Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/interrupt.h>
22#include <linux/jiffies.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/kasan.h>
26#include <linux/kmsan.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/ratelimit.h>
30#include <linux/oom.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/pagevec.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmstat.h>
39#include <linux/fault-inject.h>
40#include <linux/compaction.h>
41#include <trace/events/kmem.h>
42#include <trace/events/oom.h>
43#include <linux/prefetch.h>
44#include <linux/mm_inline.h>
45#include <linux/mmu_notifier.h>
46#include <linux/migrate.h>
47#include <linux/sched/mm.h>
48#include <linux/page_owner.h>
49#include <linux/page_table_check.h>
50#include <linux/memcontrol.h>
51#include <linux/ftrace.h>
52#include <linux/lockdep.h>
53#include <linux/psi.h>
54#include <linux/khugepaged.h>
55#include <linux/delayacct.h>
56#include <linux/cacheinfo.h>
57#include <linux/pgalloc_tag.h>
58#include <asm/div64.h>
59#include "internal.h"
60#include "shuffle.h"
61#include "page_reporting.h"
62
63/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64typedef int __bitwise fpi_t;
65
66/* No special request */
67#define FPI_NONE ((__force fpi_t)0)
68
69/*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79/*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92static DEFINE_MUTEX(pcp_batch_high_lock);
93#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94
95#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96/*
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99 */
100#define pcp_trylock_prepare(flags) do { } while (0)
101#define pcp_trylock_finish(flag) do { } while (0)
102#else
103
104/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105#define pcp_trylock_prepare(flags) local_irq_save(flags)
106#define pcp_trylock_finish(flags) local_irq_restore(flags)
107#endif
108
109/*
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
116 */
117#ifndef CONFIG_PREEMPT_RT
118#define pcpu_task_pin() preempt_disable()
119#define pcpu_task_unpin() preempt_enable()
120#else
121#define pcpu_task_pin() migrate_disable()
122#define pcpu_task_unpin() migrate_enable()
123#endif
124
125/*
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
128 */
129#define pcpu_spin_lock(type, member, ptr) \
130({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
136})
137
138#define pcpu_spin_trylock(type, member, ptr) \
139({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
146 } \
147 _ret; \
148})
149
150#define pcpu_spin_unlock(member, ptr) \
151({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
154})
155
156/* struct per_cpu_pages specific helpers. */
157#define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159
160#define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162
163#define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
165
166#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167DEFINE_PER_CPU(int, numa_node);
168EXPORT_PER_CPU_SYMBOL(numa_node);
169#endif
170
171DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172
173#ifdef CONFIG_HAVE_MEMORYLESS_NODES
174/*
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
179 */
180DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182#endif
183
184static DEFINE_MUTEX(pcpu_drain_mutex);
185
186#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187volatile unsigned long latent_entropy __latent_entropy;
188EXPORT_SYMBOL(latent_entropy);
189#endif
190
191/*
192 * Array of node states.
193 */
194nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197#ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199#ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201#endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204#endif /* NUMA */
205};
206EXPORT_SYMBOL(node_states);
207
208gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209
210#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211unsigned int pageblock_order __read_mostly;
212#endif
213
214static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
216
217/*
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224 *
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
227 */
228static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229#ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231#endif
232#ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234#endif
235 [ZONE_NORMAL] = 32,
236#ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238#endif
239 [ZONE_MOVABLE] = 0,
240};
241
242char * const zone_names[MAX_NR_ZONES] = {
243#ifdef CONFIG_ZONE_DMA
244 "DMA",
245#endif
246#ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248#endif
249 "Normal",
250#ifdef CONFIG_HIGHMEM
251 "HighMem",
252#endif
253 "Movable",
254#ifdef CONFIG_ZONE_DEVICE
255 "Device",
256#endif
257};
258
259const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264#ifdef CONFIG_CMA
265 "CMA",
266#endif
267#ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269#endif
270};
271
272int min_free_kbytes = 1024;
273int user_min_free_kbytes = -1;
274static int watermark_boost_factor __read_mostly = 15000;
275static int watermark_scale_factor = 10;
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280
281#if MAX_NUMNODES > 1
282unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283unsigned int nr_online_nodes __read_mostly = 1;
284EXPORT_SYMBOL(nr_node_ids);
285EXPORT_SYMBOL(nr_online_nodes);
286#endif
287
288static bool page_contains_unaccepted(struct page *page, unsigned int order);
289static void accept_page(struct page *page, unsigned int order);
290static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291static inline bool has_unaccepted_memory(void);
292static bool __free_unaccepted(struct page *page);
293
294int page_group_by_mobility_disabled __read_mostly;
295
296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297/*
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
301 */
302DEFINE_STATIC_KEY_TRUE(deferred_pages);
303
304static inline bool deferred_pages_enabled(void)
305{
306 return static_branch_unlikely(&deferred_pages);
307}
308
309/*
310 * deferred_grow_zone() is __init, but it is called from
311 * get_page_from_freelist() during early boot until deferred_pages permanently
312 * disables this call. This is why we have refdata wrapper to avoid warning,
313 * and to ensure that the function body gets unloaded.
314 */
315static bool __ref
316_deferred_grow_zone(struct zone *zone, unsigned int order)
317{
318 return deferred_grow_zone(zone, order);
319}
320#else
321static inline bool deferred_pages_enabled(void)
322{
323 return false;
324}
325#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326
327/* Return a pointer to the bitmap storing bits affecting a block of pages */
328static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 unsigned long pfn)
330{
331#ifdef CONFIG_SPARSEMEM
332 return section_to_usemap(__pfn_to_section(pfn));
333#else
334 return page_zone(page)->pageblock_flags;
335#endif /* CONFIG_SPARSEMEM */
336}
337
338static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339{
340#ifdef CONFIG_SPARSEMEM
341 pfn &= (PAGES_PER_SECTION-1);
342#else
343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344#endif /* CONFIG_SPARSEMEM */
345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346}
347
348/**
349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350 * @page: The page within the block of interest
351 * @pfn: The target page frame number
352 * @mask: mask of bits that the caller is interested in
353 *
354 * Return: pageblock_bits flags
355 */
356unsigned long get_pfnblock_flags_mask(const struct page *page,
357 unsigned long pfn, unsigned long mask)
358{
359 unsigned long *bitmap;
360 unsigned long bitidx, word_bitidx;
361 unsigned long word;
362
363 bitmap = get_pageblock_bitmap(page, pfn);
364 bitidx = pfn_to_bitidx(page, pfn);
365 word_bitidx = bitidx / BITS_PER_LONG;
366 bitidx &= (BITS_PER_LONG-1);
367 /*
368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 * a consistent read of the memory array, so that results, even though
370 * racy, are not corrupted.
371 */
372 word = READ_ONCE(bitmap[word_bitidx]);
373 return (word >> bitidx) & mask;
374}
375
376static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 unsigned long pfn)
378{
379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380}
381
382/**
383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384 * @page: The page within the block of interest
385 * @flags: The flags to set
386 * @pfn: The target page frame number
387 * @mask: mask of bits that the caller is interested in
388 */
389void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 unsigned long pfn,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399
400 bitmap = get_pageblock_bitmap(page, pfn);
401 bitidx = pfn_to_bitidx(page, pfn);
402 word_bitidx = bitidx / BITS_PER_LONG;
403 bitidx &= (BITS_PER_LONG-1);
404
405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406
407 mask <<= bitidx;
408 flags <<= bitidx;
409
410 word = READ_ONCE(bitmap[word_bitidx]);
411 do {
412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413}
414
415void set_pageblock_migratetype(struct page *page, int migratetype)
416{
417 if (unlikely(page_group_by_mobility_disabled &&
418 migratetype < MIGRATE_PCPTYPES))
419 migratetype = MIGRATE_UNMOVABLE;
420
421 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 page_to_pfn(page), MIGRATETYPE_MASK);
423}
424
425#ifdef CONFIG_DEBUG_VM
426static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427{
428 int ret;
429 unsigned seq;
430 unsigned long pfn = page_to_pfn(page);
431 unsigned long sp, start_pfn;
432
433 do {
434 seq = zone_span_seqbegin(zone);
435 start_pfn = zone->zone_start_pfn;
436 sp = zone->spanned_pages;
437 ret = !zone_spans_pfn(zone, pfn);
438 } while (zone_span_seqretry(zone, seq));
439
440 if (ret)
441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 pfn, zone_to_nid(zone), zone->name,
443 start_pfn, start_pfn + sp);
444
445 return ret;
446}
447
448/*
449 * Temporary debugging check for pages not lying within a given zone.
450 */
451static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452{
453 if (page_outside_zone_boundaries(zone, page))
454 return true;
455 if (zone != page_zone(page))
456 return true;
457
458 return false;
459}
460#else
461static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462{
463 return false;
464}
465#endif
466
467static void bad_page(struct page *page, const char *reason)
468{
469 static unsigned long resume;
470 static unsigned long nr_shown;
471 static unsigned long nr_unshown;
472
473 /*
474 * Allow a burst of 60 reports, then keep quiet for that minute;
475 * or allow a steady drip of one report per second.
476 */
477 if (nr_shown == 60) {
478 if (time_before(jiffies, resume)) {
479 nr_unshown++;
480 goto out;
481 }
482 if (nr_unshown) {
483 pr_alert(
484 "BUG: Bad page state: %lu messages suppressed\n",
485 nr_unshown);
486 nr_unshown = 0;
487 }
488 nr_shown = 0;
489 }
490 if (nr_shown++ == 0)
491 resume = jiffies + 60 * HZ;
492
493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
494 current->comm, page_to_pfn(page));
495 dump_page(page, reason);
496
497 print_modules();
498 dump_stack();
499out:
500 /* Leave bad fields for debug, except PageBuddy could make trouble */
501 page_mapcount_reset(page); /* remove PageBuddy */
502 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
503}
504
505static inline unsigned int order_to_pindex(int migratetype, int order)
506{
507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
508 if (order > PAGE_ALLOC_COSTLY_ORDER) {
509 VM_BUG_ON(order != HPAGE_PMD_ORDER);
510 return NR_LOWORDER_PCP_LISTS;
511 }
512#else
513 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
514#endif
515
516 return (MIGRATE_PCPTYPES * order) + migratetype;
517}
518
519static inline int pindex_to_order(unsigned int pindex)
520{
521 int order = pindex / MIGRATE_PCPTYPES;
522
523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 if (pindex == NR_LOWORDER_PCP_LISTS)
525 order = HPAGE_PMD_ORDER;
526#else
527 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528#endif
529
530 return order;
531}
532
533static inline bool pcp_allowed_order(unsigned int order)
534{
535 if (order <= PAGE_ALLOC_COSTLY_ORDER)
536 return true;
537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 if (order == HPAGE_PMD_ORDER)
539 return true;
540#endif
541 return false;
542}
543
544/*
545 * Higher-order pages are called "compound pages". They are structured thusly:
546 *
547 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
548 *
549 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
550 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
551 *
552 * The first tail page's ->compound_order holds the order of allocation.
553 * This usage means that zero-order pages may not be compound.
554 */
555
556void prep_compound_page(struct page *page, unsigned int order)
557{
558 int i;
559 int nr_pages = 1 << order;
560
561 __SetPageHead(page);
562 for (i = 1; i < nr_pages; i++)
563 prep_compound_tail(page, i);
564
565 prep_compound_head(page, order);
566}
567
568static inline void set_buddy_order(struct page *page, unsigned int order)
569{
570 set_page_private(page, order);
571 __SetPageBuddy(page);
572}
573
574#ifdef CONFIG_COMPACTION
575static inline struct capture_control *task_capc(struct zone *zone)
576{
577 struct capture_control *capc = current->capture_control;
578
579 return unlikely(capc) &&
580 !(current->flags & PF_KTHREAD) &&
581 !capc->page &&
582 capc->cc->zone == zone ? capc : NULL;
583}
584
585static inline bool
586compaction_capture(struct capture_control *capc, struct page *page,
587 int order, int migratetype)
588{
589 if (!capc || order != capc->cc->order)
590 return false;
591
592 /* Do not accidentally pollute CMA or isolated regions*/
593 if (is_migrate_cma(migratetype) ||
594 is_migrate_isolate(migratetype))
595 return false;
596
597 /*
598 * Do not let lower order allocations pollute a movable pageblock
599 * unless compaction is also requesting movable pages.
600 * This might let an unmovable request use a reclaimable pageblock
601 * and vice-versa but no more than normal fallback logic which can
602 * have trouble finding a high-order free page.
603 */
604 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
605 capc->cc->migratetype != MIGRATE_MOVABLE)
606 return false;
607
608 capc->page = page;
609 return true;
610}
611
612#else
613static inline struct capture_control *task_capc(struct zone *zone)
614{
615 return NULL;
616}
617
618static inline bool
619compaction_capture(struct capture_control *capc, struct page *page,
620 int order, int migratetype)
621{
622 return false;
623}
624#endif /* CONFIG_COMPACTION */
625
626static inline void account_freepages(struct zone *zone, int nr_pages,
627 int migratetype)
628{
629 if (is_migrate_isolate(migratetype))
630 return;
631
632 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
633
634 if (is_migrate_cma(migratetype))
635 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
636}
637
638/* Used for pages not on another list */
639static inline void __add_to_free_list(struct page *page, struct zone *zone,
640 unsigned int order, int migratetype,
641 bool tail)
642{
643 struct free_area *area = &zone->free_area[order];
644
645 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
646 "page type is %lu, passed migratetype is %d (nr=%d)\n",
647 get_pageblock_migratetype(page), migratetype, 1 << order);
648
649 if (tail)
650 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
651 else
652 list_add(&page->buddy_list, &area->free_list[migratetype]);
653 area->nr_free++;
654}
655
656/*
657 * Used for pages which are on another list. Move the pages to the tail
658 * of the list - so the moved pages won't immediately be considered for
659 * allocation again (e.g., optimization for memory onlining).
660 */
661static inline void move_to_free_list(struct page *page, struct zone *zone,
662 unsigned int order, int old_mt, int new_mt)
663{
664 struct free_area *area = &zone->free_area[order];
665
666 /* Free page moving can fail, so it happens before the type update */
667 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
668 "page type is %lu, passed migratetype is %d (nr=%d)\n",
669 get_pageblock_migratetype(page), old_mt, 1 << order);
670
671 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
672
673 account_freepages(zone, -(1 << order), old_mt);
674 account_freepages(zone, 1 << order, new_mt);
675}
676
677static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
678 unsigned int order, int migratetype)
679{
680 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
681 "page type is %lu, passed migratetype is %d (nr=%d)\n",
682 get_pageblock_migratetype(page), migratetype, 1 << order);
683
684 /* clear reported state and update reported page count */
685 if (page_reported(page))
686 __ClearPageReported(page);
687
688 list_del(&page->buddy_list);
689 __ClearPageBuddy(page);
690 set_page_private(page, 0);
691 zone->free_area[order].nr_free--;
692}
693
694static inline void del_page_from_free_list(struct page *page, struct zone *zone,
695 unsigned int order, int migratetype)
696{
697 __del_page_from_free_list(page, zone, order, migratetype);
698 account_freepages(zone, -(1 << order), migratetype);
699}
700
701static inline struct page *get_page_from_free_area(struct free_area *area,
702 int migratetype)
703{
704 return list_first_entry_or_null(&area->free_list[migratetype],
705 struct page, buddy_list);
706}
707
708/*
709 * If this is not the largest possible page, check if the buddy
710 * of the next-highest order is free. If it is, it's possible
711 * that pages are being freed that will coalesce soon. In case,
712 * that is happening, add the free page to the tail of the list
713 * so it's less likely to be used soon and more likely to be merged
714 * as a higher order page
715 */
716static inline bool
717buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
718 struct page *page, unsigned int order)
719{
720 unsigned long higher_page_pfn;
721 struct page *higher_page;
722
723 if (order >= MAX_PAGE_ORDER - 1)
724 return false;
725
726 higher_page_pfn = buddy_pfn & pfn;
727 higher_page = page + (higher_page_pfn - pfn);
728
729 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
730 NULL) != NULL;
731}
732
733/*
734 * Freeing function for a buddy system allocator.
735 *
736 * The concept of a buddy system is to maintain direct-mapped table
737 * (containing bit values) for memory blocks of various "orders".
738 * The bottom level table contains the map for the smallest allocatable
739 * units of memory (here, pages), and each level above it describes
740 * pairs of units from the levels below, hence, "buddies".
741 * At a high level, all that happens here is marking the table entry
742 * at the bottom level available, and propagating the changes upward
743 * as necessary, plus some accounting needed to play nicely with other
744 * parts of the VM system.
745 * At each level, we keep a list of pages, which are heads of continuous
746 * free pages of length of (1 << order) and marked with PageBuddy.
747 * Page's order is recorded in page_private(page) field.
748 * So when we are allocating or freeing one, we can derive the state of the
749 * other. That is, if we allocate a small block, and both were
750 * free, the remainder of the region must be split into blocks.
751 * If a block is freed, and its buddy is also free, then this
752 * triggers coalescing into a block of larger size.
753 *
754 * -- nyc
755 */
756
757static inline void __free_one_page(struct page *page,
758 unsigned long pfn,
759 struct zone *zone, unsigned int order,
760 int migratetype, fpi_t fpi_flags)
761{
762 struct capture_control *capc = task_capc(zone);
763 unsigned long buddy_pfn = 0;
764 unsigned long combined_pfn;
765 struct page *buddy;
766 bool to_tail;
767
768 VM_BUG_ON(!zone_is_initialized(zone));
769 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
770
771 VM_BUG_ON(migratetype == -1);
772 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
773 VM_BUG_ON_PAGE(bad_range(zone, page), page);
774
775 account_freepages(zone, 1 << order, migratetype);
776
777 while (order < MAX_PAGE_ORDER) {
778 int buddy_mt = migratetype;
779
780 if (compaction_capture(capc, page, order, migratetype)) {
781 account_freepages(zone, -(1 << order), migratetype);
782 return;
783 }
784
785 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
786 if (!buddy)
787 goto done_merging;
788
789 if (unlikely(order >= pageblock_order)) {
790 /*
791 * We want to prevent merge between freepages on pageblock
792 * without fallbacks and normal pageblock. Without this,
793 * pageblock isolation could cause incorrect freepage or CMA
794 * accounting or HIGHATOMIC accounting.
795 */
796 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
797
798 if (migratetype != buddy_mt &&
799 (!migratetype_is_mergeable(migratetype) ||
800 !migratetype_is_mergeable(buddy_mt)))
801 goto done_merging;
802 }
803
804 /*
805 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
806 * merge with it and move up one order.
807 */
808 if (page_is_guard(buddy))
809 clear_page_guard(zone, buddy, order);
810 else
811 __del_page_from_free_list(buddy, zone, order, buddy_mt);
812
813 if (unlikely(buddy_mt != migratetype)) {
814 /*
815 * Match buddy type. This ensures that an
816 * expand() down the line puts the sub-blocks
817 * on the right freelists.
818 */
819 set_pageblock_migratetype(buddy, migratetype);
820 }
821
822 combined_pfn = buddy_pfn & pfn;
823 page = page + (combined_pfn - pfn);
824 pfn = combined_pfn;
825 order++;
826 }
827
828done_merging:
829 set_buddy_order(page, order);
830
831 if (fpi_flags & FPI_TO_TAIL)
832 to_tail = true;
833 else if (is_shuffle_order(order))
834 to_tail = shuffle_pick_tail();
835 else
836 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
837
838 __add_to_free_list(page, zone, order, migratetype, to_tail);
839
840 /* Notify page reporting subsystem of freed page */
841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 page_reporting_notify_free(order);
843}
844
845/*
846 * A bad page could be due to a number of fields. Instead of multiple branches,
847 * try and check multiple fields with one check. The caller must do a detailed
848 * check if necessary.
849 */
850static inline bool page_expected_state(struct page *page,
851 unsigned long check_flags)
852{
853 if (unlikely(atomic_read(&page->_mapcount) != -1))
854 return false;
855
856 if (unlikely((unsigned long)page->mapping |
857 page_ref_count(page) |
858#ifdef CONFIG_MEMCG
859 page->memcg_data |
860#endif
861#ifdef CONFIG_PAGE_POOL
862 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
863#endif
864 (page->flags & check_flags)))
865 return false;
866
867 return true;
868}
869
870static const char *page_bad_reason(struct page *page, unsigned long flags)
871{
872 const char *bad_reason = NULL;
873
874 if (unlikely(atomic_read(&page->_mapcount) != -1))
875 bad_reason = "nonzero mapcount";
876 if (unlikely(page->mapping != NULL))
877 bad_reason = "non-NULL mapping";
878 if (unlikely(page_ref_count(page) != 0))
879 bad_reason = "nonzero _refcount";
880 if (unlikely(page->flags & flags)) {
881 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
882 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
883 else
884 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
885 }
886#ifdef CONFIG_MEMCG
887 if (unlikely(page->memcg_data))
888 bad_reason = "page still charged to cgroup";
889#endif
890#ifdef CONFIG_PAGE_POOL
891 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
892 bad_reason = "page_pool leak";
893#endif
894 return bad_reason;
895}
896
897static void free_page_is_bad_report(struct page *page)
898{
899 bad_page(page,
900 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
901}
902
903static inline bool free_page_is_bad(struct page *page)
904{
905 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
906 return false;
907
908 /* Something has gone sideways, find it */
909 free_page_is_bad_report(page);
910 return true;
911}
912
913static inline bool is_check_pages_enabled(void)
914{
915 return static_branch_unlikely(&check_pages_enabled);
916}
917
918static int free_tail_page_prepare(struct page *head_page, struct page *page)
919{
920 struct folio *folio = (struct folio *)head_page;
921 int ret = 1;
922
923 /*
924 * We rely page->lru.next never has bit 0 set, unless the page
925 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
926 */
927 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
928
929 if (!is_check_pages_enabled()) {
930 ret = 0;
931 goto out;
932 }
933 switch (page - head_page) {
934 case 1:
935 /* the first tail page: these may be in place of ->mapping */
936 if (unlikely(folio_entire_mapcount(folio))) {
937 bad_page(page, "nonzero entire_mapcount");
938 goto out;
939 }
940 if (unlikely(folio_large_mapcount(folio))) {
941 bad_page(page, "nonzero large_mapcount");
942 goto out;
943 }
944 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
945 bad_page(page, "nonzero nr_pages_mapped");
946 goto out;
947 }
948 if (unlikely(atomic_read(&folio->_pincount))) {
949 bad_page(page, "nonzero pincount");
950 goto out;
951 }
952 break;
953 case 2:
954 /* the second tail page: deferred_list overlaps ->mapping */
955 if (unlikely(!list_empty(&folio->_deferred_list))) {
956 bad_page(page, "on deferred list");
957 goto out;
958 }
959 break;
960 default:
961 if (page->mapping != TAIL_MAPPING) {
962 bad_page(page, "corrupted mapping in tail page");
963 goto out;
964 }
965 break;
966 }
967 if (unlikely(!PageTail(page))) {
968 bad_page(page, "PageTail not set");
969 goto out;
970 }
971 if (unlikely(compound_head(page) != head_page)) {
972 bad_page(page, "compound_head not consistent");
973 goto out;
974 }
975 ret = 0;
976out:
977 page->mapping = NULL;
978 clear_compound_head(page);
979 return ret;
980}
981
982/*
983 * Skip KASAN memory poisoning when either:
984 *
985 * 1. For generic KASAN: deferred memory initialization has not yet completed.
986 * Tag-based KASAN modes skip pages freed via deferred memory initialization
987 * using page tags instead (see below).
988 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
989 * that error detection is disabled for accesses via the page address.
990 *
991 * Pages will have match-all tags in the following circumstances:
992 *
993 * 1. Pages are being initialized for the first time, including during deferred
994 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
995 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
996 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
997 * 3. The allocation was excluded from being checked due to sampling,
998 * see the call to kasan_unpoison_pages.
999 *
1000 * Poisoning pages during deferred memory init will greatly lengthen the
1001 * process and cause problem in large memory systems as the deferred pages
1002 * initialization is done with interrupt disabled.
1003 *
1004 * Assuming that there will be no reference to those newly initialized
1005 * pages before they are ever allocated, this should have no effect on
1006 * KASAN memory tracking as the poison will be properly inserted at page
1007 * allocation time. The only corner case is when pages are allocated by
1008 * on-demand allocation and then freed again before the deferred pages
1009 * initialization is done, but this is not likely to happen.
1010 */
1011static inline bool should_skip_kasan_poison(struct page *page)
1012{
1013 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1014 return deferred_pages_enabled();
1015
1016 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1017}
1018
1019void kernel_init_pages(struct page *page, int numpages)
1020{
1021 int i;
1022
1023 /* s390's use of memset() could override KASAN redzones. */
1024 kasan_disable_current();
1025 for (i = 0; i < numpages; i++)
1026 clear_highpage_kasan_tagged(page + i);
1027 kasan_enable_current();
1028}
1029
1030__always_inline bool free_pages_prepare(struct page *page,
1031 unsigned int order)
1032{
1033 int bad = 0;
1034 bool skip_kasan_poison = should_skip_kasan_poison(page);
1035 bool init = want_init_on_free();
1036 bool compound = PageCompound(page);
1037
1038 VM_BUG_ON_PAGE(PageTail(page), page);
1039
1040 trace_mm_page_free(page, order);
1041 kmsan_free_page(page, order);
1042
1043 if (memcg_kmem_online() && PageMemcgKmem(page))
1044 __memcg_kmem_uncharge_page(page, order);
1045
1046 if (unlikely(PageHWPoison(page)) && !order) {
1047 /* Do not let hwpoison pages hit pcplists/buddy */
1048 reset_page_owner(page, order);
1049 page_table_check_free(page, order);
1050 pgalloc_tag_sub(page, 1 << order);
1051 return false;
1052 }
1053
1054 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1055
1056 /*
1057 * Check tail pages before head page information is cleared to
1058 * avoid checking PageCompound for order-0 pages.
