Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST) {
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs)) {
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 regulator->debugfs = NULL;
1919 }
1920 }
1921
1922 if (regulator->debugfs) {
1923 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924 ®ulator->uA_load);
1925 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1927 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1929 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930 regulator, &constraint_flags_fops);
1931 }
1932
1933 /*
1934 * Check now if the regulator is an always on regulator - if
1935 * it is then we don't need to do nearly so much work for
1936 * enable/disable calls.
1937 */
1938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 _regulator_is_enabled(rdev))
1940 regulator->always_on = true;
1941
1942 return regulator;
1943}
1944
1945static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946{
1947 if (rdev->constraints && rdev->constraints->enable_time)
1948 return rdev->constraints->enable_time;
1949 if (rdev->desc->ops->enable_time)
1950 return rdev->desc->ops->enable_time(rdev);
1951 return rdev->desc->enable_time;
1952}
1953
1954static struct regulator_supply_alias *regulator_find_supply_alias(
1955 struct device *dev, const char *supply)
1956{
1957 struct regulator_supply_alias *map;
1958
1959 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1960 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 return map;
1962
1963 return NULL;
1964}
1965
1966static void regulator_supply_alias(struct device **dev, const char **supply)
1967{
1968 struct regulator_supply_alias *map;
1969
1970 map = regulator_find_supply_alias(*dev, *supply);
1971 if (map) {
1972 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 *supply, map->alias_supply,
1974 dev_name(map->alias_dev));
1975 *dev = map->alias_dev;
1976 *supply = map->alias_supply;
1977 }
1978}
1979
1980static int regulator_match(struct device *dev, const void *data)
1981{
1982 struct regulator_dev *r = dev_to_rdev(dev);
1983
1984 return strcmp(rdev_get_name(r), data) == 0;
1985}
1986
1987static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988{
1989 struct device *dev;
1990
1991 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1992
1993 return dev ? dev_to_rdev(dev) : NULL;
1994}
1995
1996/**
1997 * regulator_dev_lookup - lookup a regulator device.
1998 * @dev: device for regulator "consumer".
1999 * @supply: Supply name or regulator ID.
2000 *
2001 * If successful, returns a struct regulator_dev that corresponds to the name
2002 * @supply and with the embedded struct device refcount incremented by one.
2003 * The refcount must be dropped by calling put_device().
2004 * On failure one of the following ERR-PTR-encoded values is returned:
2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006 * in the future.
2007 */
2008static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 const char *supply)
2010{
2011 struct regulator_dev *r = NULL;
2012 struct device_node *node;
2013 struct regulator_map *map;
2014 const char *devname = NULL;
2015
2016 regulator_supply_alias(&dev, &supply);
2017
2018 /* first do a dt based lookup */
2019 if (dev && dev->of_node) {
2020 node = of_get_regulator(dev, supply);
2021 if (node) {
2022 r = of_find_regulator_by_node(node);
2023 of_node_put(node);
2024 if (r)
2025 return r;
2026
2027 /*
2028 * We have a node, but there is no device.
2029 * assume it has not registered yet.
2030 */
2031 return ERR_PTR(-EPROBE_DEFER);
2032 }
2033 }
2034
2035 /* if not found, try doing it non-dt way */
2036 if (dev)
2037 devname = dev_name(dev);
2038
2039 mutex_lock(®ulator_list_mutex);
2040 list_for_each_entry(map, ®ulator_map_list, list) {
2041 /* If the mapping has a device set up it must match */
2042 if (map->dev_name &&
2043 (!devname || strcmp(map->dev_name, devname)))
2044 continue;
2045
2046 if (strcmp(map->supply, supply) == 0 &&
2047 get_device(&map->regulator->dev)) {
2048 r = map->regulator;
2049 break;
2050 }
2051 }
2052 mutex_unlock(®ulator_list_mutex);
2053
2054 if (r)
2055 return r;
2056
2057 r = regulator_lookup_by_name(supply);
2058 if (r)
2059 return r;
2060
2061 return ERR_PTR(-ENODEV);
2062}
2063
2064static int regulator_resolve_supply(struct regulator_dev *rdev)
2065{
2066 struct regulator_dev *r;
2067 struct device *dev = rdev->dev.parent;
2068 struct ww_acquire_ctx ww_ctx;
2069 int ret = 0;
2070
2071 /* No supply to resolve? */
2072 if (!rdev->supply_name)
2073 return 0;
2074
2075 /* Supply already resolved? (fast-path without locking contention) */
2076 if (rdev->supply)
2077 return 0;
2078
2079 r = regulator_dev_lookup(dev, rdev->supply_name);
2080 if (IS_ERR(r)) {
2081 ret = PTR_ERR(r);
2082
2083 /* Did the lookup explicitly defer for us? */
2084 if (ret == -EPROBE_DEFER)
2085 goto out;
2086
2087 if (have_full_constraints()) {
2088 r = dummy_regulator_rdev;
2089 get_device(&r->dev);
2090 } else {
2091 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 rdev->supply_name, rdev->desc->name);
2093 ret = -EPROBE_DEFER;
2094 goto out;
2095 }
2096 }
2097
2098 if (r == rdev) {
2099 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 rdev->desc->name, rdev->supply_name);
2101 if (!have_full_constraints()) {
2102 ret = -EINVAL;
2103 goto out;
2104 }
2105 r = dummy_regulator_rdev;
2106 get_device(&r->dev);
2107 }
2108
2109 /*
2110 * If the supply's parent device is not the same as the
2111 * regulator's parent device, then ensure the parent device
2112 * is bound before we resolve the supply, in case the parent
2113 * device get probe deferred and unregisters the supply.
2114 */
2115 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 if (!device_is_bound(r->dev.parent)) {
2117 put_device(&r->dev);
2118 ret = -EPROBE_DEFER;
2119 goto out;
2120 }
2121 }
2122
2123 /* Recursively resolve the supply of the supply */
2124 ret = regulator_resolve_supply(r);
2125 if (ret < 0) {
2126 put_device(&r->dev);
2127 goto out;
2128 }
2129
2130 /*
2131 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 * between rdev->supply null check and setting rdev->supply in
2133 * set_supply() from concurrent tasks.
2134 */
2135 regulator_lock_two(rdev, r, &ww_ctx);
2136
2137 /* Supply just resolved by a concurrent task? */
2138 if (rdev->supply) {
2139 regulator_unlock_two(rdev, r, &ww_ctx);
2140 put_device(&r->dev);
2141 goto out;
2142 }
2143
2144 ret = set_supply(rdev, r);
2145 if (ret < 0) {
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147 put_device(&r->dev);
2148 goto out;
2149 }
2150
2151 regulator_unlock_two(rdev, r, &ww_ctx);
2152
2153 /*
2154 * In set_machine_constraints() we may have turned this regulator on
2155 * but we couldn't propagate to the supply if it hadn't been resolved
2156 * yet. Do it now.
2157 */
2158 if (rdev->use_count) {
2159 ret = regulator_enable(rdev->supply);
2160 if (ret < 0) {
2161 _regulator_put(rdev->supply);
2162 rdev->supply = NULL;
2163 goto out;
2164 }
2165 }
2166
2167out:
2168 return ret;
2169}
2170
2171/* Internal regulator request function */
2172struct regulator *_regulator_get(struct device *dev, const char *id,
2173 enum regulator_get_type get_type)
2174{
2175 struct regulator_dev *rdev;
2176 struct regulator *regulator;
2177 struct device_link *link;
2178 int ret;
2179
2180 if (get_type >= MAX_GET_TYPE) {
2181 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 if (id == NULL) {
2186 pr_err("get() with no identifier\n");
2187 return ERR_PTR(-EINVAL);
2188 }
2189
2190 rdev = regulator_dev_lookup(dev, id);
2191 if (IS_ERR(rdev)) {
2192 ret = PTR_ERR(rdev);
2193
2194 /*
2195 * If regulator_dev_lookup() fails with error other
2196 * than -ENODEV our job here is done, we simply return it.
2197 */
2198 if (ret != -ENODEV)
2199 return ERR_PTR(ret);
2200
2201 if (!have_full_constraints()) {
2202 dev_warn(dev,
2203 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2204 return ERR_PTR(-ENODEV);
2205 }
2206
2207 switch (get_type) {
2208 case NORMAL_GET:
2209 /*
2210 * Assume that a regulator is physically present and
2211 * enabled, even if it isn't hooked up, and just
2212 * provide a dummy.
2213 */
2214 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 rdev = dummy_regulator_rdev;
2216 get_device(&rdev->dev);
2217 break;
2218
2219 case EXCLUSIVE_GET:
2220 dev_warn(dev,
2221 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2222 fallthrough;
2223
2224 default:
2225 return ERR_PTR(-ENODEV);
2226 }
2227 }
2228
2229 if (rdev->exclusive) {
2230 regulator = ERR_PTR(-EPERM);
2231 put_device(&rdev->dev);
2232 return regulator;
2233 }
2234
2235 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 regulator = ERR_PTR(-EBUSY);
2237 put_device(&rdev->dev);
2238 return regulator;
2239 }
2240
2241 mutex_lock(®ulator_list_mutex);
2242 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 mutex_unlock(®ulator_list_mutex);
2244
2245 if (ret != 0) {
2246 regulator = ERR_PTR(-EPROBE_DEFER);
2247 put_device(&rdev->dev);
2248 return regulator;
2249 }
2250
2251 ret = regulator_resolve_supply(rdev);
2252 if (ret < 0) {
2253 regulator = ERR_PTR(ret);
2254 put_device(&rdev->dev);
2255 return regulator;
2256 }
2257
2258 if (!try_module_get(rdev->owner)) {
2259 regulator = ERR_PTR(-EPROBE_DEFER);
2260 put_device(&rdev->dev);
2261 return regulator;
2262 }
2263
2264 regulator_lock(rdev);
2265 regulator = create_regulator(rdev, dev, id);
2266 regulator_unlock(rdev);
2267 if (regulator == NULL) {
2268 regulator = ERR_PTR(-ENOMEM);
2269 module_put(rdev->owner);
2270 put_device(&rdev->dev);
2271 return regulator;
2272 }
2273
2274 rdev->open_count++;
2275 if (get_type == EXCLUSIVE_GET) {
2276 rdev->exclusive = 1;
2277
2278 ret = _regulator_is_enabled(rdev);
2279 if (ret > 0) {
2280 rdev->use_count = 1;
2281 regulator->enable_count = 1;
2282
2283 /* Propagate the regulator state to its supply */
2284 if (rdev->supply) {
2285 ret = regulator_enable(rdev->supply);
2286 if (ret < 0) {
2287 destroy_regulator(regulator);
2288 module_put(rdev->owner);
2289 put_device(&rdev->dev);
2290 return ERR_PTR(ret);
2291 }
2292 }
2293 } else {
2294 rdev->use_count = 0;
2295 regulator->enable_count = 0;
2296 }
2297 }
2298
2299 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300 if (!IS_ERR_OR_NULL(link))
2301 regulator->device_link = true;
2302
2303 return regulator;
2304}
2305
2306/**
2307 * regulator_get - lookup and obtain a reference to a regulator.
2308 * @dev: device for regulator "consumer"
2309 * @id: Supply name or regulator ID.
2310 *
2311 * Returns a struct regulator corresponding to the regulator producer,
2312 * or IS_ERR() condition containing errno.
2313 *
2314 * Use of supply names configured via set_consumer_device_supply() is
2315 * strongly encouraged. It is recommended that the supply name used
2316 * should match the name used for the supply and/or the relevant
2317 * device pins in the datasheet.
2318 */
2319struct regulator *regulator_get(struct device *dev, const char *id)
2320{
2321 return _regulator_get(dev, id, NORMAL_GET);
2322}
2323EXPORT_SYMBOL_GPL(regulator_get);
2324
2325/**
2326 * regulator_get_exclusive - obtain exclusive access to a regulator.
2327 * @dev: device for regulator "consumer"
2328 * @id: Supply name or regulator ID.
2329 *
2330 * Returns a struct regulator corresponding to the regulator producer,
2331 * or IS_ERR() condition containing errno. Other consumers will be
2332 * unable to obtain this regulator while this reference is held and the
2333 * use count for the regulator will be initialised to reflect the current
2334 * state of the regulator.
2335 *
2336 * This is intended for use by consumers which cannot tolerate shared
2337 * use of the regulator such as those which need to force the
2338 * regulator off for correct operation of the hardware they are
2339 * controlling.
2340 *
2341 * Use of supply names configured via set_consumer_device_supply() is
2342 * strongly encouraged. It is recommended that the supply name used
2343 * should match the name used for the supply and/or the relevant
2344 * device pins in the datasheet.
2345 */
2346struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2347{
2348 return _regulator_get(dev, id, EXCLUSIVE_GET);
2349}
2350EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2351
2352/**
2353 * regulator_get_optional - obtain optional access to a regulator.
2354 * @dev: device for regulator "consumer"
2355 * @id: Supply name or regulator ID.
2356 *
2357 * Returns a struct regulator corresponding to the regulator producer,
2358 * or IS_ERR() condition containing errno.
2359 *
2360 * This is intended for use by consumers for devices which can have
2361 * some supplies unconnected in normal use, such as some MMC devices.
2362 * It can allow the regulator core to provide stub supplies for other
2363 * supplies requested using normal regulator_get() calls without
2364 * disrupting the operation of drivers that can handle absent
2365 * supplies.
2366 *
2367 * Use of supply names configured via set_consumer_device_supply() is
2368 * strongly encouraged. It is recommended that the supply name used
2369 * should match the name used for the supply and/or the relevant
2370 * device pins in the datasheet.
2371 */
2372struct regulator *regulator_get_optional(struct device *dev, const char *id)
2373{
2374 return _regulator_get(dev, id, OPTIONAL_GET);
2375}
2376EXPORT_SYMBOL_GPL(regulator_get_optional);
2377
2378static void destroy_regulator(struct regulator *regulator)
2379{
2380 struct regulator_dev *rdev = regulator->rdev;
2381
2382 debugfs_remove_recursive(regulator->debugfs);
2383
2384 if (regulator->dev) {
2385 if (regulator->device_link)
2386 device_link_remove(regulator->dev, &rdev->dev);
2387
2388 /* remove any sysfs entries */
2389 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2390 }
2391
2392 regulator_lock(rdev);
2393 list_del(®ulator->list);
2394
2395 rdev->open_count--;
2396 rdev->exclusive = 0;
2397 regulator_unlock(rdev);
2398
2399 kfree_const(regulator->supply_name);
2400 kfree(regulator);
2401}
2402
2403/* regulator_list_mutex lock held by regulator_put() */
2404static void _regulator_put(struct regulator *regulator)
2405{
2406 struct regulator_dev *rdev;
2407
2408 if (IS_ERR_OR_NULL(regulator))
2409 return;
2410
2411 lockdep_assert_held_once(®ulator_list_mutex);
2412
2413 /* Docs say you must disable before calling regulator_put() */
2414 WARN_ON(regulator->enable_count);
2415
2416 rdev = regulator->rdev;
2417
2418 destroy_regulator(regulator);
2419
2420 module_put(rdev->owner);
2421 put_device(&rdev->dev);
2422}
2423
2424/**
2425 * regulator_put - "free" the regulator source
2426 * @regulator: regulator source
2427 *
2428 * Note: drivers must ensure that all regulator_enable calls made on this
2429 * regulator source are balanced by regulator_disable calls prior to calling
2430 * this function.
2431 */
2432void regulator_put(struct regulator *regulator)
2433{
2434 mutex_lock(®ulator_list_mutex);
2435 _regulator_put(regulator);
2436 mutex_unlock(®ulator_list_mutex);
2437}
2438EXPORT_SYMBOL_GPL(regulator_put);
2439
2440/**
2441 * regulator_register_supply_alias - Provide device alias for supply lookup
2442 *
2443 * @dev: device that will be given as the regulator "consumer"
2444 * @id: Supply name or regulator ID
2445 * @alias_dev: device that should be used to lookup the supply
2446 * @alias_id: Supply name or regulator ID that should be used to lookup the
2447 * supply
2448 *
2449 * All lookups for id on dev will instead be conducted for alias_id on
2450 * alias_dev.
2451 */
2452int regulator_register_supply_alias(struct device *dev, const char *id,
2453 struct device *alias_dev,
2454 const char *alias_id)
2455{
2456 struct regulator_supply_alias *map;
2457
2458 map = regulator_find_supply_alias(dev, id);
2459 if (map)
2460 return -EEXIST;
2461
2462 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463 if (!map)
2464 return -ENOMEM;
2465
2466 map->src_dev = dev;
2467 map->src_supply = id;
2468 map->alias_dev = alias_dev;
2469 map->alias_supply = alias_id;
2470
2471 list_add(&map->list, ®ulator_supply_alias_list);
2472
2473 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474 id, dev_name(dev), alias_id, dev_name(alias_dev));
2475
2476 return 0;
2477}
2478EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2479
2480/**
2481 * regulator_unregister_supply_alias - Remove device alias
2482 *
2483 * @dev: device that will be given as the regulator "consumer"
2484 * @id: Supply name or regulator ID
2485 *
2486 * Remove a lookup alias if one exists for id on dev.
