Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/mctp.h>
74#include <net/page_pool.h>
75
76#include <linux/uaccess.h>
77#include <trace/events/skb.h>
78#include <linux/highmem.h>
79#include <linux/capability.h>
80#include <linux/user_namespace.h>
81#include <linux/indirect_call_wrapper.h>
82
83#include "datagram.h"
84#include "sock_destructor.h"
85
86struct kmem_cache *skbuff_head_cache __ro_after_init;
87static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88#ifdef CONFIG_SKB_EXTENSIONS
89static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90#endif
91int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94/**
95 * skb_panic - private function for out-of-line support
96 * @skb: buffer
97 * @sz: size
98 * @addr: address
99 * @msg: skb_over_panic or skb_under_panic
100 *
101 * Out-of-line support for skb_put() and skb_push().
102 * Called via the wrapper skb_over_panic() or skb_under_panic().
103 * Keep out of line to prevent kernel bloat.
104 * __builtin_return_address is not used because it is not always reliable.
105 */
106static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 const char msg[])
108{
109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 msg, addr, skb->len, sz, skb->head, skb->data,
111 (unsigned long)skb->tail, (unsigned long)skb->end,
112 skb->dev ? skb->dev->name : "<NULL>");
113 BUG();
114}
115
116static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117{
118 skb_panic(skb, sz, addr, __func__);
119}
120
121static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122{
123 skb_panic(skb, sz, addr, __func__);
124}
125
126#define NAPI_SKB_CACHE_SIZE 64
127#define NAPI_SKB_CACHE_BULK 16
128#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
129
130struct napi_alloc_cache {
131 struct page_frag_cache page;
132 unsigned int skb_count;
133 void *skb_cache[NAPI_SKB_CACHE_SIZE];
134};
135
136static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138
139void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140{
141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142
143 fragsz = SKB_DATA_ALIGN(fragsz);
144
145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146}
147EXPORT_SYMBOL(__napi_alloc_frag_align);
148
149void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150{
151 void *data;
152
153 fragsz = SKB_DATA_ALIGN(fragsz);
154 if (in_hardirq() || irqs_disabled()) {
155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156
157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 } else {
159 struct napi_alloc_cache *nc;
160
161 local_bh_disable();
162 nc = this_cpu_ptr(&napi_alloc_cache);
163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 local_bh_enable();
165 }
166 return data;
167}
168EXPORT_SYMBOL(__netdev_alloc_frag_align);
169
170static struct sk_buff *napi_skb_cache_get(void)
171{
172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 struct sk_buff *skb;
174
175 if (unlikely(!nc->skb_count))
176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 GFP_ATOMIC,
178 NAPI_SKB_CACHE_BULK,
179 nc->skb_cache);
180 if (unlikely(!nc->skb_count))
181 return NULL;
182
183 skb = nc->skb_cache[--nc->skb_count];
184 kasan_unpoison_object_data(skbuff_head_cache, skb);
185
186 return skb;
187}
188
189/* Caller must provide SKB that is memset cleared */
190static void __build_skb_around(struct sk_buff *skb, void *data,
191 unsigned int frag_size)
192{
193 struct skb_shared_info *shinfo;
194 unsigned int size = frag_size ? : ksize(data);
195
196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197
198 /* Assumes caller memset cleared SKB */
199 skb->truesize = SKB_TRUESIZE(size);
200 refcount_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb_set_end_offset(skb, size);
205 skb->mac_header = (typeof(skb->mac_header))~0U;
206 skb->transport_header = (typeof(skb->transport_header))~0U;
207
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 atomic_set(&shinfo->dataref, 1);
212
213 skb_set_kcov_handle(skb, kcov_common_handle());
214}
215
216/**
217 * __build_skb - build a network buffer
218 * @data: data buffer provided by caller
219 * @frag_size: size of data, or 0 if head was kmalloced
220 *
221 * Allocate a new &sk_buff. Caller provides space holding head and
222 * skb_shared_info. @data must have been allocated by kmalloc() only if
223 * @frag_size is 0, otherwise data should come from the page allocator
224 * or vmalloc()
225 * The return is the new skb buffer.
226 * On a failure the return is %NULL, and @data is not freed.
227 * Notes :
228 * Before IO, driver allocates only data buffer where NIC put incoming frame
229 * Driver should add room at head (NET_SKB_PAD) and
230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
232 * before giving packet to stack.
233 * RX rings only contains data buffers, not full skbs.
234 */
235struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236{
237 struct sk_buff *skb;
238
239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 if (unlikely(!skb))
241 return NULL;
242
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 __build_skb_around(skb, data, frag_size);
245
246 return skb;
247}
248
249/* build_skb() is wrapper over __build_skb(), that specifically
250 * takes care of skb->head and skb->pfmemalloc
251 * This means that if @frag_size is not zero, then @data must be backed
252 * by a page fragment, not kmalloc() or vmalloc()
253 */
254struct sk_buff *build_skb(void *data, unsigned int frag_size)
255{
256 struct sk_buff *skb = __build_skb(data, frag_size);
257
258 if (skb && frag_size) {
259 skb->head_frag = 1;
260 if (page_is_pfmemalloc(virt_to_head_page(data)))
261 skb->pfmemalloc = 1;
262 }
263 return skb;
264}
265EXPORT_SYMBOL(build_skb);
266
267/**
268 * build_skb_around - build a network buffer around provided skb
269 * @skb: sk_buff provide by caller, must be memset cleared
270 * @data: data buffer provided by caller
271 * @frag_size: size of data, or 0 if head was kmalloced
272 */
273struct sk_buff *build_skb_around(struct sk_buff *skb,
274 void *data, unsigned int frag_size)
275{
276 if (unlikely(!skb))
277 return NULL;
278
279 __build_skb_around(skb, data, frag_size);
280
281 if (frag_size) {
282 skb->head_frag = 1;
283 if (page_is_pfmemalloc(virt_to_head_page(data)))
284 skb->pfmemalloc = 1;
285 }
286 return skb;
287}
288EXPORT_SYMBOL(build_skb_around);
289
290/**
291 * __napi_build_skb - build a network buffer
292 * @data: data buffer provided by caller
293 * @frag_size: size of data, or 0 if head was kmalloced
294 *
295 * Version of __build_skb() that uses NAPI percpu caches to obtain
296 * skbuff_head instead of inplace allocation.
297 *
298 * Returns a new &sk_buff on success, %NULL on allocation failure.
299 */
300static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301{
302 struct sk_buff *skb;
303
304 skb = napi_skb_cache_get();
305 if (unlikely(!skb))
306 return NULL;
307
308 memset(skb, 0, offsetof(struct sk_buff, tail));
309 __build_skb_around(skb, data, frag_size);
310
311 return skb;
312}
313
314/**
315 * napi_build_skb - build a network buffer
316 * @data: data buffer provided by caller
317 * @frag_size: size of data, or 0 if head was kmalloced
318 *
319 * Version of __napi_build_skb() that takes care of skb->head_frag
320 * and skb->pfmemalloc when the data is a page or page fragment.
321 *
322 * Returns a new &sk_buff on success, %NULL on allocation failure.
323 */
324struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325{
326 struct sk_buff *skb = __napi_build_skb(data, frag_size);
327
328 if (likely(skb) && frag_size) {
329 skb->head_frag = 1;
330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 }
332
333 return skb;
334}
335EXPORT_SYMBOL(napi_build_skb);
336
337/*
338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339 * the caller if emergency pfmemalloc reserves are being used. If it is and
340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341 * may be used. Otherwise, the packet data may be discarded until enough
342 * memory is free
343 */
344static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 bool *pfmemalloc)
346{
347 void *obj;
348 bool ret_pfmemalloc = false;
349
350 /*
351 * Try a regular allocation, when that fails and we're not entitled
352 * to the reserves, fail.
353 */
354 obj = kmalloc_node_track_caller(size,
355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 node);
357 if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 goto out;
359
360 /* Try again but now we are using pfmemalloc reserves */
361 ret_pfmemalloc = true;
362 obj = kmalloc_node_track_caller(size, flags, node);
363
364out:
365 if (pfmemalloc)
366 *pfmemalloc = ret_pfmemalloc;
367
368 return obj;
369}
370
371/* Allocate a new skbuff. We do this ourselves so we can fill in a few
372 * 'private' fields and also do memory statistics to find all the
373 * [BEEP] leaks.
374 *
375 */
376
377/**
378 * __alloc_skb - allocate a network buffer
379 * @size: size to allocate
380 * @gfp_mask: allocation mask
381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382 * instead of head cache and allocate a cloned (child) skb.
383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384 * allocations in case the data is required for writeback
385 * @node: numa node to allocate memory on
386 *
387 * Allocate a new &sk_buff. The returned buffer has no headroom and a
388 * tail room of at least size bytes. The object has a reference count
389 * of one. The return is the buffer. On a failure the return is %NULL.
390 *
391 * Buffers may only be allocated from interrupts using a @gfp_mask of
392 * %GFP_ATOMIC.
393 */
394struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 int flags, int node)
396{
397 struct kmem_cache *cache;
398 struct sk_buff *skb;
399 unsigned int osize;
400 bool pfmemalloc;
401 u8 *data;
402
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
405
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
408
409 /* Get the HEAD */
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
413 else
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 if (unlikely(!skb))
416 return NULL;
417 prefetchw(skb);
418
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
423 */
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 if (unlikely(!data))
428 goto nodata;
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
432 */
433 osize = ksize(data);
434 size = SKB_WITH_OVERHEAD(osize);
435 prefetchw(data + size);
436
437 /*
438 * Only clear those fields we need to clear, not those that we will
439 * actually initialise below. Hence, don't put any more fields after
440 * the tail pointer in struct sk_buff!
441 */
442 memset(skb, 0, offsetof(struct sk_buff, tail));
443 __build_skb_around(skb, data, osize);
444 skb->pfmemalloc = pfmemalloc;
445
446 if (flags & SKB_ALLOC_FCLONE) {
447 struct sk_buff_fclones *fclones;
448
449 fclones = container_of(skb, struct sk_buff_fclones, skb1);
450
451 skb->fclone = SKB_FCLONE_ORIG;
452 refcount_set(&fclones->fclone_ref, 1);
453
454 fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 }
456
457 return skb;
458
459nodata:
460 kmem_cache_free(cache, skb);
461 return NULL;
462}
463EXPORT_SYMBOL(__alloc_skb);
464
465/**
466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
467 * @dev: network device to receive on
468 * @len: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
470 *
471 * Allocate a new &sk_buff and assign it a usage count of one. The
472 * buffer has NET_SKB_PAD headroom built in. Users should allocate
473 * the headroom they think they need without accounting for the
474 * built in space. The built in space is used for optimisations.
475 *
476 * %NULL is returned if there is no free memory.
477 */
478struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 gfp_t gfp_mask)
480{
481 struct page_frag_cache *nc;
482 struct sk_buff *skb;
483 bool pfmemalloc;
484 void *data;
485
486 len += NET_SKB_PAD;
487
488 /* If requested length is either too small or too big,
489 * we use kmalloc() for skb->head allocation.
490 */
491 if (len <= SKB_WITH_OVERHEAD(1024) ||
492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 if (!skb)
496 goto skb_fail;
497 goto skb_success;
498 }
499
500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 len = SKB_DATA_ALIGN(len);
502
503 if (sk_memalloc_socks())
504 gfp_mask |= __GFP_MEMALLOC;
505
506 if (in_hardirq() || irqs_disabled()) {
507 nc = this_cpu_ptr(&netdev_alloc_cache);
508 data = page_frag_alloc(nc, len, gfp_mask);
509 pfmemalloc = nc->pfmemalloc;
510 } else {
511 local_bh_disable();
512 nc = this_cpu_ptr(&napi_alloc_cache.page);
513 data = page_frag_alloc(nc, len, gfp_mask);
514 pfmemalloc = nc->pfmemalloc;
515 local_bh_enable();
516 }
517
518 if (unlikely(!data))
519 return NULL;
520
521 skb = __build_skb(data, len);
522 if (unlikely(!skb)) {
523 skb_free_frag(data);
524 return NULL;
525 }
526
527 if (pfmemalloc)
528 skb->pfmemalloc = 1;
529 skb->head_frag = 1;
530
531skb_success:
532 skb_reserve(skb, NET_SKB_PAD);
533 skb->dev = dev;
534
535skb_fail:
536 return skb;
537}
538EXPORT_SYMBOL(__netdev_alloc_skb);
539
540/**
541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542 * @napi: napi instance this buffer was allocated for
543 * @len: length to allocate
544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545 *
546 * Allocate a new sk_buff for use in NAPI receive. This buffer will
547 * attempt to allocate the head from a special reserved region used
548 * only for NAPI Rx allocation. By doing this we can save several
549 * CPU cycles by avoiding having to disable and re-enable IRQs.
550 *
551 * %NULL is returned if there is no free memory.
552 */
553struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 gfp_t gfp_mask)
555{
556 struct napi_alloc_cache *nc;
557 struct sk_buff *skb;
558 void *data;
559
560 len += NET_SKB_PAD + NET_IP_ALIGN;
561
562 /* If requested length is either too small or too big,
563 * we use kmalloc() for skb->head allocation.
564 */
565 if (len <= SKB_WITH_OVERHEAD(1024) ||
566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 NUMA_NO_NODE);
570 if (!skb)
571 goto skb_fail;
572 goto skb_success;
573 }
574
575 nc = this_cpu_ptr(&napi_alloc_cache);
576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 len = SKB_DATA_ALIGN(len);
578
579 if (sk_memalloc_socks())
580 gfp_mask |= __GFP_MEMALLOC;
581
582 data = page_frag_alloc(&nc->page, len, gfp_mask);
583 if (unlikely(!data))
584 return NULL;
585
586 skb = __napi_build_skb(data, len);
587 if (unlikely(!skb)) {
588 skb_free_frag(data);
589 return NULL;
590 }
591
592 if (nc->page.pfmemalloc)
593 skb->pfmemalloc = 1;
594 skb->head_frag = 1;
595
596skb_success:
597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 skb->dev = napi->dev;
599
600skb_fail:
601 return skb;
602}
603EXPORT_SYMBOL(__napi_alloc_skb);
604
605void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 int size, unsigned int truesize)
607{
608 skb_fill_page_desc(skb, i, page, off, size);
609 skb->len += size;
610 skb->data_len += size;
611 skb->truesize += truesize;
612}
613EXPORT_SYMBOL(skb_add_rx_frag);
614
615void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 unsigned int truesize)
617{
618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619
620 skb_frag_size_add(frag, size);
621 skb->len += size;
622 skb->data_len += size;
623 skb->truesize += truesize;
624}
625EXPORT_SYMBOL(skb_coalesce_rx_frag);
626
627static void skb_drop_list(struct sk_buff **listp)
628{
629 kfree_skb_list(*listp);
630 *listp = NULL;
631}
632
633static inline void skb_drop_fraglist(struct sk_buff *skb)
634{
635 skb_drop_list(&skb_shinfo(skb)->frag_list);
636}
637
638static void skb_clone_fraglist(struct sk_buff *skb)
639{
640 struct sk_buff *list;
641
642 skb_walk_frags(skb, list)
643 skb_get(list);
644}
645
646static void skb_free_head(struct sk_buff *skb)
647{
648 unsigned char *head = skb->head;
649
650 if (skb->head_frag) {
651 if (skb_pp_recycle(skb, head))
652 return;
653 skb_free_frag(head);
654 } else {
655 kfree(head);
656 }
657}
658
659static void skb_release_data(struct sk_buff *skb)
660{
661 struct skb_shared_info *shinfo = skb_shinfo(skb);
662 int i;
663
664 if (skb->cloned &&
665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 &shinfo->dataref))
667 goto exit;
668
669 skb_zcopy_clear(skb, true);
670
671 for (i = 0; i < shinfo->nr_frags; i++)
672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673
674 if (shinfo->frag_list)
675 kfree_skb_list(shinfo->frag_list);
676
677 skb_free_head(skb);
678exit:
679 /* When we clone an SKB we copy the reycling bit. The pp_recycle
680 * bit is only set on the head though, so in order to avoid races
681 * while trying to recycle fragments on __skb_frag_unref() we need
682 * to make one SKB responsible for triggering the recycle path.
683 * So disable the recycling bit if an SKB is cloned and we have
684 * additional references to the fragmented part of the SKB.
685 * Eventually the last SKB will have the recycling bit set and it's
686 * dataref set to 0, which will trigger the recycling
687 */
688 skb->pp_recycle = 0;
689}
690
691/*
692 * Free an skbuff by memory without cleaning the state.
693 */
694static void kfree_skbmem(struct sk_buff *skb)
695{
696 struct sk_buff_fclones *fclones;
697
698 switch (skb->fclone) {
699 case SKB_FCLONE_UNAVAILABLE:
700 kmem_cache_free(skbuff_head_cache, skb);
701 return;
702
703 case SKB_FCLONE_ORIG:
704 fclones = container_of(skb, struct sk_buff_fclones, skb1);
705
706 /* We usually free the clone (TX completion) before original skb
707 * This test would have no chance to be true for the clone,
708 * while here, branch prediction will be good.
709 */
710 if (refcount_read(&fclones->fclone_ref) == 1)
711 goto fastpath;
712 break;
713
714 default: /* SKB_FCLONE_CLONE */
715 fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 break;
717 }
718 if (!refcount_dec_and_test(&fclones->fclone_ref))
719 return;
720fastpath:
721 kmem_cache_free(skbuff_fclone_cache, fclones);
722}
723
724void skb_release_head_state(struct sk_buff *skb)
725{
726 skb_dst_drop(skb);
727 if (skb->destructor) {
728 WARN_ON(in_hardirq());
729 skb->destructor(skb);
730 }
731#if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 nf_conntrack_put(skb_nfct(skb));
733#endif
734 skb_ext_put(skb);
735}
736
737/* Free everything but the sk_buff shell. */
738static void skb_release_all(struct sk_buff *skb)
739{
740 skb_release_head_state(skb);
741 if (likely(skb->head))
742 skb_release_data(skb);
743}
744
745/**
746 * __kfree_skb - private function
747 * @skb: buffer
748 *
749 * Free an sk_buff. Release anything attached to the buffer.
750 * Clean the state. This is an internal helper function. Users should
751 * always call kfree_skb
752 */
753
754void __kfree_skb(struct sk_buff *skb)
755{
756 skb_release_all(skb);
757 kfree_skbmem(skb);
758}
759EXPORT_SYMBOL(__kfree_skb);
760
761/**
762 * kfree_skb_reason - free an sk_buff with special reason
763 * @skb: buffer to free
764 * @reason: reason why this skb is dropped
765 *
766 * Drop a reference to the buffer and free it if the usage count has
767 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
768 * tracepoint.
769 */
770void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
771{
772 if (!skb_unref(skb))
773 return;
774
775 trace_kfree_skb(skb, __builtin_return_address(0), reason);
776 __kfree_skb(skb);
777}
778EXPORT_SYMBOL(kfree_skb_reason);
779
780void kfree_skb_list_reason(struct sk_buff *segs,
781 enum skb_drop_reason reason)
782{
783 while (segs) {
784 struct sk_buff *next = segs->next;
785
786 kfree_skb_reason(segs, reason);
787 segs = next;
788 }
789}
790EXPORT_SYMBOL(kfree_skb_list_reason);
791
792/* Dump skb information and contents.
793 *
794 * Must only be called from net_ratelimit()-ed paths.
795 *
796 * Dumps whole packets if full_pkt, only headers otherwise.
797 */
798void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
799{
800 struct skb_shared_info *sh = skb_shinfo(skb);
801 struct net_device *dev = skb->dev;
802 struct sock *sk = skb->sk;
803 struct sk_buff *list_skb;
804 bool has_mac, has_trans;
805 int headroom, tailroom;
806 int i, len, seg_len;
807
808 if (full_pkt)
809 len = skb->len;
810 else
811 len = min_t(int, skb->len, MAX_HEADER + 128);
812
813 headroom = skb_headroom(skb);
814 tailroom = skb_tailroom(skb);
815
816 has_mac = skb_mac_header_was_set(skb);
817 has_trans = skb_transport_header_was_set(skb);
818
819 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
820 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
821 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
822 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
823 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
824 level, skb->len, headroom, skb_headlen(skb), tailroom,
825 has_mac ? skb->mac_header : -1,
826 has_mac ? skb_mac_header_len(skb) : -1,
827 skb->network_header,
828 has_trans ? skb_network_header_len(skb) : -1,
829 has_trans ? skb->transport_header : -1,
830 sh->tx_flags, sh->nr_frags,
831 sh->gso_size, sh->gso_type, sh->gso_segs,
832 skb->csum, skb->ip_summed, skb->csum_complete_sw,
833 skb->csum_valid, skb->csum_level,
834 skb->hash, skb->sw_hash, skb->l4_hash,
835 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
836
837 if (dev)
838 printk("%sdev name=%s feat=%pNF\n",
839 level, dev->name, &dev->features);
840 if (sk)
841 printk("%ssk family=%hu type=%u proto=%u\n",
842 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
843
844 if (full_pkt && headroom)
845 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
846 16, 1, skb->head, headroom, false);
847
848 seg_len = min_t(int, skb_headlen(skb), len);
849 if (seg_len)
850 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
851 16, 1, skb->data, seg_len, false);
852 len -= seg_len;
853
854 if (full_pkt && tailroom)
855 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
856 16, 1, skb_tail_pointer(skb), tailroom, false);
857
858 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
859 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
860 u32 p_off, p_len, copied;
861 struct page *p;
862 u8 *vaddr;
863
864 skb_frag_foreach_page(frag, skb_frag_off(frag),
865 skb_frag_size(frag), p, p_off, p_len,
866 copied) {
867 seg_len = min_t(int, p_len, len);
868 vaddr = kmap_atomic(p);
869 print_hex_dump(level, "skb frag: ",
870 DUMP_PREFIX_OFFSET,
871 16, 1, vaddr + p_off, seg_len, false);
872 kunmap_atomic(vaddr);
873 len -= seg_len;
874 if (!len)
875 break;
876 }
877 }
878
879 if (full_pkt && skb_has_frag_list(skb)) {
880 printk("skb fraglist:\n");
881 skb_walk_frags(skb, list_skb)
882 skb_dump(level, list_skb, true);
883 }
884}
885EXPORT_SYMBOL(skb_dump);
886
887/**
888 * skb_tx_error - report an sk_buff xmit error
889 * @skb: buffer that triggered an error
890 *
891 * Report xmit error if a device callback is tracking this skb.
892 * skb must be freed afterwards.
