Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/dax.h>
22#include <linux/khugepaged.h>
23#include <linux/freezer.h>
24#include <linux/pfn_t.h>
25#include <linux/mman.h>
26#include <linux/memremap.h>
27#include <linux/pagemap.h>
28#include <linux/debugfs.h>
29#include <linux/migrate.h>
30#include <linux/hashtable.h>
31#include <linux/userfaultfd_k.h>
32#include <linux/page_idle.h>
33#include <linux/shmem_fs.h>
34#include <linux/oom.h>
35#include <linux/numa.h>
36#include <linux/page_owner.h>
37#include <linux/sched/sysctl.h>
38
39#include <asm/tlb.h>
40#include <asm/pgalloc.h>
41#include "internal.h"
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/thp.h>
45
46/*
47 * By default, transparent hugepage support is disabled in order to avoid
48 * risking an increased memory footprint for applications that are not
49 * guaranteed to benefit from it. When transparent hugepage support is
50 * enabled, it is for all mappings, and khugepaged scans all mappings.
51 * Defrag is invoked by khugepaged hugepage allocations and by page faults
52 * for all hugepage allocations.
53 */
54unsigned long transparent_hugepage_flags __read_mostly =
55#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
56 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
57#endif
58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
59 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
60#endif
61 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
62 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
63 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
64
65static struct shrinker deferred_split_shrinker;
66
67static atomic_t huge_zero_refcount;
68struct page *huge_zero_page __read_mostly;
69unsigned long huge_zero_pfn __read_mostly = ~0UL;
70
71static inline bool file_thp_enabled(struct vm_area_struct *vma)
72{
73 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
74 !inode_is_open_for_write(vma->vm_file->f_inode) &&
75 (vma->vm_flags & VM_EXEC);
76}
77
78bool transparent_hugepage_active(struct vm_area_struct *vma)
79{
80 /* The addr is used to check if the vma size fits */
81 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
82
83 if (!transhuge_vma_suitable(vma, addr))
84 return false;
85 if (vma_is_anonymous(vma))
86 return __transparent_hugepage_enabled(vma);
87 if (vma_is_shmem(vma))
88 return shmem_huge_enabled(vma);
89 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 return file_thp_enabled(vma);
91
92 return false;
93}
94
95static bool get_huge_zero_page(void)
96{
97 struct page *zero_page;
98retry:
99 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
100 return true;
101
102 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
103 HPAGE_PMD_ORDER);
104 if (!zero_page) {
105 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
106 return false;
107 }
108 count_vm_event(THP_ZERO_PAGE_ALLOC);
109 preempt_disable();
110 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
111 preempt_enable();
112 __free_pages(zero_page, compound_order(zero_page));
113 goto retry;
114 }
115 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
116
117 /* We take additional reference here. It will be put back by shrinker */
118 atomic_set(&huge_zero_refcount, 2);
119 preempt_enable();
120 return true;
121}
122
123static void put_huge_zero_page(void)
124{
125 /*
126 * Counter should never go to zero here. Only shrinker can put
127 * last reference.
128 */
129 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
130}
131
132struct page *mm_get_huge_zero_page(struct mm_struct *mm)
133{
134 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 return READ_ONCE(huge_zero_page);
136
137 if (!get_huge_zero_page())
138 return NULL;
139
140 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
141 put_huge_zero_page();
142
143 return READ_ONCE(huge_zero_page);
144}
145
146void mm_put_huge_zero_page(struct mm_struct *mm)
147{
148 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
149 put_huge_zero_page();
150}
151
152static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
153 struct shrink_control *sc)
154{
155 /* we can free zero page only if last reference remains */
156 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
157}
158
159static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
160 struct shrink_control *sc)
161{
162 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
163 struct page *zero_page = xchg(&huge_zero_page, NULL);
164 BUG_ON(zero_page == NULL);
165 WRITE_ONCE(huge_zero_pfn, ~0UL);
166 __free_pages(zero_page, compound_order(zero_page));
167 return HPAGE_PMD_NR;
168 }
169
170 return 0;
171}
172
173static struct shrinker huge_zero_page_shrinker = {
174 .count_objects = shrink_huge_zero_page_count,
175 .scan_objects = shrink_huge_zero_page_scan,
176 .seeks = DEFAULT_SEEKS,
177};
178
179#ifdef CONFIG_SYSFS
180static ssize_t enabled_show(struct kobject *kobj,
181 struct kobj_attribute *attr, char *buf)
182{
183 const char *output;
184
185 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
186 output = "[always] madvise never";
187 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
188 &transparent_hugepage_flags))
189 output = "always [madvise] never";
190 else
191 output = "always madvise [never]";
192
193 return sysfs_emit(buf, "%s\n", output);
194}
195
196static ssize_t enabled_store(struct kobject *kobj,
197 struct kobj_attribute *attr,
198 const char *buf, size_t count)
199{
200 ssize_t ret = count;
201
202 if (sysfs_streq(buf, "always")) {
203 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
205 } else if (sysfs_streq(buf, "madvise")) {
206 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
207 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
208 } else if (sysfs_streq(buf, "never")) {