1059 */
1060 if (unlikely(order)) {
1061 int i;
1062
1063 if (compound)
1064 page[1].flags &= ~PAGE_FLAGS_SECOND;
1065 for (i = 1; i < (1 << order); i++) {
1066 if (compound)
1067 bad += free_tail_page_prepare(page, page + i);
1068 if (is_check_pages_enabled()) {
1069 if (free_page_is_bad(page + i)) {
1070 bad++;
1071 continue;
1072 }
1073 }
1074 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1075 }
1076 }
1077 if (PageMappingFlags(page))
1078 page->mapping = NULL;
1079 if (is_check_pages_enabled()) {
1080 if (free_page_is_bad(page))
1081 bad++;
1082 if (bad)
1083 return false;
1084 }
1085
1086 page_cpupid_reset_last(page);
1087 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1088 reset_page_owner(page, order);
1089 page_table_check_free(page, order);
1090 pgalloc_tag_sub(page, 1 << order);
1091
1092 if (!PageHighMem(page)) {
1093 debug_check_no_locks_freed(page_address(page),
1094 PAGE_SIZE << order);
1095 debug_check_no_obj_freed(page_address(page),
1096 PAGE_SIZE << order);
1097 }
1098
1099 kernel_poison_pages(page, 1 << order);
1100
1101 /*
1102 * As memory initialization might be integrated into KASAN,
1103 * KASAN poisoning and memory initialization code must be
1104 * kept together to avoid discrepancies in behavior.
1105 *
1106 * With hardware tag-based KASAN, memory tags must be set before the
1107 * page becomes unavailable via debug_pagealloc or arch_free_page.
1108 */
1109 if (!skip_kasan_poison) {
1110 kasan_poison_pages(page, order, init);
1111
1112 /* Memory is already initialized if KASAN did it internally. */
1113 if (kasan_has_integrated_init())
1114 init = false;
1115 }
1116 if (init)
1117 kernel_init_pages(page, 1 << order);
1118
1119 /*
1120 * arch_free_page() can make the page's contents inaccessible. s390
1121 * does this. So nothing which can access the page's contents should
1122 * happen after this.
1123 */
1124 arch_free_page(page, order);
1125
1126 debug_pagealloc_unmap_pages(page, 1 << order);
1127
1128 return true;
1129}
1130
1131/*
1132 * Frees a number of pages from the PCP lists
1133 * Assumes all pages on list are in same zone.
1134 * count is the number of pages to free.
1135 */
1136static void free_pcppages_bulk(struct zone *zone, int count,
1137 struct per_cpu_pages *pcp,
1138 int pindex)
1139{
1140 unsigned long flags;
1141 unsigned int order;
1142 struct page *page;
1143
1144 /*
1145 * Ensure proper count is passed which otherwise would stuck in the
1146 * below while (list_empty(list)) loop.
1147 */
1148 count = min(pcp->count, count);
1149
1150 /* Ensure requested pindex is drained first. */
1151 pindex = pindex - 1;
1152
1153 spin_lock_irqsave(&zone->lock, flags);
1154
1155 while (count > 0) {
1156 struct list_head *list;
1157 int nr_pages;
1158
1159 /* Remove pages from lists in a round-robin fashion. */
1160 do {
1161 if (++pindex > NR_PCP_LISTS - 1)
1162 pindex = 0;
1163 list = &pcp->lists[pindex];
1164 } while (list_empty(list));
1165
1166 order = pindex_to_order(pindex);
1167 nr_pages = 1 << order;
1168 do {
1169 unsigned long pfn;
1170 int mt;
1171
1172 page = list_last_entry(list, struct page, pcp_list);
1173 pfn = page_to_pfn(page);
1174 mt = get_pfnblock_migratetype(page, pfn);
1175
1176 /* must delete to avoid corrupting pcp list */
1177 list_del(&page->pcp_list);
1178 count -= nr_pages;
1179 pcp->count -= nr_pages;
1180
1181 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1182 trace_mm_page_pcpu_drain(page, order, mt);
1183 } while (count > 0 && !list_empty(list));
1184 }
1185
1186 spin_unlock_irqrestore(&zone->lock, flags);
1187}
1188
1189static void free_one_page(struct zone *zone, struct page *page,
1190 unsigned long pfn, unsigned int order,
1191 fpi_t fpi_flags)
1192{
1193 unsigned long flags;
1194 int migratetype;
1195
1196 spin_lock_irqsave(&zone->lock, flags);
1197 migratetype = get_pfnblock_migratetype(page, pfn);
1198 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1199 spin_unlock_irqrestore(&zone->lock, flags);
1200}
1201
1202static void __free_pages_ok(struct page *page, unsigned int order,
1203 fpi_t fpi_flags)
1204{
1205 unsigned long pfn = page_to_pfn(page);
1206 struct zone *zone = page_zone(page);
1207
1208 if (!free_pages_prepare(page, order))
1209 return;
1210
1211 free_one_page(zone, page, pfn, order, fpi_flags);
1212
1213 __count_vm_events(PGFREE, 1 << order);
1214}
1215
1216void __free_pages_core(struct page *page, unsigned int order)
1217{
1218 unsigned int nr_pages = 1 << order;
1219 struct page *p = page;
1220 unsigned int loop;
1221
1222 /*
1223 * When initializing the memmap, __init_single_page() sets the refcount
1224 * of all pages to 1 ("allocated"/"not free"). We have to set the
1225 * refcount of all involved pages to 0.
1226 */
1227 prefetchw(p);
1228 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1229 prefetchw(p + 1);
1230 __ClearPageReserved(p);
1231 set_page_count(p, 0);
1232 }
1233 __ClearPageReserved(p);
1234 set_page_count(p, 0);
1235
1236 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1237
1238 if (page_contains_unaccepted(page, order)) {
1239 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1240 return;
1241
1242 accept_page(page, order);
1243 }
1244
1245 /*
1246 * Bypass PCP and place fresh pages right to the tail, primarily
1247 * relevant for memory onlining.
1248 */
1249 __free_pages_ok(page, order, FPI_TO_TAIL);
1250}
1251
1252/*
1253 * Check that the whole (or subset of) a pageblock given by the interval of
1254 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1255 * with the migration of free compaction scanner.
1256 *
1257 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1258 *
1259 * It's possible on some configurations to have a setup like node0 node1 node0
1260 * i.e. it's possible that all pages within a zones range of pages do not
1261 * belong to a single zone. We assume that a border between node0 and node1
1262 * can occur within a single pageblock, but not a node0 node1 node0
1263 * interleaving within a single pageblock. It is therefore sufficient to check
1264 * the first and last page of a pageblock and avoid checking each individual
1265 * page in a pageblock.
1266 *
1267 * Note: the function may return non-NULL struct page even for a page block
1268 * which contains a memory hole (i.e. there is no physical memory for a subset
1269 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1270 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1271 * even though the start pfn is online and valid. This should be safe most of
1272 * the time because struct pages are still initialized via init_unavailable_range()
1273 * and pfn walkers shouldn't touch any physical memory range for which they do
1274 * not recognize any specific metadata in struct pages.
1275 */
1276struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1277 unsigned long end_pfn, struct zone *zone)
1278{
1279 struct page *start_page;
1280 struct page *end_page;
1281
1282 /* end_pfn is one past the range we are checking */
1283 end_pfn--;
1284
1285 if (!pfn_valid(end_pfn))
1286 return NULL;
1287
1288 start_page = pfn_to_online_page(start_pfn);
1289 if (!start_page)
1290 return NULL;
1291
1292 if (page_zone(start_page) != zone)
1293 return NULL;
1294
1295 end_page = pfn_to_page(end_pfn);
1296
1297 /* This gives a shorter code than deriving page_zone(end_page) */
1298 if (page_zone_id(start_page) != page_zone_id(end_page))
1299 return NULL;
1300
1301 return start_page;
1302}
1303
1304/*
1305 * The order of subdivision here is critical for the IO subsystem.
1306 * Please do not alter this order without good reasons and regression
1307 * testing. Specifically, as large blocks of memory are subdivided,
1308 * the order in which smaller blocks are delivered depends on the order
1309 * they're subdivided in this function. This is the primary factor
1310 * influencing the order in which pages are delivered to the IO
1311 * subsystem according to empirical testing, and this is also justified
1312 * by considering the behavior of a buddy system containing a single
1313 * large block of memory acted on by a series of small allocations.
1314 * This behavior is a critical factor in sglist merging's success.
1315 *
1316 * -- nyc
1317 */
1318static inline void expand(struct zone *zone, struct page *page,
1319 int low, int high, int migratetype)
1320{
1321 unsigned long size = 1 << high;
1322 unsigned long nr_added = 0;
1323
1324 while (high > low) {
1325 high--;
1326 size >>= 1;
1327 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1328
1329 /*
1330 * Mark as guard pages (or page), that will allow to
1331 * merge back to allocator when buddy will be freed.
1332 * Corresponding page table entries will not be touched,
1333 * pages will stay not present in virtual address space
1334 */
1335 if (set_page_guard(zone, &page[size], high))
1336 continue;
1337
1338 __add_to_free_list(&page[size], zone, high, migratetype, false);
1339 set_buddy_order(&page[size], high);
1340 nr_added += size;
1341 }
1342 account_freepages(zone, nr_added, migratetype);
1343}
1344
1345static void check_new_page_bad(struct page *page)
1346{
1347 if (unlikely(page->flags & __PG_HWPOISON)) {
1348 /* Don't complain about hwpoisoned pages */
1349 page_mapcount_reset(page); /* remove PageBuddy */
1350 return;
1351 }
1352
1353 bad_page(page,
1354 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1355}
1356
1357/*
1358 * This page is about to be returned from the page allocator
1359 */
1360static bool check_new_page(struct page *page)
1361{
1362 if (likely(page_expected_state(page,
1363 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1364 return false;
1365
1366 check_new_page_bad(page);
1367 return true;
1368}
1369
1370static inline bool check_new_pages(struct page *page, unsigned int order)
1371{
1372 if (is_check_pages_enabled()) {
1373 for (int i = 0; i < (1 << order); i++) {
1374 struct page *p = page + i;
1375
1376 if (check_new_page(p))
1377 return true;
1378 }
1379 }
1380
1381 return false;
1382}
1383
1384static inline bool should_skip_kasan_unpoison(gfp_t flags)
1385{
1386 /* Don't skip if a software KASAN mode is enabled. */
1387 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1388 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1389 return false;
1390
1391 /* Skip, if hardware tag-based KASAN is not enabled. */
1392 if (!kasan_hw_tags_enabled())
1393 return true;
1394
1395 /*
1396 * With hardware tag-based KASAN enabled, skip if this has been
1397 * requested via __GFP_SKIP_KASAN.
1398 */
1399 return flags & __GFP_SKIP_KASAN;
1400}
1401
1402static inline bool should_skip_init(gfp_t flags)
1403{
1404 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1405 if (!kasan_hw_tags_enabled())
1406 return false;
1407
1408 /* For hardware tag-based KASAN, skip if requested. */
1409 return (flags & __GFP_SKIP_ZERO);
1410}
1411
1412inline void post_alloc_hook(struct page *page, unsigned int order,
1413 gfp_t gfp_flags)
1414{
1415 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1416 !should_skip_init(gfp_flags);
1417 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1418 int i;
1419
1420 set_page_private(page, 0);
1421 set_page_refcounted(page);
1422
1423 arch_alloc_page(page, order);
1424 debug_pagealloc_map_pages(page, 1 << order);
1425
1426 /*
1427 * Page unpoisoning must happen before memory initialization.
1428 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1429 * allocations and the page unpoisoning code will complain.
1430 */
1431 kernel_unpoison_pages(page, 1 << order);
1432
1433 /*
1434 * As memory initialization might be integrated into KASAN,
1435 * KASAN unpoisoning and memory initializion code must be
1436 * kept together to avoid discrepancies in behavior.
1437 */
1438
1439 /*
1440 * If memory tags should be zeroed
1441 * (which happens only when memory should be initialized as well).
1442 */
1443 if (zero_tags) {
1444 /* Initialize both memory and memory tags. */
1445 for (i = 0; i != 1 << order; ++i)
1446 tag_clear_highpage(page + i);
1447
1448 /* Take note that memory was initialized by the loop above. */
1449 init = false;
1450 }
1451 if (!should_skip_kasan_unpoison(gfp_flags) &&
1452 kasan_unpoison_pages(page, order, init)) {
1453 /* Take note that memory was initialized by KASAN. */
1454 if (kasan_has_integrated_init())
1455 init = false;
1456 } else {
1457 /*
1458 * If memory tags have not been set by KASAN, reset the page
1459 * tags to ensure page_address() dereferencing does not fault.
1460 */
1461 for (i = 0; i != 1 << order; ++i)
1462 page_kasan_tag_reset(page + i);
1463 }
1464 /* If memory is still not initialized, initialize it now. */
1465 if (init)
1466 kernel_init_pages(page, 1 << order);
1467
1468 set_page_owner(page, order, gfp_flags);
1469 page_table_check_alloc(page, order);
1470 pgalloc_tag_add(page, current, 1 << order);
1471}
1472
1473static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1474 unsigned int alloc_flags)
1475{
1476 post_alloc_hook(page, order, gfp_flags);
1477
1478 if (order && (gfp_flags & __GFP_COMP))
1479 prep_compound_page(page, order);
1480
1481 /*
1482 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1483 * allocate the page. The expectation is that the caller is taking
1484 * steps that will free more memory. The caller should avoid the page
1485 * being used for !PFMEMALLOC purposes.
1486 */
1487 if (alloc_flags & ALLOC_NO_WATERMARKS)
1488 set_page_pfmemalloc(page);
1489 else
1490 clear_page_pfmemalloc(page);
1491}
1492
1493/*
1494 * Go through the free lists for the given migratetype and remove
1495 * the smallest available page from the freelists
1496 */
1497static __always_inline
1498struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1499 int migratetype)
1500{
1501 unsigned int current_order;
1502 struct free_area *area;
1503 struct page *page;
1504
1505 /* Find a page of the appropriate size in the preferred list */
1506 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1507 area = &(zone->free_area[current_order]);
1508 page = get_page_from_free_area(area, migratetype);
1509 if (!page)
1510 continue;
1511 del_page_from_free_list(page, zone, current_order, migratetype);
1512 expand(zone, page, order, current_order, migratetype);
1513 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1514 pcp_allowed_order(order) &&
1515 migratetype < MIGRATE_PCPTYPES);
1516 return page;
1517 }
1518
1519 return NULL;
1520}
1521
1522
1523/*
1524 * This array describes the order lists are fallen back to when
1525 * the free lists for the desirable migrate type are depleted
1526 *
1527 * The other migratetypes do not have fallbacks.
1528 */
1529static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1530 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1531 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1532 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1533};
1534
1535#ifdef CONFIG_CMA
1536static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1537 unsigned int order)
1538{
1539 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1540}
1541#else
1542static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1543 unsigned int order) { return NULL; }
1544#endif
1545
1546/*
1547 * Change the type of a block and move all its free pages to that
1548 * type's freelist.
1549 */
1550static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1551 int old_mt, int new_mt)
1552{
1553 struct page *page;
1554 unsigned long pfn, end_pfn;
1555 unsigned int order;
1556 int pages_moved = 0;
1557
1558 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1559 end_pfn = pageblock_end_pfn(start_pfn);
1560
1561 for (pfn = start_pfn; pfn < end_pfn;) {
1562 page = pfn_to_page(pfn);
1563 if (!PageBuddy(page)) {
1564 pfn++;
1565 continue;
1566 }
1567
1568 /* Make sure we are not inadvertently changing nodes */
1569 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1570 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1571
1572 order = buddy_order(page);
1573
1574 move_to_free_list(page, zone, order, old_mt, new_mt);
1575
1576 pfn += 1 << order;
1577 pages_moved += 1 << order;
1578 }
1579
1580 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1581
1582 return pages_moved;
1583}
1584
1585static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1586 unsigned long *start_pfn,
1587 int *num_free, int *num_movable)
1588{
1589 unsigned long pfn, start, end;
1590
1591 pfn = page_to_pfn(page);
1592 start = pageblock_start_pfn(pfn);
1593 end = pageblock_end_pfn(pfn);
1594
1595 /*
1596 * The caller only has the lock for @zone, don't touch ranges
1597 * that straddle into other zones. While we could move part of
1598 * the range that's inside the zone, this call is usually
1599 * accompanied by other operations such as migratetype updates
1600 * which also should be locked.
1601 */
1602 if (!zone_spans_pfn(zone, start))
1603 return false;
1604 if (!zone_spans_pfn(zone, end - 1))
1605 return false;
1606
1607 *start_pfn = start;
1608
1609 if (num_free) {
1610 *num_free = 0;
1611 *num_movable = 0;
1612 for (pfn = start; pfn < end;) {
1613 page = pfn_to_page(pfn);
1614 if (PageBuddy(page)) {
1615 int nr = 1 << buddy_order(page);
1616
1617 *num_free += nr;
1618 pfn += nr;
1619 continue;
1620 }
1621 /*
1622 * We assume that pages that could be isolated for
1623 * migration are movable. But we don't actually try
1624 * isolating, as that would be expensive.
1625 */
1626 if (PageLRU(page) || __PageMovable(page))
1627 (*num_movable)++;
1628 pfn++;
1629 }
1630 }
1631
1632 return true;
1633}
1634
1635static int move_freepages_block(struct zone *zone, struct page *page,
1636 int old_mt, int new_mt)
1637{
1638 unsigned long start_pfn;
1639
1640 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1641 return -1;
1642
1643 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1644}
1645
1646#ifdef CONFIG_MEMORY_ISOLATION
1647/* Look for a buddy that straddles start_pfn */
1648static unsigned long find_large_buddy(unsigned long start_pfn)
1649{
1650 int order = 0;
1651 struct page *page;
1652 unsigned long pfn = start_pfn;
1653
1654 while (!PageBuddy(page = pfn_to_page(pfn))) {
1655 /* Nothing found */
1656 if (++order > MAX_PAGE_ORDER)
1657 return start_pfn;
1658 pfn &= ~0UL << order;
1659 }
1660
1661 /*
1662 * Found a preceding buddy, but does it straddle?
1663 */
1664 if (pfn + (1 << buddy_order(page)) > start_pfn)
1665 return pfn;
1666
1667 /* Nothing found */
1668 return start_pfn;
1669}
1670
1671/* Split a multi-block free page into its individual pageblocks */
1672static void split_large_buddy(struct zone *zone, struct page *page,
1673 unsigned long pfn, int order)
1674{
1675 unsigned long end_pfn = pfn + (1 << order);
1676
1677 VM_WARN_ON_ONCE(order <= pageblock_order);
1678 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1679
1680 /* Caller removed page from freelist, buddy info cleared! */
1681 VM_WARN_ON_ONCE(PageBuddy(page));
1682
1683 while (pfn != end_pfn) {
1684 int mt = get_pfnblock_migratetype(page, pfn);
1685
1686 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1687 pfn += pageblock_nr_pages;
1688 page = pfn_to_page(pfn);
1689 }
1690}
1691
1692/**
1693 * move_freepages_block_isolate - move free pages in block for page isolation
1694 * @zone: the zone
1695 * @page: the pageblock page
1696 * @migratetype: migratetype to set on the pageblock
1697 *
1698 * This is similar to move_freepages_block(), but handles the special
1699 * case encountered in page isolation, where the block of interest
1700 * might be part of a larger buddy spanning multiple pageblocks.
1701 *
1702 * Unlike the regular page allocator path, which moves pages while
1703 * stealing buddies off the freelist, page isolation is interested in
1704 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1705 *
1706 * This function handles that. Straddling buddies are split into
1707 * individual pageblocks. Only the block of interest is moved.
1708 *
1709 * Returns %true if pages could be moved, %false otherwise.
1710 */
1711bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1712 int migratetype)
1713{
1714 unsigned long start_pfn, pfn;
1715
1716 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1717 return false;
1718
1719 /* No splits needed if buddies can't span multiple blocks */
1720 if (pageblock_order == MAX_PAGE_ORDER)
1721 goto move;
1722
1723 /* We're a tail block in a larger buddy */
1724 pfn = find_large_buddy(start_pfn);
1725 if (pfn != start_pfn) {
1726 struct page *buddy = pfn_to_page(pfn);
1727 int order = buddy_order(buddy);
1728
1729 del_page_from_free_list(buddy, zone, order,
1730 get_pfnblock_migratetype(buddy, pfn));
1731 set_pageblock_migratetype(page, migratetype);
1732 split_large_buddy(zone, buddy, pfn, order);
1733 return true;
1734 }
1735
1736 /* We're the starting block of a larger buddy */
1737 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1738 int order = buddy_order(page);
1739
1740 del_page_from_free_list(page, zone, order,
1741 get_pfnblock_migratetype(page, pfn));
1742 set_pageblock_migratetype(page, migratetype);
1743 split_large_buddy(zone, page, pfn, order);
1744 return true;
1745 }
1746move:
1747 __move_freepages_block(zone, start_pfn,
1748 get_pfnblock_migratetype(page, start_pfn),
1749 migratetype);
1750 return true;
1751}
1752#endif /* CONFIG_MEMORY_ISOLATION */
1753
1754static void change_pageblock_range(struct page *pageblock_page,
1755 int start_order, int migratetype)
1756{
1757 int nr_pageblocks = 1 << (start_order - pageblock_order);
1758
1759 while (nr_pageblocks--) {
1760 set_pageblock_migratetype(pageblock_page, migratetype);
1761 pageblock_page += pageblock_nr_pages;
1762 }
1763}
1764
1765/*
1766 * When we are falling back to another migratetype during allocation, try to
1767 * steal extra free pages from the same pageblocks to satisfy further
1768 * allocations, instead of polluting multiple pageblocks.
1769 *
1770 * If we are stealing a relatively large buddy page, it is likely there will
1771 * be more free pages in the pageblock, so try to steal them all. For
1772 * reclaimable and unmovable allocations, we steal regardless of page size,
1773 * as fragmentation caused by those allocations polluting movable pageblocks
1774 * is worse than movable allocations stealing from unmovable and reclaimable
1775 * pageblocks.
1776 */
1777static bool can_steal_fallback(unsigned int order, int start_mt)
1778{
1779 /*
1780 * Leaving this order check is intended, although there is
1781 * relaxed order check in next check. The reason is that
1782 * we can actually steal whole pageblock if this condition met,
1783 * but, below check doesn't guarantee it and that is just heuristic
1784 * so could be changed anytime.
1785 */
1786 if (order >= pageblock_order)
1787 return true;
1788
1789 if (order >= pageblock_order / 2 ||
1790 start_mt == MIGRATE_RECLAIMABLE ||
1791 start_mt == MIGRATE_UNMOVABLE ||
1792 page_group_by_mobility_disabled)
1793 return true;
1794
1795 return false;
1796}
1797
1798static inline bool boost_watermark(struct zone *zone)
1799{
1800 unsigned long max_boost;
1801
1802 if (!watermark_boost_factor)
1803 return false;
1804 /*
1805 * Don't bother in zones that are unlikely to produce results.
1806 * On small machines, including kdump capture kernels running
1807 * in a small area, boosting the watermark can cause an out of
1808 * memory situation immediately.
1809 */
1810 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1811 return false;
1812
1813 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1814 watermark_boost_factor, 10000);
1815
1816 /*
1817 * high watermark may be uninitialised if fragmentation occurs
1818 * very early in boot so do not boost. We do not fall
1819 * through and boost by pageblock_nr_pages as failing
1820 * allocations that early means that reclaim is not going
1821 * to help and it may even be impossible to reclaim the
1822 * boosted watermark resulting in a hang.
1823 */
1824 if (!max_boost)
1825 return false;
1826
1827 max_boost = max(pageblock_nr_pages, max_boost);
1828
1829 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1830 max_boost);
1831
1832 return true;
1833}
1834
1835/*
1836 * This function implements actual steal behaviour. If order is large enough, we
1837 * can claim the whole pageblock for the requested migratetype. If not, we check
1838 * the pageblock for constituent pages; if at least half of the pages are free
1839 * or compatible, we can still claim the whole block, so pages freed in the
1840 * future will be put on the correct free list. Otherwise, we isolate exactly
1841 * the order we need from the fallback block and leave its migratetype alone.
1842 */
1843static struct page *
1844steal_suitable_fallback(struct zone *zone, struct page *page,
1845 int current_order, int order, int start_type,
1846 unsigned int alloc_flags, bool whole_block)
1847{
1848 int free_pages, movable_pages, alike_pages;
1849 unsigned long start_pfn;
1850 int block_type;
1851
1852 block_type = get_pageblock_migratetype(page);
1853
1854 /*
1855 * This can happen due to races and we want to prevent broken
1856 * highatomic accounting.