893 */
894void skb_tx_error(struct sk_buff *skb)
895{
896 skb_zcopy_clear(skb, true);
897}
898EXPORT_SYMBOL(skb_tx_error);
899
900#ifdef CONFIG_TRACEPOINTS
901/**
902 * consume_skb - free an skbuff
903 * @skb: buffer to free
904 *
905 * Drop a ref to the buffer and free it if the usage count has hit zero
906 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
907 * is being dropped after a failure and notes that
908 */
909void consume_skb(struct sk_buff *skb)
910{
911 if (!skb_unref(skb))
912 return;
913
914 trace_consume_skb(skb);
915 __kfree_skb(skb);
916}
917EXPORT_SYMBOL(consume_skb);
918#endif
919
920/**
921 * __consume_stateless_skb - free an skbuff, assuming it is stateless
922 * @skb: buffer to free
923 *
924 * Alike consume_skb(), but this variant assumes that this is the last
925 * skb reference and all the head states have been already dropped
926 */
927void __consume_stateless_skb(struct sk_buff *skb)
928{
929 trace_consume_skb(skb);
930 skb_release_data(skb);
931 kfree_skbmem(skb);
932}
933
934static void napi_skb_cache_put(struct sk_buff *skb)
935{
936 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
937 u32 i;
938
939 kasan_poison_object_data(skbuff_head_cache, skb);
940 nc->skb_cache[nc->skb_count++] = skb;
941
942 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
943 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
944 kasan_unpoison_object_data(skbuff_head_cache,
945 nc->skb_cache[i]);
946
947 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
948 nc->skb_cache + NAPI_SKB_CACHE_HALF);
949 nc->skb_count = NAPI_SKB_CACHE_HALF;
950 }
951}
952
953void __kfree_skb_defer(struct sk_buff *skb)
954{
955 skb_release_all(skb);
956 napi_skb_cache_put(skb);
957}
958
959void napi_skb_free_stolen_head(struct sk_buff *skb)
960{
961 if (unlikely(skb->slow_gro)) {
962 nf_reset_ct(skb);
963 skb_dst_drop(skb);
964 skb_ext_put(skb);
965 skb_orphan(skb);
966 skb->slow_gro = 0;
967 }
968 napi_skb_cache_put(skb);
969}
970
971void napi_consume_skb(struct sk_buff *skb, int budget)
972{
973 /* Zero budget indicate non-NAPI context called us, like netpoll */
974 if (unlikely(!budget)) {
975 dev_consume_skb_any(skb);
976 return;
977 }
978
979 lockdep_assert_in_softirq();
980
981 if (!skb_unref(skb))
982 return;
983
984 /* if reaching here SKB is ready to free */
985 trace_consume_skb(skb);
986
987 /* if SKB is a clone, don't handle this case */
988 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
989 __kfree_skb(skb);
990 return;
991 }
992
993 skb_release_all(skb);
994 napi_skb_cache_put(skb);
995}
996EXPORT_SYMBOL(napi_consume_skb);
997
998/* Make sure a field is contained by headers group */
999#define CHECK_SKB_FIELD(field) \
1000 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1001 offsetof(struct sk_buff, headers.field)); \
1002
1003static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1004{
1005 new->tstamp = old->tstamp;
1006 /* We do not copy old->sk */
1007 new->dev = old->dev;
1008 memcpy(new->cb, old->cb, sizeof(old->cb));
1009 skb_dst_copy(new, old);
1010 __skb_ext_copy(new, old);
1011 __nf_copy(new, old, false);
1012
1013 /* Note : this field could be in the headers group.
1014 * It is not yet because we do not want to have a 16 bit hole
1015 */
1016 new->queue_mapping = old->queue_mapping;
1017
1018 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1019 CHECK_SKB_FIELD(protocol);
1020 CHECK_SKB_FIELD(csum);
1021 CHECK_SKB_FIELD(hash);
1022 CHECK_SKB_FIELD(priority);
1023 CHECK_SKB_FIELD(skb_iif);
1024 CHECK_SKB_FIELD(vlan_proto);
1025 CHECK_SKB_FIELD(vlan_tci);
1026 CHECK_SKB_FIELD(transport_header);
1027 CHECK_SKB_FIELD(network_header);
1028 CHECK_SKB_FIELD(mac_header);
1029 CHECK_SKB_FIELD(inner_protocol);
1030 CHECK_SKB_FIELD(inner_transport_header);
1031 CHECK_SKB_FIELD(inner_network_header);
1032 CHECK_SKB_FIELD(inner_mac_header);
1033 CHECK_SKB_FIELD(mark);
1034#ifdef CONFIG_NETWORK_SECMARK
1035 CHECK_SKB_FIELD(secmark);
1036#endif
1037#ifdef CONFIG_NET_RX_BUSY_POLL
1038 CHECK_SKB_FIELD(napi_id);
1039#endif
1040#ifdef CONFIG_XPS
1041 CHECK_SKB_FIELD(sender_cpu);
1042#endif
1043#ifdef CONFIG_NET_SCHED
1044 CHECK_SKB_FIELD(tc_index);
1045#endif
1046
1047}
1048
1049/*
1050 * You should not add any new code to this function. Add it to
1051 * __copy_skb_header above instead.
1052 */
1053static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1054{
1055#define C(x) n->x = skb->x
1056
1057 n->next = n->prev = NULL;
1058 n->sk = NULL;
1059 __copy_skb_header(n, skb);
1060
1061 C(len);
1062 C(data_len);
1063 C(mac_len);
1064 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1065 n->cloned = 1;
1066 n->nohdr = 0;
1067 n->peeked = 0;
1068 C(pfmemalloc);
1069 C(pp_recycle);
1070 n->destructor = NULL;
1071 C(tail);
1072 C(end);
1073 C(head);
1074 C(head_frag);
1075 C(data);
1076 C(truesize);
1077 refcount_set(&n->users, 1);
1078
1079 atomic_inc(&(skb_shinfo(skb)->dataref));
1080 skb->cloned = 1;
1081
1082 return n;
1083#undef C
1084}
1085
1086/**
1087 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1088 * @first: first sk_buff of the msg
1089 */
1090struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1091{
1092 struct sk_buff *n;
1093
1094 n = alloc_skb(0, GFP_ATOMIC);
1095 if (!n)
1096 return NULL;
1097
1098 n->len = first->len;
1099 n->data_len = first->len;
1100 n->truesize = first->truesize;
1101
1102 skb_shinfo(n)->frag_list = first;
1103
1104 __copy_skb_header(n, first);
1105 n->destructor = NULL;
1106
1107 return n;
1108}
1109EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1110
1111/**
1112 * skb_morph - morph one skb into another
1113 * @dst: the skb to receive the contents
1114 * @src: the skb to supply the contents
1115 *
1116 * This is identical to skb_clone except that the target skb is
1117 * supplied by the user.
1118 *
1119 * The target skb is returned upon exit.
1120 */
1121struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1122{
1123 skb_release_all(dst);
1124 return __skb_clone(dst, src);
1125}
1126EXPORT_SYMBOL_GPL(skb_morph);
1127
1128int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1129{
1130 unsigned long max_pg, num_pg, new_pg, old_pg;
1131 struct user_struct *user;
1132
1133 if (capable(CAP_IPC_LOCK) || !size)
1134 return 0;
1135
1136 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1137 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1138 user = mmp->user ? : current_user();
1139
1140 do {
1141 old_pg = atomic_long_read(&user->locked_vm);
1142 new_pg = old_pg + num_pg;
1143 if (new_pg > max_pg)
1144 return -ENOBUFS;
1145 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1146 old_pg);
1147
1148 if (!mmp->user) {
1149 mmp->user = get_uid(user);
1150 mmp->num_pg = num_pg;
1151 } else {
1152 mmp->num_pg += num_pg;
1153 }
1154
1155 return 0;
1156}
1157EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1158
1159void mm_unaccount_pinned_pages(struct mmpin *mmp)
1160{
1161 if (mmp->user) {
1162 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1163 free_uid(mmp->user);
1164 }
1165}
1166EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1167
1168struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1169{
1170 struct ubuf_info *uarg;
1171 struct sk_buff *skb;
1172
1173 WARN_ON_ONCE(!in_task());
1174
1175 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1176 if (!skb)
1177 return NULL;
1178
1179 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1180 uarg = (void *)skb->cb;
1181 uarg->mmp.user = NULL;
1182
1183 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1184 kfree_skb(skb);
1185 return NULL;
1186 }
1187
1188 uarg->callback = msg_zerocopy_callback;
1189 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1190 uarg->len = 1;
1191 uarg->bytelen = size;
1192 uarg->zerocopy = 1;
1193 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1194 refcount_set(&uarg->refcnt, 1);
1195 sock_hold(sk);
1196
1197 return uarg;
1198}
1199EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1200
1201static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1202{
1203 return container_of((void *)uarg, struct sk_buff, cb);
1204}
1205
1206struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1207 struct ubuf_info *uarg)
1208{
1209 if (uarg) {
1210 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1211 u32 bytelen, next;
1212
1213 /* realloc only when socket is locked (TCP, UDP cork),
1214 * so uarg->len and sk_zckey access is serialized
1215 */
1216 if (!sock_owned_by_user(sk)) {
1217 WARN_ON_ONCE(1);
1218 return NULL;
1219 }
1220
1221 bytelen = uarg->bytelen + size;
1222 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1223 /* TCP can create new skb to attach new uarg */
1224 if (sk->sk_type == SOCK_STREAM)
1225 goto new_alloc;
1226 return NULL;
1227 }
1228
1229 next = (u32)atomic_read(&sk->sk_zckey);
1230 if ((u32)(uarg->id + uarg->len) == next) {
1231 if (mm_account_pinned_pages(&uarg->mmp, size))
1232 return NULL;
1233 uarg->len++;
1234 uarg->bytelen = bytelen;
1235 atomic_set(&sk->sk_zckey, ++next);
1236
1237 /* no extra ref when appending to datagram (MSG_MORE) */
1238 if (sk->sk_type == SOCK_STREAM)
1239 net_zcopy_get(uarg);
1240
1241 return uarg;
1242 }
1243 }
1244
1245new_alloc:
1246 return msg_zerocopy_alloc(sk, size);
1247}
1248EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1249
1250static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1251{
1252 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1253 u32 old_lo, old_hi;
1254 u64 sum_len;
1255
1256 old_lo = serr->ee.ee_info;
1257 old_hi = serr->ee.ee_data;
1258 sum_len = old_hi - old_lo + 1ULL + len;
1259
1260 if (sum_len >= (1ULL << 32))
1261 return false;
1262
1263 if (lo != old_hi + 1)
1264 return false;
1265
1266 serr->ee.ee_data += len;
1267 return true;
1268}
1269
1270static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1271{
1272 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1273 struct sock_exterr_skb *serr;
1274 struct sock *sk = skb->sk;
1275 struct sk_buff_head *q;
1276 unsigned long flags;
1277 bool is_zerocopy;
1278 u32 lo, hi;
1279 u16 len;
1280
1281 mm_unaccount_pinned_pages(&uarg->mmp);
1282
1283 /* if !len, there was only 1 call, and it was aborted
1284 * so do not queue a completion notification
1285 */
1286 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1287 goto release;
1288
1289 len = uarg->len;
1290 lo = uarg->id;
1291 hi = uarg->id + len - 1;
1292 is_zerocopy = uarg->zerocopy;
1293
1294 serr = SKB_EXT_ERR(skb);
1295 memset(serr, 0, sizeof(*serr));
1296 serr->ee.ee_errno = 0;
1297 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1298 serr->ee.ee_data = hi;
1299 serr->ee.ee_info = lo;
1300 if (!is_zerocopy)
1301 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1302
1303 q = &sk->sk_error_queue;
1304 spin_lock_irqsave(&q->lock, flags);
1305 tail = skb_peek_tail(q);
1306 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1307 !skb_zerocopy_notify_extend(tail, lo, len)) {
1308 __skb_queue_tail(q, skb);
1309 skb = NULL;
1310 }
1311 spin_unlock_irqrestore(&q->lock, flags);
1312
1313 sk_error_report(sk);
1314
1315release:
1316 consume_skb(skb);
1317 sock_put(sk);
1318}
1319
1320void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1321 bool success)
1322{
1323 uarg->zerocopy = uarg->zerocopy & success;
1324
1325 if (refcount_dec_and_test(&uarg->refcnt))
1326 __msg_zerocopy_callback(uarg);
1327}
1328EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1329
1330void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1331{
1332 struct sock *sk = skb_from_uarg(uarg)->sk;
1333
1334 atomic_dec(&sk->sk_zckey);
1335 uarg->len--;
1336
1337 if (have_uref)
1338 msg_zerocopy_callback(NULL, uarg, true);
1339}
1340EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1341
1342int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1343{
1344 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1345}
1346EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1347
1348int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1349 struct msghdr *msg, int len,
1350 struct ubuf_info *uarg)
1351{
1352 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1353 struct iov_iter orig_iter = msg->msg_iter;
1354 int err, orig_len = skb->len;
1355
1356 /* An skb can only point to one uarg. This edge case happens when
1357 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1358 */
1359 if (orig_uarg && uarg != orig_uarg)
1360 return -EEXIST;
1361
1362 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1363 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1364 struct sock *save_sk = skb->sk;
1365
1366 /* Streams do not free skb on error. Reset to prev state. */
1367 msg->msg_iter = orig_iter;
1368 skb->sk = sk;
1369 ___pskb_trim(skb, orig_len);
1370 skb->sk = save_sk;
1371 return err;
1372 }
1373
1374 skb_zcopy_set(skb, uarg, NULL);
1375 return skb->len - orig_len;
1376}
1377EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1378
1379static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1380 gfp_t gfp_mask)
1381{
1382 if (skb_zcopy(orig)) {
1383 if (skb_zcopy(nskb)) {
1384 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1385 if (!gfp_mask) {
1386 WARN_ON_ONCE(1);
1387 return -ENOMEM;
1388 }
1389 if (skb_uarg(nskb) == skb_uarg(orig))
1390 return 0;
1391 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1392 return -EIO;
1393 }
1394 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1395 }
1396 return 0;
1397}
1398
1399/**
1400 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1401 * @skb: the skb to modify
1402 * @gfp_mask: allocation priority
1403 *
1404 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1405 * It will copy all frags into kernel and drop the reference
1406 * to userspace pages.
1407 *
1408 * If this function is called from an interrupt gfp_mask() must be
1409 * %GFP_ATOMIC.
1410 *
1411 * Returns 0 on success or a negative error code on failure
1412 * to allocate kernel memory to copy to.
1413 */
1414int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1415{
1416 int num_frags = skb_shinfo(skb)->nr_frags;
1417 struct page *page, *head = NULL;
1418 int i, new_frags;
1419 u32 d_off;
1420
1421 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1422 return -EINVAL;
1423
1424 if (!num_frags)
1425 goto release;
1426
1427 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1428 for (i = 0; i < new_frags; i++) {
1429 page = alloc_page(gfp_mask);
1430 if (!page) {
1431 while (head) {
1432 struct page *next = (struct page *)page_private(head);
1433 put_page(head);
1434 head = next;
1435 }
1436 return -ENOMEM;
1437 }
1438 set_page_private(page, (unsigned long)head);
1439 head = page;
1440 }
1441
1442 page = head;
1443 d_off = 0;
1444 for (i = 0; i < num_frags; i++) {
1445 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1446 u32 p_off, p_len, copied;
1447 struct page *p;
1448 u8 *vaddr;
1449
1450 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1451 p, p_off, p_len, copied) {
1452 u32 copy, done = 0;
1453 vaddr = kmap_atomic(p);
1454
1455 while (done < p_len) {
1456 if (d_off == PAGE_SIZE) {
1457 d_off = 0;
1458 page = (struct page *)page_private(page);
1459 }
1460 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1461 memcpy(page_address(page) + d_off,
1462 vaddr + p_off + done, copy);
1463 done += copy;
1464 d_off += copy;
1465 }
1466 kunmap_atomic(vaddr);
1467 }
1468 }
1469
1470 /* skb frags release userspace buffers */
1471 for (i = 0; i < num_frags; i++)
1472 skb_frag_unref(skb, i);
1473
1474 /* skb frags point to kernel buffers */
1475 for (i = 0; i < new_frags - 1; i++) {
1476 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1477 head = (struct page *)page_private(head);
1478 }
1479 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1480 skb_shinfo(skb)->nr_frags = new_frags;
1481
1482release:
1483 skb_zcopy_clear(skb, false);
1484 return 0;
1485}
1486EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1487
1488/**
1489 * skb_clone - duplicate an sk_buff
1490 * @skb: buffer to clone
1491 * @gfp_mask: allocation priority
1492 *
1493 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1494 * copies share the same packet data but not structure. The new
1495 * buffer has a reference count of 1. If the allocation fails the
1496 * function returns %NULL otherwise the new buffer is returned.
1497 *
1498 * If this function is called from an interrupt gfp_mask() must be
1499 * %GFP_ATOMIC.
1500 */
1501
1502struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1503{
1504 struct sk_buff_fclones *fclones = container_of(skb,
1505 struct sk_buff_fclones,
1506 skb1);
1507 struct sk_buff *n;
1508
1509 if (skb_orphan_frags(skb, gfp_mask))
1510 return NULL;
1511
1512 if (skb->fclone == SKB_FCLONE_ORIG &&
1513 refcount_read(&fclones->fclone_ref) == 1) {
1514 n = &fclones->skb2;
1515 refcount_set(&fclones->fclone_ref, 2);
1516 } else {
1517 if (skb_pfmemalloc(skb))
1518 gfp_mask |= __GFP_MEMALLOC;
1519
1520 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1521 if (!n)
1522 return NULL;
1523
1524 n->fclone = SKB_FCLONE_UNAVAILABLE;
1525 }
1526
1527 return __skb_clone(n, skb);
1528}
1529EXPORT_SYMBOL(skb_clone);
1530
1531void skb_headers_offset_update(struct sk_buff *skb, int off)
1532{
1533 /* Only adjust this if it actually is csum_start rather than csum */
1534 if (skb->ip_summed == CHECKSUM_PARTIAL)
1535 skb->csum_start += off;
1536 /* {transport,network,mac}_header and tail are relative to skb->head */
1537 skb->transport_header += off;
1538 skb->network_header += off;
1539 if (skb_mac_header_was_set(skb))
1540 skb->mac_header += off;
1541 skb->inner_transport_header += off;
1542 skb->inner_network_header += off;
1543 skb->inner_mac_header += off;
1544}
1545EXPORT_SYMBOL(skb_headers_offset_update);
1546
1547void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1548{
1549 __copy_skb_header(new, old);
1550
1551 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1552 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1553 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1554}
1555EXPORT_SYMBOL(skb_copy_header);
1556
1557static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1558{
1559 if (skb_pfmemalloc(skb))
1560 return SKB_ALLOC_RX;
1561 return 0;
1562}
1563
1564/**
1565 * skb_copy - create private copy of an sk_buff
1566 * @skb: buffer to copy
1567 * @gfp_mask: allocation priority
1568 *
1569 * Make a copy of both an &sk_buff and its data. This is used when the
1570 * caller wishes to modify the data and needs a private copy of the
1571 * data to alter. Returns %NULL on failure or the pointer to the buffer
1572 * on success. The returned buffer has a reference count of 1.
1573 *
1574 * As by-product this function converts non-linear &sk_buff to linear
1575 * one, so that &sk_buff becomes completely private and caller is allowed
1576 * to modify all the data of returned buffer. This means that this
1577 * function is not recommended for use in circumstances when only
1578 * header is going to be modified. Use pskb_copy() instead.
1579 */
1580
1581struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1582{
1583 int headerlen = skb_headroom(skb);
1584 unsigned int size = skb_end_offset(skb) + skb->data_len;
1585 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1586 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1587
1588 if (!n)
1589 return NULL;
1590
1591 /* Set the data pointer */
1592 skb_reserve(n, headerlen);
1593 /* Set the tail pointer and length */
1594 skb_put(n, skb->len);
1595
1596 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1597
1598 skb_copy_header(n, skb);
1599 return n;
1600}
1601EXPORT_SYMBOL(skb_copy);
1602
1603/**
1604 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1605 * @skb: buffer to copy
1606 * @headroom: headroom of new skb
1607 * @gfp_mask: allocation priority
1608 * @fclone: if true allocate the copy of the skb from the fclone
1609 * cache instead of the head cache; it is recommended to set this
1610 * to true for the cases where the copy will likely be cloned
1611 *
1612 * Make a copy of both an &sk_buff and part of its data, located
1613 * in header. Fragmented data remain shared. This is used when
1614 * the caller wishes to modify only header of &sk_buff and needs
1615 * private copy of the header to alter. Returns %NULL on failure
1616 * or the pointer to the buffer on success.
1617 * The returned buffer has a reference count of 1.
1618 */
1619
1620struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1621 gfp_t gfp_mask, bool fclone)
1622{
1623 unsigned int size = skb_headlen(skb) + headroom;
1624 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1625 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1626
1627 if (!n)
1628 goto out;
1629
1630 /* Set the data pointer */
1631 skb_reserve(n, headroom);
1632 /* Set the tail pointer and length */
1633 skb_put(n, skb_headlen(skb));
1634 /* Copy the bytes */
1635 skb_copy_from_linear_data(skb, n->data, n->len);
1636
1637 n->truesize += skb->data_len;
1638 n->data_len = skb->data_len;
1639 n->len = skb->len;
1640
1641 if (skb_shinfo(skb)->nr_frags) {
1642 int i;
1643
1644 if (skb_orphan_frags(skb, gfp_mask) ||
1645 skb_zerocopy_clone(n, skb, gfp_mask)) {
1646 kfree_skb(n);
1647 n = NULL;
1648 goto out;
1649 }
1650 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1652 skb_frag_ref(skb, i);
1653 }
1654 skb_shinfo(n)->nr_frags = i;
1655 }
1656
1657 if (skb_has_frag_list(skb)) {
1658 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1659 skb_clone_fraglist(n);
1660 }
1661
1662 skb_copy_header(n, skb);
1663out:
1664 return n;
1665}
1666EXPORT_SYMBOL(__pskb_copy_fclone);
1667
1668/**
1669 * pskb_expand_head - reallocate header of &sk_buff
1670 * @skb: buffer to reallocate
1671 * @nhead: room to add at head
1672 * @ntail: room to add at tail
1673 * @gfp_mask: allocation priority
1674 *
1675 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1676 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1677 * reference count of 1. Returns zero in the case of success or error,
1678 * if expansion failed. In the last case, &sk_buff is not changed.
1679 *
1680 * All the pointers pointing into skb header may change and must be
1681 * reloaded after call to this function.
1682 */
1683
1684int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1685 gfp_t gfp_mask)
1686{
1687 int i, osize = skb_end_offset(skb);
1688 int size = osize + nhead + ntail;
1689 long off;
1690 u8 *data;
1691
1692 BUG_ON(nhead < 0);
1693
1694 BUG_ON(skb_shared(skb));
1695
1696 size = SKB_DATA_ALIGN(size);
1697
1698 if (skb_pfmemalloc(skb))
1699 gfp_mask |= __GFP_MEMALLOC;
1700 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1701 gfp_mask, NUMA_NO_NODE, NULL);
1702 if (!data)
1703 goto nodata;
1704 size = SKB_WITH_OVERHEAD(ksize(data));
1705
1706 /* Copy only real data... and, alas, header. This should be
1707 * optimized for the cases when header is void.