209 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
210 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
211 } else
212 ret = -EINVAL;
213
214 if (ret > 0) {
215 int err = start_stop_khugepaged();
216 if (err)
217 ret = err;
218 }
219 return ret;
220}
221static struct kobj_attribute enabled_attr =
222 __ATTR(enabled, 0644, enabled_show, enabled_store);
223
224ssize_t single_hugepage_flag_show(struct kobject *kobj,
225 struct kobj_attribute *attr, char *buf,
226 enum transparent_hugepage_flag flag)
227{
228 return sysfs_emit(buf, "%d\n",
229 !!test_bit(flag, &transparent_hugepage_flags));
230}
231
232ssize_t single_hugepage_flag_store(struct kobject *kobj,
233 struct kobj_attribute *attr,
234 const char *buf, size_t count,
235 enum transparent_hugepage_flag flag)
236{
237 unsigned long value;
238 int ret;
239
240 ret = kstrtoul(buf, 10, &value);
241 if (ret < 0)
242 return ret;
243 if (value > 1)
244 return -EINVAL;
245
246 if (value)
247 set_bit(flag, &transparent_hugepage_flags);
248 else
249 clear_bit(flag, &transparent_hugepage_flags);
250
251 return count;
252}
253
254static ssize_t defrag_show(struct kobject *kobj,
255 struct kobj_attribute *attr, char *buf)
256{
257 const char *output;
258
259 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
260 &transparent_hugepage_flags))
261 output = "[always] defer defer+madvise madvise never";
262 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
263 &transparent_hugepage_flags))
264 output = "always [defer] defer+madvise madvise never";
265 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
266 &transparent_hugepage_flags))
267 output = "always defer [defer+madvise] madvise never";
268 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
269 &transparent_hugepage_flags))
270 output = "always defer defer+madvise [madvise] never";
271 else
272 output = "always defer defer+madvise madvise [never]";
273
274 return sysfs_emit(buf, "%s\n", output);
275}
276
277static ssize_t defrag_store(struct kobject *kobj,
278 struct kobj_attribute *attr,
279 const char *buf, size_t count)
280{
281 if (sysfs_streq(buf, "always")) {
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
285 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 } else if (sysfs_streq(buf, "defer+madvise")) {
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
290 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
291 } else if (sysfs_streq(buf, "defer")) {
292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
295 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
296 } else if (sysfs_streq(buf, "madvise")) {
297 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
300 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 } else if (sysfs_streq(buf, "never")) {
302 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
303 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
304 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
305 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
306 } else
307 return -EINVAL;
308
309 return count;
310}
311static struct kobj_attribute defrag_attr =
312 __ATTR(defrag, 0644, defrag_show, defrag_store);
313
314static ssize_t use_zero_page_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
316{
317 return single_hugepage_flag_show(kobj, attr, buf,
318 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
319}
320static ssize_t use_zero_page_store(struct kobject *kobj,
321 struct kobj_attribute *attr, const char *buf, size_t count)
322{
323 return single_hugepage_flag_store(kobj, attr, buf, count,
324 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
325}
326static struct kobj_attribute use_zero_page_attr =
327 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
328
329static ssize_t hpage_pmd_size_show(struct kobject *kobj,
330 struct kobj_attribute *attr, char *buf)
331{
332 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
333}
334static struct kobj_attribute hpage_pmd_size_attr =
335 __ATTR_RO(hpage_pmd_size);
336
337static struct attribute *hugepage_attr[] = {
338 &enabled_attr.attr,
339 &defrag_attr.attr,
340 &use_zero_page_attr.attr,
341 &hpage_pmd_size_attr.attr,
342#ifdef CONFIG_SHMEM
343 &shmem_enabled_attr.attr,
344#endif
345 NULL,
346};
347
348static const struct attribute_group hugepage_attr_group = {
349 .attrs = hugepage_attr,
350};
351
352static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
353{
354 int err;
355
356 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
357 if (unlikely(!*hugepage_kobj)) {
358 pr_err("failed to create transparent hugepage kobject\n");
359 return -ENOMEM;
360 }
361
362 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
363 if (err) {
364 pr_err("failed to register transparent hugepage group\n");
365 goto delete_obj;
366 }
367
368 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
369 if (err) {
370 pr_err("failed to register transparent hugepage group\n");
371 goto remove_hp_group;
372 }
373
374 return 0;
375
376remove_hp_group:
377 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
378delete_obj:
379 kobject_put(*hugepage_kobj);
380 return err;
381}
382
383static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
384{
385 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
386 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
387 kobject_put(hugepage_kobj);
388}
389#else
390static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
391{
392 return 0;
393}
394
395static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
396{
397}
398#endif /* CONFIG_SYSFS */
399
400static int __init hugepage_init(void)
401{
402 int err;
403 struct kobject *hugepage_kobj;
404
405 if (!has_transparent_hugepage()) {
406 /*
407 * Hardware doesn't support hugepages, hence disable
408 * DAX PMD support.
