at v5.18-rc5 761 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/mm.h> 12#include <linux/pagemap.h> 13#include <linux/rmap.h> 14#include <linux/tracepoint-defs.h> 15 16struct folio_batch; 17 18/* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_ATOMIC|__GFP_NOLOCKDEP) 28 29/* The GFP flags allowed during early boot */ 30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32/* Control allocation cpuset and node placement constraints */ 33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35/* Do not use these with a slab allocator */ 36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38void page_writeback_init(void); 39 40static inline void *folio_raw_mapping(struct folio *folio) 41{ 42 unsigned long mapping = (unsigned long)folio->mapping; 43 44 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 45} 46 47void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 48 int nr_throttled); 49static inline void acct_reclaim_writeback(struct folio *folio) 50{ 51 pg_data_t *pgdat = folio_pgdat(folio); 52 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 53 54 if (nr_throttled) 55 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 56} 57 58static inline void wake_throttle_isolated(pg_data_t *pgdat) 59{ 60 wait_queue_head_t *wqh; 61 62 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 63 if (waitqueue_active(wqh)) 64 wake_up(wqh); 65} 66 67vm_fault_t do_swap_page(struct vm_fault *vmf); 68void folio_rotate_reclaimable(struct folio *folio); 69bool __folio_end_writeback(struct folio *folio); 70void deactivate_file_folio(struct folio *folio); 71 72void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 73 unsigned long floor, unsigned long ceiling); 74void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 75 76struct zap_details; 77void unmap_page_range(struct mmu_gather *tlb, 78 struct vm_area_struct *vma, 79 unsigned long addr, unsigned long end, 80 struct zap_details *details); 81 82void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 83 unsigned int order); 84void force_page_cache_ra(struct readahead_control *, unsigned long nr); 85static inline void force_page_cache_readahead(struct address_space *mapping, 86 struct file *file, pgoff_t index, unsigned long nr_to_read) 87{ 88 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 89 force_page_cache_ra(&ractl, nr_to_read); 90} 91 92unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 93 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 94unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 95 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 96void filemap_free_folio(struct address_space *mapping, struct folio *folio); 97int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 98bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 99 loff_t end); 100long invalidate_inode_page(struct page *page); 101unsigned long invalidate_mapping_pagevec(struct address_space *mapping, 102 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); 103 104/** 105 * folio_evictable - Test whether a folio is evictable. 106 * @folio: The folio to test. 107 * 108 * Test whether @folio is evictable -- i.e., should be placed on 109 * active/inactive lists vs unevictable list. 110 * 111 * Reasons folio might not be evictable: 112 * 1. folio's mapping marked unevictable 113 * 2. One of the pages in the folio is part of an mlocked VMA 114 */ 115static inline bool folio_evictable(struct folio *folio) 116{ 117 bool ret; 118 119 /* Prevent address_space of inode and swap cache from being freed */ 120 rcu_read_lock(); 121 ret = !mapping_unevictable(folio_mapping(folio)) && 122 !folio_test_mlocked(folio); 123 rcu_read_unlock(); 124 return ret; 125} 126 127static inline bool page_evictable(struct page *page) 128{ 129 bool ret; 130 131 /* Prevent address_space of inode and swap cache from being freed */ 132 rcu_read_lock(); 133 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 134 rcu_read_unlock(); 135 return ret; 136} 137 138/* 139 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 140 * a count of one. 141 */ 142static inline void set_page_refcounted(struct page *page) 143{ 144 VM_BUG_ON_PAGE(PageTail(page), page); 145 VM_BUG_ON_PAGE(page_ref_count(page), page); 146 set_page_count(page, 1); 147} 148 149extern unsigned long highest_memmap_pfn; 150 151/* 152 * Maximum number of reclaim retries without progress before the OOM 153 * killer is consider the only way forward. 