at v6.10-rc2 29 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_BITMAP_H 3#define __LINUX_BITMAP_H 4 5#ifndef __ASSEMBLY__ 6 7#include <linux/align.h> 8#include <linux/bitops.h> 9#include <linux/cleanup.h> 10#include <linux/errno.h> 11#include <linux/find.h> 12#include <linux/limits.h> 13#include <linux/string.h> 14#include <linux/types.h> 15#include <linux/bitmap-str.h> 16 17struct device; 18 19/* 20 * bitmaps provide bit arrays that consume one or more unsigned 21 * longs. The bitmap interface and available operations are listed 22 * here, in bitmap.h 23 * 24 * Function implementations generic to all architectures are in 25 * lib/bitmap.c. Functions implementations that are architecture 26 * specific are in various include/asm-<arch>/bitops.h headers 27 * and other arch/<arch> specific files. 28 * 29 * See lib/bitmap.c for more details. 30 */ 31 32/** 33 * DOC: bitmap overview 34 * 35 * The available bitmap operations and their rough meaning in the 36 * case that the bitmap is a single unsigned long are thus: 37 * 38 * The generated code is more efficient when nbits is known at 39 * compile-time and at most BITS_PER_LONG. 40 * 41 * :: 42 * 43 * bitmap_zero(dst, nbits) *dst = 0UL 44 * bitmap_fill(dst, nbits) *dst = ~0UL 45 * bitmap_copy(dst, src, nbits) *dst = *src 46 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 47 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 48 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 49 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) 50 * bitmap_complement(dst, src, nbits) *dst = ~(*src) 51 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? 52 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? 53 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? 54 * bitmap_empty(src, nbits) Are all bits zero in *src? 55 * bitmap_full(src, nbits) Are all bits set in *src? 56 * bitmap_weight(src, nbits) Hamming Weight: number set bits 57 * bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap 58 * bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap 59 * bitmap_set(dst, pos, nbits) Set specified bit area 60 * bitmap_clear(dst, pos, nbits) Clear specified bit area 61 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area 62 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above 63 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n 64 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n 65 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest 66 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) 67 * bitmap_scatter(dst, src, mask, nbits) *dst = map(dense, sparse)(src) 68 * bitmap_gather(dst, src, mask, nbits) *dst = map(sparse, dense)(src) 69 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) 70 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) 71 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap 72 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz 73 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf 74 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf 75 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf 76 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf 77 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region 78 * bitmap_release_region(bitmap, pos, order) Free specified bit region 79 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region 80 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst 81 * bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst 82 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst 83 * bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst 84 * bitmap_get_value8(map, start) Get 8bit value from map at start 85 * bitmap_set_value8(map, value, start) Set 8bit value to map at start 86 * bitmap_read(map, start, nbits) Read an nbits-sized value from 87 * map at start 88 * bitmap_write(map, value, start, nbits) Write an nbits-sized value to 89 * map at start 90 * 91 * Note, bitmap_zero() and bitmap_fill() operate over the region of 92 * unsigned longs, that is, bits behind bitmap till the unsigned long 93 * boundary will be zeroed or filled as well. Consider to use 94 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling 95 * respectively. 96 */ 97 98/** 99 * DOC: bitmap bitops 100 * 101 * Also the following operations in asm/bitops.h apply to bitmaps.:: 102 * 103 * set_bit(bit, addr) *addr |= bit 104 * clear_bit(bit, addr) *addr &= ~bit 105 * change_bit(bit, addr) *addr ^= bit 106 * test_bit(bit, addr) Is bit set in *addr? 107 * test_and_set_bit(bit, addr) Set bit and return old value 108 * test_and_clear_bit(bit, addr) Clear bit and return old value 109 * test_and_change_bit(bit, addr) Change bit and return old value 110 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr 111 * find_first_bit(addr, nbits) Position first set bit in *addr 112 * find_next_zero_bit(addr, nbits, bit) 113 * Position next zero bit in *addr >= bit 114 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit 115 * find_next_and_bit(addr1, addr2, nbits, bit) 116 * Same as find_next_bit, but in 117 * (*addr1 & *addr2) 118 * 119 */ 120 121/** 122 * DOC: declare bitmap 123 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used 124 * to declare an array named 'name' of just enough unsigned longs to 125 * contain all bit positions from 0 to 'bits' - 1. 