Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
68#include <net/ip6_checksum.h>
69#include <net/xfrm.h>
70#include <net/mpls.h>
71#include <net/mptcp.h>
72
73#include <linux/uaccess.h>
74#include <trace/events/skb.h>
75#include <linux/highmem.h>
76#include <linux/capability.h>
77#include <linux/user_namespace.h>
78#include <linux/indirect_call_wrapper.h>
79
80#include "datagram.h"
81
82struct kmem_cache *skbuff_head_cache __ro_after_init;
83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84#ifdef CONFIG_SKB_EXTENSIONS
85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86#endif
87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90/**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104{
105 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110}
111
112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118{
119 skb_panic(skb, sz, addr, __func__);
120}
121
122/*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134{
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157}
158
159/* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165/**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184{
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252out:
253 return skb;
254nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
258}
259EXPORT_SYMBOL(__alloc_skb);
260
261/* Caller must provide SKB that is memset cleared */
262static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
264{
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
267
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
279
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
284
285 return skb;
286}
287
288/**
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
292 *
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
306 */
307struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308{
309 struct sk_buff *skb;
310
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316
317 return __build_skb_around(skb, data, frag_size);
318}
319
320/* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
324 */
325struct sk_buff *build_skb(void *data, unsigned int frag_size)
326{
327 struct sk_buff *skb = __build_skb(data, frag_size);
328
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
333 }
334 return skb;
335}
336EXPORT_SYMBOL(build_skb);
337
338/**
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
343 */
344struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
346{
347 if (unlikely(!skb))
348 return NULL;
349
350 skb = __build_skb_around(skb, data, frag_size);
351
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
356 }
357 return skb;
358}
359EXPORT_SYMBOL(build_skb_around);
360
361#define NAPI_SKB_CACHE_SIZE 64
362
363struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
367};
368
369static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371
372static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373{
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377}
378
379void *napi_alloc_frag(unsigned int fragsz)
380{
381 fragsz = SKB_DATA_ALIGN(fragsz);
382
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384}
385EXPORT_SYMBOL(napi_alloc_frag);
386
387/**
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
390 *
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
393 */
394void *netdev_alloc_frag(unsigned int fragsz)
395{
396 struct page_frag_cache *nc;
397 void *data;
398
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
407 }
408 return data;
409}
410EXPORT_SYMBOL(netdev_alloc_frag);
411
412/**
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
417 *
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
422 *
423 * %NULL is returned if there is no free memory.
424 */
425struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
427{
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
442
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
459 }
460
461 if (unlikely(!data))
462 return NULL;
463
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
466 skb_free_frag(data);
467 return NULL;
468 }
469
470 /* use OR instead of assignment to avoid clearing of bits in mask */
471 if (pfmemalloc)
472 skb->pfmemalloc = 1;
473 skb->head_frag = 1;
474
475skb_success:
476 skb_reserve(skb, NET_SKB_PAD);
477 skb->dev = dev;
478
479skb_fail:
480 return skb;
481}
482EXPORT_SYMBOL(__netdev_alloc_skb);
483
484/**
485 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
486 * @napi: napi instance this buffer was allocated for
487 * @len: length to allocate
488 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
489 *
490 * Allocate a new sk_buff for use in NAPI receive. This buffer will
491 * attempt to allocate the head from a special reserved region used
492 * only for NAPI Rx allocation. By doing this we can save several
493 * CPU cycles by avoiding having to disable and re-enable IRQs.
494 *
495 * %NULL is returned if there is no free memory.
496 */
497struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
498 gfp_t gfp_mask)
499{
500 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
501 struct sk_buff *skb;
502 void *data;
503
504 len += NET_SKB_PAD + NET_IP_ALIGN;
505
506 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
507 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
508 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
509 if (!skb)
510 goto skb_fail;
511 goto skb_success;
512 }
513
514 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
515 len = SKB_DATA_ALIGN(len);
516
517 if (sk_memalloc_socks())
518 gfp_mask |= __GFP_MEMALLOC;
519
520 data = page_frag_alloc(&nc->page, len, gfp_mask);
521 if (unlikely(!data))
522 return NULL;
523
524 skb = __build_skb(data, len);
525 if (unlikely(!skb)) {
526 skb_free_frag(data);
527 return NULL;
528 }
529
530 /* use OR instead of assignment to avoid clearing of bits in mask */
531 if (nc->page.pfmemalloc)
532 skb->pfmemalloc = 1;
533 skb->head_frag = 1;
534
535skb_success:
536 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
537 skb->dev = napi->dev;
538
539skb_fail:
540 return skb;
541}
542EXPORT_SYMBOL(__napi_alloc_skb);
543
544void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
545 int size, unsigned int truesize)
546{
547 skb_fill_page_desc(skb, i, page, off, size);
548 skb->len += size;
549 skb->data_len += size;
550 skb->truesize += truesize;
551}
552EXPORT_SYMBOL(skb_add_rx_frag);
553
554void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
555 unsigned int truesize)
556{
557 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
558
559 skb_frag_size_add(frag, size);
560 skb->len += size;
561 skb->data_len += size;
562 skb->truesize += truesize;
563}
564EXPORT_SYMBOL(skb_coalesce_rx_frag);
565
566static void skb_drop_list(struct sk_buff **listp)
567{
568 kfree_skb_list(*listp);
569 *listp = NULL;
570}
571
572static inline void skb_drop_fraglist(struct sk_buff *skb)
573{
574 skb_drop_list(&skb_shinfo(skb)->frag_list);
575}
576
577static void skb_clone_fraglist(struct sk_buff *skb)
578{
579 struct sk_buff *list;
580
581 skb_walk_frags(skb, list)
582 skb_get(list);
583}
584
585static void skb_free_head(struct sk_buff *skb)
586{
587 unsigned char *head = skb->head;
588
589 if (skb->head_frag)
590 skb_free_frag(head);
591 else
592 kfree(head);
593}
594
595static void skb_release_data(struct sk_buff *skb)
596{
597 struct skb_shared_info *shinfo = skb_shinfo(skb);
598 int i;
599
600 if (skb->cloned &&
601 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
602 &shinfo->dataref))
603 return;
604
605 for (i = 0; i < shinfo->nr_frags; i++)
606 __skb_frag_unref(&shinfo->frags[i]);
607
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
610
611 skb_zcopy_clear(skb, true);
612 skb_free_head(skb);
613}
614
615/*
616 * Free an skbuff by memory without cleaning the state.
617 */
618static void kfree_skbmem(struct sk_buff *skb)
619{
620 struct sk_buff_fclones *fclones;
621
622 switch (skb->fclone) {
623 case SKB_FCLONE_UNAVAILABLE:
624 kmem_cache_free(skbuff_head_cache, skb);
625 return;
626
627 case SKB_FCLONE_ORIG:
628 fclones = container_of(skb, struct sk_buff_fclones, skb1);
629
630 /* We usually free the clone (TX completion) before original skb
631 * This test would have no chance to be true for the clone,
632 * while here, branch prediction will be good.
633 */
634 if (refcount_read(&fclones->fclone_ref) == 1)
635 goto fastpath;
636 break;
637
638 default: /* SKB_FCLONE_CLONE */
639 fclones = container_of(skb, struct sk_buff_fclones, skb2);
640 break;
641 }
642 if (!refcount_dec_and_test(&fclones->fclone_ref))
643 return;
644fastpath:
645 kmem_cache_free(skbuff_fclone_cache, fclones);
646}
647
648void skb_release_head_state(struct sk_buff *skb)
649{
650 skb_dst_drop(skb);
651 if (skb->destructor) {
652 WARN_ON(in_irq());
653 skb->destructor(skb);
654 }
655#if IS_ENABLED(CONFIG_NF_CONNTRACK)
656 nf_conntrack_put(skb_nfct(skb));
657#endif
658 skb_ext_put(skb);
659}
660
661/* Free everything but the sk_buff shell. */
662static void skb_release_all(struct sk_buff *skb)
663{
664 skb_release_head_state(skb);
665 if (likely(skb->head))
666 skb_release_data(skb);
667}
668
669/**
670 * __kfree_skb - private function
671 * @skb: buffer
672 *
673 * Free an sk_buff. Release anything attached to the buffer.
674 * Clean the state. This is an internal helper function. Users should
675 * always call kfree_skb
676 */
677
678void __kfree_skb(struct sk_buff *skb)
679{
680 skb_release_all(skb);
681 kfree_skbmem(skb);
682}
683EXPORT_SYMBOL(__kfree_skb);
684
685/**
686 * kfree_skb - free an sk_buff
687 * @skb: buffer to free
688 *
689 * Drop a reference to the buffer and free it if the usage count has
690 * hit zero.
691 */
692void kfree_skb(struct sk_buff *skb)
693{
694 if (!skb_unref(skb))
695 return;
696
697 trace_kfree_skb(skb, __builtin_return_address(0));
698 __kfree_skb(skb);
699}
700EXPORT_SYMBOL(kfree_skb);
701
702void kfree_skb_list(struct sk_buff *segs)
703{
704 while (segs) {
705 struct sk_buff *next = segs->next;
706
707 kfree_skb(segs);
708 segs = next;
709 }
710}
711EXPORT_SYMBOL(kfree_skb_list);
712
713/* Dump skb information and contents.
714 *
715 * Must only be called from net_ratelimit()-ed paths.
716 *
717 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
718 */
719void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
720{
721 static atomic_t can_dump_full = ATOMIC_INIT(5);
722 struct skb_shared_info *sh = skb_shinfo(skb);
723 struct net_device *dev = skb->dev;
724 struct sock *sk = skb->sk;
725 struct sk_buff *list_skb;
726 bool has_mac, has_trans;
727 int headroom, tailroom;
728 int i, len, seg_len;
729
730 if (full_pkt)
731 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
732
733 if (full_pkt)
734 len = skb->len;
735 else
736 len = min_t(int, skb->len, MAX_HEADER + 128);
737
738 headroom = skb_headroom(skb);
739 tailroom = skb_tailroom(skb);
740
741 has_mac = skb_mac_header_was_set(skb);
742 has_trans = skb_transport_header_was_set(skb);
743
744 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
745 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
746 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
747 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
748 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
749 level, skb->len, headroom, skb_headlen(skb), tailroom,
750 has_mac ? skb->mac_header : -1,
751 has_mac ? skb_mac_header_len(skb) : -1,
752 skb->network_header,
753 has_trans ? skb_network_header_len(skb) : -1,
754 has_trans ? skb->transport_header : -1,
755 sh->tx_flags, sh->nr_frags,
756 sh->gso_size, sh->gso_type, sh->gso_segs,
757 skb->csum, skb->ip_summed, skb->csum_complete_sw,
758 skb->csum_valid, skb->csum_level,
759 skb->hash, skb->sw_hash, skb->l4_hash,
760 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
761
762 if (dev)
763 printk("%sdev name=%s feat=0x%pNF\n",
764 level, dev->name, &dev->features);
765 if (sk)
766 printk("%ssk family=%hu type=%u proto=%u\n",
767 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
768
769 if (full_pkt && headroom)
770 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
771 16, 1, skb->head, headroom, false);
772
773 seg_len = min_t(int, skb_headlen(skb), len);
774 if (seg_len)
775 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
776 16, 1, skb->data, seg_len, false);
777 len -= seg_len;
778
779 if (full_pkt && tailroom)
780 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
781 16, 1, skb_tail_pointer(skb), tailroom, false);
782
783 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
784 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
785 u32 p_off, p_len, copied;
786 struct page *p;
787 u8 *vaddr;
788
789 skb_frag_foreach_page(frag, skb_frag_off(frag),
790 skb_frag_size(frag), p, p_off, p_len,
791 copied) {
792 seg_len = min_t(int, p_len, len);
793 vaddr = kmap_atomic(p);
794 print_hex_dump(level, "skb frag: ",
795 DUMP_PREFIX_OFFSET,
796 16, 1, vaddr + p_off, seg_len, false);
797 kunmap_atomic(vaddr);
798 len -= seg_len;
799 if (!len)
800 break;
801 }
802 }
803
804 if (full_pkt && skb_has_frag_list(skb)) {
805 printk("skb fraglist:\n");
806 skb_walk_frags(skb, list_skb)
807 skb_dump(level, list_skb, true);
808 }
809}
810EXPORT_SYMBOL(skb_dump);
811
812/**
813 * skb_tx_error - report an sk_buff xmit error
814 * @skb: buffer that triggered an error
815 *
816 * Report xmit error if a device callback is tracking this skb.
817 * skb must be freed afterwards.
818 */
819void skb_tx_error(struct sk_buff *skb)
820{
821 skb_zcopy_clear(skb, true);
822}
823EXPORT_SYMBOL(skb_tx_error);
824
825/**
826 * consume_skb - free an skbuff
827 * @skb: buffer to free
828 *
829 * Drop a ref to the buffer and free it if the usage count has hit zero
830 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
831 * is being dropped after a failure and notes that
832 */
833void consume_skb(struct sk_buff *skb)
834{
835 if (!skb_unref(skb))
836 return;
837
838 trace_consume_skb(skb);
839 __kfree_skb(skb);
840}
841EXPORT_SYMBOL(consume_skb);
842
843/**
844 * consume_stateless_skb - free an skbuff, assuming it is stateless
845 * @skb: buffer to free
846 *
847 * Alike consume_skb(), but this variant assumes that this is the last
848 * skb reference and all the head states have been already dropped
849 */
850void __consume_stateless_skb(struct sk_buff *skb)
851{
852 trace_consume_skb(skb);
853 skb_release_data(skb);
854 kfree_skbmem(skb);
855}
856
857void __kfree_skb_flush(void)
858{
859 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
860
861 /* flush skb_cache if containing objects */
862 if (nc->skb_count) {
863 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
864 nc->skb_cache);
865 nc->skb_count = 0;
866 }
867}
868
869static inline void _kfree_skb_defer(struct sk_buff *skb)
870{
871 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
872
873 /* drop skb->head and call any destructors for packet */
874 skb_release_all(skb);
875
876 /* record skb to CPU local list */
877 nc->skb_cache[nc->skb_count++] = skb;
878
879#ifdef CONFIG_SLUB
880 /* SLUB writes into objects when freeing */
881 prefetchw(skb);
882#endif
883
884 /* flush skb_cache if it is filled */
885 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
886 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
887 nc->skb_cache);
888 nc->skb_count = 0;
889 }
890}
891void __kfree_skb_defer(struct sk_buff *skb)
892{
893 _kfree_skb_defer(skb);
894}
895
896void napi_consume_skb(struct sk_buff *skb, int budget)
897{
898 if (unlikely(!skb))
899 return;
900
901 /* Zero budget indicate non-NAPI context called us, like netpoll */
902 if (unlikely(!budget)) {
903 dev_consume_skb_any(skb);
904 return;
905 }
906
907 if (!skb_unref(skb))
908 return;
909
910 /* if reaching here SKB is ready to free */
911 trace_consume_skb(skb);
912
913 /* if SKB is a clone, don't handle this case */
914 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
915 __kfree_skb(skb);
916 return;
917 }
918
919 _kfree_skb_defer(skb);
920}
921EXPORT_SYMBOL(napi_consume_skb);
922
923/* Make sure a field is enclosed inside headers_start/headers_end section */
924#define CHECK_SKB_FIELD(field) \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
926 offsetof(struct sk_buff, headers_start)); \
927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
928 offsetof(struct sk_buff, headers_end)); \
929
930static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
931{
932 new->tstamp = old->tstamp;
933 /* We do not copy old->sk */
934 new->dev = old->dev;
935 memcpy(new->cb, old->cb, sizeof(old->cb));
936 skb_dst_copy(new, old);
937 __skb_ext_copy(new, old);
938 __nf_copy(new, old, false);
939
940 /* Note : this field could be in headers_start/headers_end section
941 * It is not yet because we do not want to have a 16 bit hole
942 */
943 new->queue_mapping = old->queue_mapping;
944
945 memcpy(&new->headers_start, &old->headers_start,
946 offsetof(struct sk_buff, headers_end) -
947 offsetof(struct sk_buff, headers_start));
948 CHECK_SKB_FIELD(protocol);
949 CHECK_SKB_FIELD(csum);
950 CHECK_SKB_FIELD(hash);
951 CHECK_SKB_FIELD(priority);
952 CHECK_SKB_FIELD(skb_iif);
953 CHECK_SKB_FIELD(vlan_proto);
954 CHECK_SKB_FIELD(vlan_tci);
955 CHECK_SKB_FIELD(transport_header);
956 CHECK_SKB_FIELD(network_header);
957 CHECK_SKB_FIELD(mac_header);
958 CHECK_SKB_FIELD(inner_protocol);
959 CHECK_SKB_FIELD(inner_transport_header);
960 CHECK_SKB_FIELD(inner_network_header);
961 CHECK_SKB_FIELD(inner_mac_header);
962 CHECK_SKB_FIELD(mark);
963#ifdef CONFIG_NETWORK_SECMARK
964 CHECK_SKB_FIELD(secmark);
965#endif
966#ifdef CONFIG_NET_RX_BUSY_POLL
967 CHECK_SKB_FIELD(napi_id);
968#endif
969#ifdef CONFIG_XPS
970 CHECK_SKB_FIELD(sender_cpu);
971#endif
972#ifdef CONFIG_NET_SCHED
973 CHECK_SKB_FIELD(tc_index);
974#endif
975
976}
977
978/*
979 * You should not add any new code to this function. Add it to
980 * __copy_skb_header above instead.
981 */
982static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
983{
984#define C(x) n->x = skb->x
985
986 n->next = n->prev = NULL;
987 n->sk = NULL;
988 __copy_skb_header(n, skb);
989
990 C(len);
991 C(data_len);
992 C(mac_len);
993 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
994 n->cloned = 1;
995 n->nohdr = 0;
996 n->peeked = 0;
997 C(pfmemalloc);
998 n->destructor = NULL;
999 C(tail);
1000 C(end);
1001 C(head);
1002 C(head_frag);
1003 C(data);
1004 C(truesize);
1005 refcount_set(&n->users, 1);
1006
1007 atomic_inc(&(skb_shinfo(skb)->dataref));
1008 skb->cloned = 1;
1009
1010 return n;
1011#undef C
1012}
1013
1014/**
1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016 * @first: first sk_buff of the msg
1017 */
1018struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019{
1020 struct sk_buff *n;
1021
1022 n = alloc_skb(0, GFP_ATOMIC);
1023 if (!n)
1024 return NULL;
1025
1026 n->len = first->len;
1027 n->data_len = first->len;
1028 n->truesize = first->truesize;
1029
1030 skb_shinfo(n)->frag_list = first;
1031
1032 __copy_skb_header(n, first);
1033 n->destructor = NULL;
1034
1035 return n;
1036}
1037EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038
1039/**
1040 * skb_morph - morph one skb into another
1041 * @dst: the skb to receive the contents
1042 * @src: the skb to supply the contents
1043 *
1044 * This is identical to skb_clone except that the target skb is
1045 * supplied by the user.
1046 *
1047 * The target skb is returned upon exit.