154 */ 155#define MAX_RECLAIM_RETRIES 16 156 157/* 158 * in mm/early_ioremap.c 159 */ 160pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, 161 unsigned long size, pgprot_t prot); 162 163/* 164 * in mm/vmscan.c: 165 */ 166int isolate_lru_page(struct page *page); 167int folio_isolate_lru(struct folio *folio); 168void putback_lru_page(struct page *page); 169void folio_putback_lru(struct folio *folio); 170extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 171 172/* 173 * in mm/rmap.c: 174 */ 175extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 176 177/* 178 * in mm/page_alloc.c 179 */ 180 181/* 182 * Structure for holding the mostly immutable allocation parameters passed 183 * between functions involved in allocations, including the alloc_pages* 184 * family of functions. 185 * 186 * nodemask, migratetype and highest_zoneidx are initialized only once in 187 * __alloc_pages() and then never change. 188 * 189 * zonelist, preferred_zone and highest_zoneidx are set first in 190 * __alloc_pages() for the fast path, and might be later changed 191 * in __alloc_pages_slowpath(). All other functions pass the whole structure 192 * by a const pointer. 193 */ 194struct alloc_context { 195 struct zonelist *zonelist; 196 nodemask_t *nodemask; 197 struct zoneref *preferred_zoneref; 198 int migratetype; 199 200 /* 201 * highest_zoneidx represents highest usable zone index of 202 * the allocation request. Due to the nature of the zone, 203 * memory on lower zone than the highest_zoneidx will be 204 * protected by lowmem_reserve[highest_zoneidx]. 205 * 206 * highest_zoneidx is also used by reclaim/compaction to limit 207 * the target zone since higher zone than this index cannot be 208 * usable for this allocation request. 209 */ 210 enum zone_type highest_zoneidx; 211 bool spread_dirty_pages; 212}; 213 214/* 215 * Locate the struct page for both the matching buddy in our 216 * pair (buddy1) and the combined O(n+1) page they form (page). 217 * 218 * 1) Any buddy B1 will have an order O twin B2 which satisfies 219 * the following equation: 220 * B2 = B1 ^ (1 << O) 221 * For example, if the starting buddy (buddy2) is #8 its order 222 * 1 buddy is #10: 223 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 224 * 225 * 2) Any buddy B will have an order O+1 parent P which 226 * satisfies the following equation: 227 * P = B & ~(1 << O) 228 * 229 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 230 */ 231static inline unsigned long 232__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 233{ 234 return page_pfn ^ (1 << order); 235} 236 237extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 238 unsigned long end_pfn, struct zone *zone); 239 240static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 241 unsigned long end_pfn, struct zone *zone) 242{ 243 if (zone->contiguous) 244 return pfn_to_page(start_pfn); 245 246 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 247} 248 249extern int __isolate_free_page(struct page *page, unsigned int order); 250extern void __putback_isolated_page(struct page *page, unsigned int order, 251 int mt); 252extern void memblock_free_pages(struct page *page, unsigned long pfn, 253 unsigned int order); 254extern void __free_pages_core(struct page *page, unsigned int order); 255extern void prep_compound_page(struct page *page, unsigned int order); 256extern void post_alloc_hook(struct page *page, unsigned int order, 257 gfp_t gfp_flags); 258extern int user_min_free_kbytes; 259 260extern void free_unref_page(struct page *page, unsigned int order); 261extern void free_unref_page_list(struct list_head *list); 262 263extern void zone_pcp_update(struct zone *zone, int cpu_online); 264extern void zone_pcp_reset(struct zone *zone); 265extern void zone_pcp_disable(struct zone *zone); 266extern void zone_pcp_enable(struct zone *zone); 267 268extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 269 phys_addr_t min_addr, 