126 */ 127 128/* 129 * Allocation and deallocation of bitmap. 130 * Provided in lib/bitmap.c to avoid circular dependency. 131 */ 132unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); 133unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); 134unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node); 135unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node); 136void bitmap_free(const unsigned long *bitmap); 137 138DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T)) 139 140/* Managed variants of the above. */ 141unsigned long *devm_bitmap_alloc(struct device *dev, 142 unsigned int nbits, gfp_t flags); 143unsigned long *devm_bitmap_zalloc(struct device *dev, 144 unsigned int nbits, gfp_t flags); 145 146/* 147 * lib/bitmap.c provides these functions: 148 */ 149 150bool __bitmap_equal(const unsigned long *bitmap1, 151 const unsigned long *bitmap2, unsigned int nbits); 152bool __pure __bitmap_or_equal(const unsigned long *src1, 153 const unsigned long *src2, 154 const unsigned long *src3, 155 unsigned int nbits); 156void __bitmap_complement(unsigned long *dst, const unsigned long *src, 157 unsigned int nbits); 158void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 159 unsigned int shift, unsigned int nbits); 160void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 161 unsigned int shift, unsigned int nbits); 162void bitmap_cut(unsigned long *dst, const unsigned long *src, 163 unsigned int first, unsigned int cut, unsigned int nbits); 164bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 165 const unsigned long *bitmap2, unsigned int nbits); 166void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 167 const unsigned long *bitmap2, unsigned int nbits); 168void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 169 const unsigned long *bitmap2, unsigned int nbits); 170bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 171 const unsigned long *bitmap2, unsigned int nbits); 172void __bitmap_replace(unsigned long *dst, 173 const unsigned long *old, const unsigned long *new, 174 const unsigned long *mask, unsigned int nbits); 175bool __bitmap_intersects(const unsigned long *bitmap1, 176 const unsigned long *bitmap2, unsigned int nbits); 177bool __bitmap_subset(const unsigned long *bitmap1, 178 const unsigned long *bitmap2, unsigned int nbits); 179unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); 180unsigned int __bitmap_weight_and(const unsigned long *bitmap1, 181 const unsigned long *bitmap2, unsigned int nbits); 182unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1, 183 const unsigned long *bitmap2, unsigned int nbits); 184void __bitmap_set(unsigned long *map, unsigned int start, int len); 185void __bitmap_clear(unsigned long *map, unsigned int start, int len); 186 187unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 188 unsigned long size, 189 unsigned long start, 190 unsigned int nr, 191 unsigned long align_mask, 192 unsigned long align_offset); 193 194/** 195 * bitmap_find_next_zero_area - find a contiguous aligned zero area 196 * @map: The address to base the search on 197 * @size: The bitmap size in bits 198 * @start: The bitnumber to start searching at 199 * @nr: The number of zeroed bits we're looking for 200 * @align_mask: Alignment mask for zero area 201 * 202 * The @align_mask should be one less than a power of 2; the effect is that 203 * the bit offset of all zero areas this function finds is multiples of that 204 * power of 2. A @align_mask of 0 means no alignment is required. 205 */ 206static inline unsigned long 207bitmap_find_next_zero_area(unsigned long *map, 208 unsigned long size, 209 unsigned long start, 210 unsigned int nr, 211 unsigned long align_mask) 212{ 213 return bitmap_find_next_zero_area_off(map, size, start, nr, 214 align_mask, 0); 215} 216 217void bitmap_remap(unsigned long *dst, const unsigned long *src, 218 const unsigned long *old, const unsigned long *new, unsigned int nbits); 219int bitmap_bitremap(int oldbit, 220 const unsigned long *old, const unsigned long *new, int bits); 221void bitmap_onto(unsigned long *dst, const unsigned long *orig, 222 const unsigned long *relmap, unsigned int bits); 223void bitmap_fold(unsigned long *dst, const unsigned long *orig, 224 unsigned int sz, unsigned int nbits); 225 226#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) 