1048 */
1049struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050{
1051 skb_release_all(dst);
1052 return __skb_clone(dst, src);
1053}
1054EXPORT_SYMBOL_GPL(skb_morph);
1055
1056int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057{
1058 unsigned long max_pg, num_pg, new_pg, old_pg;
1059 struct user_struct *user;
1060
1061 if (capable(CAP_IPC_LOCK) || !size)
1062 return 0;
1063
1064 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1065 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066 user = mmp->user ? : current_user();
1067
1068 do {
1069 old_pg = atomic_long_read(&user->locked_vm);
1070 new_pg = old_pg + num_pg;
1071 if (new_pg > max_pg)
1072 return -ENOBUFS;
1073 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074 old_pg);
1075
1076 if (!mmp->user) {
1077 mmp->user = get_uid(user);
1078 mmp->num_pg = num_pg;
1079 } else {
1080 mmp->num_pg += num_pg;
1081 }
1082
1083 return 0;
1084}
1085EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086
1087void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088{
1089 if (mmp->user) {
1090 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091 free_uid(mmp->user);
1092 }
1093}
1094EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095
1096struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097{
1098 struct ubuf_info *uarg;
1099 struct sk_buff *skb;
1100
1101 WARN_ON_ONCE(!in_task());
1102
1103 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104 if (!skb)
1105 return NULL;
1106
1107 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108 uarg = (void *)skb->cb;
1109 uarg->mmp.user = NULL;
1110
1111 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112 kfree_skb(skb);
1113 return NULL;
1114 }
1115
1116 uarg->callback = sock_zerocopy_callback;
1117 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118 uarg->len = 1;
1119 uarg->bytelen = size;
1120 uarg->zerocopy = 1;
1121 refcount_set(&uarg->refcnt, 1);
1122 sock_hold(sk);
1123
1124 return uarg;
1125}
1126EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127
1128static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129{
1130 return container_of((void *)uarg, struct sk_buff, cb);
1131}
1132
1133struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134 struct ubuf_info *uarg)
1135{
1136 if (uarg) {
1137 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1138 u32 bytelen, next;
1139
1140 /* realloc only when socket is locked (TCP, UDP cork),
1141 * so uarg->len and sk_zckey access is serialized
1142 */
1143 if (!sock_owned_by_user(sk)) {
1144 WARN_ON_ONCE(1);
1145 return NULL;
1146 }
1147
1148 bytelen = uarg->bytelen + size;
1149 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150 /* TCP can create new skb to attach new uarg */
1151 if (sk->sk_type == SOCK_STREAM)
1152 goto new_alloc;
1153 return NULL;
1154 }
1155
1156 next = (u32)atomic_read(&sk->sk_zckey);
1157 if ((u32)(uarg->id + uarg->len) == next) {
1158 if (mm_account_pinned_pages(&uarg->mmp, size))
1159 return NULL;
1160 uarg->len++;
1161 uarg->bytelen = bytelen;
1162 atomic_set(&sk->sk_zckey, ++next);
1163
1164 /* no extra ref when appending to datagram (MSG_MORE) */
1165 if (sk->sk_type == SOCK_STREAM)
1166 sock_zerocopy_get(uarg);
1167
1168 return uarg;
1169 }
1170 }
1171
1172new_alloc:
1173 return sock_zerocopy_alloc(sk, size);
1174}
1175EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176
1177static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178{
1179 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180 u32 old_lo, old_hi;
1181 u64 sum_len;
1182
1183 old_lo = serr->ee.ee_info;
1184 old_hi = serr->ee.ee_data;
1185 sum_len = old_hi - old_lo + 1ULL + len;
1186
1187 if (sum_len >= (1ULL << 32))
1188 return false;
1189
1190 if (lo != old_hi + 1)
1191 return false;
1192
1193 serr->ee.ee_data += len;
1194 return true;
1195}
1196
1197void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198{
1199 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200 struct sock_exterr_skb *serr;
1201 struct sock *sk = skb->sk;
1202 struct sk_buff_head *q;
1203 unsigned long flags;
1204 u32 lo, hi;
1205 u16 len;
1206
1207 mm_unaccount_pinned_pages(&uarg->mmp);
1208
1209 /* if !len, there was only 1 call, and it was aborted
1210 * so do not queue a completion notification
1211 */
1212 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213 goto release;
1214
1215 len = uarg->len;
1216 lo = uarg->id;
1217 hi = uarg->id + len - 1;
1218
1219 serr = SKB_EXT_ERR(skb);
1220 memset(serr, 0, sizeof(*serr));
1221 serr->ee.ee_errno = 0;
1222 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223 serr->ee.ee_data = hi;
1224 serr->ee.ee_info = lo;
1225 if (!success)
1226 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227
1228 q = &sk->sk_error_queue;
1229 spin_lock_irqsave(&q->lock, flags);
1230 tail = skb_peek_tail(q);
1231 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232 !skb_zerocopy_notify_extend(tail, lo, len)) {
1233 __skb_queue_tail(q, skb);
1234 skb = NULL;
1235 }
1236 spin_unlock_irqrestore(&q->lock, flags);
1237
1238 sk->sk_error_report(sk);
1239
1240release:
1241 consume_skb(skb);
1242 sock_put(sk);
1243}
1244EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245
1246void sock_zerocopy_put(struct ubuf_info *uarg)
1247{
1248 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249 if (uarg->callback)
1250 uarg->callback(uarg, uarg->zerocopy);
1251 else
1252 consume_skb(skb_from_uarg(uarg));
1253 }
1254}
1255EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256
1257void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258{
1259 if (uarg) {
1260 struct sock *sk = skb_from_uarg(uarg)->sk;
1261
1262 atomic_dec(&sk->sk_zckey);
1263 uarg->len--;
1264
1265 if (have_uref)
1266 sock_zerocopy_put(uarg);
1267 }
1268}
1269EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270
1271int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272{
1273 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274}
1275EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276
1277int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278 struct msghdr *msg, int len,
1279 struct ubuf_info *uarg)
1280{
1281 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282 struct iov_iter orig_iter = msg->msg_iter;
1283 int err, orig_len = skb->len;
1284
1285 /* An skb can only point to one uarg. This edge case happens when
1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287 */
1288 if (orig_uarg && uarg != orig_uarg)
1289 return -EEXIST;
1290
1291 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293 struct sock *save_sk = skb->sk;
1294
1295 /* Streams do not free skb on error. Reset to prev state. */
1296 msg->msg_iter = orig_iter;
1297 skb->sk = sk;
1298 ___pskb_trim(skb, orig_len);
1299 skb->sk = save_sk;
1300 return err;
1301 }
1302
1303 skb_zcopy_set(skb, uarg, NULL);
1304 return skb->len - orig_len;
1305}
1306EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307
1308static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309 gfp_t gfp_mask)
1310{
1311 if (skb_zcopy(orig)) {
1312 if (skb_zcopy(nskb)) {
1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314 if (!gfp_mask) {
1315 WARN_ON_ONCE(1);
1316 return -ENOMEM;
1317 }
1318 if (skb_uarg(nskb) == skb_uarg(orig))
1319 return 0;
1320 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321 return -EIO;
1322 }
1323 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324 }
1325 return 0;
1326}
1327
1328/**
1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1330 * @skb: the skb to modify
1331 * @gfp_mask: allocation priority
1332 *
1333 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1334 * It will copy all frags into kernel and drop the reference
1335 * to userspace pages.
1336 *
1337 * If this function is called from an interrupt gfp_mask() must be
1338 * %GFP_ATOMIC.
1339 *
1340 * Returns 0 on success or a negative error code on failure
1341 * to allocate kernel memory to copy to.
1342 */
1343int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344{
1345 int num_frags = skb_shinfo(skb)->nr_frags;
1346 struct page *page, *head = NULL;
1347 int i, new_frags;
1348 u32 d_off;
1349
1350 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351 return -EINVAL;
1352
1353 if (!num_frags)
1354 goto release;
1355
1356 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357 for (i = 0; i < new_frags; i++) {
1358 page = alloc_page(gfp_mask);
1359 if (!page) {
1360 while (head) {
1361 struct page *next = (struct page *)page_private(head);
1362 put_page(head);
1363 head = next;
1364 }
1365 return -ENOMEM;
1366 }
1367 set_page_private(page, (unsigned long)head);
1368 head = page;
1369 }
1370
1371 page = head;
1372 d_off = 0;
1373 for (i = 0; i < num_frags; i++) {
1374 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375 u32 p_off, p_len, copied;
1376 struct page *p;
1377 u8 *vaddr;
1378
1379 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380 p, p_off, p_len, copied) {
1381 u32 copy, done = 0;
1382 vaddr = kmap_atomic(p);
1383
1384 while (done < p_len) {
1385 if (d_off == PAGE_SIZE) {
1386 d_off = 0;
1387 page = (struct page *)page_private(page);
1388 }
1389 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390 memcpy(page_address(page) + d_off,
1391 vaddr + p_off + done, copy);
1392 done += copy;
1393 d_off += copy;
1394 }
1395 kunmap_atomic(vaddr);
1396 }
1397 }
1398
1399 /* skb frags release userspace buffers */
1400 for (i = 0; i < num_frags; i++)
1401 skb_frag_unref(skb, i);
1402
1403 /* skb frags point to kernel buffers */
1404 for (i = 0; i < new_frags - 1; i++) {
1405 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406 head = (struct page *)page_private(head);
1407 }
1408 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409 skb_shinfo(skb)->nr_frags = new_frags;
1410
1411release:
1412 skb_zcopy_clear(skb, false);
1413 return 0;
1414}
1415EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416
1417/**
1418 * skb_clone - duplicate an sk_buff
1419 * @skb: buffer to clone
1420 * @gfp_mask: allocation priority
1421 *
1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423 * copies share the same packet data but not structure. The new
1424 * buffer has a reference count of 1. If the allocation fails the
1425 * function returns %NULL otherwise the new buffer is returned.
1426 *
1427 * If this function is called from an interrupt gfp_mask() must be
1428 * %GFP_ATOMIC.
1429 */
1430
1431struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432{
1433 struct sk_buff_fclones *fclones = container_of(skb,
1434 struct sk_buff_fclones,
1435 skb1);
1436 struct sk_buff *n;
1437
1438 if (skb_orphan_frags(skb, gfp_mask))
1439 return NULL;
1440
1441 if (skb->fclone == SKB_FCLONE_ORIG &&
1442 refcount_read(&fclones->fclone_ref) == 1) {
1443 n = &fclones->skb2;
1444 refcount_set(&fclones->fclone_ref, 2);
1445 } else {
1446 if (skb_pfmemalloc(skb))
1447 gfp_mask |= __GFP_MEMALLOC;
1448
1449 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450 if (!n)
1451 return NULL;
1452
1453 n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 }
1455
1456 return __skb_clone(n, skb);
1457}
1458EXPORT_SYMBOL(skb_clone);
1459
1460void skb_headers_offset_update(struct sk_buff *skb, int off)
1461{
1462 /* Only adjust this if it actually is csum_start rather than csum */
1463 if (skb->ip_summed == CHECKSUM_PARTIAL)
1464 skb->csum_start += off;
1465 /* {transport,network,mac}_header and tail are relative to skb->head */
1466 skb->transport_header += off;
1467 skb->network_header += off;
1468 if (skb_mac_header_was_set(skb))
1469 skb->mac_header += off;
1470 skb->inner_transport_header += off;
1471 skb->inner_network_header += off;
1472 skb->inner_mac_header += off;
1473}
1474EXPORT_SYMBOL(skb_headers_offset_update);
1475
1476void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477{
1478 __copy_skb_header(new, old);
1479
1480 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483}
1484EXPORT_SYMBOL(skb_copy_header);
1485
1486static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487{
1488 if (skb_pfmemalloc(skb))
1489 return SKB_ALLOC_RX;
1490 return 0;
1491}
1492
1493/**
1494 * skb_copy - create private copy of an sk_buff
1495 * @skb: buffer to copy
1496 * @gfp_mask: allocation priority
1497 *
1498 * Make a copy of both an &sk_buff and its data. This is used when the
1499 * caller wishes to modify the data and needs a private copy of the
1500 * data to alter. Returns %NULL on failure or the pointer to the buffer
1501 * on success. The returned buffer has a reference count of 1.
1502 *
1503 * As by-product this function converts non-linear &sk_buff to linear
1504 * one, so that &sk_buff becomes completely private and caller is allowed
1505 * to modify all the data of returned buffer. This means that this
1506 * function is not recommended for use in circumstances when only
1507 * header is going to be modified. Use pskb_copy() instead.
1508 */
1509
1510struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511{
1512 int headerlen = skb_headroom(skb);
1513 unsigned int size = skb_end_offset(skb) + skb->data_len;
1514 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516
1517 if (!n)
1518 return NULL;
1519
1520 /* Set the data pointer */
1521 skb_reserve(n, headerlen);
1522 /* Set the tail pointer and length */
1523 skb_put(n, skb->len);
1524
1525 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526
1527 skb_copy_header(n, skb);
1528 return n;
1529}
1530EXPORT_SYMBOL(skb_copy);
1531
1532/**
1533 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1534 * @skb: buffer to copy
1535 * @headroom: headroom of new skb
1536 * @gfp_mask: allocation priority
1537 * @fclone: if true allocate the copy of the skb from the fclone
1538 * cache instead of the head cache; it is recommended to set this
1539 * to true for the cases where the copy will likely be cloned
1540 *
1541 * Make a copy of both an &sk_buff and part of its data, located
1542 * in header. Fragmented data remain shared. This is used when
1543 * the caller wishes to modify only header of &sk_buff and needs
1544 * private copy of the header to alter. Returns %NULL on failure
1545 * or the pointer to the buffer on success.
1546 * The returned buffer has a reference count of 1.
1547 */
1548
1549struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550 gfp_t gfp_mask, bool fclone)
1551{
1552 unsigned int size = skb_headlen(skb) + headroom;
1553 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555
1556 if (!n)
1557 goto out;
1558
1559 /* Set the data pointer */
1560 skb_reserve(n, headroom);
1561 /* Set the tail pointer and length */
1562 skb_put(n, skb_headlen(skb));
1563 /* Copy the bytes */
1564 skb_copy_from_linear_data(skb, n->data, n->len);
1565
1566 n->truesize += skb->data_len;
1567 n->data_len = skb->data_len;
1568 n->len = skb->len;
1569
1570 if (skb_shinfo(skb)->nr_frags) {
1571 int i;
1572
1573 if (skb_orphan_frags(skb, gfp_mask) ||
1574 skb_zerocopy_clone(n, skb, gfp_mask)) {
1575 kfree_skb(n);
1576 n = NULL;
1577 goto out;
1578 }
1579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581 skb_frag_ref(skb, i);
1582 }
1583 skb_shinfo(n)->nr_frags = i;
1584 }
1585
1586 if (skb_has_frag_list(skb)) {
1587 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588 skb_clone_fraglist(n);
1589 }
1590
1591 skb_copy_header(n, skb);
1592out:
1593 return n;
1594}
1595EXPORT_SYMBOL(__pskb_copy_fclone);
1596
1597/**
1598 * pskb_expand_head - reallocate header of &sk_buff
1599 * @skb: buffer to reallocate
1600 * @nhead: room to add at head
1601 * @ntail: room to add at tail
1602 * @gfp_mask: allocation priority
1603 *
1604 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606 * reference count of 1. Returns zero in the case of success or error,
1607 * if expansion failed. In the last case, &sk_buff is not changed.
1608 *
1609 * All the pointers pointing into skb header may change and must be
1610 * reloaded after call to this function.
1611 */
1612
1613int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614 gfp_t gfp_mask)
1615{
1616 int i, osize = skb_end_offset(skb);
1617 int size = osize + nhead + ntail;
1618 long off;
1619 u8 *data;
1620
1621 BUG_ON(nhead < 0);
1622
1623 BUG_ON(skb_shared(skb));
1624
1625 size = SKB_DATA_ALIGN(size);
1626
1627 if (skb_pfmemalloc(skb))
1628 gfp_mask |= __GFP_MEMALLOC;
1629 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630 gfp_mask, NUMA_NO_NODE, NULL);
1631 if (!data)
1632 goto nodata;
1633 size = SKB_WITH_OVERHEAD(ksize(data));
1634
1635 /* Copy only real data... and, alas, header. This should be
1636 * optimized for the cases when header is void.
1637 */
1638 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639
1640 memcpy((struct skb_shared_info *)(data + size),
1641 skb_shinfo(skb),
1642 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643
1644 /*
1645 * if shinfo is shared we must drop the old head gracefully, but if it
1646 * is not we can just drop the old head and let the existing refcount
1647 * be since all we did is relocate the values
1648 */
1649 if (skb_cloned(skb)) {
1650 if (skb_orphan_frags(skb, gfp_mask))
1651 goto nofrags;
1652 if (skb_zcopy(skb))
1653 refcount_inc(&skb_uarg(skb)->refcnt);
1654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655 skb_frag_ref(skb, i);
1656
1657 if (skb_has_frag_list(skb))
1658 skb_clone_fraglist(skb);
1659
1660 skb_release_data(skb);
1661 } else {
1662 skb_free_head(skb);
1663 }
1664 off = (data + nhead) - skb->head;
1665
1666 skb->head = data;
1667 skb->head_frag = 0;
1668 skb->data += off;
1669#ifdef NET_SKBUFF_DATA_USES_OFFSET
1670 skb->end = size;
1671 off = nhead;
1672#else
1673 skb->end = skb->head + size;
1674#endif
1675 skb->tail += off;
1676 skb_headers_offset_update(skb, nhead);
1677 skb->cloned = 0;
1678 skb->hdr_len = 0;
1679 skb->nohdr = 0;
1680 atomic_set(&skb_shinfo(skb)->dataref, 1);
1681
1682 skb_metadata_clear(skb);
1683
1684 /* It is not generally safe to change skb->truesize.
1685 * For the moment, we really care of rx path, or
1686 * when skb is orphaned (not attached to a socket).
1687 */
1688 if (!skb->sk || skb->destructor == sock_edemux)
1689 skb->truesize += size - osize;
1690
1691 return 0;
1692
1693nofrags:
1694 kfree(data);
1695nodata:
1696 return -ENOMEM;
1697}
1698EXPORT_SYMBOL(pskb_expand_head);
1699
1700/* Make private copy of skb with writable head and some headroom */
1701
1702struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703{
1704 struct sk_buff *skb2;
1705 int delta = headroom - skb_headroom(skb);
1706
1707 if (delta <= 0)
1708 skb2 = pskb_copy(skb, GFP_ATOMIC);
1709 else {
1710 skb2 = skb_clone(skb, GFP_ATOMIC);
1711 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712 GFP_ATOMIC)) {
1713 kfree_skb(skb2);
1714 skb2 = NULL;
1715 }
1716 }
1717 return skb2;
1718}
1719EXPORT_SYMBOL(skb_realloc_headroom);
1720
1721/**
1722 * skb_copy_expand - copy and expand sk_buff
1723 * @skb: buffer to copy
1724 * @newheadroom: new free bytes at head
1725 * @newtailroom: new free bytes at tail
1726 * @gfp_mask: allocation priority
1727 *
1728 * Make a copy of both an &sk_buff and its data and while doing so
1729 * allocate additional space.
1730 *
1731 * This is used when the caller wishes to modify the data and needs a
1732 * private copy of the data to alter as well as more space for new fields.
1733 * Returns %NULL on failure or the pointer to the buffer
1734 * on success. The returned buffer has a reference count of 1.
1735 *
1736 * You must pass %GFP_ATOMIC as the allocation priority if this function
1737 * is called from an interrupt.
1738 */
1739struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740 int newheadroom, int newtailroom,
1741 gfp_t gfp_mask)
1742{
1743 /*
1744 * Allocate the copy buffer
1745 */
1746 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747 gfp_mask, skb_alloc_rx_flag(skb),
1748 NUMA_NO_NODE);
1749 int oldheadroom = skb_headroom(skb);
1750 int head_copy_len, head_copy_off;
1751
1752 if (!n)
1753 return NULL;
1754
1755 skb_reserve(n, newheadroom);
1756
1757 /* Set the tail pointer and length */
1758 skb_put(n, skb->len);
1759
1760 head_copy_len = oldheadroom;
1761 head_copy_off = 0;
1762 if (newheadroom <= head_copy_len)
1763 head_copy_len = newheadroom;
1764 else
1765 head_copy_off = newheadroom - head_copy_len;
1766
1767 /* Copy the linear header and data. */
1768 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769 skb->len + head_copy_len));
1770
1771 skb_copy_header(n, skb);
1772
1773 skb_headers_offset_update(n, newheadroom - oldheadroom);
1774
1775 return n;
1776}
1777EXPORT_SYMBOL(skb_copy_expand);
1778
1779/**
1780 * __skb_pad - zero pad the tail of an skb
1781 * @skb: buffer to pad
1782 * @pad: space to pad
1783 * @free_on_error: free buffer on error
1784 *
1785 * Ensure that a buffer is followed by a padding area that is zero
1786 * filled. Used by network drivers which may DMA or transfer data
1787 * beyond the buffer end onto the wire.
1788 *
1789 * May return error in out of memory cases. The skb is freed on error
1790 * if @free_on_error is true.
1791 */
1792
1793int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794{
1795 int err;
1796 int ntail;
1797
1798 /* If the skbuff is non linear tailroom is always zero.. */
1799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800 memset(skb->data+skb->len, 0, pad);
1801 return 0;
1802 }
1803
1804 ntail = skb->data_len + pad - (skb->end - skb->tail);
1805 if (likely(skb_cloned(skb) || ntail > 0)) {
1806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807 if (unlikely(err))
1808 goto free_skb;
1809 }
1810
1811 /* FIXME: The use of this function with non-linear skb's really needs
1812 * to be audited.
1813 */
1814 err = skb_linearize(skb);
1815 if (unlikely(err))
1816 goto free_skb;
1817
1818 memset(skb->data + skb->len, 0, pad);
1819 return 0;
1820
1821free_skb:
1822 if (free_on_error)
1823 kfree_skb(skb);
1824 return err;
1825}
1826EXPORT_SYMBOL(__skb_pad);
1827
1828/**
1829 * pskb_put - add data to the tail of a potentially fragmented buffer
1830 * @skb: start of the buffer to use
1831 * @tail: tail fragment of the buffer to use
1832 * @len: amount of data to add
1833 *
1834 * This function extends the used data area of the potentially
1835 * fragmented buffer. @tail must be the last fragment of @skb -- or
1836 * @skb itself. If this would exceed the total buffer size the kernel
1837 * will panic. A pointer to the first byte of the extra data is
1838 * returned.
1839 */
1840
1841void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842{
1843 if (tail != skb) {
1844 skb->data_len += len;
1845 skb->len += len;
1846 }
1847 return skb_put(tail, len);
1848}
1849EXPORT_SYMBOL_GPL(pskb_put);
1850
1851/**
1852 * skb_put - add data to a buffer
1853 * @skb: buffer to use
1854 * @len: amount of data to add
1855 *
1856 * This function extends the used data area of the buffer. If this would
1857 * exceed the total buffer size the kernel will panic. A pointer to the
1858 * first byte of the extra data is returned.