2487 */
2488void regulator_unregister_supply_alias(struct device *dev, const char *id)
2489{
2490 struct regulator_supply_alias *map;
2491
2492 map = regulator_find_supply_alias(dev, id);
2493 if (map) {
2494 list_del(&map->list);
2495 kfree(map);
2496 }
2497}
2498EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2499
2500/**
2501 * regulator_bulk_register_supply_alias - register multiple aliases
2502 *
2503 * @dev: device that will be given as the regulator "consumer"
2504 * @id: List of supply names or regulator IDs
2505 * @alias_dev: device that should be used to lookup the supply
2506 * @alias_id: List of supply names or regulator IDs that should be used to
2507 * lookup the supply
2508 * @num_id: Number of aliases to register
2509 *
2510 * @return 0 on success, an errno on failure.
2511 *
2512 * This helper function allows drivers to register several supply
2513 * aliases in one operation. If any of the aliases cannot be
2514 * registered any aliases that were registered will be removed
2515 * before returning to the caller.
2516 */
2517int regulator_bulk_register_supply_alias(struct device *dev,
2518 const char *const *id,
2519 struct device *alias_dev,
2520 const char *const *alias_id,
2521 int num_id)
2522{
2523 int i;
2524 int ret;
2525
2526 for (i = 0; i < num_id; ++i) {
2527 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528 alias_id[i]);
2529 if (ret < 0)
2530 goto err;
2531 }
2532
2533 return 0;
2534
2535err:
2536 dev_err(dev,
2537 "Failed to create supply alias %s,%s -> %s,%s\n",
2538 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2539
2540 while (--i >= 0)
2541 regulator_unregister_supply_alias(dev, id[i]);
2542
2543 return ret;
2544}
2545EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2546
2547/**
2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2549 *
2550 * @dev: device that will be given as the regulator "consumer"
2551 * @id: List of supply names or regulator IDs
2552 * @num_id: Number of aliases to unregister
2553 *
2554 * This helper function allows drivers to unregister several supply
2555 * aliases in one operation.
2556 */
2557void regulator_bulk_unregister_supply_alias(struct device *dev,
2558 const char *const *id,
2559 int num_id)
2560{
2561 int i;
2562
2563 for (i = 0; i < num_id; ++i)
2564 regulator_unregister_supply_alias(dev, id[i]);
2565}
2566EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2567
2568
2569/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571 const struct regulator_config *config)
2572{
2573 struct regulator_enable_gpio *pin, *new_pin;
2574 struct gpio_desc *gpiod;
2575
2576 gpiod = config->ena_gpiod;
2577 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2578
2579 mutex_lock(®ulator_list_mutex);
2580
2581 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2582 if (pin->gpiod == gpiod) {
2583 rdev_dbg(rdev, "GPIO is already used\n");
2584 goto update_ena_gpio_to_rdev;
2585 }
2586 }
2587
2588 if (new_pin == NULL) {
2589 mutex_unlock(®ulator_list_mutex);
2590 return -ENOMEM;
2591 }
2592
2593 pin = new_pin;
2594 new_pin = NULL;
2595
2596 pin->gpiod = gpiod;
2597 list_add(&pin->list, ®ulator_ena_gpio_list);
2598
2599update_ena_gpio_to_rdev:
2600 pin->request_count++;
2601 rdev->ena_pin = pin;
2602
2603 mutex_unlock(®ulator_list_mutex);
2604 kfree(new_pin);
2605
2606 return 0;
2607}
2608
2609static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2610{
2611 struct regulator_enable_gpio *pin, *n;
2612
2613 if (!rdev->ena_pin)
2614 return;
2615
2616 /* Free the GPIO only in case of no use */
2617 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2618 if (pin != rdev->ena_pin)
2619 continue;
2620
2621 if (--pin->request_count)
2622 break;
2623
2624 gpiod_put(pin->gpiod);
2625 list_del(&pin->list);
2626 kfree(pin);
2627 break;
2628 }
2629
2630 rdev->ena_pin = NULL;
2631}
2632
2633/**
2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635 * @rdev: regulator_dev structure
2636 * @enable: enable GPIO at initial use?
2637 *
2638 * GPIO is enabled in case of initial use. (enable_count is 0)
2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2640 */
2641static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2642{
2643 struct regulator_enable_gpio *pin = rdev->ena_pin;
2644
2645 if (!pin)
2646 return -EINVAL;
2647
2648 if (enable) {
2649 /* Enable GPIO at initial use */
2650 if (pin->enable_count == 0)
2651 gpiod_set_value_cansleep(pin->gpiod, 1);
2652
2653 pin->enable_count++;
2654 } else {
2655 if (pin->enable_count > 1) {
2656 pin->enable_count--;
2657 return 0;
2658 }
2659
2660 /* Disable GPIO if not used */
2661 if (pin->enable_count <= 1) {
2662 gpiod_set_value_cansleep(pin->gpiod, 0);
2663 pin->enable_count = 0;
2664 }
2665 }
2666
2667 return 0;
2668}
2669
2670/**
2671 * _regulator_delay_helper - a delay helper function
2672 * @delay: time to delay in microseconds
2673 *
2674 * Delay for the requested amount of time as per the guidelines in:
2675 *
2676 * Documentation/timers/timers-howto.rst
2677 *
2678 * The assumption here is that these regulator operations will never used in
2679 * atomic context and therefore sleeping functions can be used.
2680 */
2681static void _regulator_delay_helper(unsigned int delay)
2682{
2683 unsigned int ms = delay / 1000;
2684 unsigned int us = delay % 1000;
2685
2686 if (ms > 0) {
2687 /*
2688 * For small enough values, handle super-millisecond
2689 * delays in the usleep_range() call below.
2690 */
2691 if (ms < 20)
2692 us += ms * 1000;
2693 else
2694 msleep(ms);
2695 }
2696
2697 /*
2698 * Give the scheduler some room to coalesce with any other
2699 * wakeup sources. For delays shorter than 10 us, don't even
2700 * bother setting up high-resolution timers and just busy-
2701 * loop.
2702 */
2703 if (us >= 10)
2704 usleep_range(us, us + 100);
2705 else
2706 udelay(us);
2707}
2708
2709/**
2710 * _regulator_check_status_enabled
2711 *
2712 * A helper function to check if the regulator status can be interpreted
2713 * as 'regulator is enabled'.
2714 * @rdev: the regulator device to check
2715 *
2716 * Return:
2717 * * 1 - if status shows regulator is in enabled state
2718 * * 0 - if not enabled state
2719 * * Error Value - as received from ops->get_status()
2720 */
2721static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2722{
2723 int ret = rdev->desc->ops->get_status(rdev);
2724
2725 if (ret < 0) {
2726 rdev_info(rdev, "get_status returned error: %d\n", ret);
2727 return ret;
2728 }
2729
2730 switch (ret) {
2731 case REGULATOR_STATUS_OFF:
2732 case REGULATOR_STATUS_ERROR:
2733 case REGULATOR_STATUS_UNDEFINED:
2734 return 0;
2735 default:
2736 return 1;
2737 }
2738}
2739
2740static int _regulator_do_enable(struct regulator_dev *rdev)
2741{
2742 int ret, delay;
2743
2744 /* Query before enabling in case configuration dependent. */
2745 ret = _regulator_get_enable_time(rdev);
2746 if (ret >= 0) {
2747 delay = ret;
2748 } else {
2749 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750 delay = 0;
2751 }
2752
2753 trace_regulator_enable(rdev_get_name(rdev));
2754
2755 if (rdev->desc->off_on_delay) {
2756 /* if needed, keep a distance of off_on_delay from last time
2757 * this regulator was disabled.
2758 */
2759 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2761
2762 if (remaining > 0)
2763 _regulator_delay_helper(remaining);
2764 }
2765
2766 if (rdev->ena_pin) {
2767 if (!rdev->ena_gpio_state) {
2768 ret = regulator_ena_gpio_ctrl(rdev, true);
2769 if (ret < 0)
2770 return ret;
2771 rdev->ena_gpio_state = 1;
2772 }
2773 } else if (rdev->desc->ops->enable) {
2774 ret = rdev->desc->ops->enable(rdev);
2775 if (ret < 0)
2776 return ret;
2777 } else {
2778 return -EINVAL;
2779 }
2780
2781 /* Allow the regulator to ramp; it would be useful to extend
2782 * this for bulk operations so that the regulators can ramp
2783 * together.
2784 */
2785 trace_regulator_enable_delay(rdev_get_name(rdev));
2786
2787 /* If poll_enabled_time is set, poll upto the delay calculated
2788 * above, delaying poll_enabled_time uS to check if the regulator
2789 * actually got enabled.
2790 * If the regulator isn't enabled after our delay helper has expired,
2791 * return -ETIMEDOUT.
2792 */
2793 if (rdev->desc->poll_enabled_time) {
2794 int time_remaining = delay;
2795
2796 while (time_remaining > 0) {
2797 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2798
2799 if (rdev->desc->ops->get_status) {
2800 ret = _regulator_check_status_enabled(rdev);
2801 if (ret < 0)
2802 return ret;
2803 else if (ret)
2804 break;
2805 } else if (rdev->desc->ops->is_enabled(rdev))
2806 break;
2807
2808 time_remaining -= rdev->desc->poll_enabled_time;
2809 }
2810
2811 if (time_remaining <= 0) {
2812 rdev_err(rdev, "Enabled check timed out\n");
2813 return -ETIMEDOUT;
2814 }
2815 } else {
2816 _regulator_delay_helper(delay);
2817 }
2818
2819 trace_regulator_enable_complete(rdev_get_name(rdev));
2820
2821 return 0;
2822}
2823
2824/**
2825 * _regulator_handle_consumer_enable - handle that a consumer enabled
2826 * @regulator: regulator source
2827 *
2828 * Some things on a regulator consumer (like the contribution towards total
2829 * load on the regulator) only have an effect when the consumer wants the
2830 * regulator enabled. Explained in example with two consumers of the same
2831 * regulator:
2832 * consumer A: set_load(100); => total load = 0
2833 * consumer A: regulator_enable(); => total load = 100
2834 * consumer B: set_load(1000); => total load = 100
2835 * consumer B: regulator_enable(); => total load = 1100
2836 * consumer A: regulator_disable(); => total_load = 1000
2837 *
2838 * This function (together with _regulator_handle_consumer_disable) is
2839 * responsible for keeping track of the refcount for a given regulator consumer
2840 * and applying / unapplying these things.
2841 *
2842 * Returns 0 upon no error; -error upon error.
2843 */
2844static int _regulator_handle_consumer_enable(struct regulator *regulator)
2845{
2846 int ret;
2847 struct regulator_dev *rdev = regulator->rdev;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 regulator->enable_count++;
2852 if (regulator->uA_load && regulator->enable_count == 1) {
2853 ret = drms_uA_update(rdev);
2854 if (ret)
2855 regulator->enable_count--;
2856 return ret;
2857 }
2858
2859 return 0;
2860}
2861
2862/**
2863 * _regulator_handle_consumer_disable - handle that a consumer disabled
2864 * @regulator: regulator source
2865 *
2866 * The opposite of _regulator_handle_consumer_enable().
2867 *
2868 * Returns 0 upon no error; -error upon error.
2869 */
2870static int _regulator_handle_consumer_disable(struct regulator *regulator)
2871{
2872 struct regulator_dev *rdev = regulator->rdev;
2873
2874 lockdep_assert_held_once(&rdev->mutex.base);
2875
2876 if (!regulator->enable_count) {
2877 rdev_err(rdev, "Underflow of regulator enable count\n");
2878 return -EINVAL;
2879 }
2880
2881 regulator->enable_count--;
2882 if (regulator->uA_load && regulator->enable_count == 0)
2883 return drms_uA_update(rdev);
2884
2885 return 0;
2886}
2887
2888/* locks held by regulator_enable() */
2889static int _regulator_enable(struct regulator *regulator)
2890{
2891 struct regulator_dev *rdev = regulator->rdev;
2892 int ret;
2893
2894 lockdep_assert_held_once(&rdev->mutex.base);
2895
2896 if (rdev->use_count == 0 && rdev->supply) {
2897 ret = _regulator_enable(rdev->supply);
2898 if (ret < 0)
2899 return ret;
2900 }
2901
2902 /* balance only if there are regulators coupled */
2903 if (rdev->coupling_desc.n_coupled > 1) {
2904 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 if (ret < 0)
2906 goto err_disable_supply;
2907 }
2908
2909 ret = _regulator_handle_consumer_enable(regulator);
2910 if (ret < 0)
2911 goto err_disable_supply;
2912
2913 if (rdev->use_count == 0) {
2914 /*
2915 * The regulator may already be enabled if it's not switchable
2916 * or was left on
2917 */
2918 ret = _regulator_is_enabled(rdev);
2919 if (ret == -EINVAL || ret == 0) {
2920 if (!regulator_ops_is_valid(rdev,
2921 REGULATOR_CHANGE_STATUS)) {
2922 ret = -EPERM;
2923 goto err_consumer_disable;
2924 }
2925
2926 ret = _regulator_do_enable(rdev);
2927 if (ret < 0)
2928 goto err_consumer_disable;
2929
2930 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931 NULL);
2932 } else if (ret < 0) {
2933 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934 goto err_consumer_disable;
2935 }
2936 /* Fallthrough on positive return values - already enabled */
2937 }
2938
2939 if (regulator->enable_count == 1)
2940 rdev->use_count++;
2941
2942 return 0;
2943
2944err_consumer_disable:
2945 _regulator_handle_consumer_disable(regulator);
2946
2947err_disable_supply:
2948 if (rdev->use_count == 0 && rdev->supply)
2949 _regulator_disable(rdev->supply);
2950
2951 return ret;
2952}
2953
2954/**
2955 * regulator_enable - enable regulator output
2956 * @regulator: regulator source
2957 *
2958 * Request that the regulator be enabled with the regulator output at
2959 * the predefined voltage or current value. Calls to regulator_enable()
2960 * must be balanced with calls to regulator_disable().
2961 *
2962 * NOTE: the output value can be set by other drivers, boot loader or may be
2963 * hardwired in the regulator.
2964 */
2965int regulator_enable(struct regulator *regulator)
2966{
2967 struct regulator_dev *rdev = regulator->rdev;
2968 struct ww_acquire_ctx ww_ctx;
2969 int ret;
2970
2971 regulator_lock_dependent(rdev, &ww_ctx);
2972 ret = _regulator_enable(regulator);
2973 regulator_unlock_dependent(rdev, &ww_ctx);
2974
2975 return ret;
2976}
2977EXPORT_SYMBOL_GPL(regulator_enable);
2978
2979static int _regulator_do_disable(struct regulator_dev *rdev)
2980{
2981 int ret;
2982
2983 trace_regulator_disable(rdev_get_name(rdev));
2984
2985 if (rdev->ena_pin) {
2986 if (rdev->ena_gpio_state) {
2987 ret = regulator_ena_gpio_ctrl(rdev, false);
2988 if (ret < 0)
2989 return ret;
2990 rdev->ena_gpio_state = 0;
2991 }
2992
2993 } else if (rdev->desc->ops->disable) {
2994 ret = rdev->desc->ops->disable(rdev);
2995 if (ret != 0)
2996 return ret;
2997 }
2998
2999 if (rdev->desc->off_on_delay)
3000 rdev->last_off = ktime_get_boottime();
3001
3002 trace_regulator_disable_complete(rdev_get_name(rdev));
3003
3004 return 0;
3005}
3006
3007/* locks held by regulator_disable() */
3008static int _regulator_disable(struct regulator *regulator)
3009{
3010 struct regulator_dev *rdev = regulator->rdev;
3011 int ret = 0;
3012
3013 lockdep_assert_held_once(&rdev->mutex.base);
3014
3015 if (WARN(regulator->enable_count == 0,
3016 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017 return -EIO;
3018
3019 if (regulator->enable_count == 1) {
3020 /* disabling last enable_count from this regulator */
3021 /* are we the last user and permitted to disable ? */
3022 if (rdev->use_count == 1 &&
3023 (rdev->constraints && !rdev->constraints->always_on)) {
3024
3025 /* we are last user */
3026 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027 ret = _notifier_call_chain(rdev,
3028 REGULATOR_EVENT_PRE_DISABLE,
3029 NULL);
3030 if (ret & NOTIFY_STOP_MASK)
3031 return -EINVAL;
3032
3033 ret = _regulator_do_disable(rdev);
3034 if (ret < 0) {
3035 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036 _notifier_call_chain(rdev,
3037 REGULATOR_EVENT_ABORT_DISABLE,
3038 NULL);
3039 return ret;
3040 }
3041 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042 NULL);
3043 }
3044
3045 rdev->use_count = 0;
3046 } else if (rdev->use_count > 1) {
3047 rdev->use_count--;
3048 }
3049 }
3050
3051 if (ret == 0)
3052 ret = _regulator_handle_consumer_disable(regulator);
3053
3054 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3056
3057 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058 ret = _regulator_disable(rdev->supply);
3059
3060 return ret;
3061}
3062
3063/**
3064 * regulator_disable - disable regulator output
3065 * @regulator: regulator source
3066 *
3067 * Disable the regulator output voltage or current. Calls to
3068 * regulator_enable() must be balanced with calls to
3069 * regulator_disable().