270 int nid, bool exact_nid); 271 272#if defined CONFIG_COMPACTION || defined CONFIG_CMA 273 274/* 275 * in mm/compaction.c 276 */ 277/* 278 * compact_control is used to track pages being migrated and the free pages 279 * they are being migrated to during memory compaction. The free_pfn starts 280 * at the end of a zone and migrate_pfn begins at the start. Movable pages 281 * are moved to the end of a zone during a compaction run and the run 282 * completes when free_pfn <= migrate_pfn 283 */ 284struct compact_control { 285 struct list_head freepages; /* List of free pages to migrate to */ 286 struct list_head migratepages; /* List of pages being migrated */ 287 unsigned int nr_freepages; /* Number of isolated free pages */ 288 unsigned int nr_migratepages; /* Number of pages to migrate */ 289 unsigned long free_pfn; /* isolate_freepages search base */ 290 /* 291 * Acts as an in/out parameter to page isolation for migration. 292 * isolate_migratepages uses it as a search base. 293 * isolate_migratepages_block will update the value to the next pfn 294 * after the last isolated one. 295 */ 296 unsigned long migrate_pfn; 297 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 298 struct zone *zone; 299 unsigned long total_migrate_scanned; 300 unsigned long total_free_scanned; 301 unsigned short fast_search_fail;/* failures to use free list searches */ 302 short search_order; /* order to start a fast search at */ 303 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 304 int order; /* order a direct compactor needs */ 305 int migratetype; /* migratetype of direct compactor */ 306 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 307 const int highest_zoneidx; /* zone index of a direct compactor */ 308 enum migrate_mode mode; /* Async or sync migration mode */ 309 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 310 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 311 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 312 bool direct_compaction; /* False from kcompactd or /proc/... */ 313 bool proactive_compaction; /* kcompactd proactive compaction */ 314 bool whole_zone; /* Whole zone should/has been scanned */ 315 bool contended; /* Signal lock or sched contention */ 316 bool rescan; /* Rescanning the same pageblock */ 317 bool alloc_contig; /* alloc_contig_range allocation */ 318}; 319 320/* 321 * Used in direct compaction when a page should be taken from the freelists 322 * immediately when one is created during the free path. 323 */ 324struct capture_control { 325 struct compact_control *cc; 326 struct page *page; 327}; 328 329unsigned long 330isolate_freepages_range(struct compact_control *cc, 331 unsigned long start_pfn, unsigned long end_pfn); 332int 333isolate_migratepages_range(struct compact_control *cc, 334 unsigned long low_pfn, unsigned long end_pfn); 335#endif 336int find_suitable_fallback(struct free_area *area, unsigned int order, 337 int migratetype, bool only_stealable, bool *can_steal); 338 339/* 340 * This function returns the order of a free page in the buddy system. In 341 * general, page_zone(page)->lock must be held by the caller to prevent the 342 * page from being allocated in parallel and returning garbage as the order. 343 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 344 * page cannot be allocated or merged in parallel. Alternatively, it must 345 * handle invalid values gracefully, and use buddy_order_unsafe() below. 346 */ 347static inline unsigned int buddy_order(struct page *page) 348{ 349 /* PageBuddy() must be checked by the caller */ 350 return page_private(page); 351} 352 353/* 354 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 355 * PageBuddy() should be checked first by the caller to minimize race window, 356 * and invalid values must be handled gracefully. 357 * 358 * READ_ONCE is used so that if the caller assigns the result into a local 359 * variable and e.g. tests it for valid range before using, the compiler cannot 360 * decide to remove the variable and inline the page_private(page) multiple 361 * times, potentially observing different values in the tests and the actual 362 * use of the result. 