409 */
410 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
411 return -EINVAL;
412 }
413
414 /*
415 * hugepages can't be allocated by the buddy allocator
416 */
417 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
418 /*
419 * we use page->mapping and page->index in second tail page
420 * as list_head: assuming THP order >= 2
421 */
422 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
423
424 err = hugepage_init_sysfs(&hugepage_kobj);
425 if (err)
426 goto err_sysfs;
427
428 err = khugepaged_init();
429 if (err)
430 goto err_slab;
431
432 err = register_shrinker(&huge_zero_page_shrinker);
433 if (err)
434 goto err_hzp_shrinker;
435 err = register_shrinker(&deferred_split_shrinker);
436 if (err)
437 goto err_split_shrinker;
438
439 /*
440 * By default disable transparent hugepages on smaller systems,
441 * where the extra memory used could hurt more than TLB overhead
442 * is likely to save. The admin can still enable it through /sys.
443 */
444 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
445 transparent_hugepage_flags = 0;
446 return 0;
447 }
448
449 err = start_stop_khugepaged();
450 if (err)
451 goto err_khugepaged;
452
453 return 0;
454err_khugepaged:
455 unregister_shrinker(&deferred_split_shrinker);
456err_split_shrinker:
457 unregister_shrinker(&huge_zero_page_shrinker);
458err_hzp_shrinker:
459 khugepaged_destroy();
460err_slab:
461 hugepage_exit_sysfs(hugepage_kobj);
462err_sysfs:
463 return err;
464}
465subsys_initcall(hugepage_init);
466
467static int __init setup_transparent_hugepage(char *str)
468{
469 int ret = 0;
470 if (!str)
471 goto out;
472 if (!strcmp(str, "always")) {
473 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
477 ret = 1;
478 } else if (!strcmp(str, "madvise")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
483 ret = 1;
484 } else if (!strcmp(str, "never")) {
485 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
486 &transparent_hugepage_flags);
487 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
488 &transparent_hugepage_flags);
489 ret = 1;
490 }
491out:
492 if (!ret)
493 pr_warn("transparent_hugepage= cannot parse, ignored\n");
494 return ret;
495}
496__setup("transparent_hugepage=", setup_transparent_hugepage);
497
498pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
499{
500 if (likely(vma->vm_flags & VM_WRITE))
501 pmd = pmd_mkwrite(pmd);
502 return pmd;
503}
504
505#ifdef CONFIG_MEMCG
506static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507{
508 struct mem_cgroup *memcg = page_memcg(compound_head(page));
509 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
510
511 if (memcg)
512 return &memcg->deferred_split_queue;
513 else
514 return &pgdat->deferred_split_queue;
515}
516#else
517static inline struct deferred_split *get_deferred_split_queue(struct page *page)
518{
519 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
520
521 return &pgdat->deferred_split_queue;
522}
523#endif
524
525void prep_transhuge_page(struct page *page)
526{
527 /*
528 * we use page->mapping and page->indexlru in second tail page
529 * as list_head: assuming THP order >= 2
530 */
531
532 INIT_LIST_HEAD(page_deferred_list(page));
533 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
534}
535
536static inline bool is_transparent_hugepage(struct page *page)
537{
538 if (!PageCompound(page))
539 return false;
540
541 page = compound_head(page);
542 return is_huge_zero_page(page) ||
543 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
544}
545
546static unsigned long __thp_get_unmapped_area(struct file *filp,
547 unsigned long addr, unsigned long len,
548 loff_t off, unsigned long flags, unsigned long size)
549{
550 loff_t off_end = off + len;
551 loff_t off_align = round_up(off, size);
552 unsigned long len_pad, ret;
553
554 if (off_end <= off_align || (off_end - off_align) < size)
555 return 0;
556
557 len_pad = len + size;
558 if (len_pad < len || (off + len_pad) < off)
559 return 0;
560
561 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
562 off >> PAGE_SHIFT, flags);
563
564 /*
565 * The failure might be due to length padding. The caller will retry
566 * without the padding.