1859 */
1860void *skb_put(struct sk_buff *skb, unsigned int len)
1861{
1862 void *tmp = skb_tail_pointer(skb);
1863 SKB_LINEAR_ASSERT(skb);
1864 skb->tail += len;
1865 skb->len += len;
1866 if (unlikely(skb->tail > skb->end))
1867 skb_over_panic(skb, len, __builtin_return_address(0));
1868 return tmp;
1869}
1870EXPORT_SYMBOL(skb_put);
1871
1872/**
1873 * skb_push - add data to the start of a buffer
1874 * @skb: buffer to use
1875 * @len: amount of data to add
1876 *
1877 * This function extends the used data area of the buffer at the buffer
1878 * start. If this would exceed the total buffer headroom the kernel will
1879 * panic. A pointer to the first byte of the extra data is returned.
1880 */
1881void *skb_push(struct sk_buff *skb, unsigned int len)
1882{
1883 skb->data -= len;
1884 skb->len += len;
1885 if (unlikely(skb->data < skb->head))
1886 skb_under_panic(skb, len, __builtin_return_address(0));
1887 return skb->data;
1888}
1889EXPORT_SYMBOL(skb_push);
1890
1891/**
1892 * skb_pull - remove data from the start of a buffer
1893 * @skb: buffer to use
1894 * @len: amount of data to remove
1895 *
1896 * This function removes data from the start of a buffer, returning
1897 * the memory to the headroom. A pointer to the next data in the buffer
1898 * is returned. Once the data has been pulled future pushes will overwrite
1899 * the old data.
1900 */
1901void *skb_pull(struct sk_buff *skb, unsigned int len)
1902{
1903 return skb_pull_inline(skb, len);
1904}
1905EXPORT_SYMBOL(skb_pull);
1906
1907/**
1908 * skb_trim - remove end from a buffer
1909 * @skb: buffer to alter
1910 * @len: new length
1911 *
1912 * Cut the length of a buffer down by removing data from the tail. If
1913 * the buffer is already under the length specified it is not modified.
1914 * The skb must be linear.
1915 */
1916void skb_trim(struct sk_buff *skb, unsigned int len)
1917{
1918 if (skb->len > len)
1919 __skb_trim(skb, len);
1920}
1921EXPORT_SYMBOL(skb_trim);
1922
1923/* Trims skb to length len. It can change skb pointers.
1924 */
1925
1926int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927{
1928 struct sk_buff **fragp;
1929 struct sk_buff *frag;
1930 int offset = skb_headlen(skb);
1931 int nfrags = skb_shinfo(skb)->nr_frags;
1932 int i;
1933 int err;
1934
1935 if (skb_cloned(skb) &&
1936 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937 return err;
1938
1939 i = 0;
1940 if (offset >= len)
1941 goto drop_pages;
1942
1943 for (; i < nfrags; i++) {
1944 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945
1946 if (end < len) {
1947 offset = end;
1948 continue;
1949 }
1950
1951 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952
1953drop_pages:
1954 skb_shinfo(skb)->nr_frags = i;
1955
1956 for (; i < nfrags; i++)
1957 skb_frag_unref(skb, i);
1958
1959 if (skb_has_frag_list(skb))
1960 skb_drop_fraglist(skb);
1961 goto done;
1962 }
1963
1964 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965 fragp = &frag->next) {
1966 int end = offset + frag->len;
1967
1968 if (skb_shared(frag)) {
1969 struct sk_buff *nfrag;
1970
1971 nfrag = skb_clone(frag, GFP_ATOMIC);
1972 if (unlikely(!nfrag))
1973 return -ENOMEM;
1974
1975 nfrag->next = frag->next;
1976 consume_skb(frag);
1977 frag = nfrag;
1978 *fragp = frag;
1979 }
1980
1981 if (end < len) {
1982 offset = end;
1983 continue;
1984 }
1985
1986 if (end > len &&
1987 unlikely((err = pskb_trim(frag, len - offset))))
1988 return err;
1989
1990 if (frag->next)
1991 skb_drop_list(&frag->next);
1992 break;
1993 }
1994
1995done:
1996 if (len > skb_headlen(skb)) {
1997 skb->data_len -= skb->len - len;
1998 skb->len = len;
1999 } else {
2000 skb->len = len;
2001 skb->data_len = 0;
2002 skb_set_tail_pointer(skb, len);
2003 }
2004
2005 if (!skb->sk || skb->destructor == sock_edemux)
2006 skb_condense(skb);
2007 return 0;
2008}
2009EXPORT_SYMBOL(___pskb_trim);
2010
2011/* Note : use pskb_trim_rcsum() instead of calling this directly
2012 */
2013int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014{
2015 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016 int delta = skb->len - len;
2017
2018 skb->csum = csum_block_sub(skb->csum,
2019 skb_checksum(skb, len, delta, 0),
2020 len);
2021 }
2022 return __pskb_trim(skb, len);
2023}
2024EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025
2026/**
2027 * __pskb_pull_tail - advance tail of skb header
2028 * @skb: buffer to reallocate
2029 * @delta: number of bytes to advance tail
2030 *
2031 * The function makes a sense only on a fragmented &sk_buff,
2032 * it expands header moving its tail forward and copying necessary
2033 * data from fragmented part.
2034 *
2035 * &sk_buff MUST have reference count of 1.
2036 *
2037 * Returns %NULL (and &sk_buff does not change) if pull failed
2038 * or value of new tail of skb in the case of success.
2039 *
2040 * All the pointers pointing into skb header may change and must be
2041 * reloaded after call to this function.
2042 */
2043
2044/* Moves tail of skb head forward, copying data from fragmented part,
2045 * when it is necessary.
2046 * 1. It may fail due to malloc failure.
2047 * 2. It may change skb pointers.
2048 *
2049 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050 */
2051void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052{
2053 /* If skb has not enough free space at tail, get new one
2054 * plus 128 bytes for future expansions. If we have enough
2055 * room at tail, reallocate without expansion only if skb is cloned.
2056 */
2057 int i, k, eat = (skb->tail + delta) - skb->end;
2058
2059 if (eat > 0 || skb_cloned(skb)) {
2060 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061 GFP_ATOMIC))
2062 return NULL;
2063 }
2064
2065 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066 skb_tail_pointer(skb), delta));
2067
2068 /* Optimization: no fragments, no reasons to preestimate
2069 * size of pulled pages. Superb.
2070 */
2071 if (!skb_has_frag_list(skb))
2072 goto pull_pages;
2073
2074 /* Estimate size of pulled pages. */
2075 eat = delta;
2076 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078
2079 if (size >= eat)
2080 goto pull_pages;
2081 eat -= size;
2082 }
2083
2084 /* If we need update frag list, we are in troubles.
2085 * Certainly, it is possible to add an offset to skb data,
2086 * but taking into account that pulling is expected to
2087 * be very rare operation, it is worth to fight against
2088 * further bloating skb head and crucify ourselves here instead.
2089 * Pure masohism, indeed. 8)8)
2090 */
2091 if (eat) {
2092 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093 struct sk_buff *clone = NULL;
2094 struct sk_buff *insp = NULL;
2095
2096 do {
2097 if (list->len <= eat) {
2098 /* Eaten as whole. */
2099 eat -= list->len;
2100 list = list->next;
2101 insp = list;
2102 } else {
2103 /* Eaten partially. */
2104
2105 if (skb_shared(list)) {
2106 /* Sucks! We need to fork list. :-( */
2107 clone = skb_clone(list, GFP_ATOMIC);
2108 if (!clone)
2109 return NULL;
2110 insp = list->next;
2111 list = clone;
2112 } else {
2113 /* This may be pulled without
2114 * problems. */
2115 insp = list;
2116 }
2117 if (!pskb_pull(list, eat)) {
2118 kfree_skb(clone);
2119 return NULL;
2120 }
2121 break;
2122 }
2123 } while (eat);
2124
2125 /* Free pulled out fragments. */
2126 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127 skb_shinfo(skb)->frag_list = list->next;
2128 kfree_skb(list);
2129 }
2130 /* And insert new clone at head. */
2131 if (clone) {
2132 clone->next = list;
2133 skb_shinfo(skb)->frag_list = clone;
2134 }
2135 }
2136 /* Success! Now we may commit changes to skb data. */
2137
2138pull_pages:
2139 eat = delta;
2140 k = 0;
2141 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143
2144 if (size <= eat) {
2145 skb_frag_unref(skb, i);
2146 eat -= size;
2147 } else {
2148 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149
2150 *frag = skb_shinfo(skb)->frags[i];
2151 if (eat) {
2152 skb_frag_off_add(frag, eat);
2153 skb_frag_size_sub(frag, eat);
2154 if (!i)
2155 goto end;
2156 eat = 0;
2157 }
2158 k++;
2159 }
2160 }
2161 skb_shinfo(skb)->nr_frags = k;
2162
2163end:
2164 skb->tail += delta;
2165 skb->data_len -= delta;
2166
2167 if (!skb->data_len)
2168 skb_zcopy_clear(skb, false);
2169
2170 return skb_tail_pointer(skb);
2171}
2172EXPORT_SYMBOL(__pskb_pull_tail);
2173
2174/**
2175 * skb_copy_bits - copy bits from skb to kernel buffer
2176 * @skb: source skb
2177 * @offset: offset in source
2178 * @to: destination buffer
2179 * @len: number of bytes to copy
2180 *
2181 * Copy the specified number of bytes from the source skb to the
2182 * destination buffer.
2183 *
2184 * CAUTION ! :
2185 * If its prototype is ever changed,
2186 * check arch/{*}/net/{*}.S files,
2187 * since it is called from BPF assembly code.
2188 */
2189int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190{
2191 int start = skb_headlen(skb);
2192 struct sk_buff *frag_iter;
2193 int i, copy;
2194
2195 if (offset > (int)skb->len - len)
2196 goto fault;
2197
2198 /* Copy header. */
2199 if ((copy = start - offset) > 0) {
2200 if (copy > len)
2201 copy = len;
2202 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203 if ((len -= copy) == 0)
2204 return 0;
2205 offset += copy;
2206 to += copy;
2207 }
2208
2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 int end;
2211 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212
2213 WARN_ON(start > offset + len);
2214
2215 end = start + skb_frag_size(f);
2216 if ((copy = end - offset) > 0) {
2217 u32 p_off, p_len, copied;
2218 struct page *p;
2219 u8 *vaddr;
2220
2221 if (copy > len)
2222 copy = len;
2223
2224 skb_frag_foreach_page(f,
2225 skb_frag_off(f) + offset - start,
2226 copy, p, p_off, p_len, copied) {
2227 vaddr = kmap_atomic(p);
2228 memcpy(to + copied, vaddr + p_off, p_len);
2229 kunmap_atomic(vaddr);
2230 }
2231
2232 if ((len -= copy) == 0)
2233 return 0;
2234 offset += copy;
2235 to += copy;
2236 }
2237 start = end;
2238 }
2239
2240 skb_walk_frags(skb, frag_iter) {
2241 int end;
2242
2243 WARN_ON(start > offset + len);
2244
2245 end = start + frag_iter->len;
2246 if ((copy = end - offset) > 0) {
2247 if (copy > len)
2248 copy = len;
2249 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250 goto fault;
2251 if ((len -= copy) == 0)
2252 return 0;
2253 offset += copy;
2254 to += copy;
2255 }
2256 start = end;
2257 }
2258
2259 if (!len)
2260 return 0;
2261
2262fault:
2263 return -EFAULT;
2264}
2265EXPORT_SYMBOL(skb_copy_bits);
2266
2267/*
2268 * Callback from splice_to_pipe(), if we need to release some pages
2269 * at the end of the spd in case we error'ed out in filling the pipe.
2270 */
2271static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272{
2273 put_page(spd->pages[i]);
2274}
2275
2276static struct page *linear_to_page(struct page *page, unsigned int *len,
2277 unsigned int *offset,
2278 struct sock *sk)
2279{
2280 struct page_frag *pfrag = sk_page_frag(sk);
2281
2282 if (!sk_page_frag_refill(sk, pfrag))
2283 return NULL;
2284
2285 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2286
2287 memcpy(page_address(pfrag->page) + pfrag->offset,
2288 page_address(page) + *offset, *len);
2289 *offset = pfrag->offset;
2290 pfrag->offset += *len;
2291
2292 return pfrag->page;
2293}
2294
2295static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296 struct page *page,
2297 unsigned int offset)
2298{
2299 return spd->nr_pages &&
2300 spd->pages[spd->nr_pages - 1] == page &&
2301 (spd->partial[spd->nr_pages - 1].offset +
2302 spd->partial[spd->nr_pages - 1].len == offset);
2303}
2304
2305/*
2306 * Fill page/offset/length into spd, if it can hold more pages.
2307 */
2308static bool spd_fill_page(struct splice_pipe_desc *spd,
2309 struct pipe_inode_info *pipe, struct page *page,
2310 unsigned int *len, unsigned int offset,
2311 bool linear,
2312 struct sock *sk)
2313{
2314 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315 return true;
2316
2317 if (linear) {
2318 page = linear_to_page(page, len, &offset, sk);
2319 if (!page)
2320 return true;
2321 }
2322 if (spd_can_coalesce(spd, page, offset)) {
2323 spd->partial[spd->nr_pages - 1].len += *len;
2324 return false;
2325 }
2326 get_page(page);
2327 spd->pages[spd->nr_pages] = page;
2328 spd->partial[spd->nr_pages].len = *len;
2329 spd->partial[spd->nr_pages].offset = offset;
2330 spd->nr_pages++;
2331
2332 return false;
2333}
2334
2335static bool __splice_segment(struct page *page, unsigned int poff,
2336 unsigned int plen, unsigned int *off,
2337 unsigned int *len,
2338 struct splice_pipe_desc *spd, bool linear,
2339 struct sock *sk,
2340 struct pipe_inode_info *pipe)
2341{
2342 if (!*len)
2343 return true;
2344
2345 /* skip this segment if already processed */
2346 if (*off >= plen) {
2347 *off -= plen;
2348 return false;
2349 }
2350
2351 /* ignore any bits we already processed */
2352 poff += *off;
2353 plen -= *off;
2354 *off = 0;
2355
2356 do {
2357 unsigned int flen = min(*len, plen);
2358
2359 if (spd_fill_page(spd, pipe, page, &flen, poff,
2360 linear, sk))
2361 return true;
2362 poff += flen;
2363 plen -= flen;
2364 *len -= flen;
2365 } while (*len && plen);
2366
2367 return false;
2368}
2369
2370/*
2371 * Map linear and fragment data from the skb to spd. It reports true if the
2372 * pipe is full or if we already spliced the requested length.
2373 */
2374static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375 unsigned int *offset, unsigned int *len,
2376 struct splice_pipe_desc *spd, struct sock *sk)
2377{
2378 int seg;
2379 struct sk_buff *iter;
2380
2381 /* map the linear part :
2382 * If skb->head_frag is set, this 'linear' part is backed by a
2383 * fragment, and if the head is not shared with any clones then
2384 * we can avoid a copy since we own the head portion of this page.
2385 */
2386 if (__splice_segment(virt_to_page(skb->data),
2387 (unsigned long) skb->data & (PAGE_SIZE - 1),
2388 skb_headlen(skb),
2389 offset, len, spd,
2390 skb_head_is_locked(skb),
2391 sk, pipe))
2392 return true;
2393
2394 /*
2395 * then map the fragments
2396 */
2397 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399
2400 if (__splice_segment(skb_frag_page(f),
2401 skb_frag_off(f), skb_frag_size(f),
2402 offset, len, spd, false, sk, pipe))
2403 return true;
2404 }
2405
2406 skb_walk_frags(skb, iter) {
2407 if (*offset >= iter->len) {
2408 *offset -= iter->len;
2409 continue;
2410 }
2411 /* __skb_splice_bits() only fails if the output has no room
2412 * left, so no point in going over the frag_list for the error
2413 * case.
2414 */
2415 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416 return true;
2417 }
2418
2419 return false;
2420}
2421
2422/*
2423 * Map data from the skb to a pipe. Should handle both the linear part,
2424 * the fragments, and the frag list.
2425 */
2426int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427 struct pipe_inode_info *pipe, unsigned int tlen,
2428 unsigned int flags)
2429{
2430 struct partial_page partial[MAX_SKB_FRAGS];
2431 struct page *pages[MAX_SKB_FRAGS];
2432 struct splice_pipe_desc spd = {
2433 .pages = pages,
2434 .partial = partial,
2435 .nr_pages_max = MAX_SKB_FRAGS,
2436 .ops = &nosteal_pipe_buf_ops,
2437 .spd_release = sock_spd_release,
2438 };
2439 int ret = 0;
2440
2441 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2442
2443 if (spd.nr_pages)
2444 ret = splice_to_pipe(pipe, &spd);
2445
2446 return ret;
2447}
2448EXPORT_SYMBOL_GPL(skb_splice_bits);
2449
2450/* Send skb data on a socket. Socket must be locked. */
2451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452 int len)
2453{
2454 unsigned int orig_len = len;
2455 struct sk_buff *head = skb;
2456 unsigned short fragidx;
2457 int slen, ret;
2458
2459do_frag_list:
2460
2461 /* Deal with head data */
2462 while (offset < skb_headlen(skb) && len) {
2463 struct kvec kv;
2464 struct msghdr msg;
2465
2466 slen = min_t(int, len, skb_headlen(skb) - offset);
2467 kv.iov_base = skb->data + offset;
2468 kv.iov_len = slen;
2469 memset(&msg, 0, sizeof(msg));
2470 msg.msg_flags = MSG_DONTWAIT;
2471
2472 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473 if (ret <= 0)
2474 goto error;
2475
2476 offset += ret;
2477 len -= ret;
2478 }
2479
2480 /* All the data was skb head? */
2481 if (!len)
2482 goto out;
2483
2484 /* Make offset relative to start of frags */
2485 offset -= skb_headlen(skb);
2486
2487 /* Find where we are in frag list */
2488 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2490
2491 if (offset < skb_frag_size(frag))
2492 break;
2493
2494 offset -= skb_frag_size(frag);
2495 }
2496
2497 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2499
2500 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501
2502 while (slen) {
2503 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504 skb_frag_off(frag) + offset,
2505 slen, MSG_DONTWAIT);
2506 if (ret <= 0)
2507 goto error;
2508
2509 len -= ret;
2510 offset += ret;
2511 slen -= ret;
2512 }
2513
2514 offset = 0;
2515 }
2516
2517 if (len) {
2518 /* Process any frag lists */
2519
2520 if (skb == head) {
2521 if (skb_has_frag_list(skb)) {
2522 skb = skb_shinfo(skb)->frag_list;
2523 goto do_frag_list;
2524 }
2525 } else if (skb->next) {
2526 skb = skb->next;
2527 goto do_frag_list;
2528 }
2529 }
2530
2531out:
2532 return orig_len - len;
2533
2534error:
2535 return orig_len == len ? ret : orig_len - len;
2536}
2537EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538
2539/**
2540 * skb_store_bits - store bits from kernel buffer to skb
2541 * @skb: destination buffer
2542 * @offset: offset in destination
2543 * @from: source buffer
2544 * @len: number of bytes to copy
2545 *
2546 * Copy the specified number of bytes from the source buffer to the
2547 * destination skb. This function handles all the messy bits of
2548 * traversing fragment lists and such.