1857 */
1858 if (is_migrate_highatomic(block_type))
1859 goto single_page;
1860
1861 /* Take ownership for orders >= pageblock_order */
1862 if (current_order >= pageblock_order) {
1863 del_page_from_free_list(page, zone, current_order, block_type);
1864 change_pageblock_range(page, current_order, start_type);
1865 expand(zone, page, order, current_order, start_type);
1866 return page;
1867 }
1868
1869 /*
1870 * Boost watermarks to increase reclaim pressure to reduce the
1871 * likelihood of future fallbacks. Wake kswapd now as the node
1872 * may be balanced overall and kswapd will not wake naturally.
1873 */
1874 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1875 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1876
1877 /* We are not allowed to try stealing from the whole block */
1878 if (!whole_block)
1879 goto single_page;
1880
1881 /* moving whole block can fail due to zone boundary conditions */
1882 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1883 &movable_pages))
1884 goto single_page;
1885
1886 /*
1887 * Determine how many pages are compatible with our allocation.
1888 * For movable allocation, it's the number of movable pages which
1889 * we just obtained. For other types it's a bit more tricky.
1890 */
1891 if (start_type == MIGRATE_MOVABLE) {
1892 alike_pages = movable_pages;
1893 } else {
1894 /*
1895 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1896 * to MOVABLE pageblock, consider all non-movable pages as
1897 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1898 * vice versa, be conservative since we can't distinguish the
1899 * exact migratetype of non-movable pages.
1900 */
1901 if (block_type == MIGRATE_MOVABLE)
1902 alike_pages = pageblock_nr_pages
1903 - (free_pages + movable_pages);
1904 else
1905 alike_pages = 0;
1906 }
1907 /*
1908 * If a sufficient number of pages in the block are either free or of
1909 * compatible migratability as our allocation, claim the whole block.
1910 */
1911 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1912 page_group_by_mobility_disabled) {
1913 __move_freepages_block(zone, start_pfn, block_type, start_type);
1914 return __rmqueue_smallest(zone, order, start_type);
1915 }
1916
1917single_page:
1918 del_page_from_free_list(page, zone, current_order, block_type);
1919 expand(zone, page, order, current_order, block_type);
1920 return page;
1921}
1922
1923/*
1924 * Check whether there is a suitable fallback freepage with requested order.
1925 * If only_stealable is true, this function returns fallback_mt only if
1926 * we can steal other freepages all together. This would help to reduce
1927 * fragmentation due to mixed migratetype pages in one pageblock.
1928 */
1929int find_suitable_fallback(struct free_area *area, unsigned int order,
1930 int migratetype, bool only_stealable, bool *can_steal)
1931{
1932 int i;
1933 int fallback_mt;
1934
1935 if (area->nr_free == 0)
1936 return -1;
1937
1938 *can_steal = false;
1939 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1940 fallback_mt = fallbacks[migratetype][i];
1941 if (free_area_empty(area, fallback_mt))
1942 continue;
1943
1944 if (can_steal_fallback(order, migratetype))
1945 *can_steal = true;
1946
1947 if (!only_stealable)
1948 return fallback_mt;
1949
1950 if (*can_steal)
1951 return fallback_mt;
1952 }
1953
1954 return -1;
1955}
1956
1957/*
1958 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1959 * there are no empty page blocks that contain a page with a suitable order
1960 */
1961static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1962{
1963 int mt;
1964 unsigned long max_managed, flags;
1965
1966 /*
1967 * The number reserved as: minimum is 1 pageblock, maximum is
1968 * roughly 1% of a zone. But if 1% of a zone falls below a
1969 * pageblock size, then don't reserve any pageblocks.
1970 * Check is race-prone but harmless.
1971 */
1972 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1973 return;
1974 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1975 if (zone->nr_reserved_highatomic >= max_managed)
1976 return;
1977
1978 spin_lock_irqsave(&zone->lock, flags);
1979
1980 /* Recheck the nr_reserved_highatomic limit under the lock */
1981 if (zone->nr_reserved_highatomic >= max_managed)
1982 goto out_unlock;
1983
1984 /* Yoink! */
1985 mt = get_pageblock_migratetype(page);
1986 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1987 if (migratetype_is_mergeable(mt))
1988 if (move_freepages_block(zone, page, mt,
1989 MIGRATE_HIGHATOMIC) != -1)
1990 zone->nr_reserved_highatomic += pageblock_nr_pages;
1991
1992out_unlock:
1993 spin_unlock_irqrestore(&zone->lock, flags);
1994}
1995
1996/*
1997 * Used when an allocation is about to fail under memory pressure. This
1998 * potentially hurts the reliability of high-order allocations when under
1999 * intense memory pressure but failed atomic allocations should be easier
2000 * to recover from than an OOM.
2001 *
2002 * If @force is true, try to unreserve a pageblock even though highatomic
2003 * pageblock is exhausted.
2004 */
2005static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2006 bool force)
2007{
2008 struct zonelist *zonelist = ac->zonelist;
2009 unsigned long flags;
2010 struct zoneref *z;
2011 struct zone *zone;
2012 struct page *page;
2013 int order;
2014 int ret;
2015
2016 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2017 ac->nodemask) {
2018 /*
2019 * Preserve at least one pageblock unless memory pressure
2020 * is really high.
2021 */
2022 if (!force && zone->nr_reserved_highatomic <=
2023 pageblock_nr_pages)
2024 continue;
2025
2026 spin_lock_irqsave(&zone->lock, flags);
2027 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2028 struct free_area *area = &(zone->free_area[order]);
2029 int mt;
2030
2031 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2032 if (!page)
2033 continue;
2034
2035 mt = get_pageblock_migratetype(page);
2036 /*
2037 * In page freeing path, migratetype change is racy so
2038 * we can counter several free pages in a pageblock
2039 * in this loop although we changed the pageblock type
2040 * from highatomic to ac->migratetype. So we should
2041 * adjust the count once.
2042 */
2043 if (is_migrate_highatomic(mt)) {
2044 /*
2045 * It should never happen but changes to
2046 * locking could inadvertently allow a per-cpu
2047 * drain to add pages to MIGRATE_HIGHATOMIC
2048 * while unreserving so be safe and watch for
2049 * underflows.
2050 */
2051 zone->nr_reserved_highatomic -= min(
2052 pageblock_nr_pages,
2053 zone->nr_reserved_highatomic);
2054 }
2055
2056 /*
2057 * Convert to ac->migratetype and avoid the normal
2058 * pageblock stealing heuristics. Minimally, the caller
2059 * is doing the work and needs the pages. More
2060 * importantly, if the block was always converted to
2061 * MIGRATE_UNMOVABLE or another type then the number
2062 * of pageblocks that cannot be completely freed
2063 * may increase.
2064 */
2065 ret = move_freepages_block(zone, page, mt,
2066 ac->migratetype);
2067 /*
2068 * Reserving this block already succeeded, so this should
2069 * not fail on zone boundaries.
2070 */
2071 WARN_ON_ONCE(ret == -1);
2072 if (ret > 0) {
2073 spin_unlock_irqrestore(&zone->lock, flags);
2074 return ret;
2075 }
2076 }
2077 spin_unlock_irqrestore(&zone->lock, flags);
2078 }
2079
2080 return false;
2081}
2082
2083/*
2084 * Try finding a free buddy page on the fallback list and put it on the free
2085 * list of requested migratetype, possibly along with other pages from the same
2086 * block, depending on fragmentation avoidance heuristics. Returns true if
2087 * fallback was found so that __rmqueue_smallest() can grab it.
2088 *
2089 * The use of signed ints for order and current_order is a deliberate
2090 * deviation from the rest of this file, to make the for loop
2091 * condition simpler.
2092 */
2093static __always_inline struct page *
2094__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2095 unsigned int alloc_flags)
2096{
2097 struct free_area *area;
2098 int current_order;
2099 int min_order = order;
2100 struct page *page;
2101 int fallback_mt;
2102 bool can_steal;
2103
2104 /*
2105 * Do not steal pages from freelists belonging to other pageblocks
2106 * i.e. orders < pageblock_order. If there are no local zones free,
2107 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2108 */
2109 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2110 min_order = pageblock_order;
2111
2112 /*
2113 * Find the largest available free page in the other list. This roughly
2114 * approximates finding the pageblock with the most free pages, which
2115 * would be too costly to do exactly.
2116 */
2117 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2118 --current_order) {
2119 area = &(zone->free_area[current_order]);
2120 fallback_mt = find_suitable_fallback(area, current_order,
2121 start_migratetype, false, &can_steal);
2122 if (fallback_mt == -1)
2123 continue;
2124
2125 /*
2126 * We cannot steal all free pages from the pageblock and the
2127 * requested migratetype is movable. In that case it's better to
2128 * steal and split the smallest available page instead of the
2129 * largest available page, because even if the next movable
2130 * allocation falls back into a different pageblock than this
2131 * one, it won't cause permanent fragmentation.
2132 */
2133 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2134 && current_order > order)
2135 goto find_smallest;
2136
2137 goto do_steal;
2138 }
2139
2140 return NULL;
2141
2142find_smallest:
2143 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2144 area = &(zone->free_area[current_order]);
2145 fallback_mt = find_suitable_fallback(area, current_order,
2146 start_migratetype, false, &can_steal);
2147 if (fallback_mt != -1)
2148 break;
2149 }
2150
2151 /*
2152 * This should not happen - we already found a suitable fallback
2153 * when looking for the largest page.
2154 */
2155 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2156
2157do_steal:
2158 page = get_page_from_free_area(area, fallback_mt);
2159
2160 /* take off list, maybe claim block, expand remainder */
2161 page = steal_suitable_fallback(zone, page, current_order, order,
2162 start_migratetype, alloc_flags, can_steal);
2163
2164 trace_mm_page_alloc_extfrag(page, order, current_order,
2165 start_migratetype, fallback_mt);
2166
2167 return page;
2168}
2169
2170/*
2171 * Do the hard work of removing an element from the buddy allocator.
2172 * Call me with the zone->lock already held.
2173 */
2174static __always_inline struct page *
2175__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2176 unsigned int alloc_flags)
2177{
2178 struct page *page;
2179
2180 if (IS_ENABLED(CONFIG_CMA)) {
2181 /*
2182 * Balance movable allocations between regular and CMA areas by
2183 * allocating from CMA when over half of the zone's free memory
2184 * is in the CMA area.
2185 */
2186 if (alloc_flags & ALLOC_CMA &&
2187 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2188 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2189 page = __rmqueue_cma_fallback(zone, order);
2190 if (page)
2191 return page;
2192 }
2193 }
2194
2195 page = __rmqueue_smallest(zone, order, migratetype);
2196 if (unlikely(!page)) {
2197 if (alloc_flags & ALLOC_CMA)
2198 page = __rmqueue_cma_fallback(zone, order);
2199
2200 if (!page)
2201 page = __rmqueue_fallback(zone, order, migratetype,
2202 alloc_flags);
2203 }
2204 return page;
2205}
2206
2207/*
2208 * Obtain a specified number of elements from the buddy allocator, all under
2209 * a single hold of the lock, for efficiency. Add them to the supplied list.
2210 * Returns the number of new pages which were placed at *list.
2211 */
2212static int rmqueue_bulk(struct zone *zone, unsigned int order,
2213 unsigned long count, struct list_head *list,
2214 int migratetype, unsigned int alloc_flags)
2215{
2216 unsigned long flags;
2217 int i;
2218
2219 spin_lock_irqsave(&zone->lock, flags);
2220 for (i = 0; i < count; ++i) {
2221 struct page *page = __rmqueue(zone, order, migratetype,
2222 alloc_flags);
2223 if (unlikely(page == NULL))
2224 break;
2225
2226 /*
2227 * Split buddy pages returned by expand() are received here in
2228 * physical page order. The page is added to the tail of
2229 * caller's list. From the callers perspective, the linked list
2230 * is ordered by page number under some conditions. This is
2231 * useful for IO devices that can forward direction from the
2232 * head, thus also in the physical page order. This is useful
2233 * for IO devices that can merge IO requests if the physical
2234 * pages are ordered properly.
2235 */
2236 list_add_tail(&page->pcp_list, list);
2237 }
2238 spin_unlock_irqrestore(&zone->lock, flags);
2239
2240 return i;
2241}
2242
2243/*
2244 * Called from the vmstat counter updater to decay the PCP high.
2245 * Return whether there are addition works to do.
2246 */
2247int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2248{
2249 int high_min, to_drain, batch;
2250 int todo = 0;
2251
2252 high_min = READ_ONCE(pcp->high_min);
2253 batch = READ_ONCE(pcp->batch);
2254 /*
2255 * Decrease pcp->high periodically to try to free possible
2256 * idle PCP pages. And, avoid to free too many pages to
2257 * control latency. This caps pcp->high decrement too.
2258 */
2259 if (pcp->high > high_min) {
2260 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2261 pcp->high - (pcp->high >> 3), high_min);
2262 if (pcp->high > high_min)
2263 todo++;
2264 }
2265
2266 to_drain = pcp->count - pcp->high;
2267 if (to_drain > 0) {
2268 spin_lock(&pcp->lock);
2269 free_pcppages_bulk(zone, to_drain, pcp, 0);
2270 spin_unlock(&pcp->lock);
2271 todo++;
2272 }
2273
2274 return todo;
2275}
2276
2277#ifdef CONFIG_NUMA
2278/*
2279 * Called from the vmstat counter updater to drain pagesets of this
2280 * currently executing processor on remote nodes after they have
2281 * expired.
2282 */
2283void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2284{
2285 int to_drain, batch;
2286
2287 batch = READ_ONCE(pcp->batch);
2288 to_drain = min(pcp->count, batch);
2289 if (to_drain > 0) {
2290 spin_lock(&pcp->lock);
2291 free_pcppages_bulk(zone, to_drain, pcp, 0);
2292 spin_unlock(&pcp->lock);
2293 }
2294}
2295#endif
2296
2297/*
2298 * Drain pcplists of the indicated processor and zone.
2299 */
2300static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2301{
2302 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303 int count = READ_ONCE(pcp->count);
2304
2305 while (count) {
2306 int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2307 count -= to_drain;
2308
2309 spin_lock(&pcp->lock);
2310 free_pcppages_bulk(zone, to_drain, pcp, 0);
2311 spin_unlock(&pcp->lock);
2312 }
2313}
2314
2315/*
2316 * Drain pcplists of all zones on the indicated processor.
2317 */
2318static void drain_pages(unsigned int cpu)
2319{
2320 struct zone *zone;
2321
2322 for_each_populated_zone(zone) {
2323 drain_pages_zone(cpu, zone);
2324 }
2325}
2326
2327/*
2328 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2329 */
2330void drain_local_pages(struct zone *zone)
2331{
2332 int cpu = smp_processor_id();
2333
2334 if (zone)
2335 drain_pages_zone(cpu, zone);
2336 else
2337 drain_pages(cpu);
2338}
2339
2340/*
2341 * The implementation of drain_all_pages(), exposing an extra parameter to
2342 * drain on all cpus.
2343 *
2344 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2345 * not empty. The check for non-emptiness can however race with a free to
2346 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2347 * that need the guarantee that every CPU has drained can disable the
2348 * optimizing racy check.
2349 */
2350static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2351{
2352 int cpu;
2353
2354 /*
2355 * Allocate in the BSS so we won't require allocation in
2356 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2357 */
2358 static cpumask_t cpus_with_pcps;
2359
2360 /*
2361 * Do not drain if one is already in progress unless it's specific to
2362 * a zone. Such callers are primarily CMA and memory hotplug and need
2363 * the drain to be complete when the call returns.
2364 */
2365 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2366 if (!zone)
2367 return;
2368 mutex_lock(&pcpu_drain_mutex);
2369 }
2370
2371 /*
2372 * We don't care about racing with CPU hotplug event
2373 * as offline notification will cause the notified
2374 * cpu to drain that CPU pcps and on_each_cpu_mask
2375 * disables preemption as part of its processing
2376 */
2377 for_each_online_cpu(cpu) {
2378 struct per_cpu_pages *pcp;
2379 struct zone *z;
2380 bool has_pcps = false;
2381
2382 if (force_all_cpus) {
2383 /*
2384 * The pcp.count check is racy, some callers need a
2385 * guarantee that no cpu is missed.
2386 */
2387 has_pcps = true;
2388 } else if (zone) {
2389 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2390 if (pcp->count)
2391 has_pcps = true;
2392 } else {
2393 for_each_populated_zone(z) {
2394 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2395 if (pcp->count) {
2396 has_pcps = true;
2397 break;
2398 }
2399 }
2400 }
2401
2402 if (has_pcps)
2403 cpumask_set_cpu(cpu, &cpus_with_pcps);
2404 else
2405 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2406 }
2407
2408 for_each_cpu(cpu, &cpus_with_pcps) {
2409 if (zone)
2410 drain_pages_zone(cpu, zone);
2411 else
2412 drain_pages(cpu);
2413 }
2414
2415 mutex_unlock(&pcpu_drain_mutex);
2416}
2417
2418/*
2419 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2420 *
2421 * When zone parameter is non-NULL, spill just the single zone's pages.
2422 */
2423void drain_all_pages(struct zone *zone)
2424{
2425 __drain_all_pages(zone, false);
2426}
2427
2428static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2429{
2430 int min_nr_free, max_nr_free;
2431
2432 /* Free as much as possible if batch freeing high-order pages. */
2433 if (unlikely(free_high))
2434 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2435
2436 /* Check for PCP disabled or boot pageset */
2437 if (unlikely(high < batch))
2438 return 1;
2439
2440 /* Leave at least pcp->batch pages on the list */
2441 min_nr_free = batch;
2442 max_nr_free = high - batch;
2443
2444 /*
2445 * Increase the batch number to the number of the consecutive
2446 * freed pages to reduce zone lock contention.
2447 */
2448 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2449
2450 return batch;
2451}
2452
2453static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2454 int batch, bool free_high)
2455{
2456 int high, high_min, high_max;
2457
2458 high_min = READ_ONCE(pcp->high_min);
2459 high_max = READ_ONCE(pcp->high_max);
2460 high = pcp->high = clamp(pcp->high, high_min, high_max);
2461
2462 if (unlikely(!high))
2463 return 0;
2464
2465 if (unlikely(free_high)) {
2466 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2467 high_min);
2468 return 0;
2469 }
2470
2471 /*
2472 * If reclaim is active, limit the number of pages that can be
2473 * stored on pcp lists
2474 */
2475 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2476 int free_count = max_t(int, pcp->free_count, batch);
2477
2478 pcp->high = max(high - free_count, high_min);
2479 return min(batch << 2, pcp->high);
2480 }
2481
2482 if (high_min == high_max)
2483 return high;
2484
2485 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2486 int free_count = max_t(int, pcp->free_count, batch);
2487
2488 pcp->high = max(high - free_count, high_min);
2489 high = max(pcp->count, high_min);
2490 } else if (pcp->count >= high) {
2491 int need_high = pcp->free_count + batch;
2492
2493 /* pcp->high should be large enough to hold batch freed pages */
2494 if (pcp->high < need_high)
2495 pcp->high = clamp(need_high, high_min, high_max);
2496 }
2497
2498 return high;
2499}
2500
2501static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2502 struct page *page, int migratetype,
2503 unsigned int order)
2504{
2505 int high, batch;
2506 int pindex;
2507 bool free_high = false;
2508
2509 /*
2510 * On freeing, reduce the number of pages that are batch allocated.
2511 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2512 * allocations.
2513 */
2514 pcp->alloc_factor >>= 1;
2515 __count_vm_events(PGFREE, 1 << order);
2516 pindex = order_to_pindex(migratetype, order);
2517 list_add(&page->pcp_list, &pcp->lists[pindex]);
2518 pcp->count += 1 << order;
2519
2520 batch = READ_ONCE(pcp->batch);
2521 /*
2522 * As high-order pages other than THP's stored on PCP can contribute
2523 * to fragmentation, limit the number stored when PCP is heavily
2524 * freeing without allocation. The remainder after bulk freeing
2525 * stops will be drained from vmstat refresh context.
2526 */
2527 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2528 free_high = (pcp->free_count >= batch &&
2529 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2530 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2531 pcp->count >= READ_ONCE(batch)));
2532 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2533 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2534 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2535 }
2536 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2537 pcp->free_count += (1 << order);
2538 high = nr_pcp_high(pcp, zone, batch, free_high);
2539 if (pcp->count >= high) {
2540 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2541 pcp, pindex);
2542 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2543 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2544 ZONE_MOVABLE, 0))
2545 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2546 }
2547}
2548
2549/*
2550 * Free a pcp page
2551 */
2552void free_unref_page(struct page *page, unsigned int order)
2553{
2554 unsigned long __maybe_unused UP_flags;
2555 struct per_cpu_pages *pcp;
2556 struct zone *zone;
2557 unsigned long pfn = page_to_pfn(page);
2558 int migratetype;
2559
2560 if (!pcp_allowed_order(order)) {
2561 __free_pages_ok(page, order, FPI_NONE);
2562 return;
2563 }
2564
2565 if (!free_pages_prepare(page, order))
2566 return;
2567
2568 /*
2569 * We only track unmovable, reclaimable and movable on pcp lists.
2570 * Place ISOLATE pages on the isolated list because they are being
2571 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2572 * get those areas back if necessary. Otherwise, we may have to free
2573 * excessively into the page allocator
2574 */
2575 migratetype = get_pfnblock_migratetype(page, pfn);
2576 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2577 if (unlikely(is_migrate_isolate(migratetype))) {
2578 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2579 return;
2580 }
2581 migratetype = MIGRATE_MOVABLE;
2582 }
2583
2584 zone = page_zone(page);
2585 pcp_trylock_prepare(UP_flags);
2586 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2587 if (pcp) {
2588 free_unref_page_commit(zone, pcp, page, migratetype, order);
2589 pcp_spin_unlock(pcp);
2590 } else {
2591 free_one_page(zone, page, pfn, order, FPI_NONE);
2592 }
2593 pcp_trylock_finish(UP_flags);
2594}
2595
2596/*
2597 * Free a batch of folios
2598 */
2599void free_unref_folios(struct folio_batch *folios)
2600{
2601 unsigned long __maybe_unused UP_flags;
2602 struct per_cpu_pages *pcp = NULL;
2603 struct zone *locked_zone = NULL;
2604 int i, j;
2605
2606 /* Prepare folios for freeing */
2607 for (i = 0, j = 0; i < folios->nr; i++) {
2608 struct folio *folio = folios->folios[i];
2609 unsigned long pfn = folio_pfn(folio);
2610 unsigned int order = folio_order(folio);
2611
2612 if (order > 0 && folio_test_large_rmappable(folio))
2613 folio_undo_large_rmappable(folio);
2614 if (!free_pages_prepare(&folio->page, order))
2615 continue;
2616 /*
2617 * Free orders not handled on the PCP directly to the
2618 * allocator.
2619 */
2620 if (!pcp_allowed_order(order)) {
2621 free_one_page(folio_zone(folio), &folio->page,
2622 pfn, order, FPI_NONE);
2623 continue;
2624 }
2625 folio->private = (void *)(unsigned long)order;
2626 if (j != i)
2627 folios->folios[j] = folio;
2628 j++;
2629 }
2630 folios->nr = j;
2631
2632 for (i = 0; i < folios->nr; i++) {
2633 struct folio *folio = folios->folios[i];
2634 struct zone *zone = folio_zone(folio);
2635 unsigned long pfn = folio_pfn(folio);
2636 unsigned int order = (unsigned long)folio->private;
2637 int migratetype;
2638
2639 folio->private = NULL;
2640 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2641
2642 /* Different zone requires a different pcp lock */
2643 if (zone != locked_zone ||
2644 is_migrate_isolate(migratetype)) {
2645 if (pcp) {
2646 pcp_spin_unlock(pcp);
2647 pcp_trylock_finish(UP_flags);
2648 locked_zone = NULL;
2649 pcp = NULL;
2650 }
2651
2652 /*
2653 * Free isolated pages directly to the
2654 * allocator, see comment in free_unref_page.
2655 */
2656 if (is_migrate_isolate(migratetype)) {
2657 free_one_page(zone, &folio->page, pfn,
2658 order, FPI_NONE);
2659 continue;
2660 }
2661
2662 /*
2663 * trylock is necessary as folios may be getting freed
2664 * from IRQ or SoftIRQ context after an IO completion.
2665 */
2666 pcp_trylock_prepare(UP_flags);
2667 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2668 if (unlikely(!pcp)) {
2669 pcp_trylock_finish(UP_flags);
2670 free_one_page(zone, &folio->page, pfn,
2671 order, FPI_NONE);
2672 continue;
2673 }
2674 locked_zone = zone;
2675 }
2676
2677 /*
2678 * Non-isolated types over MIGRATE_PCPTYPES get added
2679 * to the MIGRATE_MOVABLE pcp list.
2680 */
2681 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2682 migratetype = MIGRATE_MOVABLE;
2683
2684 trace_mm_page_free_batched(&folio->page);
2685 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2686 order);
2687 }
2688
2689 if (pcp) {
2690 pcp_spin_unlock(pcp);
2691 pcp_trylock_finish(UP_flags);
2692 }
2693 folio_batch_reinit(folios);
2694}
2695
2696/*
2697 * split_page takes a non-compound higher-order page, and splits it into
2698 * n (1<<order) sub-pages: page[0..n]
2699 * Each sub-page must be freed individually.
2700 *
2701 * Note: this is probably too low level an operation for use in drivers.
2702 * Please consult with lkml before using this in your driver.