227#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) 228 229#define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE) 230 231static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) 232{ 233 unsigned int len = bitmap_size(nbits); 234 235 if (small_const_nbits(nbits)) 236 *dst = 0; 237 else 238 memset(dst, 0, len); 239} 240 241static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) 242{ 243 unsigned int len = bitmap_size(nbits); 244 245 if (small_const_nbits(nbits)) 246 *dst = ~0UL; 247 else 248 memset(dst, 0xff, len); 249} 250 251static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, 252 unsigned int nbits) 253{ 254 unsigned int len = bitmap_size(nbits); 255 256 if (small_const_nbits(nbits)) 257 *dst = *src; 258 else 259 memcpy(dst, src, len); 260} 261 262/* 263 * Copy bitmap and clear tail bits in last word. 264 */ 265static inline void bitmap_copy_clear_tail(unsigned long *dst, 266 const unsigned long *src, unsigned int nbits) 267{ 268 bitmap_copy(dst, src, nbits); 269 if (nbits % BITS_PER_LONG) 270 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); 271} 272 273/* 274 * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64 275 * machines the order of hi and lo parts of numbers match the bitmap structure. 276 * In both cases conversion is not needed when copying data from/to arrays of 277 * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead 278 * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit 279 * architectures are not using bitmap_copy_clear_tail(). 280 */ 281#if BITS_PER_LONG == 64 282void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, 283 unsigned int nbits); 284void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, 285 unsigned int nbits); 286#else 287#define bitmap_from_arr32(bitmap, buf, nbits) \ 288 bitmap_copy_clear_tail((unsigned long *) (bitmap), \ 289 (const unsigned long *) (buf), (nbits)) 290#define bitmap_to_arr32(buf, bitmap, nbits) \ 291 bitmap_copy_clear_tail((unsigned long *) (buf), \ 292 (const unsigned long *) (bitmap), (nbits)) 293#endif 294 295/* 296 * On 64-bit systems bitmaps are represented as u64 arrays internally. So, 297 * the conversion is not needed when copying data from/to arrays of u64. 298 */ 299#if BITS_PER_LONG == 32 300void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits); 301void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits); 302#else 303#define bitmap_from_arr64(bitmap, buf, nbits) \ 304 bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits)) 305#define bitmap_to_arr64(buf, bitmap, nbits) \ 306 bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits)) 307#endif 308 309static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1, 310 const unsigned long *src2, unsigned int nbits) 311{ 312 if (small_const_nbits(nbits)) 313 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; 314 return __bitmap_and(dst, src1, src2, nbits); 315} 316 317static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, 318 const unsigned long *src2, unsigned int nbits) 319{ 320 if (small_const_nbits(nbits)) 321 *dst = *src1 | *src2; 322 else 323 __bitmap_or(dst, src1, src2, nbits); 324} 325 326static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, 327 const unsigned long *src2, unsigned int nbits) 328{ 329 if (small_const_nbits(nbits)) 330 *dst = *src1 ^ *src2; 331 else 332 __bitmap_xor(dst, src1, src2, nbits); 333} 334 335static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1, 336 const unsigned long *src2, unsigned int nbits) 337{ 338 if (small_const_nbits(nbits)) 339 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 340 return __bitmap_andnot(dst, src1, src2, nbits); 341} 342 343static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, 344 unsigned int nbits) 345{ 346 if (small_const_nbits(nbits)) 347 *dst = ~(*src); 348 else 349 __bitmap_complement(dst, src, nbits); 350} 351 352#ifdef __LITTLE_ENDIAN 353#define BITMAP_MEM_ALIGNMENT 8 354#else 355#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) 356#endif 357#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) 358 359static inline bool bitmap_equal(const unsigned long *src1, 360 const unsigned long *src2, unsigned int nbits) 361{ 362 if (small_const_nbits(nbits)) 363 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); 364 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && 365 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 366 return !memcmp(src1, src2, nbits / 8); 367 return __bitmap_equal(src1, src2, nbits); 368} 369 370/** 371 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third 372 * @src1: Pointer to bitmap 1 373 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 374 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 375 * @nbits: number of bits in each of these bitmaps 376 * 377 