2549 */
2550
2551int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552{
2553 int start = skb_headlen(skb);
2554 struct sk_buff *frag_iter;
2555 int i, copy;
2556
2557 if (offset > (int)skb->len - len)
2558 goto fault;
2559
2560 if ((copy = start - offset) > 0) {
2561 if (copy > len)
2562 copy = len;
2563 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564 if ((len -= copy) == 0)
2565 return 0;
2566 offset += copy;
2567 from += copy;
2568 }
2569
2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572 int end;
2573
2574 WARN_ON(start > offset + len);
2575
2576 end = start + skb_frag_size(frag);
2577 if ((copy = end - offset) > 0) {
2578 u32 p_off, p_len, copied;
2579 struct page *p;
2580 u8 *vaddr;
2581
2582 if (copy > len)
2583 copy = len;
2584
2585 skb_frag_foreach_page(frag,
2586 skb_frag_off(frag) + offset - start,
2587 copy, p, p_off, p_len, copied) {
2588 vaddr = kmap_atomic(p);
2589 memcpy(vaddr + p_off, from + copied, p_len);
2590 kunmap_atomic(vaddr);
2591 }
2592
2593 if ((len -= copy) == 0)
2594 return 0;
2595 offset += copy;
2596 from += copy;
2597 }
2598 start = end;
2599 }
2600
2601 skb_walk_frags(skb, frag_iter) {
2602 int end;
2603
2604 WARN_ON(start > offset + len);
2605
2606 end = start + frag_iter->len;
2607 if ((copy = end - offset) > 0) {
2608 if (copy > len)
2609 copy = len;
2610 if (skb_store_bits(frag_iter, offset - start,
2611 from, copy))
2612 goto fault;
2613 if ((len -= copy) == 0)
2614 return 0;
2615 offset += copy;
2616 from += copy;
2617 }
2618 start = end;
2619 }
2620 if (!len)
2621 return 0;
2622
2623fault:
2624 return -EFAULT;
2625}
2626EXPORT_SYMBOL(skb_store_bits);
2627
2628/* Checksum skb data. */
2629__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630 __wsum csum, const struct skb_checksum_ops *ops)
2631{
2632 int start = skb_headlen(skb);
2633 int i, copy = start - offset;
2634 struct sk_buff *frag_iter;
2635 int pos = 0;
2636
2637 /* Checksum header. */
2638 if (copy > 0) {
2639 if (copy > len)
2640 copy = len;
2641 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642 skb->data + offset, copy, csum);
2643 if ((len -= copy) == 0)
2644 return csum;
2645 offset += copy;
2646 pos = copy;
2647 }
2648
2649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650 int end;
2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652
2653 WARN_ON(start > offset + len);
2654
2655 end = start + skb_frag_size(frag);
2656 if ((copy = end - offset) > 0) {
2657 u32 p_off, p_len, copied;
2658 struct page *p;
2659 __wsum csum2;
2660 u8 *vaddr;
2661
2662 if (copy > len)
2663 copy = len;
2664
2665 skb_frag_foreach_page(frag,
2666 skb_frag_off(frag) + offset - start,
2667 copy, p, p_off, p_len, copied) {
2668 vaddr = kmap_atomic(p);
2669 csum2 = INDIRECT_CALL_1(ops->update,
2670 csum_partial_ext,
2671 vaddr + p_off, p_len, 0);
2672 kunmap_atomic(vaddr);
2673 csum = INDIRECT_CALL_1(ops->combine,
2674 csum_block_add_ext, csum,
2675 csum2, pos, p_len);
2676 pos += p_len;
2677 }
2678
2679 if (!(len -= copy))
2680 return csum;
2681 offset += copy;
2682 }
2683 start = end;
2684 }
2685
2686 skb_walk_frags(skb, frag_iter) {
2687 int end;
2688
2689 WARN_ON(start > offset + len);
2690
2691 end = start + frag_iter->len;
2692 if ((copy = end - offset) > 0) {
2693 __wsum csum2;
2694 if (copy > len)
2695 copy = len;
2696 csum2 = __skb_checksum(frag_iter, offset - start,
2697 copy, 0, ops);
2698 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699 csum, csum2, pos, copy);
2700 if ((len -= copy) == 0)
2701 return csum;
2702 offset += copy;
2703 pos += copy;
2704 }
2705 start = end;
2706 }
2707 BUG_ON(len);
2708
2709 return csum;
2710}
2711EXPORT_SYMBOL(__skb_checksum);
2712
2713__wsum skb_checksum(const struct sk_buff *skb, int offset,
2714 int len, __wsum csum)
2715{
2716 const struct skb_checksum_ops ops = {
2717 .update = csum_partial_ext,
2718 .combine = csum_block_add_ext,
2719 };
2720
2721 return __skb_checksum(skb, offset, len, csum, &ops);
2722}
2723EXPORT_SYMBOL(skb_checksum);
2724
2725/* Both of above in one bottle. */
2726
2727__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728 u8 *to, int len, __wsum csum)
2729{
2730 int start = skb_headlen(skb);
2731 int i, copy = start - offset;
2732 struct sk_buff *frag_iter;
2733 int pos = 0;
2734
2735 /* Copy header. */
2736 if (copy > 0) {
2737 if (copy > len)
2738 copy = len;
2739 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2740 copy, csum);
2741 if ((len -= copy) == 0)
2742 return csum;
2743 offset += copy;
2744 to += copy;
2745 pos = copy;
2746 }
2747
2748 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749 int end;
2750
2751 WARN_ON(start > offset + len);
2752
2753 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2754 if ((copy = end - offset) > 0) {
2755 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756 u32 p_off, p_len, copied;
2757 struct page *p;
2758 __wsum csum2;
2759 u8 *vaddr;
2760
2761 if (copy > len)
2762 copy = len;
2763
2764 skb_frag_foreach_page(frag,
2765 skb_frag_off(frag) + offset - start,
2766 copy, p, p_off, p_len, copied) {
2767 vaddr = kmap_atomic(p);
2768 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2769 to + copied,
2770 p_len, 0);
2771 kunmap_atomic(vaddr);
2772 csum = csum_block_add(csum, csum2, pos);
2773 pos += p_len;
2774 }
2775
2776 if (!(len -= copy))
2777 return csum;
2778 offset += copy;
2779 to += copy;
2780 }
2781 start = end;
2782 }
2783
2784 skb_walk_frags(skb, frag_iter) {
2785 __wsum csum2;
2786 int end;
2787
2788 WARN_ON(start > offset + len);
2789
2790 end = start + frag_iter->len;
2791 if ((copy = end - offset) > 0) {
2792 if (copy > len)
2793 copy = len;
2794 csum2 = skb_copy_and_csum_bits(frag_iter,
2795 offset - start,
2796 to, copy, 0);
2797 csum = csum_block_add(csum, csum2, pos);
2798 if ((len -= copy) == 0)
2799 return csum;
2800 offset += copy;
2801 to += copy;
2802 pos += copy;
2803 }
2804 start = end;
2805 }
2806 BUG_ON(len);
2807 return csum;
2808}
2809EXPORT_SYMBOL(skb_copy_and_csum_bits);
2810
2811__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2812{
2813 __sum16 sum;
2814
2815 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2816 /* See comments in __skb_checksum_complete(). */
2817 if (likely(!sum)) {
2818 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2819 !skb->csum_complete_sw)
2820 netdev_rx_csum_fault(skb->dev, skb);
2821 }
2822 if (!skb_shared(skb))
2823 skb->csum_valid = !sum;
2824 return sum;
2825}
2826EXPORT_SYMBOL(__skb_checksum_complete_head);
2827
2828/* This function assumes skb->csum already holds pseudo header's checksum,
2829 * which has been changed from the hardware checksum, for example, by
2830 * __skb_checksum_validate_complete(). And, the original skb->csum must
2831 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2832 *
2833 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2834 * zero. The new checksum is stored back into skb->csum unless the skb is
2835 * shared.
2836 */
2837__sum16 __skb_checksum_complete(struct sk_buff *skb)
2838{
2839 __wsum csum;
2840 __sum16 sum;
2841
2842 csum = skb_checksum(skb, 0, skb->len, 0);
2843
2844 sum = csum_fold(csum_add(skb->csum, csum));
2845 /* This check is inverted, because we already knew the hardware
2846 * checksum is invalid before calling this function. So, if the
2847 * re-computed checksum is valid instead, then we have a mismatch
2848 * between the original skb->csum and skb_checksum(). This means either
2849 * the original hardware checksum is incorrect or we screw up skb->csum
2850 * when moving skb->data around.
2851 */
2852 if (likely(!sum)) {
2853 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2854 !skb->csum_complete_sw)
2855 netdev_rx_csum_fault(skb->dev, skb);
2856 }
2857
2858 if (!skb_shared(skb)) {
2859 /* Save full packet checksum */
2860 skb->csum = csum;
2861 skb->ip_summed = CHECKSUM_COMPLETE;
2862 skb->csum_complete_sw = 1;
2863 skb->csum_valid = !sum;
2864 }
2865
2866 return sum;
2867}
2868EXPORT_SYMBOL(__skb_checksum_complete);
2869
2870static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2871{
2872 net_warn_ratelimited(
2873 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2874 __func__);
2875 return 0;
2876}
2877
2878static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2879 int offset, int len)
2880{
2881 net_warn_ratelimited(
2882 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2883 __func__);
2884 return 0;
2885}
2886
2887static const struct skb_checksum_ops default_crc32c_ops = {
2888 .update = warn_crc32c_csum_update,
2889 .combine = warn_crc32c_csum_combine,
2890};
2891
2892const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2893 &default_crc32c_ops;
2894EXPORT_SYMBOL(crc32c_csum_stub);
2895
2896 /**
2897 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2898 * @from: source buffer
2899 *
2900 * Calculates the amount of linear headroom needed in the 'to' skb passed
2901 * into skb_zerocopy().
2902 */
2903unsigned int
2904skb_zerocopy_headlen(const struct sk_buff *from)
2905{
2906 unsigned int hlen = 0;
2907
2908 if (!from->head_frag ||
2909 skb_headlen(from) < L1_CACHE_BYTES ||
2910 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2911 hlen = skb_headlen(from);
2912
2913 if (skb_has_frag_list(from))
2914 hlen = from->len;
2915
2916 return hlen;
2917}
2918EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919
2920/**
2921 * skb_zerocopy - Zero copy skb to skb
2922 * @to: destination buffer
2923 * @from: source buffer
2924 * @len: number of bytes to copy from source buffer
2925 * @hlen: size of linear headroom in destination buffer
2926 *
2927 * Copies up to `len` bytes from `from` to `to` by creating references
2928 * to the frags in the source buffer.
2929 *
2930 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2931 * headroom in the `to` buffer.
2932 *
2933 * Return value:
2934 * 0: everything is OK
2935 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2936 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2937 */
2938int
2939skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2940{
2941 int i, j = 0;
2942 int plen = 0; /* length of skb->head fragment */
2943 int ret;
2944 struct page *page;
2945 unsigned int offset;
2946
2947 BUG_ON(!from->head_frag && !hlen);
2948
2949 /* dont bother with small payloads */
2950 if (len <= skb_tailroom(to))
2951 return skb_copy_bits(from, 0, skb_put(to, len), len);
2952
2953 if (hlen) {
2954 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2955 if (unlikely(ret))
2956 return ret;
2957 len -= hlen;
2958 } else {
2959 plen = min_t(int, skb_headlen(from), len);
2960 if (plen) {
2961 page = virt_to_head_page(from->head);
2962 offset = from->data - (unsigned char *)page_address(page);
2963 __skb_fill_page_desc(to, 0, page, offset, plen);
2964 get_page(page);
2965 j = 1;
2966 len -= plen;
2967 }
2968 }
2969
2970 to->truesize += len + plen;
2971 to->len += len + plen;
2972 to->data_len += len + plen;
2973
2974 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2975 skb_tx_error(from);
2976 return -ENOMEM;
2977 }
2978 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2979
2980 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2981 int size;
2982
2983 if (!len)
2984 break;
2985 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2986 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2987 len);
2988 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2989 len -= size;
2990 skb_frag_ref(to, j);
2991 j++;
2992 }
2993 skb_shinfo(to)->nr_frags = j;
2994
2995 return 0;
2996}
2997EXPORT_SYMBOL_GPL(skb_zerocopy);
2998
2999void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3000{
3001 __wsum csum;
3002 long csstart;
3003
3004 if (skb->ip_summed == CHECKSUM_PARTIAL)
3005 csstart = skb_checksum_start_offset(skb);
3006 else
3007 csstart = skb_headlen(skb);
3008
3009 BUG_ON(csstart > skb_headlen(skb));
3010
3011 skb_copy_from_linear_data(skb, to, csstart);
3012
3013 csum = 0;
3014 if (csstart != skb->len)
3015 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3016 skb->len - csstart, 0);
3017
3018 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3019 long csstuff = csstart + skb->csum_offset;
3020
3021 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022 }
3023}
3024EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025
3026/**
3027 * skb_dequeue - remove from the head of the queue
3028 * @list: list to dequeue from
3029 *
3030 * Remove the head of the list. The list lock is taken so the function
3031 * may be used safely with other locking list functions. The head item is
3032 * returned or %NULL if the list is empty.
3033 */
3034
3035struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3036{
3037 unsigned long flags;
3038 struct sk_buff *result;
3039
3040 spin_lock_irqsave(&list->lock, flags);
3041 result = __skb_dequeue(list);
3042 spin_unlock_irqrestore(&list->lock, flags);
3043 return result;
3044}
3045EXPORT_SYMBOL(skb_dequeue);
3046
3047/**
3048 * skb_dequeue_tail - remove from the tail of the queue
3049 * @list: list to dequeue from
3050 *
3051 * Remove the tail of the list. The list lock is taken so the function
3052 * may be used safely with other locking list functions. The tail item is
3053 * returned or %NULL if the list is empty.
3054 */
3055struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3056{
3057 unsigned long flags;
3058 struct sk_buff *result;
3059
3060 spin_lock_irqsave(&list->lock, flags);
3061 result = __skb_dequeue_tail(list);
3062 spin_unlock_irqrestore(&list->lock, flags);
3063 return result;
3064}
3065EXPORT_SYMBOL(skb_dequeue_tail);
3066
3067/**
3068 * skb_queue_purge - empty a list
3069 * @list: list to empty
3070 *
3071 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3072 * the list and one reference dropped. This function takes the list
3073 * lock and is atomic with respect to other list locking functions.
3074 */
3075void skb_queue_purge(struct sk_buff_head *list)
3076{
3077 struct sk_buff *skb;
3078 while ((skb = skb_dequeue(list)) != NULL)
3079 kfree_skb(skb);
3080}
3081EXPORT_SYMBOL(skb_queue_purge);
3082
3083/**
3084 * skb_rbtree_purge - empty a skb rbtree
3085 * @root: root of the rbtree to empty
3086 * Return value: the sum of truesizes of all purged skbs.
3087 *
3088 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3089 * the list and one reference dropped. This function does not take
3090 * any lock. Synchronization should be handled by the caller (e.g., TCP
3091 * out-of-order queue is protected by the socket lock).
3092 */
3093unsigned int skb_rbtree_purge(struct rb_root *root)
3094{
3095 struct rb_node *p = rb_first(root);
3096 unsigned int sum = 0;
3097
3098 while (p) {
3099 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3100
3101 p = rb_next(p);
3102 rb_erase(&skb->rbnode, root);
3103 sum += skb->truesize;
3104 kfree_skb(skb);
3105 }
3106 return sum;
3107}
3108
3109/**
3110 * skb_queue_head - queue a buffer at the list head
3111 * @list: list to use
3112 * @newsk: buffer to queue
3113 *
3114 * Queue a buffer at the start of the list. This function takes the
3115 * list lock and can be used safely with other locking &sk_buff functions
3116 * safely.
3117 *
3118 * A buffer cannot be placed on two lists at the same time.
3119 */
3120void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3121{
3122 unsigned long flags;
3123
3124 spin_lock_irqsave(&list->lock, flags);
3125 __skb_queue_head(list, newsk);
3126 spin_unlock_irqrestore(&list->lock, flags);
3127}
3128EXPORT_SYMBOL(skb_queue_head);
3129
3130/**
3131 * skb_queue_tail - queue a buffer at the list tail
3132 * @list: list to use
3133 * @newsk: buffer to queue
3134 *
3135 * Queue a buffer at the tail of the list. This function takes the
3136 * list lock and can be used safely with other locking &sk_buff functions
3137 * safely.
3138 *
3139 * A buffer cannot be placed on two lists at the same time.
3140 */
3141void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3142{
3143 unsigned long flags;
3144
3145 spin_lock_irqsave(&list->lock, flags);
3146 __skb_queue_tail(list, newsk);
3147 spin_unlock_irqrestore(&list->lock, flags);
3148}
3149EXPORT_SYMBOL(skb_queue_tail);
3150
3151/**
3152 * skb_unlink - remove a buffer from a list
3153 * @skb: buffer to remove
3154 * @list: list to use
3155 *
3156 * Remove a packet from a list. The list locks are taken and this
3157 * function is atomic with respect to other list locked calls
3158 *
3159 * You must know what list the SKB is on.
3160 */
3161void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3162{
3163 unsigned long flags;
3164
3165 spin_lock_irqsave(&list->lock, flags);
3166 __skb_unlink(skb, list);
3167 spin_unlock_irqrestore(&list->lock, flags);
3168}
3169EXPORT_SYMBOL(skb_unlink);
3170
3171/**
3172 * skb_append - append a buffer
3173 * @old: buffer to insert after
3174 * @newsk: buffer to insert
3175 * @list: list to use
3176 *
3177 * Place a packet after a given packet in a list. The list locks are taken
3178 * and this function is atomic with respect to other list locked calls.
3179 * A buffer cannot be placed on two lists at the same time.
3180 */
3181void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3182{
3183 unsigned long flags;
3184
3185 spin_lock_irqsave(&list->lock, flags);
3186 __skb_queue_after(list, old, newsk);
3187 spin_unlock_irqrestore(&list->lock, flags);
3188}
3189EXPORT_SYMBOL(skb_append);
3190
3191static inline void skb_split_inside_header(struct sk_buff *skb,
3192 struct sk_buff* skb1,
3193 const u32 len, const int pos)
3194{
3195 int i;
3196
3197 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3198 pos - len);
3199 /* And move data appendix as is. */
3200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3201 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3202
3203 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3204 skb_shinfo(skb)->nr_frags = 0;
3205 skb1->data_len = skb->data_len;
3206 skb1->len += skb1->data_len;
3207 skb->data_len = 0;
3208 skb->len = len;
3209 skb_set_tail_pointer(skb, len);
3210}
3211
3212static inline void skb_split_no_header(struct sk_buff *skb,
3213 struct sk_buff* skb1,
3214 const u32 len, int pos)
3215{
3216 int i, k = 0;
3217 const int nfrags = skb_shinfo(skb)->nr_frags;
3218
3219 skb_shinfo(skb)->nr_frags = 0;
3220 skb1->len = skb1->data_len = skb->len - len;
3221 skb->len = len;
3222 skb->data_len = len - pos;
3223
3224 for (i = 0; i < nfrags; i++) {
3225 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3226
3227 if (pos + size > len) {
3228 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3229
3230 if (pos < len) {
3231 /* Split frag.
3232 * We have two variants in this case:
3233 * 1. Move all the frag to the second
3234 * part, if it is possible. F.e.
3235 * this approach is mandatory for TUX,
3236 * where splitting is expensive.
3237 * 2. Split is accurately. We make this.
3238 */
3239 skb_frag_ref(skb, i);
3240 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3241 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3242 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3243 skb_shinfo(skb)->nr_frags++;
3244 }
3245 k++;
3246 } else
3247 skb_shinfo(skb)->nr_frags++;
3248 pos += size;
3249 }
3250 skb_shinfo(skb1)->nr_frags = k;
3251}
3252
3253/**
3254 * skb_split - Split fragmented skb to two parts at length len.
3255 * @skb: the buffer to split
3256 * @skb1: the buffer to receive the second part
3257 * @len: new length for skb
3258 */
3259void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3260{
3261 int pos = skb_headlen(skb);
3262
3263 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3264 SKBTX_SHARED_FRAG;
3265 skb_zerocopy_clone(skb1, skb, 0);
3266 if (len < pos) /* Split line is inside header. */
3267 skb_split_inside_header(skb, skb1, len, pos);
3268 else /* Second chunk has no header, nothing to copy. */
3269 skb_split_no_header(skb, skb1, len, pos);
3270}
3271EXPORT_SYMBOL(skb_split);
3272
3273/* Shifting from/to a cloned skb is a no-go.
3274 *
3275 * Caller cannot keep skb_shinfo related pointers past calling here!
3276 */
3277static int skb_prepare_for_shift(struct sk_buff *skb)
3278{
3279 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280}
3281
3282/**
3283 * skb_shift - Shifts paged data partially from skb to another
3284 * @tgt: buffer into which tail data gets added
3285 * @skb: buffer from which the paged data comes from
3286 * @shiftlen: shift up to this many bytes
3287 *
3288 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3289 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3290 * It's up to caller to free skb if everything was shifted.
3291 *
3292 * If @tgt runs out of frags, the whole operation is aborted.
3293 *
3294 * Skb cannot include anything else but paged data while tgt is allowed
3295 * to have non-paged data as well.
3296 *
3297 * TODO: full sized shift could be optimized but that would need
3298 * specialized skb free'er to handle frags without up-to-date nr_frags.