1708 */
1709 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1710
1711 memcpy((struct skb_shared_info *)(data + size),
1712 skb_shinfo(skb),
1713 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1714
1715 /*
1716 * if shinfo is shared we must drop the old head gracefully, but if it
1717 * is not we can just drop the old head and let the existing refcount
1718 * be since all we did is relocate the values
1719 */
1720 if (skb_cloned(skb)) {
1721 if (skb_orphan_frags(skb, gfp_mask))
1722 goto nofrags;
1723 if (skb_zcopy(skb))
1724 refcount_inc(&skb_uarg(skb)->refcnt);
1725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1726 skb_frag_ref(skb, i);
1727
1728 if (skb_has_frag_list(skb))
1729 skb_clone_fraglist(skb);
1730
1731 skb_release_data(skb);
1732 } else {
1733 skb_free_head(skb);
1734 }
1735 off = (data + nhead) - skb->head;
1736
1737 skb->head = data;
1738 skb->head_frag = 0;
1739 skb->data += off;
1740
1741 skb_set_end_offset(skb, size);
1742#ifdef NET_SKBUFF_DATA_USES_OFFSET
1743 off = nhead;
1744#endif
1745 skb->tail += off;
1746 skb_headers_offset_update(skb, nhead);
1747 skb->cloned = 0;
1748 skb->hdr_len = 0;
1749 skb->nohdr = 0;
1750 atomic_set(&skb_shinfo(skb)->dataref, 1);
1751
1752 skb_metadata_clear(skb);
1753
1754 /* It is not generally safe to change skb->truesize.
1755 * For the moment, we really care of rx path, or
1756 * when skb is orphaned (not attached to a socket).
1757 */
1758 if (!skb->sk || skb->destructor == sock_edemux)
1759 skb->truesize += size - osize;
1760
1761 return 0;
1762
1763nofrags:
1764 kfree(data);
1765nodata:
1766 return -ENOMEM;
1767}
1768EXPORT_SYMBOL(pskb_expand_head);
1769
1770/* Make private copy of skb with writable head and some headroom */
1771
1772struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1773{
1774 struct sk_buff *skb2;
1775 int delta = headroom - skb_headroom(skb);
1776
1777 if (delta <= 0)
1778 skb2 = pskb_copy(skb, GFP_ATOMIC);
1779 else {
1780 skb2 = skb_clone(skb, GFP_ATOMIC);
1781 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1782 GFP_ATOMIC)) {
1783 kfree_skb(skb2);
1784 skb2 = NULL;
1785 }
1786 }
1787 return skb2;
1788}
1789EXPORT_SYMBOL(skb_realloc_headroom);
1790
1791int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1792{
1793 unsigned int saved_end_offset, saved_truesize;
1794 struct skb_shared_info *shinfo;
1795 int res;
1796
1797 saved_end_offset = skb_end_offset(skb);
1798 saved_truesize = skb->truesize;
1799
1800 res = pskb_expand_head(skb, 0, 0, pri);
1801 if (res)
1802 return res;
1803
1804 skb->truesize = saved_truesize;
1805
1806 if (likely(skb_end_offset(skb) == saved_end_offset))
1807 return 0;
1808
1809 shinfo = skb_shinfo(skb);
1810
1811 /* We are about to change back skb->end,
1812 * we need to move skb_shinfo() to its new location.
1813 */
1814 memmove(skb->head + saved_end_offset,
1815 shinfo,
1816 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1817
1818 skb_set_end_offset(skb, saved_end_offset);
1819
1820 return 0;
1821}
1822
1823/**
1824 * skb_expand_head - reallocate header of &sk_buff
1825 * @skb: buffer to reallocate
1826 * @headroom: needed headroom
1827 *
1828 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1829 * if possible; copies skb->sk to new skb as needed
1830 * and frees original skb in case of failures.
1831 *
1832 * It expect increased headroom and generates warning otherwise.
1833 */
1834
1835struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1836{
1837 int delta = headroom - skb_headroom(skb);
1838 int osize = skb_end_offset(skb);
1839 struct sock *sk = skb->sk;
1840
1841 if (WARN_ONCE(delta <= 0,
1842 "%s is expecting an increase in the headroom", __func__))
1843 return skb;
1844
1845 delta = SKB_DATA_ALIGN(delta);
1846 /* pskb_expand_head() might crash, if skb is shared. */
1847 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1848 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1849
1850 if (unlikely(!nskb))
1851 goto fail;
1852
1853 if (sk)
1854 skb_set_owner_w(nskb, sk);
1855 consume_skb(skb);
1856 skb = nskb;
1857 }
1858 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1859 goto fail;
1860
1861 if (sk && is_skb_wmem(skb)) {
1862 delta = skb_end_offset(skb) - osize;
1863 refcount_add(delta, &sk->sk_wmem_alloc);
1864 skb->truesize += delta;
1865 }
1866 return skb;
1867
1868fail:
1869 kfree_skb(skb);
1870 return NULL;
1871}
1872EXPORT_SYMBOL(skb_expand_head);
1873
1874/**
1875 * skb_copy_expand - copy and expand sk_buff
1876 * @skb: buffer to copy
1877 * @newheadroom: new free bytes at head
1878 * @newtailroom: new free bytes at tail
1879 * @gfp_mask: allocation priority
1880 *
1881 * Make a copy of both an &sk_buff and its data and while doing so
1882 * allocate additional space.
1883 *
1884 * This is used when the caller wishes to modify the data and needs a
1885 * private copy of the data to alter as well as more space for new fields.
1886 * Returns %NULL on failure or the pointer to the buffer
1887 * on success. The returned buffer has a reference count of 1.
1888 *
1889 * You must pass %GFP_ATOMIC as the allocation priority if this function
1890 * is called from an interrupt.
1891 */
1892struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1893 int newheadroom, int newtailroom,
1894 gfp_t gfp_mask)
1895{
1896 /*
1897 * Allocate the copy buffer
1898 */
1899 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1900 gfp_mask, skb_alloc_rx_flag(skb),
1901 NUMA_NO_NODE);
1902 int oldheadroom = skb_headroom(skb);
1903 int head_copy_len, head_copy_off;
1904
1905 if (!n)
1906 return NULL;
1907
1908 skb_reserve(n, newheadroom);
1909
1910 /* Set the tail pointer and length */
1911 skb_put(n, skb->len);
1912
1913 head_copy_len = oldheadroom;
1914 head_copy_off = 0;
1915 if (newheadroom <= head_copy_len)
1916 head_copy_len = newheadroom;
1917 else
1918 head_copy_off = newheadroom - head_copy_len;
1919
1920 /* Copy the linear header and data. */
1921 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1922 skb->len + head_copy_len));
1923
1924 skb_copy_header(n, skb);
1925
1926 skb_headers_offset_update(n, newheadroom - oldheadroom);
1927
1928 return n;
1929}
1930EXPORT_SYMBOL(skb_copy_expand);
1931
1932/**
1933 * __skb_pad - zero pad the tail of an skb
1934 * @skb: buffer to pad
1935 * @pad: space to pad
1936 * @free_on_error: free buffer on error
1937 *
1938 * Ensure that a buffer is followed by a padding area that is zero
1939 * filled. Used by network drivers which may DMA or transfer data
1940 * beyond the buffer end onto the wire.
1941 *
1942 * May return error in out of memory cases. The skb is freed on error
1943 * if @free_on_error is true.
1944 */
1945
1946int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1947{
1948 int err;
1949 int ntail;
1950
1951 /* If the skbuff is non linear tailroom is always zero.. */
1952 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1953 memset(skb->data+skb->len, 0, pad);
1954 return 0;
1955 }
1956
1957 ntail = skb->data_len + pad - (skb->end - skb->tail);
1958 if (likely(skb_cloned(skb) || ntail > 0)) {
1959 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1960 if (unlikely(err))
1961 goto free_skb;
1962 }
1963
1964 /* FIXME: The use of this function with non-linear skb's really needs
1965 * to be audited.
1966 */
1967 err = skb_linearize(skb);
1968 if (unlikely(err))
1969 goto free_skb;
1970
1971 memset(skb->data + skb->len, 0, pad);
1972 return 0;
1973
1974free_skb:
1975 if (free_on_error)
1976 kfree_skb(skb);
1977 return err;
1978}
1979EXPORT_SYMBOL(__skb_pad);
1980
1981/**
1982 * pskb_put - add data to the tail of a potentially fragmented buffer
1983 * @skb: start of the buffer to use
1984 * @tail: tail fragment of the buffer to use
1985 * @len: amount of data to add
1986 *
1987 * This function extends the used data area of the potentially
1988 * fragmented buffer. @tail must be the last fragment of @skb -- or
1989 * @skb itself. If this would exceed the total buffer size the kernel
1990 * will panic. A pointer to the first byte of the extra data is
1991 * returned.
1992 */
1993
1994void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1995{
1996 if (tail != skb) {
1997 skb->data_len += len;
1998 skb->len += len;
1999 }
2000 return skb_put(tail, len);
2001}
2002EXPORT_SYMBOL_GPL(pskb_put);
2003
2004/**
2005 * skb_put - add data to a buffer
2006 * @skb: buffer to use
2007 * @len: amount of data to add
2008 *
2009 * This function extends the used data area of the buffer. If this would
2010 * exceed the total buffer size the kernel will panic. A pointer to the
2011 * first byte of the extra data is returned.
2012 */
2013void *skb_put(struct sk_buff *skb, unsigned int len)
2014{
2015 void *tmp = skb_tail_pointer(skb);
2016 SKB_LINEAR_ASSERT(skb);
2017 skb->tail += len;
2018 skb->len += len;
2019 if (unlikely(skb->tail > skb->end))
2020 skb_over_panic(skb, len, __builtin_return_address(0));
2021 return tmp;
2022}
2023EXPORT_SYMBOL(skb_put);
2024
2025/**
2026 * skb_push - add data to the start of a buffer
2027 * @skb: buffer to use
2028 * @len: amount of data to add
2029 *
2030 * This function extends the used data area of the buffer at the buffer
2031 * start. If this would exceed the total buffer headroom the kernel will
2032 * panic. A pointer to the first byte of the extra data is returned.
2033 */
2034void *skb_push(struct sk_buff *skb, unsigned int len)
2035{
2036 skb->data -= len;
2037 skb->len += len;
2038 if (unlikely(skb->data < skb->head))
2039 skb_under_panic(skb, len, __builtin_return_address(0));
2040 return skb->data;
2041}
2042EXPORT_SYMBOL(skb_push);
2043
2044/**
2045 * skb_pull - remove data from the start of a buffer
2046 * @skb: buffer to use
2047 * @len: amount of data to remove
2048 *
2049 * This function removes data from the start of a buffer, returning
2050 * the memory to the headroom. A pointer to the next data in the buffer
2051 * is returned. Once the data has been pulled future pushes will overwrite
2052 * the old data.
2053 */
2054void *skb_pull(struct sk_buff *skb, unsigned int len)
2055{
2056 return skb_pull_inline(skb, len);
2057}
2058EXPORT_SYMBOL(skb_pull);
2059
2060/**
2061 * skb_pull_data - remove data from the start of a buffer returning its
2062 * original position.
2063 * @skb: buffer to use
2064 * @len: amount of data to remove
2065 *
2066 * This function removes data from the start of a buffer, returning
2067 * the memory to the headroom. A pointer to the original data in the buffer
2068 * is returned after checking if there is enough data to pull. Once the
2069 * data has been pulled future pushes will overwrite the old data.
2070 */
2071void *skb_pull_data(struct sk_buff *skb, size_t len)
2072{
2073 void *data = skb->data;
2074
2075 if (skb->len < len)
2076 return NULL;
2077
2078 skb_pull(skb, len);
2079
2080 return data;
2081}
2082EXPORT_SYMBOL(skb_pull_data);
2083
2084/**
2085 * skb_trim - remove end from a buffer
2086 * @skb: buffer to alter
2087 * @len: new length
2088 *
2089 * Cut the length of a buffer down by removing data from the tail. If
2090 * the buffer is already under the length specified it is not modified.
2091 * The skb must be linear.
2092 */
2093void skb_trim(struct sk_buff *skb, unsigned int len)
2094{
2095 if (skb->len > len)
2096 __skb_trim(skb, len);
2097}
2098EXPORT_SYMBOL(skb_trim);
2099
2100/* Trims skb to length len. It can change skb pointers.
2101 */
2102
2103int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2104{
2105 struct sk_buff **fragp;
2106 struct sk_buff *frag;
2107 int offset = skb_headlen(skb);
2108 int nfrags = skb_shinfo(skb)->nr_frags;
2109 int i;
2110 int err;
2111
2112 if (skb_cloned(skb) &&
2113 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2114 return err;
2115
2116 i = 0;
2117 if (offset >= len)
2118 goto drop_pages;
2119
2120 for (; i < nfrags; i++) {
2121 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2122
2123 if (end < len) {
2124 offset = end;
2125 continue;
2126 }
2127
2128 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2129
2130drop_pages:
2131 skb_shinfo(skb)->nr_frags = i;
2132
2133 for (; i < nfrags; i++)
2134 skb_frag_unref(skb, i);
2135
2136 if (skb_has_frag_list(skb))
2137 skb_drop_fraglist(skb);
2138 goto done;
2139 }
2140
2141 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2142 fragp = &frag->next) {
2143 int end = offset + frag->len;
2144
2145 if (skb_shared(frag)) {
2146 struct sk_buff *nfrag;
2147
2148 nfrag = skb_clone(frag, GFP_ATOMIC);
2149 if (unlikely(!nfrag))
2150 return -ENOMEM;
2151
2152 nfrag->next = frag->next;
2153 consume_skb(frag);
2154 frag = nfrag;
2155 *fragp = frag;
2156 }
2157
2158 if (end < len) {
2159 offset = end;
2160 continue;
2161 }
2162
2163 if (end > len &&
2164 unlikely((err = pskb_trim(frag, len - offset))))
2165 return err;
2166
2167 if (frag->next)
2168 skb_drop_list(&frag->next);
2169 break;
2170 }
2171
2172done:
2173 if (len > skb_headlen(skb)) {
2174 skb->data_len -= skb->len - len;
2175 skb->len = len;
2176 } else {
2177 skb->len = len;
2178 skb->data_len = 0;
2179 skb_set_tail_pointer(skb, len);
2180 }
2181
2182 if (!skb->sk || skb->destructor == sock_edemux)
2183 skb_condense(skb);
2184 return 0;
2185}
2186EXPORT_SYMBOL(___pskb_trim);
2187
2188/* Note : use pskb_trim_rcsum() instead of calling this directly
2189 */
2190int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2191{
2192 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2193 int delta = skb->len - len;
2194
2195 skb->csum = csum_block_sub(skb->csum,
2196 skb_checksum(skb, len, delta, 0),
2197 len);
2198 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2199 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2200 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2201
2202 if (offset + sizeof(__sum16) > hdlen)
2203 return -EINVAL;
2204 }
2205 return __pskb_trim(skb, len);
2206}
2207EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2208
2209/**
2210 * __pskb_pull_tail - advance tail of skb header
2211 * @skb: buffer to reallocate
2212 * @delta: number of bytes to advance tail
2213 *
2214 * The function makes a sense only on a fragmented &sk_buff,
2215 * it expands header moving its tail forward and copying necessary
2216 * data from fragmented part.
2217 *
2218 * &sk_buff MUST have reference count of 1.
2219 *
2220 * Returns %NULL (and &sk_buff does not change) if pull failed
2221 * or value of new tail of skb in the case of success.
2222 *
2223 * All the pointers pointing into skb header may change and must be
2224 * reloaded after call to this function.
2225 */
2226
2227/* Moves tail of skb head forward, copying data from fragmented part,
2228 * when it is necessary.
2229 * 1. It may fail due to malloc failure.
2230 * 2. It may change skb pointers.
2231 *
2232 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2233 */
2234void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2235{
2236 /* If skb has not enough free space at tail, get new one
2237 * plus 128 bytes for future expansions. If we have enough
2238 * room at tail, reallocate without expansion only if skb is cloned.
2239 */
2240 int i, k, eat = (skb->tail + delta) - skb->end;
2241
2242 if (eat > 0 || skb_cloned(skb)) {
2243 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2244 GFP_ATOMIC))
2245 return NULL;
2246 }
2247
2248 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2249 skb_tail_pointer(skb), delta));
2250
2251 /* Optimization: no fragments, no reasons to preestimate
2252 * size of pulled pages. Superb.
2253 */
2254 if (!skb_has_frag_list(skb))
2255 goto pull_pages;
2256
2257 /* Estimate size of pulled pages. */
2258 eat = delta;
2259 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2260 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2261
2262 if (size >= eat)
2263 goto pull_pages;
2264 eat -= size;
2265 }
2266
2267 /* If we need update frag list, we are in troubles.
2268 * Certainly, it is possible to add an offset to skb data,
2269 * but taking into account that pulling is expected to
2270 * be very rare operation, it is worth to fight against
2271 * further bloating skb head and crucify ourselves here instead.
2272 * Pure masohism, indeed. 8)8)
2273 */
2274 if (eat) {
2275 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2276 struct sk_buff *clone = NULL;
2277 struct sk_buff *insp = NULL;
2278
2279 do {
2280 if (list->len <= eat) {
2281 /* Eaten as whole. */
2282 eat -= list->len;
2283 list = list->next;
2284 insp = list;
2285 } else {
2286 /* Eaten partially. */
2287
2288 if (skb_shared(list)) {
2289 /* Sucks! We need to fork list. :-( */
2290 clone = skb_clone(list, GFP_ATOMIC);
2291 if (!clone)
2292 return NULL;
2293 insp = list->next;
2294 list = clone;
2295 } else {
2296 /* This may be pulled without
2297 * problems. */
2298 insp = list;
2299 }
2300 if (!pskb_pull(list, eat)) {
2301 kfree_skb(clone);
2302 return NULL;
2303 }
2304 break;
2305 }
2306 } while (eat);
2307
2308 /* Free pulled out fragments. */
2309 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2310 skb_shinfo(skb)->frag_list = list->next;
2311 consume_skb(list);
2312 }
2313 /* And insert new clone at head. */
2314 if (clone) {
2315 clone->next = list;
2316 skb_shinfo(skb)->frag_list = clone;
2317 }
2318 }
2319 /* Success! Now we may commit changes to skb data. */
2320
2321pull_pages:
2322 eat = delta;
2323 k = 0;
2324 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2325 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2326
2327 if (size <= eat) {
2328 skb_frag_unref(skb, i);
2329 eat -= size;
2330 } else {
2331 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2332
2333 *frag = skb_shinfo(skb)->frags[i];
2334 if (eat) {
2335 skb_frag_off_add(frag, eat);
2336 skb_frag_size_sub(frag, eat);
2337 if (!i)
2338 goto end;
2339 eat = 0;
2340 }
2341 k++;
2342 }
2343 }
2344 skb_shinfo(skb)->nr_frags = k;
2345
2346end:
2347 skb->tail += delta;
2348 skb->data_len -= delta;
2349
2350 if (!skb->data_len)
2351 skb_zcopy_clear(skb, false);
2352
2353 return skb_tail_pointer(skb);
2354}
2355EXPORT_SYMBOL(__pskb_pull_tail);
2356
2357/**
2358 * skb_copy_bits - copy bits from skb to kernel buffer
2359 * @skb: source skb
2360 * @offset: offset in source
2361 * @to: destination buffer
2362 * @len: number of bytes to copy
2363 *
2364 * Copy the specified number of bytes from the source skb to the
2365 * destination buffer.
2366 *
2367 * CAUTION ! :
2368 * If its prototype is ever changed,
2369 * check arch/{*}/net/{*}.S files,
2370 * since it is called from BPF assembly code.
2371 */
2372int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2373{
2374 int start = skb_headlen(skb);
2375 struct sk_buff *frag_iter;
2376 int i, copy;
2377
2378 if (offset > (int)skb->len - len)
2379 goto fault;
2380
2381 /* Copy header. */
2382 if ((copy = start - offset) > 0) {
2383 if (copy > len)
2384 copy = len;
2385 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2386 if ((len -= copy) == 0)
2387 return 0;
2388 offset += copy;
2389 to += copy;
2390 }
2391
2392 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2393 int end;
2394 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2395
2396 WARN_ON(start > offset + len);
2397
2398 end = start + skb_frag_size(f);
2399 if ((copy = end - offset) > 0) {
2400 u32 p_off, p_len, copied;
2401 struct page *p;
2402 u8 *vaddr;
2403
2404 if (copy > len)
2405 copy = len;
2406
2407 skb_frag_foreach_page(f,
2408 skb_frag_off(f) + offset - start,
2409 copy, p, p_off, p_len, copied) {
2410 vaddr = kmap_atomic(p);
2411 memcpy(to + copied, vaddr + p_off, p_len);
2412 kunmap_atomic(vaddr);
2413 }
2414
2415 if ((len -= copy) == 0)
2416 return 0;
2417 offset += copy;
2418 to += copy;
2419 }
2420 start = end;
2421 }
2422
2423 skb_walk_frags(skb, frag_iter) {
2424 int end;
2425
2426 WARN_ON(start > offset + len);
2427
2428 end = start + frag_iter->len;
2429 if ((copy = end - offset) > 0) {
2430 if (copy > len)
2431 copy = len;
2432 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2433 goto fault;
2434 if ((len -= copy) == 0)
2435 return 0;
2436 offset += copy;
2437 to += copy;
2438 }
2439 start = end;
2440 }
2441
2442 if (!len)
2443 return 0;
2444
2445fault:
2446 return -EFAULT;
2447}
2448EXPORT_SYMBOL(skb_copy_bits);
2449
2450/*
2451 * Callback from splice_to_pipe(), if we need to release some pages
2452 * at the end of the spd in case we error'ed out in filling the pipe.
2453 */
2454static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2455{
2456 put_page(spd->pages[i]);
2457}
2458
2459static struct page *linear_to_page(struct page *page, unsigned int *len,
2460 unsigned int *offset,
2461 struct sock *sk)
2462{
2463 struct page_frag *pfrag = sk_page_frag(sk);
2464
2465 if (!sk_page_frag_refill(sk, pfrag))
2466 return NULL;
2467
2468 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2469
2470 memcpy(page_address(pfrag->page) + pfrag->offset,
2471 page_address(page) + *offset, *len);
2472 *offset = pfrag->offset;
2473 pfrag->offset += *len;
2474
2475 return pfrag->page;
2476}
2477
2478static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2479 struct page *page,
2480 unsigned int offset)
2481{
2482 return spd->nr_pages &&
2483 spd->pages[spd->nr_pages - 1] == page &&
2484 (spd->partial[spd->nr_pages - 1].offset +
2485 spd->partial[spd->nr_pages - 1].len == offset);
2486}
2487
2488/*
2489 * Fill page/offset/length into spd, if it can hold more pages.