363 */ 364#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 365 366/* 367 * These three helpers classifies VMAs for virtual memory accounting. 368 */ 369 370/* 371 * Executable code area - executable, not writable, not stack 372 */ 373static inline bool is_exec_mapping(vm_flags_t flags) 374{ 375 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 376} 377 378/* 379 * Stack area - automatically grows in one direction 380 * 381 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 382 * do_mmap() forbids all other combinations. 383 */ 384static inline bool is_stack_mapping(vm_flags_t flags) 385{ 386 return (flags & VM_STACK) == VM_STACK; 387} 388 389/* 390 * Data area - private, writable, not stack 391 */ 392static inline bool is_data_mapping(vm_flags_t flags) 393{ 394 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 395} 396 397/* mm/util.c */ 398void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 399 struct vm_area_struct *prev); 400void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 401struct anon_vma *folio_anon_vma(struct folio *folio); 402 403#ifdef CONFIG_MMU 404void unmap_mapping_folio(struct folio *folio); 405extern long populate_vma_page_range(struct vm_area_struct *vma, 406 unsigned long start, unsigned long end, int *locked); 407extern long faultin_vma_page_range(struct vm_area_struct *vma, 408 unsigned long start, unsigned long end, 409 bool write, int *locked); 410extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 411 unsigned long len); 412/* 413 * mlock_vma_page() and munlock_vma_page(): 414 * should be called with vma's mmap_lock held for read or write, 415 * under page table lock for the pte/pmd being added or removed. 416 * 417 * mlock is usually called at the end of page_add_*_rmap(), 418 * munlock at the end of page_remove_rmap(); but new anon 419 * pages are managed by lru_cache_add_inactive_or_unevictable() 420 * calling mlock_new_page(). 421 * 422 * @compound is used to include pmd mappings of THPs, but filter out 423 * pte mappings of THPs, which cannot be consistently counted: a pte 424 * mapping of the THP head cannot be distinguished by the page alone. 425 */ 426void mlock_folio(struct folio *folio); 427static inline void mlock_vma_folio(struct folio *folio, 428 struct vm_area_struct *vma, bool compound) 429{ 430 /* 431 * The VM_SPECIAL check here serves two purposes. 432 * 1) VM_IO check prevents migration from double-counting during mlock. 433 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 434 * is never left set on a VM_SPECIAL vma, there is an interval while 435 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 436 * still be set while VM_SPECIAL bits are added: so ignore it then. 437 */ 438 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 439 (compound || !folio_test_large(folio))) 440 mlock_folio(folio); 441} 442 443static inline void mlock_vma_page(struct page *page, 444 struct vm_area_struct *vma, bool compound) 445{ 446 mlock_vma_folio(page_folio(page), vma, compound); 447} 448 449void munlock_page(struct page *page); 450static inline void munlock_vma_page(struct page *page, 451 struct vm_area_struct *vma, bool compound) 452{ 453 if (unlikely(vma->vm_flags & VM_LOCKED) && 454 (compound || !PageTransCompound(page))) 455 munlock_page(page); 456} 457void mlock_new_page(struct page *page); 458bool need_mlock_page_drain(int cpu); 459void mlock_page_drain_local(void); 460void mlock_page_drain_remote(int cpu); 461 462extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 463 464/* 465 * At what user virtual address is page expected in vma? 466 * Returns -EFAULT if all of the page is outside the range of vma. 467 * If page is a compound head, the entire compound page is considered. 468 */ 469static inline unsigned long 470vma_address(struct page *page, struct vm_area_struct *vma) 471{ 472 pgoff_t pgoff; 473 unsigned long address; 474 475 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 476 pgoff = page_to_pgoff(page); 477 if (pgoff >= vma->vm_pgoff) { 478 address = vma->vm_start + 479 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 480 /* Check for address beyond vma (or wrapped through 0?) */ 481 if (address < vma->vm_start || address >= vma->vm_end) 482 address = -EFAULT; 483 } else if (PageHead(page) && 484 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 485 /* Test above avoids possibility of wrap to 0 on 32-bit */ 486 address = vma->vm_start; 487 } else { 488 address = -EFAULT; 489 } 490 return address; 491} 492 493/* 494 * Then at what user virtual address will none of the range be found in vma? 495 * Assumes that vma_address() already returned a good starting address. 