3299 */
3300int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3301{
3302 int from, to, merge, todo;
3303 skb_frag_t *fragfrom, *fragto;
3304
3305 BUG_ON(shiftlen > skb->len);
3306
3307 if (skb_headlen(skb))
3308 return 0;
3309 if (skb_zcopy(tgt) || skb_zcopy(skb))
3310 return 0;
3311
3312 todo = shiftlen;
3313 from = 0;
3314 to = skb_shinfo(tgt)->nr_frags;
3315 fragfrom = &skb_shinfo(skb)->frags[from];
3316
3317 /* Actual merge is delayed until the point when we know we can
3318 * commit all, so that we don't have to undo partial changes
3319 */
3320 if (!to ||
3321 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3322 skb_frag_off(fragfrom))) {
3323 merge = -1;
3324 } else {
3325 merge = to - 1;
3326
3327 todo -= skb_frag_size(fragfrom);
3328 if (todo < 0) {
3329 if (skb_prepare_for_shift(skb) ||
3330 skb_prepare_for_shift(tgt))
3331 return 0;
3332
3333 /* All previous frag pointers might be stale! */
3334 fragfrom = &skb_shinfo(skb)->frags[from];
3335 fragto = &skb_shinfo(tgt)->frags[merge];
3336
3337 skb_frag_size_add(fragto, shiftlen);
3338 skb_frag_size_sub(fragfrom, shiftlen);
3339 skb_frag_off_add(fragfrom, shiftlen);
3340
3341 goto onlymerged;
3342 }
3343
3344 from++;
3345 }
3346
3347 /* Skip full, not-fitting skb to avoid expensive operations */
3348 if ((shiftlen == skb->len) &&
3349 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3350 return 0;
3351
3352 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3353 return 0;
3354
3355 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3356 if (to == MAX_SKB_FRAGS)
3357 return 0;
3358
3359 fragfrom = &skb_shinfo(skb)->frags[from];
3360 fragto = &skb_shinfo(tgt)->frags[to];
3361
3362 if (todo >= skb_frag_size(fragfrom)) {
3363 *fragto = *fragfrom;
3364 todo -= skb_frag_size(fragfrom);
3365 from++;
3366 to++;
3367
3368 } else {
3369 __skb_frag_ref(fragfrom);
3370 skb_frag_page_copy(fragto, fragfrom);
3371 skb_frag_off_copy(fragto, fragfrom);
3372 skb_frag_size_set(fragto, todo);
3373
3374 skb_frag_off_add(fragfrom, todo);
3375 skb_frag_size_sub(fragfrom, todo);
3376 todo = 0;
3377
3378 to++;
3379 break;
3380 }
3381 }
3382
3383 /* Ready to "commit" this state change to tgt */
3384 skb_shinfo(tgt)->nr_frags = to;
3385
3386 if (merge >= 0) {
3387 fragfrom = &skb_shinfo(skb)->frags[0];
3388 fragto = &skb_shinfo(tgt)->frags[merge];
3389
3390 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3391 __skb_frag_unref(fragfrom);
3392 }
3393
3394 /* Reposition in the original skb */
3395 to = 0;
3396 while (from < skb_shinfo(skb)->nr_frags)
3397 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3398 skb_shinfo(skb)->nr_frags = to;
3399
3400 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3401
3402onlymerged:
3403 /* Most likely the tgt won't ever need its checksum anymore, skb on
3404 * the other hand might need it if it needs to be resent
3405 */
3406 tgt->ip_summed = CHECKSUM_PARTIAL;
3407 skb->ip_summed = CHECKSUM_PARTIAL;
3408
3409 /* Yak, is it really working this way? Some helper please? */
3410 skb->len -= shiftlen;
3411 skb->data_len -= shiftlen;
3412 skb->truesize -= shiftlen;
3413 tgt->len += shiftlen;
3414 tgt->data_len += shiftlen;
3415 tgt->truesize += shiftlen;
3416
3417 return shiftlen;
3418}
3419
3420/**
3421 * skb_prepare_seq_read - Prepare a sequential read of skb data
3422 * @skb: the buffer to read
3423 * @from: lower offset of data to be read
3424 * @to: upper offset of data to be read
3425 * @st: state variable
3426 *
3427 * Initializes the specified state variable. Must be called before
3428 * invoking skb_seq_read() for the first time.
3429 */
3430void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3431 unsigned int to, struct skb_seq_state *st)
3432{
3433 st->lower_offset = from;
3434 st->upper_offset = to;
3435 st->root_skb = st->cur_skb = skb;
3436 st->frag_idx = st->stepped_offset = 0;
3437 st->frag_data = NULL;
3438}
3439EXPORT_SYMBOL(skb_prepare_seq_read);
3440
3441/**
3442 * skb_seq_read - Sequentially read skb data
3443 * @consumed: number of bytes consumed by the caller so far
3444 * @data: destination pointer for data to be returned
3445 * @st: state variable
3446 *
3447 * Reads a block of skb data at @consumed relative to the
3448 * lower offset specified to skb_prepare_seq_read(). Assigns
3449 * the head of the data block to @data and returns the length
3450 * of the block or 0 if the end of the skb data or the upper
3451 * offset has been reached.
3452 *
3453 * The caller is not required to consume all of the data
3454 * returned, i.e. @consumed is typically set to the number
3455 * of bytes already consumed and the next call to
3456 * skb_seq_read() will return the remaining part of the block.
3457 *
3458 * Note 1: The size of each block of data returned can be arbitrary,
3459 * this limitation is the cost for zerocopy sequential
3460 * reads of potentially non linear data.
3461 *
3462 * Note 2: Fragment lists within fragments are not implemented
3463 * at the moment, state->root_skb could be replaced with
3464 * a stack for this purpose.
3465 */
3466unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3467 struct skb_seq_state *st)
3468{
3469 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3470 skb_frag_t *frag;
3471
3472 if (unlikely(abs_offset >= st->upper_offset)) {
3473 if (st->frag_data) {
3474 kunmap_atomic(st->frag_data);
3475 st->frag_data = NULL;
3476 }
3477 return 0;
3478 }
3479
3480next_skb:
3481 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3482
3483 if (abs_offset < block_limit && !st->frag_data) {
3484 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3485 return block_limit - abs_offset;
3486 }
3487
3488 if (st->frag_idx == 0 && !st->frag_data)
3489 st->stepped_offset += skb_headlen(st->cur_skb);
3490
3491 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3492 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3493 block_limit = skb_frag_size(frag) + st->stepped_offset;
3494
3495 if (abs_offset < block_limit) {
3496 if (!st->frag_data)
3497 st->frag_data = kmap_atomic(skb_frag_page(frag));
3498
3499 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3500 (abs_offset - st->stepped_offset);
3501
3502 return block_limit - abs_offset;
3503 }
3504
3505 if (st->frag_data) {
3506 kunmap_atomic(st->frag_data);
3507 st->frag_data = NULL;
3508 }
3509
3510 st->frag_idx++;
3511 st->stepped_offset += skb_frag_size(frag);
3512 }
3513
3514 if (st->frag_data) {
3515 kunmap_atomic(st->frag_data);
3516 st->frag_data = NULL;
3517 }
3518
3519 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3520 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3521 st->frag_idx = 0;
3522 goto next_skb;
3523 } else if (st->cur_skb->next) {
3524 st->cur_skb = st->cur_skb->next;
3525 st->frag_idx = 0;
3526 goto next_skb;
3527 }
3528
3529 return 0;
3530}
3531EXPORT_SYMBOL(skb_seq_read);
3532
3533/**
3534 * skb_abort_seq_read - Abort a sequential read of skb data
3535 * @st: state variable
3536 *
3537 * Must be called if skb_seq_read() was not called until it
3538 * returned 0.
3539 */
3540void skb_abort_seq_read(struct skb_seq_state *st)
3541{
3542 if (st->frag_data)
3543 kunmap_atomic(st->frag_data);
3544}
3545EXPORT_SYMBOL(skb_abort_seq_read);
3546
3547#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3548
3549static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3550 struct ts_config *conf,
3551 struct ts_state *state)
3552{
3553 return skb_seq_read(offset, text, TS_SKB_CB(state));
3554}
3555
3556static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3557{
3558 skb_abort_seq_read(TS_SKB_CB(state));
3559}
3560
3561/**
3562 * skb_find_text - Find a text pattern in skb data
3563 * @skb: the buffer to look in
3564 * @from: search offset
3565 * @to: search limit
3566 * @config: textsearch configuration
3567 *
3568 * Finds a pattern in the skb data according to the specified
3569 * textsearch configuration. Use textsearch_next() to retrieve
3570 * subsequent occurrences of the pattern. Returns the offset
3571 * to the first occurrence or UINT_MAX if no match was found.
3572 */
3573unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3574 unsigned int to, struct ts_config *config)
3575{
3576 struct ts_state state;
3577 unsigned int ret;
3578
3579 config->get_next_block = skb_ts_get_next_block;
3580 config->finish = skb_ts_finish;
3581
3582 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3583
3584 ret = textsearch_find(config, &state);
3585 return (ret <= to - from ? ret : UINT_MAX);
3586}
3587EXPORT_SYMBOL(skb_find_text);
3588
3589int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3590 int offset, size_t size)
3591{
3592 int i = skb_shinfo(skb)->nr_frags;
3593
3594 if (skb_can_coalesce(skb, i, page, offset)) {
3595 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3596 } else if (i < MAX_SKB_FRAGS) {
3597 get_page(page);
3598 skb_fill_page_desc(skb, i, page, offset, size);
3599 } else {
3600 return -EMSGSIZE;
3601 }
3602
3603 return 0;
3604}
3605EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606
3607/**
3608 * skb_pull_rcsum - pull skb and update receive checksum
3609 * @skb: buffer to update
3610 * @len: length of data pulled
3611 *
3612 * This function performs an skb_pull on the packet and updates
3613 * the CHECKSUM_COMPLETE checksum. It should be used on
3614 * receive path processing instead of skb_pull unless you know
3615 * that the checksum difference is zero (e.g., a valid IP header)
3616 * or you are setting ip_summed to CHECKSUM_NONE.
3617 */
3618void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3619{
3620 unsigned char *data = skb->data;
3621
3622 BUG_ON(len > skb->len);
3623 __skb_pull(skb, len);
3624 skb_postpull_rcsum(skb, data, len);
3625 return skb->data;
3626}
3627EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3628
3629static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3630{
3631 skb_frag_t head_frag;
3632 struct page *page;
3633
3634 page = virt_to_head_page(frag_skb->head);
3635 __skb_frag_set_page(&head_frag, page);
3636 skb_frag_off_set(&head_frag, frag_skb->data -
3637 (unsigned char *)page_address(page));
3638 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3639 return head_frag;
3640}
3641
3642struct sk_buff *skb_segment_list(struct sk_buff *skb,
3643 netdev_features_t features,
3644 unsigned int offset)
3645{
3646 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3647 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3648 unsigned int delta_truesize = 0;
3649 unsigned int delta_len = 0;
3650 struct sk_buff *tail = NULL;
3651 struct sk_buff *nskb;
3652
3653 skb_push(skb, -skb_network_offset(skb) + offset);
3654
3655 skb_shinfo(skb)->frag_list = NULL;
3656
3657 do {
3658 nskb = list_skb;
3659 list_skb = list_skb->next;
3660
3661 if (!tail)
3662 skb->next = nskb;
3663 else
3664 tail->next = nskb;
3665
3666 tail = nskb;
3667
3668 delta_len += nskb->len;
3669 delta_truesize += nskb->truesize;
3670
3671 skb_push(nskb, -skb_network_offset(nskb) + offset);
3672
3673 __copy_skb_header(nskb, skb);
3674
3675 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3676 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3677 nskb->data - tnl_hlen,
3678 offset + tnl_hlen);
3679
3680 if (skb_needs_linearize(nskb, features) &&
3681 __skb_linearize(nskb))
3682 goto err_linearize;
3683
3684 } while (list_skb);
3685
3686 skb->truesize = skb->truesize - delta_truesize;
3687 skb->data_len = skb->data_len - delta_len;
3688 skb->len = skb->len - delta_len;
3689
3690 skb_gso_reset(skb);
3691
3692 skb->prev = tail;
3693
3694 if (skb_needs_linearize(skb, features) &&
3695 __skb_linearize(skb))
3696 goto err_linearize;
3697
3698 skb_get(skb);
3699
3700 return skb;
3701
3702err_linearize:
3703 kfree_skb_list(skb->next);
3704 skb->next = NULL;
3705 return ERR_PTR(-ENOMEM);
3706}
3707EXPORT_SYMBOL_GPL(skb_segment_list);
3708
3709int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3710{
3711 if (unlikely(p->len + skb->len >= 65536))
3712 return -E2BIG;
3713
3714 if (NAPI_GRO_CB(p)->last == p)
3715 skb_shinfo(p)->frag_list = skb;
3716 else
3717 NAPI_GRO_CB(p)->last->next = skb;
3718
3719 skb_pull(skb, skb_gro_offset(skb));
3720
3721 NAPI_GRO_CB(p)->last = skb;
3722 NAPI_GRO_CB(p)->count++;
3723 p->data_len += skb->len;
3724 p->truesize += skb->truesize;
3725 p->len += skb->len;
3726
3727 NAPI_GRO_CB(skb)->same_flow = 1;
3728
3729 return 0;
3730}
3731EXPORT_SYMBOL_GPL(skb_gro_receive_list);
3732
3733/**
3734 * skb_segment - Perform protocol segmentation on skb.
3735 * @head_skb: buffer to segment
3736 * @features: features for the output path (see dev->features)
3737 *
3738 * This function performs segmentation on the given skb. It returns
3739 * a pointer to the first in a list of new skbs for the segments.
3740 * In case of error it returns ERR_PTR(err).
3741 */
3742struct sk_buff *skb_segment(struct sk_buff *head_skb,
3743 netdev_features_t features)
3744{
3745 struct sk_buff *segs = NULL;
3746 struct sk_buff *tail = NULL;
3747 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3748 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3749 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3750 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3751 struct sk_buff *frag_skb = head_skb;
3752 unsigned int offset = doffset;
3753 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3754 unsigned int partial_segs = 0;
3755 unsigned int headroom;
3756 unsigned int len = head_skb->len;
3757 __be16 proto;
3758 bool csum, sg;
3759 int nfrags = skb_shinfo(head_skb)->nr_frags;
3760 int err = -ENOMEM;
3761 int i = 0;
3762 int pos;
3763 int dummy;
3764
3765 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3766 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3767 /* gso_size is untrusted, and we have a frag_list with a linear
3768 * non head_frag head.
3769 *
3770 * (we assume checking the first list_skb member suffices;
3771 * i.e if either of the list_skb members have non head_frag
3772 * head, then the first one has too).
3773 *
3774 * If head_skb's headlen does not fit requested gso_size, it
3775 * means that the frag_list members do NOT terminate on exact
3776 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3777 * sharing. Therefore we must fallback to copying the frag_list
3778 * skbs; we do so by disabling SG.
3779 */
3780 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3781 features &= ~NETIF_F_SG;
3782 }
3783
3784 __skb_push(head_skb, doffset);
3785 proto = skb_network_protocol(head_skb, &dummy);
3786 if (unlikely(!proto))
3787 return ERR_PTR(-EINVAL);
3788
3789 sg = !!(features & NETIF_F_SG);
3790 csum = !!can_checksum_protocol(features, proto);
3791
3792 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3793 if (!(features & NETIF_F_GSO_PARTIAL)) {
3794 struct sk_buff *iter;
3795 unsigned int frag_len;
3796
3797 if (!list_skb ||
3798 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3799 goto normal;
3800
3801 /* If we get here then all the required
3802 * GSO features except frag_list are supported.
3803 * Try to split the SKB to multiple GSO SKBs
3804 * with no frag_list.
3805 * Currently we can do that only when the buffers don't
3806 * have a linear part and all the buffers except
3807 * the last are of the same length.
3808 */
3809 frag_len = list_skb->len;
3810 skb_walk_frags(head_skb, iter) {
3811 if (frag_len != iter->len && iter->next)
3812 goto normal;
3813 if (skb_headlen(iter) && !iter->head_frag)
3814 goto normal;
3815
3816 len -= iter->len;
3817 }
3818
3819 if (len != frag_len)
3820 goto normal;
3821 }
3822
3823 /* GSO partial only requires that we trim off any excess that
3824 * doesn't fit into an MSS sized block, so take care of that
3825 * now.
3826 */
3827 partial_segs = len / mss;
3828 if (partial_segs > 1)
3829 mss *= partial_segs;
3830 else
3831 partial_segs = 0;
3832 }
3833
3834normal:
3835 headroom = skb_headroom(head_skb);
3836 pos = skb_headlen(head_skb);
3837
3838 do {
3839 struct sk_buff *nskb;
3840 skb_frag_t *nskb_frag;
3841 int hsize;
3842 int size;
3843
3844 if (unlikely(mss == GSO_BY_FRAGS)) {
3845 len = list_skb->len;
3846 } else {
3847 len = head_skb->len - offset;
3848 if (len > mss)
3849 len = mss;
3850 }
3851
3852 hsize = skb_headlen(head_skb) - offset;
3853 if (hsize < 0)
3854 hsize = 0;
3855 if (hsize > len || !sg)
3856 hsize = len;
3857
3858 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3859 (skb_headlen(list_skb) == len || sg)) {
3860 BUG_ON(skb_headlen(list_skb) > len);
3861
3862 i = 0;
3863 nfrags = skb_shinfo(list_skb)->nr_frags;
3864 frag = skb_shinfo(list_skb)->frags;
3865 frag_skb = list_skb;
3866 pos += skb_headlen(list_skb);
3867
3868 while (pos < offset + len) {
3869 BUG_ON(i >= nfrags);
3870
3871 size = skb_frag_size(frag);
3872 if (pos + size > offset + len)
3873 break;
3874
3875 i++;
3876 pos += size;
3877 frag++;
3878 }
3879
3880 nskb = skb_clone(list_skb, GFP_ATOMIC);
3881 list_skb = list_skb->next;
3882
3883 if (unlikely(!nskb))
3884 goto err;
3885
3886 if (unlikely(pskb_trim(nskb, len))) {
3887 kfree_skb(nskb);
3888 goto err;
3889 }
3890
3891 hsize = skb_end_offset(nskb);
3892 if (skb_cow_head(nskb, doffset + headroom)) {
3893 kfree_skb(nskb);
3894 goto err;
3895 }
3896
3897 nskb->truesize += skb_end_offset(nskb) - hsize;
3898 skb_release_head_state(nskb);
3899 __skb_push(nskb, doffset);
3900 } else {
3901 nskb = __alloc_skb(hsize + doffset + headroom,
3902 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3903 NUMA_NO_NODE);
3904
3905 if (unlikely(!nskb))
3906 goto err;
3907
3908 skb_reserve(nskb, headroom);
3909 __skb_put(nskb, doffset);
3910 }
3911
3912 if (segs)
3913 tail->next = nskb;
3914 else
3915 segs = nskb;
3916 tail = nskb;
3917
3918 __copy_skb_header(nskb, head_skb);
3919
3920 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3921 skb_reset_mac_len(nskb);
3922
3923 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3924 nskb->data - tnl_hlen,
3925 doffset + tnl_hlen);
3926
3927 if (nskb->len == len + doffset)
3928 goto perform_csum_check;
3929
3930 if (!sg) {
3931 if (!nskb->remcsum_offload)
3932 nskb->ip_summed = CHECKSUM_NONE;
3933 SKB_GSO_CB(nskb)->csum =
3934 skb_copy_and_csum_bits(head_skb, offset,
3935 skb_put(nskb, len),
3936 len, 0);
3937 SKB_GSO_CB(nskb)->csum_start =
3938 skb_headroom(nskb) + doffset;
3939 continue;
3940 }
3941
3942 nskb_frag = skb_shinfo(nskb)->frags;
3943
3944 skb_copy_from_linear_data_offset(head_skb, offset,
3945 skb_put(nskb, hsize), hsize);
3946
3947 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3948 SKBTX_SHARED_FRAG;
3949
3950 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3951 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3952 goto err;
3953
3954 while (pos < offset + len) {
3955 if (i >= nfrags) {
3956 i = 0;
3957 nfrags = skb_shinfo(list_skb)->nr_frags;
3958 frag = skb_shinfo(list_skb)->frags;
3959 frag_skb = list_skb;
3960 if (!skb_headlen(list_skb)) {
3961 BUG_ON(!nfrags);
3962 } else {
3963 BUG_ON(!list_skb->head_frag);
3964
3965 /* to make room for head_frag. */
3966 i--;
3967 frag--;
3968 }
3969 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3970 skb_zerocopy_clone(nskb, frag_skb,
3971 GFP_ATOMIC))
3972 goto err;
3973
3974 list_skb = list_skb->next;
3975 }
3976
3977 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3978 MAX_SKB_FRAGS)) {
3979 net_warn_ratelimited(
3980 "skb_segment: too many frags: %u %u\n",
3981 pos, mss);
3982 err = -EINVAL;
3983 goto err;
3984 }
3985
3986 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3987 __skb_frag_ref(nskb_frag);
3988 size = skb_frag_size(nskb_frag);
3989
3990 if (pos < offset) {
3991 skb_frag_off_add(nskb_frag, offset - pos);
3992 skb_frag_size_sub(nskb_frag, offset - pos);
3993 }
3994
3995 skb_shinfo(nskb)->nr_frags++;
3996
3997 if (pos + size <= offset + len) {
3998 i++;
3999 frag++;
4000 pos += size;
4001 } else {
4002 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4003 goto skip_fraglist;
4004 }
4005
4006 nskb_frag++;
4007 }
4008
4009skip_fraglist:
4010 nskb->data_len = len - hsize;
4011 nskb->len += nskb->data_len;
4012 nskb->truesize += nskb->data_len;
4013
4014perform_csum_check:
4015 if (!csum) {
4016 if (skb_has_shared_frag(nskb) &&
4017 __skb_linearize(nskb))
4018 goto err;
4019
4020 if (!nskb->remcsum_offload)
4021 nskb->ip_summed = CHECKSUM_NONE;
4022 SKB_GSO_CB(nskb)->csum =
4023 skb_checksum(nskb, doffset,
4024 nskb->len - doffset, 0);
4025 SKB_GSO_CB(nskb)->csum_start =
4026 skb_headroom(nskb) + doffset;
4027 }
4028 } while ((offset += len) < head_skb->len);
4029
4030 /* Some callers want to get the end of the list.