2703 */
2704void split_page(struct page *page, unsigned int order)
2705{
2706 int i;
2707
2708 VM_BUG_ON_PAGE(PageCompound(page), page);
2709 VM_BUG_ON_PAGE(!page_count(page), page);
2710
2711 for (i = 1; i < (1 << order); i++)
2712 set_page_refcounted(page + i);
2713 split_page_owner(page, order, 0);
2714 pgalloc_tag_split(page, 1 << order);
2715 split_page_memcg(page, order, 0);
2716}
2717EXPORT_SYMBOL_GPL(split_page);
2718
2719int __isolate_free_page(struct page *page, unsigned int order)
2720{
2721 struct zone *zone = page_zone(page);
2722 int mt = get_pageblock_migratetype(page);
2723
2724 if (!is_migrate_isolate(mt)) {
2725 unsigned long watermark;
2726 /*
2727 * Obey watermarks as if the page was being allocated. We can
2728 * emulate a high-order watermark check with a raised order-0
2729 * watermark, because we already know our high-order page
2730 * exists.
2731 */
2732 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2733 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2734 return 0;
2735 }
2736
2737 del_page_from_free_list(page, zone, order, mt);
2738
2739 /*
2740 * Set the pageblock if the isolated page is at least half of a
2741 * pageblock
2742 */
2743 if (order >= pageblock_order - 1) {
2744 struct page *endpage = page + (1 << order) - 1;
2745 for (; page < endpage; page += pageblock_nr_pages) {
2746 int mt = get_pageblock_migratetype(page);
2747 /*
2748 * Only change normal pageblocks (i.e., they can merge
2749 * with others)
2750 */
2751 if (migratetype_is_mergeable(mt))
2752 move_freepages_block(zone, page, mt,
2753 MIGRATE_MOVABLE);
2754 }
2755 }
2756
2757 return 1UL << order;
2758}
2759
2760/**
2761 * __putback_isolated_page - Return a now-isolated page back where we got it
2762 * @page: Page that was isolated
2763 * @order: Order of the isolated page
2764 * @mt: The page's pageblock's migratetype
2765 *
2766 * This function is meant to return a page pulled from the free lists via
2767 * __isolate_free_page back to the free lists they were pulled from.
2768 */
2769void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2770{
2771 struct zone *zone = page_zone(page);
2772
2773 /* zone lock should be held when this function is called */
2774 lockdep_assert_held(&zone->lock);
2775
2776 /* Return isolated page to tail of freelist. */
2777 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2778 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2779}
2780
2781/*
2782 * Update NUMA hit/miss statistics
2783 */
2784static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2785 long nr_account)
2786{
2787#ifdef CONFIG_NUMA
2788 enum numa_stat_item local_stat = NUMA_LOCAL;
2789
2790 /* skip numa counters update if numa stats is disabled */
2791 if (!static_branch_likely(&vm_numa_stat_key))
2792 return;
2793
2794 if (zone_to_nid(z) != numa_node_id())
2795 local_stat = NUMA_OTHER;
2796
2797 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2798 __count_numa_events(z, NUMA_HIT, nr_account);
2799 else {
2800 __count_numa_events(z, NUMA_MISS, nr_account);
2801 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2802 }
2803 __count_numa_events(z, local_stat, nr_account);
2804#endif
2805}
2806
2807static __always_inline
2808struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2809 unsigned int order, unsigned int alloc_flags,
2810 int migratetype)
2811{
2812 struct page *page;
2813 unsigned long flags;
2814
2815 do {
2816 page = NULL;
2817 spin_lock_irqsave(&zone->lock, flags);
2818 if (alloc_flags & ALLOC_HIGHATOMIC)
2819 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2820 if (!page) {
2821 page = __rmqueue(zone, order, migratetype, alloc_flags);
2822
2823 /*
2824 * If the allocation fails, allow OOM handling access
2825 * to HIGHATOMIC reserves as failing now is worse than
2826 * failing a high-order atomic allocation in the
2827 * future.
2828 */
2829 if (!page && (alloc_flags & ALLOC_OOM))
2830 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2831
2832 if (!page) {
2833 spin_unlock_irqrestore(&zone->lock, flags);
2834 return NULL;
2835 }
2836 }
2837 spin_unlock_irqrestore(&zone->lock, flags);
2838 } while (check_new_pages(page, order));
2839
2840 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2841 zone_statistics(preferred_zone, zone, 1);
2842
2843 return page;
2844}
2845
2846static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2847{
2848 int high, base_batch, batch, max_nr_alloc;
2849 int high_max, high_min;
2850
2851 base_batch = READ_ONCE(pcp->batch);
2852 high_min = READ_ONCE(pcp->high_min);
2853 high_max = READ_ONCE(pcp->high_max);
2854 high = pcp->high = clamp(pcp->high, high_min, high_max);
2855
2856 /* Check for PCP disabled or boot pageset */
2857 if (unlikely(high < base_batch))
2858 return 1;
2859
2860 if (order)
2861 batch = base_batch;
2862 else
2863 batch = (base_batch << pcp->alloc_factor);
2864
2865 /*
2866 * If we had larger pcp->high, we could avoid to allocate from
2867 * zone.
2868 */
2869 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2870 high = pcp->high = min(high + batch, high_max);
2871
2872 if (!order) {
2873 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2874 /*
2875 * Double the number of pages allocated each time there is
2876 * subsequent allocation of order-0 pages without any freeing.
2877 */
2878 if (batch <= max_nr_alloc &&
2879 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2880 pcp->alloc_factor++;
2881 batch = min(batch, max_nr_alloc);
2882 }
2883
2884 /*
2885 * Scale batch relative to order if batch implies free pages
2886 * can be stored on the PCP. Batch can be 1 for small zones or
2887 * for boot pagesets which should never store free pages as
2888 * the pages may belong to arbitrary zones.
2889 */
2890 if (batch > 1)
2891 batch = max(batch >> order, 2);
2892
2893 return batch;
2894}
2895
2896/* Remove page from the per-cpu list, caller must protect the list */
2897static inline
2898struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2899 int migratetype,
2900 unsigned int alloc_flags,
2901 struct per_cpu_pages *pcp,
2902 struct list_head *list)
2903{
2904 struct page *page;
2905
2906 do {
2907 if (list_empty(list)) {
2908 int batch = nr_pcp_alloc(pcp, zone, order);
2909 int alloced;
2910
2911 alloced = rmqueue_bulk(zone, order,
2912 batch, list,
2913 migratetype, alloc_flags);
2914
2915 pcp->count += alloced << order;
2916 if (unlikely(list_empty(list)))
2917 return NULL;
2918 }
2919
2920 page = list_first_entry(list, struct page, pcp_list);
2921 list_del(&page->pcp_list);
2922 pcp->count -= 1 << order;
2923 } while (check_new_pages(page, order));
2924
2925 return page;
2926}
2927
2928/* Lock and remove page from the per-cpu list */
2929static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2930 struct zone *zone, unsigned int order,
2931 int migratetype, unsigned int alloc_flags)
2932{
2933 struct per_cpu_pages *pcp;
2934 struct list_head *list;
2935 struct page *page;
2936 unsigned long __maybe_unused UP_flags;
2937
2938 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2939 pcp_trylock_prepare(UP_flags);
2940 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2941 if (!pcp) {
2942 pcp_trylock_finish(UP_flags);
2943 return NULL;
2944 }
2945
2946 /*
2947 * On allocation, reduce the number of pages that are batch freed.
2948 * See nr_pcp_free() where free_factor is increased for subsequent
2949 * frees.
2950 */
2951 pcp->free_count >>= 1;
2952 list = &pcp->lists[order_to_pindex(migratetype, order)];
2953 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2954 pcp_spin_unlock(pcp);
2955 pcp_trylock_finish(UP_flags);
2956 if (page) {
2957 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2958 zone_statistics(preferred_zone, zone, 1);
2959 }
2960 return page;
2961}
2962
2963/*
2964 * Allocate a page from the given zone.
2965 * Use pcplists for THP or "cheap" high-order allocations.
2966 */
2967
2968/*
2969 * Do not instrument rmqueue() with KMSAN. This function may call
2970 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2971 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2972 * may call rmqueue() again, which will result in a deadlock.
2973 */
2974__no_sanitize_memory
2975static inline
2976struct page *rmqueue(struct zone *preferred_zone,
2977 struct zone *zone, unsigned int order,
2978 gfp_t gfp_flags, unsigned int alloc_flags,
2979 int migratetype)
2980{
2981 struct page *page;
2982
2983 /*
2984 * We most definitely don't want callers attempting to
2985 * allocate greater than order-1 page units with __GFP_NOFAIL.
2986 */
2987 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2988
2989 if (likely(pcp_allowed_order(order))) {
2990 page = rmqueue_pcplist(preferred_zone, zone, order,
2991 migratetype, alloc_flags);
2992 if (likely(page))
2993 goto out;
2994 }
2995
2996 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2997 migratetype);
2998
2999out:
3000 /* Separate test+clear to avoid unnecessary atomics */
3001 if ((alloc_flags & ALLOC_KSWAPD) &&
3002 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3003 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3004 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3005 }
3006
3007 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3008 return page;
3009}
3010
3011noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3012{
3013 return __should_fail_alloc_page(gfp_mask, order);
3014}
3015ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3016
3017static inline long __zone_watermark_unusable_free(struct zone *z,
3018 unsigned int order, unsigned int alloc_flags)
3019{
3020 long unusable_free = (1 << order) - 1;
3021
3022 /*
3023 * If the caller does not have rights to reserves below the min
3024 * watermark then subtract the high-atomic reserves. This will
3025 * over-estimate the size of the atomic reserve but it avoids a search.
3026 */
3027 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3028 unusable_free += z->nr_reserved_highatomic;
3029
3030#ifdef CONFIG_CMA
3031 /* If allocation can't use CMA areas don't use free CMA pages */
3032 if (!(alloc_flags & ALLOC_CMA))
3033 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3034#endif
3035#ifdef CONFIG_UNACCEPTED_MEMORY
3036 unusable_free += zone_page_state(z, NR_UNACCEPTED);
3037#endif
3038
3039 return unusable_free;
3040}
3041
3042/*
3043 * Return true if free base pages are above 'mark'. For high-order checks it
3044 * will return true of the order-0 watermark is reached and there is at least
3045 * one free page of a suitable size. Checking now avoids taking the zone lock
3046 * to check in the allocation paths if no pages are free.
3047 */
3048bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3049 int highest_zoneidx, unsigned int alloc_flags,
3050 long free_pages)
3051{
3052 long min = mark;
3053 int o;
3054
3055 /* free_pages may go negative - that's OK */
3056 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3057
3058 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3059 /*
3060 * __GFP_HIGH allows access to 50% of the min reserve as well
3061 * as OOM.
3062 */
3063 if (alloc_flags & ALLOC_MIN_RESERVE) {
3064 min -= min / 2;
3065
3066 /*
3067 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3068 * access more reserves than just __GFP_HIGH. Other
3069 * non-blocking allocations requests such as GFP_NOWAIT
3070 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3071 * access to the min reserve.
3072 */
3073 if (alloc_flags & ALLOC_NON_BLOCK)
3074 min -= min / 4;
3075 }
3076
3077 /*
3078 * OOM victims can try even harder than the normal reserve
3079 * users on the grounds that it's definitely going to be in
3080 * the exit path shortly and free memory. Any allocation it
3081 * makes during the free path will be small and short-lived.
3082 */
3083 if (alloc_flags & ALLOC_OOM)
3084 min -= min / 2;
3085 }
3086
3087 /*
3088 * Check watermarks for an order-0 allocation request. If these
3089 * are not met, then a high-order request also cannot go ahead
3090 * even if a suitable page happened to be free.
3091 */
3092 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3093 return false;
3094
3095 /* If this is an order-0 request then the watermark is fine */
3096 if (!order)
3097 return true;
3098
3099 /* For a high-order request, check at least one suitable page is free */
3100 for (o = order; o < NR_PAGE_ORDERS; o++) {
3101 struct free_area *area = &z->free_area[o];
3102 int mt;
3103
3104 if (!area->nr_free)
3105 continue;
3106
3107 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3108 if (!free_area_empty(area, mt))
3109 return true;
3110 }
3111
3112#ifdef CONFIG_CMA
3113 if ((alloc_flags & ALLOC_CMA) &&
3114 !free_area_empty(area, MIGRATE_CMA)) {
3115 return true;
3116 }
3117#endif
3118 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3119 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3120 return true;
3121 }
3122 }
3123 return false;
3124}
3125
3126bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3127 int highest_zoneidx, unsigned int alloc_flags)
3128{
3129 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3130 zone_page_state(z, NR_FREE_PAGES));
3131}
3132
3133static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3134 unsigned long mark, int highest_zoneidx,
3135 unsigned int alloc_flags, gfp_t gfp_mask)
3136{
3137 long free_pages;
3138
3139 free_pages = zone_page_state(z, NR_FREE_PAGES);
3140
3141 /*
3142 * Fast check for order-0 only. If this fails then the reserves
3143 * need to be calculated.
3144 */
3145 if (!order) {
3146 long usable_free;
3147 long reserved;
3148
3149 usable_free = free_pages;
3150 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3151
3152 /* reserved may over estimate high-atomic reserves. */
3153 usable_free -= min(usable_free, reserved);
3154 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3155 return true;
3156 }
3157
3158 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3159 free_pages))
3160 return true;
3161
3162 /*
3163 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3164 * when checking the min watermark. The min watermark is the
3165 * point where boosting is ignored so that kswapd is woken up
3166 * when below the low watermark.
3167 */
3168 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3169 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3170 mark = z->_watermark[WMARK_MIN];
3171 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3172 alloc_flags, free_pages);
3173 }
3174
3175 return false;
3176}
3177
3178bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3179 unsigned long mark, int highest_zoneidx)
3180{
3181 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3182
3183 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3184 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3185
3186 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3187 free_pages);
3188}
3189
3190#ifdef CONFIG_NUMA
3191int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3192
3193static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3194{
3195 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3196 node_reclaim_distance;
3197}
3198#else /* CONFIG_NUMA */
3199static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3200{
3201 return true;
3202}
3203#endif /* CONFIG_NUMA */
3204
3205/*
3206 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3207 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3208 * premature use of a lower zone may cause lowmem pressure problems that
3209 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3210 * probably too small. It only makes sense to spread allocations to avoid
3211 * fragmentation between the Normal and DMA32 zones.
3212 */
3213static inline unsigned int
3214alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3215{
3216 unsigned int alloc_flags;
3217
3218 /*
3219 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3220 * to save a branch.
3221 */
3222 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3223
3224#ifdef CONFIG_ZONE_DMA32
3225 if (!zone)
3226 return alloc_flags;
3227
3228 if (zone_idx(zone) != ZONE_NORMAL)
3229 return alloc_flags;
3230
3231 /*
3232 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3233 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3234 * on UMA that if Normal is populated then so is DMA32.
3235 */
3236 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3237 if (nr_online_nodes > 1 && !populated_zone(--zone))
3238 return alloc_flags;
3239
3240 alloc_flags |= ALLOC_NOFRAGMENT;
3241#endif /* CONFIG_ZONE_DMA32 */
3242 return alloc_flags;
3243}
3244
3245/* Must be called after current_gfp_context() which can change gfp_mask */
3246static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3247 unsigned int alloc_flags)
3248{
3249#ifdef CONFIG_CMA
3250 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3251 alloc_flags |= ALLOC_CMA;
3252#endif
3253 return alloc_flags;
3254}
3255
3256/*
3257 * get_page_from_freelist goes through the zonelist trying to allocate
3258 * a page.
3259 */
3260static struct page *
3261get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3262 const struct alloc_context *ac)
3263{
3264 struct zoneref *z;
3265 struct zone *zone;
3266 struct pglist_data *last_pgdat = NULL;
3267 bool last_pgdat_dirty_ok = false;
3268 bool no_fallback;
3269
3270retry:
3271 /*
3272 * Scan zonelist, looking for a zone with enough free.
3273 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3274 */
3275 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3276 z = ac->preferred_zoneref;
3277 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3278 ac->nodemask) {
3279 struct page *page;
3280 unsigned long mark;
3281
3282 if (cpusets_enabled() &&
3283 (alloc_flags & ALLOC_CPUSET) &&
3284 !__cpuset_zone_allowed(zone, gfp_mask))
3285 continue;
3286 /*
3287 * When allocating a page cache page for writing, we
3288 * want to get it from a node that is within its dirty
3289 * limit, such that no single node holds more than its
3290 * proportional share of globally allowed dirty pages.
3291 * The dirty limits take into account the node's
3292 * lowmem reserves and high watermark so that kswapd
3293 * should be able to balance it without having to
3294 * write pages from its LRU list.
3295 *
3296 * XXX: For now, allow allocations to potentially
3297 * exceed the per-node dirty limit in the slowpath
3298 * (spread_dirty_pages unset) before going into reclaim,
3299 * which is important when on a NUMA setup the allowed
3300 * nodes are together not big enough to reach the
3301 * global limit. The proper fix for these situations
3302 * will require awareness of nodes in the
3303 * dirty-throttling and the flusher threads.
3304 */
3305 if (ac->spread_dirty_pages) {
3306 if (last_pgdat != zone->zone_pgdat) {
3307 last_pgdat = zone->zone_pgdat;
3308 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3309 }
3310
3311 if (!last_pgdat_dirty_ok)
3312 continue;
3313 }
3314
3315 if (no_fallback && nr_online_nodes > 1 &&
3316 zone != ac->preferred_zoneref->zone) {
3317 int local_nid;
3318
3319 /*
3320 * If moving to a remote node, retry but allow
3321 * fragmenting fallbacks. Locality is more important
3322 * than fragmentation avoidance.
3323 */
3324 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3325 if (zone_to_nid(zone) != local_nid) {
3326 alloc_flags &= ~ALLOC_NOFRAGMENT;
3327 goto retry;
3328 }
3329 }
3330
3331 /*
3332 * Detect whether the number of free pages is below high
3333 * watermark. If so, we will decrease pcp->high and free
3334 * PCP pages in free path to reduce the possibility of
3335 * premature page reclaiming. Detection is done here to
3336 * avoid to do that in hotter free path.
3337 */
3338 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3339 goto check_alloc_wmark;
3340
3341 mark = high_wmark_pages(zone);
3342 if (zone_watermark_fast(zone, order, mark,
3343 ac->highest_zoneidx, alloc_flags,
3344 gfp_mask))
3345 goto try_this_zone;
3346 else
3347 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3348
3349check_alloc_wmark:
3350 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3351 if (!zone_watermark_fast(zone, order, mark,
3352 ac->highest_zoneidx, alloc_flags,
3353 gfp_mask)) {
3354 int ret;
3355
3356 if (has_unaccepted_memory()) {
3357 if (try_to_accept_memory(zone, order))
3358 goto try_this_zone;
3359 }
3360
3361#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3362 /*
3363 * Watermark failed for this zone, but see if we can
3364 * grow this zone if it contains deferred pages.
3365 */
3366 if (deferred_pages_enabled()) {
3367 if (_deferred_grow_zone(zone, order))
3368 goto try_this_zone;
3369 }
3370#endif
3371 /* Checked here to keep the fast path fast */
3372 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3373 if (alloc_flags & ALLOC_NO_WATERMARKS)
3374 goto try_this_zone;
3375
3376 if (!node_reclaim_enabled() ||
3377 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3378 continue;
3379
3380 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3381 switch (ret) {
3382 case NODE_RECLAIM_NOSCAN:
3383 /* did not scan */
3384 continue;
3385 case NODE_RECLAIM_FULL:
3386 /* scanned but unreclaimable */
3387 continue;
3388 default:
3389 /* did we reclaim enough */
3390 if (zone_watermark_ok(zone, order, mark,
3391 ac->highest_zoneidx, alloc_flags))
3392 goto try_this_zone;
3393
3394 continue;
3395 }
3396 }
3397
3398try_this_zone:
3399 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3400 gfp_mask, alloc_flags, ac->migratetype);
3401 if (page) {
3402 prep_new_page(page, order, gfp_mask, alloc_flags);
3403
3404 /*
3405 * If this is a high-order atomic allocation then check
3406 * if the pageblock should be reserved for the future
3407 */
3408 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3409 reserve_highatomic_pageblock(page, zone);
3410
3411 return page;
3412 } else {
3413 if (has_unaccepted_memory()) {
3414 if (try_to_accept_memory(zone, order))
3415 goto try_this_zone;
3416 }
3417
3418#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3419 /* Try again if zone has deferred pages */
3420 if (deferred_pages_enabled()) {
3421 if (_deferred_grow_zone(zone, order))
3422 goto try_this_zone;
3423 }
3424#endif
3425 }
3426 }
3427
3428 /*
3429 * It's possible on a UMA machine to get through all zones that are
3430 * fragmented. If avoiding fragmentation, reset and try again.
3431 */
3432 if (no_fallback) {
3433 alloc_flags &= ~ALLOC_NOFRAGMENT;
3434 goto retry;
3435 }
3436
3437 return NULL;
3438}
3439
3440static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3441{
3442 unsigned int filter = SHOW_MEM_FILTER_NODES;
3443
3444 /*
3445 * This documents exceptions given to allocations in certain
3446 * contexts that are allowed to allocate outside current's set
3447 * of allowed nodes.
3448 */
3449 if (!(gfp_mask & __GFP_NOMEMALLOC))
3450 if (tsk_is_oom_victim(current) ||
3451 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3452 filter &= ~SHOW_MEM_FILTER_NODES;
3453 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3454 filter &= ~SHOW_MEM_FILTER_NODES;
3455
3456 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3457}
3458
3459void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3460{
3461 struct va_format vaf;
3462 va_list args;
3463 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3464
3465 if ((gfp_mask & __GFP_NOWARN) ||
3466 !__ratelimit(&nopage_rs) ||
3467 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3468 return;
3469
3470 va_start(args, fmt);
3471 vaf.fmt = fmt;
3472 vaf.va = &args;
3473 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3474 current->comm, &vaf, gfp_mask, &gfp_mask,
3475 nodemask_pr_args(nodemask));
3476 va_end(args);
3477
3478 cpuset_print_current_mems_allowed();
3479 pr_cont("\n");
3480 dump_stack();
3481 warn_alloc_show_mem(gfp_mask, nodemask);
3482}
3483
3484static inline struct page *
3485__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3486 unsigned int alloc_flags,
3487 const struct alloc_context *ac)
3488{
3489 struct page *page;
3490
3491 page = get_page_from_freelist(gfp_mask, order,
3492 alloc_flags|ALLOC_CPUSET, ac);
3493 /*
3494 * fallback to ignore cpuset restriction if our nodes
3495 * are depleted
3496 */
3497 if (!page)
3498 page = get_page_from_freelist(gfp_mask, order,
3499 alloc_flags, ac);
3500
3501 return page;
3502}
3503
3504static inline struct page *
3505__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3506 const struct alloc_context *ac, unsigned long *did_some_progress)
3507{
3508 struct oom_control oc = {
3509 .zonelist = ac->zonelist,
3510 .nodemask = ac->nodemask,
3511 .memcg = NULL,
3512 .gfp_mask = gfp_mask,
3513 .order = order,
3514 };
3515 struct page *page;
3516
3517 *did_some_progress = 0;
3518
3519 /*
3520 * Acquire the oom lock. If that fails, somebody else is
3521 * making progress for us.
3522 */
3523 if (!mutex_trylock(&oom_lock)) {
3524 *did_some_progress = 1;
3525 schedule_timeout_uninterruptible(1);
3526 return NULL;
3527 }
3528
3529 /*
3530 * Go through the zonelist yet one more time, keep very high watermark
3531 * here, this is only to catch a parallel oom killing, we must fail if
3532 * we're still under heavy pressure. But make sure that this reclaim
3533 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3534 * allocation which will never fail due to oom_lock already held.
3535 */
3536 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3537 ~__GFP_DIRECT_RECLAIM, order,
3538 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3539 if (page)
3540 goto out;
3541
3542 /* Coredumps can quickly deplete all memory reserves */
3543 if (current->flags & PF_DUMPCORE)
3544 goto out;
3545 /* The OOM killer will not help higher order allocs */
3546 if (order > PAGE_ALLOC_COSTLY_ORDER)
3547 goto out;
3548 /*
3549 * We have already exhausted all our reclaim opportunities without any
3550 * success so it is time to admit defeat. We will skip the OOM killer
3551 * because it is very likely that the caller has a more reasonable
3552 * fallback than shooting a random task.
3553 *
3554 * The OOM killer may not free memory on a specific node.
3555 */
3556 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3557 goto out;
3558 /* The OOM killer does not needlessly kill tasks for lowmem */
3559 if (ac->highest_zoneidx < ZONE_NORMAL)
3560 goto out;
3561 if (pm_suspended_storage())
3562 goto out;
3563 /*
3564 * XXX: GFP_NOFS allocations should rather fail than rely on
3565 * other request to make a forward progress.
3566 * We are in an unfortunate situation where out_of_memory cannot
3567 * do much for this context but let's try it to at least get
3568 * access to memory reserved if the current task is killed (see
3569 * out_of_memory). Once filesystems are ready to handle allocation
3570 * failures more gracefully we should just bail out here.