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise 378 */ 379static inline bool bitmap_or_equal(const unsigned long *src1, 380 const unsigned long *src2, 381 const unsigned long *src3, 382 unsigned int nbits) 383{ 384 if (!small_const_nbits(nbits)) 385 return __bitmap_or_equal(src1, src2, src3, nbits); 386 387 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); 388} 389 390static inline bool bitmap_intersects(const unsigned long *src1, 391 const unsigned long *src2, 392 unsigned int nbits) 393{ 394 if (small_const_nbits(nbits)) 395 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 396 else 397 return __bitmap_intersects(src1, src2, nbits); 398} 399 400static inline bool bitmap_subset(const unsigned long *src1, 401 const unsigned long *src2, unsigned int nbits) 402{ 403 if (small_const_nbits(nbits)) 404 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); 405 else 406 return __bitmap_subset(src1, src2, nbits); 407} 408 409static inline bool bitmap_empty(const unsigned long *src, unsigned nbits) 410{ 411 if (small_const_nbits(nbits)) 412 return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); 413 414 return find_first_bit(src, nbits) == nbits; 415} 416 417static inline bool bitmap_full(const unsigned long *src, unsigned int nbits) 418{ 419 if (small_const_nbits(nbits)) 420 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); 421 422 return find_first_zero_bit(src, nbits) == nbits; 423} 424 425static __always_inline 426unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits) 427{ 428 if (small_const_nbits(nbits)) 429 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); 430 return __bitmap_weight(src, nbits); 431} 432 433static __always_inline 434unsigned long bitmap_weight_and(const unsigned long *src1, 435 const unsigned long *src2, unsigned int nbits) 436{ 437 if (small_const_nbits(nbits)) 438 return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)); 439 return __bitmap_weight_and(src1, src2, nbits); 440} 441 442static __always_inline 443unsigned long bitmap_weight_andnot(const unsigned long *src1, 444 const unsigned long *src2, unsigned int nbits) 445{ 446 if (small_const_nbits(nbits)) 447 return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)); 448 return __bitmap_weight_andnot(src1, src2, nbits); 449} 450 451static __always_inline void bitmap_set(unsigned long *map, unsigned int start, 452 unsigned int nbits) 453{ 454 if (__builtin_constant_p(nbits) && nbits == 1) 455 __set_bit(start, map); 456 else if (small_const_nbits(start + nbits)) 457 *map |= GENMASK(start + nbits - 1, start); 458 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 459 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 460 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 461 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 462 memset((char *)map + start / 8, 0xff, nbits / 8); 463 else 464 __bitmap_set(map, start, nbits); 465} 466 467static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, 468 unsigned int nbits) 469{ 470 if (__builtin_constant_p(nbits) && nbits == 1) 471 __clear_bit(start, map); 472 else if (small_const_nbits(start + nbits)) 473 *map &= ~GENMASK(start + nbits - 1, start); 474 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 475 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 476 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 477 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 478 memset((char *)map + start / 8, 0, nbits / 8); 479 else 480 __bitmap_clear(map, start, nbits); 481} 482 483static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, 484 unsigned int shift, unsigned int nbits) 485{ 486 if (small_const_nbits(nbits)) 487 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; 488 else 489 __bitmap_shift_right(dst, src, shift, nbits); 490} 491 492static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, 493 unsigned int shift, unsigned int nbits) 494{ 495 if (small_const_nbits(nbits)) 496 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); 497 else 498 __bitmap_shift_left(dst, src, shift, nbits); 499} 500 501static inline void bitmap_replace(unsigned long *dst, 502 const unsigned long *old, 503 const unsigned long *new, 504 const unsigned long *mask, 505 unsigned int nbits) 506{ 507 if (small_const_nbits(nbits)) 508 *dst = (*old & ~(*mask)) | (*new & *mask); 509 else 510 __bitmap_replace(dst, old, new, mask, nbits); 511} 512 513/** 514 * bitmap_scatter - Scatter a bitmap according to the given mask 515 * @dst: scattered bitmap 516 * @src: gathered bitmap 517 * @mask: mask representing bits to assign to in the scattered bitmap 518 * @nbits: number of bits in each of these bitmaps 519 * 520 * Scatters bitmap with sequential bits according to the given @mask. 521 * 522 * Example: 523 * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302. 