4031 * Put it in segs->prev to avoid walking the list.
4032 * (see validate_xmit_skb_list() for example)
4033 */
4034 segs->prev = tail;
4035
4036 if (partial_segs) {
4037 struct sk_buff *iter;
4038 int type = skb_shinfo(head_skb)->gso_type;
4039 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4040
4041 /* Update type to add partial and then remove dodgy if set */
4042 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4043 type &= ~SKB_GSO_DODGY;
4044
4045 /* Update GSO info and prepare to start updating headers on
4046 * our way back down the stack of protocols.
4047 */
4048 for (iter = segs; iter; iter = iter->next) {
4049 skb_shinfo(iter)->gso_size = gso_size;
4050 skb_shinfo(iter)->gso_segs = partial_segs;
4051 skb_shinfo(iter)->gso_type = type;
4052 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4053 }
4054
4055 if (tail->len - doffset <= gso_size)
4056 skb_shinfo(tail)->gso_size = 0;
4057 else if (tail != segs)
4058 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4059 }
4060
4061 /* Following permits correct backpressure, for protocols
4062 * using skb_set_owner_w().
4063 * Idea is to tranfert ownership from head_skb to last segment.
4064 */
4065 if (head_skb->destructor == sock_wfree) {
4066 swap(tail->truesize, head_skb->truesize);
4067 swap(tail->destructor, head_skb->destructor);
4068 swap(tail->sk, head_skb->sk);
4069 }
4070 return segs;
4071
4072err:
4073 kfree_skb_list(segs);
4074 return ERR_PTR(err);
4075}
4076EXPORT_SYMBOL_GPL(skb_segment);
4077
4078int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4079{
4080 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4081 unsigned int offset = skb_gro_offset(skb);
4082 unsigned int headlen = skb_headlen(skb);
4083 unsigned int len = skb_gro_len(skb);
4084 unsigned int delta_truesize;
4085 struct sk_buff *lp;
4086
4087 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4088 return -E2BIG;
4089
4090 lp = NAPI_GRO_CB(p)->last;
4091 pinfo = skb_shinfo(lp);
4092
4093 if (headlen <= offset) {
4094 skb_frag_t *frag;
4095 skb_frag_t *frag2;
4096 int i = skbinfo->nr_frags;
4097 int nr_frags = pinfo->nr_frags + i;
4098
4099 if (nr_frags > MAX_SKB_FRAGS)
4100 goto merge;
4101
4102 offset -= headlen;
4103 pinfo->nr_frags = nr_frags;
4104 skbinfo->nr_frags = 0;
4105
4106 frag = pinfo->frags + nr_frags;
4107 frag2 = skbinfo->frags + i;
4108 do {
4109 *--frag = *--frag2;
4110 } while (--i);
4111
4112 skb_frag_off_add(frag, offset);
4113 skb_frag_size_sub(frag, offset);
4114
4115 /* all fragments truesize : remove (head size + sk_buff) */
4116 delta_truesize = skb->truesize -
4117 SKB_TRUESIZE(skb_end_offset(skb));
4118
4119 skb->truesize -= skb->data_len;
4120 skb->len -= skb->data_len;
4121 skb->data_len = 0;
4122
4123 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4124 goto done;
4125 } else if (skb->head_frag) {
4126 int nr_frags = pinfo->nr_frags;
4127 skb_frag_t *frag = pinfo->frags + nr_frags;
4128 struct page *page = virt_to_head_page(skb->head);
4129 unsigned int first_size = headlen - offset;
4130 unsigned int first_offset;
4131
4132 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4133 goto merge;
4134
4135 first_offset = skb->data -
4136 (unsigned char *)page_address(page) +
4137 offset;
4138
4139 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4140
4141 __skb_frag_set_page(frag, page);
4142 skb_frag_off_set(frag, first_offset);
4143 skb_frag_size_set(frag, first_size);
4144
4145 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4146 /* We dont need to clear skbinfo->nr_frags here */
4147
4148 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4149 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4150 goto done;
4151 }
4152
4153merge:
4154 delta_truesize = skb->truesize;
4155 if (offset > headlen) {
4156 unsigned int eat = offset - headlen;
4157
4158 skb_frag_off_add(&skbinfo->frags[0], eat);
4159 skb_frag_size_sub(&skbinfo->frags[0], eat);
4160 skb->data_len -= eat;
4161 skb->len -= eat;
4162 offset = headlen;
4163 }
4164
4165 __skb_pull(skb, offset);
4166
4167 if (NAPI_GRO_CB(p)->last == p)
4168 skb_shinfo(p)->frag_list = skb;
4169 else
4170 NAPI_GRO_CB(p)->last->next = skb;
4171 NAPI_GRO_CB(p)->last = skb;
4172 __skb_header_release(skb);
4173 lp = p;
4174
4175done:
4176 NAPI_GRO_CB(p)->count++;
4177 p->data_len += len;
4178 p->truesize += delta_truesize;
4179 p->len += len;
4180 if (lp != p) {
4181 lp->data_len += len;
4182 lp->truesize += delta_truesize;
4183 lp->len += len;
4184 }
4185 NAPI_GRO_CB(skb)->same_flow = 1;
4186 return 0;
4187}
4188EXPORT_SYMBOL_GPL(skb_gro_receive);
4189
4190#ifdef CONFIG_SKB_EXTENSIONS
4191#define SKB_EXT_ALIGN_VALUE 8
4192#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4193
4194static const u8 skb_ext_type_len[] = {
4195#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4196 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4197#endif
4198#ifdef CONFIG_XFRM
4199 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4200#endif
4201#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4202 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4203#endif
4204#if IS_ENABLED(CONFIG_MPTCP)
4205 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4206#endif
4207};
4208
4209static __always_inline unsigned int skb_ext_total_length(void)
4210{
4211 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4212#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4213 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4214#endif
4215#ifdef CONFIG_XFRM
4216 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4217#endif
4218#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4219 skb_ext_type_len[TC_SKB_EXT] +
4220#endif
4221#if IS_ENABLED(CONFIG_MPTCP)
4222 skb_ext_type_len[SKB_EXT_MPTCP] +
4223#endif
4224 0;
4225}
4226
4227static void skb_extensions_init(void)
4228{
4229 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4230 BUILD_BUG_ON(skb_ext_total_length() > 255);
4231
4232 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4233 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4234 0,
4235 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4236 NULL);
4237}
4238#else
4239static void skb_extensions_init(void) {}
4240#endif
4241
4242void __init skb_init(void)
4243{
4244 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4245 sizeof(struct sk_buff),
4246 0,
4247 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4248 offsetof(struct sk_buff, cb),
4249 sizeof_field(struct sk_buff, cb),
4250 NULL);
4251 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4252 sizeof(struct sk_buff_fclones),
4253 0,
4254 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4255 NULL);
4256 skb_extensions_init();
4257}
4258
4259static int
4260__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4261 unsigned int recursion_level)
4262{
4263 int start = skb_headlen(skb);
4264 int i, copy = start - offset;
4265 struct sk_buff *frag_iter;
4266 int elt = 0;
4267
4268 if (unlikely(recursion_level >= 24))
4269 return -EMSGSIZE;
4270
4271 if (copy > 0) {
4272 if (copy > len)
4273 copy = len;
4274 sg_set_buf(sg, skb->data + offset, copy);
4275 elt++;
4276 if ((len -= copy) == 0)
4277 return elt;
4278 offset += copy;
4279 }
4280
4281 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4282 int end;
4283
4284 WARN_ON(start > offset + len);
4285
4286 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4287 if ((copy = end - offset) > 0) {
4288 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4289 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4290 return -EMSGSIZE;
4291
4292 if (copy > len)
4293 copy = len;
4294 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4295 skb_frag_off(frag) + offset - start);
4296 elt++;
4297 if (!(len -= copy))
4298 return elt;
4299 offset += copy;
4300 }
4301 start = end;
4302 }
4303
4304 skb_walk_frags(skb, frag_iter) {
4305 int end, ret;
4306
4307 WARN_ON(start > offset + len);
4308
4309 end = start + frag_iter->len;
4310 if ((copy = end - offset) > 0) {
4311 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4312 return -EMSGSIZE;
4313
4314 if (copy > len)
4315 copy = len;
4316 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4317 copy, recursion_level + 1);
4318 if (unlikely(ret < 0))
4319 return ret;
4320 elt += ret;
4321 if ((len -= copy) == 0)
4322 return elt;
4323 offset += copy;
4324 }
4325 start = end;
4326 }
4327 BUG_ON(len);
4328 return elt;
4329}
4330
4331/**
4332 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4333 * @skb: Socket buffer containing the buffers to be mapped
4334 * @sg: The scatter-gather list to map into
4335 * @offset: The offset into the buffer's contents to start mapping
4336 * @len: Length of buffer space to be mapped
4337 *
4338 * Fill the specified scatter-gather list with mappings/pointers into a
4339 * region of the buffer space attached to a socket buffer. Returns either
4340 * the number of scatterlist items used, or -EMSGSIZE if the contents
4341 * could not fit.
4342 */
4343int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4344{
4345 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4346
4347 if (nsg <= 0)
4348 return nsg;
4349
4350 sg_mark_end(&sg[nsg - 1]);
4351
4352 return nsg;
4353}
4354EXPORT_SYMBOL_GPL(skb_to_sgvec);
4355
4356/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4357 * sglist without mark the sg which contain last skb data as the end.
4358 * So the caller can mannipulate sg list as will when padding new data after
4359 * the first call without calling sg_unmark_end to expend sg list.
4360 *
4361 * Scenario to use skb_to_sgvec_nomark:
4362 * 1. sg_init_table
4363 * 2. skb_to_sgvec_nomark(payload1)
4364 * 3. skb_to_sgvec_nomark(payload2)
4365 *
4366 * This is equivalent to:
4367 * 1. sg_init_table
4368 * 2. skb_to_sgvec(payload1)
4369 * 3. sg_unmark_end
4370 * 4. skb_to_sgvec(payload2)
4371 *
4372 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4373 * is more preferable.
4374 */
4375int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4376 int offset, int len)
4377{
4378 return __skb_to_sgvec(skb, sg, offset, len, 0);
4379}
4380EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4381
4382
4383
4384/**
4385 * skb_cow_data - Check that a socket buffer's data buffers are writable
4386 * @skb: The socket buffer to check.
4387 * @tailbits: Amount of trailing space to be added
4388 * @trailer: Returned pointer to the skb where the @tailbits space begins
4389 *
4390 * Make sure that the data buffers attached to a socket buffer are
4391 * writable. If they are not, private copies are made of the data buffers
4392 * and the socket buffer is set to use these instead.
4393 *
4394 * If @tailbits is given, make sure that there is space to write @tailbits
4395 * bytes of data beyond current end of socket buffer. @trailer will be
4396 * set to point to the skb in which this space begins.
4397 *
4398 * The number of scatterlist elements required to completely map the
4399 * COW'd and extended socket buffer will be returned.
4400 */
4401int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4402{
4403 int copyflag;
4404 int elt;
4405 struct sk_buff *skb1, **skb_p;
4406
4407 /* If skb is cloned or its head is paged, reallocate
4408 * head pulling out all the pages (pages are considered not writable
4409 * at the moment even if they are anonymous).
4410 */
4411 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4412 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4413 return -ENOMEM;
4414
4415 /* Easy case. Most of packets will go this way. */
4416 if (!skb_has_frag_list(skb)) {
4417 /* A little of trouble, not enough of space for trailer.
4418 * This should not happen, when stack is tuned to generate
4419 * good frames. OK, on miss we reallocate and reserve even more
4420 * space, 128 bytes is fair. */
4421
4422 if (skb_tailroom(skb) < tailbits &&
4423 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4424 return -ENOMEM;
4425
4426 /* Voila! */
4427 *trailer = skb;
4428 return 1;
4429 }
4430
4431 /* Misery. We are in troubles, going to mincer fragments... */
4432
4433 elt = 1;
4434 skb_p = &skb_shinfo(skb)->frag_list;
4435 copyflag = 0;
4436
4437 while ((skb1 = *skb_p) != NULL) {
4438 int ntail = 0;
4439
4440 /* The fragment is partially pulled by someone,
4441 * this can happen on input. Copy it and everything
4442 * after it. */
4443
4444 if (skb_shared(skb1))
4445 copyflag = 1;
4446
4447 /* If the skb is the last, worry about trailer. */
4448
4449 if (skb1->next == NULL && tailbits) {
4450 if (skb_shinfo(skb1)->nr_frags ||
4451 skb_has_frag_list(skb1) ||
4452 skb_tailroom(skb1) < tailbits)
4453 ntail = tailbits + 128;
4454 }
4455
4456 if (copyflag ||
4457 skb_cloned(skb1) ||
4458 ntail ||
4459 skb_shinfo(skb1)->nr_frags ||
4460 skb_has_frag_list(skb1)) {
4461 struct sk_buff *skb2;
4462
4463 /* Fuck, we are miserable poor guys... */
4464 if (ntail == 0)
4465 skb2 = skb_copy(skb1, GFP_ATOMIC);
4466 else
4467 skb2 = skb_copy_expand(skb1,
4468 skb_headroom(skb1),
4469 ntail,
4470 GFP_ATOMIC);
4471 if (unlikely(skb2 == NULL))
4472 return -ENOMEM;
4473
4474 if (skb1->sk)
4475 skb_set_owner_w(skb2, skb1->sk);
4476
4477 /* Looking around. Are we still alive?
4478 * OK, link new skb, drop old one */
4479
4480 skb2->next = skb1->next;
4481 *skb_p = skb2;
4482 kfree_skb(skb1);
4483 skb1 = skb2;
4484 }
4485 elt++;
4486 *trailer = skb1;
4487 skb_p = &skb1->next;
4488 }
4489
4490 return elt;
4491}
4492EXPORT_SYMBOL_GPL(skb_cow_data);
4493
4494static void sock_rmem_free(struct sk_buff *skb)
4495{
4496 struct sock *sk = skb->sk;
4497
4498 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4499}
4500
4501static void skb_set_err_queue(struct sk_buff *skb)
4502{
4503 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4504 * So, it is safe to (mis)use it to mark skbs on the error queue.
4505 */
4506 skb->pkt_type = PACKET_OUTGOING;
4507 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4508}
4509
4510/*
4511 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4512 */
4513int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4514{
4515 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4516 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4517 return -ENOMEM;
4518
4519 skb_orphan(skb);
4520 skb->sk = sk;
4521 skb->destructor = sock_rmem_free;
4522 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4523 skb_set_err_queue(skb);
4524
4525 /* before exiting rcu section, make sure dst is refcounted */
4526 skb_dst_force(skb);
4527
4528 skb_queue_tail(&sk->sk_error_queue, skb);
4529 if (!sock_flag(sk, SOCK_DEAD))
4530 sk->sk_error_report(sk);
4531 return 0;
4532}
4533EXPORT_SYMBOL(sock_queue_err_skb);
4534
4535static bool is_icmp_err_skb(const struct sk_buff *skb)
4536{
4537 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4538 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4539}
4540
4541struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4542{
4543 struct sk_buff_head *q = &sk->sk_error_queue;
4544 struct sk_buff *skb, *skb_next = NULL;
4545 bool icmp_next = false;
4546 unsigned long flags;
4547
4548 spin_lock_irqsave(&q->lock, flags);
4549 skb = __skb_dequeue(q);
4550 if (skb && (skb_next = skb_peek(q))) {
4551 icmp_next = is_icmp_err_skb(skb_next);
4552 if (icmp_next)
4553 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4554 }
4555 spin_unlock_irqrestore(&q->lock, flags);
4556
4557 if (is_icmp_err_skb(skb) && !icmp_next)
4558 sk->sk_err = 0;
4559
4560 if (skb_next)
4561 sk->sk_error_report(sk);
4562
4563 return skb;
4564}
4565EXPORT_SYMBOL(sock_dequeue_err_skb);
4566
4567/**
4568 * skb_clone_sk - create clone of skb, and take reference to socket
4569 * @skb: the skb to clone
4570 *
4571 * This function creates a clone of a buffer that holds a reference on
4572 * sk_refcnt. Buffers created via this function are meant to be
4573 * returned using sock_queue_err_skb, or free via kfree_skb.
4574 *
4575 * When passing buffers allocated with this function to sock_queue_err_skb
4576 * it is necessary to wrap the call with sock_hold/sock_put in order to
4577 * prevent the socket from being released prior to being enqueued on
4578 * the sk_error_queue.
4579 */
4580struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4581{
4582 struct sock *sk = skb->sk;
4583 struct sk_buff *clone;
4584
4585 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4586 return NULL;
4587
4588 clone = skb_clone(skb, GFP_ATOMIC);
4589 if (!clone) {
4590 sock_put(sk);
4591 return NULL;
4592 }
4593
4594 clone->sk = sk;
4595 clone->destructor = sock_efree;
4596
4597 return clone;
4598}
4599EXPORT_SYMBOL(skb_clone_sk);
4600
4601static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4602 struct sock *sk,
4603 int tstype,
4604 bool opt_stats)
4605{
4606 struct sock_exterr_skb *serr;
4607 int err;
4608
4609 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4610
4611 serr = SKB_EXT_ERR(skb);
4612 memset(serr, 0, sizeof(*serr));
4613 serr->ee.ee_errno = ENOMSG;
4614 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4615 serr->ee.ee_info = tstype;
4616 serr->opt_stats = opt_stats;
4617 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4618 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4619 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4620 if (sk->sk_protocol == IPPROTO_TCP &&
4621 sk->sk_type == SOCK_STREAM)
4622 serr->ee.ee_data -= sk->sk_tskey;
4623 }
4624
4625 err = sock_queue_err_skb(sk, skb);
4626
4627 if (err)
4628 kfree_skb(skb);
4629}
4630
4631static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4632{
4633 bool ret;
4634
4635 if (likely(sysctl_tstamp_allow_data || tsonly))
4636 return true;
4637
4638 read_lock_bh(&sk->sk_callback_lock);
4639 ret = sk->sk_socket && sk->sk_socket->file &&
4640 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4641 read_unlock_bh(&sk->sk_callback_lock);
4642 return ret;
4643}
4644
4645void skb_complete_tx_timestamp(struct sk_buff *skb,
4646 struct skb_shared_hwtstamps *hwtstamps)
4647{
4648 struct sock *sk = skb->sk;
4649
4650 if (!skb_may_tx_timestamp(sk, false))
4651 goto err;
4652
4653 /* Take a reference to prevent skb_orphan() from freeing the socket,
4654 * but only if the socket refcount is not zero.
4655 */
4656 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4657 *skb_hwtstamps(skb) = *hwtstamps;
4658 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4659 sock_put(sk);
4660 return;
4661 }
4662
4663err:
4664 kfree_skb(skb);
4665}
4666EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4667
4668void __skb_tstamp_tx(struct sk_buff *orig_skb,
4669 struct skb_shared_hwtstamps *hwtstamps,
4670 struct sock *sk, int tstype)
4671{
4672 struct sk_buff *skb;
4673 bool tsonly, opt_stats = false;
4674
4675 if (!sk)
4676 return;
4677
4678 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4679 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4680 return;
4681
4682 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4683 if (!skb_may_tx_timestamp(sk, tsonly))
4684 return;
4685
4686 if (tsonly) {
4687#ifdef CONFIG_INET
4688 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4689 sk->sk_protocol == IPPROTO_TCP &&
4690 sk->sk_type == SOCK_STREAM) {
4691 skb = tcp_get_timestamping_opt_stats(sk);
4692 opt_stats = true;
4693 } else
4694#endif
4695 skb = alloc_skb(0, GFP_ATOMIC);
4696 } else {
4697 skb = skb_clone(orig_skb, GFP_ATOMIC);
4698 }
4699 if (!skb)
4700 return;
4701
4702 if (tsonly) {
4703 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4704 SKBTX_ANY_TSTAMP;
4705 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4706 }
4707
4708 if (hwtstamps)
4709 *skb_hwtstamps(skb) = *hwtstamps;
4710 else
4711 skb->tstamp = ktime_get_real();
4712
4713 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4714}
4715EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4716
4717void skb_tstamp_tx(struct sk_buff *orig_skb,
4718 struct skb_shared_hwtstamps *hwtstamps)
4719{
4720 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4721 SCM_TSTAMP_SND);
4722}
4723EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4724
4725void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4726{
4727 struct sock *sk = skb->sk;
4728 struct sock_exterr_skb *serr;
4729 int err = 1;
4730
4731 skb->wifi_acked_valid = 1;
4732 skb->wifi_acked = acked;
4733
4734 serr = SKB_EXT_ERR(skb);
4735 memset(serr, 0, sizeof(*serr));
4736 serr->ee.ee_errno = ENOMSG;
4737 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4738
4739 /* Take a reference to prevent skb_orphan() from freeing the socket,
4740 * but only if the socket refcount is not zero.