2490 */
2491static bool spd_fill_page(struct splice_pipe_desc *spd,
2492 struct pipe_inode_info *pipe, struct page *page,
2493 unsigned int *len, unsigned int offset,
2494 bool linear,
2495 struct sock *sk)
2496{
2497 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2498 return true;
2499
2500 if (linear) {
2501 page = linear_to_page(page, len, &offset, sk);
2502 if (!page)
2503 return true;
2504 }
2505 if (spd_can_coalesce(spd, page, offset)) {
2506 spd->partial[spd->nr_pages - 1].len += *len;
2507 return false;
2508 }
2509 get_page(page);
2510 spd->pages[spd->nr_pages] = page;
2511 spd->partial[spd->nr_pages].len = *len;
2512 spd->partial[spd->nr_pages].offset = offset;
2513 spd->nr_pages++;
2514
2515 return false;
2516}
2517
2518static bool __splice_segment(struct page *page, unsigned int poff,
2519 unsigned int plen, unsigned int *off,
2520 unsigned int *len,
2521 struct splice_pipe_desc *spd, bool linear,
2522 struct sock *sk,
2523 struct pipe_inode_info *pipe)
2524{
2525 if (!*len)
2526 return true;
2527
2528 /* skip this segment if already processed */
2529 if (*off >= plen) {
2530 *off -= plen;
2531 return false;
2532 }
2533
2534 /* ignore any bits we already processed */
2535 poff += *off;
2536 plen -= *off;
2537 *off = 0;
2538
2539 do {
2540 unsigned int flen = min(*len, plen);
2541
2542 if (spd_fill_page(spd, pipe, page, &flen, poff,
2543 linear, sk))
2544 return true;
2545 poff += flen;
2546 plen -= flen;
2547 *len -= flen;
2548 } while (*len && plen);
2549
2550 return false;
2551}
2552
2553/*
2554 * Map linear and fragment data from the skb to spd. It reports true if the
2555 * pipe is full or if we already spliced the requested length.
2556 */
2557static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2558 unsigned int *offset, unsigned int *len,
2559 struct splice_pipe_desc *spd, struct sock *sk)
2560{
2561 int seg;
2562 struct sk_buff *iter;
2563
2564 /* map the linear part :
2565 * If skb->head_frag is set, this 'linear' part is backed by a
2566 * fragment, and if the head is not shared with any clones then
2567 * we can avoid a copy since we own the head portion of this page.
2568 */
2569 if (__splice_segment(virt_to_page(skb->data),
2570 (unsigned long) skb->data & (PAGE_SIZE - 1),
2571 skb_headlen(skb),
2572 offset, len, spd,
2573 skb_head_is_locked(skb),
2574 sk, pipe))
2575 return true;
2576
2577 /*
2578 * then map the fragments
2579 */
2580 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2581 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2582
2583 if (__splice_segment(skb_frag_page(f),
2584 skb_frag_off(f), skb_frag_size(f),
2585 offset, len, spd, false, sk, pipe))
2586 return true;
2587 }
2588
2589 skb_walk_frags(skb, iter) {
2590 if (*offset >= iter->len) {
2591 *offset -= iter->len;
2592 continue;
2593 }
2594 /* __skb_splice_bits() only fails if the output has no room
2595 * left, so no point in going over the frag_list for the error
2596 * case.
2597 */
2598 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2599 return true;
2600 }
2601
2602 return false;
2603}
2604
2605/*
2606 * Map data from the skb to a pipe. Should handle both the linear part,
2607 * the fragments, and the frag list.
2608 */
2609int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2610 struct pipe_inode_info *pipe, unsigned int tlen,
2611 unsigned int flags)
2612{
2613 struct partial_page partial[MAX_SKB_FRAGS];
2614 struct page *pages[MAX_SKB_FRAGS];
2615 struct splice_pipe_desc spd = {
2616 .pages = pages,
2617 .partial = partial,
2618 .nr_pages_max = MAX_SKB_FRAGS,
2619 .ops = &nosteal_pipe_buf_ops,
2620 .spd_release = sock_spd_release,
2621 };
2622 int ret = 0;
2623
2624 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2625
2626 if (spd.nr_pages)
2627 ret = splice_to_pipe(pipe, &spd);
2628
2629 return ret;
2630}
2631EXPORT_SYMBOL_GPL(skb_splice_bits);
2632
2633static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2634 struct kvec *vec, size_t num, size_t size)
2635{
2636 struct socket *sock = sk->sk_socket;
2637
2638 if (!sock)
2639 return -EINVAL;
2640 return kernel_sendmsg(sock, msg, vec, num, size);
2641}
2642
2643static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2644 size_t size, int flags)
2645{
2646 struct socket *sock = sk->sk_socket;
2647
2648 if (!sock)
2649 return -EINVAL;
2650 return kernel_sendpage(sock, page, offset, size, flags);
2651}
2652
2653typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2654 struct kvec *vec, size_t num, size_t size);
2655typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2656 size_t size, int flags);
2657static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2658 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2659{
2660 unsigned int orig_len = len;
2661 struct sk_buff *head = skb;
2662 unsigned short fragidx;
2663 int slen, ret;
2664
2665do_frag_list:
2666
2667 /* Deal with head data */
2668 while (offset < skb_headlen(skb) && len) {
2669 struct kvec kv;
2670 struct msghdr msg;
2671
2672 slen = min_t(int, len, skb_headlen(skb) - offset);
2673 kv.iov_base = skb->data + offset;
2674 kv.iov_len = slen;
2675 memset(&msg, 0, sizeof(msg));
2676 msg.msg_flags = MSG_DONTWAIT;
2677
2678 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2679 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2680 if (ret <= 0)
2681 goto error;
2682
2683 offset += ret;
2684 len -= ret;
2685 }
2686
2687 /* All the data was skb head? */
2688 if (!len)
2689 goto out;
2690
2691 /* Make offset relative to start of frags */
2692 offset -= skb_headlen(skb);
2693
2694 /* Find where we are in frag list */
2695 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2696 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2697
2698 if (offset < skb_frag_size(frag))
2699 break;
2700
2701 offset -= skb_frag_size(frag);
2702 }
2703
2704 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2705 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2706
2707 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2708
2709 while (slen) {
2710 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2711 sendpage_unlocked, sk,
2712 skb_frag_page(frag),
2713 skb_frag_off(frag) + offset,
2714 slen, MSG_DONTWAIT);
2715 if (ret <= 0)
2716 goto error;
2717
2718 len -= ret;
2719 offset += ret;
2720 slen -= ret;
2721 }
2722
2723 offset = 0;
2724 }
2725
2726 if (len) {
2727 /* Process any frag lists */
2728
2729 if (skb == head) {
2730 if (skb_has_frag_list(skb)) {
2731 skb = skb_shinfo(skb)->frag_list;
2732 goto do_frag_list;
2733 }
2734 } else if (skb->next) {
2735 skb = skb->next;
2736 goto do_frag_list;
2737 }
2738 }
2739
2740out:
2741 return orig_len - len;
2742
2743error:
2744 return orig_len == len ? ret : orig_len - len;
2745}
2746
2747/* Send skb data on a socket. Socket must be locked. */
2748int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2749 int len)
2750{
2751 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2752 kernel_sendpage_locked);
2753}
2754EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2755
2756/* Send skb data on a socket. Socket must be unlocked. */
2757int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2758{
2759 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2760 sendpage_unlocked);
2761}
2762
2763/**
2764 * skb_store_bits - store bits from kernel buffer to skb
2765 * @skb: destination buffer
2766 * @offset: offset in destination
2767 * @from: source buffer
2768 * @len: number of bytes to copy
2769 *
2770 * Copy the specified number of bytes from the source buffer to the
2771 * destination skb. This function handles all the messy bits of
2772 * traversing fragment lists and such.
2773 */
2774
2775int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2776{
2777 int start = skb_headlen(skb);
2778 struct sk_buff *frag_iter;
2779 int i, copy;
2780
2781 if (offset > (int)skb->len - len)
2782 goto fault;
2783
2784 if ((copy = start - offset) > 0) {
2785 if (copy > len)
2786 copy = len;
2787 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2788 if ((len -= copy) == 0)
2789 return 0;
2790 offset += copy;
2791 from += copy;
2792 }
2793
2794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2795 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2796 int end;
2797
2798 WARN_ON(start > offset + len);
2799
2800 end = start + skb_frag_size(frag);
2801 if ((copy = end - offset) > 0) {
2802 u32 p_off, p_len, copied;
2803 struct page *p;
2804 u8 *vaddr;
2805
2806 if (copy > len)
2807 copy = len;
2808
2809 skb_frag_foreach_page(frag,
2810 skb_frag_off(frag) + offset - start,
2811 copy, p, p_off, p_len, copied) {
2812 vaddr = kmap_atomic(p);
2813 memcpy(vaddr + p_off, from + copied, p_len);
2814 kunmap_atomic(vaddr);
2815 }
2816
2817 if ((len -= copy) == 0)
2818 return 0;
2819 offset += copy;
2820 from += copy;
2821 }
2822 start = end;
2823 }
2824
2825 skb_walk_frags(skb, frag_iter) {
2826 int end;
2827
2828 WARN_ON(start > offset + len);
2829
2830 end = start + frag_iter->len;
2831 if ((copy = end - offset) > 0) {
2832 if (copy > len)
2833 copy = len;
2834 if (skb_store_bits(frag_iter, offset - start,
2835 from, copy))
2836 goto fault;
2837 if ((len -= copy) == 0)
2838 return 0;
2839 offset += copy;
2840 from += copy;
2841 }
2842 start = end;
2843 }
2844 if (!len)
2845 return 0;
2846
2847fault:
2848 return -EFAULT;
2849}
2850EXPORT_SYMBOL(skb_store_bits);
2851
2852/* Checksum skb data. */
2853__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2854 __wsum csum, const struct skb_checksum_ops *ops)
2855{
2856 int start = skb_headlen(skb);
2857 int i, copy = start - offset;
2858 struct sk_buff *frag_iter;
2859 int pos = 0;
2860
2861 /* Checksum header. */
2862 if (copy > 0) {
2863 if (copy > len)
2864 copy = len;
2865 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2866 skb->data + offset, copy, csum);
2867 if ((len -= copy) == 0)
2868 return csum;
2869 offset += copy;
2870 pos = copy;
2871 }
2872
2873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2874 int end;
2875 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2876
2877 WARN_ON(start > offset + len);
2878
2879 end = start + skb_frag_size(frag);
2880 if ((copy = end - offset) > 0) {
2881 u32 p_off, p_len, copied;
2882 struct page *p;
2883 __wsum csum2;
2884 u8 *vaddr;
2885
2886 if (copy > len)
2887 copy = len;
2888
2889 skb_frag_foreach_page(frag,
2890 skb_frag_off(frag) + offset - start,
2891 copy, p, p_off, p_len, copied) {
2892 vaddr = kmap_atomic(p);
2893 csum2 = INDIRECT_CALL_1(ops->update,
2894 csum_partial_ext,
2895 vaddr + p_off, p_len, 0);
2896 kunmap_atomic(vaddr);
2897 csum = INDIRECT_CALL_1(ops->combine,
2898 csum_block_add_ext, csum,
2899 csum2, pos, p_len);
2900 pos += p_len;
2901 }
2902
2903 if (!(len -= copy))
2904 return csum;
2905 offset += copy;
2906 }
2907 start = end;
2908 }
2909
2910 skb_walk_frags(skb, frag_iter) {
2911 int end;
2912
2913 WARN_ON(start > offset + len);
2914
2915 end = start + frag_iter->len;
2916 if ((copy = end - offset) > 0) {
2917 __wsum csum2;
2918 if (copy > len)
2919 copy = len;
2920 csum2 = __skb_checksum(frag_iter, offset - start,
2921 copy, 0, ops);
2922 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2923 csum, csum2, pos, copy);
2924 if ((len -= copy) == 0)
2925 return csum;
2926 offset += copy;
2927 pos += copy;
2928 }
2929 start = end;
2930 }
2931 BUG_ON(len);
2932
2933 return csum;
2934}
2935EXPORT_SYMBOL(__skb_checksum);
2936
2937__wsum skb_checksum(const struct sk_buff *skb, int offset,
2938 int len, __wsum csum)
2939{
2940 const struct skb_checksum_ops ops = {
2941 .update = csum_partial_ext,
2942 .combine = csum_block_add_ext,
2943 };
2944
2945 return __skb_checksum(skb, offset, len, csum, &ops);
2946}
2947EXPORT_SYMBOL(skb_checksum);
2948
2949/* Both of above in one bottle. */
2950
2951__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2952 u8 *to, int len)
2953{
2954 int start = skb_headlen(skb);
2955 int i, copy = start - offset;
2956 struct sk_buff *frag_iter;
2957 int pos = 0;
2958 __wsum csum = 0;
2959
2960 /* Copy header. */
2961 if (copy > 0) {
2962 if (copy > len)
2963 copy = len;
2964 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2965 copy);
2966 if ((len -= copy) == 0)
2967 return csum;
2968 offset += copy;
2969 to += copy;
2970 pos = copy;
2971 }
2972
2973 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2974 int end;
2975
2976 WARN_ON(start > offset + len);
2977
2978 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2979 if ((copy = end - offset) > 0) {
2980 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2981 u32 p_off, p_len, copied;
2982 struct page *p;
2983 __wsum csum2;
2984 u8 *vaddr;
2985
2986 if (copy > len)
2987 copy = len;
2988
2989 skb_frag_foreach_page(frag,
2990 skb_frag_off(frag) + offset - start,
2991 copy, p, p_off, p_len, copied) {
2992 vaddr = kmap_atomic(p);
2993 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2994 to + copied,
2995 p_len);
2996 kunmap_atomic(vaddr);
2997 csum = csum_block_add(csum, csum2, pos);
2998 pos += p_len;
2999 }
3000
3001 if (!(len -= copy))
3002 return csum;
3003 offset += copy;
3004 to += copy;
3005 }
3006 start = end;
3007 }
3008
3009 skb_walk_frags(skb, frag_iter) {
3010 __wsum csum2;
3011 int end;
3012
3013 WARN_ON(start > offset + len);
3014
3015 end = start + frag_iter->len;
3016 if ((copy = end - offset) > 0) {
3017 if (copy > len)
3018 copy = len;
3019 csum2 = skb_copy_and_csum_bits(frag_iter,
3020 offset - start,
3021 to, copy);
3022 csum = csum_block_add(csum, csum2, pos);
3023 if ((len -= copy) == 0)
3024 return csum;
3025 offset += copy;
3026 to += copy;
3027 pos += copy;
3028 }
3029 start = end;
3030 }
3031 BUG_ON(len);
3032 return csum;
3033}
3034EXPORT_SYMBOL(skb_copy_and_csum_bits);
3035
3036__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3037{
3038 __sum16 sum;
3039
3040 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3041 /* See comments in __skb_checksum_complete(). */
3042 if (likely(!sum)) {
3043 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3044 !skb->csum_complete_sw)
3045 netdev_rx_csum_fault(skb->dev, skb);
3046 }
3047 if (!skb_shared(skb))
3048 skb->csum_valid = !sum;
3049 return sum;
3050}
3051EXPORT_SYMBOL(__skb_checksum_complete_head);
3052
3053/* This function assumes skb->csum already holds pseudo header's checksum,
3054 * which has been changed from the hardware checksum, for example, by
3055 * __skb_checksum_validate_complete(). And, the original skb->csum must
3056 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3057 *
3058 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3059 * zero. The new checksum is stored back into skb->csum unless the skb is
3060 * shared.
3061 */
3062__sum16 __skb_checksum_complete(struct sk_buff *skb)
3063{
3064 __wsum csum;
3065 __sum16 sum;
3066
3067 csum = skb_checksum(skb, 0, skb->len, 0);
3068
3069 sum = csum_fold(csum_add(skb->csum, csum));
3070 /* This check is inverted, because we already knew the hardware
3071 * checksum is invalid before calling this function. So, if the
3072 * re-computed checksum is valid instead, then we have a mismatch
3073 * between the original skb->csum and skb_checksum(). This means either
3074 * the original hardware checksum is incorrect or we screw up skb->csum
3075 * when moving skb->data around.
3076 */
3077 if (likely(!sum)) {
3078 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3079 !skb->csum_complete_sw)
3080 netdev_rx_csum_fault(skb->dev, skb);
3081 }
3082
3083 if (!skb_shared(skb)) {
3084 /* Save full packet checksum */
3085 skb->csum = csum;
3086 skb->ip_summed = CHECKSUM_COMPLETE;
3087 skb->csum_complete_sw = 1;
3088 skb->csum_valid = !sum;
3089 }
3090
3091 return sum;
3092}
3093EXPORT_SYMBOL(__skb_checksum_complete);
3094
3095static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3096{
3097 net_warn_ratelimited(
3098 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3099 __func__);
3100 return 0;
3101}
3102
3103static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3104 int offset, int len)
3105{
3106 net_warn_ratelimited(
3107 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3108 __func__);
3109 return 0;
3110}
3111
3112static const struct skb_checksum_ops default_crc32c_ops = {
3113 .update = warn_crc32c_csum_update,
3114 .combine = warn_crc32c_csum_combine,
3115};
3116
3117const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3118 &default_crc32c_ops;
3119EXPORT_SYMBOL(crc32c_csum_stub);
3120
3121 /**
3122 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3123 * @from: source buffer
3124 *
3125 * Calculates the amount of linear headroom needed in the 'to' skb passed
3126 * into skb_zerocopy().
3127 */
3128unsigned int
3129skb_zerocopy_headlen(const struct sk_buff *from)
3130{
3131 unsigned int hlen = 0;
3132
3133 if (!from->head_frag ||
3134 skb_headlen(from) < L1_CACHE_BYTES ||
3135 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3136 hlen = skb_headlen(from);
3137 if (!hlen)
3138 hlen = from->len;
3139 }
3140
3141 if (skb_has_frag_list(from))
3142 hlen = from->len;
3143
3144 return hlen;
3145}
3146EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3147
3148/**
3149 * skb_zerocopy - Zero copy skb to skb
3150 * @to: destination buffer
3151 * @from: source buffer
3152 * @len: number of bytes to copy from source buffer
3153 * @hlen: size of linear headroom in destination buffer
3154 *
3155 * Copies up to `len` bytes from `from` to `to` by creating references
3156 * to the frags in the source buffer.
3157 *
3158 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3159 * headroom in the `to` buffer.
3160 *
3161 * Return value:
3162 * 0: everything is OK
3163 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3164 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3165 */
3166int
3167skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3168{
3169 int i, j = 0;
3170 int plen = 0; /* length of skb->head fragment */
3171 int ret;
3172 struct page *page;
3173 unsigned int offset;
3174
3175 BUG_ON(!from->head_frag && !hlen);
3176
3177 /* dont bother with small payloads */
3178 if (len <= skb_tailroom(to))
3179 return skb_copy_bits(from, 0, skb_put(to, len), len);
3180
3181 if (hlen) {
3182 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3183 if (unlikely(ret))
3184 return ret;
3185 len -= hlen;
3186 } else {
3187 plen = min_t(int, skb_headlen(from), len);
3188 if (plen) {
3189 page = virt_to_head_page(from->head);
3190 offset = from->data - (unsigned char *)page_address(page);
3191 __skb_fill_page_desc(to, 0, page, offset, plen);
3192 get_page(page);
3193 j = 1;
3194 len -= plen;
3195 }
3196 }
3197
3198 to->truesize += len + plen;
3199 to->len += len + plen;
3200 to->data_len += len + plen;
3201
3202 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3203 skb_tx_error(from);
3204 return -ENOMEM;
3205 }
3206 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3207
3208 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3209 int size;
3210
3211 if (!len)
3212 break;
3213 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3214 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3215 len);
3216 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3217 len -= size;
3218 skb_frag_ref(to, j);
3219 j++;
3220 }
3221 skb_shinfo(to)->nr_frags = j;
3222
3223 return 0;
3224}
3225EXPORT_SYMBOL_GPL(skb_zerocopy);
3226
3227void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3228{
3229 __wsum csum;
3230 long csstart;
3231
3232 if (skb->ip_summed == CHECKSUM_PARTIAL)
3233 csstart = skb_checksum_start_offset(skb);
3234 else
3235 csstart = skb_headlen(skb);
3236
3237 BUG_ON(csstart > skb_headlen(skb));
3238
3239 skb_copy_from_linear_data(skb, to, csstart);
3240
3241 csum = 0;
3242 if (csstart != skb->len)
3243 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3244 skb->len - csstart);
3245
3246 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3247 long csstuff = csstart + skb->csum_offset;
3248
3249 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3250 }
3251}
3252EXPORT_SYMBOL(skb_copy_and_csum_dev);
3253
3254/**
3255 * skb_dequeue - remove from the head of the queue
3256 * @list: list to dequeue from
3257 *
3258 * Remove the head of the list. The list lock is taken so the function
3259 * may be used safely with other locking list functions. The head item is
3260 * returned or %NULL if the list is empty.
3261 */
3262
3263struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3264{
3265 unsigned long flags;
3266 struct sk_buff *result;
3267
3268 spin_lock_irqsave(&list->lock, flags);
3269 result = __skb_dequeue(list);
3270 spin_unlock_irqrestore(&list->lock, flags);
3271 return result;
3272}
3273EXPORT_SYMBOL(skb_dequeue);
3274
3275/**
3276 * skb_dequeue_tail - remove from the tail of the queue
3277 * @list: list to dequeue from
3278 *
3279 * Remove the tail of the list. The list lock is taken so the function
3280 * may be used safely with other locking list functions. The tail item is
3281 * returned or %NULL if the list is empty.
3282 */
3283struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3284{
3285 unsigned long flags;
3286 struct sk_buff *result;
3287
3288 spin_lock_irqsave(&list->lock, flags);
3289 result = __skb_dequeue_tail(list);
3290 spin_unlock_irqrestore(&list->lock, flags);
3291 return result;
3292}
3293EXPORT_SYMBOL(skb_dequeue_tail);
3294
3295/**
3296 * skb_queue_purge - empty a list
3297 * @list: list to empty
3298 *
3299 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3300 * the list and one reference dropped. This function takes the list
3301 * lock and is atomic with respect to other list locking functions.
3302 */
3303void skb_queue_purge(struct sk_buff_head *list)
3304{
3305 struct sk_buff *skb;
3306 while ((skb = skb_dequeue(list)) != NULL)
3307 kfree_skb(skb);
3308}
3309EXPORT_SYMBOL(skb_queue_purge);
3310
3311/**
3312 * skb_rbtree_purge - empty a skb rbtree
3313 * @root: root of the rbtree to empty
3314 * Return value: the sum of truesizes of all purged skbs.
