a non-zero
1793 * error code on failure.
1794 */
1795static int
1796ice_devlink_devcaps_snapshot(struct devlink *devlink,
1797 const struct devlink_region_ops *ops,
1798 struct netlink_ext_ack *extack, u8 **data)
1799{
1800 struct ice_pf *pf = devlink_priv(devlink);
1801 struct device *dev = ice_pf_to_dev(pf);
1802 struct ice_hw *hw = &pf->hw;
1803 void *devcaps;
1804 int status;
1805
1806 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1807 if (!devcaps)
1808 return -ENOMEM;
1809
1810 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1811 ice_aqc_opc_list_dev_caps, NULL);
1812 if (status) {
1813 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1814 status, hw->adminq.sq_last_status);
1815 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1816 vfree(devcaps);
1817 return status;
1818 }
1819
1820 *data = (u8 *)devcaps;
1821
1822 return 0;
1823}
1824
1825static const struct devlink_region_ops ice_nvm_region_ops = {
1826 .name = "nvm-flash",
1827 .destructor = vfree,
1828 .snapshot = ice_devlink_nvm_snapshot,
1829 .read = ice_devlink_nvm_read,
1830};
1831
1832static const struct devlink_region_ops ice_sram_region_ops = {
1833 .name = "shadow-ram",
1834 .destructor = vfree,
1835 .snapshot = ice_devlink_nvm_snapshot,
1836 .read = ice_devlink_nvm_read,
1837};
1838
1839static const struct devlink_region_ops ice_devcaps_region_ops = {
1840 .name = "device-caps",
1841 .destructor = vfree,
1842 .snapshot = ice_devlink_devcaps_snapshot,
1843};
1844
1845/**
1846 * ice_devlink_init_regions - Initialize devlink regions
1847 * @pf: the PF device structure
1848 *
1849 * Create devlink regions used to enable access to dump the contents of the
1850 * flash memory on the device.
1851 */
1852void ice_devlink_init_regions(struct ice_pf *pf)
1853{
1854 struct devlink *devlink = priv_to_devlink(pf);
1855 struct device *dev = ice_pf_to_dev(pf);
1856 u64 nvm_size, sram_size;
1857
1858 nvm_size = pf->hw.flash.flash_size;
1859 pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
1860 nvm_size);
1861 if (IS_ERR(pf->nvm_region)) {
1862 dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1863 PTR_ERR(pf->nvm_region));
1864 pf->nvm_region = NULL;
1865 }
1866
1867 sram_size = pf->hw.flash.sr_words * 2u;
1868 pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
1869 1, sram_size);
1870 if (IS_ERR(pf->sram_region)) {
1871 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1872 PTR_ERR(pf->sram_region));
1873 pf->sram_region = NULL;
1874 }
1875
1876 pf->devcaps_region = devl_region_create(devlink,
1877 &ice_devcaps_region_ops, 10,
1878 ICE_AQ_MAX_BUF_LEN);
1879 if (IS_ERR(pf->devcaps_region)) {
1880 dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1881 PTR_ERR(pf->devcaps_region));
1882 pf->devcaps_region = NULL;
1883 }
1884}
1885
1886/**
1887 * ice_devlink_destroy_regions - Destroy devlink regions
1888 * @pf: the PF device structure
1889 *
1890 * Remove previously created regions for this PF.
1891 */
1892void ice_devlink_destroy_regions(struct ice_pf *pf)
1893{
1894 if (pf->nvm_region)
1895 devl_region_destroy(pf->nvm_region);
1896
1897 if (pf->sram_region)
1898 devl_region_destroy(pf->sram_region);
1899
1900 if (pf->devcaps_region)
1901 devl_region_destroy(pf->devcaps_region);
1902}