4741 */
4742 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4743 err = sock_queue_err_skb(sk, skb);
4744 sock_put(sk);
4745 }
4746 if (err)
4747 kfree_skb(skb);
4748}
4749EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4750
4751/**
4752 * skb_partial_csum_set - set up and verify partial csum values for packet
4753 * @skb: the skb to set
4754 * @start: the number of bytes after skb->data to start checksumming.
4755 * @off: the offset from start to place the checksum.
4756 *
4757 * For untrusted partially-checksummed packets, we need to make sure the values
4758 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4759 *
4760 * This function checks and sets those values and skb->ip_summed: if this
4761 * returns false you should drop the packet.
4762 */
4763bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4764{
4765 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4766 u32 csum_start = skb_headroom(skb) + (u32)start;
4767
4768 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4769 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4770 start, off, skb_headroom(skb), skb_headlen(skb));
4771 return false;
4772 }
4773 skb->ip_summed = CHECKSUM_PARTIAL;
4774 skb->csum_start = csum_start;
4775 skb->csum_offset = off;
4776 skb_set_transport_header(skb, start);
4777 return true;
4778}
4779EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4780
4781static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4782 unsigned int max)
4783{
4784 if (skb_headlen(skb) >= len)
4785 return 0;
4786
4787 /* If we need to pullup then pullup to the max, so we
4788 * won't need to do it again.
4789 */
4790 if (max > skb->len)
4791 max = skb->len;
4792
4793 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4794 return -ENOMEM;
4795
4796 if (skb_headlen(skb) < len)
4797 return -EPROTO;
4798
4799 return 0;
4800}
4801
4802#define MAX_TCP_HDR_LEN (15 * 4)
4803
4804static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4805 typeof(IPPROTO_IP) proto,
4806 unsigned int off)
4807{
4808 switch (proto) {
4809 int err;
4810
4811 case IPPROTO_TCP:
4812 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4813 off + MAX_TCP_HDR_LEN);
4814 if (!err && !skb_partial_csum_set(skb, off,
4815 offsetof(struct tcphdr,
4816 check)))
4817 err = -EPROTO;
4818 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4819
4820 case IPPROTO_UDP:
4821 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4822 off + sizeof(struct udphdr));
4823 if (!err && !skb_partial_csum_set(skb, off,
4824 offsetof(struct udphdr,
4825 check)))
4826 err = -EPROTO;
4827 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4828 }
4829
4830 return ERR_PTR(-EPROTO);
4831}
4832
4833/* This value should be large enough to cover a tagged ethernet header plus
4834 * maximally sized IP and TCP or UDP headers.
4835 */
4836#define MAX_IP_HDR_LEN 128
4837
4838static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4839{
4840 unsigned int off;
4841 bool fragment;
4842 __sum16 *csum;
4843 int err;
4844
4845 fragment = false;
4846
4847 err = skb_maybe_pull_tail(skb,
4848 sizeof(struct iphdr),
4849 MAX_IP_HDR_LEN);
4850 if (err < 0)
4851 goto out;
4852
4853 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4854 fragment = true;
4855
4856 off = ip_hdrlen(skb);
4857
4858 err = -EPROTO;
4859
4860 if (fragment)
4861 goto out;
4862
4863 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4864 if (IS_ERR(csum))
4865 return PTR_ERR(csum);
4866
4867 if (recalculate)
4868 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4869 ip_hdr(skb)->daddr,
4870 skb->len - off,
4871 ip_hdr(skb)->protocol, 0);
4872 err = 0;
4873
4874out:
4875 return err;
4876}
4877
4878/* This value should be large enough to cover a tagged ethernet header plus
4879 * an IPv6 header, all options, and a maximal TCP or UDP header.
4880 */
4881#define MAX_IPV6_HDR_LEN 256
4882
4883#define OPT_HDR(type, skb, off) \
4884 (type *)(skb_network_header(skb) + (off))
4885
4886static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4887{
4888 int err;
4889 u8 nexthdr;
4890 unsigned int off;
4891 unsigned int len;
4892 bool fragment;
4893 bool done;
4894 __sum16 *csum;
4895
4896 fragment = false;
4897 done = false;
4898
4899 off = sizeof(struct ipv6hdr);
4900
4901 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4902 if (err < 0)
4903 goto out;
4904
4905 nexthdr = ipv6_hdr(skb)->nexthdr;
4906
4907 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4908 while (off <= len && !done) {
4909 switch (nexthdr) {
4910 case IPPROTO_DSTOPTS:
4911 case IPPROTO_HOPOPTS:
4912 case IPPROTO_ROUTING: {
4913 struct ipv6_opt_hdr *hp;
4914
4915 err = skb_maybe_pull_tail(skb,
4916 off +
4917 sizeof(struct ipv6_opt_hdr),
4918 MAX_IPV6_HDR_LEN);
4919 if (err < 0)
4920 goto out;
4921
4922 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4923 nexthdr = hp->nexthdr;
4924 off += ipv6_optlen(hp);
4925 break;
4926 }
4927 case IPPROTO_AH: {
4928 struct ip_auth_hdr *hp;
4929
4930 err = skb_maybe_pull_tail(skb,
4931 off +
4932 sizeof(struct ip_auth_hdr),
4933 MAX_IPV6_HDR_LEN);
4934 if (err < 0)
4935 goto out;
4936
4937 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4938 nexthdr = hp->nexthdr;
4939 off += ipv6_authlen(hp);
4940 break;
4941 }
4942 case IPPROTO_FRAGMENT: {
4943 struct frag_hdr *hp;
4944
4945 err = skb_maybe_pull_tail(skb,
4946 off +
4947 sizeof(struct frag_hdr),
4948 MAX_IPV6_HDR_LEN);
4949 if (err < 0)
4950 goto out;
4951
4952 hp = OPT_HDR(struct frag_hdr, skb, off);
4953
4954 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4955 fragment = true;
4956
4957 nexthdr = hp->nexthdr;
4958 off += sizeof(struct frag_hdr);
4959 break;
4960 }
4961 default:
4962 done = true;
4963 break;
4964 }
4965 }
4966
4967 err = -EPROTO;
4968
4969 if (!done || fragment)
4970 goto out;
4971
4972 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4973 if (IS_ERR(csum))
4974 return PTR_ERR(csum);
4975
4976 if (recalculate)
4977 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4978 &ipv6_hdr(skb)->daddr,
4979 skb->len - off, nexthdr, 0);
4980 err = 0;
4981
4982out:
4983 return err;
4984}
4985
4986/**
4987 * skb_checksum_setup - set up partial checksum offset
4988 * @skb: the skb to set up
4989 * @recalculate: if true the pseudo-header checksum will be recalculated
4990 */
4991int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4992{
4993 int err;
4994
4995 switch (skb->protocol) {
4996 case htons(ETH_P_IP):
4997 err = skb_checksum_setup_ipv4(skb, recalculate);
4998 break;
4999
5000 case htons(ETH_P_IPV6):
5001 err = skb_checksum_setup_ipv6(skb, recalculate);
5002 break;
5003
5004 default:
5005 err = -EPROTO;
5006 break;
5007 }
5008
5009 return err;
5010}
5011EXPORT_SYMBOL(skb_checksum_setup);
5012
5013/**
5014 * skb_checksum_maybe_trim - maybe trims the given skb
5015 * @skb: the skb to check
5016 * @transport_len: the data length beyond the network header
5017 *
5018 * Checks whether the given skb has data beyond the given transport length.
5019 * If so, returns a cloned skb trimmed to this transport length.
5020 * Otherwise returns the provided skb. Returns NULL in error cases
5021 * (e.g. transport_len exceeds skb length or out-of-memory).
5022 *
5023 * Caller needs to set the skb transport header and free any returned skb if it
5024 * differs from the provided skb.
5025 */
5026static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5027 unsigned int transport_len)
5028{
5029 struct sk_buff *skb_chk;
5030 unsigned int len = skb_transport_offset(skb) + transport_len;
5031 int ret;
5032
5033 if (skb->len < len)
5034 return NULL;
5035 else if (skb->len == len)
5036 return skb;
5037
5038 skb_chk = skb_clone(skb, GFP_ATOMIC);
5039 if (!skb_chk)
5040 return NULL;
5041
5042 ret = pskb_trim_rcsum(skb_chk, len);
5043 if (ret) {
5044 kfree_skb(skb_chk);
5045 return NULL;
5046 }
5047
5048 return skb_chk;
5049}
5050
5051/**
5052 * skb_checksum_trimmed - validate checksum of an skb
5053 * @skb: the skb to check
5054 * @transport_len: the data length beyond the network header
5055 * @skb_chkf: checksum function to use
5056 *
5057 * Applies the given checksum function skb_chkf to the provided skb.
5058 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5059 *
5060 * If the skb has data beyond the given transport length, then a
5061 * trimmed & cloned skb is checked and returned.
5062 *
5063 * Caller needs to set the skb transport header and free any returned skb if it
5064 * differs from the provided skb.
5065 */
5066struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5067 unsigned int transport_len,
5068 __sum16(*skb_chkf)(struct sk_buff *skb))
5069{
5070 struct sk_buff *skb_chk;
5071 unsigned int offset = skb_transport_offset(skb);
5072 __sum16 ret;
5073
5074 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5075 if (!skb_chk)
5076 goto err;
5077
5078 if (!pskb_may_pull(skb_chk, offset))
5079 goto err;
5080
5081 skb_pull_rcsum(skb_chk, offset);
5082 ret = skb_chkf(skb_chk);
5083 skb_push_rcsum(skb_chk, offset);
5084
5085 if (ret)
5086 goto err;
5087
5088 return skb_chk;
5089
5090err:
5091 if (skb_chk && skb_chk != skb)
5092 kfree_skb(skb_chk);
5093
5094 return NULL;
5095
5096}
5097EXPORT_SYMBOL(skb_checksum_trimmed);
5098
5099void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5100{
5101 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5102 skb->dev->name);
5103}
5104EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5105
5106void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5107{
5108 if (head_stolen) {
5109 skb_release_head_state(skb);
5110 kmem_cache_free(skbuff_head_cache, skb);
5111 } else {
5112 __kfree_skb(skb);
5113 }
5114}
5115EXPORT_SYMBOL(kfree_skb_partial);
5116
5117/**
5118 * skb_try_coalesce - try to merge skb to prior one
5119 * @to: prior buffer
5120 * @from: buffer to add
5121 * @fragstolen: pointer to boolean
5122 * @delta_truesize: how much more was allocated than was requested
5123 */
5124bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5125 bool *fragstolen, int *delta_truesize)
5126{
5127 struct skb_shared_info *to_shinfo, *from_shinfo;
5128 int i, delta, len = from->len;
5129
5130 *fragstolen = false;
5131
5132 if (skb_cloned(to))
5133 return false;
5134
5135 if (len <= skb_tailroom(to)) {
5136 if (len)
5137 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5138 *delta_truesize = 0;
5139 return true;
5140 }
5141
5142 to_shinfo = skb_shinfo(to);
5143 from_shinfo = skb_shinfo(from);
5144 if (to_shinfo->frag_list || from_shinfo->frag_list)
5145 return false;
5146 if (skb_zcopy(to) || skb_zcopy(from))
5147 return false;
5148
5149 if (skb_headlen(from) != 0) {
5150 struct page *page;
5151 unsigned int offset;
5152
5153 if (to_shinfo->nr_frags +
5154 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5155 return false;
5156
5157 if (skb_head_is_locked(from))
5158 return false;
5159
5160 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5161
5162 page = virt_to_head_page(from->head);
5163 offset = from->data - (unsigned char *)page_address(page);
5164
5165 skb_fill_page_desc(to, to_shinfo->nr_frags,
5166 page, offset, skb_headlen(from));
5167 *fragstolen = true;
5168 } else {
5169 if (to_shinfo->nr_frags +
5170 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5171 return false;
5172
5173 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5174 }
5175
5176 WARN_ON_ONCE(delta < len);
5177
5178 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5179 from_shinfo->frags,
5180 from_shinfo->nr_frags * sizeof(skb_frag_t));
5181 to_shinfo->nr_frags += from_shinfo->nr_frags;
5182
5183 if (!skb_cloned(from))
5184 from_shinfo->nr_frags = 0;
5185
5186 /* if the skb is not cloned this does nothing
5187 * since we set nr_frags to 0.
5188 */
5189 for (i = 0; i < from_shinfo->nr_frags; i++)
5190 __skb_frag_ref(&from_shinfo->frags[i]);
5191
5192 to->truesize += delta;
5193 to->len += len;
5194 to->data_len += len;
5195
5196 *delta_truesize = delta;
5197 return true;
5198}
5199EXPORT_SYMBOL(skb_try_coalesce);
5200
5201/**
5202 * skb_scrub_packet - scrub an skb
5203 *
5204 * @skb: buffer to clean
5205 * @xnet: packet is crossing netns
5206 *
5207 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5208 * into/from a tunnel. Some information have to be cleared during these
5209 * operations.
5210 * skb_scrub_packet can also be used to clean a skb before injecting it in
5211 * another namespace (@xnet == true). We have to clear all information in the
5212 * skb that could impact namespace isolation.
5213 */
5214void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5215{
5216 skb->pkt_type = PACKET_HOST;
5217 skb->skb_iif = 0;
5218 skb->ignore_df = 0;
5219 skb_dst_drop(skb);
5220 skb_ext_reset(skb);
5221 nf_reset_ct(skb);
5222 nf_reset_trace(skb);
5223
5224#ifdef CONFIG_NET_SWITCHDEV
5225 skb->offload_fwd_mark = 0;
5226 skb->offload_l3_fwd_mark = 0;
5227#endif
5228
5229 if (!xnet)
5230 return;
5231
5232 ipvs_reset(skb);
5233 skb->mark = 0;
5234 skb->tstamp = 0;
5235}
5236EXPORT_SYMBOL_GPL(skb_scrub_packet);
5237
5238/**
5239 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5240 *
5241 * @skb: GSO skb
5242 *
5243 * skb_gso_transport_seglen is used to determine the real size of the
5244 * individual segments, including Layer4 headers (TCP/UDP).
5245 *
5246 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5247 */
5248static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5249{
5250 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5251 unsigned int thlen = 0;
5252
5253 if (skb->encapsulation) {
5254 thlen = skb_inner_transport_header(skb) -
5255 skb_transport_header(skb);
5256
5257 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5258 thlen += inner_tcp_hdrlen(skb);
5259 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5260 thlen = tcp_hdrlen(skb);
5261 } else if (unlikely(skb_is_gso_sctp(skb))) {
5262 thlen = sizeof(struct sctphdr);
5263 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5264 thlen = sizeof(struct udphdr);
5265 }
5266 /* UFO sets gso_size to the size of the fragmentation
5267 * payload, i.e. the size of the L4 (UDP) header is already
5268 * accounted for.
5269 */
5270 return thlen + shinfo->gso_size;
5271}
5272
5273/**
5274 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5275 *
5276 * @skb: GSO skb
5277 *
5278 * skb_gso_network_seglen is used to determine the real size of the
5279 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5280 *
5281 * The MAC/L2 header is not accounted for.
5282 */
5283static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5284{
5285 unsigned int hdr_len = skb_transport_header(skb) -
5286 skb_network_header(skb);
5287
5288 return hdr_len + skb_gso_transport_seglen(skb);
5289}
5290
5291/**
5292 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5293 *
5294 * @skb: GSO skb
5295 *
5296 * skb_gso_mac_seglen is used to determine the real size of the
5297 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5298 * headers (TCP/UDP).
5299 */
5300static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5301{
5302 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5303
5304 return hdr_len + skb_gso_transport_seglen(skb);
5305}
5306
5307/**
5308 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5309 *
5310 * There are a couple of instances where we have a GSO skb, and we
5311 * want to determine what size it would be after it is segmented.
5312 *
5313 * We might want to check:
5314 * - L3+L4+payload size (e.g. IP forwarding)
5315 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5316 *
5317 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5318 *
5319 * @skb: GSO skb
5320 *
5321 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5322 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5323 *
5324 * @max_len: The maximum permissible length.
5325 *
5326 * Returns true if the segmented length <= max length.
5327 */
5328static inline bool skb_gso_size_check(const struct sk_buff *skb,
5329 unsigned int seg_len,
5330 unsigned int max_len) {
5331 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5332 const struct sk_buff *iter;
5333
5334 if (shinfo->gso_size != GSO_BY_FRAGS)
5335 return seg_len <= max_len;
5336
5337 /* Undo this so we can re-use header sizes */
5338 seg_len -= GSO_BY_FRAGS;
5339
5340 skb_walk_frags(skb, iter) {
5341 if (seg_len + skb_headlen(iter) > max_len)
5342 return false;
5343 }
5344
5345 return true;
5346}
5347
5348/**
5349 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5350 *
5351 * @skb: GSO skb
5352 * @mtu: MTU to validate against
5353 *
5354 * skb_gso_validate_network_len validates if a given skb will fit a
5355 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5356 * payload.
5357 */
5358bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5359{
5360 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5361}
5362EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5363
5364/**
5365 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5366 *
5367 * @skb: GSO skb
5368 * @len: length to validate against
5369 *
5370 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5371 * length once split, including L2, L3 and L4 headers and the payload.
5372 */
5373bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5374{
5375 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5376}
5377EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5378
5379static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5380{
5381 int mac_len, meta_len;
5382 void *meta;
5383
5384 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5385 kfree_skb(skb);
5386 return NULL;
5387 }
5388
5389 mac_len = skb->data - skb_mac_header(skb);
5390 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5391 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5392 mac_len - VLAN_HLEN - ETH_TLEN);
5393 }
5394
5395 meta_len = skb_metadata_len(skb);
5396 if (meta_len) {
5397 meta = skb_metadata_end(skb) - meta_len;
5398 memmove(meta + VLAN_HLEN, meta, meta_len);
5399 }
5400
5401 skb->mac_header += VLAN_HLEN;
5402 return skb;
5403}
5404
5405struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5406{
5407 struct vlan_hdr *vhdr;
5408 u16 vlan_tci;
5409
5410 if (unlikely(skb_vlan_tag_present(skb))) {
5411 /* vlan_tci is already set-up so leave this for another time */
5412 return skb;
5413 }
5414
5415 skb = skb_share_check(skb, GFP_ATOMIC);
5416 if (unlikely(!skb))
5417 goto err_free;
5418
5419 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5420 goto err_free;
5421
5422 vhdr = (struct vlan_hdr *)skb->data;
5423 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5424 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5425
5426 skb_pull_rcsum(skb, VLAN_HLEN);
5427 vlan_set_encap_proto(skb, vhdr);
5428
5429 skb = skb_reorder_vlan_header(skb);
5430 if (unlikely(!skb))
5431 goto err_free;
5432
5433 skb_reset_network_header(skb);
5434 skb_reset_transport_header(skb);
5435 skb_reset_mac_len(skb);
5436
5437 return skb;
5438
5439err_free:
5440 kfree_skb(skb);
5441 return NULL;
5442}
5443EXPORT_SYMBOL(skb_vlan_untag);
5444
5445int skb_ensure_writable(struct sk_buff *skb, int write_len)
5446{
5447 if (!pskb_may_pull(skb, write_len))
5448 return -ENOMEM;
5449
5450 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5451 return 0;
5452
5453 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5454}
5455EXPORT_SYMBOL(skb_ensure_writable);
5456
5457/* remove VLAN header from packet and update csum accordingly.
5458 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5459 */
5460int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5461{
5462 struct vlan_hdr *vhdr;
5463 int offset = skb->data - skb_mac_header(skb);
5464 int err;
5465
5466 if (WARN_ONCE(offset,
5467 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5468 offset)) {
5469 return -EINVAL;
5470 }
5471
5472 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5473 if (unlikely(err))
5474 return err;
5475
5476 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5477
5478 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5479 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5480
5481 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5482 __skb_pull(skb, VLAN_HLEN);
5483
5484 vlan_set_encap_proto(skb, vhdr);
5485 skb->mac_header += VLAN_HLEN;
5486
5487 if (skb_network_offset(skb) < ETH_HLEN)
5488 skb_set_network_header(skb, ETH_HLEN);
5489
5490 skb_reset_mac_len(skb);
5491
5492 return err;
5493}
5494EXPORT_SYMBOL(__skb_vlan_pop);
5495
5496/* Pop a vlan tag either from hwaccel or from payload.
5497 * Expects skb->data at mac header.
5498 */
5499int skb_vlan_pop(struct sk_buff *skb)
5500{
5501 u16 vlan_tci;
5502 __be16 vlan_proto;
5503 int err;
5504
5505 if (likely(skb_vlan_tag_present(skb))) {
5506 __vlan_hwaccel_clear_tag(skb);
5507 } else {
5508 if (unlikely(!eth_type_vlan(skb->protocol)))
5509 return 0;
5510
5511 err = __skb_vlan_pop(skb, &vlan_tci);
5512 if (err)
5513 return err;
5514 }
5515 /* move next vlan tag to hw accel tag */
5516 if (likely(!eth_type_vlan(skb->protocol)))
5517 return 0;
5518
5519 vlan_proto = skb->protocol;
5520 err = __skb_vlan_pop(skb, &vlan_tci);
5521 if (unlikely(err))
5522 return err;
5523
5524 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5525 return 0;
5526}
5527EXPORT_SYMBOL(skb_vlan_pop);
5528
5529/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5530 * Expects skb->data at mac header.