3315 *
3316 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3317 * the list and one reference dropped. This function does not take
3318 * any lock. Synchronization should be handled by the caller (e.g., TCP
3319 * out-of-order queue is protected by the socket lock).
3320 */
3321unsigned int skb_rbtree_purge(struct rb_root *root)
3322{
3323 struct rb_node *p = rb_first(root);
3324 unsigned int sum = 0;
3325
3326 while (p) {
3327 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3328
3329 p = rb_next(p);
3330 rb_erase(&skb->rbnode, root);
3331 sum += skb->truesize;
3332 kfree_skb(skb);
3333 }
3334 return sum;
3335}
3336
3337/**
3338 * skb_queue_head - queue a buffer at the list head
3339 * @list: list to use
3340 * @newsk: buffer to queue
3341 *
3342 * Queue a buffer at the start of the list. This function takes the
3343 * list lock and can be used safely with other locking &sk_buff functions
3344 * safely.
3345 *
3346 * A buffer cannot be placed on two lists at the same time.
3347 */
3348void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3349{
3350 unsigned long flags;
3351
3352 spin_lock_irqsave(&list->lock, flags);
3353 __skb_queue_head(list, newsk);
3354 spin_unlock_irqrestore(&list->lock, flags);
3355}
3356EXPORT_SYMBOL(skb_queue_head);
3357
3358/**
3359 * skb_queue_tail - queue a buffer at the list tail
3360 * @list: list to use
3361 * @newsk: buffer to queue
3362 *
3363 * Queue a buffer at the tail of the list. This function takes the
3364 * list lock and can be used safely with other locking &sk_buff functions
3365 * safely.
3366 *
3367 * A buffer cannot be placed on two lists at the same time.
3368 */
3369void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3370{
3371 unsigned long flags;
3372
3373 spin_lock_irqsave(&list->lock, flags);
3374 __skb_queue_tail(list, newsk);
3375 spin_unlock_irqrestore(&list->lock, flags);
3376}
3377EXPORT_SYMBOL(skb_queue_tail);
3378
3379/**
3380 * skb_unlink - remove a buffer from a list
3381 * @skb: buffer to remove
3382 * @list: list to use
3383 *
3384 * Remove a packet from a list. The list locks are taken and this
3385 * function is atomic with respect to other list locked calls
3386 *
3387 * You must know what list the SKB is on.
3388 */
3389void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3390{
3391 unsigned long flags;
3392
3393 spin_lock_irqsave(&list->lock, flags);
3394 __skb_unlink(skb, list);
3395 spin_unlock_irqrestore(&list->lock, flags);
3396}
3397EXPORT_SYMBOL(skb_unlink);
3398
3399/**
3400 * skb_append - append a buffer
3401 * @old: buffer to insert after
3402 * @newsk: buffer to insert
3403 * @list: list to use
3404 *
3405 * Place a packet after a given packet in a list. The list locks are taken
3406 * and this function is atomic with respect to other list locked calls.
3407 * A buffer cannot be placed on two lists at the same time.
3408 */
3409void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3410{
3411 unsigned long flags;
3412
3413 spin_lock_irqsave(&list->lock, flags);
3414 __skb_queue_after(list, old, newsk);
3415 spin_unlock_irqrestore(&list->lock, flags);
3416}
3417EXPORT_SYMBOL(skb_append);
3418
3419static inline void skb_split_inside_header(struct sk_buff *skb,
3420 struct sk_buff* skb1,
3421 const u32 len, const int pos)
3422{
3423 int i;
3424
3425 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3426 pos - len);
3427 /* And move data appendix as is. */
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3429 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3430
3431 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3432 skb_shinfo(skb)->nr_frags = 0;
3433 skb1->data_len = skb->data_len;
3434 skb1->len += skb1->data_len;
3435 skb->data_len = 0;
3436 skb->len = len;
3437 skb_set_tail_pointer(skb, len);
3438}
3439
3440static inline void skb_split_no_header(struct sk_buff *skb,
3441 struct sk_buff* skb1,
3442 const u32 len, int pos)
3443{
3444 int i, k = 0;
3445 const int nfrags = skb_shinfo(skb)->nr_frags;
3446
3447 skb_shinfo(skb)->nr_frags = 0;
3448 skb1->len = skb1->data_len = skb->len - len;
3449 skb->len = len;
3450 skb->data_len = len - pos;
3451
3452 for (i = 0; i < nfrags; i++) {
3453 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3454
3455 if (pos + size > len) {
3456 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3457
3458 if (pos < len) {
3459 /* Split frag.
3460 * We have two variants in this case:
3461 * 1. Move all the frag to the second
3462 * part, if it is possible. F.e.
3463 * this approach is mandatory for TUX,
3464 * where splitting is expensive.
3465 * 2. Split is accurately. We make this.
3466 */
3467 skb_frag_ref(skb, i);
3468 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3469 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3470 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3471 skb_shinfo(skb)->nr_frags++;
3472 }
3473 k++;
3474 } else
3475 skb_shinfo(skb)->nr_frags++;
3476 pos += size;
3477 }
3478 skb_shinfo(skb1)->nr_frags = k;
3479}
3480
3481/**
3482 * skb_split - Split fragmented skb to two parts at length len.
3483 * @skb: the buffer to split
3484 * @skb1: the buffer to receive the second part
3485 * @len: new length for skb
3486 */
3487void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3488{
3489 int pos = skb_headlen(skb);
3490 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3491
3492 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3493 skb_zerocopy_clone(skb1, skb, 0);
3494 if (len < pos) /* Split line is inside header. */
3495 skb_split_inside_header(skb, skb1, len, pos);
3496 else /* Second chunk has no header, nothing to copy. */
3497 skb_split_no_header(skb, skb1, len, pos);
3498}
3499EXPORT_SYMBOL(skb_split);
3500
3501/* Shifting from/to a cloned skb is a no-go.
3502 *
3503 * Caller cannot keep skb_shinfo related pointers past calling here!
3504 */
3505static int skb_prepare_for_shift(struct sk_buff *skb)
3506{
3507 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3508}
3509
3510/**
3511 * skb_shift - Shifts paged data partially from skb to another
3512 * @tgt: buffer into which tail data gets added
3513 * @skb: buffer from which the paged data comes from
3514 * @shiftlen: shift up to this many bytes
3515 *
3516 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3517 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3518 * It's up to caller to free skb if everything was shifted.
3519 *
3520 * If @tgt runs out of frags, the whole operation is aborted.
3521 *
3522 * Skb cannot include anything else but paged data while tgt is allowed
3523 * to have non-paged data as well.
3524 *
3525 * TODO: full sized shift could be optimized but that would need
3526 * specialized skb free'er to handle frags without up-to-date nr_frags.
3527 */
3528int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3529{
3530 int from, to, merge, todo;
3531 skb_frag_t *fragfrom, *fragto;
3532
3533 BUG_ON(shiftlen > skb->len);
3534
3535 if (skb_headlen(skb))
3536 return 0;
3537 if (skb_zcopy(tgt) || skb_zcopy(skb))
3538 return 0;
3539
3540 todo = shiftlen;
3541 from = 0;
3542 to = skb_shinfo(tgt)->nr_frags;
3543 fragfrom = &skb_shinfo(skb)->frags[from];
3544
3545 /* Actual merge is delayed until the point when we know we can
3546 * commit all, so that we don't have to undo partial changes
3547 */
3548 if (!to ||
3549 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3550 skb_frag_off(fragfrom))) {
3551 merge = -1;
3552 } else {
3553 merge = to - 1;
3554
3555 todo -= skb_frag_size(fragfrom);
3556 if (todo < 0) {
3557 if (skb_prepare_for_shift(skb) ||
3558 skb_prepare_for_shift(tgt))
3559 return 0;
3560
3561 /* All previous frag pointers might be stale! */
3562 fragfrom = &skb_shinfo(skb)->frags[from];
3563 fragto = &skb_shinfo(tgt)->frags[merge];
3564
3565 skb_frag_size_add(fragto, shiftlen);
3566 skb_frag_size_sub(fragfrom, shiftlen);
3567 skb_frag_off_add(fragfrom, shiftlen);
3568
3569 goto onlymerged;
3570 }
3571
3572 from++;
3573 }
3574
3575 /* Skip full, not-fitting skb to avoid expensive operations */
3576 if ((shiftlen == skb->len) &&
3577 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3578 return 0;
3579
3580 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3581 return 0;
3582
3583 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3584 if (to == MAX_SKB_FRAGS)
3585 return 0;
3586
3587 fragfrom = &skb_shinfo(skb)->frags[from];
3588 fragto = &skb_shinfo(tgt)->frags[to];
3589
3590 if (todo >= skb_frag_size(fragfrom)) {
3591 *fragto = *fragfrom;
3592 todo -= skb_frag_size(fragfrom);
3593 from++;
3594 to++;
3595
3596 } else {
3597 __skb_frag_ref(fragfrom);
3598 skb_frag_page_copy(fragto, fragfrom);
3599 skb_frag_off_copy(fragto, fragfrom);
3600 skb_frag_size_set(fragto, todo);
3601
3602 skb_frag_off_add(fragfrom, todo);
3603 skb_frag_size_sub(fragfrom, todo);
3604 todo = 0;
3605
3606 to++;
3607 break;
3608 }
3609 }
3610
3611 /* Ready to "commit" this state change to tgt */
3612 skb_shinfo(tgt)->nr_frags = to;
3613
3614 if (merge >= 0) {
3615 fragfrom = &skb_shinfo(skb)->frags[0];
3616 fragto = &skb_shinfo(tgt)->frags[merge];
3617
3618 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3619 __skb_frag_unref(fragfrom, skb->pp_recycle);
3620 }
3621
3622 /* Reposition in the original skb */
3623 to = 0;
3624 while (from < skb_shinfo(skb)->nr_frags)
3625 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3626 skb_shinfo(skb)->nr_frags = to;
3627
3628 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3629
3630onlymerged:
3631 /* Most likely the tgt won't ever need its checksum anymore, skb on
3632 * the other hand might need it if it needs to be resent
3633 */
3634 tgt->ip_summed = CHECKSUM_PARTIAL;
3635 skb->ip_summed = CHECKSUM_PARTIAL;
3636
3637 /* Yak, is it really working this way? Some helper please? */
3638 skb->len -= shiftlen;
3639 skb->data_len -= shiftlen;
3640 skb->truesize -= shiftlen;
3641 tgt->len += shiftlen;
3642 tgt->data_len += shiftlen;
3643 tgt->truesize += shiftlen;
3644
3645 return shiftlen;
3646}
3647
3648/**
3649 * skb_prepare_seq_read - Prepare a sequential read of skb data
3650 * @skb: the buffer to read
3651 * @from: lower offset of data to be read
3652 * @to: upper offset of data to be read
3653 * @st: state variable
3654 *
3655 * Initializes the specified state variable. Must be called before
3656 * invoking skb_seq_read() for the first time.
3657 */
3658void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3659 unsigned int to, struct skb_seq_state *st)
3660{
3661 st->lower_offset = from;
3662 st->upper_offset = to;
3663 st->root_skb = st->cur_skb = skb;
3664 st->frag_idx = st->stepped_offset = 0;
3665 st->frag_data = NULL;
3666 st->frag_off = 0;
3667}
3668EXPORT_SYMBOL(skb_prepare_seq_read);
3669
3670/**
3671 * skb_seq_read - Sequentially read skb data
3672 * @consumed: number of bytes consumed by the caller so far
3673 * @data: destination pointer for data to be returned
3674 * @st: state variable
3675 *
3676 * Reads a block of skb data at @consumed relative to the
3677 * lower offset specified to skb_prepare_seq_read(). Assigns
3678 * the head of the data block to @data and returns the length
3679 * of the block or 0 if the end of the skb data or the upper
3680 * offset has been reached.
3681 *
3682 * The caller is not required to consume all of the data
3683 * returned, i.e. @consumed is typically set to the number
3684 * of bytes already consumed and the next call to
3685 * skb_seq_read() will return the remaining part of the block.
3686 *
3687 * Note 1: The size of each block of data returned can be arbitrary,
3688 * this limitation is the cost for zerocopy sequential
3689 * reads of potentially non linear data.
3690 *
3691 * Note 2: Fragment lists within fragments are not implemented
3692 * at the moment, state->root_skb could be replaced with
3693 * a stack for this purpose.
3694 */
3695unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3696 struct skb_seq_state *st)
3697{
3698 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3699 skb_frag_t *frag;
3700
3701 if (unlikely(abs_offset >= st->upper_offset)) {
3702 if (st->frag_data) {
3703 kunmap_atomic(st->frag_data);
3704 st->frag_data = NULL;
3705 }
3706 return 0;
3707 }
3708
3709next_skb:
3710 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3711
3712 if (abs_offset < block_limit && !st->frag_data) {
3713 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3714 return block_limit - abs_offset;
3715 }
3716
3717 if (st->frag_idx == 0 && !st->frag_data)
3718 st->stepped_offset += skb_headlen(st->cur_skb);
3719
3720 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3721 unsigned int pg_idx, pg_off, pg_sz;
3722
3723 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3724
3725 pg_idx = 0;
3726 pg_off = skb_frag_off(frag);
3727 pg_sz = skb_frag_size(frag);
3728
3729 if (skb_frag_must_loop(skb_frag_page(frag))) {
3730 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3731 pg_off = offset_in_page(pg_off + st->frag_off);
3732 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3733 PAGE_SIZE - pg_off);
3734 }
3735
3736 block_limit = pg_sz + st->stepped_offset;
3737 if (abs_offset < block_limit) {
3738 if (!st->frag_data)
3739 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3740
3741 *data = (u8 *)st->frag_data + pg_off +
3742 (abs_offset - st->stepped_offset);
3743
3744 return block_limit - abs_offset;
3745 }
3746
3747 if (st->frag_data) {
3748 kunmap_atomic(st->frag_data);
3749 st->frag_data = NULL;
3750 }
3751
3752 st->stepped_offset += pg_sz;
3753 st->frag_off += pg_sz;
3754 if (st->frag_off == skb_frag_size(frag)) {
3755 st->frag_off = 0;
3756 st->frag_idx++;
3757 }
3758 }
3759
3760 if (st->frag_data) {
3761 kunmap_atomic(st->frag_data);
3762 st->frag_data = NULL;
3763 }
3764
3765 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3766 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3767 st->frag_idx = 0;
3768 goto next_skb;
3769 } else if (st->cur_skb->next) {
3770 st->cur_skb = st->cur_skb->next;
3771 st->frag_idx = 0;
3772 goto next_skb;
3773 }
3774
3775 return 0;
3776}
3777EXPORT_SYMBOL(skb_seq_read);
3778
3779/**
3780 * skb_abort_seq_read - Abort a sequential read of skb data
3781 * @st: state variable
3782 *
3783 * Must be called if skb_seq_read() was not called until it
3784 * returned 0.
3785 */
3786void skb_abort_seq_read(struct skb_seq_state *st)
3787{
3788 if (st->frag_data)
3789 kunmap_atomic(st->frag_data);
3790}
3791EXPORT_SYMBOL(skb_abort_seq_read);
3792
3793#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3794
3795static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3796 struct ts_config *conf,
3797 struct ts_state *state)
3798{
3799 return skb_seq_read(offset, text, TS_SKB_CB(state));
3800}
3801
3802static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3803{
3804 skb_abort_seq_read(TS_SKB_CB(state));
3805}
3806
3807/**
3808 * skb_find_text - Find a text pattern in skb data
3809 * @skb: the buffer to look in
3810 * @from: search offset
3811 * @to: search limit
3812 * @config: textsearch configuration
3813 *
3814 * Finds a pattern in the skb data according to the specified
3815 * textsearch configuration. Use textsearch_next() to retrieve
3816 * subsequent occurrences of the pattern. Returns the offset
3817 * to the first occurrence or UINT_MAX if no match was found.
3818 */
3819unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3820 unsigned int to, struct ts_config *config)
3821{
3822 struct ts_state state;
3823 unsigned int ret;
3824
3825 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3826
3827 config->get_next_block = skb_ts_get_next_block;
3828 config->finish = skb_ts_finish;
3829
3830 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3831
3832 ret = textsearch_find(config, &state);
3833 return (ret <= to - from ? ret : UINT_MAX);
3834}
3835EXPORT_SYMBOL(skb_find_text);
3836
3837int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3838 int offset, size_t size)
3839{
3840 int i = skb_shinfo(skb)->nr_frags;
3841
3842 if (skb_can_coalesce(skb, i, page, offset)) {
3843 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3844 } else if (i < MAX_SKB_FRAGS) {
3845 get_page(page);
3846 skb_fill_page_desc(skb, i, page, offset, size);
3847 } else {
3848 return -EMSGSIZE;
3849 }
3850
3851 return 0;
3852}
3853EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3854
3855/**
3856 * skb_pull_rcsum - pull skb and update receive checksum
3857 * @skb: buffer to update
3858 * @len: length of data pulled
3859 *
3860 * This function performs an skb_pull on the packet and updates
3861 * the CHECKSUM_COMPLETE checksum. It should be used on
3862 * receive path processing instead of skb_pull unless you know
3863 * that the checksum difference is zero (e.g., a valid IP header)
3864 * or you are setting ip_summed to CHECKSUM_NONE.
3865 */
3866void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3867{
3868 unsigned char *data = skb->data;
3869
3870 BUG_ON(len > skb->len);
3871 __skb_pull(skb, len);
3872 skb_postpull_rcsum(skb, data, len);
3873 return skb->data;
3874}
3875EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3876
3877static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3878{
3879 skb_frag_t head_frag;
3880 struct page *page;
3881
3882 page = virt_to_head_page(frag_skb->head);
3883 __skb_frag_set_page(&head_frag, page);
3884 skb_frag_off_set(&head_frag, frag_skb->data -
3885 (unsigned char *)page_address(page));
3886 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3887 return head_frag;
3888}
3889
3890struct sk_buff *skb_segment_list(struct sk_buff *skb,
3891 netdev_features_t features,
3892 unsigned int offset)
3893{
3894 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3895 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3896 unsigned int delta_truesize = 0;
3897 unsigned int delta_len = 0;
3898 struct sk_buff *tail = NULL;
3899 struct sk_buff *nskb, *tmp;
3900 int err;
3901
3902 skb_push(skb, -skb_network_offset(skb) + offset);
3903
3904 skb_shinfo(skb)->frag_list = NULL;
3905
3906 do {
3907 nskb = list_skb;
3908 list_skb = list_skb->next;
3909
3910 err = 0;
3911 delta_truesize += nskb->truesize;
3912 if (skb_shared(nskb)) {
3913 tmp = skb_clone(nskb, GFP_ATOMIC);
3914 if (tmp) {
3915 consume_skb(nskb);
3916 nskb = tmp;
3917 err = skb_unclone(nskb, GFP_ATOMIC);
3918 } else {
3919 err = -ENOMEM;
3920 }
3921 }
3922
3923 if (!tail)
3924 skb->next = nskb;
3925 else
3926 tail->next = nskb;
3927
3928 if (unlikely(err)) {
3929 nskb->next = list_skb;
3930 goto err_linearize;
3931 }
3932
3933 tail = nskb;
3934
3935 delta_len += nskb->len;
3936
3937 skb_push(nskb, -skb_network_offset(nskb) + offset);
3938
3939 skb_release_head_state(nskb);
3940 __copy_skb_header(nskb, skb);
3941
3942 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3943 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3944 nskb->data - tnl_hlen,
3945 offset + tnl_hlen);
3946
3947 if (skb_needs_linearize(nskb, features) &&
3948 __skb_linearize(nskb))
3949 goto err_linearize;
3950
3951 } while (list_skb);
3952
3953 skb->truesize = skb->truesize - delta_truesize;
3954 skb->data_len = skb->data_len - delta_len;
3955 skb->len = skb->len - delta_len;
3956
3957 skb_gso_reset(skb);
3958
3959 skb->prev = tail;
3960
3961 if (skb_needs_linearize(skb, features) &&
3962 __skb_linearize(skb))
3963 goto err_linearize;
3964
3965 skb_get(skb);
3966
3967 return skb;
3968
3969err_linearize:
3970 kfree_skb_list(skb->next);
3971 skb->next = NULL;
3972 return ERR_PTR(-ENOMEM);
3973}
3974EXPORT_SYMBOL_GPL(skb_segment_list);
3975
3976/**
3977 * skb_segment - Perform protocol segmentation on skb.
3978 * @head_skb: buffer to segment
3979 * @features: features for the output path (see dev->features)
3980 *
3981 * This function performs segmentation on the given skb. It returns
3982 * a pointer to the first in a list of new skbs for the segments.
3983 * In case of error it returns ERR_PTR(err).
3984 */
3985struct sk_buff *skb_segment(struct sk_buff *head_skb,
3986 netdev_features_t features)
3987{
3988 struct sk_buff *segs = NULL;
3989 struct sk_buff *tail = NULL;
3990 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3991 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3992 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3993 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3994 struct sk_buff *frag_skb = head_skb;
3995 unsigned int offset = doffset;
3996 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3997 unsigned int partial_segs = 0;
3998 unsigned int headroom;
3999 unsigned int len = head_skb->len;
4000 __be16 proto;
4001 bool csum, sg;
4002 int nfrags = skb_shinfo(head_skb)->nr_frags;
4003 int err = -ENOMEM;
4004 int i = 0;
4005 int pos;
4006
4007 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4008 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4009 /* gso_size is untrusted, and we have a frag_list with a linear
4010 * non head_frag head.
4011 *
4012 * (we assume checking the first list_skb member suffices;
4013 * i.e if either of the list_skb members have non head_frag
4014 * head, then the first one has too).
4015 *
4016 * If head_skb's headlen does not fit requested gso_size, it
4017 * means that the frag_list members do NOT terminate on exact
4018 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4019 * sharing. Therefore we must fallback to copying the frag_list
4020 * skbs; we do so by disabling SG.
4021 */
4022 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4023 features &= ~NETIF_F_SG;
4024 }
4025
4026 __skb_push(head_skb, doffset);
4027 proto = skb_network_protocol(head_skb, NULL);
4028 if (unlikely(!proto))
4029 return ERR_PTR(-EINVAL);
4030
4031 sg = !!(features & NETIF_F_SG);
4032 csum = !!can_checksum_protocol(features, proto);
4033
4034 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4035 if (!(features & NETIF_F_GSO_PARTIAL)) {
4036 struct sk_buff *iter;
4037 unsigned int frag_len;
4038
4039 if (!list_skb ||
4040 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4041 goto normal;
4042
4043 /* If we get here then all the required
4044 * GSO features except frag_list are supported.
4045 * Try to split the SKB to multiple GSO SKBs
4046 * with no frag_list.
4047 * Currently we can do that only when the buffers don't
4048 * have a linear part and all the buffers except
4049 * the last are of the same length.