3571 */
3572
3573 /* Exhausted what can be done so it's blame time */
3574 if (out_of_memory(&oc) ||
3575 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3576 *did_some_progress = 1;
3577
3578 /*
3579 * Help non-failing allocations by giving them access to memory
3580 * reserves
3581 */
3582 if (gfp_mask & __GFP_NOFAIL)
3583 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3584 ALLOC_NO_WATERMARKS, ac);
3585 }
3586out:
3587 mutex_unlock(&oom_lock);
3588 return page;
3589}
3590
3591/*
3592 * Maximum number of compaction retries with a progress before OOM
3593 * killer is consider as the only way to move forward.
3594 */
3595#define MAX_COMPACT_RETRIES 16
3596
3597#ifdef CONFIG_COMPACTION
3598/* Try memory compaction for high-order allocations before reclaim */
3599static struct page *
3600__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3601 unsigned int alloc_flags, const struct alloc_context *ac,
3602 enum compact_priority prio, enum compact_result *compact_result)
3603{
3604 struct page *page = NULL;
3605 unsigned long pflags;
3606 unsigned int noreclaim_flag;
3607
3608 if (!order)
3609 return NULL;
3610
3611 psi_memstall_enter(&pflags);
3612 delayacct_compact_start();
3613 noreclaim_flag = memalloc_noreclaim_save();
3614
3615 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3616 prio, &page);
3617
3618 memalloc_noreclaim_restore(noreclaim_flag);
3619 psi_memstall_leave(&pflags);
3620 delayacct_compact_end();
3621
3622 if (*compact_result == COMPACT_SKIPPED)
3623 return NULL;
3624 /*
3625 * At least in one zone compaction wasn't deferred or skipped, so let's
3626 * count a compaction stall
3627 */
3628 count_vm_event(COMPACTSTALL);
3629
3630 /* Prep a captured page if available */
3631 if (page)
3632 prep_new_page(page, order, gfp_mask, alloc_flags);
3633
3634 /* Try get a page from the freelist if available */
3635 if (!page)
3636 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3637
3638 if (page) {
3639 struct zone *zone = page_zone(page);
3640
3641 zone->compact_blockskip_flush = false;
3642 compaction_defer_reset(zone, order, true);
3643 count_vm_event(COMPACTSUCCESS);
3644 return page;
3645 }
3646
3647 /*
3648 * It's bad if compaction run occurs and fails. The most likely reason
3649 * is that pages exist, but not enough to satisfy watermarks.
3650 */
3651 count_vm_event(COMPACTFAIL);
3652
3653 cond_resched();
3654
3655 return NULL;
3656}
3657
3658static inline bool
3659should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3660 enum compact_result compact_result,
3661 enum compact_priority *compact_priority,
3662 int *compaction_retries)
3663{
3664 int max_retries = MAX_COMPACT_RETRIES;
3665 int min_priority;
3666 bool ret = false;
3667 int retries = *compaction_retries;
3668 enum compact_priority priority = *compact_priority;
3669
3670 if (!order)
3671 return false;
3672
3673 if (fatal_signal_pending(current))
3674 return false;
3675
3676 /*
3677 * Compaction was skipped due to a lack of free order-0
3678 * migration targets. Continue if reclaim can help.
3679 */
3680 if (compact_result == COMPACT_SKIPPED) {
3681 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3682 goto out;
3683 }
3684
3685 /*
3686 * Compaction managed to coalesce some page blocks, but the
3687 * allocation failed presumably due to a race. Retry some.
3688 */
3689 if (compact_result == COMPACT_SUCCESS) {
3690 /*
3691 * !costly requests are much more important than
3692 * __GFP_RETRY_MAYFAIL costly ones because they are de
3693 * facto nofail and invoke OOM killer to move on while
3694 * costly can fail and users are ready to cope with
3695 * that. 1/4 retries is rather arbitrary but we would
3696 * need much more detailed feedback from compaction to
3697 * make a better decision.
3698 */
3699 if (order > PAGE_ALLOC_COSTLY_ORDER)
3700 max_retries /= 4;
3701
3702 if (++(*compaction_retries) <= max_retries) {
3703 ret = true;
3704 goto out;
3705 }
3706 }
3707
3708 /*
3709 * Compaction failed. Retry with increasing priority.
3710 */
3711 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3712 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3713
3714 if (*compact_priority > min_priority) {
3715 (*compact_priority)--;
3716 *compaction_retries = 0;
3717 ret = true;
3718 }
3719out:
3720 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3721 return ret;
3722}
3723#else
3724static inline struct page *
3725__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3726 unsigned int alloc_flags, const struct alloc_context *ac,
3727 enum compact_priority prio, enum compact_result *compact_result)
3728{
3729 *compact_result = COMPACT_SKIPPED;
3730 return NULL;
3731}
3732
3733static inline bool
3734should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3735 enum compact_result compact_result,
3736 enum compact_priority *compact_priority,
3737 int *compaction_retries)
3738{
3739 struct zone *zone;
3740 struct zoneref *z;
3741
3742 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3743 return false;
3744
3745 /*
3746 * There are setups with compaction disabled which would prefer to loop
3747 * inside the allocator rather than hit the oom killer prematurely.
3748 * Let's give them a good hope and keep retrying while the order-0
3749 * watermarks are OK.
3750 */
3751 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3752 ac->highest_zoneidx, ac->nodemask) {
3753 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3754 ac->highest_zoneidx, alloc_flags))
3755 return true;
3756 }
3757 return false;
3758}
3759#endif /* CONFIG_COMPACTION */
3760
3761#ifdef CONFIG_LOCKDEP
3762static struct lockdep_map __fs_reclaim_map =
3763 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3764
3765static bool __need_reclaim(gfp_t gfp_mask)
3766{
3767 /* no reclaim without waiting on it */
3768 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3769 return false;
3770
3771 /* this guy won't enter reclaim */
3772 if (current->flags & PF_MEMALLOC)
3773 return false;
3774
3775 if (gfp_mask & __GFP_NOLOCKDEP)
3776 return false;
3777
3778 return true;
3779}
3780
3781void __fs_reclaim_acquire(unsigned long ip)
3782{
3783 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3784}
3785
3786void __fs_reclaim_release(unsigned long ip)
3787{
3788 lock_release(&__fs_reclaim_map, ip);
3789}
3790
3791void fs_reclaim_acquire(gfp_t gfp_mask)
3792{
3793 gfp_mask = current_gfp_context(gfp_mask);
3794
3795 if (__need_reclaim(gfp_mask)) {
3796 if (gfp_mask & __GFP_FS)
3797 __fs_reclaim_acquire(_RET_IP_);
3798
3799#ifdef CONFIG_MMU_NOTIFIER
3800 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3801 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3802#endif
3803
3804 }
3805}
3806EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3807
3808void fs_reclaim_release(gfp_t gfp_mask)
3809{
3810 gfp_mask = current_gfp_context(gfp_mask);
3811
3812 if (__need_reclaim(gfp_mask)) {
3813 if (gfp_mask & __GFP_FS)
3814 __fs_reclaim_release(_RET_IP_);
3815 }
3816}
3817EXPORT_SYMBOL_GPL(fs_reclaim_release);
3818#endif
3819
3820/*
3821 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3822 * have been rebuilt so allocation retries. Reader side does not lock and
3823 * retries the allocation if zonelist changes. Writer side is protected by the
3824 * embedded spin_lock.
3825 */
3826static DEFINE_SEQLOCK(zonelist_update_seq);
3827
3828static unsigned int zonelist_iter_begin(void)
3829{
3830 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3831 return read_seqbegin(&zonelist_update_seq);
3832
3833 return 0;
3834}
3835
3836static unsigned int check_retry_zonelist(unsigned int seq)
3837{
3838 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3839 return read_seqretry(&zonelist_update_seq, seq);
3840
3841 return seq;
3842}
3843
3844/* Perform direct synchronous page reclaim */
3845static unsigned long
3846__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3847 const struct alloc_context *ac)
3848{
3849 unsigned int noreclaim_flag;
3850 unsigned long progress;
3851
3852 cond_resched();
3853
3854 /* We now go into synchronous reclaim */
3855 cpuset_memory_pressure_bump();
3856 fs_reclaim_acquire(gfp_mask);
3857 noreclaim_flag = memalloc_noreclaim_save();
3858
3859 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3860 ac->nodemask);
3861
3862 memalloc_noreclaim_restore(noreclaim_flag);
3863 fs_reclaim_release(gfp_mask);
3864
3865 cond_resched();
3866
3867 return progress;
3868}
3869
3870/* The really slow allocator path where we enter direct reclaim */
3871static inline struct page *
3872__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3873 unsigned int alloc_flags, const struct alloc_context *ac,
3874 unsigned long *did_some_progress)
3875{
3876 struct page *page = NULL;
3877 unsigned long pflags;
3878 bool drained = false;
3879
3880 psi_memstall_enter(&pflags);
3881 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3882 if (unlikely(!(*did_some_progress)))
3883 goto out;
3884
3885retry:
3886 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3887
3888 /*
3889 * If an allocation failed after direct reclaim, it could be because
3890 * pages are pinned on the per-cpu lists or in high alloc reserves.
3891 * Shrink them and try again
3892 */
3893 if (!page && !drained) {
3894 unreserve_highatomic_pageblock(ac, false);
3895 drain_all_pages(NULL);
3896 drained = true;
3897 goto retry;
3898 }
3899out:
3900 psi_memstall_leave(&pflags);
3901
3902 return page;
3903}
3904
3905static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3906 const struct alloc_context *ac)
3907{
3908 struct zoneref *z;
3909 struct zone *zone;
3910 pg_data_t *last_pgdat = NULL;
3911 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3912
3913 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3914 ac->nodemask) {
3915 if (!managed_zone(zone))
3916 continue;
3917 if (last_pgdat != zone->zone_pgdat) {
3918 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3919 last_pgdat = zone->zone_pgdat;
3920 }
3921 }
3922}
3923
3924static inline unsigned int
3925gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3926{
3927 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3928
3929 /*
3930 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3931 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3932 * to save two branches.
3933 */
3934 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3935 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3936
3937 /*
3938 * The caller may dip into page reserves a bit more if the caller
3939 * cannot run direct reclaim, or if the caller has realtime scheduling
3940 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3941 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3942 */
3943 alloc_flags |= (__force int)
3944 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3945
3946 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3947 /*
3948 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3949 * if it can't schedule.
3950 */
3951 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3952 alloc_flags |= ALLOC_NON_BLOCK;
3953
3954 if (order > 0)
3955 alloc_flags |= ALLOC_HIGHATOMIC;
3956 }
3957
3958 /*
3959 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3960 * GFP_ATOMIC) rather than fail, see the comment for
3961 * cpuset_node_allowed().
3962 */
3963 if (alloc_flags & ALLOC_MIN_RESERVE)
3964 alloc_flags &= ~ALLOC_CPUSET;
3965 } else if (unlikely(rt_task(current)) && in_task())
3966 alloc_flags |= ALLOC_MIN_RESERVE;
3967
3968 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3969
3970 return alloc_flags;
3971}
3972
3973static bool oom_reserves_allowed(struct task_struct *tsk)
3974{
3975 if (!tsk_is_oom_victim(tsk))
3976 return false;
3977
3978 /*
3979 * !MMU doesn't have oom reaper so give access to memory reserves
3980 * only to the thread with TIF_MEMDIE set
3981 */
3982 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3983 return false;
3984
3985 return true;
3986}
3987
3988/*
3989 * Distinguish requests which really need access to full memory
3990 * reserves from oom victims which can live with a portion of it
3991 */
3992static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3993{
3994 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3995 return 0;
3996 if (gfp_mask & __GFP_MEMALLOC)
3997 return ALLOC_NO_WATERMARKS;
3998 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3999 return ALLOC_NO_WATERMARKS;
4000 if (!in_interrupt()) {
4001 if (current->flags & PF_MEMALLOC)
4002 return ALLOC_NO_WATERMARKS;
4003 else if (oom_reserves_allowed(current))
4004 return ALLOC_OOM;
4005 }
4006
4007 return 0;
4008}
4009
4010bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4011{
4012 return !!__gfp_pfmemalloc_flags(gfp_mask);
4013}
4014
4015/*
4016 * Checks whether it makes sense to retry the reclaim to make a forward progress
4017 * for the given allocation request.
4018 *
4019 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4020 * without success, or when we couldn't even meet the watermark if we
4021 * reclaimed all remaining pages on the LRU lists.
4022 *
4023 * Returns true if a retry is viable or false to enter the oom path.
4024 */
4025static inline bool
4026should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4027 struct alloc_context *ac, int alloc_flags,
4028 bool did_some_progress, int *no_progress_loops)
4029{
4030 struct zone *zone;
4031 struct zoneref *z;
4032 bool ret = false;
4033
4034 /*
4035 * Costly allocations might have made a progress but this doesn't mean
4036 * their order will become available due to high fragmentation so
4037 * always increment the no progress counter for them
4038 */
4039 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4040 *no_progress_loops = 0;
4041 else
4042 (*no_progress_loops)++;
4043
4044 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4045 goto out;
4046
4047
4048 /*
4049 * Keep reclaiming pages while there is a chance this will lead
4050 * somewhere. If none of the target zones can satisfy our allocation
4051 * request even if all reclaimable pages are considered then we are
4052 * screwed and have to go OOM.
4053 */
4054 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4055 ac->highest_zoneidx, ac->nodemask) {
4056 unsigned long available;
4057 unsigned long reclaimable;
4058 unsigned long min_wmark = min_wmark_pages(zone);
4059 bool wmark;
4060
4061 available = reclaimable = zone_reclaimable_pages(zone);
4062 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4063
4064 /*
4065 * Would the allocation succeed if we reclaimed all
4066 * reclaimable pages?
4067 */
4068 wmark = __zone_watermark_ok(zone, order, min_wmark,
4069 ac->highest_zoneidx, alloc_flags, available);
4070 trace_reclaim_retry_zone(z, order, reclaimable,
4071 available, min_wmark, *no_progress_loops, wmark);
4072 if (wmark) {
4073 ret = true;
4074 break;
4075 }
4076 }
4077
4078 /*
4079 * Memory allocation/reclaim might be called from a WQ context and the
4080 * current implementation of the WQ concurrency control doesn't
4081 * recognize that a particular WQ is congested if the worker thread is
4082 * looping without ever sleeping. Therefore we have to do a short sleep
4083 * here rather than calling cond_resched().
4084 */
4085 if (current->flags & PF_WQ_WORKER)
4086 schedule_timeout_uninterruptible(1);
4087 else
4088 cond_resched();
4089out:
4090 /* Before OOM, exhaust highatomic_reserve */
4091 if (!ret)
4092 return unreserve_highatomic_pageblock(ac, true);
4093
4094 return ret;
4095}
4096
4097static inline bool
4098check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4099{
4100 /*
4101 * It's possible that cpuset's mems_allowed and the nodemask from
4102 * mempolicy don't intersect. This should be normally dealt with by
4103 * policy_nodemask(), but it's possible to race with cpuset update in
4104 * such a way the check therein was true, and then it became false
4105 * before we got our cpuset_mems_cookie here.
4106 * This assumes that for all allocations, ac->nodemask can come only
4107 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4108 * when it does not intersect with the cpuset restrictions) or the
4109 * caller can deal with a violated nodemask.
4110 */
4111 if (cpusets_enabled() && ac->nodemask &&
4112 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4113 ac->nodemask = NULL;
4114 return true;
4115 }
4116
4117 /*
4118 * When updating a task's mems_allowed or mempolicy nodemask, it is
4119 * possible to race with parallel threads in such a way that our
4120 * allocation can fail while the mask is being updated. If we are about
4121 * to fail, check if the cpuset changed during allocation and if so,
4122 * retry.
4123 */
4124 if (read_mems_allowed_retry(cpuset_mems_cookie))
4125 return true;
4126
4127 return false;
4128}
4129
4130static inline struct page *
4131__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4132 struct alloc_context *ac)
4133{
4134 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4135 bool can_compact = gfp_compaction_allowed(gfp_mask);
4136 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4137 struct page *page = NULL;
4138 unsigned int alloc_flags;
4139 unsigned long did_some_progress;
4140 enum compact_priority compact_priority;
4141 enum compact_result compact_result;
4142 int compaction_retries;
4143 int no_progress_loops;
4144 unsigned int cpuset_mems_cookie;
4145 unsigned int zonelist_iter_cookie;
4146 int reserve_flags;
4147
4148restart:
4149 compaction_retries = 0;
4150 no_progress_loops = 0;
4151 compact_priority = DEF_COMPACT_PRIORITY;
4152 cpuset_mems_cookie = read_mems_allowed_begin();
4153 zonelist_iter_cookie = zonelist_iter_begin();
4154
4155 /*
4156 * The fast path uses conservative alloc_flags to succeed only until
4157 * kswapd needs to be woken up, and to avoid the cost of setting up
4158 * alloc_flags precisely. So we do that now.
4159 */
4160 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4161
4162 /*
4163 * We need to recalculate the starting point for the zonelist iterator
4164 * because we might have used different nodemask in the fast path, or
4165 * there was a cpuset modification and we are retrying - otherwise we
4166 * could end up iterating over non-eligible zones endlessly.
4167 */
4168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4169 ac->highest_zoneidx, ac->nodemask);
4170 if (!ac->preferred_zoneref->zone)
4171 goto nopage;
4172
4173 /*
4174 * Check for insane configurations where the cpuset doesn't contain
4175 * any suitable zone to satisfy the request - e.g. non-movable
4176 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4177 */
4178 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4179 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4180 ac->highest_zoneidx,
4181 &cpuset_current_mems_allowed);
4182 if (!z->zone)
4183 goto nopage;
4184 }
4185
4186 if (alloc_flags & ALLOC_KSWAPD)
4187 wake_all_kswapds(order, gfp_mask, ac);
4188
4189 /*
4190 * The adjusted alloc_flags might result in immediate success, so try
4191 * that first
4192 */
4193 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4194 if (page)
4195 goto got_pg;
4196
4197 /*
4198 * For costly allocations, try direct compaction first, as it's likely
4199 * that we have enough base pages and don't need to reclaim. For non-
4200 * movable high-order allocations, do that as well, as compaction will
4201 * try prevent permanent fragmentation by migrating from blocks of the
4202 * same migratetype.
4203 * Don't try this for allocations that are allowed to ignore
4204 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4205 */
4206 if (can_direct_reclaim && can_compact &&
4207 (costly_order ||
4208 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4209 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4210 page = __alloc_pages_direct_compact(gfp_mask, order,
4211 alloc_flags, ac,
4212 INIT_COMPACT_PRIORITY,
4213 &compact_result);
4214 if (page)
4215 goto got_pg;
4216
4217 /*
4218 * Checks for costly allocations with __GFP_NORETRY, which
4219 * includes some THP page fault allocations
4220 */
4221 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4222 /*
4223 * If allocating entire pageblock(s) and compaction
4224 * failed because all zones are below low watermarks
4225 * or is prohibited because it recently failed at this
4226 * order, fail immediately unless the allocator has
4227 * requested compaction and reclaim retry.
4228 *
4229 * Reclaim is
4230 * - potentially very expensive because zones are far
4231 * below their low watermarks or this is part of very
4232 * bursty high order allocations,
4233 * - not guaranteed to help because isolate_freepages()
4234 * may not iterate over freed pages as part of its
4235 * linear scan, and
4236 * - unlikely to make entire pageblocks free on its
4237 * own.
4238 */
4239 if (compact_result == COMPACT_SKIPPED ||
4240 compact_result == COMPACT_DEFERRED)
4241 goto nopage;
4242
4243 /*
4244 * Looks like reclaim/compaction is worth trying, but
4245 * sync compaction could be very expensive, so keep
4246 * using async compaction.
4247 */
4248 compact_priority = INIT_COMPACT_PRIORITY;
4249 }
4250 }
4251
4252retry:
4253 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4254 if (alloc_flags & ALLOC_KSWAPD)
4255 wake_all_kswapds(order, gfp_mask, ac);
4256
4257 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4258 if (reserve_flags)
4259 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4260 (alloc_flags & ALLOC_KSWAPD);
4261
4262 /*
4263 * Reset the nodemask and zonelist iterators if memory policies can be
4264 * ignored. These allocations are high priority and system rather than
4265 * user oriented.
4266 */
4267 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4268 ac->nodemask = NULL;
4269 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4270 ac->highest_zoneidx, ac->nodemask);
4271 }
4272
4273 /* Attempt with potentially adjusted zonelist and alloc_flags */
4274 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4275 if (page)
4276 goto got_pg;
4277
4278 /* Caller is not willing to reclaim, we can't balance anything */
4279 if (!can_direct_reclaim)
4280 goto nopage;
4281
4282 /* Avoid recursion of direct reclaim */
4283 if (current->flags & PF_MEMALLOC)
4284 goto nopage;
4285
4286 /* Try direct reclaim and then allocating */
4287 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4288 &did_some_progress);
4289 if (page)
4290 goto got_pg;
4291
4292 /* Try direct compaction and then allocating */
4293 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4294 compact_priority, &compact_result);
4295 if (page)
4296 goto got_pg;
4297
4298 /* Do not loop if specifically requested */
4299 if (gfp_mask & __GFP_NORETRY)
4300 goto nopage;
4301
4302 /*
4303 * Do not retry costly high order allocations unless they are
4304 * __GFP_RETRY_MAYFAIL and we can compact
4305 */
4306 if (costly_order && (!can_compact ||
4307 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4308 goto nopage;
4309
4310 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4311 did_some_progress > 0, &no_progress_loops))
4312 goto retry;
4313
4314 /*
4315 * It doesn't make any sense to retry for the compaction if the order-0
4316 * reclaim is not able to make any progress because the current
4317 * implementation of the compaction depends on the sufficient amount
4318 * of free memory (see __compaction_suitable)
4319 */
4320 if (did_some_progress > 0 && can_compact &&
4321 should_compact_retry(ac, order, alloc_flags,
4322 compact_result, &compact_priority,
4323 &compaction_retries))
4324 goto retry;
4325
4326
4327 /*
4328 * Deal with possible cpuset update races or zonelist updates to avoid
4329 * a unnecessary OOM kill.
4330 */
4331 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4332 check_retry_zonelist(zonelist_iter_cookie))
4333 goto restart;
4334
4335 /* Reclaim has failed us, start killing things */
4336 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4337 if (page)
4338 goto got_pg;
4339
4340 /* Avoid allocations with no watermarks from looping endlessly */
4341 if (tsk_is_oom_victim(current) &&
4342 (alloc_flags & ALLOC_OOM ||
4343 (gfp_mask & __GFP_NOMEMALLOC)))
4344 goto nopage;
4345
4346 /* Retry as long as the OOM killer is making progress */
4347 if (did_some_progress) {
4348 no_progress_loops = 0;
4349 goto retry;
4350 }
4351
4352nopage:
4353 /*
4354 * Deal with possible cpuset update races or zonelist updates to avoid
4355 * a unnecessary OOM kill.
4356 */
4357 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4358 check_retry_zonelist(zonelist_iter_cookie))
4359 goto restart;
4360
4361 /*
4362 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4363 * we always retry
4364 */
4365 if (gfp_mask & __GFP_NOFAIL) {
4366 /*
4367 * All existing users of the __GFP_NOFAIL are blockable, so warn
4368 * of any new users that actually require GFP_NOWAIT
4369 */
4370 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4371 goto fail;
4372
4373 /*
4374 * PF_MEMALLOC request from this context is rather bizarre
4375 * because we cannot reclaim anything and only can loop waiting
4376 * for somebody to do a work for us
4377 */
4378 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4379
4380 /*
4381 * non failing costly orders are a hard requirement which we
4382 * are not prepared for much so let's warn about these users
4383 * so that we can identify them and convert them to something
4384 * else.
4385 */
4386 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4387
4388 /*
4389 * Help non-failing allocations by giving some access to memory
4390 * reserves normally used for high priority non-blocking
4391 * allocations but do not use ALLOC_NO_WATERMARKS because this
4392 * could deplete whole memory reserves which would just make
4393 * the situation worse.
4394 */
4395 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4396 if (page)
4397 goto got_pg;
4398
4399 cond_resched();
4400 goto retry;
4401 }
4402fail:
4403 warn_alloc(gfp_mask, ac->nodemask,
4404 "page allocation failure: order:%u", order);
4405got_pg:
4406 return page;
4407}
4408
4409static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4410 int preferred_nid, nodemask_t *nodemask,
4411 struct alloc_context *ac, gfp_t *alloc_gfp,
4412 unsigned int *alloc_flags)
4413{
4414 ac->highest_zoneidx = gfp_zone(gfp_mask);
4415 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4416 ac->nodemask = nodemask;
4417 ac->migratetype = gfp_migratetype(gfp_mask);
4418
4419 if (cpusets_enabled()) {
4420 *alloc_gfp |= __GFP_HARDWALL;
4421 /*
4422 * When we are in the interrupt context, it is irrelevant
4423 * to the current task context. It means that any node ok.
4424 */
4425 if (in_task() && !ac->nodemask)
4426 ac->nodemask = &cpuset_current_mems_allowed;
4427 else
4428 *alloc_flags |= ALLOC_CPUSET;
4429 }
4430
4431 might_alloc(gfp_mask);
4432
4433 if (should_fail_alloc_page(gfp_mask, order))
4434 return false;
4435
4436 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4437
4438 /* Dirty zone balancing only done in the fast path */
4439 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4440
4441 /*
4442 * The preferred zone is used for statistics but crucially it is
4443 * also used as the starting point for the zonelist iterator. It
4444 * may get reset for allocations that ignore memory policies.