3070 *
3071 * NOTE: this will only disable the regulator output if no other consumer
3072 * devices have it enabled, the regulator device supports disabling and
3073 * machine constraints permit this operation.
3074 */
3075int regulator_disable(struct regulator *regulator)
3076{
3077 struct regulator_dev *rdev = regulator->rdev;
3078 struct ww_acquire_ctx ww_ctx;
3079 int ret;
3080
3081 regulator_lock_dependent(rdev, &ww_ctx);
3082 ret = _regulator_disable(regulator);
3083 regulator_unlock_dependent(rdev, &ww_ctx);
3084
3085 return ret;
3086}
3087EXPORT_SYMBOL_GPL(regulator_disable);
3088
3089/* locks held by regulator_force_disable() */
3090static int _regulator_force_disable(struct regulator_dev *rdev)
3091{
3092 int ret = 0;
3093
3094 lockdep_assert_held_once(&rdev->mutex.base);
3095
3096 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_PRE_DISABLE, NULL);
3098 if (ret & NOTIFY_STOP_MASK)
3099 return -EINVAL;
3100
3101 ret = _regulator_do_disable(rdev);
3102 if (ret < 0) {
3103 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106 return ret;
3107 }
3108
3109 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110 REGULATOR_EVENT_DISABLE, NULL);
3111
3112 return 0;
3113}
3114
3115/**
3116 * regulator_force_disable - force disable regulator output
3117 * @regulator: regulator source
3118 *
3119 * Forcibly disable the regulator output voltage or current.
3120 * NOTE: this *will* disable the regulator output even if other consumer
3121 * devices have it enabled. This should be used for situations when device
3122 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3123 */
3124int regulator_force_disable(struct regulator *regulator)
3125{
3126 struct regulator_dev *rdev = regulator->rdev;
3127 struct ww_acquire_ctx ww_ctx;
3128 int ret;
3129
3130 regulator_lock_dependent(rdev, &ww_ctx);
3131
3132 ret = _regulator_force_disable(regulator->rdev);
3133
3134 if (rdev->coupling_desc.n_coupled > 1)
3135 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3136
3137 if (regulator->uA_load) {
3138 regulator->uA_load = 0;
3139 ret = drms_uA_update(rdev);
3140 }
3141
3142 if (rdev->use_count != 0 && rdev->supply)
3143 _regulator_disable(rdev->supply);
3144
3145 regulator_unlock_dependent(rdev, &ww_ctx);
3146
3147 return ret;
3148}
3149EXPORT_SYMBOL_GPL(regulator_force_disable);
3150
3151static void regulator_disable_work(struct work_struct *work)
3152{
3153 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154 disable_work.work);
3155 struct ww_acquire_ctx ww_ctx;
3156 int count, i, ret;
3157 struct regulator *regulator;
3158 int total_count = 0;
3159
3160 regulator_lock_dependent(rdev, &ww_ctx);
3161
3162 /*
3163 * Workqueue functions queue the new work instance while the previous
3164 * work instance is being processed. Cancel the queued work instance
3165 * as the work instance under processing does the job of the queued
3166 * work instance.
3167 */
3168 cancel_delayed_work(&rdev->disable_work);
3169
3170 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171 count = regulator->deferred_disables;
3172
3173 if (!count)
3174 continue;
3175
3176 total_count += count;
3177 regulator->deferred_disables = 0;
3178
3179 for (i = 0; i < count; i++) {
3180 ret = _regulator_disable(regulator);
3181 if (ret != 0)
3182 rdev_err(rdev, "Deferred disable failed: %pe\n",
3183 ERR_PTR(ret));
3184 }
3185 }
3186 WARN_ON(!total_count);
3187
3188 if (rdev->coupling_desc.n_coupled > 1)
3189 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3190
3191 regulator_unlock_dependent(rdev, &ww_ctx);
3192}
3193
3194/**
3195 * regulator_disable_deferred - disable regulator output with delay
3196 * @regulator: regulator source
3197 * @ms: milliseconds until the regulator is disabled
3198 *
3199 * Execute regulator_disable() on the regulator after a delay. This
3200 * is intended for use with devices that require some time to quiesce.
3201 *
3202 * NOTE: this will only disable the regulator output if no other consumer
3203 * devices have it enabled, the regulator device supports disabling and
3204 * machine constraints permit this operation.
3205 */
3206int regulator_disable_deferred(struct regulator *regulator, int ms)
3207{
3208 struct regulator_dev *rdev = regulator->rdev;
3209
3210 if (!ms)
3211 return regulator_disable(regulator);
3212
3213 regulator_lock(rdev);
3214 regulator->deferred_disables++;
3215 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216 msecs_to_jiffies(ms));
3217 regulator_unlock(rdev);
3218
3219 return 0;
3220}
3221EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3222
3223static int _regulator_is_enabled(struct regulator_dev *rdev)
3224{
3225 /* A GPIO control always takes precedence */
3226 if (rdev->ena_pin)
3227 return rdev->ena_gpio_state;
3228
3229 /* If we don't know then assume that the regulator is always on */
3230 if (!rdev->desc->ops->is_enabled)
3231 return 1;
3232
3233 return rdev->desc->ops->is_enabled(rdev);
3234}
3235
3236static int _regulator_list_voltage(struct regulator_dev *rdev,
3237 unsigned selector, int lock)
3238{
3239 const struct regulator_ops *ops = rdev->desc->ops;
3240 int ret;
3241
3242 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243 return rdev->desc->fixed_uV;
3244
3245 if (ops->list_voltage) {
3246 if (selector >= rdev->desc->n_voltages)
3247 return -EINVAL;
3248 if (selector < rdev->desc->linear_min_sel)
3249 return 0;
3250 if (lock)
3251 regulator_lock(rdev);
3252 ret = ops->list_voltage(rdev, selector);
3253 if (lock)
3254 regulator_unlock(rdev);
3255 } else if (rdev->is_switch && rdev->supply) {
3256 ret = _regulator_list_voltage(rdev->supply->rdev,
3257 selector, lock);
3258 } else {
3259 return -EINVAL;
3260 }
3261
3262 if (ret > 0) {
3263 if (ret < rdev->constraints->min_uV)
3264 ret = 0;
3265 else if (ret > rdev->constraints->max_uV)
3266 ret = 0;
3267 }
3268
3269 return ret;
3270}
3271
3272/**
3273 * regulator_is_enabled - is the regulator output enabled
3274 * @regulator: regulator source
3275 *
3276 * Returns positive if the regulator driver backing the source/client
3277 * has requested that the device be enabled, zero if it hasn't, else a
3278 * negative errno code.
3279 *
3280 * Note that the device backing this regulator handle can have multiple
3281 * users, so it might be enabled even if regulator_enable() was never
3282 * called for this particular source.
3283 */
3284int regulator_is_enabled(struct regulator *regulator)
3285{
3286 int ret;
3287
3288 if (regulator->always_on)
3289 return 1;
3290
3291 regulator_lock(regulator->rdev);
3292 ret = _regulator_is_enabled(regulator->rdev);
3293 regulator_unlock(regulator->rdev);
3294
3295 return ret;
3296}
3297EXPORT_SYMBOL_GPL(regulator_is_enabled);
3298
3299/**
3300 * regulator_count_voltages - count regulator_list_voltage() selectors
3301 * @regulator: regulator source
3302 *
3303 * Returns number of selectors, or negative errno. Selectors are
3304 * numbered starting at zero, and typically correspond to bitfields
3305 * in hardware registers.
3306 */
3307int regulator_count_voltages(struct regulator *regulator)
3308{
3309 struct regulator_dev *rdev = regulator->rdev;
3310
3311 if (rdev->desc->n_voltages)
3312 return rdev->desc->n_voltages;
3313
3314 if (!rdev->is_switch || !rdev->supply)
3315 return -EINVAL;
3316
3317 return regulator_count_voltages(rdev->supply);
3318}
3319EXPORT_SYMBOL_GPL(regulator_count_voltages);
3320
3321/**
3322 * regulator_list_voltage - enumerate supported voltages
3323 * @regulator: regulator source
3324 * @selector: identify voltage to list
3325 * Context: can sleep
3326 *
3327 * Returns a voltage that can be passed to @regulator_set_voltage(),
3328 * zero if this selector code can't be used on this system, or a
3329 * negative errno.
3330 */
3331int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3332{
3333 return _regulator_list_voltage(regulator->rdev, selector, 1);
3334}
3335EXPORT_SYMBOL_GPL(regulator_list_voltage);
3336
3337/**
3338 * regulator_get_regmap - get the regulator's register map
3339 * @regulator: regulator source
3340 *
3341 * Returns the register map for the given regulator, or an ERR_PTR value
3342 * if the regulator doesn't use regmap.
3343 */
3344struct regmap *regulator_get_regmap(struct regulator *regulator)
3345{
3346 struct regmap *map = regulator->rdev->regmap;
3347
3348 return map ? map : ERR_PTR(-EOPNOTSUPP);
3349}
3350EXPORT_SYMBOL_GPL(regulator_get_regmap);
3351
3352/**
3353 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3354 * @regulator: regulator source
3355 * @vsel_reg: voltage selector register, output parameter
3356 * @vsel_mask: mask for voltage selector bitfield, output parameter
3357 *
3358 * Returns the hardware register offset and bitmask used for setting the
3359 * regulator voltage. This might be useful when configuring voltage-scaling
3360 * hardware or firmware that can make I2C requests behind the kernel's back,
3361 * for example.
3362 *
3363 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3364 * and 0 is returned, otherwise a negative errno is returned.
3365 */
3366int regulator_get_hardware_vsel_register(struct regulator *regulator,
3367 unsigned *vsel_reg,
3368 unsigned *vsel_mask)
3369{
3370 struct regulator_dev *rdev = regulator->rdev;
3371 const struct regulator_ops *ops = rdev->desc->ops;
3372
3373 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3374 return -EOPNOTSUPP;
3375
3376 *vsel_reg = rdev->desc->vsel_reg;
3377 *vsel_mask = rdev->desc->vsel_mask;
3378
3379 return 0;
3380}
3381EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3382
3383/**
3384 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3385 * @regulator: regulator source
3386 * @selector: identify voltage to list
3387 *
3388 * Converts the selector to a hardware-specific voltage selector that can be
3389 * directly written to the regulator registers. The address of the voltage
3390 * register can be determined by calling @regulator_get_hardware_vsel_register.
3391 *
3392 * On error a negative errno is returned.
3393 */
3394int regulator_list_hardware_vsel(struct regulator *regulator,
3395 unsigned selector)
3396{
3397 struct regulator_dev *rdev = regulator->rdev;
3398 const struct regulator_ops *ops = rdev->desc->ops;
3399
3400 if (selector >= rdev->desc->n_voltages)
3401 return -EINVAL;
3402 if (selector < rdev->desc->linear_min_sel)
3403 return 0;
3404 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3405 return -EOPNOTSUPP;
3406
3407 return selector;
3408}
3409EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3410
3411/**
3412 * regulator_get_linear_step - return the voltage step size between VSEL values
3413 * @regulator: regulator source
3414 *
3415 * Returns the voltage step size between VSEL values for linear
3416 * regulators, or return 0 if the regulator isn't a linear regulator.
3417 */
3418unsigned int regulator_get_linear_step(struct regulator *regulator)
3419{
3420 struct regulator_dev *rdev = regulator->rdev;
3421
3422 return rdev->desc->uV_step;
3423}
3424EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3425
3426/**
3427 * regulator_is_supported_voltage - check if a voltage range can be supported
3428 *
3429 * @regulator: Regulator to check.
3430 * @min_uV: Minimum required voltage in uV.
3431 * @max_uV: Maximum required voltage in uV.
3432 *
3433 * Returns a boolean.
3434 */
3435int regulator_is_supported_voltage(struct regulator *regulator,
3436 int min_uV, int max_uV)
3437{
3438 struct regulator_dev *rdev = regulator->rdev;
3439 int i, voltages, ret;
3440
3441 /* If we can't change voltage check the current voltage */
3442 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3443 ret = regulator_get_voltage(regulator);
3444 if (ret >= 0)
3445 return min_uV <= ret && ret <= max_uV;
3446 else
3447 return ret;
3448 }
3449
3450 /* Any voltage within constrains range is fine? */
3451 if (rdev->desc->continuous_voltage_range)
3452 return min_uV >= rdev->constraints->min_uV &&
3453 max_uV <= rdev->constraints->max_uV;
3454
3455 ret = regulator_count_voltages(regulator);
3456 if (ret < 0)
3457 return 0;
3458 voltages = ret;
3459
3460 for (i = 0; i < voltages; i++) {
3461 ret = regulator_list_voltage(regulator, i);
3462
3463 if (ret >= min_uV && ret <= max_uV)
3464 return 1;
3465 }
3466
3467 return 0;
3468}
3469EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3470
3471static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3472 int max_uV)
3473{
3474 const struct regulator_desc *desc = rdev->desc;
3475
3476 if (desc->ops->map_voltage)
3477 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3478
3479 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3480 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3481
3482 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3483 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3484
3485 if (desc->ops->list_voltage ==
3486 regulator_list_voltage_pickable_linear_range)
3487 return regulator_map_voltage_pickable_linear_range(rdev,
3488 min_uV, max_uV);
3489
3490 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3491}
3492
3493static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3494 int min_uV, int max_uV,
3495 unsigned *selector)
3496{
3497 struct pre_voltage_change_data data;
3498 int ret;
3499
3500 data.old_uV = regulator_get_voltage_rdev(rdev);
3501 data.min_uV = min_uV;
3502 data.max_uV = max_uV;
3503 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3504 &data);
3505 if (ret & NOTIFY_STOP_MASK)
3506 return -EINVAL;
3507
3508 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3509 if (ret >= 0)
3510 return ret;
3511
3512 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3513 (void *)data.old_uV);
3514
3515 return ret;
3516}
3517
3518static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3519 int uV, unsigned selector)
3520{
3521 struct pre_voltage_change_data data;
3522 int ret;
3523
3524 data.old_uV = regulator_get_voltage_rdev(rdev);
3525 data.min_uV = uV;
3526 data.max_uV = uV;
3527 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3528 &data);
3529 if (ret & NOTIFY_STOP_MASK)
3530 return -EINVAL;
3531
3532 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3533 if (ret >= 0)
3534 return ret;
3535
3536 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3537 (void *)data.old_uV);
3538
3539 return ret;
3540}
3541
3542static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3543 int uV, int new_selector)
3544{
3545 const struct regulator_ops *ops = rdev->desc->ops;
3546 int diff, old_sel, curr_sel, ret;
3547
3548 /* Stepping is only needed if the regulator is enabled. */
3549 if (!_regulator_is_enabled(rdev))
3550 goto final_set;
3551
3552 if (!ops->get_voltage_sel)
3553 return -EINVAL;
3554
3555 old_sel = ops->get_voltage_sel(rdev);
3556 if (old_sel < 0)
3557 return old_sel;
3558
3559 diff = new_selector - old_sel;
3560 if (diff == 0)
3561 return 0; /* No change needed. */
3562
3563 if (diff > 0) {
3564 /* Stepping up. */
3565 for (curr_sel = old_sel + rdev->desc->vsel_step;
3566 curr_sel < new_selector;
3567 curr_sel += rdev->desc->vsel_step) {
3568 /*
3569 * Call the callback directly instead of using
3570 * _regulator_call_set_voltage_sel() as we don't
3571 * want to notify anyone yet. Same in the branch
3572 * below.
3573 */
3574 ret = ops->set_voltage_sel(rdev, curr_sel);
3575 if (ret)
3576 goto try_revert;
3577 }
3578 } else {
3579 /* Stepping down. */
3580 for (curr_sel = old_sel - rdev->desc->vsel_step;
3581 curr_sel > new_selector;
3582 curr_sel -= rdev->desc->vsel_step) {
3583 ret = ops->set_voltage_sel(rdev, curr_sel);
3584 if (ret)
3585 goto try_revert;
3586 }
3587 }
3588
3589final_set:
3590 /* The final selector will trigger the notifiers. */
3591 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3592
3593try_revert:
3594 /*
3595 * At least try to return to the previous voltage if setting a new
3596 * one failed.