4050 */
4051 frag_len = list_skb->len;
4052 skb_walk_frags(head_skb, iter) {
4053 if (frag_len != iter->len && iter->next)
4054 goto normal;
4055 if (skb_headlen(iter) && !iter->head_frag)
4056 goto normal;
4057
4058 len -= iter->len;
4059 }
4060
4061 if (len != frag_len)
4062 goto normal;
4063 }
4064
4065 /* GSO partial only requires that we trim off any excess that
4066 * doesn't fit into an MSS sized block, so take care of that
4067 * now.
4068 */
4069 partial_segs = len / mss;
4070 if (partial_segs > 1)
4071 mss *= partial_segs;
4072 else
4073 partial_segs = 0;
4074 }
4075
4076normal:
4077 headroom = skb_headroom(head_skb);
4078 pos = skb_headlen(head_skb);
4079
4080 do {
4081 struct sk_buff *nskb;
4082 skb_frag_t *nskb_frag;
4083 int hsize;
4084 int size;
4085
4086 if (unlikely(mss == GSO_BY_FRAGS)) {
4087 len = list_skb->len;
4088 } else {
4089 len = head_skb->len - offset;
4090 if (len > mss)
4091 len = mss;
4092 }
4093
4094 hsize = skb_headlen(head_skb) - offset;
4095
4096 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4097 (skb_headlen(list_skb) == len || sg)) {
4098 BUG_ON(skb_headlen(list_skb) > len);
4099
4100 i = 0;
4101 nfrags = skb_shinfo(list_skb)->nr_frags;
4102 frag = skb_shinfo(list_skb)->frags;
4103 frag_skb = list_skb;
4104 pos += skb_headlen(list_skb);
4105
4106 while (pos < offset + len) {
4107 BUG_ON(i >= nfrags);
4108
4109 size = skb_frag_size(frag);
4110 if (pos + size > offset + len)
4111 break;
4112
4113 i++;
4114 pos += size;
4115 frag++;
4116 }
4117
4118 nskb = skb_clone(list_skb, GFP_ATOMIC);
4119 list_skb = list_skb->next;
4120
4121 if (unlikely(!nskb))
4122 goto err;
4123
4124 if (unlikely(pskb_trim(nskb, len))) {
4125 kfree_skb(nskb);
4126 goto err;
4127 }
4128
4129 hsize = skb_end_offset(nskb);
4130 if (skb_cow_head(nskb, doffset + headroom)) {
4131 kfree_skb(nskb);
4132 goto err;
4133 }
4134
4135 nskb->truesize += skb_end_offset(nskb) - hsize;
4136 skb_release_head_state(nskb);
4137 __skb_push(nskb, doffset);
4138 } else {
4139 if (hsize < 0)
4140 hsize = 0;
4141 if (hsize > len || !sg)
4142 hsize = len;
4143
4144 nskb = __alloc_skb(hsize + doffset + headroom,
4145 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4146 NUMA_NO_NODE);
4147
4148 if (unlikely(!nskb))
4149 goto err;
4150
4151 skb_reserve(nskb, headroom);
4152 __skb_put(nskb, doffset);
4153 }
4154
4155 if (segs)
4156 tail->next = nskb;
4157 else
4158 segs = nskb;
4159 tail = nskb;
4160
4161 __copy_skb_header(nskb, head_skb);
4162
4163 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4164 skb_reset_mac_len(nskb);
4165
4166 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4167 nskb->data - tnl_hlen,
4168 doffset + tnl_hlen);
4169
4170 if (nskb->len == len + doffset)
4171 goto perform_csum_check;
4172
4173 if (!sg) {
4174 if (!csum) {
4175 if (!nskb->remcsum_offload)
4176 nskb->ip_summed = CHECKSUM_NONE;
4177 SKB_GSO_CB(nskb)->csum =
4178 skb_copy_and_csum_bits(head_skb, offset,
4179 skb_put(nskb,
4180 len),
4181 len);
4182 SKB_GSO_CB(nskb)->csum_start =
4183 skb_headroom(nskb) + doffset;
4184 } else {
4185 skb_copy_bits(head_skb, offset,
4186 skb_put(nskb, len),
4187 len);
4188 }
4189 continue;
4190 }
4191
4192 nskb_frag = skb_shinfo(nskb)->frags;
4193
4194 skb_copy_from_linear_data_offset(head_skb, offset,
4195 skb_put(nskb, hsize), hsize);
4196
4197 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4198 SKBFL_SHARED_FRAG;
4199
4200 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4201 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4202 goto err;
4203
4204 while (pos < offset + len) {
4205 if (i >= nfrags) {
4206 i = 0;
4207 nfrags = skb_shinfo(list_skb)->nr_frags;
4208 frag = skb_shinfo(list_skb)->frags;
4209 frag_skb = list_skb;
4210 if (!skb_headlen(list_skb)) {
4211 BUG_ON(!nfrags);
4212 } else {
4213 BUG_ON(!list_skb->head_frag);
4214
4215 /* to make room for head_frag. */
4216 i--;
4217 frag--;
4218 }
4219 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4220 skb_zerocopy_clone(nskb, frag_skb,
4221 GFP_ATOMIC))
4222 goto err;
4223
4224 list_skb = list_skb->next;
4225 }
4226
4227 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4228 MAX_SKB_FRAGS)) {
4229 net_warn_ratelimited(
4230 "skb_segment: too many frags: %u %u\n",
4231 pos, mss);
4232 err = -EINVAL;
4233 goto err;
4234 }
4235
4236 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4237 __skb_frag_ref(nskb_frag);
4238 size = skb_frag_size(nskb_frag);
4239
4240 if (pos < offset) {
4241 skb_frag_off_add(nskb_frag, offset - pos);
4242 skb_frag_size_sub(nskb_frag, offset - pos);
4243 }
4244
4245 skb_shinfo(nskb)->nr_frags++;
4246
4247 if (pos + size <= offset + len) {
4248 i++;
4249 frag++;
4250 pos += size;
4251 } else {
4252 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4253 goto skip_fraglist;
4254 }
4255
4256 nskb_frag++;
4257 }
4258
4259skip_fraglist:
4260 nskb->data_len = len - hsize;
4261 nskb->len += nskb->data_len;
4262 nskb->truesize += nskb->data_len;
4263
4264perform_csum_check:
4265 if (!csum) {
4266 if (skb_has_shared_frag(nskb) &&
4267 __skb_linearize(nskb))
4268 goto err;
4269
4270 if (!nskb->remcsum_offload)
4271 nskb->ip_summed = CHECKSUM_NONE;
4272 SKB_GSO_CB(nskb)->csum =
4273 skb_checksum(nskb, doffset,
4274 nskb->len - doffset, 0);
4275 SKB_GSO_CB(nskb)->csum_start =
4276 skb_headroom(nskb) + doffset;
4277 }
4278 } while ((offset += len) < head_skb->len);
4279
4280 /* Some callers want to get the end of the list.
4281 * Put it in segs->prev to avoid walking the list.
4282 * (see validate_xmit_skb_list() for example)
4283 */
4284 segs->prev = tail;
4285
4286 if (partial_segs) {
4287 struct sk_buff *iter;
4288 int type = skb_shinfo(head_skb)->gso_type;
4289 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4290
4291 /* Update type to add partial and then remove dodgy if set */
4292 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4293 type &= ~SKB_GSO_DODGY;
4294
4295 /* Update GSO info and prepare to start updating headers on
4296 * our way back down the stack of protocols.
4297 */
4298 for (iter = segs; iter; iter = iter->next) {
4299 skb_shinfo(iter)->gso_size = gso_size;
4300 skb_shinfo(iter)->gso_segs = partial_segs;
4301 skb_shinfo(iter)->gso_type = type;
4302 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4303 }
4304
4305 if (tail->len - doffset <= gso_size)
4306 skb_shinfo(tail)->gso_size = 0;
4307 else if (tail != segs)
4308 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4309 }
4310
4311 /* Following permits correct backpressure, for protocols
4312 * using skb_set_owner_w().
4313 * Idea is to tranfert ownership from head_skb to last segment.
4314 */
4315 if (head_skb->destructor == sock_wfree) {
4316 swap(tail->truesize, head_skb->truesize);
4317 swap(tail->destructor, head_skb->destructor);
4318 swap(tail->sk, head_skb->sk);
4319 }
4320 return segs;
4321
4322err:
4323 kfree_skb_list(segs);
4324 return ERR_PTR(err);
4325}
4326EXPORT_SYMBOL_GPL(skb_segment);
4327
4328#ifdef CONFIG_SKB_EXTENSIONS
4329#define SKB_EXT_ALIGN_VALUE 8
4330#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4331
4332static const u8 skb_ext_type_len[] = {
4333#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4334 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4335#endif
4336#ifdef CONFIG_XFRM
4337 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4338#endif
4339#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4340 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4341#endif
4342#if IS_ENABLED(CONFIG_MPTCP)
4343 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4344#endif
4345#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4346 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4347#endif
4348};
4349
4350static __always_inline unsigned int skb_ext_total_length(void)
4351{
4352 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4353#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4354 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4355#endif
4356#ifdef CONFIG_XFRM
4357 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4358#endif
4359#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4360 skb_ext_type_len[TC_SKB_EXT] +
4361#endif
4362#if IS_ENABLED(CONFIG_MPTCP)
4363 skb_ext_type_len[SKB_EXT_MPTCP] +
4364#endif
4365#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4366 skb_ext_type_len[SKB_EXT_MCTP] +
4367#endif
4368 0;
4369}
4370
4371static void skb_extensions_init(void)
4372{
4373 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4374 BUILD_BUG_ON(skb_ext_total_length() > 255);
4375
4376 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4377 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4378 0,
4379 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4380 NULL);
4381}
4382#else
4383static void skb_extensions_init(void) {}
4384#endif
4385
4386void __init skb_init(void)
4387{
4388 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4389 sizeof(struct sk_buff),
4390 0,
4391 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4392 offsetof(struct sk_buff, cb),
4393 sizeof_field(struct sk_buff, cb),
4394 NULL);
4395 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4396 sizeof(struct sk_buff_fclones),
4397 0,
4398 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4399 NULL);
4400 skb_extensions_init();
4401}
4402
4403static int
4404__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4405 unsigned int recursion_level)
4406{
4407 int start = skb_headlen(skb);
4408 int i, copy = start - offset;
4409 struct sk_buff *frag_iter;
4410 int elt = 0;
4411
4412 if (unlikely(recursion_level >= 24))
4413 return -EMSGSIZE;
4414
4415 if (copy > 0) {
4416 if (copy > len)
4417 copy = len;
4418 sg_set_buf(sg, skb->data + offset, copy);
4419 elt++;
4420 if ((len -= copy) == 0)
4421 return elt;
4422 offset += copy;
4423 }
4424
4425 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4426 int end;
4427
4428 WARN_ON(start > offset + len);
4429
4430 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4431 if ((copy = end - offset) > 0) {
4432 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4433 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4434 return -EMSGSIZE;
4435
4436 if (copy > len)
4437 copy = len;
4438 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4439 skb_frag_off(frag) + offset - start);
4440 elt++;
4441 if (!(len -= copy))
4442 return elt;
4443 offset += copy;
4444 }
4445 start = end;
4446 }
4447
4448 skb_walk_frags(skb, frag_iter) {
4449 int end, ret;
4450
4451 WARN_ON(start > offset + len);
4452
4453 end = start + frag_iter->len;
4454 if ((copy = end - offset) > 0) {
4455 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4456 return -EMSGSIZE;
4457
4458 if (copy > len)
4459 copy = len;
4460 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4461 copy, recursion_level + 1);
4462 if (unlikely(ret < 0))
4463 return ret;
4464 elt += ret;
4465 if ((len -= copy) == 0)
4466 return elt;
4467 offset += copy;
4468 }
4469 start = end;
4470 }
4471 BUG_ON(len);
4472 return elt;
4473}
4474
4475/**
4476 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4477 * @skb: Socket buffer containing the buffers to be mapped
4478 * @sg: The scatter-gather list to map into
4479 * @offset: The offset into the buffer's contents to start mapping
4480 * @len: Length of buffer space to be mapped
4481 *
4482 * Fill the specified scatter-gather list with mappings/pointers into a
4483 * region of the buffer space attached to a socket buffer. Returns either
4484 * the number of scatterlist items used, or -EMSGSIZE if the contents
4485 * could not fit.
4486 */
4487int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4488{
4489 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4490
4491 if (nsg <= 0)
4492 return nsg;
4493
4494 sg_mark_end(&sg[nsg - 1]);
4495
4496 return nsg;
4497}
4498EXPORT_SYMBOL_GPL(skb_to_sgvec);
4499
4500/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4501 * sglist without mark the sg which contain last skb data as the end.
4502 * So the caller can mannipulate sg list as will when padding new data after
4503 * the first call without calling sg_unmark_end to expend sg list.
4504 *
4505 * Scenario to use skb_to_sgvec_nomark:
4506 * 1. sg_init_table
4507 * 2. skb_to_sgvec_nomark(payload1)
4508 * 3. skb_to_sgvec_nomark(payload2)
4509 *
4510 * This is equivalent to:
4511 * 1. sg_init_table
4512 * 2. skb_to_sgvec(payload1)
4513 * 3. sg_unmark_end
4514 * 4. skb_to_sgvec(payload2)
4515 *
4516 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4517 * is more preferable.
4518 */
4519int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4520 int offset, int len)
4521{
4522 return __skb_to_sgvec(skb, sg, offset, len, 0);
4523}
4524EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4525
4526
4527
4528/**
4529 * skb_cow_data - Check that a socket buffer's data buffers are writable
4530 * @skb: The socket buffer to check.
4531 * @tailbits: Amount of trailing space to be added
4532 * @trailer: Returned pointer to the skb where the @tailbits space begins
4533 *
4534 * Make sure that the data buffers attached to a socket buffer are
4535 * writable. If they are not, private copies are made of the data buffers
4536 * and the socket buffer is set to use these instead.
4537 *
4538 * If @tailbits is given, make sure that there is space to write @tailbits
4539 * bytes of data beyond current end of socket buffer. @trailer will be
4540 * set to point to the skb in which this space begins.
4541 *
4542 * The number of scatterlist elements required to completely map the
4543 * COW'd and extended socket buffer will be returned.
4544 */
4545int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4546{
4547 int copyflag;
4548 int elt;
4549 struct sk_buff *skb1, **skb_p;
4550
4551 /* If skb is cloned or its head is paged, reallocate
4552 * head pulling out all the pages (pages are considered not writable
4553 * at the moment even if they are anonymous).
4554 */
4555 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4556 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4557 return -ENOMEM;
4558
4559 /* Easy case. Most of packets will go this way. */
4560 if (!skb_has_frag_list(skb)) {
4561 /* A little of trouble, not enough of space for trailer.
4562 * This should not happen, when stack is tuned to generate
4563 * good frames. OK, on miss we reallocate and reserve even more
4564 * space, 128 bytes is fair. */
4565
4566 if (skb_tailroom(skb) < tailbits &&
4567 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4568 return -ENOMEM;
4569
4570 /* Voila! */
4571 *trailer = skb;
4572 return 1;
4573 }
4574
4575 /* Misery. We are in troubles, going to mincer fragments... */
4576
4577 elt = 1;
4578 skb_p = &skb_shinfo(skb)->frag_list;
4579 copyflag = 0;
4580
4581 while ((skb1 = *skb_p) != NULL) {
4582 int ntail = 0;
4583
4584 /* The fragment is partially pulled by someone,
4585 * this can happen on input. Copy it and everything
4586 * after it. */
4587
4588 if (skb_shared(skb1))
4589 copyflag = 1;
4590
4591 /* If the skb is the last, worry about trailer. */
4592
4593 if (skb1->next == NULL && tailbits) {
4594 if (skb_shinfo(skb1)->nr_frags ||
4595 skb_has_frag_list(skb1) ||
4596 skb_tailroom(skb1) < tailbits)
4597 ntail = tailbits + 128;
4598 }
4599
4600 if (copyflag ||
4601 skb_cloned(skb1) ||
4602 ntail ||
4603 skb_shinfo(skb1)->nr_frags ||
4604 skb_has_frag_list(skb1)) {
4605 struct sk_buff *skb2;
4606
4607 /* Fuck, we are miserable poor guys... */
4608 if (ntail == 0)
4609 skb2 = skb_copy(skb1, GFP_ATOMIC);
4610 else
4611 skb2 = skb_copy_expand(skb1,
4612 skb_headroom(skb1),
4613 ntail,
4614 GFP_ATOMIC);
4615 if (unlikely(skb2 == NULL))
4616 return -ENOMEM;
4617
4618 if (skb1->sk)
4619 skb_set_owner_w(skb2, skb1->sk);
4620
4621 /* Looking around. Are we still alive?
4622 * OK, link new skb, drop old one */
4623
4624 skb2->next = skb1->next;
4625 *skb_p = skb2;
4626 kfree_skb(skb1);
4627 skb1 = skb2;
4628 }
4629 elt++;
4630 *trailer = skb1;
4631 skb_p = &skb1->next;
4632 }
4633
4634 return elt;
4635}
4636EXPORT_SYMBOL_GPL(skb_cow_data);
4637
4638static void sock_rmem_free(struct sk_buff *skb)
4639{
4640 struct sock *sk = skb->sk;
4641
4642 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4643}
4644
4645static void skb_set_err_queue(struct sk_buff *skb)
4646{
4647 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4648 * So, it is safe to (mis)use it to mark skbs on the error queue.
4649 */
4650 skb->pkt_type = PACKET_OUTGOING;
4651 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4652}
4653
4654/*
4655 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4656 */
4657int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4658{
4659 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4660 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4661 return -ENOMEM;
4662
4663 skb_orphan(skb);
4664 skb->sk = sk;
4665 skb->destructor = sock_rmem_free;
4666 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4667 skb_set_err_queue(skb);
4668
4669 /* before exiting rcu section, make sure dst is refcounted */
4670 skb_dst_force(skb);
4671
4672 skb_queue_tail(&sk->sk_error_queue, skb);
4673 if (!sock_flag(sk, SOCK_DEAD))
4674 sk_error_report(sk);
4675 return 0;
4676}
4677EXPORT_SYMBOL(sock_queue_err_skb);
4678
4679static bool is_icmp_err_skb(const struct sk_buff *skb)
4680{
4681 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4682 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4683}
4684
4685struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4686{
4687 struct sk_buff_head *q = &sk->sk_error_queue;
4688 struct sk_buff *skb, *skb_next = NULL;
4689 bool icmp_next = false;
4690 unsigned long flags;
4691
4692 spin_lock_irqsave(&q->lock, flags);
4693 skb = __skb_dequeue(q);
4694 if (skb && (skb_next = skb_peek(q))) {
4695 icmp_next = is_icmp_err_skb(skb_next);
4696 if (icmp_next)
4697 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4698 }
4699 spin_unlock_irqrestore(&q->lock, flags);
4700
4701 if (is_icmp_err_skb(skb) && !icmp_next)
4702 sk->sk_err = 0;
4703
4704 if (skb_next)
4705 sk_error_report(sk);
4706
4707 return skb;
4708}
4709EXPORT_SYMBOL(sock_dequeue_err_skb);
4710
4711/**
4712 * skb_clone_sk - create clone of skb, and take reference to socket
4713 * @skb: the skb to clone
4714 *
4715 * This function creates a clone of a buffer that holds a reference on
4716 * sk_refcnt. Buffers created via this function are meant to be
4717 * returned using sock_queue_err_skb, or free via kfree_skb.
4718 *
4719 * When passing buffers allocated with this function to sock_queue_err_skb
4720 * it is necessary to wrap the call with sock_hold/sock_put in order to
4721 * prevent the socket from being released prior to being enqueued on
4722 * the sk_error_queue.
4723 */
4724struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4725{
4726 struct sock *sk = skb->sk;
4727 struct sk_buff *clone;
4728
4729 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4730 return NULL;
4731
4732 clone = skb_clone(skb, GFP_ATOMIC);
4733 if (!clone) {
4734 sock_put(sk);
4735 return NULL;
4736 }
4737
4738 clone->sk = sk;
4739 clone->destructor = sock_efree;
4740
4741 return clone;
4742}
4743EXPORT_SYMBOL(skb_clone_sk);
4744
4745static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4746 struct sock *sk,
4747 int tstype,
4748 bool opt_stats)
4749{
4750 struct sock_exterr_skb *serr;
4751 int err;
4752
4753 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4754
4755 serr = SKB_EXT_ERR(skb);
4756 memset(serr, 0, sizeof(*serr));
4757 serr->ee.ee_errno = ENOMSG;
4758 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4759 serr->ee.ee_info = tstype;
4760 serr->opt_stats = opt_stats;
4761 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4762 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4763 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4764 if (sk_is_tcp(sk))
4765 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4766 }
4767
4768 err = sock_queue_err_skb(sk, skb);
4769
4770 if (err)
4771 kfree_skb(skb);
4772}
4773
4774static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4775{
4776 bool ret;
4777
4778 if (likely(sysctl_tstamp_allow_data || tsonly))
4779 return true;
4780
4781 read_lock_bh(&sk->sk_callback_lock);
4782 ret = sk->sk_socket && sk->sk_socket->file &&
4783 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4784 read_unlock_bh(&sk->sk_callback_lock);
4785 return ret;
4786}
4787
4788void skb_complete_tx_timestamp(struct sk_buff *skb,
4789 struct skb_shared_hwtstamps *hwtstamps)
4790{
4791 struct sock *sk = skb->sk;
4792
4793 if (!skb_may_tx_timestamp(sk, false))
4794 goto err;
4795
4796 /* Take a reference to prevent skb_orphan() from freeing the socket,
4797 * but only if the socket refcount is not zero.
4798 */
4799 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4800 *skb_hwtstamps(skb) = *hwtstamps;
4801 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4802 sock_put(sk);
4803 return;
4804 }
4805
4806err:
4807 kfree_skb(skb);
4808}
4809EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4810
4811void __skb_tstamp_tx(struct sk_buff *orig_skb,
4812 const struct sk_buff *ack_skb,
4813 struct skb_shared_hwtstamps *hwtstamps,
4814 struct sock *sk, int tstype)
4815{
4816 struct sk_buff *skb;
4817 bool tsonly, opt_stats = false;
4818
4819 if (!sk)
4820 return;
4821
4822 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4823 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4824 return;
4825
4826 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4827 if (!skb_may_tx_timestamp(sk, tsonly))
4828 return;
4829
4830 if (tsonly) {
4831#ifdef CONFIG_INET
4832 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4833 sk_is_tcp(sk)) {
4834 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4835 ack_skb);
4836 opt_stats = true;
4837 } else
4838#endif
4839 skb = alloc_skb(0, GFP_ATOMIC);
4840 } else {
4841 skb = skb_clone(orig_skb, GFP_ATOMIC);
4842 }
4843 if (!skb)
4844 return;
4845
4846 if (tsonly) {
4847 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4848 SKBTX_ANY_TSTAMP;
4849 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4850 }
4851
4852 if (hwtstamps)
4853 *skb_hwtstamps(skb) = *hwtstamps;
4854 else
4855 __net_timestamp(skb);
4856
4857 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4858}
4859EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4860
4861void skb_tstamp_tx(struct sk_buff *orig_skb,
4862 struct skb_shared_hwtstamps *hwtstamps)
4863{
4864 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4865 SCM_TSTAMP_SND);
4866}
4867EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4868
4869void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4870{
4871 struct sock *sk = skb->sk;
4872 struct sock_exterr_skb *serr;
4873 int err = 1;
4874
4875 skb->wifi_acked_valid = 1;
4876 skb->wifi_acked = acked;
4877
4878 serr = SKB_EXT_ERR(skb);
4879 memset(serr, 0, sizeof(*serr));
4880 serr->ee.ee_errno = ENOMSG;
4881 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4882
4883 /* Take a reference to prevent skb_orphan() from freeing the socket,
4884 * but only if the socket refcount is not zero.