4445 */
4446 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4447 ac->highest_zoneidx, ac->nodemask);
4448
4449 return true;
4450}
4451
4452/*
4453 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4454 * @gfp: GFP flags for the allocation
4455 * @preferred_nid: The preferred NUMA node ID to allocate from
4456 * @nodemask: Set of nodes to allocate from, may be NULL
4457 * @nr_pages: The number of pages desired on the list or array
4458 * @page_list: Optional list to store the allocated pages
4459 * @page_array: Optional array to store the pages
4460 *
4461 * This is a batched version of the page allocator that attempts to
4462 * allocate nr_pages quickly. Pages are added to page_list if page_list
4463 * is not NULL, otherwise it is assumed that the page_array is valid.
4464 *
4465 * For lists, nr_pages is the number of pages that should be allocated.
4466 *
4467 * For arrays, only NULL elements are populated with pages and nr_pages
4468 * is the maximum number of pages that will be stored in the array.
4469 *
4470 * Returns the number of pages on the list or array.
4471 */
4472unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4473 nodemask_t *nodemask, int nr_pages,
4474 struct list_head *page_list,
4475 struct page **page_array)
4476{
4477 struct page *page;
4478 unsigned long __maybe_unused UP_flags;
4479 struct zone *zone;
4480 struct zoneref *z;
4481 struct per_cpu_pages *pcp;
4482 struct list_head *pcp_list;
4483 struct alloc_context ac;
4484 gfp_t alloc_gfp;
4485 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4486 int nr_populated = 0, nr_account = 0;
4487
4488 /*
4489 * Skip populated array elements to determine if any pages need
4490 * to be allocated before disabling IRQs.
4491 */
4492 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4493 nr_populated++;
4494
4495 /* No pages requested? */
4496 if (unlikely(nr_pages <= 0))
4497 goto out;
4498
4499 /* Already populated array? */
4500 if (unlikely(page_array && nr_pages - nr_populated == 0))
4501 goto out;
4502
4503 /* Bulk allocator does not support memcg accounting. */
4504 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4505 goto failed;
4506
4507 /* Use the single page allocator for one page. */
4508 if (nr_pages - nr_populated == 1)
4509 goto failed;
4510
4511#ifdef CONFIG_PAGE_OWNER
4512 /*
4513 * PAGE_OWNER may recurse into the allocator to allocate space to
4514 * save the stack with pagesets.lock held. Releasing/reacquiring
4515 * removes much of the performance benefit of bulk allocation so
4516 * force the caller to allocate one page at a time as it'll have
4517 * similar performance to added complexity to the bulk allocator.
4518 */
4519 if (static_branch_unlikely(&page_owner_inited))
4520 goto failed;
4521#endif
4522
4523 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4524 gfp &= gfp_allowed_mask;
4525 alloc_gfp = gfp;
4526 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4527 goto out;
4528 gfp = alloc_gfp;
4529
4530 /* Find an allowed local zone that meets the low watermark. */
4531 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4532 unsigned long mark;
4533
4534 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4535 !__cpuset_zone_allowed(zone, gfp)) {
4536 continue;
4537 }
4538
4539 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4540 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4541 goto failed;
4542 }
4543
4544 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4545 if (zone_watermark_fast(zone, 0, mark,
4546 zonelist_zone_idx(ac.preferred_zoneref),
4547 alloc_flags, gfp)) {
4548 break;
4549 }
4550 }
4551
4552 /*
4553 * If there are no allowed local zones that meets the watermarks then
4554 * try to allocate a single page and reclaim if necessary.
4555 */
4556 if (unlikely(!zone))
4557 goto failed;
4558
4559 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4560 pcp_trylock_prepare(UP_flags);
4561 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4562 if (!pcp)
4563 goto failed_irq;
4564
4565 /* Attempt the batch allocation */
4566 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4567 while (nr_populated < nr_pages) {
4568
4569 /* Skip existing pages */
4570 if (page_array && page_array[nr_populated]) {
4571 nr_populated++;
4572 continue;
4573 }
4574
4575 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4576 pcp, pcp_list);
4577 if (unlikely(!page)) {
4578 /* Try and allocate at least one page */
4579 if (!nr_account) {
4580 pcp_spin_unlock(pcp);
4581 goto failed_irq;
4582 }
4583 break;
4584 }
4585 nr_account++;
4586
4587 prep_new_page(page, 0, gfp, 0);
4588 if (page_list)
4589 list_add(&page->lru, page_list);
4590 else
4591 page_array[nr_populated] = page;
4592 nr_populated++;
4593 }
4594
4595 pcp_spin_unlock(pcp);
4596 pcp_trylock_finish(UP_flags);
4597
4598 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4599 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4600
4601out:
4602 return nr_populated;
4603
4604failed_irq:
4605 pcp_trylock_finish(UP_flags);
4606
4607failed:
4608 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4609 if (page) {
4610 if (page_list)
4611 list_add(&page->lru, page_list);
4612 else
4613 page_array[nr_populated] = page;
4614 nr_populated++;
4615 }
4616
4617 goto out;
4618}
4619EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4620
4621/*
4622 * This is the 'heart' of the zoned buddy allocator.
4623 */
4624struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4625 int preferred_nid, nodemask_t *nodemask)
4626{
4627 struct page *page;
4628 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4629 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4630 struct alloc_context ac = { };
4631
4632 /*
4633 * There are several places where we assume that the order value is sane
4634 * so bail out early if the request is out of bound.
4635 */
4636 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4637 return NULL;
4638
4639 gfp &= gfp_allowed_mask;
4640 /*
4641 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4642 * resp. GFP_NOIO which has to be inherited for all allocation requests
4643 * from a particular context which has been marked by
4644 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4645 * movable zones are not used during allocation.
4646 */
4647 gfp = current_gfp_context(gfp);
4648 alloc_gfp = gfp;
4649 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4650 &alloc_gfp, &alloc_flags))
4651 return NULL;
4652
4653 /*
4654 * Forbid the first pass from falling back to types that fragment
4655 * memory until all local zones are considered.
4656 */
4657 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4658
4659 /* First allocation attempt */
4660 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4661 if (likely(page))
4662 goto out;
4663
4664 alloc_gfp = gfp;
4665 ac.spread_dirty_pages = false;
4666
4667 /*
4668 * Restore the original nodemask if it was potentially replaced with
4669 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4670 */
4671 ac.nodemask = nodemask;
4672
4673 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4674
4675out:
4676 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4677 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4678 __free_pages(page, order);
4679 page = NULL;
4680 }
4681
4682 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4683 kmsan_alloc_page(page, order, alloc_gfp);
4684
4685 return page;
4686}
4687EXPORT_SYMBOL(__alloc_pages_noprof);
4688
4689struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4690 nodemask_t *nodemask)
4691{
4692 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4693 preferred_nid, nodemask);
4694 return page_rmappable_folio(page);
4695}
4696EXPORT_SYMBOL(__folio_alloc_noprof);
4697
4698/*
4699 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4700 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4701 * you need to access high mem.
4702 */
4703unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4704{
4705 struct page *page;
4706
4707 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4708 if (!page)
4709 return 0;
4710 return (unsigned long) page_address(page);
4711}
4712EXPORT_SYMBOL(get_free_pages_noprof);
4713
4714unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4715{
4716 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4717}
4718EXPORT_SYMBOL(get_zeroed_page_noprof);
4719
4720/**
4721 * __free_pages - Free pages allocated with alloc_pages().
4722 * @page: The page pointer returned from alloc_pages().
4723 * @order: The order of the allocation.
4724 *
4725 * This function can free multi-page allocations that are not compound
4726 * pages. It does not check that the @order passed in matches that of
4727 * the allocation, so it is easy to leak memory. Freeing more memory
4728 * than was allocated will probably emit a warning.
4729 *
4730 * If the last reference to this page is speculative, it will be released
4731 * by put_page() which only frees the first page of a non-compound
4732 * allocation. To prevent the remaining pages from being leaked, we free
4733 * the subsequent pages here. If you want to use the page's reference
4734 * count to decide when to free the allocation, you should allocate a
4735 * compound page, and use put_page() instead of __free_pages().
4736 *
4737 * Context: May be called in interrupt context or while holding a normal
4738 * spinlock, but not in NMI context or while holding a raw spinlock.
4739 */
4740void __free_pages(struct page *page, unsigned int order)
4741{
4742 /* get PageHead before we drop reference */
4743 int head = PageHead(page);
4744 struct alloc_tag *tag = pgalloc_tag_get(page);
4745
4746 if (put_page_testzero(page))
4747 free_unref_page(page, order);
4748 else if (!head) {
4749 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4750 while (order-- > 0)
4751 free_unref_page(page + (1 << order), order);
4752 }
4753}
4754EXPORT_SYMBOL(__free_pages);
4755
4756void free_pages(unsigned long addr, unsigned int order)
4757{
4758 if (addr != 0) {
4759 VM_BUG_ON(!virt_addr_valid((void *)addr));
4760 __free_pages(virt_to_page((void *)addr), order);
4761 }
4762}
4763
4764EXPORT_SYMBOL(free_pages);
4765
4766/*
4767 * Page Fragment:
4768 * An arbitrary-length arbitrary-offset area of memory which resides
4769 * within a 0 or higher order page. Multiple fragments within that page
4770 * are individually refcounted, in the page's reference counter.
4771 *
4772 * The page_frag functions below provide a simple allocation framework for
4773 * page fragments. This is used by the network stack and network device
4774 * drivers to provide a backing region of memory for use as either an
4775 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4776 */
4777static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4778 gfp_t gfp_mask)
4779{
4780 struct page *page = NULL;
4781 gfp_t gfp = gfp_mask;
4782
4783#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4784 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4785 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4786 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4787 PAGE_FRAG_CACHE_MAX_ORDER);
4788 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4789#endif
4790 if (unlikely(!page))
4791 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4792
4793 nc->va = page ? page_address(page) : NULL;
4794
4795 return page;
4796}
4797
4798void page_frag_cache_drain(struct page_frag_cache *nc)
4799{
4800 if (!nc->va)
4801 return;
4802
4803 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4804 nc->va = NULL;
4805}
4806EXPORT_SYMBOL(page_frag_cache_drain);
4807
4808void __page_frag_cache_drain(struct page *page, unsigned int count)
4809{
4810 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4811
4812 if (page_ref_sub_and_test(page, count))
4813 free_unref_page(page, compound_order(page));
4814}
4815EXPORT_SYMBOL(__page_frag_cache_drain);
4816
4817void *__page_frag_alloc_align(struct page_frag_cache *nc,
4818 unsigned int fragsz, gfp_t gfp_mask,
4819 unsigned int align_mask)
4820{
4821 unsigned int size = PAGE_SIZE;
4822 struct page *page;
4823 int offset;
4824
4825 if (unlikely(!nc->va)) {
4826refill:
4827 page = __page_frag_cache_refill(nc, gfp_mask);
4828 if (!page)
4829 return NULL;
4830
4831#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4832 /* if size can vary use size else just use PAGE_SIZE */
4833 size = nc->size;
4834#endif
4835 /* Even if we own the page, we do not use atomic_set().
4836 * This would break get_page_unless_zero() users.
4837 */
4838 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4839
4840 /* reset page count bias and offset to start of new frag */
4841 nc->pfmemalloc = page_is_pfmemalloc(page);
4842 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4843 nc->offset = size;
4844 }
4845
4846 offset = nc->offset - fragsz;
4847 if (unlikely(offset < 0)) {
4848 page = virt_to_page(nc->va);
4849
4850 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4851 goto refill;
4852
4853 if (unlikely(nc->pfmemalloc)) {
4854 free_unref_page(page, compound_order(page));
4855 goto refill;
4856 }
4857
4858#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4859 /* if size can vary use size else just use PAGE_SIZE */
4860 size = nc->size;
4861#endif
4862 /* OK, page count is 0, we can safely set it */
4863 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4864
4865 /* reset page count bias and offset to start of new frag */
4866 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4867 offset = size - fragsz;
4868 if (unlikely(offset < 0)) {
4869 /*
4870 * The caller is trying to allocate a fragment
4871 * with fragsz > PAGE_SIZE but the cache isn't big
4872 * enough to satisfy the request, this may
4873 * happen in low memory conditions.
4874 * We don't release the cache page because
4875 * it could make memory pressure worse
4876 * so we simply return NULL here.
4877 */
4878 return NULL;
4879 }
4880 }
4881
4882 nc->pagecnt_bias--;
4883 offset &= align_mask;
4884 nc->offset = offset;
4885
4886 return nc->va + offset;
4887}
4888EXPORT_SYMBOL(__page_frag_alloc_align);
4889
4890/*
4891 * Frees a page fragment allocated out of either a compound or order 0 page.
4892 */
4893void page_frag_free(void *addr)
4894{
4895 struct page *page = virt_to_head_page(addr);
4896
4897 if (unlikely(put_page_testzero(page)))
4898 free_unref_page(page, compound_order(page));
4899}
4900EXPORT_SYMBOL(page_frag_free);
4901
4902static void *make_alloc_exact(unsigned long addr, unsigned int order,
4903 size_t size)
4904{
4905 if (addr) {
4906 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4907 struct page *page = virt_to_page((void *)addr);
4908 struct page *last = page + nr;
4909
4910 split_page_owner(page, order, 0);
4911 pgalloc_tag_split(page, 1 << order);
4912 split_page_memcg(page, order, 0);
4913 while (page < --last)
4914 set_page_refcounted(last);
4915
4916 last = page + (1UL << order);
4917 for (page += nr; page < last; page++)
4918 __free_pages_ok(page, 0, FPI_TO_TAIL);
4919 }
4920 return (void *)addr;
4921}
4922
4923/**
4924 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4925 * @size: the number of bytes to allocate
4926 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4927 *
4928 * This function is similar to alloc_pages(), except that it allocates the
4929 * minimum number of pages to satisfy the request. alloc_pages() can only
4930 * allocate memory in power-of-two pages.
4931 *
4932 * This function is also limited by MAX_PAGE_ORDER.
4933 *
4934 * Memory allocated by this function must be released by free_pages_exact().
4935 *
4936 * Return: pointer to the allocated area or %NULL in case of error.
4937 */
4938void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4939{
4940 unsigned int order = get_order(size);
4941 unsigned long addr;
4942
4943 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4944 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4945
4946 addr = get_free_pages_noprof(gfp_mask, order);
4947 return make_alloc_exact(addr, order, size);
4948}
4949EXPORT_SYMBOL(alloc_pages_exact_noprof);
4950
4951/**
4952 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4953 * pages on a node.
4954 * @nid: the preferred node ID where memory should be allocated
4955 * @size: the number of bytes to allocate
4956 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4957 *
4958 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4959 * back.
4960 *
4961 * Return: pointer to the allocated area or %NULL in case of error.
4962 */
4963void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4964{
4965 unsigned int order = get_order(size);
4966 struct page *p;
4967
4968 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4969 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4970
4971 p = alloc_pages_node_noprof(nid, gfp_mask, order);
4972 if (!p)
4973 return NULL;
4974 return make_alloc_exact((unsigned long)page_address(p), order, size);
4975}
4976
4977/**
4978 * free_pages_exact - release memory allocated via alloc_pages_exact()
4979 * @virt: the value returned by alloc_pages_exact.
4980 * @size: size of allocation, same value as passed to alloc_pages_exact().
4981 *
4982 * Release the memory allocated by a previous call to alloc_pages_exact.
4983 */
4984void free_pages_exact(void *virt, size_t size)
4985{
4986 unsigned long addr = (unsigned long)virt;
4987 unsigned long end = addr + PAGE_ALIGN(size);
4988
4989 while (addr < end) {
4990 free_page(addr);
4991 addr += PAGE_SIZE;
4992 }
4993}
4994EXPORT_SYMBOL(free_pages_exact);
4995
4996/**
4997 * nr_free_zone_pages - count number of pages beyond high watermark
4998 * @offset: The zone index of the highest zone
4999 *
5000 * nr_free_zone_pages() counts the number of pages which are beyond the
5001 * high watermark within all zones at or below a given zone index. For each
5002 * zone, the number of pages is calculated as:
5003 *
5004 * nr_free_zone_pages = managed_pages - high_pages
5005 *
5006 * Return: number of pages beyond high watermark.
5007 */
5008static unsigned long nr_free_zone_pages(int offset)
5009{
5010 struct zoneref *z;
5011 struct zone *zone;
5012
5013 /* Just pick one node, since fallback list is circular */
5014 unsigned long sum = 0;
5015
5016 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5017
5018 for_each_zone_zonelist(zone, z, zonelist, offset) {
5019 unsigned long size = zone_managed_pages(zone);
5020 unsigned long high = high_wmark_pages(zone);
5021 if (size > high)
5022 sum += size - high;
5023 }
5024
5025 return sum;
5026}
5027
5028/**
5029 * nr_free_buffer_pages - count number of pages beyond high watermark
5030 *
5031 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5032 * watermark within ZONE_DMA and ZONE_NORMAL.
5033 *
5034 * Return: number of pages beyond high watermark within ZONE_DMA and
5035 * ZONE_NORMAL.
5036 */
5037unsigned long nr_free_buffer_pages(void)
5038{
5039 return nr_free_zone_pages(gfp_zone(GFP_USER));
5040}
5041EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5042
5043static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044{
5045 zoneref->zone = zone;
5046 zoneref->zone_idx = zone_idx(zone);
5047}
5048
5049/*
5050 * Builds allocation fallback zone lists.
5051 *
5052 * Add all populated zones of a node to the zonelist.
5053 */
5054static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055{
5056 struct zone *zone;
5057 enum zone_type zone_type = MAX_NR_ZONES;
5058 int nr_zones = 0;
5059
5060 do {
5061 zone_type--;
5062 zone = pgdat->node_zones + zone_type;
5063 if (populated_zone(zone)) {
5064 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065 check_highest_zone(zone_type);
5066 }
5067 } while (zone_type);
5068
5069 return nr_zones;
5070}
5071
5072#ifdef CONFIG_NUMA
5073
5074static int __parse_numa_zonelist_order(char *s)
5075{
5076 /*
5077 * We used to support different zonelists modes but they turned
5078 * out to be just not useful. Let's keep the warning in place
5079 * if somebody still use the cmd line parameter so that we do
5080 * not fail it silently
5081 */
5082 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5083 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5084 return -EINVAL;
5085 }
5086 return 0;
5087}
5088
5089static char numa_zonelist_order[] = "Node";
5090#define NUMA_ZONELIST_ORDER_LEN 16
5091/*
5092 * sysctl handler for numa_zonelist_order
5093 */
5094static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5095 void *buffer, size_t *length, loff_t *ppos)
5096{
5097 if (write)
5098 return __parse_numa_zonelist_order(buffer);
5099 return proc_dostring(table, write, buffer, length, ppos);
5100}
5101
5102static int node_load[MAX_NUMNODES];
5103
5104/**
5105 * find_next_best_node - find the next node that should appear in a given node's fallback list
5106 * @node: node whose fallback list we're appending
5107 * @used_node_mask: nodemask_t of already used nodes
5108 *
5109 * We use a number of factors to determine which is the next node that should
5110 * appear on a given node's fallback list. The node should not have appeared
5111 * already in @node's fallback list, and it should be the next closest node
5112 * according to the distance array (which contains arbitrary distance values
5113 * from each node to each node in the system), and should also prefer nodes
5114 * with no CPUs, since presumably they'll have very little allocation pressure
5115 * on them otherwise.
5116 *
5117 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5118 */
5119int find_next_best_node(int node, nodemask_t *used_node_mask)
5120{
5121 int n, val;
5122 int min_val = INT_MAX;
5123 int best_node = NUMA_NO_NODE;
5124
5125 /*
5126 * Use the local node if we haven't already, but for memoryless local
5127 * node, we should skip it and fall back to other nodes.
5128 */
5129 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5130 node_set(node, *used_node_mask);
5131 return node;
5132 }
5133
5134 for_each_node_state(n, N_MEMORY) {
5135
5136 /* Don't want a node to appear more than once */
5137 if (node_isset(n, *used_node_mask))
5138 continue;
5139
5140 /* Use the distance array to find the distance */
5141 val = node_distance(node, n);
5142
5143 /* Penalize nodes under us ("prefer the next node") */
5144 val += (n < node);
5145
5146 /* Give preference to headless and unused nodes */
5147 if (!cpumask_empty(cpumask_of_node(n)))
5148 val += PENALTY_FOR_NODE_WITH_CPUS;
5149
5150 /* Slight preference for less loaded node */
5151 val *= MAX_NUMNODES;
5152 val += node_load[n];
5153
5154 if (val < min_val) {
5155 min_val = val;
5156 best_node = n;
5157 }
5158 }
5159
5160 if (best_node >= 0)
5161 node_set(best_node, *used_node_mask);
5162
5163 return best_node;
5164}
5165
5166
5167/*
5168 * Build zonelists ordered by node and zones within node.
5169 * This results in maximum locality--normal zone overflows into local
5170 * DMA zone, if any--but risks exhausting DMA zone.
5171 */
5172static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5173 unsigned nr_nodes)
5174{
5175 struct zoneref *zonerefs;
5176 int i;
5177
5178 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5179
5180 for (i = 0; i < nr_nodes; i++) {
5181 int nr_zones;
5182
5183 pg_data_t *node = NODE_DATA(node_order[i]);
5184
5185 nr_zones = build_zonerefs_node(node, zonerefs);
5186 zonerefs += nr_zones;
5187 }
5188 zonerefs->zone = NULL;
5189 zonerefs->zone_idx = 0;
5190}
5191
5192/*
5193 * Build gfp_thisnode zonelists
5194 */
5195static void build_thisnode_zonelists(pg_data_t *pgdat)
5196{
5197 struct zoneref *zonerefs;
5198 int nr_zones;
5199
5200 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5201 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5202 zonerefs += nr_zones;
5203 zonerefs->zone = NULL;
5204 zonerefs->zone_idx = 0;
5205}
5206
5207/*
5208 * Build zonelists ordered by zone and nodes within zones.
5209 * This results in conserving DMA zone[s] until all Normal memory is
5210 * exhausted, but results in overflowing to remote node while memory
5211 * may still exist in local DMA zone.
5212 */
5213
5214static void build_zonelists(pg_data_t *pgdat)
5215{
5216 static int node_order[MAX_NUMNODES];
5217 int node, nr_nodes = 0;
5218 nodemask_t used_mask = NODE_MASK_NONE;
5219 int local_node, prev_node;
5220
5221 /* NUMA-aware ordering of nodes */
5222 local_node = pgdat->node_id;
5223 prev_node = local_node;
5224
5225 memset(node_order, 0, sizeof(node_order));
5226 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5227 /*
5228 * We don't want to pressure a particular node.
5229 * So adding penalty to the first node in same
5230 * distance group to make it round-robin.
5231 */
5232 if (node_distance(local_node, node) !=
5233 node_distance(local_node, prev_node))
5234 node_load[node] += 1;
5235
5236 node_order[nr_nodes++] = node;
5237 prev_node = node;
5238 }
5239
5240 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5241 build_thisnode_zonelists(pgdat);
5242 pr_info("Fallback order for Node %d: ", local_node);
5243 for (node = 0; node < nr_nodes; node++)
5244 pr_cont("%d ", node_order[node]);
5245 pr_cont("\n");
5246}
5247
5248#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5249/*
5250 * Return node id of node used for "local" allocations.
5251 * I.e., first node id of first zone in arg node's generic zonelist.
5252 * Used for initializing percpu 'numa_mem', which is used primarily
5253 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5254 */
5255int local_memory_node(int node)
5256{
5257 struct zoneref *z;
5258
5259 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5260 gfp_zone(GFP_KERNEL),
5261 NULL);
5262 return zone_to_nid(z->zone);
5263}
5264#endif
5265
5266static void setup_min_unmapped_ratio(void);
5267static void setup_min_slab_ratio(void);
5268#else /* CONFIG_NUMA */
5269
5270static void build_zonelists(pg_data_t *pgdat)
5271{
5272 struct zoneref *zonerefs;
5273 int nr_zones;
5274
5275 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5276 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5277 zonerefs += nr_zones;
5278
5279 zonerefs->zone = NULL;
5280 zonerefs->zone_idx = 0;
5281}
5282
5283#endif /* CONFIG_NUMA */
5284
5285/*
5286 * Boot pageset table. One per cpu which is going to be used for all
5287 * zones and all nodes. The parameters will be set in such a way
5288 * that an item put on a list will immediately be handed over to
5289 * the buddy list. This is safe since pageset manipulation is done
5290 * with interrupts disabled.
5291 *
5292 * The boot_pagesets must be kept even after bootup is complete for
5293 * unused processors and/or zones. They do play a role for bootstrapping
5294 * hotplugged processors.
5295 *
5296 * zoneinfo_show() and maybe other functions do
5297 * not check if the processor is online before following the pageset pointer.
5298 * Other parts of the kernel may not check if the zone is available.
5299 */
5300static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5301/* These effectively disable the pcplists in the boot pageset completely */
5302#define BOOT_PAGESET_HIGH 0
5303#define BOOT_PAGESET_BATCH 1
5304static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5305static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5306
5307static void __build_all_zonelists(void *data)
5308{
5309 int nid;
5310 int __maybe_unused cpu;
5311 pg_data_t *self = data;
5312 unsigned long flags;
5313
5314 /*
5315 * The zonelist_update_seq must be acquired with irqsave because the
5316 * reader can be invoked from IRQ with GFP_ATOMIC.