3597 */
3598 (void)ops->set_voltage_sel(rdev, old_sel);
3599 return ret;
3600}
3601
3602static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3603 int old_uV, int new_uV)
3604{
3605 unsigned int ramp_delay = 0;
3606
3607 if (rdev->constraints->ramp_delay)
3608 ramp_delay = rdev->constraints->ramp_delay;
3609 else if (rdev->desc->ramp_delay)
3610 ramp_delay = rdev->desc->ramp_delay;
3611 else if (rdev->constraints->settling_time)
3612 return rdev->constraints->settling_time;
3613 else if (rdev->constraints->settling_time_up &&
3614 (new_uV > old_uV))
3615 return rdev->constraints->settling_time_up;
3616 else if (rdev->constraints->settling_time_down &&
3617 (new_uV < old_uV))
3618 return rdev->constraints->settling_time_down;
3619
3620 if (ramp_delay == 0)
3621 return 0;
3622
3623 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3624}
3625
3626static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3627 int min_uV, int max_uV)
3628{
3629 int ret;
3630 int delay = 0;
3631 int best_val = 0;
3632 unsigned int selector;
3633 int old_selector = -1;
3634 const struct regulator_ops *ops = rdev->desc->ops;
3635 int old_uV = regulator_get_voltage_rdev(rdev);
3636
3637 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3638
3639 min_uV += rdev->constraints->uV_offset;
3640 max_uV += rdev->constraints->uV_offset;
3641
3642 /*
3643 * If we can't obtain the old selector there is not enough
3644 * info to call set_voltage_time_sel().
3645 */
3646 if (_regulator_is_enabled(rdev) &&
3647 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3648 old_selector = ops->get_voltage_sel(rdev);
3649 if (old_selector < 0)
3650 return old_selector;
3651 }
3652
3653 if (ops->set_voltage) {
3654 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3655 &selector);
3656
3657 if (ret >= 0) {
3658 if (ops->list_voltage)
3659 best_val = ops->list_voltage(rdev,
3660 selector);
3661 else
3662 best_val = regulator_get_voltage_rdev(rdev);
3663 }
3664
3665 } else if (ops->set_voltage_sel) {
3666 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3667 if (ret >= 0) {
3668 best_val = ops->list_voltage(rdev, ret);
3669 if (min_uV <= best_val && max_uV >= best_val) {
3670 selector = ret;
3671 if (old_selector == selector)
3672 ret = 0;
3673 else if (rdev->desc->vsel_step)
3674 ret = _regulator_set_voltage_sel_step(
3675 rdev, best_val, selector);
3676 else
3677 ret = _regulator_call_set_voltage_sel(
3678 rdev, best_val, selector);
3679 } else {
3680 ret = -EINVAL;
3681 }
3682 }
3683 } else {
3684 ret = -EINVAL;
3685 }
3686
3687 if (ret)
3688 goto out;
3689
3690 if (ops->set_voltage_time_sel) {
3691 /*
3692 * Call set_voltage_time_sel if successfully obtained
3693 * old_selector
3694 */
3695 if (old_selector >= 0 && old_selector != selector)
3696 delay = ops->set_voltage_time_sel(rdev, old_selector,
3697 selector);
3698 } else {
3699 if (old_uV != best_val) {
3700 if (ops->set_voltage_time)
3701 delay = ops->set_voltage_time(rdev, old_uV,
3702 best_val);
3703 else
3704 delay = _regulator_set_voltage_time(rdev,
3705 old_uV,
3706 best_val);
3707 }
3708 }
3709
3710 if (delay < 0) {
3711 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3712 delay = 0;
3713 }
3714
3715 /* Insert any necessary delays */
3716 _regulator_delay_helper(delay);
3717
3718 if (best_val >= 0) {
3719 unsigned long data = best_val;
3720
3721 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3722 (void *)data);
3723 }
3724
3725out:
3726 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3727
3728 return ret;
3729}
3730
3731static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3732 int min_uV, int max_uV, suspend_state_t state)
3733{
3734 struct regulator_state *rstate;
3735 int uV, sel;
3736
3737 rstate = regulator_get_suspend_state(rdev, state);
3738 if (rstate == NULL)
3739 return -EINVAL;
3740
3741 if (min_uV < rstate->min_uV)
3742 min_uV = rstate->min_uV;
3743 if (max_uV > rstate->max_uV)
3744 max_uV = rstate->max_uV;
3745
3746 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3747 if (sel < 0)
3748 return sel;
3749
3750 uV = rdev->desc->ops->list_voltage(rdev, sel);
3751 if (uV >= min_uV && uV <= max_uV)
3752 rstate->uV = uV;
3753
3754 return 0;
3755}
3756
3757static int regulator_set_voltage_unlocked(struct regulator *regulator,
3758 int min_uV, int max_uV,
3759 suspend_state_t state)
3760{
3761 struct regulator_dev *rdev = regulator->rdev;
3762 struct regulator_voltage *voltage = ®ulator->voltage[state];
3763 int ret = 0;
3764 int old_min_uV, old_max_uV;
3765 int current_uV;
3766
3767 /* If we're setting the same range as last time the change
3768 * should be a noop (some cpufreq implementations use the same
3769 * voltage for multiple frequencies, for example).
3770 */
3771 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3772 goto out;
3773
3774 /* If we're trying to set a range that overlaps the current voltage,
3775 * return successfully even though the regulator does not support
3776 * changing the voltage.
3777 */
3778 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3779 current_uV = regulator_get_voltage_rdev(rdev);
3780 if (min_uV <= current_uV && current_uV <= max_uV) {
3781 voltage->min_uV = min_uV;
3782 voltage->max_uV = max_uV;
3783 goto out;
3784 }
3785 }
3786
3787 /* sanity check */
3788 if (!rdev->desc->ops->set_voltage &&
3789 !rdev->desc->ops->set_voltage_sel) {
3790 ret = -EINVAL;
3791 goto out;
3792 }
3793
3794 /* constraints check */
3795 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3796 if (ret < 0)
3797 goto out;
3798
3799 /* restore original values in case of error */
3800 old_min_uV = voltage->min_uV;
3801 old_max_uV = voltage->max_uV;
3802 voltage->min_uV = min_uV;
3803 voltage->max_uV = max_uV;
3804
3805 /* for not coupled regulators this will just set the voltage */
3806 ret = regulator_balance_voltage(rdev, state);
3807 if (ret < 0) {
3808 voltage->min_uV = old_min_uV;
3809 voltage->max_uV = old_max_uV;
3810 }
3811
3812out:
3813 return ret;
3814}
3815
3816int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3817 int max_uV, suspend_state_t state)
3818{
3819 int best_supply_uV = 0;
3820 int supply_change_uV = 0;
3821 int ret;
3822
3823 if (rdev->supply &&
3824 regulator_ops_is_valid(rdev->supply->rdev,
3825 REGULATOR_CHANGE_VOLTAGE) &&
3826 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3827 rdev->desc->ops->get_voltage_sel))) {
3828 int current_supply_uV;
3829 int selector;
3830
3831 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3832 if (selector < 0) {
3833 ret = selector;
3834 goto out;
3835 }
3836
3837 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3838 if (best_supply_uV < 0) {
3839 ret = best_supply_uV;
3840 goto out;
3841 }
3842
3843 best_supply_uV += rdev->desc->min_dropout_uV;
3844
3845 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3846 if (current_supply_uV < 0) {
3847 ret = current_supply_uV;
3848 goto out;
3849 }
3850
3851 supply_change_uV = best_supply_uV - current_supply_uV;
3852 }
3853
3854 if (supply_change_uV > 0) {
3855 ret = regulator_set_voltage_unlocked(rdev->supply,
3856 best_supply_uV, INT_MAX, state);
3857 if (ret) {
3858 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3859 ERR_PTR(ret));
3860 goto out;
3861 }
3862 }
3863
3864 if (state == PM_SUSPEND_ON)
3865 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3866 else
3867 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3868 max_uV, state);
3869 if (ret < 0)
3870 goto out;
3871
3872 if (supply_change_uV < 0) {
3873 ret = regulator_set_voltage_unlocked(rdev->supply,
3874 best_supply_uV, INT_MAX, state);
3875 if (ret)
3876 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3877 ERR_PTR(ret));
3878 /* No need to fail here */
3879 ret = 0;
3880 }
3881
3882out:
3883 return ret;
3884}
3885EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3886
3887static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3888 int *current_uV, int *min_uV)
3889{
3890 struct regulation_constraints *constraints = rdev->constraints;
3891
3892 /* Limit voltage change only if necessary */
3893 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3894 return 1;
3895
3896 if (*current_uV < 0) {
3897 *current_uV = regulator_get_voltage_rdev(rdev);
3898
3899 if (*current_uV < 0)
3900 return *current_uV;
3901 }
3902
3903 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3904 return 1;
3905
3906 /* Clamp target voltage within the given step */
3907 if (*current_uV < *min_uV)
3908 *min_uV = min(*current_uV + constraints->max_uV_step,
3909 *min_uV);
3910 else
3911 *min_uV = max(*current_uV - constraints->max_uV_step,
3912 *min_uV);
3913
3914 return 0;
3915}
3916
3917static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3918 int *current_uV,
3919 int *min_uV, int *max_uV,
3920 suspend_state_t state,
3921 int n_coupled)
3922{
3923 struct coupling_desc *c_desc = &rdev->coupling_desc;
3924 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3925 struct regulation_constraints *constraints = rdev->constraints;
3926 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3927 int max_current_uV = 0, min_current_uV = INT_MAX;
3928 int highest_min_uV = 0, target_uV, possible_uV;
3929 int i, ret, max_spread;
3930 bool done;
3931
3932 *current_uV = -1;
3933
3934 /*
3935 * If there are no coupled regulators, simply set the voltage
3936 * demanded by consumers.
3937 */
3938 if (n_coupled == 1) {
3939 /*
3940 * If consumers don't provide any demands, set voltage
3941 * to min_uV
3942 */
3943 desired_min_uV = constraints->min_uV;
3944 desired_max_uV = constraints->max_uV;
3945
3946 ret = regulator_check_consumers(rdev,
3947 &desired_min_uV,
3948 &desired_max_uV, state);
3949 if (ret < 0)
3950 return ret;
3951
3952 done = true;
3953
3954 goto finish;
3955 }
3956
3957 /* Find highest min desired voltage */
3958 for (i = 0; i < n_coupled; i++) {
3959 int tmp_min = 0;
3960 int tmp_max = INT_MAX;
3961
3962 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3963
3964 ret = regulator_check_consumers(c_rdevs[i],
3965 &tmp_min,
3966 &tmp_max, state);
3967 if (ret < 0)
3968 return ret;
3969
3970 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3971 if (ret < 0)
3972 return ret;
3973
3974 highest_min_uV = max(highest_min_uV, tmp_min);
3975
3976 if (i == 0) {
3977 desired_min_uV = tmp_min;
3978 desired_max_uV = tmp_max;
3979 }
3980 }
3981
3982 max_spread = constraints->max_spread[0];
3983
3984 /*
3985 * Let target_uV be equal to the desired one if possible.
3986 * If not, set it to minimum voltage, allowed by other coupled
3987 * regulators.
3988 */
3989 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3990
3991 /*
3992 * Find min and max voltages, which currently aren't violating
3993 * max_spread.
3994 */
3995 for (i = 1; i < n_coupled; i++) {
3996 int tmp_act;
3997
3998 if (!_regulator_is_enabled(c_rdevs[i]))
3999 continue;
4000
4001 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4002 if (tmp_act < 0)
4003 return tmp_act;
4004
4005 min_current_uV = min(tmp_act, min_current_uV);
4006 max_current_uV = max(tmp_act, max_current_uV);
4007 }
4008
4009 /* There aren't any other regulators enabled */
4010 if (max_current_uV == 0) {
4011 possible_uV = target_uV;
4012 } else {
4013 /*
4014 * Correct target voltage, so as it currently isn't
4015 * violating max_spread
4016 */
4017 possible_uV = max(target_uV, max_current_uV - max_spread);
4018 possible_uV = min(possible_uV, min_current_uV + max_spread);
4019 }
4020
4021 if (possible_uV > desired_max_uV)
4022 return -EINVAL;
4023
4024 done = (possible_uV == target_uV);
4025 desired_min_uV = possible_uV;
4026
4027finish:
4028 /* Apply max_uV_step constraint if necessary */
4029 if (state == PM_SUSPEND_ON) {
4030 ret = regulator_limit_voltage_step(rdev, current_uV,
4031 &desired_min_uV);
4032 if (ret < 0)
4033 return ret;
4034
4035 if (ret == 0)
4036 done = false;
4037 }
4038
4039 /* Set current_uV if wasn't done earlier in the code and if necessary */
4040 if (n_coupled > 1 && *current_uV == -1) {
4041
4042 if (_regulator_is_enabled(rdev)) {
4043 ret = regulator_get_voltage_rdev(rdev);
4044 if (ret < 0)
4045 return ret;
4046
4047 *current_uV = ret;
4048 } else {
4049 *current_uV = desired_min_uV;
4050 }
4051 }
4052
4053 *min_uV = desired_min_uV;
4054 *max_uV = desired_max_uV;
4055
4056 return done;
4057}
4058
4059int regulator_do_balance_voltage(struct regulator_dev *rdev,
4060 suspend_state_t state, bool skip_coupled)
4061{
4062 struct regulator_dev **c_rdevs;
4063 struct regulator_dev *best_rdev;
4064 struct coupling_desc *c_desc = &rdev->coupling_desc;
4065 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4066 unsigned int delta, best_delta;
4067 unsigned long c_rdev_done = 0;
4068 bool best_c_rdev_done;
4069
4070 c_rdevs = c_desc->coupled_rdevs;
4071 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4072
4073 /*
4074 * Find the best possible voltage change on each loop. Leave the loop
4075 * if there isn't any possible change.
4076 */
4077 do {
4078 best_c_rdev_done = false;
4079 best_delta = 0;
4080 best_min_uV = 0;
4081 best_max_uV = 0;
4082 best_c_rdev = 0;
4083 best_rdev = NULL;
4084
4085 /*
4086 * Find highest difference between optimal voltage
4087 * and current voltage.
4088 */
4089 for (i = 0; i < n_coupled; i++) {
4090 /*
4091 * optimal_uV is the best voltage that can be set for
4092 * i-th regulator at the moment without violating
4093 * max_spread constraint in order to balance
4094 * the coupled voltages.
4095 */
4096 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4097
4098 if (test_bit(i, &c_rdev_done))
4099 continue;
4100
4101 ret = regulator_get_optimal_voltage(c_rdevs[i],
4102 ¤t_uV,
4103 &optimal_uV,
4104 &optimal_max_uV,
4105 state, n_coupled);
4106 if (ret < 0)
4107 goto out;
4108
4109 delta = abs(optimal_uV - current_uV);
4110
4111 if (delta && best_delta <= delta) {
4112 best_c_rdev_done = ret;
4113 best_delta = delta;
4114 best_rdev = c_rdevs[i];
4115 best_min_uV = optimal_uV;
4116 best_max_uV = optimal_max_uV;
4117 best_c_rdev = i;
4118 }
4119 }
4120
4121 /* Nothing to change, return successfully */
4122 if (!best_rdev) {
4123 ret = 0;
4124 goto out;
4125 }
4126
4127 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4128 best_max_uV, state);
4129
4130 if (ret < 0)
4131 goto out;
4132
4133 if (best_c_rdev_done)
4134 set_bit(best_c_rdev, &c_rdev_done);
4135
4136 } while (n_coupled > 1);
4137
4138out:
4139 return ret;
4140}
4141
4142static int regulator_balance_voltage(struct regulator_dev *rdev,
4143 suspend_state_t state)
4144{
4145 struct coupling_desc *c_desc = &rdev->coupling_desc;
4146 struct regulator_coupler *coupler = c_desc->coupler;
4147 bool skip_coupled = false;
4148
4149 /*
4150 * If system is in a state other than PM_SUSPEND_ON, don't check
4151 * other coupled regulators.
4152 */
4153 if (state != PM_SUSPEND_ON)
4154 skip_coupled = true;
4155
4156 if (c_desc->n_resolved < c_desc->n_coupled) {
4157 rdev_err(rdev, "Not all coupled regulators registered\n");
4158 return -EPERM;
4159 }
4160
4161 /* Invoke custom balancer for customized couplers */
4162 if (coupler && coupler->balance_voltage)
4163 return coupler->balance_voltage(coupler, rdev, state);
4164
4165 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4166}
4167
4168/**
4169 * regulator_set_voltage - set regulator output voltage
4170 * @regulator: regulator source
4171 * @min_uV: Minimum required voltage in uV
4172 * @max_uV: Maximum acceptable voltage in uV
4173 *
4174 * Sets a voltage regulator to the desired output voltage. This can be set
4175 * during any regulator state. IOW, regulator can be disabled or enabled.
4176 *
4177 * If the regulator is enabled then the voltage will change to the new value
4178 * immediately otherwise if the regulator is disabled the regulator will
4179 * output at the new voltage when enabled.