4885 */
4886 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4887 err = sock_queue_err_skb(sk, skb);
4888 sock_put(sk);
4889 }
4890 if (err)
4891 kfree_skb(skb);
4892}
4893EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4894
4895/**
4896 * skb_partial_csum_set - set up and verify partial csum values for packet
4897 * @skb: the skb to set
4898 * @start: the number of bytes after skb->data to start checksumming.
4899 * @off: the offset from start to place the checksum.
4900 *
4901 * For untrusted partially-checksummed packets, we need to make sure the values
4902 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4903 *
4904 * This function checks and sets those values and skb->ip_summed: if this
4905 * returns false you should drop the packet.
4906 */
4907bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4908{
4909 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4910 u32 csum_start = skb_headroom(skb) + (u32)start;
4911
4912 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4913 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4914 start, off, skb_headroom(skb), skb_headlen(skb));
4915 return false;
4916 }
4917 skb->ip_summed = CHECKSUM_PARTIAL;
4918 skb->csum_start = csum_start;
4919 skb->csum_offset = off;
4920 skb_set_transport_header(skb, start);
4921 return true;
4922}
4923EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4924
4925static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4926 unsigned int max)
4927{
4928 if (skb_headlen(skb) >= len)
4929 return 0;
4930
4931 /* If we need to pullup then pullup to the max, so we
4932 * won't need to do it again.
4933 */
4934 if (max > skb->len)
4935 max = skb->len;
4936
4937 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4938 return -ENOMEM;
4939
4940 if (skb_headlen(skb) < len)
4941 return -EPROTO;
4942
4943 return 0;
4944}
4945
4946#define MAX_TCP_HDR_LEN (15 * 4)
4947
4948static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4949 typeof(IPPROTO_IP) proto,
4950 unsigned int off)
4951{
4952 int err;
4953
4954 switch (proto) {
4955 case IPPROTO_TCP:
4956 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4957 off + MAX_TCP_HDR_LEN);
4958 if (!err && !skb_partial_csum_set(skb, off,
4959 offsetof(struct tcphdr,
4960 check)))
4961 err = -EPROTO;
4962 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4963
4964 case IPPROTO_UDP:
4965 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4966 off + sizeof(struct udphdr));
4967 if (!err && !skb_partial_csum_set(skb, off,
4968 offsetof(struct udphdr,
4969 check)))
4970 err = -EPROTO;
4971 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4972 }
4973
4974 return ERR_PTR(-EPROTO);
4975}
4976
4977/* This value should be large enough to cover a tagged ethernet header plus
4978 * maximally sized IP and TCP or UDP headers.
4979 */
4980#define MAX_IP_HDR_LEN 128
4981
4982static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4983{
4984 unsigned int off;
4985 bool fragment;
4986 __sum16 *csum;
4987 int err;
4988
4989 fragment = false;
4990
4991 err = skb_maybe_pull_tail(skb,
4992 sizeof(struct iphdr),
4993 MAX_IP_HDR_LEN);
4994 if (err < 0)
4995 goto out;
4996
4997 if (ip_is_fragment(ip_hdr(skb)))
4998 fragment = true;
4999
5000 off = ip_hdrlen(skb);
5001
5002 err = -EPROTO;
5003
5004 if (fragment)
5005 goto out;
5006
5007 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5008 if (IS_ERR(csum))
5009 return PTR_ERR(csum);
5010
5011 if (recalculate)
5012 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5013 ip_hdr(skb)->daddr,
5014 skb->len - off,
5015 ip_hdr(skb)->protocol, 0);
5016 err = 0;
5017
5018out:
5019 return err;
5020}
5021
5022/* This value should be large enough to cover a tagged ethernet header plus
5023 * an IPv6 header, all options, and a maximal TCP or UDP header.
5024 */
5025#define MAX_IPV6_HDR_LEN 256
5026
5027#define OPT_HDR(type, skb, off) \
5028 (type *)(skb_network_header(skb) + (off))
5029
5030static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5031{
5032 int err;
5033 u8 nexthdr;
5034 unsigned int off;
5035 unsigned int len;
5036 bool fragment;
5037 bool done;
5038 __sum16 *csum;
5039
5040 fragment = false;
5041 done = false;
5042
5043 off = sizeof(struct ipv6hdr);
5044
5045 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5046 if (err < 0)
5047 goto out;
5048
5049 nexthdr = ipv6_hdr(skb)->nexthdr;
5050
5051 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5052 while (off <= len && !done) {
5053 switch (nexthdr) {
5054 case IPPROTO_DSTOPTS:
5055 case IPPROTO_HOPOPTS:
5056 case IPPROTO_ROUTING: {
5057 struct ipv6_opt_hdr *hp;
5058
5059 err = skb_maybe_pull_tail(skb,
5060 off +
5061 sizeof(struct ipv6_opt_hdr),
5062 MAX_IPV6_HDR_LEN);
5063 if (err < 0)
5064 goto out;
5065
5066 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5067 nexthdr = hp->nexthdr;
5068 off += ipv6_optlen(hp);
5069 break;
5070 }
5071 case IPPROTO_AH: {
5072 struct ip_auth_hdr *hp;
5073
5074 err = skb_maybe_pull_tail(skb,
5075 off +
5076 sizeof(struct ip_auth_hdr),
5077 MAX_IPV6_HDR_LEN);
5078 if (err < 0)
5079 goto out;
5080
5081 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5082 nexthdr = hp->nexthdr;
5083 off += ipv6_authlen(hp);
5084 break;
5085 }
5086 case IPPROTO_FRAGMENT: {
5087 struct frag_hdr *hp;
5088
5089 err = skb_maybe_pull_tail(skb,
5090 off +
5091 sizeof(struct frag_hdr),
5092 MAX_IPV6_HDR_LEN);
5093 if (err < 0)
5094 goto out;
5095
5096 hp = OPT_HDR(struct frag_hdr, skb, off);
5097
5098 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5099 fragment = true;
5100
5101 nexthdr = hp->nexthdr;
5102 off += sizeof(struct frag_hdr);
5103 break;
5104 }
5105 default:
5106 done = true;
5107 break;
5108 }
5109 }
5110
5111 err = -EPROTO;
5112
5113 if (!done || fragment)
5114 goto out;
5115
5116 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5117 if (IS_ERR(csum))
5118 return PTR_ERR(csum);
5119
5120 if (recalculate)
5121 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5122 &ipv6_hdr(skb)->daddr,
5123 skb->len - off, nexthdr, 0);
5124 err = 0;
5125
5126out:
5127 return err;
5128}
5129
5130/**
5131 * skb_checksum_setup - set up partial checksum offset
5132 * @skb: the skb to set up
5133 * @recalculate: if true the pseudo-header checksum will be recalculated
5134 */
5135int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5136{
5137 int err;
5138
5139 switch (skb->protocol) {
5140 case htons(ETH_P_IP):
5141 err = skb_checksum_setup_ipv4(skb, recalculate);
5142 break;
5143
5144 case htons(ETH_P_IPV6):
5145 err = skb_checksum_setup_ipv6(skb, recalculate);
5146 break;
5147
5148 default:
5149 err = -EPROTO;
5150 break;
5151 }
5152
5153 return err;
5154}
5155EXPORT_SYMBOL(skb_checksum_setup);
5156
5157/**
5158 * skb_checksum_maybe_trim - maybe trims the given skb
5159 * @skb: the skb to check
5160 * @transport_len: the data length beyond the network header
5161 *
5162 * Checks whether the given skb has data beyond the given transport length.
5163 * If so, returns a cloned skb trimmed to this transport length.
5164 * Otherwise returns the provided skb. Returns NULL in error cases
5165 * (e.g. transport_len exceeds skb length or out-of-memory).
5166 *
5167 * Caller needs to set the skb transport header and free any returned skb if it
5168 * differs from the provided skb.
5169 */
5170static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5171 unsigned int transport_len)
5172{
5173 struct sk_buff *skb_chk;
5174 unsigned int len = skb_transport_offset(skb) + transport_len;
5175 int ret;
5176
5177 if (skb->len < len)
5178 return NULL;
5179 else if (skb->len == len)
5180 return skb;
5181
5182 skb_chk = skb_clone(skb, GFP_ATOMIC);
5183 if (!skb_chk)
5184 return NULL;
5185
5186 ret = pskb_trim_rcsum(skb_chk, len);
5187 if (ret) {
5188 kfree_skb(skb_chk);
5189 return NULL;
5190 }
5191
5192 return skb_chk;
5193}
5194
5195/**
5196 * skb_checksum_trimmed - validate checksum of an skb
5197 * @skb: the skb to check
5198 * @transport_len: the data length beyond the network header
5199 * @skb_chkf: checksum function to use
5200 *
5201 * Applies the given checksum function skb_chkf to the provided skb.
5202 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5203 *
5204 * If the skb has data beyond the given transport length, then a
5205 * trimmed & cloned skb is checked and returned.
5206 *
5207 * Caller needs to set the skb transport header and free any returned skb if it
5208 * differs from the provided skb.
5209 */
5210struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5211 unsigned int transport_len,
5212 __sum16(*skb_chkf)(struct sk_buff *skb))
5213{
5214 struct sk_buff *skb_chk;
5215 unsigned int offset = skb_transport_offset(skb);
5216 __sum16 ret;
5217
5218 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5219 if (!skb_chk)
5220 goto err;
5221
5222 if (!pskb_may_pull(skb_chk, offset))
5223 goto err;
5224
5225 skb_pull_rcsum(skb_chk, offset);
5226 ret = skb_chkf(skb_chk);
5227 skb_push_rcsum(skb_chk, offset);
5228
5229 if (ret)
5230 goto err;
5231
5232 return skb_chk;
5233
5234err:
5235 if (skb_chk && skb_chk != skb)
5236 kfree_skb(skb_chk);
5237
5238 return NULL;
5239
5240}
5241EXPORT_SYMBOL(skb_checksum_trimmed);
5242
5243void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5244{
5245 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5246 skb->dev->name);
5247}
5248EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5249
5250void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5251{
5252 if (head_stolen) {
5253 skb_release_head_state(skb);
5254 kmem_cache_free(skbuff_head_cache, skb);
5255 } else {
5256 __kfree_skb(skb);
5257 }
5258}
5259EXPORT_SYMBOL(kfree_skb_partial);
5260
5261/**
5262 * skb_try_coalesce - try to merge skb to prior one
5263 * @to: prior buffer
5264 * @from: buffer to add
5265 * @fragstolen: pointer to boolean
5266 * @delta_truesize: how much more was allocated than was requested
5267 */
5268bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5269 bool *fragstolen, int *delta_truesize)
5270{
5271 struct skb_shared_info *to_shinfo, *from_shinfo;
5272 int i, delta, len = from->len;
5273
5274 *fragstolen = false;
5275
5276 if (skb_cloned(to))
5277 return false;
5278
5279 /* In general, avoid mixing slab allocated and page_pool allocated
5280 * pages within the same SKB. However when @to is not pp_recycle and
5281 * @from is cloned, we can transition frag pages from page_pool to
5282 * reference counted.
5283 *
5284 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5285 * @from is cloned, in case the SKB is using page_pool fragment
5286 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5287 * references for cloned SKBs at the moment that would result in
5288 * inconsistent reference counts.
5289 */
5290 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5291 return false;
5292
5293 if (len <= skb_tailroom(to)) {
5294 if (len)
5295 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5296 *delta_truesize = 0;
5297 return true;
5298 }
5299
5300 to_shinfo = skb_shinfo(to);
5301 from_shinfo = skb_shinfo(from);
5302 if (to_shinfo->frag_list || from_shinfo->frag_list)
5303 return false;
5304 if (skb_zcopy(to) || skb_zcopy(from))
5305 return false;
5306
5307 if (skb_headlen(from) != 0) {
5308 struct page *page;
5309 unsigned int offset;
5310
5311 if (to_shinfo->nr_frags +
5312 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5313 return false;
5314
5315 if (skb_head_is_locked(from))
5316 return false;
5317
5318 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5319
5320 page = virt_to_head_page(from->head);
5321 offset = from->data - (unsigned char *)page_address(page);
5322
5323 skb_fill_page_desc(to, to_shinfo->nr_frags,
5324 page, offset, skb_headlen(from));
5325 *fragstolen = true;
5326 } else {
5327 if (to_shinfo->nr_frags +
5328 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5329 return false;
5330
5331 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5332 }
5333
5334 WARN_ON_ONCE(delta < len);
5335
5336 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5337 from_shinfo->frags,
5338 from_shinfo->nr_frags * sizeof(skb_frag_t));
5339 to_shinfo->nr_frags += from_shinfo->nr_frags;
5340
5341 if (!skb_cloned(from))
5342 from_shinfo->nr_frags = 0;
5343
5344 /* if the skb is not cloned this does nothing
5345 * since we set nr_frags to 0.
5346 */
5347 for (i = 0; i < from_shinfo->nr_frags; i++)
5348 __skb_frag_ref(&from_shinfo->frags[i]);
5349
5350 to->truesize += delta;
5351 to->len += len;
5352 to->data_len += len;
5353
5354 *delta_truesize = delta;
5355 return true;
5356}
5357EXPORT_SYMBOL(skb_try_coalesce);
5358
5359/**
5360 * skb_scrub_packet - scrub an skb
5361 *
5362 * @skb: buffer to clean
5363 * @xnet: packet is crossing netns
5364 *
5365 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5366 * into/from a tunnel. Some information have to be cleared during these
5367 * operations.
5368 * skb_scrub_packet can also be used to clean a skb before injecting it in
5369 * another namespace (@xnet == true). We have to clear all information in the
5370 * skb that could impact namespace isolation.
5371 */
5372void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5373{
5374 skb->pkt_type = PACKET_HOST;
5375 skb->skb_iif = 0;
5376 skb->ignore_df = 0;
5377 skb_dst_drop(skb);
5378 skb_ext_reset(skb);
5379 nf_reset_ct(skb);
5380 nf_reset_trace(skb);
5381
5382#ifdef CONFIG_NET_SWITCHDEV
5383 skb->offload_fwd_mark = 0;
5384 skb->offload_l3_fwd_mark = 0;
5385#endif
5386
5387 if (!xnet)
5388 return;
5389
5390 ipvs_reset(skb);
5391 skb->mark = 0;
5392 skb_clear_tstamp(skb);
5393}
5394EXPORT_SYMBOL_GPL(skb_scrub_packet);
5395
5396/**
5397 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5398 *
5399 * @skb: GSO skb
5400 *
5401 * skb_gso_transport_seglen is used to determine the real size of the
5402 * individual segments, including Layer4 headers (TCP/UDP).
5403 *
5404 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5405 */
5406static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5407{
5408 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5409 unsigned int thlen = 0;
5410
5411 if (skb->encapsulation) {
5412 thlen = skb_inner_transport_header(skb) -
5413 skb_transport_header(skb);
5414
5415 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5416 thlen += inner_tcp_hdrlen(skb);
5417 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5418 thlen = tcp_hdrlen(skb);
5419 } else if (unlikely(skb_is_gso_sctp(skb))) {
5420 thlen = sizeof(struct sctphdr);
5421 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5422 thlen = sizeof(struct udphdr);
5423 }
5424 /* UFO sets gso_size to the size of the fragmentation
5425 * payload, i.e. the size of the L4 (UDP) header is already
5426 * accounted for.
5427 */
5428 return thlen + shinfo->gso_size;
5429}
5430
5431/**
5432 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5433 *
5434 * @skb: GSO skb
5435 *
5436 * skb_gso_network_seglen is used to determine the real size of the
5437 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5438 *
5439 * The MAC/L2 header is not accounted for.
5440 */
5441static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5442{
5443 unsigned int hdr_len = skb_transport_header(skb) -
5444 skb_network_header(skb);
5445
5446 return hdr_len + skb_gso_transport_seglen(skb);
5447}
5448
5449/**
5450 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5451 *
5452 * @skb: GSO skb
5453 *
5454 * skb_gso_mac_seglen is used to determine the real size of the
5455 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5456 * headers (TCP/UDP).
5457 */
5458static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5459{
5460 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5461
5462 return hdr_len + skb_gso_transport_seglen(skb);
5463}
5464
5465/**
5466 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5467 *
5468 * There are a couple of instances where we have a GSO skb, and we
5469 * want to determine what size it would be after it is segmented.
5470 *
5471 * We might want to check:
5472 * - L3+L4+payload size (e.g. IP forwarding)
5473 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5474 *
5475 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5476 *
5477 * @skb: GSO skb
5478 *
5479 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5480 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5481 *
5482 * @max_len: The maximum permissible length.
5483 *
5484 * Returns true if the segmented length <= max length.
5485 */
5486static inline bool skb_gso_size_check(const struct sk_buff *skb,
5487 unsigned int seg_len,
5488 unsigned int max_len) {
5489 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5490 const struct sk_buff *iter;
5491
5492 if (shinfo->gso_size != GSO_BY_FRAGS)
5493 return seg_len <= max_len;
5494
5495 /* Undo this so we can re-use header sizes */
5496 seg_len -= GSO_BY_FRAGS;
5497
5498 skb_walk_frags(skb, iter) {
5499 if (seg_len + skb_headlen(iter) > max_len)
5500 return false;
5501 }
5502
5503 return true;
5504}
5505
5506/**
5507 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5508 *
5509 * @skb: GSO skb
5510 * @mtu: MTU to validate against
5511 *
5512 * skb_gso_validate_network_len validates if a given skb will fit a
5513 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5514 * payload.
5515 */
5516bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5517{
5518 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5519}
5520EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5521
5522/**
5523 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5524 *
5525 * @skb: GSO skb
5526 * @len: length to validate against
5527 *
5528 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5529 * length once split, including L2, L3 and L4 headers and the payload.
5530 */
5531bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5532{
5533 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5534}
5535EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5536
5537static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5538{
5539 int mac_len, meta_len;
5540 void *meta;
5541
5542 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5543 kfree_skb(skb);
5544 return NULL;
5545 }
5546
5547 mac_len = skb->data - skb_mac_header(skb);
5548 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5549 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5550 mac_len - VLAN_HLEN - ETH_TLEN);
5551 }
5552
5553 meta_len = skb_metadata_len(skb);
5554 if (meta_len) {
5555 meta = skb_metadata_end(skb) - meta_len;
5556 memmove(meta + VLAN_HLEN, meta, meta_len);
5557 }
5558
5559 skb->mac_header += VLAN_HLEN;
5560 return skb;
5561}
5562
5563struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5564{
5565 struct vlan_hdr *vhdr;
5566 u16 vlan_tci;
5567
5568 if (unlikely(skb_vlan_tag_present(skb))) {
5569 /* vlan_tci is already set-up so leave this for another time */
5570 return skb;
5571 }
5572
5573 skb = skb_share_check(skb, GFP_ATOMIC);
5574 if (unlikely(!skb))
5575 goto err_free;
5576 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5577 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5578 goto err_free;
5579
5580 vhdr = (struct vlan_hdr *)skb->data;
5581 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5582 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5583
5584 skb_pull_rcsum(skb, VLAN_HLEN);
5585 vlan_set_encap_proto(skb, vhdr);
5586
5587 skb = skb_reorder_vlan_header(skb);
5588 if (unlikely(!skb))
5589 goto err_free;
5590
5591 skb_reset_network_header(skb);
5592 if (!skb_transport_header_was_set(skb))
5593 skb_reset_transport_header(skb);
5594 skb_reset_mac_len(skb);
5595
5596 return skb;
5597
5598err_free:
5599 kfree_skb(skb);
5600 return NULL;
5601}
5602EXPORT_SYMBOL(skb_vlan_untag);
5603
5604int skb_ensure_writable(struct sk_buff *skb, int write_len)
5605{
5606 if (!pskb_may_pull(skb, write_len))
5607 return -ENOMEM;
5608
5609 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5610 return 0;
5611
5612 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5613}
5614EXPORT_SYMBOL(skb_ensure_writable);
5615
5616/* remove VLAN header from packet and update csum accordingly.
5617 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5618 */
5619int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5620{
5621 struct vlan_hdr *vhdr;
5622 int offset = skb->data - skb_mac_header(skb);
5623 int err;
5624
5625 if (WARN_ONCE(offset,
5626 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5627 offset)) {
5628 return -EINVAL;
5629 }
5630
5631 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5632 if (unlikely(err))
5633 return err;
5634
5635 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5636
5637 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5638 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5639
5640 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5641 __skb_pull(skb, VLAN_HLEN);
5642
5643 vlan_set_encap_proto(skb, vhdr);
5644 skb->mac_header += VLAN_HLEN;
5645
5646 if (skb_network_offset(skb) < ETH_HLEN)
5647 skb_set_network_header(skb, ETH_HLEN);
5648
5649 skb_reset_mac_len(skb);
5650
5651 return err;
5652}
5653EXPORT_SYMBOL(__skb_vlan_pop);
5654
5655/* Pop a vlan tag either from hwaccel or from payload.
5656 * Expects skb->data at mac header.
5657 */
5658int skb_vlan_pop(struct sk_buff *skb)
5659{
5660 u16 vlan_tci;
5661 __be16 vlan_proto;
5662 int err;
5663
5664 if (likely(skb_vlan_tag_present(skb))) {
5665 __vlan_hwaccel_clear_tag(skb);
5666 } else {
5667 if (unlikely(!eth_type_vlan(skb->protocol)))
5668 return 0;
5669
5670 err = __skb_vlan_pop(skb, &vlan_tci);
5671 if (err)
5672 return err;
5673 }
5674 /* move next vlan tag to hw accel tag */
5675 if (likely(!eth_type_vlan(skb->protocol)))
5676 return 0;
5677
5678 vlan_proto = skb->protocol;
5679 err = __skb_vlan_pop(skb, &vlan_tci);
5680 if (unlikely(err))
5681 return err;
5682
5683 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5684 return 0;
5685}
5686EXPORT_SYMBOL(skb_vlan_pop);
5687
5688/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5689 * Expects skb->data at mac header.