567 */
568 if (IS_ERR_VALUE(ret))
569 return 0;
570
571 /*
572 * Do not try to align to THP boundary if allocation at the address
573 * hint succeeds.
574 */
575 if (ret == addr)
576 return addr;
577
578 ret += (off - ret) & (size - 1);
579 return ret;
580}
581
582unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
583 unsigned long len, unsigned long pgoff, unsigned long flags)
584{
585 unsigned long ret;
586 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
587
588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 if (ret)
590 return ret;
591
592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593}
594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 struct page *page, gfp_t gfp)
598{
599 struct vm_area_struct *vma = vmf->vma;
600 pgtable_t pgtable;
601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602 vm_fault_t ret = 0;
603
604 VM_BUG_ON_PAGE(!PageCompound(page), page);
605
606 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
607 put_page(page);
608 count_vm_event(THP_FAULT_FALLBACK);
609 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 return VM_FAULT_FALLBACK;
611 }
612 cgroup_throttle_swaprate(page, gfp);
613
614 pgtable = pte_alloc_one(vma->vm_mm);
615 if (unlikely(!pgtable)) {
616 ret = VM_FAULT_OOM;
617 goto release;
618 }
619
620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 /*
622 * The memory barrier inside __SetPageUptodate makes sure that
623 * clear_huge_page writes become visible before the set_pmd_at()
624 * write.
625 */
626 __SetPageUptodate(page);
627
628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 if (unlikely(!pmd_none(*vmf->pmd))) {
630 goto unlock_release;
631 } else {
632 pmd_t entry;
633
634 ret = check_stable_address_space(vma->vm_mm);
635 if (ret)
636 goto unlock_release;
637
638 /* Deliver the page fault to userland */
639 if (userfaultfd_missing(vma)) {
640 spin_unlock(vmf->ptl);
641 put_page(page);
642 pte_free(vma->vm_mm, pgtable);
643 ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 return ret;
646 }
647
648 entry = mk_huge_pmd(page, vma->vm_page_prot);
649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 page_add_new_anon_rmap(page, vma, haddr, true);
651 lru_cache_add_inactive_or_unevictable(page, vma);
652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 mm_inc_nr_ptes(vma->vm_mm);
657 spin_unlock(vmf->ptl);
658 count_vm_event(THP_FAULT_ALLOC);
659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 }
661
662 return 0;
663unlock_release:
664 spin_unlock(vmf->ptl);
665release:
666 if (pgtable)
667 pte_free(vma->vm_mm, pgtable);
668 put_page(page);
669 return ret;
670
671}
672
673/*
674 * always: directly stall for all thp allocations
675 * defer: wake kswapd and fail if not immediately available
676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677 * fail if not immediately available
678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679 * available
680 * never: never stall for any thp allocation
681 */
682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683{
684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685
686 /* Always do synchronous compaction */
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689
690 /* Kick kcompactd and fail quickly */
691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693
694 /* Synchronous compaction if madvised, otherwise kick kcompactd */
695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM :
698 __GFP_KSWAPD_RECLAIM);
699
700 /* Only do synchronous compaction if madvised */
701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 return GFP_TRANSHUGE_LIGHT |
703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704
705 return GFP_TRANSHUGE_LIGHT;
706}
707
708/* Caller must hold page table lock. */
709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711 struct page *zero_page)
712{
713 pmd_t entry;
714 if (!pmd_none(*pmd))
715 return;