4180 *
4181 * NOTE: If the regulator is shared between several devices then the lowest
4182 * request voltage that meets the system constraints will be used.
4183 * Regulator system constraints must be set for this regulator before
4184 * calling this function otherwise this call will fail.
4185 */
4186int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4187{
4188 struct ww_acquire_ctx ww_ctx;
4189 int ret;
4190
4191 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4192
4193 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4194 PM_SUSPEND_ON);
4195
4196 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4197
4198 return ret;
4199}
4200EXPORT_SYMBOL_GPL(regulator_set_voltage);
4201
4202static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4203 suspend_state_t state, bool en)
4204{
4205 struct regulator_state *rstate;
4206
4207 rstate = regulator_get_suspend_state(rdev, state);
4208 if (rstate == NULL)
4209 return -EINVAL;
4210
4211 if (!rstate->changeable)
4212 return -EPERM;
4213
4214 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4215
4216 return 0;
4217}
4218
4219int regulator_suspend_enable(struct regulator_dev *rdev,
4220 suspend_state_t state)
4221{
4222 return regulator_suspend_toggle(rdev, state, true);
4223}
4224EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4225
4226int regulator_suspend_disable(struct regulator_dev *rdev,
4227 suspend_state_t state)
4228{
4229 struct regulator *regulator;
4230 struct regulator_voltage *voltage;
4231
4232 /*
4233 * if any consumer wants this regulator device keeping on in
4234 * suspend states, don't set it as disabled.
4235 */
4236 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4237 voltage = ®ulator->voltage[state];
4238 if (voltage->min_uV || voltage->max_uV)
4239 return 0;
4240 }
4241
4242 return regulator_suspend_toggle(rdev, state, false);
4243}
4244EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4245
4246static int _regulator_set_suspend_voltage(struct regulator *regulator,
4247 int min_uV, int max_uV,
4248 suspend_state_t state)
4249{
4250 struct regulator_dev *rdev = regulator->rdev;
4251 struct regulator_state *rstate;
4252
4253 rstate = regulator_get_suspend_state(rdev, state);
4254 if (rstate == NULL)
4255 return -EINVAL;
4256
4257 if (rstate->min_uV == rstate->max_uV) {
4258 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4259 return -EPERM;
4260 }
4261
4262 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4263}
4264
4265int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4266 int max_uV, suspend_state_t state)
4267{
4268 struct ww_acquire_ctx ww_ctx;
4269 int ret;
4270
4271 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4272 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4273 return -EINVAL;
4274
4275 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4276
4277 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4278 max_uV, state);
4279
4280 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4281
4282 return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4285
4286/**
4287 * regulator_set_voltage_time - get raise/fall time
4288 * @regulator: regulator source
4289 * @old_uV: starting voltage in microvolts
4290 * @new_uV: target voltage in microvolts
4291 *
4292 * Provided with the starting and ending voltage, this function attempts to
4293 * calculate the time in microseconds required to rise or fall to this new
4294 * voltage.
4295 */
4296int regulator_set_voltage_time(struct regulator *regulator,
4297 int old_uV, int new_uV)
4298{
4299 struct regulator_dev *rdev = regulator->rdev;
4300 const struct regulator_ops *ops = rdev->desc->ops;
4301 int old_sel = -1;
4302 int new_sel = -1;
4303 int voltage;
4304 int i;
4305
4306 if (ops->set_voltage_time)
4307 return ops->set_voltage_time(rdev, old_uV, new_uV);
4308 else if (!ops->set_voltage_time_sel)
4309 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4310
4311 /* Currently requires operations to do this */
4312 if (!ops->list_voltage || !rdev->desc->n_voltages)
4313 return -EINVAL;
4314
4315 for (i = 0; i < rdev->desc->n_voltages; i++) {
4316 /* We only look for exact voltage matches here */
4317 if (i < rdev->desc->linear_min_sel)
4318 continue;
4319
4320 if (old_sel >= 0 && new_sel >= 0)
4321 break;
4322
4323 voltage = regulator_list_voltage(regulator, i);
4324 if (voltage < 0)
4325 return -EINVAL;
4326 if (voltage == 0)
4327 continue;
4328 if (voltage == old_uV)
4329 old_sel = i;
4330 if (voltage == new_uV)
4331 new_sel = i;
4332 }
4333
4334 if (old_sel < 0 || new_sel < 0)
4335 return -EINVAL;
4336
4337 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4338}
4339EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4340
4341/**
4342 * regulator_set_voltage_time_sel - get raise/fall time
4343 * @rdev: regulator source device
4344 * @old_selector: selector for starting voltage
4345 * @new_selector: selector for target voltage
4346 *
4347 * Provided with the starting and target voltage selectors, this function
4348 * returns time in microseconds required to rise or fall to this new voltage
4349 *
4350 * Drivers providing ramp_delay in regulation_constraints can use this as their
4351 * set_voltage_time_sel() operation.
4352 */
4353int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4354 unsigned int old_selector,
4355 unsigned int new_selector)
4356{
4357 int old_volt, new_volt;
4358
4359 /* sanity check */
4360 if (!rdev->desc->ops->list_voltage)
4361 return -EINVAL;
4362
4363 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4364 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4365
4366 if (rdev->desc->ops->set_voltage_time)
4367 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4368 new_volt);
4369 else
4370 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4371}
4372EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4373
4374int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4375{
4376 int ret;
4377
4378 regulator_lock(rdev);
4379
4380 if (!rdev->desc->ops->set_voltage &&
4381 !rdev->desc->ops->set_voltage_sel) {
4382 ret = -EINVAL;
4383 goto out;
4384 }
4385
4386 /* balance only, if regulator is coupled */
4387 if (rdev->coupling_desc.n_coupled > 1)
4388 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4389 else
4390 ret = -EOPNOTSUPP;
4391
4392out:
4393 regulator_unlock(rdev);
4394 return ret;
4395}
4396
4397/**
4398 * regulator_sync_voltage - re-apply last regulator output voltage
4399 * @regulator: regulator source
4400 *
4401 * Re-apply the last configured voltage. This is intended to be used
4402 * where some external control source the consumer is cooperating with
4403 * has caused the configured voltage to change.
4404 */
4405int regulator_sync_voltage(struct regulator *regulator)
4406{
4407 struct regulator_dev *rdev = regulator->rdev;
4408 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4409 int ret, min_uV, max_uV;
4410
4411 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4412 return 0;
4413
4414 regulator_lock(rdev);
4415
4416 if (!rdev->desc->ops->set_voltage &&
4417 !rdev->desc->ops->set_voltage_sel) {
4418 ret = -EINVAL;
4419 goto out;
4420 }
4421
4422 /* This is only going to work if we've had a voltage configured. */
4423 if (!voltage->min_uV && !voltage->max_uV) {
4424 ret = -EINVAL;
4425 goto out;
4426 }
4427
4428 min_uV = voltage->min_uV;
4429 max_uV = voltage->max_uV;
4430
4431 /* This should be a paranoia check... */
4432 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4433 if (ret < 0)
4434 goto out;
4435
4436 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4437 if (ret < 0)
4438 goto out;
4439
4440 /* balance only, if regulator is coupled */
4441 if (rdev->coupling_desc.n_coupled > 1)
4442 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4443 else
4444 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4445
4446out:
4447 regulator_unlock(rdev);
4448 return ret;
4449}
4450EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4451
4452int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4453{
4454 int sel, ret;
4455 bool bypassed;
4456
4457 if (rdev->desc->ops->get_bypass) {
4458 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4459 if (ret < 0)
4460 return ret;
4461 if (bypassed) {
4462 /* if bypassed the regulator must have a supply */
4463 if (!rdev->supply) {
4464 rdev_err(rdev,
4465 "bypassed regulator has no supply!\n");
4466 return -EPROBE_DEFER;
4467 }
4468
4469 return regulator_get_voltage_rdev(rdev->supply->rdev);
4470 }
4471 }
4472
4473 if (rdev->desc->ops->get_voltage_sel) {
4474 sel = rdev->desc->ops->get_voltage_sel(rdev);
4475 if (sel < 0)
4476 return sel;
4477 ret = rdev->desc->ops->list_voltage(rdev, sel);
4478 } else if (rdev->desc->ops->get_voltage) {
4479 ret = rdev->desc->ops->get_voltage(rdev);
4480 } else if (rdev->desc->ops->list_voltage) {
4481 ret = rdev->desc->ops->list_voltage(rdev, 0);
4482 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4483 ret = rdev->desc->fixed_uV;
4484 } else if (rdev->supply) {
4485 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4486 } else if (rdev->supply_name) {
4487 return -EPROBE_DEFER;
4488 } else {
4489 return -EINVAL;
4490 }
4491
4492 if (ret < 0)
4493 return ret;
4494 return ret - rdev->constraints->uV_offset;
4495}
4496EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4497
4498/**
4499 * regulator_get_voltage - get regulator output voltage
4500 * @regulator: regulator source
4501 *
4502 * This returns the current regulator voltage in uV.
4503 *
4504 * NOTE: If the regulator is disabled it will return the voltage value. This
4505 * function should not be used to determine regulator state.
4506 */
4507int regulator_get_voltage(struct regulator *regulator)
4508{
4509 struct ww_acquire_ctx ww_ctx;
4510 int ret;
4511
4512 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4513 ret = regulator_get_voltage_rdev(regulator->rdev);
4514 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4515
4516 return ret;
4517}
4518EXPORT_SYMBOL_GPL(regulator_get_voltage);
4519
4520/**
4521 * regulator_set_current_limit - set regulator output current limit
4522 * @regulator: regulator source
4523 * @min_uA: Minimum supported current in uA
4524 * @max_uA: Maximum supported current in uA
4525 *
4526 * Sets current sink to the desired output current. This can be set during
4527 * any regulator state. IOW, regulator can be disabled or enabled.
4528 *
4529 * If the regulator is enabled then the current will change to the new value
4530 * immediately otherwise if the regulator is disabled the regulator will
4531 * output at the new current when enabled.
4532 *
4533 * NOTE: Regulator system constraints must be set for this regulator before
4534 * calling this function otherwise this call will fail.
4535 */
4536int regulator_set_current_limit(struct regulator *regulator,
4537 int min_uA, int max_uA)
4538{
4539 struct regulator_dev *rdev = regulator->rdev;
4540 int ret;
4541
4542 regulator_lock(rdev);
4543
4544 /* sanity check */
4545 if (!rdev->desc->ops->set_current_limit) {
4546 ret = -EINVAL;
4547 goto out;
4548 }
4549
4550 /* constraints check */
4551 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4552 if (ret < 0)
4553 goto out;
4554
4555 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4556out:
4557 regulator_unlock(rdev);
4558 return ret;
4559}
4560EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4561
4562static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4563{
4564 /* sanity check */
4565 if (!rdev->desc->ops->get_current_limit)
4566 return -EINVAL;
4567
4568 return rdev->desc->ops->get_current_limit(rdev);
4569}
4570
4571static int _regulator_get_current_limit(struct regulator_dev *rdev)
4572{
4573 int ret;
4574
4575 regulator_lock(rdev);
4576 ret = _regulator_get_current_limit_unlocked(rdev);
4577 regulator_unlock(rdev);
4578
4579 return ret;
4580}
4581
4582/**
4583 * regulator_get_current_limit - get regulator output current
4584 * @regulator: regulator source
4585 *
4586 * This returns the current supplied by the specified current sink in uA.
4587 *
4588 * NOTE: If the regulator is disabled it will return the current value. This
4589 * function should not be used to determine regulator state.
4590 */
4591int regulator_get_current_limit(struct regulator *regulator)
4592{
4593 return _regulator_get_current_limit(regulator->rdev);
4594}
4595EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4596
4597/**
4598 * regulator_set_mode - set regulator operating mode
4599 * @regulator: regulator source
4600 * @mode: operating mode - one of the REGULATOR_MODE constants
4601 *
4602 * Set regulator operating mode to increase regulator efficiency or improve
4603 * regulation performance.
4604 *
4605 * NOTE: Regulator system constraints must be set for this regulator before
4606 * calling this function otherwise this call will fail.
4607 */
4608int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4609{
4610 struct regulator_dev *rdev = regulator->rdev;
4611 int ret;
4612 int regulator_curr_mode;
4613
4614 regulator_lock(rdev);
4615
4616 /* sanity check */
4617 if (!rdev->desc->ops->set_mode) {
4618 ret = -EINVAL;
4619 goto out;
4620 }
4621
4622 /* return if the same mode is requested */
4623 if (rdev->desc->ops->get_mode) {
4624 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4625 if (regulator_curr_mode == mode) {
4626 ret = 0;
4627 goto out;
4628 }
4629 }
4630
4631 /* constraints check */
4632 ret = regulator_mode_constrain(rdev, &mode);
4633 if (ret < 0)
4634 goto out;
4635
4636 ret = rdev->desc->ops->set_mode(rdev, mode);
4637out:
4638 regulator_unlock(rdev);
4639 return ret;
4640}
4641EXPORT_SYMBOL_GPL(regulator_set_mode);
4642
4643static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4644{
4645 /* sanity check */
4646 if (!rdev->desc->ops->get_mode)
4647 return -EINVAL;
4648
4649 return rdev->desc->ops->get_mode(rdev);
4650}
4651
4652static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4653{
4654 int ret;
4655
4656 regulator_lock(rdev);
4657 ret = _regulator_get_mode_unlocked(rdev);
4658 regulator_unlock(rdev);
4659
4660 return ret;
4661}
4662
4663/**
4664 * regulator_get_mode - get regulator operating mode
4665 * @regulator: regulator source
4666 *
4667 * Get the current regulator operating mode.
4668 */
4669unsigned int regulator_get_mode(struct regulator *regulator)
4670{
4671 return _regulator_get_mode(regulator->rdev);
4672}
4673EXPORT_SYMBOL_GPL(regulator_get_mode);
4674
4675static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4676{
4677 int ret = 0;
4678
4679 if (rdev->use_cached_err) {
4680 spin_lock(&rdev->err_lock);
4681 ret = rdev->cached_err;
4682 spin_unlock(&rdev->err_lock);
4683 }
4684 return ret;
4685}
4686
4687static int _regulator_get_error_flags(struct regulator_dev *rdev,
4688 unsigned int *flags)
4689{
4690 int cached_flags, ret = 0;
4691
4692 regulator_lock(rdev);
4693
4694 cached_flags = rdev_get_cached_err_flags(rdev);
4695
4696 if (rdev->desc->ops->get_error_flags)
4697 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4698 else if (!rdev->use_cached_err)
4699 ret = -EINVAL;
4700
4701 *flags |= cached_flags;
4702
4703 regulator_unlock(rdev);
4704
4705 return ret;
4706}
4707
4708/**
4709 * regulator_get_error_flags - get regulator error information
4710 * @regulator: regulator source
4711 * @flags: pointer to store error flags
4712 *
4713 * Get the current regulator error information.
4714 */
4715int regulator_get_error_flags(struct regulator *regulator,
4716 unsigned int *flags)
4717{
4718 return _regulator_get_error_flags(regulator->rdev, flags);
4719}
4720EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4721
4722/**
4723 * regulator_set_load - set regulator load
4724 * @regulator: regulator source
4725 * @uA_load: load current
4726 *
4727 * Notifies the regulator core of a new device load. This is then used by
4728 * DRMS (if enabled by constraints) to set the most efficient regulator
4729 * operating mode for the new regulator loading.
4730 *
4731 * Consumer devices notify their supply regulator of the maximum power
4732 * they will require (can be taken from device datasheet in the power
4733 * consumption tables) when they change operational status and hence power
4734 * state. Examples of operational state changes that can affect power
4735 * consumption are :-
4736 *
4737 * o Device is opened / closed.
4738 * o Device I/O is about to begin or has just finished.
4739 * o Device is idling in between work.
4740 *
4741 * This information is also exported via sysfs to userspace.
4742 *
4743 * DRMS will sum the total requested load on the regulator and change
4744 * to the most efficient operating mode if platform constraints allow.
4745 *
4746 * NOTE: when a regulator consumer requests to have a regulator
4747 * disabled then any load that consumer requested no longer counts
4748 * toward the total requested load. If the regulator is re-enabled
4749 * then the previously requested load will start counting again.
4750 *
4751 * If a regulator is an always-on regulator then an individual consumer's
4752 * load will still be removed if that consumer is fully disabled.
4753 *
4754 * On error a negative errno is returned.