5317 */
5318 write_seqlock_irqsave(&zonelist_update_seq, flags);
5319 /*
5320 * Also disable synchronous printk() to prevent any printk() from
5321 * trying to hold port->lock, for
5322 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5323 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5324 */
5325 printk_deferred_enter();
5326
5327#ifdef CONFIG_NUMA
5328 memset(node_load, 0, sizeof(node_load));
5329#endif
5330
5331 /*
5332 * This node is hotadded and no memory is yet present. So just
5333 * building zonelists is fine - no need to touch other nodes.
5334 */
5335 if (self && !node_online(self->node_id)) {
5336 build_zonelists(self);
5337 } else {
5338 /*
5339 * All possible nodes have pgdat preallocated
5340 * in free_area_init
5341 */
5342 for_each_node(nid) {
5343 pg_data_t *pgdat = NODE_DATA(nid);
5344
5345 build_zonelists(pgdat);
5346 }
5347
5348#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5349 /*
5350 * We now know the "local memory node" for each node--
5351 * i.e., the node of the first zone in the generic zonelist.
5352 * Set up numa_mem percpu variable for on-line cpus. During
5353 * boot, only the boot cpu should be on-line; we'll init the
5354 * secondary cpus' numa_mem as they come on-line. During
5355 * node/memory hotplug, we'll fixup all on-line cpus.
5356 */
5357 for_each_online_cpu(cpu)
5358 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5359#endif
5360 }
5361
5362 printk_deferred_exit();
5363 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5364}
5365
5366static noinline void __init
5367build_all_zonelists_init(void)
5368{
5369 int cpu;
5370
5371 __build_all_zonelists(NULL);
5372
5373 /*
5374 * Initialize the boot_pagesets that are going to be used
5375 * for bootstrapping processors. The real pagesets for
5376 * each zone will be allocated later when the per cpu
5377 * allocator is available.
5378 *
5379 * boot_pagesets are used also for bootstrapping offline
5380 * cpus if the system is already booted because the pagesets
5381 * are needed to initialize allocators on a specific cpu too.
5382 * F.e. the percpu allocator needs the page allocator which
5383 * needs the percpu allocator in order to allocate its pagesets
5384 * (a chicken-egg dilemma).
5385 */
5386 for_each_possible_cpu(cpu)
5387 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5388
5389 mminit_verify_zonelist();
5390 cpuset_init_current_mems_allowed();
5391}
5392
5393/*
5394 * unless system_state == SYSTEM_BOOTING.
5395 *
5396 * __ref due to call of __init annotated helper build_all_zonelists_init
5397 * [protected by SYSTEM_BOOTING].
5398 */
5399void __ref build_all_zonelists(pg_data_t *pgdat)
5400{
5401 unsigned long vm_total_pages;
5402
5403 if (system_state == SYSTEM_BOOTING) {
5404 build_all_zonelists_init();
5405 } else {
5406 __build_all_zonelists(pgdat);
5407 /* cpuset refresh routine should be here */
5408 }
5409 /* Get the number of free pages beyond high watermark in all zones. */
5410 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5411 /*
5412 * Disable grouping by mobility if the number of pages in the
5413 * system is too low to allow the mechanism to work. It would be
5414 * more accurate, but expensive to check per-zone. This check is
5415 * made on memory-hotadd so a system can start with mobility
5416 * disabled and enable it later
5417 */
5418 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5419 page_group_by_mobility_disabled = 1;
5420 else
5421 page_group_by_mobility_disabled = 0;
5422
5423 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5424 nr_online_nodes,
5425 page_group_by_mobility_disabled ? "off" : "on",
5426 vm_total_pages);
5427#ifdef CONFIG_NUMA
5428 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5429#endif
5430}
5431
5432static int zone_batchsize(struct zone *zone)
5433{
5434#ifdef CONFIG_MMU
5435 int batch;
5436
5437 /*
5438 * The number of pages to batch allocate is either ~0.1%
5439 * of the zone or 1MB, whichever is smaller. The batch
5440 * size is striking a balance between allocation latency
5441 * and zone lock contention.
5442 */
5443 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5444 batch /= 4; /* We effectively *= 4 below */
5445 if (batch < 1)
5446 batch = 1;
5447
5448 /*
5449 * Clamp the batch to a 2^n - 1 value. Having a power
5450 * of 2 value was found to be more likely to have
5451 * suboptimal cache aliasing properties in some cases.
5452 *
5453 * For example if 2 tasks are alternately allocating
5454 * batches of pages, one task can end up with a lot
5455 * of pages of one half of the possible page colors
5456 * and the other with pages of the other colors.
5457 */
5458 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5459
5460 return batch;
5461
5462#else
5463 /* The deferral and batching of frees should be suppressed under NOMMU
5464 * conditions.
5465 *
5466 * The problem is that NOMMU needs to be able to allocate large chunks
5467 * of contiguous memory as there's no hardware page translation to
5468 * assemble apparent contiguous memory from discontiguous pages.
5469 *
5470 * Queueing large contiguous runs of pages for batching, however,
5471 * causes the pages to actually be freed in smaller chunks. As there
5472 * can be a significant delay between the individual batches being
5473 * recycled, this leads to the once large chunks of space being
5474 * fragmented and becoming unavailable for high-order allocations.
5475 */
5476 return 0;
5477#endif
5478}
5479
5480static int percpu_pagelist_high_fraction;
5481static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5482 int high_fraction)
5483{
5484#ifdef CONFIG_MMU
5485 int high;
5486 int nr_split_cpus;
5487 unsigned long total_pages;
5488
5489 if (!high_fraction) {
5490 /*
5491 * By default, the high value of the pcp is based on the zone
5492 * low watermark so that if they are full then background
5493 * reclaim will not be started prematurely.
5494 */
5495 total_pages = low_wmark_pages(zone);
5496 } else {
5497 /*
5498 * If percpu_pagelist_high_fraction is configured, the high
5499 * value is based on a fraction of the managed pages in the
5500 * zone.
5501 */
5502 total_pages = zone_managed_pages(zone) / high_fraction;
5503 }
5504
5505 /*
5506 * Split the high value across all online CPUs local to the zone. Note
5507 * that early in boot that CPUs may not be online yet and that during
5508 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5509 * onlined. For memory nodes that have no CPUs, split the high value
5510 * across all online CPUs to mitigate the risk that reclaim is triggered
5511 * prematurely due to pages stored on pcp lists.
5512 */
5513 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5514 if (!nr_split_cpus)
5515 nr_split_cpus = num_online_cpus();
5516 high = total_pages / nr_split_cpus;
5517
5518 /*
5519 * Ensure high is at least batch*4. The multiple is based on the
5520 * historical relationship between high and batch.
5521 */
5522 high = max(high, batch << 2);
5523
5524 return high;
5525#else
5526 return 0;
5527#endif
5528}
5529
5530/*
5531 * pcp->high and pcp->batch values are related and generally batch is lower
5532 * than high. They are also related to pcp->count such that count is lower
5533 * than high, and as soon as it reaches high, the pcplist is flushed.
5534 *
5535 * However, guaranteeing these relations at all times would require e.g. write
5536 * barriers here but also careful usage of read barriers at the read side, and
5537 * thus be prone to error and bad for performance. Thus the update only prevents
5538 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5539 * should ensure they can cope with those fields changing asynchronously, and
5540 * fully trust only the pcp->count field on the local CPU with interrupts
5541 * disabled.
5542 *
5543 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5544 * outside of boot time (or some other assurance that no concurrent updaters
5545 * exist).
5546 */
5547static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5548 unsigned long high_max, unsigned long batch)
5549{
5550 WRITE_ONCE(pcp->batch, batch);
5551 WRITE_ONCE(pcp->high_min, high_min);
5552 WRITE_ONCE(pcp->high_max, high_max);
5553}
5554
5555static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5556{
5557 int pindex;
5558
5559 memset(pcp, 0, sizeof(*pcp));
5560 memset(pzstats, 0, sizeof(*pzstats));
5561
5562 spin_lock_init(&pcp->lock);
5563 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5564 INIT_LIST_HEAD(&pcp->lists[pindex]);
5565
5566 /*
5567 * Set batch and high values safe for a boot pageset. A true percpu
5568 * pageset's initialization will update them subsequently. Here we don't
5569 * need to be as careful as pageset_update() as nobody can access the
5570 * pageset yet.
5571 */
5572 pcp->high_min = BOOT_PAGESET_HIGH;
5573 pcp->high_max = BOOT_PAGESET_HIGH;
5574 pcp->batch = BOOT_PAGESET_BATCH;
5575 pcp->free_count = 0;
5576}
5577
5578static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5579 unsigned long high_max, unsigned long batch)
5580{
5581 struct per_cpu_pages *pcp;
5582 int cpu;
5583
5584 for_each_possible_cpu(cpu) {
5585 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5586 pageset_update(pcp, high_min, high_max, batch);
5587 }
5588}
5589
5590/*
5591 * Calculate and set new high and batch values for all per-cpu pagesets of a
5592 * zone based on the zone's size.
5593 */
5594static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5595{
5596 int new_high_min, new_high_max, new_batch;
5597
5598 new_batch = max(1, zone_batchsize(zone));
5599 if (percpu_pagelist_high_fraction) {
5600 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5601 percpu_pagelist_high_fraction);
5602 /*
5603 * PCP high is tuned manually, disable auto-tuning via
5604 * setting high_min and high_max to the manual value.
5605 */
5606 new_high_max = new_high_min;
5607 } else {
5608 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5609 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5610 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5611 }
5612
5613 if (zone->pageset_high_min == new_high_min &&
5614 zone->pageset_high_max == new_high_max &&
5615 zone->pageset_batch == new_batch)
5616 return;
5617
5618 zone->pageset_high_min = new_high_min;
5619 zone->pageset_high_max = new_high_max;
5620 zone->pageset_batch = new_batch;
5621
5622 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5623 new_batch);
5624}
5625
5626void __meminit setup_zone_pageset(struct zone *zone)
5627{
5628 int cpu;
5629
5630 /* Size may be 0 on !SMP && !NUMA */
5631 if (sizeof(struct per_cpu_zonestat) > 0)
5632 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5633
5634 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5635 for_each_possible_cpu(cpu) {
5636 struct per_cpu_pages *pcp;
5637 struct per_cpu_zonestat *pzstats;
5638
5639 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5640 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5641 per_cpu_pages_init(pcp, pzstats);
5642 }
5643
5644 zone_set_pageset_high_and_batch(zone, 0);
5645}
5646
5647/*
5648 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5649 * page high values need to be recalculated.
5650 */
5651static void zone_pcp_update(struct zone *zone, int cpu_online)
5652{
5653 mutex_lock(&pcp_batch_high_lock);
5654 zone_set_pageset_high_and_batch(zone, cpu_online);
5655 mutex_unlock(&pcp_batch_high_lock);
5656}
5657
5658static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5659{
5660 struct per_cpu_pages *pcp;
5661 struct cpu_cacheinfo *cci;
5662
5663 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5664 cci = get_cpu_cacheinfo(cpu);
5665 /*
5666 * If data cache slice of CPU is large enough, "pcp->batch"
5667 * pages can be preserved in PCP before draining PCP for
5668 * consecutive high-order pages freeing without allocation.
5669 * This can reduce zone lock contention without hurting
5670 * cache-hot pages sharing.
5671 */
5672 spin_lock(&pcp->lock);
5673 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5674 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5675 else
5676 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5677 spin_unlock(&pcp->lock);
5678}
5679
5680void setup_pcp_cacheinfo(unsigned int cpu)
5681{
5682 struct zone *zone;
5683
5684 for_each_populated_zone(zone)
5685 zone_pcp_update_cacheinfo(zone, cpu);
5686}
5687
5688/*
5689 * Allocate per cpu pagesets and initialize them.
5690 * Before this call only boot pagesets were available.
5691 */
5692void __init setup_per_cpu_pageset(void)
5693{
5694 struct pglist_data *pgdat;
5695 struct zone *zone;
5696 int __maybe_unused cpu;
5697
5698 for_each_populated_zone(zone)
5699 setup_zone_pageset(zone);
5700
5701#ifdef CONFIG_NUMA
5702 /*
5703 * Unpopulated zones continue using the boot pagesets.
5704 * The numa stats for these pagesets need to be reset.
5705 * Otherwise, they will end up skewing the stats of
5706 * the nodes these zones are associated with.
5707 */
5708 for_each_possible_cpu(cpu) {
5709 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5710 memset(pzstats->vm_numa_event, 0,
5711 sizeof(pzstats->vm_numa_event));
5712 }
5713#endif
5714
5715 for_each_online_pgdat(pgdat)
5716 pgdat->per_cpu_nodestats =
5717 alloc_percpu(struct per_cpu_nodestat);
5718}
5719
5720__meminit void zone_pcp_init(struct zone *zone)
5721{
5722 /*
5723 * per cpu subsystem is not up at this point. The following code
5724 * relies on the ability of the linker to provide the
5725 * offset of a (static) per cpu variable into the per cpu area.
5726 */
5727 zone->per_cpu_pageset = &boot_pageset;
5728 zone->per_cpu_zonestats = &boot_zonestats;
5729 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5730 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5731 zone->pageset_batch = BOOT_PAGESET_BATCH;
5732
5733 if (populated_zone(zone))
5734 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5735 zone->present_pages, zone_batchsize(zone));
5736}
5737
5738void adjust_managed_page_count(struct page *page, long count)
5739{
5740 atomic_long_add(count, &page_zone(page)->managed_pages);
5741 totalram_pages_add(count);
5742#ifdef CONFIG_HIGHMEM
5743 if (PageHighMem(page))
5744 totalhigh_pages_add(count);
5745#endif
5746}
5747EXPORT_SYMBOL(adjust_managed_page_count);
5748
5749unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5750{
5751 void *pos;
5752 unsigned long pages = 0;
5753
5754 start = (void *)PAGE_ALIGN((unsigned long)start);
5755 end = (void *)((unsigned long)end & PAGE_MASK);
5756 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5757 struct page *page = virt_to_page(pos);
5758 void *direct_map_addr;
5759
5760 /*
5761 * 'direct_map_addr' might be different from 'pos'
5762 * because some architectures' virt_to_page()
5763 * work with aliases. Getting the direct map
5764 * address ensures that we get a _writeable_
5765 * alias for the memset().
5766 */
5767 direct_map_addr = page_address(page);
5768 /*
5769 * Perform a kasan-unchecked memset() since this memory
5770 * has not been initialized.
5771 */
5772 direct_map_addr = kasan_reset_tag(direct_map_addr);
5773 if ((unsigned int)poison <= 0xFF)
5774 memset(direct_map_addr, poison, PAGE_SIZE);
5775
5776 free_reserved_page(page);
5777 }
5778
5779 if (pages && s)
5780 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5781
5782 return pages;
5783}
5784
5785static int page_alloc_cpu_dead(unsigned int cpu)
5786{
5787 struct zone *zone;
5788
5789 lru_add_drain_cpu(cpu);
5790 mlock_drain_remote(cpu);
5791 drain_pages(cpu);
5792
5793 /*
5794 * Spill the event counters of the dead processor
5795 * into the current processors event counters.
5796 * This artificially elevates the count of the current
5797 * processor.
5798 */
5799 vm_events_fold_cpu(cpu);
5800
5801 /*
5802 * Zero the differential counters of the dead processor
5803 * so that the vm statistics are consistent.
5804 *
5805 * This is only okay since the processor is dead and cannot
5806 * race with what we are doing.
5807 */
5808 cpu_vm_stats_fold(cpu);
5809
5810 for_each_populated_zone(zone)
5811 zone_pcp_update(zone, 0);
5812
5813 return 0;
5814}
5815
5816static int page_alloc_cpu_online(unsigned int cpu)
5817{
5818 struct zone *zone;
5819
5820 for_each_populated_zone(zone)
5821 zone_pcp_update(zone, 1);
5822 return 0;
5823}
5824
5825void __init page_alloc_init_cpuhp(void)
5826{
5827 int ret;
5828
5829 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5830 "mm/page_alloc:pcp",
5831 page_alloc_cpu_online,
5832 page_alloc_cpu_dead);
5833 WARN_ON(ret < 0);
5834}
5835
5836/*
5837 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5838 * or min_free_kbytes changes.
5839 */
5840static void calculate_totalreserve_pages(void)
5841{
5842 struct pglist_data *pgdat;
5843 unsigned long reserve_pages = 0;
5844 enum zone_type i, j;
5845
5846 for_each_online_pgdat(pgdat) {
5847
5848 pgdat->totalreserve_pages = 0;
5849
5850 for (i = 0; i < MAX_NR_ZONES; i++) {
5851 struct zone *zone = pgdat->node_zones + i;
5852 long max = 0;
5853 unsigned long managed_pages = zone_managed_pages(zone);
5854
5855 /* Find valid and maximum lowmem_reserve in the zone */
5856 for (j = i; j < MAX_NR_ZONES; j++) {
5857 if (zone->lowmem_reserve[j] > max)
5858 max = zone->lowmem_reserve[j];
5859 }
5860
5861 /* we treat the high watermark as reserved pages. */
5862 max += high_wmark_pages(zone);
5863
5864 if (max > managed_pages)
5865 max = managed_pages;
5866
5867 pgdat->totalreserve_pages += max;
5868
5869 reserve_pages += max;
5870 }
5871 }
5872 totalreserve_pages = reserve_pages;
5873}
5874
5875/*
5876 * setup_per_zone_lowmem_reserve - called whenever
5877 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5878 * has a correct pages reserved value, so an adequate number of
5879 * pages are left in the zone after a successful __alloc_pages().
5880 */
5881static void setup_per_zone_lowmem_reserve(void)
5882{
5883 struct pglist_data *pgdat;
5884 enum zone_type i, j;
5885
5886 for_each_online_pgdat(pgdat) {
5887 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5888 struct zone *zone = &pgdat->node_zones[i];
5889 int ratio = sysctl_lowmem_reserve_ratio[i];
5890 bool clear = !ratio || !zone_managed_pages(zone);
5891 unsigned long managed_pages = 0;
5892
5893 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5894 struct zone *upper_zone = &pgdat->node_zones[j];
5895 bool empty = !zone_managed_pages(upper_zone);
5896
5897 managed_pages += zone_managed_pages(upper_zone);
5898
5899 if (clear || empty)
5900 zone->lowmem_reserve[j] = 0;
5901 else
5902 zone->lowmem_reserve[j] = managed_pages / ratio;
5903 }
5904 }
5905 }
5906
5907 /* update totalreserve_pages */
5908 calculate_totalreserve_pages();
5909}
5910
5911static void __setup_per_zone_wmarks(void)
5912{
5913 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5914 unsigned long lowmem_pages = 0;
5915 struct zone *zone;
5916 unsigned long flags;
5917
5918 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5919 for_each_zone(zone) {
5920 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5921 lowmem_pages += zone_managed_pages(zone);
5922 }
5923
5924 for_each_zone(zone) {
5925 u64 tmp;
5926
5927 spin_lock_irqsave(&zone->lock, flags);
5928 tmp = (u64)pages_min * zone_managed_pages(zone);
5929 tmp = div64_ul(tmp, lowmem_pages);
5930 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5931 /*
5932 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5933 * need highmem and movable zones pages, so cap pages_min
5934 * to a small value here.
5935 *
5936 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5937 * deltas control async page reclaim, and so should
5938 * not be capped for highmem and movable zones.
5939 */
5940 unsigned long min_pages;
5941
5942 min_pages = zone_managed_pages(zone) / 1024;
5943 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5944 zone->_watermark[WMARK_MIN] = min_pages;
5945 } else {
5946 /*
5947 * If it's a lowmem zone, reserve a number of pages
5948 * proportionate to the zone's size.
5949 */
5950 zone->_watermark[WMARK_MIN] = tmp;
5951 }
5952
5953 /*
5954 * Set the kswapd watermarks distance according to the
5955 * scale factor in proportion to available memory, but
5956 * ensure a minimum size on small systems.
5957 */
5958 tmp = max_t(u64, tmp >> 2,
5959 mult_frac(zone_managed_pages(zone),
5960 watermark_scale_factor, 10000));
5961
5962 zone->watermark_boost = 0;
5963 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5964 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5965 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5966
5967 spin_unlock_irqrestore(&zone->lock, flags);
5968 }
5969
5970 /* update totalreserve_pages */
5971 calculate_totalreserve_pages();
5972}
5973
5974/**
5975 * setup_per_zone_wmarks - called when min_free_kbytes changes
5976 * or when memory is hot-{added|removed}
5977 *
5978 * Ensures that the watermark[min,low,high] values for each zone are set
5979 * correctly with respect to min_free_kbytes.
5980 */
5981void setup_per_zone_wmarks(void)
5982{
5983 struct zone *zone;
5984 static DEFINE_SPINLOCK(lock);
5985
5986 spin_lock(&lock);
5987 __setup_per_zone_wmarks();
5988 spin_unlock(&lock);
5989
5990 /*
5991 * The watermark size have changed so update the pcpu batch
5992 * and high limits or the limits may be inappropriate.
5993 */
5994 for_each_zone(zone)
5995 zone_pcp_update(zone, 0);
5996}
5997
5998/*
5999 * Initialise min_free_kbytes.
6000 *
6001 * For small machines we want it small (128k min). For large machines
6002 * we want it large (256MB max). But it is not linear, because network
6003 * bandwidth does not increase linearly with machine size. We use
6004 *
6005 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6006 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6007 *
6008 * which yields
6009 *
6010 * 16MB: 512k
6011 * 32MB: 724k
6012 * 64MB: 1024k
6013 * 128MB: 1448k
6014 * 256MB: 2048k
6015 * 512MB: 2896k
6016 * 1024MB: 4096k
6017 * 2048MB: 5792k
6018 * 4096MB: 8192k
6019 * 8192MB: 11584k
6020 * 16384MB: 16384k
6021 */
6022void calculate_min_free_kbytes(void)
6023{
6024 unsigned long lowmem_kbytes;
6025 int new_min_free_kbytes;
6026
6027 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6028 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6029
6030 if (new_min_free_kbytes > user_min_free_kbytes)
6031 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6032 else
6033 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6034 new_min_free_kbytes, user_min_free_kbytes);
6035
6036}
6037
6038int __meminit init_per_zone_wmark_min(void)
6039{
6040 calculate_min_free_kbytes();
6041 setup_per_zone_wmarks();
6042 refresh_zone_stat_thresholds();
6043 setup_per_zone_lowmem_reserve();
6044
6045#ifdef CONFIG_NUMA
6046 setup_min_unmapped_ratio();
6047 setup_min_slab_ratio();
6048#endif
6049
6050 khugepaged_min_free_kbytes_update();
6051
6052 return 0;
6053}
6054postcore_initcall(init_per_zone_wmark_min)
6055
6056/*
6057 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6058 * that we can call two helper functions whenever min_free_kbytes
6059 * changes.
6060 */
6061static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6062 void *buffer, size_t *length, loff_t *ppos)
6063{
6064 int rc;
6065
6066 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6067 if (rc)
6068 return rc;
6069
6070 if (write) {
6071 user_min_free_kbytes = min_free_kbytes;
6072 setup_per_zone_wmarks();
6073 }
6074 return 0;
6075}
6076
6077static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6078 void *buffer, size_t *length, loff_t *ppos)
6079{
6080 int rc;
6081
6082 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6083 if (rc)
6084 return rc;
6085
6086 if (write)
6087 setup_per_zone_wmarks();
6088
6089 return 0;
6090}
6091
6092#ifdef CONFIG_NUMA
6093static void setup_min_unmapped_ratio(void)
6094{
6095 pg_data_t *pgdat;
6096 struct zone *zone;
6097
6098 for_each_online_pgdat(pgdat)
6099 pgdat->min_unmapped_pages = 0;
6100
6101 for_each_zone(zone)
6102 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6103 sysctl_min_unmapped_ratio) / 100;
6104}
6105
6106
6107static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6108 void *buffer, size_t *length, loff_t *ppos)
6109{
6110 int rc;
6111
6112 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6113 if (rc)
6114 return rc;
6115
6116 setup_min_unmapped_ratio();
6117
6118 return 0;
6119}
6120
6121static void setup_min_slab_ratio(void)
6122{
6123 pg_data_t *pgdat;
6124 struct zone *zone;
6125
6126 for_each_online_pgdat(pgdat)
6127 pgdat->min_slab_pages = 0;
6128
6129 for_each_zone(zone)
6130 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6131 sysctl_min_slab_ratio) / 100;
6132}
6133
6134static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6135 void *buffer, size_t *length, loff_t *ppos)
6136{
6137 int rc;
6138
6139 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6140 if (rc)
6141 return rc;
6142
6143 setup_min_slab_ratio();
6144
6145 return 0;
6146}
6147#endif
6148
6149/*
6150 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6151 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6152 * whenever sysctl_lowmem_reserve_ratio changes.
6153 *
6154 * The reserve ratio obviously has absolutely no relation with the
6155 * minimum watermarks. The lowmem reserve ratio can only make sense
6156 * if in function of the boot time zone sizes.
6157 */
6158static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6159 int write, void *buffer, size_t *length, loff_t *ppos)
6160{
6161 int i;
6162
6163 proc_dointvec_minmax(table, write, buffer, length, ppos);
6164
6165 for (i = 0; i < MAX_NR_ZONES; i++) {
6166 if (sysctl_lowmem_reserve_ratio[i] < 1)
6167 sysctl_lowmem_reserve_ratio[i] = 0;
6168 }
6169
6170 setup_per_zone_lowmem_reserve();
6171 return 0;
6172}
6173
6174/*
6175 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6176 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6177 * pagelist can have before it gets flushed back to buddy allocator.