496 */ 497static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 498{ 499 struct vm_area_struct *vma = pvmw->vma; 500 pgoff_t pgoff; 501 unsigned long address; 502 503 /* Common case, plus ->pgoff is invalid for KSM */ 504 if (pvmw->nr_pages == 1) 505 return pvmw->address + PAGE_SIZE; 506 507 pgoff = pvmw->pgoff + pvmw->nr_pages; 508 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 509 /* Check for address beyond vma (or wrapped through 0?) */ 510 if (address < vma->vm_start || address > vma->vm_end) 511 address = vma->vm_end; 512 return address; 513} 514 515static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 516 struct file *fpin) 517{ 518 int flags = vmf->flags; 519 520 if (fpin) 521 return fpin; 522 523 /* 524 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 525 * anything, so we only pin the file and drop the mmap_lock if only 526 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 527 */ 528 if (fault_flag_allow_retry_first(flags) && 529 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 530 fpin = get_file(vmf->vma->vm_file); 531 mmap_read_unlock(vmf->vma->vm_mm); 532 } 533 return fpin; 534} 535#else /* !CONFIG_MMU */ 536static inline void unmap_mapping_folio(struct folio *folio) { } 537static inline void mlock_vma_page(struct page *page, 538 struct vm_area_struct *vma, bool compound) { } 539static inline void munlock_vma_page(struct page *page, 540 struct vm_area_struct *vma, bool compound) { } 541static inline void mlock_new_page(struct page *page) { } 542static inline bool need_mlock_page_drain(int cpu) { return false; } 543static inline void mlock_page_drain_local(void) { } 544static inline void mlock_page_drain_remote(int cpu) { } 545static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 546{ 547} 548#endif /* !CONFIG_MMU */ 549 550/* 551 * Return the mem_map entry representing the 'offset' subpage within 552 * the maximally aligned gigantic page 'base'. Handle any discontiguity 553 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 554 */ 555static inline struct page *mem_map_offset(struct page *base, int offset) 556{ 557 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 558 return nth_page(base, offset); 559 return base + offset; 560} 561 562/* 563 * Iterator over all subpages within the maximally aligned gigantic 564 * page 'base'. Handle any discontiguity in the mem_map. 565 */ 566static inline struct page *mem_map_next(struct page *iter, 567 struct page *base, int offset) 568{ 569 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 570 unsigned long pfn = page_to_pfn(base) + offset; 571 if (!pfn_valid(pfn)) 572 return NULL; 573 return pfn_to_page(pfn); 574 } 575 return iter + 1; 576} 577 578/* Memory initialisation debug and verification */ 579enum mminit_level { 580 MMINIT_WARNING, 581 MMINIT_VERIFY, 582 MMINIT_TRACE 583}; 584 585#ifdef CONFIG_DEBUG_MEMORY_INIT 586 587extern int mminit_loglevel; 588 589#define mminit_dprintk(level, prefix, fmt, arg...) \ 590do { \ 591 if (level < mminit_loglevel) { \ 592 if (level <= MMINIT_WARNING) \ 593 pr_warn("mminit::" prefix " " fmt, ##arg); \ 594 else \ 595 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 596 } \ 597} while (0) 598 599extern void mminit_verify_pageflags_layout(void); 600extern void mminit_verify_zonelist(void); 601#else 602 603static inline void mminit_dprintk(enum mminit_level level, 604 const char *prefix, const char *fmt, ...) 