4755 */
4756int regulator_set_load(struct regulator *regulator, int uA_load)
4757{
4758 struct regulator_dev *rdev = regulator->rdev;
4759 int old_uA_load;
4760 int ret = 0;
4761
4762 regulator_lock(rdev);
4763 old_uA_load = regulator->uA_load;
4764 regulator->uA_load = uA_load;
4765 if (regulator->enable_count && old_uA_load != uA_load) {
4766 ret = drms_uA_update(rdev);
4767 if (ret < 0)
4768 regulator->uA_load = old_uA_load;
4769 }
4770 regulator_unlock(rdev);
4771
4772 return ret;
4773}
4774EXPORT_SYMBOL_GPL(regulator_set_load);
4775
4776/**
4777 * regulator_allow_bypass - allow the regulator to go into bypass mode
4778 *
4779 * @regulator: Regulator to configure
4780 * @enable: enable or disable bypass mode
4781 *
4782 * Allow the regulator to go into bypass mode if all other consumers
4783 * for the regulator also enable bypass mode and the machine
4784 * constraints allow this. Bypass mode means that the regulator is
4785 * simply passing the input directly to the output with no regulation.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789 struct regulator_dev *rdev = regulator->rdev;
4790 const char *name = rdev_get_name(rdev);
4791 int ret = 0;
4792
4793 if (!rdev->desc->ops->set_bypass)
4794 return 0;
4795
4796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797 return 0;
4798
4799 regulator_lock(rdev);
4800
4801 if (enable && !regulator->bypass) {
4802 rdev->bypass_count++;
4803
4804 if (rdev->bypass_count == rdev->open_count) {
4805 trace_regulator_bypass_enable(name);
4806
4807 ret = rdev->desc->ops->set_bypass(rdev, enable);
4808 if (ret != 0)
4809 rdev->bypass_count--;
4810 else
4811 trace_regulator_bypass_enable_complete(name);
4812 }
4813
4814 } else if (!enable && regulator->bypass) {
4815 rdev->bypass_count--;
4816
4817 if (rdev->bypass_count != rdev->open_count) {
4818 trace_regulator_bypass_disable(name);
4819
4820 ret = rdev->desc->ops->set_bypass(rdev, enable);
4821 if (ret != 0)
4822 rdev->bypass_count++;
4823 else
4824 trace_regulator_bypass_disable_complete(name);
4825 }
4826 }
4827
4828 if (ret == 0)
4829 regulator->bypass = enable;
4830
4831 regulator_unlock(rdev);
4832
4833 return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 */
4844int regulator_register_notifier(struct regulator *regulator,
4845 struct notifier_block *nb)
4846{
4847 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4848 nb);
4849}
4850EXPORT_SYMBOL_GPL(regulator_register_notifier);
4851
4852/**
4853 * regulator_unregister_notifier - unregister regulator event notifier
4854 * @regulator: regulator source
4855 * @nb: notifier block
4856 *
4857 * Unregister regulator event notifier block.
4858 */
4859int regulator_unregister_notifier(struct regulator *regulator,
4860 struct notifier_block *nb)
4861{
4862 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4863 nb);
4864}
4865EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4866
4867/* notify regulator consumers and downstream regulator consumers.
4868 * Note mutex must be held by caller.
4869 */
4870static int _notifier_call_chain(struct regulator_dev *rdev,
4871 unsigned long event, void *data)
4872{
4873 /* call rdev chain first */
4874 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4875
4876 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4877 struct device *parent = rdev->dev.parent;
4878 const char *rname = rdev_get_name(rdev);
4879 char name[32];
4880
4881 /* Avoid duplicate debugfs directory names */
4882 if (parent && rname == rdev->desc->name) {
4883 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4884 rname);
4885 rname = name;
4886 }
4887 reg_generate_netlink_event(rname, event);
4888 }
4889
4890 return ret;
4891}
4892
4893int _regulator_bulk_get(struct device *dev, int num_consumers,
4894 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4895{
4896 int i;
4897 int ret;
4898
4899 for (i = 0; i < num_consumers; i++)
4900 consumers[i].consumer = NULL;
4901
4902 for (i = 0; i < num_consumers; i++) {
4903 consumers[i].consumer = _regulator_get(dev,
4904 consumers[i].supply, get_type);
4905 if (IS_ERR(consumers[i].consumer)) {
4906 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4907 "Failed to get supply '%s'",
4908 consumers[i].supply);
4909 consumers[i].consumer = NULL;
4910 goto err;
4911 }
4912
4913 if (consumers[i].init_load_uA > 0) {
4914 ret = regulator_set_load(consumers[i].consumer,
4915 consumers[i].init_load_uA);
4916 if (ret) {
4917 i++;
4918 goto err;
4919 }
4920 }
4921 }
4922
4923 return 0;
4924
4925err:
4926 while (--i >= 0)
4927 regulator_put(consumers[i].consumer);
4928
4929 return ret;
4930}
4931
4932/**
4933 * regulator_bulk_get - get multiple regulator consumers
4934 *
4935 * @dev: Device to supply
4936 * @num_consumers: Number of consumers to register
4937 * @consumers: Configuration of consumers; clients are stored here.
4938 *
4939 * @return 0 on success, an errno on failure.
4940 *
4941 * This helper function allows drivers to get several regulator
4942 * consumers in one operation. If any of the regulators cannot be
4943 * acquired then any regulators that were allocated will be freed
4944 * before returning to the caller.
4945 */
4946int regulator_bulk_get(struct device *dev, int num_consumers,
4947 struct regulator_bulk_data *consumers)
4948{
4949 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4950}
4951EXPORT_SYMBOL_GPL(regulator_bulk_get);
4952
4953static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4954{
4955 struct regulator_bulk_data *bulk = data;
4956
4957 bulk->ret = regulator_enable(bulk->consumer);
4958}
4959
4960/**
4961 * regulator_bulk_enable - enable multiple regulator consumers
4962 *
4963 * @num_consumers: Number of consumers
4964 * @consumers: Consumer data; clients are stored here.
4965 * @return 0 on success, an errno on failure
4966 *
4967 * This convenience API allows consumers to enable multiple regulator
4968 * clients in a single API call. If any consumers cannot be enabled
4969 * then any others that were enabled will be disabled again prior to
4970 * return.
4971 */
4972int regulator_bulk_enable(int num_consumers,
4973 struct regulator_bulk_data *consumers)
4974{
4975 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4976 int i;
4977 int ret = 0;
4978
4979 for (i = 0; i < num_consumers; i++) {
4980 async_schedule_domain(regulator_bulk_enable_async,
4981 &consumers[i], &async_domain);
4982 }
4983
4984 async_synchronize_full_domain(&async_domain);
4985
4986 /* If any consumer failed we need to unwind any that succeeded */
4987 for (i = 0; i < num_consumers; i++) {
4988 if (consumers[i].ret != 0) {
4989 ret = consumers[i].ret;
4990 goto err;
4991 }
4992 }
4993
4994 return 0;
4995
4996err:
4997 for (i = 0; i < num_consumers; i++) {
4998 if (consumers[i].ret < 0)
4999 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5000 ERR_PTR(consumers[i].ret));
5001 else
5002 regulator_disable(consumers[i].consumer);
5003 }
5004
5005 return ret;
5006}
5007EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5008
5009/**
5010 * regulator_bulk_disable - disable multiple regulator consumers
5011 *
5012 * @num_consumers: Number of consumers
5013 * @consumers: Consumer data; clients are stored here.
5014 * @return 0 on success, an errno on failure
5015 *
5016 * This convenience API allows consumers to disable multiple regulator
5017 * clients in a single API call. If any consumers cannot be disabled
5018 * then any others that were disabled will be enabled again prior to
5019 * return.
5020 */
5021int regulator_bulk_disable(int num_consumers,
5022 struct regulator_bulk_data *consumers)
5023{
5024 int i;
5025 int ret, r;
5026
5027 for (i = num_consumers - 1; i >= 0; --i) {
5028 ret = regulator_disable(consumers[i].consumer);
5029 if (ret != 0)
5030 goto err;
5031 }
5032
5033 return 0;
5034
5035err:
5036 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5037 for (++i; i < num_consumers; ++i) {
5038 r = regulator_enable(consumers[i].consumer);
5039 if (r != 0)
5040 pr_err("Failed to re-enable %s: %pe\n",
5041 consumers[i].supply, ERR_PTR(r));
5042 }
5043
5044 return ret;
5045}
5046EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5047
5048/**
5049 * regulator_bulk_force_disable - force disable multiple regulator consumers
5050 *
5051 * @num_consumers: Number of consumers
5052 * @consumers: Consumer data; clients are stored here.
5053 * @return 0 on success, an errno on failure
5054 *
5055 * This convenience API allows consumers to forcibly disable multiple regulator
5056 * clients in a single API call.
5057 * NOTE: This should be used for situations when device damage will
5058 * likely occur if the regulators are not disabled (e.g. over temp).
5059 * Although regulator_force_disable function call for some consumers can
5060 * return error numbers, the function is called for all consumers.
5061 */
5062int regulator_bulk_force_disable(int num_consumers,
5063 struct regulator_bulk_data *consumers)
5064{
5065 int i;
5066 int ret = 0;
5067
5068 for (i = 0; i < num_consumers; i++) {
5069 consumers[i].ret =
5070 regulator_force_disable(consumers[i].consumer);
5071
5072 /* Store first error for reporting */
5073 if (consumers[i].ret && !ret)
5074 ret = consumers[i].ret;
5075 }
5076
5077 return ret;
5078}
5079EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5080
5081/**
5082 * regulator_bulk_free - free multiple regulator consumers
5083 *
5084 * @num_consumers: Number of consumers
5085 * @consumers: Consumer data; clients are stored here.
5086 *
5087 * This convenience API allows consumers to free multiple regulator
5088 * clients in a single API call.
5089 */
5090void regulator_bulk_free(int num_consumers,
5091 struct regulator_bulk_data *consumers)
5092{
5093 int i;
5094
5095 for (i = 0; i < num_consumers; i++) {
5096 regulator_put(consumers[i].consumer);
5097 consumers[i].consumer = NULL;
5098 }
5099}
5100EXPORT_SYMBOL_GPL(regulator_bulk_free);
5101
5102/**
5103 * regulator_handle_critical - Handle events for system-critical regulators.
5104 * @rdev: The regulator device.
5105 * @event: The event being handled.
5106 *
5107 * This function handles critical events such as under-voltage, over-current,
5108 * and unknown errors for regulators deemed system-critical. On detecting such
5109 * events, it triggers a hardware protection shutdown with a defined timeout.
5110 */
5111static void regulator_handle_critical(struct regulator_dev *rdev,
5112 unsigned long event)
5113{
5114 const char *reason = NULL;
5115
5116 if (!rdev->constraints->system_critical)
5117 return;
5118
5119 switch (event) {
5120 case REGULATOR_EVENT_UNDER_VOLTAGE:
5121 reason = "System critical regulator: voltage drop detected";
5122 break;
5123 case REGULATOR_EVENT_OVER_CURRENT:
5124 reason = "System critical regulator: over-current detected";
5125 break;
5126 case REGULATOR_EVENT_FAIL:
5127 reason = "System critical regulator: unknown error";
5128 }
5129
5130 if (!reason)
5131 return;
5132
5133 hw_protection_shutdown(reason,
5134 rdev->constraints->uv_less_critical_window_ms);
5135}
5136
5137/**
5138 * regulator_notifier_call_chain - call regulator event notifier
5139 * @rdev: regulator source
5140 * @event: notifier block
5141 * @data: callback-specific data.
5142 *
5143 * Called by regulator drivers to notify clients a regulator event has
5144 * occurred.
5145 */
5146int regulator_notifier_call_chain(struct regulator_dev *rdev,
5147 unsigned long event, void *data)
5148{
5149 regulator_handle_critical(rdev, event);
5150
5151 _notifier_call_chain(rdev, event, data);
5152 return NOTIFY_DONE;
5153
5154}
5155EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5156
5157/**
5158 * regulator_mode_to_status - convert a regulator mode into a status
5159 *
5160 * @mode: Mode to convert
5161 *
5162 * Convert a regulator mode into a status.
5163 */
5164int regulator_mode_to_status(unsigned int mode)
5165{
5166 switch (mode) {
5167 case REGULATOR_MODE_FAST:
5168 return REGULATOR_STATUS_FAST;
5169 case REGULATOR_MODE_NORMAL:
5170 return REGULATOR_STATUS_NORMAL;
5171 case REGULATOR_MODE_IDLE:
5172 return REGULATOR_STATUS_IDLE;
5173 case REGULATOR_MODE_STANDBY:
5174 return REGULATOR_STATUS_STANDBY;
5175 default:
5176 return REGULATOR_STATUS_UNDEFINED;
5177 }
5178}
5179EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5180
5181static struct attribute *regulator_dev_attrs[] = {
5182 &dev_attr_name.attr,
5183 &dev_attr_num_users.attr,
5184 &dev_attr_type.attr,
5185 &dev_attr_microvolts.attr,
5186 &dev_attr_microamps.attr,
5187 &dev_attr_opmode.attr,
5188 &dev_attr_state.attr,
5189 &dev_attr_status.attr,
5190 &dev_attr_bypass.attr,
5191 &dev_attr_requested_microamps.attr,
5192 &dev_attr_min_microvolts.attr,
5193 &dev_attr_max_microvolts.attr,
5194 &dev_attr_min_microamps.attr,
5195 &dev_attr_max_microamps.attr,
5196 &dev_attr_under_voltage.attr,
5197 &dev_attr_over_current.attr,
5198 &dev_attr_regulation_out.attr,
5199 &dev_attr_fail.attr,
5200 &dev_attr_over_temp.attr,
5201 &dev_attr_under_voltage_warn.attr,
5202 &dev_attr_over_current_warn.attr,
5203 &dev_attr_over_voltage_warn.attr,
5204 &dev_attr_over_temp_warn.attr,
5205 &dev_attr_suspend_standby_state.attr,
5206 &dev_attr_suspend_mem_state.attr,
5207 &dev_attr_suspend_disk_state.attr,
5208 &dev_attr_suspend_standby_microvolts.attr,
5209 &dev_attr_suspend_mem_microvolts.attr,
5210 &dev_attr_suspend_disk_microvolts.attr,
5211 &dev_attr_suspend_standby_mode.attr,
5212 &dev_attr_suspend_mem_mode.attr,
5213 &dev_attr_suspend_disk_mode.attr,
5214 NULL
5215};
5216
5217/*
5218 * To avoid cluttering sysfs (and memory) with useless state, only
5219 * create attributes that can be meaningfully displayed.
5220 */
5221static umode_t regulator_attr_is_visible(struct kobject *kobj,
5222 struct attribute *attr, int idx)
5223{
5224 struct device *dev = kobj_to_dev(kobj);
5225 struct regulator_dev *rdev = dev_to_rdev(dev);
5226 const struct regulator_ops *ops = rdev->desc->ops;
5227 umode_t mode = attr->mode;
5228
5229 /* these three are always present */
5230 if (attr == &dev_attr_name.attr ||
5231 attr == &dev_attr_num_users.attr ||
5232 attr == &dev_attr_type.attr)
5233 return mode;
5234
5235 /* some attributes need specific methods to be displayed */
5236 if (attr == &dev_attr_microvolts.attr) {
5237 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5238 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5239 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5240 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5241 return mode;
5242 return 0;
5243 }
5244
5245 if (attr == &dev_attr_microamps.attr)
5246 return ops->get_current_limit ? mode : 0;
5247
5248 if (attr == &dev_attr_opmode.attr)
5249 return ops->get_mode ? mode : 0;
5250
5251 if (attr == &dev_attr_state.attr)
5252 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5253
5254 if (attr == &dev_attr_status.attr)
5255 return ops->get_status ? mode : 0;
5256
5257 if (attr == &dev_attr_bypass.attr)
5258 return ops->get_bypass ? mode : 0;
5259
5260 if (attr == &dev_attr_under_voltage.attr ||
5261 attr == &dev_attr_over_current.attr ||
5262 attr == &dev_attr_regulation_out.attr ||
5263 attr == &dev_attr_fail.attr ||
5264 attr == &dev_attr_over_temp.attr ||
5265 attr == &dev_attr_under_voltage_warn.attr ||
5266 attr == &dev_attr_over_current_warn.attr ||
5267 attr == &dev_attr_over_voltage_warn.attr ||
5268 attr == &dev_attr_over_temp_warn.attr)
5269 return ops->get_error_flags ? mode : 0;
5270
5271 /* constraints need specific supporting methods */
5272 if (attr == &dev_attr_min_microvolts.attr ||
5273 attr == &dev_attr_max_microvolts.attr)
5274 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5275
5276 if (attr == &dev_attr_min_microamps.attr ||
5277 attr == &dev_attr_max_microamps.attr)
5278 return ops->set_current_limit ? mode : 0;
5279
5280 if (attr == &dev_attr_suspend_standby_state.attr ||
5281 attr == &dev_attr_suspend_mem_state.attr ||
5282 attr == &dev_attr_suspend_disk_state.attr)
5283 return mode;
5284
5285 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5286 attr == &dev_attr_suspend_mem_microvolts.attr ||
5287 attr == &dev_attr_suspend_disk_microvolts.attr)
5288 return ops->set_suspend_voltage ? mode : 0;
5289
5290 if (attr == &dev_attr_suspend_standby_mode.attr ||
5291 attr == &dev_attr_suspend_mem_mode.attr ||
5292 attr == &dev_attr_suspend_disk_mode.attr)
5293 return ops->set_suspend_mode ? mode : 0;
5294
5295 return mode;
5296}
5297
5298static const struct attribute_group regulator_dev_group = {
5299 .attrs = regulator_dev_attrs,
5300 .is_visible = regulator_attr_is_visible,
5301};
5302
5303static const struct attribute_group *regulator_dev_groups[] = {
5304 ®ulator_dev_group,
5305 NULL
5306};
5307
5308static void regulator_dev_release(struct device *dev)
5309{
5310 struct regulator_dev *rdev = dev_get_drvdata(dev);
5311
5312 debugfs_remove_recursive(rdev->debugfs);
5313 kfree(rdev->constraints);
5314 of_node_put(rdev->dev.of_node);
5315 kfree(rdev);
5316}
5317
5318static void rdev_init_debugfs(struct regulator_dev *rdev)
5319{
5320 struct device *parent = rdev->dev.parent;
5321 const char *rname = rdev_get_name(rdev);
5322 char name[NAME_MAX];
5323
5324 /* Avoid duplicate debugfs directory names */
5325 if (parent && rname == rdev->desc->name) {
5326 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5327 rname);
5328 rname = name;
5329 }
5330
5331 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5332 if (IS_ERR(rdev->debugfs))
5333 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5334
5335 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5336 &rdev->use_count);
5337 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5338 &rdev->open_count);
5339 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5340 &rdev->bypass_count);
5341}
5342
5343static int regulator_register_resolve_supply(struct device *dev, void *data)
5344{
5345 struct regulator_dev *rdev = dev_to_rdev(dev);
5346
5347 if (regulator_resolve_supply(rdev))
5348 rdev_dbg(rdev, "unable to resolve supply\n");
5349
5350 return 0;
5351}
5352
5353int regulator_coupler_register(struct regulator_coupler *coupler)
5354{
5355 mutex_lock(®ulator_list_mutex);
5356 list_add_tail(&coupler->list, ®ulator_coupler_list);
5357 mutex_unlock(®ulator_list_mutex);
5358
5359 return 0;
5360}
5361
5362static struct regulator_coupler *
5363regulator_find_coupler(struct regulator_dev *rdev)
5364{
5365 struct regulator_coupler *coupler;
5366 int err;
5367
5368 /*
5369 * Note that regulators are appended to the list and the generic
5370 * coupler is registered first, hence it will be attached at last
5371 * if nobody cared.