6178 */
6179static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6180 int write, void *buffer, size_t *length, loff_t *ppos)
6181{
6182 struct zone *zone;
6183 int old_percpu_pagelist_high_fraction;
6184 int ret;
6185
6186 mutex_lock(&pcp_batch_high_lock);
6187 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6188
6189 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6190 if (!write || ret < 0)
6191 goto out;
6192
6193 /* Sanity checking to avoid pcp imbalance */
6194 if (percpu_pagelist_high_fraction &&
6195 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6196 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6197 ret = -EINVAL;
6198 goto out;
6199 }
6200
6201 /* No change? */
6202 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6203 goto out;
6204
6205 for_each_populated_zone(zone)
6206 zone_set_pageset_high_and_batch(zone, 0);
6207out:
6208 mutex_unlock(&pcp_batch_high_lock);
6209 return ret;
6210}
6211
6212static struct ctl_table page_alloc_sysctl_table[] = {
6213 {
6214 .procname = "min_free_kbytes",
6215 .data = &min_free_kbytes,
6216 .maxlen = sizeof(min_free_kbytes),
6217 .mode = 0644,
6218 .proc_handler = min_free_kbytes_sysctl_handler,
6219 .extra1 = SYSCTL_ZERO,
6220 },
6221 {
6222 .procname = "watermark_boost_factor",
6223 .data = &watermark_boost_factor,
6224 .maxlen = sizeof(watermark_boost_factor),
6225 .mode = 0644,
6226 .proc_handler = proc_dointvec_minmax,
6227 .extra1 = SYSCTL_ZERO,
6228 },
6229 {
6230 .procname = "watermark_scale_factor",
6231 .data = &watermark_scale_factor,
6232 .maxlen = sizeof(watermark_scale_factor),
6233 .mode = 0644,
6234 .proc_handler = watermark_scale_factor_sysctl_handler,
6235 .extra1 = SYSCTL_ONE,
6236 .extra2 = SYSCTL_THREE_THOUSAND,
6237 },
6238 {
6239 .procname = "percpu_pagelist_high_fraction",
6240 .data = &percpu_pagelist_high_fraction,
6241 .maxlen = sizeof(percpu_pagelist_high_fraction),
6242 .mode = 0644,
6243 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6244 .extra1 = SYSCTL_ZERO,
6245 },
6246 {
6247 .procname = "lowmem_reserve_ratio",
6248 .data = &sysctl_lowmem_reserve_ratio,
6249 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6250 .mode = 0644,
6251 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6252 },
6253#ifdef CONFIG_NUMA
6254 {
6255 .procname = "numa_zonelist_order",
6256 .data = &numa_zonelist_order,
6257 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6258 .mode = 0644,
6259 .proc_handler = numa_zonelist_order_handler,
6260 },
6261 {
6262 .procname = "min_unmapped_ratio",
6263 .data = &sysctl_min_unmapped_ratio,
6264 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6265 .mode = 0644,
6266 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6267 .extra1 = SYSCTL_ZERO,
6268 .extra2 = SYSCTL_ONE_HUNDRED,
6269 },
6270 {
6271 .procname = "min_slab_ratio",
6272 .data = &sysctl_min_slab_ratio,
6273 .maxlen = sizeof(sysctl_min_slab_ratio),
6274 .mode = 0644,
6275 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6276 .extra1 = SYSCTL_ZERO,
6277 .extra2 = SYSCTL_ONE_HUNDRED,
6278 },
6279#endif
6280};
6281
6282void __init page_alloc_sysctl_init(void)
6283{
6284 register_sysctl_init("vm", page_alloc_sysctl_table);
6285}
6286
6287#ifdef CONFIG_CONTIG_ALLOC
6288/* Usage: See admin-guide/dynamic-debug-howto.rst */
6289static void alloc_contig_dump_pages(struct list_head *page_list)
6290{
6291 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6292
6293 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6294 struct page *page;
6295
6296 dump_stack();
6297 list_for_each_entry(page, page_list, lru)
6298 dump_page(page, "migration failure");
6299 }
6300}
6301
6302/*
6303 * [start, end) must belong to a single zone.
6304 * @migratetype: using migratetype to filter the type of migration in
6305 * trace_mm_alloc_contig_migrate_range_info.
6306 */
6307int __alloc_contig_migrate_range(struct compact_control *cc,
6308 unsigned long start, unsigned long end,
6309 int migratetype)
6310{
6311 /* This function is based on compact_zone() from compaction.c. */
6312 unsigned int nr_reclaimed;
6313 unsigned long pfn = start;
6314 unsigned int tries = 0;
6315 int ret = 0;
6316 struct migration_target_control mtc = {
6317 .nid = zone_to_nid(cc->zone),
6318 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6319 .reason = MR_CONTIG_RANGE,
6320 };
6321 struct page *page;
6322 unsigned long total_mapped = 0;
6323 unsigned long total_migrated = 0;
6324 unsigned long total_reclaimed = 0;
6325
6326 lru_cache_disable();
6327
6328 while (pfn < end || !list_empty(&cc->migratepages)) {
6329 if (fatal_signal_pending(current)) {
6330 ret = -EINTR;
6331 break;
6332 }
6333
6334 if (list_empty(&cc->migratepages)) {
6335 cc->nr_migratepages = 0;
6336 ret = isolate_migratepages_range(cc, pfn, end);
6337 if (ret && ret != -EAGAIN)
6338 break;
6339 pfn = cc->migrate_pfn;
6340 tries = 0;
6341 } else if (++tries == 5) {
6342 ret = -EBUSY;
6343 break;
6344 }
6345
6346 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6347 &cc->migratepages);
6348 cc->nr_migratepages -= nr_reclaimed;
6349
6350 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6351 total_reclaimed += nr_reclaimed;
6352 list_for_each_entry(page, &cc->migratepages, lru) {
6353 struct folio *folio = page_folio(page);
6354
6355 total_mapped += folio_mapped(folio) *
6356 folio_nr_pages(folio);
6357 }
6358 }
6359
6360 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6361 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6362
6363 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6364 total_migrated += cc->nr_migratepages;
6365
6366 /*
6367 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6368 * to retry again over this error, so do the same here.
6369 */
6370 if (ret == -ENOMEM)
6371 break;
6372 }
6373
6374 lru_cache_enable();
6375 if (ret < 0) {
6376 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6377 alloc_contig_dump_pages(&cc->migratepages);
6378 putback_movable_pages(&cc->migratepages);
6379 }
6380
6381 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6382 total_migrated,
6383 total_reclaimed,
6384 total_mapped);
6385 return (ret < 0) ? ret : 0;
6386}
6387
6388/**
6389 * alloc_contig_range() -- tries to allocate given range of pages
6390 * @start: start PFN to allocate
6391 * @end: one-past-the-last PFN to allocate
6392 * @migratetype: migratetype of the underlying pageblocks (either
6393 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6394 * in range must have the same migratetype and it must
6395 * be either of the two.
6396 * @gfp_mask: GFP mask to use during compaction
6397 *
6398 * The PFN range does not have to be pageblock aligned. The PFN range must
6399 * belong to a single zone.
6400 *
6401 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6402 * pageblocks in the range. Once isolated, the pageblocks should not
6403 * be modified by others.
6404 *
6405 * Return: zero on success or negative error code. On success all
6406 * pages which PFN is in [start, end) are allocated for the caller and
6407 * need to be freed with free_contig_range().
6408 */
6409int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6410 unsigned migratetype, gfp_t gfp_mask)
6411{
6412 unsigned long outer_start, outer_end;
6413 int ret = 0;
6414
6415 struct compact_control cc = {
6416 .nr_migratepages = 0,
6417 .order = -1,
6418 .zone = page_zone(pfn_to_page(start)),
6419 .mode = MIGRATE_SYNC,
6420 .ignore_skip_hint = true,
6421 .no_set_skip_hint = true,
6422 .gfp_mask = current_gfp_context(gfp_mask),
6423 .alloc_contig = true,
6424 };
6425 INIT_LIST_HEAD(&cc.migratepages);
6426
6427 /*
6428 * What we do here is we mark all pageblocks in range as
6429 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6430 * have different sizes, and due to the way page allocator
6431 * work, start_isolate_page_range() has special handlings for this.
6432 *
6433 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6434 * migrate the pages from an unaligned range (ie. pages that
6435 * we are interested in). This will put all the pages in
6436 * range back to page allocator as MIGRATE_ISOLATE.
6437 *
6438 * When this is done, we take the pages in range from page
6439 * allocator removing them from the buddy system. This way
6440 * page allocator will never consider using them.
6441 *
6442 * This lets us mark the pageblocks back as
6443 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6444 * aligned range but not in the unaligned, original range are
6445 * put back to page allocator so that buddy can use them.
6446 */
6447
6448 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6449 if (ret)
6450 goto done;
6451
6452 drain_all_pages(cc.zone);
6453
6454 /*
6455 * In case of -EBUSY, we'd like to know which page causes problem.
6456 * So, just fall through. test_pages_isolated() has a tracepoint
6457 * which will report the busy page.
6458 *
6459 * It is possible that busy pages could become available before
6460 * the call to test_pages_isolated, and the range will actually be
6461 * allocated. So, if we fall through be sure to clear ret so that
6462 * -EBUSY is not accidentally used or returned to caller.
6463 */
6464 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6465 if (ret && ret != -EBUSY)
6466 goto done;
6467 ret = 0;
6468
6469 /*
6470 * Pages from [start, end) are within a pageblock_nr_pages
6471 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6472 * more, all pages in [start, end) are free in page allocator.
6473 * What we are going to do is to allocate all pages from
6474 * [start, end) (that is remove them from page allocator).
6475 *
6476 * The only problem is that pages at the beginning and at the
6477 * end of interesting range may be not aligned with pages that
6478 * page allocator holds, ie. they can be part of higher order
6479 * pages. Because of this, we reserve the bigger range and
6480 * once this is done free the pages we are not interested in.
6481 *
6482 * We don't have to hold zone->lock here because the pages are
6483 * isolated thus they won't get removed from buddy.
6484 */
6485 outer_start = find_large_buddy(start);
6486
6487 /* Make sure the range is really isolated. */
6488 if (test_pages_isolated(outer_start, end, 0)) {
6489 ret = -EBUSY;
6490 goto done;
6491 }
6492
6493 /* Grab isolated pages from freelists. */
6494 outer_end = isolate_freepages_range(&cc, outer_start, end);
6495 if (!outer_end) {
6496 ret = -EBUSY;
6497 goto done;
6498 }
6499
6500 /* Free head and tail (if any) */
6501 if (start != outer_start)
6502 free_contig_range(outer_start, start - outer_start);
6503 if (end != outer_end)
6504 free_contig_range(end, outer_end - end);
6505
6506done:
6507 undo_isolate_page_range(start, end, migratetype);
6508 return ret;
6509}
6510EXPORT_SYMBOL(alloc_contig_range_noprof);
6511
6512static int __alloc_contig_pages(unsigned long start_pfn,
6513 unsigned long nr_pages, gfp_t gfp_mask)
6514{
6515 unsigned long end_pfn = start_pfn + nr_pages;
6516
6517 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6518 gfp_mask);
6519}
6520
6521static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6522 unsigned long nr_pages)
6523{
6524 unsigned long i, end_pfn = start_pfn + nr_pages;
6525 struct page *page;
6526
6527 for (i = start_pfn; i < end_pfn; i++) {
6528 page = pfn_to_online_page(i);
6529 if (!page)
6530 return false;
6531
6532 if (page_zone(page) != z)
6533 return false;
6534
6535 if (PageReserved(page))
6536 return false;
6537
6538 if (PageHuge(page))
6539 return false;
6540 }
6541 return true;
6542}
6543
6544static bool zone_spans_last_pfn(const struct zone *zone,
6545 unsigned long start_pfn, unsigned long nr_pages)
6546{
6547 unsigned long last_pfn = start_pfn + nr_pages - 1;
6548
6549 return zone_spans_pfn(zone, last_pfn);
6550}
6551
6552/**
6553 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6554 * @nr_pages: Number of contiguous pages to allocate
6555 * @gfp_mask: GFP mask to limit search and used during compaction
6556 * @nid: Target node
6557 * @nodemask: Mask for other possible nodes
6558 *
6559 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6560 * on an applicable zonelist to find a contiguous pfn range which can then be
6561 * tried for allocation with alloc_contig_range(). This routine is intended
6562 * for allocation requests which can not be fulfilled with the buddy allocator.
6563 *
6564 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6565 * power of two, then allocated range is also guaranteed to be aligned to same
6566 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6567 *
6568 * Allocated pages can be freed with free_contig_range() or by manually calling
6569 * __free_page() on each allocated page.
6570 *
6571 * Return: pointer to contiguous pages on success, or NULL if not successful.
6572 */
6573struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6574 int nid, nodemask_t *nodemask)
6575{
6576 unsigned long ret, pfn, flags;
6577 struct zonelist *zonelist;
6578 struct zone *zone;
6579 struct zoneref *z;
6580
6581 zonelist = node_zonelist(nid, gfp_mask);
6582 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6583 gfp_zone(gfp_mask), nodemask) {
6584 spin_lock_irqsave(&zone->lock, flags);
6585
6586 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6587 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6588 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6589 /*
6590 * We release the zone lock here because
6591 * alloc_contig_range() will also lock the zone
6592 * at some point. If there's an allocation
6593 * spinning on this lock, it may win the race
6594 * and cause alloc_contig_range() to fail...
6595 */
6596 spin_unlock_irqrestore(&zone->lock, flags);
6597 ret = __alloc_contig_pages(pfn, nr_pages,
6598 gfp_mask);
6599 if (!ret)
6600 return pfn_to_page(pfn);
6601 spin_lock_irqsave(&zone->lock, flags);
6602 }
6603 pfn += nr_pages;
6604 }
6605 spin_unlock_irqrestore(&zone->lock, flags);
6606 }
6607 return NULL;
6608}
6609#endif /* CONFIG_CONTIG_ALLOC */
6610
6611void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6612{
6613 unsigned long count = 0;
6614
6615 for (; nr_pages--; pfn++) {
6616 struct page *page = pfn_to_page(pfn);
6617
6618 count += page_count(page) != 1;
6619 __free_page(page);
6620 }
6621 WARN(count != 0, "%lu pages are still in use!\n", count);
6622}
6623EXPORT_SYMBOL(free_contig_range);
6624
6625/*
6626 * Effectively disable pcplists for the zone by setting the high limit to 0
6627 * and draining all cpus. A concurrent page freeing on another CPU that's about
6628 * to put the page on pcplist will either finish before the drain and the page
6629 * will be drained, or observe the new high limit and skip the pcplist.
6630 *
6631 * Must be paired with a call to zone_pcp_enable().
6632 */
6633void zone_pcp_disable(struct zone *zone)
6634{
6635 mutex_lock(&pcp_batch_high_lock);
6636 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6637 __drain_all_pages(zone, true);
6638}
6639
6640void zone_pcp_enable(struct zone *zone)
6641{
6642 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6643 zone->pageset_high_max, zone->pageset_batch);
6644 mutex_unlock(&pcp_batch_high_lock);
6645}
6646
6647void zone_pcp_reset(struct zone *zone)
6648{
6649 int cpu;
6650 struct per_cpu_zonestat *pzstats;
6651
6652 if (zone->per_cpu_pageset != &boot_pageset) {
6653 for_each_online_cpu(cpu) {
6654 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6655 drain_zonestat(zone, pzstats);
6656 }
6657 free_percpu(zone->per_cpu_pageset);
6658 zone->per_cpu_pageset = &boot_pageset;
6659 if (zone->per_cpu_zonestats != &boot_zonestats) {
6660 free_percpu(zone->per_cpu_zonestats);
6661 zone->per_cpu_zonestats = &boot_zonestats;
6662 }
6663 }
6664}
6665
6666#ifdef CONFIG_MEMORY_HOTREMOVE
6667/*
6668 * All pages in the range must be in a single zone, must not contain holes,
6669 * must span full sections, and must be isolated before calling this function.
6670 */
6671void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6672{
6673 unsigned long pfn = start_pfn;
6674 struct page *page;
6675 struct zone *zone;
6676 unsigned int order;
6677 unsigned long flags;
6678
6679 offline_mem_sections(pfn, end_pfn);
6680 zone = page_zone(pfn_to_page(pfn));
6681 spin_lock_irqsave(&zone->lock, flags);
6682 while (pfn < end_pfn) {
6683 page = pfn_to_page(pfn);
6684 /*
6685 * The HWPoisoned page may be not in buddy system, and
6686 * page_count() is not 0.
6687 */
6688 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6689 pfn++;
6690 continue;
6691 }
6692 /*
6693 * At this point all remaining PageOffline() pages have a
6694 * reference count of 0 and can simply be skipped.
6695 */
6696 if (PageOffline(page)) {
6697 BUG_ON(page_count(page));
6698 BUG_ON(PageBuddy(page));
6699 pfn++;
6700 continue;
6701 }
6702
6703 BUG_ON(page_count(page));
6704 BUG_ON(!PageBuddy(page));
6705 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6706 order = buddy_order(page);
6707 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6708 pfn += (1 << order);
6709 }
6710 spin_unlock_irqrestore(&zone->lock, flags);
6711}
6712#endif
6713
6714/*
6715 * This function returns a stable result only if called under zone lock.
6716 */
6717bool is_free_buddy_page(const struct page *page)
6718{
6719 unsigned long pfn = page_to_pfn(page);
6720 unsigned int order;
6721
6722 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6723 const struct page *head = page - (pfn & ((1 << order) - 1));
6724
6725 if (PageBuddy(head) &&
6726 buddy_order_unsafe(head) >= order)
6727 break;
6728 }
6729
6730 return order <= MAX_PAGE_ORDER;
6731}
6732EXPORT_SYMBOL(is_free_buddy_page);
6733
6734#ifdef CONFIG_MEMORY_FAILURE
6735static inline void add_to_free_list(struct page *page, struct zone *zone,
6736 unsigned int order, int migratetype,
6737 bool tail)
6738{
6739 __add_to_free_list(page, zone, order, migratetype, tail);
6740 account_freepages(zone, 1 << order, migratetype);
6741}
6742
6743/*
6744 * Break down a higher-order page in sub-pages, and keep our target out of
6745 * buddy allocator.
6746 */
6747static void break_down_buddy_pages(struct zone *zone, struct page *page,
6748 struct page *target, int low, int high,
6749 int migratetype)
6750{
6751 unsigned long size = 1 << high;
6752 struct page *current_buddy;
6753
6754 while (high > low) {
6755 high--;
6756 size >>= 1;
6757
6758 if (target >= &page[size]) {
6759 current_buddy = page;
6760 page = page + size;
6761 } else {
6762 current_buddy = page + size;
6763 }
6764
6765 if (set_page_guard(zone, current_buddy, high))
6766 continue;
6767
6768 add_to_free_list(current_buddy, zone, high, migratetype, false);
6769 set_buddy_order(current_buddy, high);
6770 }
6771}
6772
6773/*
6774 * Take a page that will be marked as poisoned off the buddy allocator.
6775 */
6776bool take_page_off_buddy(struct page *page)
6777{
6778 struct zone *zone = page_zone(page);
6779 unsigned long pfn = page_to_pfn(page);
6780 unsigned long flags;
6781 unsigned int order;
6782 bool ret = false;
6783
6784 spin_lock_irqsave(&zone->lock, flags);
6785 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6786 struct page *page_head = page - (pfn & ((1 << order) - 1));
6787 int page_order = buddy_order(page_head);
6788
6789 if (PageBuddy(page_head) && page_order >= order) {
6790 unsigned long pfn_head = page_to_pfn(page_head);
6791 int migratetype = get_pfnblock_migratetype(page_head,
6792 pfn_head);
6793
6794 del_page_from_free_list(page_head, zone, page_order,
6795 migratetype);
6796 break_down_buddy_pages(zone, page_head, page, 0,
6797 page_order, migratetype);
6798 SetPageHWPoisonTakenOff(page);
6799 ret = true;
6800 break;
6801 }
6802 if (page_count(page_head) > 0)
6803 break;
6804 }
6805 spin_unlock_irqrestore(&zone->lock, flags);
6806 return ret;
6807}
6808
6809/*
6810 * Cancel takeoff done by take_page_off_buddy().
6811 */
6812bool put_page_back_buddy(struct page *page)
6813{
6814 struct zone *zone = page_zone(page);
6815 unsigned long flags;
6816 bool ret = false;
6817
6818 spin_lock_irqsave(&zone->lock, flags);
6819 if (put_page_testzero(page)) {
6820 unsigned long pfn = page_to_pfn(page);
6821 int migratetype = get_pfnblock_migratetype(page, pfn);
6822
6823 ClearPageHWPoisonTakenOff(page);
6824 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6825 if (TestClearPageHWPoison(page)) {
6826 ret = true;
6827 }
6828 }
6829 spin_unlock_irqrestore(&zone->lock, flags);
6830
6831 return ret;
6832}
6833#endif
6834
6835#ifdef CONFIG_ZONE_DMA
6836bool has_managed_dma(void)
6837{
6838 struct pglist_data *pgdat;
6839
6840 for_each_online_pgdat(pgdat) {
6841 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6842
6843 if (managed_zone(zone))
6844 return true;
6845 }
6846 return false;
6847}
6848#endif /* CONFIG_ZONE_DMA */
6849
6850#ifdef CONFIG_UNACCEPTED_MEMORY
6851
6852/* Counts number of zones with unaccepted pages. */
6853static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6854
6855static bool lazy_accept = true;
6856
6857static int __init accept_memory_parse(char *p)
6858{
6859 if (!strcmp(p, "lazy")) {
6860 lazy_accept = true;
6861 return 0;
6862 } else if (!strcmp(p, "eager")) {
6863 lazy_accept = false;
6864 return 0;
6865 } else {
6866 return -EINVAL;
6867 }
6868}
6869early_param("accept_memory", accept_memory_parse);
6870
6871static bool page_contains_unaccepted(struct page *page, unsigned int order)
6872{
6873 phys_addr_t start = page_to_phys(page);
6874 phys_addr_t end = start + (PAGE_SIZE << order);
6875
6876 return range_contains_unaccepted_memory(start, end);
6877}
6878
6879static void accept_page(struct page *page, unsigned int order)
6880{
6881 phys_addr_t start = page_to_phys(page);
6882
6883 accept_memory(start, start + (PAGE_SIZE << order));
6884}
6885
6886static bool try_to_accept_memory_one(struct zone *zone)
6887{
6888 unsigned long flags;
6889 struct page *page;
6890 bool last;
6891
6892 if (list_empty(&zone->unaccepted_pages))
6893 return false;
6894
6895 spin_lock_irqsave(&zone->lock, flags);
6896 page = list_first_entry_or_null(&zone->unaccepted_pages,
6897 struct page, lru);
6898 if (!page) {
6899 spin_unlock_irqrestore(&zone->lock, flags);
6900 return false;
6901 }
6902
6903 list_del(&page->lru);
6904 last = list_empty(&zone->unaccepted_pages);
6905
6906 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6907 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6908 spin_unlock_irqrestore(&zone->lock, flags);
6909
6910 accept_page(page, MAX_PAGE_ORDER);
6911
6912 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6913
6914 if (last)
6915 static_branch_dec(&zones_with_unaccepted_pages);
6916
6917 return true;
6918}
6919
6920static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6921{
6922 long to_accept;
6923 int ret = false;
6924
6925 /* How much to accept to get to high watermark? */
6926 to_accept = high_wmark_pages(zone) -
6927 (zone_page_state(zone, NR_FREE_PAGES) -
6928 __zone_watermark_unusable_free(zone, order, 0));
6929
6930 /* Accept at least one page */
6931 do {
6932 if (!try_to_accept_memory_one(zone))
6933 break;
6934 ret = true;
6935 to_accept -= MAX_ORDER_NR_PAGES;
6936 } while (to_accept > 0);
6937
6938 return ret;
6939}
6940
6941static inline bool has_unaccepted_memory(void)
6942{
6943 return static_branch_unlikely(&zones_with_unaccepted_pages);
6944}
6945
6946static bool __free_unaccepted(struct page *page)
6947{
6948 struct zone *zone = page_zone(page);
6949 unsigned long flags;
6950 bool first = false;
6951
6952 if (!lazy_accept)
6953 return false;
6954
6955 spin_lock_irqsave(&zone->lock, flags);
6956 first = list_empty(&zone->unaccepted_pages);
6957 list_add_tail(&page->lru, &zone->unaccepted_pages);
6958 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6959 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6960 spin_unlock_irqrestore(&zone->lock, flags);
6961
6962 if (first)
6963 static_branch_inc(&zones_with_unaccepted_pages);
6964
6965 return true;
6966}
6967
6968#else
6969
6970static bool page_contains_unaccepted(struct page *page, unsigned int order)
6971{
6972 return false;
6973}
6974
6975static void accept_page(struct page *page, unsigned int order)
6976{
6977}
6978
6979static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6980{
6981 return false;
6982}
6983
6984static inline bool has_unaccepted_memory(void)
6985{
6986 return false;
6987}
6988
6989static bool __free_unaccepted(struct page *page)
6990{
6991 BUILD_BUG();
6992 return false;
6993}
6994
6995#endif /* CONFIG_UNACCEPTED_MEMORY */