716 entry = mk_pmd(zero_page, vma->vm_page_prot);
717 entry = pmd_mkhuge(entry);
718 if (pgtable)
719 pgtable_trans_huge_deposit(mm, pmd, pgtable);
720 set_pmd_at(mm, haddr, pmd, entry);
721 mm_inc_nr_ptes(mm);
722}
723
724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725{
726 struct vm_area_struct *vma = vmf->vma;
727 gfp_t gfp;
728 struct page *page;
729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730
731 if (!transhuge_vma_suitable(vma, haddr))
732 return VM_FAULT_FALLBACK;
733 if (unlikely(anon_vma_prepare(vma)))
734 return VM_FAULT_OOM;
735 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736 return VM_FAULT_OOM;
737 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738 !mm_forbids_zeropage(vma->vm_mm) &&
739 transparent_hugepage_use_zero_page()) {
740 pgtable_t pgtable;
741 struct page *zero_page;
742 vm_fault_t ret;
743 pgtable = pte_alloc_one(vma->vm_mm);
744 if (unlikely(!pgtable))
745 return VM_FAULT_OOM;
746 zero_page = mm_get_huge_zero_page(vma->vm_mm);
747 if (unlikely(!zero_page)) {
748 pte_free(vma->vm_mm, pgtable);
749 count_vm_event(THP_FAULT_FALLBACK);
750 return VM_FAULT_FALLBACK;
751 }
752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753 ret = 0;
754 if (pmd_none(*vmf->pmd)) {
755 ret = check_stable_address_space(vma->vm_mm);
756 if (ret) {
757 spin_unlock(vmf->ptl);
758 pte_free(vma->vm_mm, pgtable);
759 } else if (userfaultfd_missing(vma)) {
760 spin_unlock(vmf->ptl);
761 pte_free(vma->vm_mm, pgtable);
762 ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 } else {
765 set_huge_zero_page(pgtable, vma->vm_mm, vma,
766 haddr, vmf->pmd, zero_page);
767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768 spin_unlock(vmf->ptl);
769 }
770 } else {
771 spin_unlock(vmf->ptl);
772 pte_free(vma->vm_mm, pgtable);
773 }
774 return ret;
775 }
776 gfp = vma_thp_gfp_mask(vma);
777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 if (unlikely(!page)) {
779 count_vm_event(THP_FAULT_FALLBACK);
780 return VM_FAULT_FALLBACK;
781 }
782 prep_transhuge_page(page);
783 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784}
785
786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 pgtable_t pgtable)
789{
790 struct mm_struct *mm = vma->vm_mm;
791 pmd_t entry;
792 spinlock_t *ptl;
793
794 ptl = pmd_lock(mm, pmd);
795 if (!pmd_none(*pmd)) {
796 if (write) {
797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 goto out_unlock;
800 }
801 entry = pmd_mkyoung(*pmd);
802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 update_mmu_cache_pmd(vma, addr, pmd);
805 }
806
807 goto out_unlock;
808 }
809
810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pmd_mkdevmap(entry);
813 if (write) {
814 entry = pmd_mkyoung(pmd_mkdirty(entry));
815 entry = maybe_pmd_mkwrite(entry, vma);
816 }
817
818 if (pgtable) {
819 pgtable_trans_huge_deposit(mm, pmd, pgtable);
820 mm_inc_nr_ptes(mm);
821 pgtable = NULL;
822 }
823
824 set_pmd_at(mm, addr, pmd, entry);
825 update_mmu_cache_pmd(vma, addr, pmd);
826
827out_unlock:
828 spin_unlock(ptl);
829 if (pgtable)
830 pte_free(mm, pgtable);
831}
832
833/**
834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835 * @vmf: Structure describing the fault
836 * @pfn: pfn to insert
837 * @pgprot: page protection to use
838 * @write: whether it's a write fault
839 *
840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841 * also consult the vmf_insert_mixed_prot() documentation when
842 * @pgprot != @vmf->vma->vm_page_prot.
843 *
844 * Return: vm_fault_t value.
845 */
846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 pgprot_t pgprot, bool write)
848{
849 unsigned long addr = vmf->address & PMD_MASK;
850 struct vm_area_struct *vma = vmf->vma;
851 pgtable_t pgtable = NULL;
852
853 /*
854 * If we had pmd_special, we could avoid all these restrictions,
855 * but we need to be consistent with PTEs and architectures that
856 * can't support a 'special' bit.