5372 */
5373 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5374 err = coupler->attach_regulator(coupler, rdev);
5375 if (!err) {
5376 if (!coupler->balance_voltage &&
5377 rdev->coupling_desc.n_coupled > 2)
5378 goto err_unsupported;
5379
5380 return coupler;
5381 }
5382
5383 if (err < 0)
5384 return ERR_PTR(err);
5385
5386 if (err == 1)
5387 continue;
5388
5389 break;
5390 }
5391
5392 return ERR_PTR(-EINVAL);
5393
5394err_unsupported:
5395 if (coupler->detach_regulator)
5396 coupler->detach_regulator(coupler, rdev);
5397
5398 rdev_err(rdev,
5399 "Voltage balancing for multiple regulator couples is unimplemented\n");
5400
5401 return ERR_PTR(-EPERM);
5402}
5403
5404static void regulator_resolve_coupling(struct regulator_dev *rdev)
5405{
5406 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5407 struct coupling_desc *c_desc = &rdev->coupling_desc;
5408 int n_coupled = c_desc->n_coupled;
5409 struct regulator_dev *c_rdev;
5410 int i;
5411
5412 for (i = 1; i < n_coupled; i++) {
5413 /* already resolved */
5414 if (c_desc->coupled_rdevs[i])
5415 continue;
5416
5417 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5418
5419 if (!c_rdev)
5420 continue;
5421
5422 if (c_rdev->coupling_desc.coupler != coupler) {
5423 rdev_err(rdev, "coupler mismatch with %s\n",
5424 rdev_get_name(c_rdev));
5425 return;
5426 }
5427
5428 c_desc->coupled_rdevs[i] = c_rdev;
5429 c_desc->n_resolved++;
5430
5431 regulator_resolve_coupling(c_rdev);
5432 }
5433}
5434
5435static void regulator_remove_coupling(struct regulator_dev *rdev)
5436{
5437 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5438 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5439 struct regulator_dev *__c_rdev, *c_rdev;
5440 unsigned int __n_coupled, n_coupled;
5441 int i, k;
5442 int err;
5443
5444 n_coupled = c_desc->n_coupled;
5445
5446 for (i = 1; i < n_coupled; i++) {
5447 c_rdev = c_desc->coupled_rdevs[i];
5448
5449 if (!c_rdev)
5450 continue;
5451
5452 regulator_lock(c_rdev);
5453
5454 __c_desc = &c_rdev->coupling_desc;
5455 __n_coupled = __c_desc->n_coupled;
5456
5457 for (k = 1; k < __n_coupled; k++) {
5458 __c_rdev = __c_desc->coupled_rdevs[k];
5459
5460 if (__c_rdev == rdev) {
5461 __c_desc->coupled_rdevs[k] = NULL;
5462 __c_desc->n_resolved--;
5463 break;
5464 }
5465 }
5466
5467 regulator_unlock(c_rdev);
5468
5469 c_desc->coupled_rdevs[i] = NULL;
5470 c_desc->n_resolved--;
5471 }
5472
5473 if (coupler && coupler->detach_regulator) {
5474 err = coupler->detach_regulator(coupler, rdev);
5475 if (err)
5476 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5477 ERR_PTR(err));
5478 }
5479
5480 kfree(rdev->coupling_desc.coupled_rdevs);
5481 rdev->coupling_desc.coupled_rdevs = NULL;
5482}
5483
5484static int regulator_init_coupling(struct regulator_dev *rdev)
5485{
5486 struct regulator_dev **coupled;
5487 int err, n_phandles;
5488
5489 if (!IS_ENABLED(CONFIG_OF))
5490 n_phandles = 0;
5491 else
5492 n_phandles = of_get_n_coupled(rdev);
5493
5494 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5495 if (!coupled)
5496 return -ENOMEM;
5497
5498 rdev->coupling_desc.coupled_rdevs = coupled;
5499
5500 /*
5501 * Every regulator should always have coupling descriptor filled with
5502 * at least pointer to itself.
5503 */
5504 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5505 rdev->coupling_desc.n_coupled = n_phandles + 1;
5506 rdev->coupling_desc.n_resolved++;
5507
5508 /* regulator isn't coupled */
5509 if (n_phandles == 0)
5510 return 0;
5511
5512 if (!of_check_coupling_data(rdev))
5513 return -EPERM;
5514
5515 mutex_lock(®ulator_list_mutex);
5516 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5517 mutex_unlock(®ulator_list_mutex);
5518
5519 if (IS_ERR(rdev->coupling_desc.coupler)) {
5520 err = PTR_ERR(rdev->coupling_desc.coupler);
5521 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5522 return err;
5523 }
5524
5525 return 0;
5526}
5527
5528static int generic_coupler_attach(struct regulator_coupler *coupler,
5529 struct regulator_dev *rdev)
5530{
5531 if (rdev->coupling_desc.n_coupled > 2) {
5532 rdev_err(rdev,
5533 "Voltage balancing for multiple regulator couples is unimplemented\n");
5534 return -EPERM;
5535 }
5536
5537 if (!rdev->constraints->always_on) {
5538 rdev_err(rdev,
5539 "Coupling of a non always-on regulator is unimplemented\n");
5540 return -ENOTSUPP;
5541 }
5542
5543 return 0;
5544}
5545
5546static struct regulator_coupler generic_regulator_coupler = {
5547 .attach_regulator = generic_coupler_attach,
5548};
5549
5550/**
5551 * regulator_register - register regulator
5552 * @dev: the device that drive the regulator
5553 * @regulator_desc: regulator to register
5554 * @cfg: runtime configuration for regulator
5555 *
5556 * Called by regulator drivers to register a regulator.
5557 * Returns a valid pointer to struct regulator_dev on success
5558 * or an ERR_PTR() on error.
5559 */
5560struct regulator_dev *
5561regulator_register(struct device *dev,
5562 const struct regulator_desc *regulator_desc,
5563 const struct regulator_config *cfg)
5564{
5565 const struct regulator_init_data *init_data;
5566 struct regulator_config *config = NULL;
5567 static atomic_t regulator_no = ATOMIC_INIT(-1);
5568 struct regulator_dev *rdev;
5569 bool dangling_cfg_gpiod = false;
5570 bool dangling_of_gpiod = false;
5571 int ret, i;
5572 bool resolved_early = false;
5573
5574 if (cfg == NULL)
5575 return ERR_PTR(-EINVAL);
5576 if (cfg->ena_gpiod)
5577 dangling_cfg_gpiod = true;
5578 if (regulator_desc == NULL) {
5579 ret = -EINVAL;
5580 goto rinse;
5581 }
5582
5583 WARN_ON(!dev || !cfg->dev);
5584
5585 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5586 ret = -EINVAL;
5587 goto rinse;
5588 }
5589
5590 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5591 regulator_desc->type != REGULATOR_CURRENT) {
5592 ret = -EINVAL;
5593 goto rinse;
5594 }
5595
5596 /* Only one of each should be implemented */
5597 WARN_ON(regulator_desc->ops->get_voltage &&
5598 regulator_desc->ops->get_voltage_sel);
5599 WARN_ON(regulator_desc->ops->set_voltage &&
5600 regulator_desc->ops->set_voltage_sel);
5601
5602 /* If we're using selectors we must implement list_voltage. */
5603 if (regulator_desc->ops->get_voltage_sel &&
5604 !regulator_desc->ops->list_voltage) {
5605 ret = -EINVAL;
5606 goto rinse;
5607 }
5608 if (regulator_desc->ops->set_voltage_sel &&
5609 !regulator_desc->ops->list_voltage) {
5610 ret = -EINVAL;
5611 goto rinse;
5612 }
5613
5614 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5615 if (rdev == NULL) {
5616 ret = -ENOMEM;
5617 goto rinse;
5618 }
5619 device_initialize(&rdev->dev);
5620 dev_set_drvdata(&rdev->dev, rdev);
5621 rdev->dev.class = ®ulator_class;
5622 spin_lock_init(&rdev->err_lock);
5623
5624 /*
5625 * Duplicate the config so the driver could override it after
5626 * parsing init data.
5627 */
5628 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5629 if (config == NULL) {
5630 ret = -ENOMEM;
5631 goto clean;
5632 }
5633
5634 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5635 &rdev->dev.of_node);
5636
5637 /*
5638 * Sometimes not all resources are probed already so we need to take
5639 * that into account. This happens most the time if the ena_gpiod comes
5640 * from a gpio extender or something else.
5641 */
5642 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5643 ret = -EPROBE_DEFER;
5644 goto clean;
5645 }
5646
5647 /*
5648 * We need to keep track of any GPIO descriptor coming from the
5649 * device tree until we have handled it over to the core. If the
5650 * config that was passed in to this function DOES NOT contain
5651 * a descriptor, and the config after this call DOES contain
5652 * a descriptor, we definitely got one from parsing the device
5653 * tree.
5654 */
5655 if (!cfg->ena_gpiod && config->ena_gpiod)
5656 dangling_of_gpiod = true;
5657 if (!init_data) {
5658 init_data = config->init_data;
5659 rdev->dev.of_node = of_node_get(config->of_node);
5660 }
5661
5662 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5663 rdev->reg_data = config->driver_data;
5664 rdev->owner = regulator_desc->owner;
5665 rdev->desc = regulator_desc;
5666 if (config->regmap)
5667 rdev->regmap = config->regmap;
5668 else if (dev_get_regmap(dev, NULL))
5669 rdev->regmap = dev_get_regmap(dev, NULL);
5670 else if (dev->parent)
5671 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5672 INIT_LIST_HEAD(&rdev->consumer_list);
5673 INIT_LIST_HEAD(&rdev->list);
5674 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5675 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5676
5677 if (init_data && init_data->supply_regulator)
5678 rdev->supply_name = init_data->supply_regulator;
5679 else if (regulator_desc->supply_name)
5680 rdev->supply_name = regulator_desc->supply_name;
5681
5682 /* register with sysfs */
5683 rdev->dev.parent = config->dev;
5684 dev_set_name(&rdev->dev, "regulator.%lu",
5685 (unsigned long) atomic_inc_return(®ulator_no));
5686
5687 /* set regulator constraints */
5688 if (init_data)
5689 rdev->constraints = kmemdup(&init_data->constraints,
5690 sizeof(*rdev->constraints),
5691 GFP_KERNEL);
5692 else
5693 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5694 GFP_KERNEL);
5695 if (!rdev->constraints) {
5696 ret = -ENOMEM;
5697 goto wash;
5698 }
5699
5700 if ((rdev->supply_name && !rdev->supply) &&
5701 (rdev->constraints->always_on ||
5702 rdev->constraints->boot_on)) {
5703 ret = regulator_resolve_supply(rdev);
5704 if (ret)
5705 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5706 ERR_PTR(ret));
5707
5708 resolved_early = true;
5709 }
5710
5711 /* perform any regulator specific init */
5712 if (init_data && init_data->regulator_init) {
5713 ret = init_data->regulator_init(rdev->reg_data);
5714 if (ret < 0)
5715 goto wash;
5716 }
5717
5718 if (config->ena_gpiod) {
5719 ret = regulator_ena_gpio_request(rdev, config);
5720 if (ret != 0) {
5721 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5722 ERR_PTR(ret));
5723 goto wash;
5724 }
5725 /* The regulator core took over the GPIO descriptor */
5726 dangling_cfg_gpiod = false;
5727 dangling_of_gpiod = false;
5728 }
5729
5730 ret = set_machine_constraints(rdev);
5731 if (ret == -EPROBE_DEFER && !resolved_early) {
5732 /* Regulator might be in bypass mode and so needs its supply
5733 * to set the constraints
5734 */
5735 /* FIXME: this currently triggers a chicken-and-egg problem
5736 * when creating -SUPPLY symlink in sysfs to a regulator
5737 * that is just being created
5738 */
5739 rdev_dbg(rdev, "will resolve supply early: %s\n",
5740 rdev->supply_name);
5741 ret = regulator_resolve_supply(rdev);
5742 if (!ret)
5743 ret = set_machine_constraints(rdev);
5744 else
5745 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5746 ERR_PTR(ret));
5747 }
5748 if (ret < 0)
5749 goto wash;
5750
5751 ret = regulator_init_coupling(rdev);
5752 if (ret < 0)
5753 goto wash;
5754
5755 /* add consumers devices */
5756 if (init_data) {
5757 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5758 ret = set_consumer_device_supply(rdev,
5759 init_data->consumer_supplies[i].dev_name,
5760 init_data->consumer_supplies[i].supply);
5761 if (ret < 0) {
5762 dev_err(dev, "Failed to set supply %s\n",
5763 init_data->consumer_supplies[i].supply);
5764 goto unset_supplies;
5765 }
5766 }
5767 }
5768
5769 if (!rdev->desc->ops->get_voltage &&
5770 !rdev->desc->ops->list_voltage &&
5771 !rdev->desc->fixed_uV)
5772 rdev->is_switch = true;
5773
5774 ret = device_add(&rdev->dev);
5775 if (ret != 0)
5776 goto unset_supplies;
5777
5778 rdev_init_debugfs(rdev);
5779
5780 /* try to resolve regulators coupling since a new one was registered */
5781 mutex_lock(®ulator_list_mutex);
5782 regulator_resolve_coupling(rdev);
5783 mutex_unlock(®ulator_list_mutex);
5784
5785 /* try to resolve regulators supply since a new one was registered */
5786 class_for_each_device(®ulator_class, NULL, NULL,
5787 regulator_register_resolve_supply);
5788 kfree(config);
5789 return rdev;
5790
5791unset_supplies:
5792 mutex_lock(®ulator_list_mutex);
5793 unset_regulator_supplies(rdev);
5794 regulator_remove_coupling(rdev);
5795 mutex_unlock(®ulator_list_mutex);
5796wash:
5797 regulator_put(rdev->supply);
5798 kfree(rdev->coupling_desc.coupled_rdevs);
5799 mutex_lock(®ulator_list_mutex);
5800 regulator_ena_gpio_free(rdev);
5801 mutex_unlock(®ulator_list_mutex);
5802clean:
5803 if (dangling_of_gpiod)
5804 gpiod_put(config->ena_gpiod);
5805 kfree(config);
5806 put_device(&rdev->dev);
5807rinse:
5808 if (dangling_cfg_gpiod)
5809 gpiod_put(cfg->ena_gpiod);
5810 return ERR_PTR(ret);
5811}
5812EXPORT_SYMBOL_GPL(regulator_register);
5813
5814/**
5815 * regulator_unregister - unregister regulator
5816 * @rdev: regulator to unregister
5817 *
5818 * Called by regulator drivers to unregister a regulator.