524 * 525 * Or in binary form 526 * @src @mask @dst 527 * 0000000001011010 0001001100010011 0000001100000010 528 * 529 * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12) 530 * 531 * A more 'visual' description of the operation:: 532 * 533 * src: 0000000001011010 534 * |||||| 535 * +------+||||| 536 * | +----+|||| 537 * | |+----+||| 538 * | || +-+|| 539 * | || | || 540 * mask: ...v..vv...v..vv 541 * ...0..11...0..10 542 * dst: 0000001100000010 543 * 544 * A relationship exists between bitmap_scatter() and bitmap_gather(). 545 * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation. 546 * See bitmap_scatter() for details related to this relationship. 547 */ 548static inline void bitmap_scatter(unsigned long *dst, const unsigned long *src, 549 const unsigned long *mask, unsigned int nbits) 550{ 551 unsigned int n = 0; 552 unsigned int bit; 553 554 bitmap_zero(dst, nbits); 555 556 for_each_set_bit(bit, mask, nbits) 557 __assign_bit(bit, dst, test_bit(n++, src)); 558} 559 560/** 561 * bitmap_gather - Gather a bitmap according to given mask 562 * @dst: gathered bitmap 563 * @src: scattered bitmap 564 * @mask: mask representing bits to extract from in the scattered bitmap 565 * @nbits: number of bits in each of these bitmaps 566 * 567 * Gathers bitmap with sparse bits according to the given @mask. 568 * 569 * Example: 570 * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a. 571 * 572 * Or in binary form 573 * @src @mask @dst 574 * 0000001100000010 0001001100010011 0000000000011010 575 * 576 * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5) 577 * 578 * A more 'visual' description of the operation:: 579 * 580 * mask: ...v..vv...v..vv 581 * src: 0000001100000010 582 * ^ ^^ ^ 0 583 * | || | 10 584 * | || > 010 585 * | |+--> 1010 586 * | +--> 11010 587 * +----> 011010 588 * dst: 0000000000011010 589 * 590 * A relationship exists between bitmap_gather() and bitmap_scatter(). See 591 * bitmap_scatter() for the bitmap scatter detailed operations. 592 * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n). 593 * The operation bitmap_gather(result, scattered, mask, n) leads to a result 594 * equal or equivalent to src. 595 * 596 * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather() 597 * are not bijective. 598 * The result and src values are equivalent in that sense that a call to 599 * bitmap_scatter(res, src, mask, n) and a call to 600 * bitmap_scatter(res, result, mask, n) will lead to the same res value. 601 */ 602static inline void bitmap_gather(unsigned long *dst, const unsigned long *src, 603 const unsigned long *mask, unsigned int nbits) 604{ 605 unsigned int n = 0; 606 unsigned int bit; 607 608 bitmap_zero(dst, nbits); 609 610 for_each_set_bit(bit, mask, nbits) 611 __assign_bit(n++, dst, test_bit(bit, src)); 612} 613 614static inline void bitmap_next_set_region(unsigned long *bitmap, 615 unsigned int *rs, unsigned int *re, 616 unsigned int end) 617{ 618 *rs = find_next_bit(bitmap, end, *rs); 619 *re = find_next_zero_bit(bitmap, end, *rs + 1); 620} 621 622/** 623 * bitmap_release_region - release allocated bitmap region 624 * @bitmap: array of unsigned longs corresponding to the bitmap 625 * @pos: beginning of bit region to release 626 * @order: region size (log base 2 of number of bits) to release 627 * 628 * This is the complement to __bitmap_find_free_region() and releases 629 * the found region (by clearing it in the bitmap). 630 */ 631static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 632{ 633 bitmap_clear(bitmap, pos, BIT(order)); 634} 635 636/** 637 * bitmap_allocate_region - allocate bitmap region 638 * @bitmap: array of unsigned longs corresponding to the bitmap 639 * @pos: beginning of bit region to allocate 640 * @order: region size (log base 2 of number of bits) to allocate 641 * 642 * Allocate (set bits in) a specified region of a bitmap. 643 * 644 * Returns: 0 on success, or %-EBUSY if specified region wasn't 645 * free (not all bits were zero). 646 */ 647static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 648{ 649 unsigned int len = BIT(order); 650 651 if (find_next_bit(bitmap, pos + len, pos) < pos + len) 652 return -EBUSY; 653 bitmap_set(bitmap, pos, len); 654 return 0; 655} 656 657/** 658 * bitmap_find_free_region - find a contiguous aligned mem region 659 * @bitmap: array of unsigned longs corresponding to the bitmap 660 * @bits: number of bits in the bitmap 661 * @order: region size (log base 2 of number of bits) to find 662 * 663 * Find a region of free (zero) bits in a @bitmap of @bits bits and 664 * allocate them (set them to one). Only consider regions of length 665 * a power (@order) of two, aligned to that power of two, which 666 * makes the search algorithm much faster. 667 * 668 * Returns: the bit offset in bitmap of the allocated region, 669 * or -errno on failure. 