5531 */
5532int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5533{
5534 if (skb_vlan_tag_present(skb)) {
5535 int offset = skb->data - skb_mac_header(skb);
5536 int err;
5537
5538 if (WARN_ONCE(offset,
5539 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5540 offset)) {
5541 return -EINVAL;
5542 }
5543
5544 err = __vlan_insert_tag(skb, skb->vlan_proto,
5545 skb_vlan_tag_get(skb));
5546 if (err)
5547 return err;
5548
5549 skb->protocol = skb->vlan_proto;
5550 skb->mac_len += VLAN_HLEN;
5551
5552 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5553 }
5554 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5555 return 0;
5556}
5557EXPORT_SYMBOL(skb_vlan_push);
5558
5559/* Update the ethertype of hdr and the skb csum value if required. */
5560static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5561 __be16 ethertype)
5562{
5563 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5564 __be16 diff[] = { ~hdr->h_proto, ethertype };
5565
5566 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5567 }
5568
5569 hdr->h_proto = ethertype;
5570}
5571
5572/**
5573 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5574 * the packet
5575 *
5576 * @skb: buffer
5577 * @mpls_lse: MPLS label stack entry to push
5578 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5579 * @mac_len: length of the MAC header
5580 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5581 * ethernet
5582 *
5583 * Expects skb->data at mac header.
5584 *
5585 * Returns 0 on success, -errno otherwise.
5586 */
5587int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5588 int mac_len, bool ethernet)
5589{
5590 struct mpls_shim_hdr *lse;
5591 int err;
5592
5593 if (unlikely(!eth_p_mpls(mpls_proto)))
5594 return -EINVAL;
5595
5596 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5597 if (skb->encapsulation)
5598 return -EINVAL;
5599
5600 err = skb_cow_head(skb, MPLS_HLEN);
5601 if (unlikely(err))
5602 return err;
5603
5604 if (!skb->inner_protocol) {
5605 skb_set_inner_network_header(skb, skb_network_offset(skb));
5606 skb_set_inner_protocol(skb, skb->protocol);
5607 }
5608
5609 skb_push(skb, MPLS_HLEN);
5610 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5611 mac_len);
5612 skb_reset_mac_header(skb);
5613 skb_set_network_header(skb, mac_len);
5614 skb_reset_mac_len(skb);
5615
5616 lse = mpls_hdr(skb);
5617 lse->label_stack_entry = mpls_lse;
5618 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5619
5620 if (ethernet)
5621 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5622 skb->protocol = mpls_proto;
5623
5624 return 0;
5625}
5626EXPORT_SYMBOL_GPL(skb_mpls_push);
5627
5628/**
5629 * skb_mpls_pop() - pop the outermost MPLS header
5630 *
5631 * @skb: buffer
5632 * @next_proto: ethertype of header after popped MPLS header
5633 * @mac_len: length of the MAC header
5634 * @ethernet: flag to indicate if the packet is ethernet
5635 *
5636 * Expects skb->data at mac header.
5637 *
5638 * Returns 0 on success, -errno otherwise.
5639 */
5640int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5641 bool ethernet)
5642{
5643 int err;
5644
5645 if (unlikely(!eth_p_mpls(skb->protocol)))
5646 return 0;
5647
5648 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5649 if (unlikely(err))
5650 return err;
5651
5652 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5653 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5654 mac_len);
5655
5656 __skb_pull(skb, MPLS_HLEN);
5657 skb_reset_mac_header(skb);
5658 skb_set_network_header(skb, mac_len);
5659
5660 if (ethernet) {
5661 struct ethhdr *hdr;
5662
5663 /* use mpls_hdr() to get ethertype to account for VLANs. */
5664 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5665 skb_mod_eth_type(skb, hdr, next_proto);
5666 }
5667 skb->protocol = next_proto;
5668
5669 return 0;
5670}
5671EXPORT_SYMBOL_GPL(skb_mpls_pop);
5672
5673/**
5674 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5675 *
5676 * @skb: buffer
5677 * @mpls_lse: new MPLS label stack entry to update to
5678 *
5679 * Expects skb->data at mac header.
5680 *
5681 * Returns 0 on success, -errno otherwise.
5682 */
5683int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5684{
5685 int err;
5686
5687 if (unlikely(!eth_p_mpls(skb->protocol)))
5688 return -EINVAL;
5689
5690 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5691 if (unlikely(err))
5692 return err;
5693
5694 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5695 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5696
5697 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5698 }
5699
5700 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5701
5702 return 0;
5703}
5704EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5705
5706/**
5707 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5708 *
5709 * @skb: buffer
5710 *
5711 * Expects skb->data at mac header.
5712 *
5713 * Returns 0 on success, -errno otherwise.
5714 */
5715int skb_mpls_dec_ttl(struct sk_buff *skb)
5716{
5717 u32 lse;
5718 u8 ttl;
5719
5720 if (unlikely(!eth_p_mpls(skb->protocol)))
5721 return -EINVAL;
5722
5723 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5724 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5725 if (!--ttl)
5726 return -EINVAL;
5727
5728 lse &= ~MPLS_LS_TTL_MASK;
5729 lse |= ttl << MPLS_LS_TTL_SHIFT;
5730
5731 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5732}
5733EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5734
5735/**
5736 * alloc_skb_with_frags - allocate skb with page frags
5737 *
5738 * @header_len: size of linear part
5739 * @data_len: needed length in frags
5740 * @max_page_order: max page order desired.
5741 * @errcode: pointer to error code if any
5742 * @gfp_mask: allocation mask
5743 *
5744 * This can be used to allocate a paged skb, given a maximal order for frags.
5745 */
5746struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5747 unsigned long data_len,
5748 int max_page_order,
5749 int *errcode,
5750 gfp_t gfp_mask)
5751{
5752 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5753 unsigned long chunk;
5754 struct sk_buff *skb;
5755 struct page *page;
5756 int i;
5757
5758 *errcode = -EMSGSIZE;
5759 /* Note this test could be relaxed, if we succeed to allocate
5760 * high order pages...
5761 */
5762 if (npages > MAX_SKB_FRAGS)
5763 return NULL;
5764
5765 *errcode = -ENOBUFS;
5766 skb = alloc_skb(header_len, gfp_mask);
5767 if (!skb)
5768 return NULL;
5769
5770 skb->truesize += npages << PAGE_SHIFT;
5771
5772 for (i = 0; npages > 0; i++) {
5773 int order = max_page_order;
5774
5775 while (order) {
5776 if (npages >= 1 << order) {
5777 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5778 __GFP_COMP |
5779 __GFP_NOWARN,
5780 order);
5781 if (page)
5782 goto fill_page;
5783 /* Do not retry other high order allocations */
5784 order = 1;
5785 max_page_order = 0;
5786 }
5787 order--;
5788 }
5789 page = alloc_page(gfp_mask);
5790 if (!page)
5791 goto failure;
5792fill_page:
5793 chunk = min_t(unsigned long, data_len,
5794 PAGE_SIZE << order);
5795 skb_fill_page_desc(skb, i, page, 0, chunk);
5796 data_len -= chunk;
5797 npages -= 1 << order;
5798 }
5799 return skb;
5800
5801failure:
5802 kfree_skb(skb);
5803 return NULL;
5804}
5805EXPORT_SYMBOL(alloc_skb_with_frags);
5806
5807/* carve out the first off bytes from skb when off < headlen */
5808static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5809 const int headlen, gfp_t gfp_mask)
5810{
5811 int i;
5812 int size = skb_end_offset(skb);
5813 int new_hlen = headlen - off;
5814 u8 *data;
5815
5816 size = SKB_DATA_ALIGN(size);
5817
5818 if (skb_pfmemalloc(skb))
5819 gfp_mask |= __GFP_MEMALLOC;
5820 data = kmalloc_reserve(size +
5821 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5822 gfp_mask, NUMA_NO_NODE, NULL);
5823 if (!data)
5824 return -ENOMEM;
5825
5826 size = SKB_WITH_OVERHEAD(ksize(data));
5827
5828 /* Copy real data, and all frags */
5829 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5830 skb->len -= off;
5831
5832 memcpy((struct skb_shared_info *)(data + size),
5833 skb_shinfo(skb),
5834 offsetof(struct skb_shared_info,
5835 frags[skb_shinfo(skb)->nr_frags]));
5836 if (skb_cloned(skb)) {
5837 /* drop the old head gracefully */
5838 if (skb_orphan_frags(skb, gfp_mask)) {
5839 kfree(data);
5840 return -ENOMEM;
5841 }
5842 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5843 skb_frag_ref(skb, i);
5844 if (skb_has_frag_list(skb))
5845 skb_clone_fraglist(skb);
5846 skb_release_data(skb);
5847 } else {
5848 /* we can reuse existing recount- all we did was
5849 * relocate values
5850 */
5851 skb_free_head(skb);
5852 }
5853
5854 skb->head = data;
5855 skb->data = data;
5856 skb->head_frag = 0;
5857#ifdef NET_SKBUFF_DATA_USES_OFFSET
5858 skb->end = size;
5859#else
5860 skb->end = skb->head + size;
5861#endif
5862 skb_set_tail_pointer(skb, skb_headlen(skb));
5863 skb_headers_offset_update(skb, 0);
5864 skb->cloned = 0;
5865 skb->hdr_len = 0;
5866 skb->nohdr = 0;
5867 atomic_set(&skb_shinfo(skb)->dataref, 1);
5868
5869 return 0;
5870}
5871
5872static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5873
5874/* carve out the first eat bytes from skb's frag_list. May recurse into
5875 * pskb_carve()
5876 */
5877static int pskb_carve_frag_list(struct sk_buff *skb,
5878 struct skb_shared_info *shinfo, int eat,
5879 gfp_t gfp_mask)
5880{
5881 struct sk_buff *list = shinfo->frag_list;
5882 struct sk_buff *clone = NULL;
5883 struct sk_buff *insp = NULL;
5884
5885 do {
5886 if (!list) {
5887 pr_err("Not enough bytes to eat. Want %d\n", eat);
5888 return -EFAULT;
5889 }
5890 if (list->len <= eat) {
5891 /* Eaten as whole. */
5892 eat -= list->len;
5893 list = list->next;
5894 insp = list;
5895 } else {
5896 /* Eaten partially. */
5897 if (skb_shared(list)) {
5898 clone = skb_clone(list, gfp_mask);
5899 if (!clone)
5900 return -ENOMEM;
5901 insp = list->next;
5902 list = clone;
5903 } else {
5904 /* This may be pulled without problems. */
5905 insp = list;
5906 }
5907 if (pskb_carve(list, eat, gfp_mask) < 0) {
5908 kfree_skb(clone);
5909 return -ENOMEM;
5910 }
5911 break;
5912 }
5913 } while (eat);
5914
5915 /* Free pulled out fragments. */
5916 while ((list = shinfo->frag_list) != insp) {
5917 shinfo->frag_list = list->next;
5918 kfree_skb(list);
5919 }
5920 /* And insert new clone at head. */
5921 if (clone) {
5922 clone->next = list;
5923 shinfo->frag_list = clone;
5924 }
5925 return 0;
5926}
5927
5928/* carve off first len bytes from skb. Split line (off) is in the
5929 * non-linear part of skb
5930 */
5931static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5932 int pos, gfp_t gfp_mask)
5933{
5934 int i, k = 0;
5935 int size = skb_end_offset(skb);
5936 u8 *data;
5937 const int nfrags = skb_shinfo(skb)->nr_frags;
5938 struct skb_shared_info *shinfo;
5939
5940 size = SKB_DATA_ALIGN(size);
5941
5942 if (skb_pfmemalloc(skb))
5943 gfp_mask |= __GFP_MEMALLOC;
5944 data = kmalloc_reserve(size +
5945 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5946 gfp_mask, NUMA_NO_NODE, NULL);
5947 if (!data)
5948 return -ENOMEM;
5949
5950 size = SKB_WITH_OVERHEAD(ksize(data));
5951
5952 memcpy((struct skb_shared_info *)(data + size),
5953 skb_shinfo(skb), offsetof(struct skb_shared_info,
5954 frags[skb_shinfo(skb)->nr_frags]));
5955 if (skb_orphan_frags(skb, gfp_mask)) {
5956 kfree(data);
5957 return -ENOMEM;
5958 }
5959 shinfo = (struct skb_shared_info *)(data + size);
5960 for (i = 0; i < nfrags; i++) {
5961 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5962
5963 if (pos + fsize > off) {
5964 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5965
5966 if (pos < off) {
5967 /* Split frag.
5968 * We have two variants in this case:
5969 * 1. Move all the frag to the second
5970 * part, if it is possible. F.e.
5971 * this approach is mandatory for TUX,
5972 * where splitting is expensive.
5973 * 2. Split is accurately. We make this.
5974 */
5975 skb_frag_off_add(&shinfo->frags[0], off - pos);
5976 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5977 }
5978 skb_frag_ref(skb, i);
5979 k++;
5980 }
5981 pos += fsize;
5982 }
5983 shinfo->nr_frags = k;
5984 if (skb_has_frag_list(skb))
5985 skb_clone_fraglist(skb);
5986
5987 if (k == 0) {
5988 /* split line is in frag list */
5989 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5990 }
5991 skb_release_data(skb);
5992
5993 skb->head = data;
5994 skb->head_frag = 0;
5995 skb->data = data;
5996#ifdef NET_SKBUFF_DATA_USES_OFFSET
5997 skb->end = size;
5998#else
5999 skb->end = skb->head + size;
6000#endif
6001 skb_reset_tail_pointer(skb);
6002 skb_headers_offset_update(skb, 0);
6003 skb->cloned = 0;
6004 skb->hdr_len = 0;
6005 skb->nohdr = 0;
6006 skb->len -= off;
6007 skb->data_len = skb->len;
6008 atomic_set(&skb_shinfo(skb)->dataref, 1);
6009 return 0;
6010}
6011
6012/* remove len bytes from the beginning of the skb */
6013static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6014{
6015 int headlen = skb_headlen(skb);
6016
6017 if (len < headlen)
6018 return pskb_carve_inside_header(skb, len, headlen, gfp);
6019 else
6020 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6021}
6022
6023/* Extract to_copy bytes starting at off from skb, and return this in
6024 * a new skb
6025 */
6026struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6027 int to_copy, gfp_t gfp)
6028{
6029 struct sk_buff *clone = skb_clone(skb, gfp);
6030
6031 if (!clone)
6032 return NULL;
6033
6034 if (pskb_carve(clone, off, gfp) < 0 ||
6035 pskb_trim(clone, to_copy)) {
6036 kfree_skb(clone);
6037 return NULL;
6038 }
6039 return clone;
6040}
6041EXPORT_SYMBOL(pskb_extract);
6042
6043/**
6044 * skb_condense - try to get rid of fragments/frag_list if possible
6045 * @skb: buffer
6046 *
6047 * Can be used to save memory before skb is added to a busy queue.
6048 * If packet has bytes in frags and enough tail room in skb->head,
6049 * pull all of them, so that we can free the frags right now and adjust
6050 * truesize.
6051 * Notes:
6052 * We do not reallocate skb->head thus can not fail.
6053 * Caller must re-evaluate skb->truesize if needed.
6054 */
6055void skb_condense(struct sk_buff *skb)
6056{
6057 if (skb->data_len) {
6058 if (skb->data_len > skb->end - skb->tail ||
6059 skb_cloned(skb))
6060 return;
6061
6062 /* Nice, we can free page frag(s) right now */
6063 __pskb_pull_tail(skb, skb->data_len);
6064 }
6065 /* At this point, skb->truesize might be over estimated,
6066 * because skb had a fragment, and fragments do not tell
6067 * their truesize.
6068 * When we pulled its content into skb->head, fragment
6069 * was freed, but __pskb_pull_tail() could not possibly
6070 * adjust skb->truesize, not knowing the frag truesize.
6071 */
6072 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6073}
6074
6075#ifdef CONFIG_SKB_EXTENSIONS
6076static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6077{
6078 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6079}
6080
6081/**
6082 * __skb_ext_alloc - allocate a new skb extensions storage
6083 *
6084 * Returns the newly allocated pointer. The pointer can later attached to a
6085 * skb via __skb_ext_set().
6086 * Note: caller must handle the skb_ext as an opaque data.
6087 */
6088struct skb_ext *__skb_ext_alloc(void)
6089{
6090 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6091
6092 if (new) {
6093 memset(new->offset, 0, sizeof(new->offset));
6094 refcount_set(&new->refcnt, 1);
6095 }
6096
6097 return new;
6098}
6099
6100static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6101 unsigned int old_active)
6102{
6103 struct skb_ext *new;
6104
6105 if (refcount_read(&old->refcnt) == 1)
6106 return old;
6107
6108 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6109 if (!new)
6110 return NULL;
6111
6112 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6113 refcount_set(&new->refcnt, 1);
6114
6115#ifdef CONFIG_XFRM
6116 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6117 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6118 unsigned int i;
6119
6120 for (i = 0; i < sp->len; i++)
6121 xfrm_state_hold(sp->xvec[i]);
6122 }
6123#endif
6124 __skb_ext_put(old);
6125 return new;
6126}
6127
6128/**
6129 * __skb_ext_set - attach the specified extension storage to this skb
6130 * @skb: buffer
6131 * @id: extension id
6132 * @ext: extension storage previously allocated via __skb_ext_alloc()
6133 *
6134 * Existing extensions, if any, are cleared.
6135 *
6136 * Returns the pointer to the extension.
6137 */
6138void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6139 struct skb_ext *ext)
6140{
6141 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6142
6143 skb_ext_put(skb);
6144 newlen = newoff + skb_ext_type_len[id];
6145 ext->chunks = newlen;
6146 ext->offset[id] = newoff;
6147 skb->extensions = ext;
6148 skb->active_extensions = 1 << id;
6149 return skb_ext_get_ptr(ext, id);
6150}
6151
6152/**
6153 * skb_ext_add - allocate space for given extension, COW if needed
6154 * @skb: buffer
6155 * @id: extension to allocate space for
6156 *
6157 * Allocates enough space for the given extension.
6158 * If the extension is already present, a pointer to that extension
6159 * is returned.
6160 *
6161 * If the skb was cloned, COW applies and the returned memory can be
6162 * modified without changing the extension space of clones buffers.
6163 *
6164 * Returns pointer to the extension or NULL on allocation failure.
6165 */
6166void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6167{
6168 struct skb_ext *new, *old = NULL;
6169 unsigned int newlen, newoff;
6170
6171 if (skb->active_extensions) {
6172 old = skb->extensions;
6173
6174 new = skb_ext_maybe_cow(old, skb->active_extensions);
6175 if (!new)
6176 return NULL;
6177
6178 if (__skb_ext_exist(new, id))
6179 goto set_active;
6180
6181 newoff = new->chunks;
6182 } else {
6183 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6184
6185 new = __skb_ext_alloc();
6186 if (!new)
6187 return NULL;
6188 }
6189
6190 newlen = newoff + skb_ext_type_len[id];
6191 new->chunks = newlen;
6192 new->offset[id] = newoff;
6193set_active:
6194 skb->extensions = new;
6195 skb->active_extensions |= 1 << id;
6196 return skb_ext_get_ptr(new, id);
6197}
6198EXPORT_SYMBOL(skb_ext_add);
6199
6200#ifdef CONFIG_XFRM
6201static void skb_ext_put_sp(struct sec_path *sp)
6202{
6203 unsigned int i;
6204
6205 for (i = 0; i < sp->len; i++)
6206 xfrm_state_put(sp->xvec[i]);
6207}
6208#endif
6209
6210void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6211{
6212 struct skb_ext *ext = skb->extensions;
6213
6214 skb->active_extensions &= ~(1 << id);
6215 if (skb->active_extensions == 0) {
6216 skb->extensions = NULL;
6217 __skb_ext_put(ext);
6218#ifdef CONFIG_XFRM
6219 } else if (id == SKB_EXT_SEC_PATH &&
6220 refcount_read(&ext->refcnt) == 1) {
6221 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6222
6223 skb_ext_put_sp(sp);
6224 sp->len = 0;
6225#endif
6226 }
6227}
6228EXPORT_SYMBOL(__skb_ext_del);
6229
6230void __skb_ext_put(struct skb_ext *ext)
6231{
6232 /* If this is last clone, nothing can increment
6233 * it after check passes. Avoids one atomic op.
6234 */
6235 if (refcount_read(&ext->refcnt) == 1)
6236 goto free_now;
6237
6238 if (!refcount_dec_and_test(&ext->refcnt))
6239 return;
6240free_now:
6241#ifdef CONFIG_XFRM
6242 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6243 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6244#endif
6245
6246 kmem_cache_free(skbuff_ext_cache, ext);
6247}
6248EXPORT_SYMBOL(__skb_ext_put);
6249#endif /* CONFIG_SKB_EXTENSIONS */