5690 */
5691int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5692{
5693 if (skb_vlan_tag_present(skb)) {
5694 int offset = skb->data - skb_mac_header(skb);
5695 int err;
5696
5697 if (WARN_ONCE(offset,
5698 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5699 offset)) {
5700 return -EINVAL;
5701 }
5702
5703 err = __vlan_insert_tag(skb, skb->vlan_proto,
5704 skb_vlan_tag_get(skb));
5705 if (err)
5706 return err;
5707
5708 skb->protocol = skb->vlan_proto;
5709 skb->mac_len += VLAN_HLEN;
5710
5711 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5712 }
5713 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5714 return 0;
5715}
5716EXPORT_SYMBOL(skb_vlan_push);
5717
5718/**
5719 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5720 *
5721 * @skb: Socket buffer to modify
5722 *
5723 * Drop the Ethernet header of @skb.
5724 *
5725 * Expects that skb->data points to the mac header and that no VLAN tags are
5726 * present.
5727 *
5728 * Returns 0 on success, -errno otherwise.
5729 */
5730int skb_eth_pop(struct sk_buff *skb)
5731{
5732 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5733 skb_network_offset(skb) < ETH_HLEN)
5734 return -EPROTO;
5735
5736 skb_pull_rcsum(skb, ETH_HLEN);
5737 skb_reset_mac_header(skb);
5738 skb_reset_mac_len(skb);
5739
5740 return 0;
5741}
5742EXPORT_SYMBOL(skb_eth_pop);
5743
5744/**
5745 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5746 *
5747 * @skb: Socket buffer to modify
5748 * @dst: Destination MAC address of the new header
5749 * @src: Source MAC address of the new header
5750 *
5751 * Prepend @skb with a new Ethernet header.
5752 *
5753 * Expects that skb->data points to the mac header, which must be empty.
5754 *
5755 * Returns 0 on success, -errno otherwise.
5756 */
5757int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5758 const unsigned char *src)
5759{
5760 struct ethhdr *eth;
5761 int err;
5762
5763 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5764 return -EPROTO;
5765
5766 err = skb_cow_head(skb, sizeof(*eth));
5767 if (err < 0)
5768 return err;
5769
5770 skb_push(skb, sizeof(*eth));
5771 skb_reset_mac_header(skb);
5772 skb_reset_mac_len(skb);
5773
5774 eth = eth_hdr(skb);
5775 ether_addr_copy(eth->h_dest, dst);
5776 ether_addr_copy(eth->h_source, src);
5777 eth->h_proto = skb->protocol;
5778
5779 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5780
5781 return 0;
5782}
5783EXPORT_SYMBOL(skb_eth_push);
5784
5785/* Update the ethertype of hdr and the skb csum value if required. */
5786static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5787 __be16 ethertype)
5788{
5789 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5790 __be16 diff[] = { ~hdr->h_proto, ethertype };
5791
5792 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5793 }
5794
5795 hdr->h_proto = ethertype;
5796}
5797
5798/**
5799 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5800 * the packet
5801 *
5802 * @skb: buffer
5803 * @mpls_lse: MPLS label stack entry to push
5804 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5805 * @mac_len: length of the MAC header
5806 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5807 * ethernet
5808 *
5809 * Expects skb->data at mac header.
5810 *
5811 * Returns 0 on success, -errno otherwise.
5812 */
5813int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5814 int mac_len, bool ethernet)
5815{
5816 struct mpls_shim_hdr *lse;
5817 int err;
5818
5819 if (unlikely(!eth_p_mpls(mpls_proto)))
5820 return -EINVAL;
5821
5822 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5823 if (skb->encapsulation)
5824 return -EINVAL;
5825
5826 err = skb_cow_head(skb, MPLS_HLEN);
5827 if (unlikely(err))
5828 return err;
5829
5830 if (!skb->inner_protocol) {
5831 skb_set_inner_network_header(skb, skb_network_offset(skb));
5832 skb_set_inner_protocol(skb, skb->protocol);
5833 }
5834
5835 skb_push(skb, MPLS_HLEN);
5836 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5837 mac_len);
5838 skb_reset_mac_header(skb);
5839 skb_set_network_header(skb, mac_len);
5840 skb_reset_mac_len(skb);
5841
5842 lse = mpls_hdr(skb);
5843 lse->label_stack_entry = mpls_lse;
5844 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5845
5846 if (ethernet && mac_len >= ETH_HLEN)
5847 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5848 skb->protocol = mpls_proto;
5849
5850 return 0;
5851}
5852EXPORT_SYMBOL_GPL(skb_mpls_push);
5853
5854/**
5855 * skb_mpls_pop() - pop the outermost MPLS header
5856 *
5857 * @skb: buffer
5858 * @next_proto: ethertype of header after popped MPLS header
5859 * @mac_len: length of the MAC header
5860 * @ethernet: flag to indicate if the packet is ethernet
5861 *
5862 * Expects skb->data at mac header.
5863 *
5864 * Returns 0 on success, -errno otherwise.
5865 */
5866int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5867 bool ethernet)
5868{
5869 int err;
5870
5871 if (unlikely(!eth_p_mpls(skb->protocol)))
5872 return 0;
5873
5874 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5875 if (unlikely(err))
5876 return err;
5877
5878 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5879 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5880 mac_len);
5881
5882 __skb_pull(skb, MPLS_HLEN);
5883 skb_reset_mac_header(skb);
5884 skb_set_network_header(skb, mac_len);
5885
5886 if (ethernet && mac_len >= ETH_HLEN) {
5887 struct ethhdr *hdr;
5888
5889 /* use mpls_hdr() to get ethertype to account for VLANs. */
5890 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5891 skb_mod_eth_type(skb, hdr, next_proto);
5892 }
5893 skb->protocol = next_proto;
5894
5895 return 0;
5896}
5897EXPORT_SYMBOL_GPL(skb_mpls_pop);
5898
5899/**
5900 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5901 *
5902 * @skb: buffer
5903 * @mpls_lse: new MPLS label stack entry to update to
5904 *
5905 * Expects skb->data at mac header.
5906 *
5907 * Returns 0 on success, -errno otherwise.
5908 */
5909int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5910{
5911 int err;
5912
5913 if (unlikely(!eth_p_mpls(skb->protocol)))
5914 return -EINVAL;
5915
5916 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5917 if (unlikely(err))
5918 return err;
5919
5920 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5921 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5922
5923 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5924 }
5925
5926 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5927
5928 return 0;
5929}
5930EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5931
5932/**
5933 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5934 *
5935 * @skb: buffer
5936 *
5937 * Expects skb->data at mac header.
5938 *
5939 * Returns 0 on success, -errno otherwise.
5940 */
5941int skb_mpls_dec_ttl(struct sk_buff *skb)
5942{
5943 u32 lse;
5944 u8 ttl;
5945
5946 if (unlikely(!eth_p_mpls(skb->protocol)))
5947 return -EINVAL;
5948
5949 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5950 return -ENOMEM;
5951
5952 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5953 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5954 if (!--ttl)
5955 return -EINVAL;
5956
5957 lse &= ~MPLS_LS_TTL_MASK;
5958 lse |= ttl << MPLS_LS_TTL_SHIFT;
5959
5960 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5961}
5962EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5963
5964/**
5965 * alloc_skb_with_frags - allocate skb with page frags
5966 *
5967 * @header_len: size of linear part
5968 * @data_len: needed length in frags
5969 * @max_page_order: max page order desired.
5970 * @errcode: pointer to error code if any
5971 * @gfp_mask: allocation mask
5972 *
5973 * This can be used to allocate a paged skb, given a maximal order for frags.
5974 */
5975struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5976 unsigned long data_len,
5977 int max_page_order,
5978 int *errcode,
5979 gfp_t gfp_mask)
5980{
5981 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5982 unsigned long chunk;
5983 struct sk_buff *skb;
5984 struct page *page;
5985 int i;
5986
5987 *errcode = -EMSGSIZE;
5988 /* Note this test could be relaxed, if we succeed to allocate
5989 * high order pages...
5990 */
5991 if (npages > MAX_SKB_FRAGS)
5992 return NULL;
5993
5994 *errcode = -ENOBUFS;
5995 skb = alloc_skb(header_len, gfp_mask);
5996 if (!skb)
5997 return NULL;
5998
5999 skb->truesize += npages << PAGE_SHIFT;
6000
6001 for (i = 0; npages > 0; i++) {
6002 int order = max_page_order;
6003
6004 while (order) {
6005 if (npages >= 1 << order) {
6006 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6007 __GFP_COMP |
6008 __GFP_NOWARN,
6009 order);
6010 if (page)
6011 goto fill_page;
6012 /* Do not retry other high order allocations */
6013 order = 1;
6014 max_page_order = 0;
6015 }
6016 order--;
6017 }
6018 page = alloc_page(gfp_mask);
6019 if (!page)
6020 goto failure;
6021fill_page:
6022 chunk = min_t(unsigned long, data_len,
6023 PAGE_SIZE << order);
6024 skb_fill_page_desc(skb, i, page, 0, chunk);
6025 data_len -= chunk;
6026 npages -= 1 << order;
6027 }
6028 return skb;
6029
6030failure:
6031 kfree_skb(skb);
6032 return NULL;
6033}
6034EXPORT_SYMBOL(alloc_skb_with_frags);
6035
6036/* carve out the first off bytes from skb when off < headlen */
6037static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6038 const int headlen, gfp_t gfp_mask)
6039{
6040 int i;
6041 int size = skb_end_offset(skb);
6042 int new_hlen = headlen - off;
6043 u8 *data;
6044
6045 size = SKB_DATA_ALIGN(size);
6046
6047 if (skb_pfmemalloc(skb))
6048 gfp_mask |= __GFP_MEMALLOC;
6049 data = kmalloc_reserve(size +
6050 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6051 gfp_mask, NUMA_NO_NODE, NULL);
6052 if (!data)
6053 return -ENOMEM;
6054
6055 size = SKB_WITH_OVERHEAD(ksize(data));
6056
6057 /* Copy real data, and all frags */
6058 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6059 skb->len -= off;
6060
6061 memcpy((struct skb_shared_info *)(data + size),
6062 skb_shinfo(skb),
6063 offsetof(struct skb_shared_info,
6064 frags[skb_shinfo(skb)->nr_frags]));
6065 if (skb_cloned(skb)) {
6066 /* drop the old head gracefully */
6067 if (skb_orphan_frags(skb, gfp_mask)) {
6068 kfree(data);
6069 return -ENOMEM;
6070 }
6071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6072 skb_frag_ref(skb, i);
6073 if (skb_has_frag_list(skb))
6074 skb_clone_fraglist(skb);
6075 skb_release_data(skb);
6076 } else {
6077 /* we can reuse existing recount- all we did was
6078 * relocate values
6079 */
6080 skb_free_head(skb);
6081 }
6082
6083 skb->head = data;
6084 skb->data = data;
6085 skb->head_frag = 0;
6086 skb_set_end_offset(skb, size);
6087 skb_set_tail_pointer(skb, skb_headlen(skb));
6088 skb_headers_offset_update(skb, 0);
6089 skb->cloned = 0;
6090 skb->hdr_len = 0;
6091 skb->nohdr = 0;
6092 atomic_set(&skb_shinfo(skb)->dataref, 1);
6093
6094 return 0;
6095}
6096
6097static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6098
6099/* carve out the first eat bytes from skb's frag_list. May recurse into
6100 * pskb_carve()
6101 */
6102static int pskb_carve_frag_list(struct sk_buff *skb,
6103 struct skb_shared_info *shinfo, int eat,
6104 gfp_t gfp_mask)
6105{
6106 struct sk_buff *list = shinfo->frag_list;
6107 struct sk_buff *clone = NULL;
6108 struct sk_buff *insp = NULL;
6109
6110 do {
6111 if (!list) {
6112 pr_err("Not enough bytes to eat. Want %d\n", eat);
6113 return -EFAULT;
6114 }
6115 if (list->len <= eat) {
6116 /* Eaten as whole. */
6117 eat -= list->len;
6118 list = list->next;
6119 insp = list;
6120 } else {
6121 /* Eaten partially. */
6122 if (skb_shared(list)) {
6123 clone = skb_clone(list, gfp_mask);
6124 if (!clone)
6125 return -ENOMEM;
6126 insp = list->next;
6127 list = clone;
6128 } else {
6129 /* This may be pulled without problems. */
6130 insp = list;
6131 }
6132 if (pskb_carve(list, eat, gfp_mask) < 0) {
6133 kfree_skb(clone);
6134 return -ENOMEM;
6135 }
6136 break;
6137 }
6138 } while (eat);
6139
6140 /* Free pulled out fragments. */
6141 while ((list = shinfo->frag_list) != insp) {
6142 shinfo->frag_list = list->next;
6143 consume_skb(list);
6144 }
6145 /* And insert new clone at head. */
6146 if (clone) {
6147 clone->next = list;
6148 shinfo->frag_list = clone;
6149 }
6150 return 0;
6151}
6152
6153/* carve off first len bytes from skb. Split line (off) is in the
6154 * non-linear part of skb
6155 */
6156static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6157 int pos, gfp_t gfp_mask)
6158{
6159 int i, k = 0;
6160 int size = skb_end_offset(skb);
6161 u8 *data;
6162 const int nfrags = skb_shinfo(skb)->nr_frags;
6163 struct skb_shared_info *shinfo;
6164
6165 size = SKB_DATA_ALIGN(size);
6166
6167 if (skb_pfmemalloc(skb))
6168 gfp_mask |= __GFP_MEMALLOC;
6169 data = kmalloc_reserve(size +
6170 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6171 gfp_mask, NUMA_NO_NODE, NULL);
6172 if (!data)
6173 return -ENOMEM;
6174
6175 size = SKB_WITH_OVERHEAD(ksize(data));
6176
6177 memcpy((struct skb_shared_info *)(data + size),
6178 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6179 if (skb_orphan_frags(skb, gfp_mask)) {
6180 kfree(data);
6181 return -ENOMEM;
6182 }
6183 shinfo = (struct skb_shared_info *)(data + size);
6184 for (i = 0; i < nfrags; i++) {
6185 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6186
6187 if (pos + fsize > off) {
6188 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6189
6190 if (pos < off) {
6191 /* Split frag.
6192 * We have two variants in this case:
6193 * 1. Move all the frag to the second
6194 * part, if it is possible. F.e.
6195 * this approach is mandatory for TUX,
6196 * where splitting is expensive.
6197 * 2. Split is accurately. We make this.
6198 */
6199 skb_frag_off_add(&shinfo->frags[0], off - pos);
6200 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6201 }
6202 skb_frag_ref(skb, i);
6203 k++;
6204 }
6205 pos += fsize;
6206 }
6207 shinfo->nr_frags = k;
6208 if (skb_has_frag_list(skb))
6209 skb_clone_fraglist(skb);
6210
6211 /* split line is in frag list */
6212 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6213 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6214 if (skb_has_frag_list(skb))
6215 kfree_skb_list(skb_shinfo(skb)->frag_list);
6216 kfree(data);
6217 return -ENOMEM;
6218 }
6219 skb_release_data(skb);
6220
6221 skb->head = data;
6222 skb->head_frag = 0;
6223 skb->data = data;
6224 skb_set_end_offset(skb, size);
6225 skb_reset_tail_pointer(skb);
6226 skb_headers_offset_update(skb, 0);
6227 skb->cloned = 0;
6228 skb->hdr_len = 0;
6229 skb->nohdr = 0;
6230 skb->len -= off;
6231 skb->data_len = skb->len;
6232 atomic_set(&skb_shinfo(skb)->dataref, 1);
6233 return 0;
6234}
6235
6236/* remove len bytes from the beginning of the skb */
6237static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6238{
6239 int headlen = skb_headlen(skb);
6240
6241 if (len < headlen)
6242 return pskb_carve_inside_header(skb, len, headlen, gfp);
6243 else
6244 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6245}
6246
6247/* Extract to_copy bytes starting at off from skb, and return this in
6248 * a new skb
6249 */
6250struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6251 int to_copy, gfp_t gfp)
6252{
6253 struct sk_buff *clone = skb_clone(skb, gfp);
6254
6255 if (!clone)
6256 return NULL;
6257
6258 if (pskb_carve(clone, off, gfp) < 0 ||
6259 pskb_trim(clone, to_copy)) {
6260 kfree_skb(clone);
6261 return NULL;
6262 }
6263 return clone;
6264}
6265EXPORT_SYMBOL(pskb_extract);
6266
6267/**
6268 * skb_condense - try to get rid of fragments/frag_list if possible
6269 * @skb: buffer
6270 *
6271 * Can be used to save memory before skb is added to a busy queue.
6272 * If packet has bytes in frags and enough tail room in skb->head,
6273 * pull all of them, so that we can free the frags right now and adjust
6274 * truesize.
6275 * Notes:
6276 * We do not reallocate skb->head thus can not fail.
6277 * Caller must re-evaluate skb->truesize if needed.
6278 */
6279void skb_condense(struct sk_buff *skb)
6280{
6281 if (skb->data_len) {
6282 if (skb->data_len > skb->end - skb->tail ||
6283 skb_cloned(skb))
6284 return;
6285
6286 /* Nice, we can free page frag(s) right now */
6287 __pskb_pull_tail(skb, skb->data_len);
6288 }
6289 /* At this point, skb->truesize might be over estimated,
6290 * because skb had a fragment, and fragments do not tell
6291 * their truesize.
6292 * When we pulled its content into skb->head, fragment
6293 * was freed, but __pskb_pull_tail() could not possibly
6294 * adjust skb->truesize, not knowing the frag truesize.
6295 */
6296 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6297}
6298
6299#ifdef CONFIG_SKB_EXTENSIONS
6300static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6301{
6302 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6303}
6304
6305/**
6306 * __skb_ext_alloc - allocate a new skb extensions storage
6307 *
6308 * @flags: See kmalloc().
6309 *
6310 * Returns the newly allocated pointer. The pointer can later attached to a
6311 * skb via __skb_ext_set().
6312 * Note: caller must handle the skb_ext as an opaque data.
6313 */
6314struct skb_ext *__skb_ext_alloc(gfp_t flags)
6315{
6316 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6317
6318 if (new) {
6319 memset(new->offset, 0, sizeof(new->offset));
6320 refcount_set(&new->refcnt, 1);
6321 }
6322
6323 return new;
6324}
6325
6326static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6327 unsigned int old_active)
6328{
6329 struct skb_ext *new;
6330
6331 if (refcount_read(&old->refcnt) == 1)
6332 return old;
6333
6334 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6335 if (!new)
6336 return NULL;
6337
6338 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6339 refcount_set(&new->refcnt, 1);
6340
6341#ifdef CONFIG_XFRM
6342 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6343 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6344 unsigned int i;
6345
6346 for (i = 0; i < sp->len; i++)
6347 xfrm_state_hold(sp->xvec[i]);
6348 }
6349#endif
6350 __skb_ext_put(old);
6351 return new;
6352}
6353
6354/**
6355 * __skb_ext_set - attach the specified extension storage to this skb
6356 * @skb: buffer
6357 * @id: extension id
6358 * @ext: extension storage previously allocated via __skb_ext_alloc()
6359 *
6360 * Existing extensions, if any, are cleared.
6361 *
6362 * Returns the pointer to the extension.
6363 */
6364void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6365 struct skb_ext *ext)
6366{
6367 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6368
6369 skb_ext_put(skb);
6370 newlen = newoff + skb_ext_type_len[id];
6371 ext->chunks = newlen;
6372 ext->offset[id] = newoff;
6373 skb->extensions = ext;
6374 skb->active_extensions = 1 << id;
6375 return skb_ext_get_ptr(ext, id);
6376}
6377
6378/**
6379 * skb_ext_add - allocate space for given extension, COW if needed
6380 * @skb: buffer
6381 * @id: extension to allocate space for
6382 *
6383 * Allocates enough space for the given extension.
6384 * If the extension is already present, a pointer to that extension
6385 * is returned.
6386 *
6387 * If the skb was cloned, COW applies and the returned memory can be
6388 * modified without changing the extension space of clones buffers.
6389 *
6390 * Returns pointer to the extension or NULL on allocation failure.
6391 */
6392void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6393{
6394 struct skb_ext *new, *old = NULL;
6395 unsigned int newlen, newoff;
6396
6397 if (skb->active_extensions) {
6398 old = skb->extensions;
6399
6400 new = skb_ext_maybe_cow(old, skb->active_extensions);
6401 if (!new)
6402 return NULL;
6403
6404 if (__skb_ext_exist(new, id))
6405 goto set_active;
6406
6407 newoff = new->chunks;
6408 } else {
6409 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6410
6411 new = __skb_ext_alloc(GFP_ATOMIC);
6412 if (!new)
6413 return NULL;
6414 }
6415
6416 newlen = newoff + skb_ext_type_len[id];
6417 new->chunks = newlen;
6418 new->offset[id] = newoff;
6419set_active:
6420 skb->slow_gro = 1;
6421 skb->extensions = new;
6422 skb->active_extensions |= 1 << id;
6423 return skb_ext_get_ptr(new, id);
6424}
6425EXPORT_SYMBOL(skb_ext_add);
6426
6427#ifdef CONFIG_XFRM
6428static void skb_ext_put_sp(struct sec_path *sp)
6429{
6430 unsigned int i;
6431
6432 for (i = 0; i < sp->len; i++)
6433 xfrm_state_put(sp->xvec[i]);
6434}
6435#endif
6436
6437#ifdef CONFIG_MCTP_FLOWS
6438static void skb_ext_put_mctp(struct mctp_flow *flow)
6439{
6440 if (flow->key)
6441 mctp_key_unref(flow->key);
6442}
6443#endif
6444
6445void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6446{
6447 struct skb_ext *ext = skb->extensions;
6448
6449 skb->active_extensions &= ~(1 << id);
6450 if (skb->active_extensions == 0) {
6451 skb->extensions = NULL;
6452 __skb_ext_put(ext);
6453#ifdef CONFIG_XFRM
6454 } else if (id == SKB_EXT_SEC_PATH &&
6455 refcount_read(&ext->refcnt) == 1) {
6456 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6457
6458 skb_ext_put_sp(sp);
6459 sp->len = 0;
6460#endif
6461 }
6462}
6463EXPORT_SYMBOL(__skb_ext_del);
6464
6465void __skb_ext_put(struct skb_ext *ext)
6466{
6467 /* If this is last clone, nothing can increment
6468 * it after check passes. Avoids one atomic op.
6469 */
6470 if (refcount_read(&ext->refcnt) == 1)
6471 goto free_now;
6472
6473 if (!refcount_dec_and_test(&ext->refcnt))
6474 return;
6475free_now:
6476#ifdef CONFIG_XFRM
6477 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6478 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6479#endif
6480#ifdef CONFIG_MCTP_FLOWS
6481 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6482 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6483#endif
6484
6485 kmem_cache_free(skbuff_ext_cache, ext);
6486}
6487EXPORT_SYMBOL(__skb_ext_put);
6488#endif /* CONFIG_SKB_EXTENSIONS */