670 */ 671static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 672{ 673 unsigned int pos, end; /* scans bitmap by regions of size order */ 674 675 for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) { 676 if (!bitmap_allocate_region(bitmap, pos, order)) 677 return pos; 678 } 679 return -ENOMEM; 680} 681 682/** 683 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. 684 * @n: u64 value 685 * 686 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit 687 * integers in 32-bit environment, and 64-bit integers in 64-bit one. 688 * 689 * There are four combinations of endianness and length of the word in linux 690 * ABIs: LE64, BE64, LE32 and BE32. 691 * 692 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in 693 * bitmaps and therefore don't require any special handling. 694 * 695 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory 696 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the 697 * other hand is represented as an array of 32-bit words and the position of 698 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that 699 * word. For example, bit #42 is located at 10th position of 2nd word. 700 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit 701 * values in memory as it usually does. But for BE we need to swap hi and lo 702 * words manually. 703 * 704 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and 705 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps 706 * hi and lo words, as is expected by bitmap. 707 */ 708#if __BITS_PER_LONG == 64 709#define BITMAP_FROM_U64(n) (n) 710#else 711#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ 712 ((unsigned long) ((u64)(n) >> 32)) 713#endif 714 715/** 716 * bitmap_from_u64 - Check and swap words within u64. 717 * @mask: source bitmap 718 * @dst: destination bitmap 719 * 720 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` 721 * to read u64 mask, we will get the wrong word. 722 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, 723 * but we expect the lower 32-bits of u64. 724 */ 725static inline void bitmap_from_u64(unsigned long *dst, u64 mask) 726{ 727 bitmap_from_arr64(dst, &mask, 64); 728} 729 730/** 731 * bitmap_read - read a value of n-bits from the memory region 732 * @map: address to the bitmap memory region 733 * @start: bit offset of the n-bit value 734 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG 735 * 736 * Returns: value of @nbits bits located at the @start bit offset within the 737 * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return 738 * value is undefined. 739 */ 740static inline unsigned long bitmap_read(const unsigned long *map, 741 unsigned long start, 742 unsigned long nbits) 743{ 744 size_t index = BIT_WORD(start); 745 unsigned long offset = start % BITS_PER_LONG; 746 unsigned long space = BITS_PER_LONG - offset; 747 unsigned long value_low, value_high; 748 749 if (unlikely(!nbits || nbits > BITS_PER_LONG)) 750 return 0; 751 752 if (space >= nbits) 753 return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits); 754 755 value_low = map[index] & BITMAP_FIRST_WORD_MASK(start); 756 value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits); 757 return (value_low >> offset) | (value_high << space); 758} 759 760/** 761 * bitmap_write - write n-bit value within a memory region 762 * @map: address to the bitmap memory region 763 * @value: value to write, clamped to nbits 764 * @start: bit offset of the n-bit value 765 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG. 766 * 767 * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(), 768 * i.e. bits beyond @nbits are ignored: 769 * 770 * for (bit = 0; bit < nbits; bit++) 771 * __assign_bit(start + bit, bitmap, val & BIT(bit)); 772 * 773 * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed. 774 */ 775static inline void bitmap_write(unsigned long *map, unsigned long value, 776 unsigned long start, unsigned long nbits) 777{ 778 size_t index; 779 unsigned long offset; 780 unsigned long space; 781 unsigned long mask; 782 bool fit; 783 784 if (unlikely(!nbits || nbits > BITS_PER_LONG)) 785 return; 786 787 mask = BITMAP_LAST_WORD_MASK(nbits); 788 value &= mask; 789 offset = start % BITS_PER_LONG; 790 space = BITS_PER_LONG - offset; 791 fit = space >= nbits; 792 index = BIT_WORD(start); 793 794 map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start)); 795 map[index] |= value << offset; 796 if (fit) 797 return; 798 799 map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits); 800 map[index + 1] |= (value >> space); 801} 802 803#define bitmap_get_value8(map, start) \ 804 bitmap_read(map, start, BITS_PER_BYTE) 805#define bitmap_set_value8(map, value, start) \ 806 bitmap_write(map, value, start, BITS_PER_BYTE) 807 808#endif /* __ASSEMBLY__ */ 809 810#endif /* __LINUX_BITMAP_H */