605{ 606} 607 608static inline void mminit_verify_pageflags_layout(void) 609{ 610} 611 612static inline void mminit_verify_zonelist(void) 613{ 614} 615#endif /* CONFIG_DEBUG_MEMORY_INIT */ 616 617#define NODE_RECLAIM_NOSCAN -2 618#define NODE_RECLAIM_FULL -1 619#define NODE_RECLAIM_SOME 0 620#define NODE_RECLAIM_SUCCESS 1 621 622#ifdef CONFIG_NUMA 623extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 624extern int find_next_best_node(int node, nodemask_t *used_node_mask); 625#else 626static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 627 unsigned int order) 628{ 629 return NODE_RECLAIM_NOSCAN; 630} 631static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 632{ 633 return NUMA_NO_NODE; 634} 635#endif 636 637extern int hwpoison_filter(struct page *p); 638 639extern u32 hwpoison_filter_dev_major; 640extern u32 hwpoison_filter_dev_minor; 641extern u64 hwpoison_filter_flags_mask; 642extern u64 hwpoison_filter_flags_value; 643extern u64 hwpoison_filter_memcg; 644extern u32 hwpoison_filter_enable; 645 646extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 647 unsigned long, unsigned long, 648 unsigned long, unsigned long); 649 650extern void set_pageblock_order(void); 651unsigned int reclaim_clean_pages_from_list(struct zone *zone, 652 struct list_head *page_list); 653/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 654#define ALLOC_WMARK_MIN WMARK_MIN 655#define ALLOC_WMARK_LOW WMARK_LOW 656#define ALLOC_WMARK_HIGH WMARK_HIGH 657#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 658 659/* Mask to get the watermark bits */ 660#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 661 662/* 663 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 664 * cannot assume a reduced access to memory reserves is sufficient for 665 * !MMU 666 */ 667#ifdef CONFIG_MMU 668#define ALLOC_OOM 0x08 669#else 670#define ALLOC_OOM ALLOC_NO_WATERMARKS 671#endif 672 673#define ALLOC_HARDER 0x10 /* try to alloc harder */ 674#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 675#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 676#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 677#ifdef CONFIG_ZONE_DMA32 678#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 679#else 680#define ALLOC_NOFRAGMENT 0x0 681#endif 682#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 683 684enum ttu_flags; 685struct tlbflush_unmap_batch; 686 687 688/* 689 * only for MM internal work items which do not depend on 690 * any allocations or locks which might depend on allocations 691 */ 692extern struct workqueue_struct *mm_percpu_wq; 693 694#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 695void try_to_unmap_flush(void); 696void try_to_unmap_flush_dirty(void); 697void flush_tlb_batched_pending(struct mm_struct *mm); 698#else 699static inline void try_to_unmap_flush(void) 700{ 701} 702static inline void try_to_unmap_flush_dirty(void) 703{ 704} 705static inline void flush_tlb_batched_pending(struct mm_struct *mm) 706{ 707} 708#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 709 710extern const struct trace_print_flags pageflag_names[]; 711extern const struct trace_print_flags vmaflag_names[]; 712extern const struct trace_print_flags gfpflag_names[]; 713 714static inline bool is_migrate_highatomic(enum migratetype migratetype) 715{ 716 return migratetype == MIGRATE_HIGHATOMIC; 717} 718 719static inline bool is_migrate_highatomic_page(struct page *page) 720{ 721 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 722} 723 724void setup_zone_pageset(struct zone *zone); 725 726struct migration_target_control { 727 int nid; /* preferred node id */ 728 nodemask_t *nmask; 729 gfp_t gfp_mask; 730}; 731 732/* 733 * mm/vmalloc.c 734 */ 735#ifdef CONFIG_MMU 736int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 737 pgprot_t prot, struct page **pages, unsigned int page_shift); 738#else 739static inline 740int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 741 pgprot_t prot, struct page **pages, unsigned int page_shift) 742{ 743 return -EINVAL; 744} 745#endif 746 747void vunmap_range_noflush(unsigned long start, unsigned long end); 748 749int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 750 unsigned long addr, int page_nid, int *flags); 751 752void free_zone_device_page(struct page *page); 753 754/* 755 * mm/gup.c 756 */ 757struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 758 759DECLARE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 760 761#endif /* __MM_INTERNAL_H */