5819 */
5820void regulator_unregister(struct regulator_dev *rdev)
5821{
5822 if (rdev == NULL)
5823 return;
5824
5825 if (rdev->supply) {
5826 while (rdev->use_count--)
5827 regulator_disable(rdev->supply);
5828 regulator_put(rdev->supply);
5829 }
5830
5831 flush_work(&rdev->disable_work.work);
5832
5833 mutex_lock(®ulator_list_mutex);
5834
5835 WARN_ON(rdev->open_count);
5836 regulator_remove_coupling(rdev);
5837 unset_regulator_supplies(rdev);
5838 list_del(&rdev->list);
5839 regulator_ena_gpio_free(rdev);
5840 device_unregister(&rdev->dev);
5841
5842 mutex_unlock(®ulator_list_mutex);
5843}
5844EXPORT_SYMBOL_GPL(regulator_unregister);
5845
5846#ifdef CONFIG_SUSPEND
5847/**
5848 * regulator_suspend - prepare regulators for system wide suspend
5849 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5850 *
5851 * Configure each regulator with it's suspend operating parameters for state.
5852 */
5853static int regulator_suspend(struct device *dev)
5854{
5855 struct regulator_dev *rdev = dev_to_rdev(dev);
5856 suspend_state_t state = pm_suspend_target_state;
5857 int ret;
5858 const struct regulator_state *rstate;
5859
5860 rstate = regulator_get_suspend_state_check(rdev, state);
5861 if (!rstate)
5862 return 0;
5863
5864 regulator_lock(rdev);
5865 ret = __suspend_set_state(rdev, rstate);
5866 regulator_unlock(rdev);
5867
5868 return ret;
5869}
5870
5871static int regulator_resume(struct device *dev)
5872{
5873 suspend_state_t state = pm_suspend_target_state;
5874 struct regulator_dev *rdev = dev_to_rdev(dev);
5875 struct regulator_state *rstate;
5876 int ret = 0;
5877
5878 rstate = regulator_get_suspend_state(rdev, state);
5879 if (rstate == NULL)
5880 return 0;
5881
5882 /* Avoid grabbing the lock if we don't need to */
5883 if (!rdev->desc->ops->resume)
5884 return 0;
5885
5886 regulator_lock(rdev);
5887
5888 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5889 rstate->enabled == DISABLE_IN_SUSPEND)
5890 ret = rdev->desc->ops->resume(rdev);
5891
5892 regulator_unlock(rdev);
5893
5894 return ret;
5895}
5896#else /* !CONFIG_SUSPEND */
5897
5898#define regulator_suspend NULL
5899#define regulator_resume NULL
5900
5901#endif /* !CONFIG_SUSPEND */
5902
5903#ifdef CONFIG_PM
5904static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5905 .suspend = regulator_suspend,
5906 .resume = regulator_resume,
5907};
5908#endif
5909
5910const struct class regulator_class = {
5911 .name = "regulator",
5912 .dev_release = regulator_dev_release,
5913 .dev_groups = regulator_dev_groups,
5914#ifdef CONFIG_PM
5915 .pm = ®ulator_pm_ops,
5916#endif
5917};
5918/**
5919 * regulator_has_full_constraints - the system has fully specified constraints
5920 *
5921 * Calling this function will cause the regulator API to disable all
5922 * regulators which have a zero use count and don't have an always_on
5923 * constraint in a late_initcall.
5924 *
5925 * The intention is that this will become the default behaviour in a
5926 * future kernel release so users are encouraged to use this facility
5927 * now.
5928 */
5929void regulator_has_full_constraints(void)
5930{
5931 has_full_constraints = 1;
5932}
5933EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5934
5935/**
5936 * rdev_get_drvdata - get rdev regulator driver data
5937 * @rdev: regulator
5938 *
5939 * Get rdev regulator driver private data. This call can be used in the
5940 * regulator driver context.
5941 */
5942void *rdev_get_drvdata(struct regulator_dev *rdev)
5943{
5944 return rdev->reg_data;
5945}
5946EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5947
5948/**
5949 * regulator_get_drvdata - get regulator driver data
5950 * @regulator: regulator
5951 *
5952 * Get regulator driver private data. This call can be used in the consumer
5953 * driver context when non API regulator specific functions need to be called.
5954 */
5955void *regulator_get_drvdata(struct regulator *regulator)
5956{
5957 return regulator->rdev->reg_data;
5958}
5959EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5960
5961/**
5962 * regulator_set_drvdata - set regulator driver data
5963 * @regulator: regulator
5964 * @data: data
5965 */
5966void regulator_set_drvdata(struct regulator *regulator, void *data)
5967{
5968 regulator->rdev->reg_data = data;
5969}
5970EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5971
5972/**
5973 * rdev_get_id - get regulator ID
5974 * @rdev: regulator
5975 */
5976int rdev_get_id(struct regulator_dev *rdev)
5977{
5978 return rdev->desc->id;
5979}
5980EXPORT_SYMBOL_GPL(rdev_get_id);
5981
5982struct device *rdev_get_dev(struct regulator_dev *rdev)
5983{
5984 return &rdev->dev;
5985}
5986EXPORT_SYMBOL_GPL(rdev_get_dev);
5987
5988struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5989{
5990 return rdev->regmap;
5991}
5992EXPORT_SYMBOL_GPL(rdev_get_regmap);
5993
5994void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5995{
5996 return reg_init_data->driver_data;
5997}
5998EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5999
6000#ifdef CONFIG_DEBUG_FS
6001static int supply_map_show(struct seq_file *sf, void *data)
6002{
6003 struct regulator_map *map;
6004
6005 list_for_each_entry(map, ®ulator_map_list, list) {
6006 seq_printf(sf, "%s -> %s.%s\n",
6007 rdev_get_name(map->regulator), map->dev_name,
6008 map->supply);
6009 }
6010
6011 return 0;
6012}
6013DEFINE_SHOW_ATTRIBUTE(supply_map);
6014
6015struct summary_data {
6016 struct seq_file *s;
6017 struct regulator_dev *parent;
6018 int level;
6019};
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022 struct regulator_dev *rdev,
6023 int level);
6024
6025static int regulator_summary_show_children(struct device *dev, void *data)
6026{
6027 struct regulator_dev *rdev = dev_to_rdev(dev);
6028 struct summary_data *summary_data = data;
6029
6030 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6031 regulator_summary_show_subtree(summary_data->s, rdev,
6032 summary_data->level + 1);
6033
6034 return 0;
6035}
6036
6037static void regulator_summary_show_subtree(struct seq_file *s,
6038 struct regulator_dev *rdev,
6039 int level)
6040{
6041 struct regulation_constraints *c;
6042 struct regulator *consumer;
6043 struct summary_data summary_data;
6044 unsigned int opmode;
6045
6046 if (!rdev)
6047 return;
6048
6049 opmode = _regulator_get_mode_unlocked(rdev);
6050 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6051 level * 3 + 1, "",
6052 30 - level * 3, rdev_get_name(rdev),
6053 rdev->use_count, rdev->open_count, rdev->bypass_count,
6054 regulator_opmode_to_str(opmode));
6055
6056 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6057 seq_printf(s, "%5dmA ",
6058 _regulator_get_current_limit_unlocked(rdev) / 1000);
6059
6060 c = rdev->constraints;
6061 if (c) {
6062 switch (rdev->desc->type) {
6063 case REGULATOR_VOLTAGE:
6064 seq_printf(s, "%5dmV %5dmV ",
6065 c->min_uV / 1000, c->max_uV / 1000);
6066 break;
6067 case REGULATOR_CURRENT:
6068 seq_printf(s, "%5dmA %5dmA ",
6069 c->min_uA / 1000, c->max_uA / 1000);
6070 break;
6071 }
6072 }
6073
6074 seq_puts(s, "\n");
6075
6076 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6077 if (consumer->dev && consumer->dev->class == ®ulator_class)
6078 continue;
6079
6080 seq_printf(s, "%*s%-*s ",
6081 (level + 1) * 3 + 1, "",
6082 30 - (level + 1) * 3,
6083 consumer->supply_name ? consumer->supply_name :
6084 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6085
6086 switch (rdev->desc->type) {
6087 case REGULATOR_VOLTAGE:
6088 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6089 consumer->enable_count,
6090 consumer->uA_load / 1000,
6091 consumer->uA_load && !consumer->enable_count ?
6092 '*' : ' ',
6093 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6094 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6095 break;
6096 case REGULATOR_CURRENT:
6097 break;
6098 }
6099
6100 seq_puts(s, "\n");
6101 }
6102
6103 summary_data.s = s;
6104 summary_data.level = level;
6105 summary_data.parent = rdev;
6106
6107 class_for_each_device(®ulator_class, NULL, &summary_data,
6108 regulator_summary_show_children);
6109}
6110
6111struct summary_lock_data {
6112 struct ww_acquire_ctx *ww_ctx;
6113 struct regulator_dev **new_contended_rdev;
6114 struct regulator_dev **old_contended_rdev;
6115};
6116
6117static int regulator_summary_lock_one(struct device *dev, void *data)
6118{
6119 struct regulator_dev *rdev = dev_to_rdev(dev);
6120 struct summary_lock_data *lock_data = data;
6121 int ret = 0;
6122
6123 if (rdev != *lock_data->old_contended_rdev) {
6124 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6125
6126 if (ret == -EDEADLK)
6127 *lock_data->new_contended_rdev = rdev;
6128 else
6129 WARN_ON_ONCE(ret);
6130 } else {
6131 *lock_data->old_contended_rdev = NULL;
6132 }
6133
6134 return ret;
6135}
6136
6137static int regulator_summary_unlock_one(struct device *dev, void *data)
6138{
6139 struct regulator_dev *rdev = dev_to_rdev(dev);
6140 struct summary_lock_data *lock_data = data;
6141
6142 if (lock_data) {
6143 if (rdev == *lock_data->new_contended_rdev)
6144 return -EDEADLK;
6145 }
6146
6147 regulator_unlock(rdev);
6148
6149 return 0;
6150}
6151
6152static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6153 struct regulator_dev **new_contended_rdev,
6154 struct regulator_dev **old_contended_rdev)
6155{
6156 struct summary_lock_data lock_data;
6157 int ret;
6158
6159 lock_data.ww_ctx = ww_ctx;
6160 lock_data.new_contended_rdev = new_contended_rdev;
6161 lock_data.old_contended_rdev = old_contended_rdev;
6162
6163 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6164 regulator_summary_lock_one);
6165 if (ret)
6166 class_for_each_device(®ulator_class, NULL, &lock_data,
6167 regulator_summary_unlock_one);
6168
6169 return ret;
6170}
6171
6172static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6173{
6174 struct regulator_dev *new_contended_rdev = NULL;
6175 struct regulator_dev *old_contended_rdev = NULL;
6176 int err;
6177
6178 mutex_lock(®ulator_list_mutex);
6179
6180 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6181
6182 do {
6183 if (new_contended_rdev) {
6184 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6185 old_contended_rdev = new_contended_rdev;
6186 old_contended_rdev->ref_cnt++;
6187 old_contended_rdev->mutex_owner = current;
6188 }
6189
6190 err = regulator_summary_lock_all(ww_ctx,
6191 &new_contended_rdev,
6192 &old_contended_rdev);
6193
6194 if (old_contended_rdev)
6195 regulator_unlock(old_contended_rdev);
6196
6197 } while (err == -EDEADLK);
6198
6199 ww_acquire_done(ww_ctx);
6200}
6201
6202static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6203{
6204 class_for_each_device(®ulator_class, NULL, NULL,
6205 regulator_summary_unlock_one);
6206 ww_acquire_fini(ww_ctx);
6207
6208 mutex_unlock(®ulator_list_mutex);
6209}
6210
6211static int regulator_summary_show_roots(struct device *dev, void *data)
6212{
6213 struct regulator_dev *rdev = dev_to_rdev(dev);
6214 struct seq_file *s = data;
6215
6216 if (!rdev->supply)
6217 regulator_summary_show_subtree(s, rdev, 0);
6218
6219 return 0;
6220}
6221
6222static int regulator_summary_show(struct seq_file *s, void *data)
6223{
6224 struct ww_acquire_ctx ww_ctx;
6225
6226 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6227 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6228
6229 regulator_summary_lock(&ww_ctx);
6230
6231 class_for_each_device(®ulator_class, NULL, s,
6232 regulator_summary_show_roots);
6233
6234 regulator_summary_unlock(&ww_ctx);
6235
6236 return 0;
6237}
6238DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6239#endif /* CONFIG_DEBUG_FS */
6240
6241static int __init regulator_init(void)
6242{
6243 int ret;
6244
6245 ret = class_register(®ulator_class);
6246
6247 debugfs_root = debugfs_create_dir("regulator", NULL);
6248 if (IS_ERR(debugfs_root))
6249 pr_debug("regulator: Failed to create debugfs directory\n");
6250
6251#ifdef CONFIG_DEBUG_FS
6252 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6253 &supply_map_fops);
6254
6255 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6256 NULL, ®ulator_summary_fops);
6257#endif
6258 regulator_dummy_init();
6259
6260 regulator_coupler_register(&generic_regulator_coupler);
6261
6262 return ret;
6263}
6264
6265/* init early to allow our consumers to complete system booting */
6266core_initcall(regulator_init);
6267
6268static int regulator_late_cleanup(struct device *dev, void *data)
6269{
6270 struct regulator_dev *rdev = dev_to_rdev(dev);
6271 struct regulation_constraints *c = rdev->constraints;
6272 int ret;
6273
6274 if (c && c->always_on)
6275 return 0;
6276
6277 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6278 return 0;
6279
6280 regulator_lock(rdev);
6281
6282 if (rdev->use_count)
6283 goto unlock;
6284
6285 /* If reading the status failed, assume that it's off. */
6286 if (_regulator_is_enabled(rdev) <= 0)
6287 goto unlock;
6288
6289 if (have_full_constraints()) {
6290 /* We log since this may kill the system if it goes
6291 * wrong.
6292 */
6293 rdev_info(rdev, "disabling\n");
6294 ret = _regulator_do_disable(rdev);
6295 if (ret != 0)
6296 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6297 } else {
6298 /* The intention is that in future we will
6299 * assume that full constraints are provided
6300 * so warn even if we aren't going to do
6301 * anything here.
6302 */
6303 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6304 }
6305
6306unlock:
6307 regulator_unlock(rdev);
6308
6309 return 0;
6310}
6311
6312static bool regulator_ignore_unused;
6313static int __init regulator_ignore_unused_setup(char *__unused)
6314{
6315 regulator_ignore_unused = true;
6316 return 1;
6317}
6318__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6319
6320static void regulator_init_complete_work_function(struct work_struct *work)
6321{
6322 /*
6323 * Regulators may had failed to resolve their input supplies
6324 * when were registered, either because the input supply was
6325 * not registered yet or because its parent device was not
6326 * bound yet. So attempt to resolve the input supplies for
6327 * pending regulators before trying to disable unused ones.
6328 */
6329 class_for_each_device(®ulator_class, NULL, NULL,
6330 regulator_register_resolve_supply);
6331
6332 /*
6333 * For debugging purposes, it may be useful to prevent unused
6334 * regulators from being disabled.
6335 */
6336 if (regulator_ignore_unused) {
6337 pr_warn("regulator: Not disabling unused regulators\n");
6338 return;
6339 }
6340
6341 /* If we have a full configuration then disable any regulators
6342 * we have permission to change the status for and which are
6343 * not in use or always_on. This is effectively the default
6344 * for DT and ACPI as they have full constraints.
6345 */
6346 class_for_each_device(®ulator_class, NULL, NULL,
6347 regulator_late_cleanup);
6348}
6349
6350static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6351 regulator_init_complete_work_function);
6352
6353static int __init regulator_init_complete(void)
6354{
6355 /*
6356 * Since DT doesn't provide an idiomatic mechanism for
6357 * enabling full constraints and since it's much more natural
6358 * with DT to provide them just assume that a DT enabled
6359 * system has full constraints.
6360 */
6361 if (of_have_populated_dt())
6362 has_full_constraints = true;
6363
6364 /*
6365 * We punt completion for an arbitrary amount of time since
6366 * systems like distros will load many drivers from userspace
6367 * so consumers might not always be ready yet, this is
6368 * particularly an issue with laptops where this might bounce
6369 * the display off then on. Ideally we'd get a notification
6370 * from userspace when this happens but we don't so just wait
6371 * a bit and hope we waited long enough. It'd be better if
6372 * we'd only do this on systems that need it, and a kernel
6373 * command line option might be useful.
6374 */
6375 schedule_delayed_work(®ulator_init_complete_work,
6376 msecs_to_jiffies(30000));
6377
6378 return 0;
6379}
6380late_initcall_sync(regulator_init_complete);