857 */
858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 !pfn_t_devmap(pfn));
860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 (VM_PFNMAP|VM_MIXEDMAP));
862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863
864 if (addr < vma->vm_start || addr >= vma->vm_end)
865 return VM_FAULT_SIGBUS;
866
867 if (arch_needs_pgtable_deposit()) {
868 pgtable = pte_alloc_one(vma->vm_mm);
869 if (!pgtable)
870 return VM_FAULT_OOM;
871 }
872
873 track_pfn_insert(vma, &pgprot, pfn);
874
875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876 return VM_FAULT_NOPAGE;
877}
878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879
880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882{
883 if (likely(vma->vm_flags & VM_WRITE))
884 pud = pud_mkwrite(pud);
885 return pud;
886}
887
888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890{
891 struct mm_struct *mm = vma->vm_mm;
892 pud_t entry;
893 spinlock_t *ptl;
894
895 ptl = pud_lock(mm, pud);
896 if (!pud_none(*pud)) {
897 if (write) {
898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 goto out_unlock;
901 }
902 entry = pud_mkyoung(*pud);
903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 update_mmu_cache_pud(vma, addr, pud);
906 }
907 goto out_unlock;
908 }
909
910 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 if (pfn_t_devmap(pfn))
912 entry = pud_mkdevmap(entry);
913 if (write) {
914 entry = pud_mkyoung(pud_mkdirty(entry));
915 entry = maybe_pud_mkwrite(entry, vma);
916 }
917 set_pud_at(mm, addr, pud, entry);
918 update_mmu_cache_pud(vma, addr, pud);
919
920out_unlock:
921 spin_unlock(ptl);
922}
923
924/**
925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
926 * @vmf: Structure describing the fault
927 * @pfn: pfn to insert
928 * @pgprot: page protection to use
929 * @write: whether it's a write fault
930 *
931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932 * also consult the vmf_insert_mixed_prot() documentation when
933 * @pgprot != @vmf->vma->vm_page_prot.
934 *
935 * Return: vm_fault_t value.
936 */
937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 pgprot_t pgprot, bool write)
939{
940 unsigned long addr = vmf->address & PUD_MASK;
941 struct vm_area_struct *vma = vmf->vma;
942
943 /*
944 * If we had pud_special, we could avoid all these restrictions,
945 * but we need to be consistent with PTEs and architectures that
946 * can't support a 'special' bit.
947 */
948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 !pfn_t_devmap(pfn));
950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 (VM_PFNMAP|VM_MIXEDMAP));
952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953
954 if (addr < vma->vm_start || addr >= vma->vm_end)
955 return VM_FAULT_SIGBUS;
956
957 track_pfn_insert(vma, &pgprot, pfn);
958
959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 return VM_FAULT_NOPAGE;
961}
962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966 pmd_t *pmd, int flags)
967{
968 pmd_t _pmd;
969
970 _pmd = pmd_mkyoung(*pmd);
971 if (flags & FOLL_WRITE)
972 _pmd = pmd_mkdirty(_pmd);
973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974 pmd, _pmd, flags & FOLL_WRITE))
975 update_mmu_cache_pmd(vma, addr, pmd);
976}
977
978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980{
981 unsigned long pfn = pmd_pfn(*pmd);
982 struct mm_struct *mm = vma->vm_mm;
983 struct page *page;
984
985 assert_spin_locked(pmd_lockptr(mm, pmd));
986
987 /*
988 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 * not be in this function with `flags & FOLL_COW` set.
990 */
991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 (FOLL_PIN | FOLL_GET)))
996 return NULL;
997
998 if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 return NULL;
1000
1001 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 /* pass */;
1003 else
1004 return NULL;
1005
1006 if (flags & FOLL_TOUCH)
1007 touch_pmd(vma, addr, pmd, flags);
1008
1009 /*
1010 * device mapped pages can only be returned if the
1011 * caller will manage the page reference count.
1012 */
1013 if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 return ERR_PTR(-EEXIST);
1015
1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 *pgmap = get_dev_pagemap(pfn, *pgmap);
1018 if (!*pgmap)
1019 return ERR_PTR(-EFAULT);
1020 page = pfn_to_page(pfn);
1021 if (!try_grab_page(page, flags))
1022 page = ERR_PTR(-ENOMEM);
1023
1024 return page;
1025}
1026
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030{
1031 spinlock_t *dst_ptl, *src_ptl;
1032 struct page *src_page;
1033 pmd_t pmd;
1034 pgtable_t pgtable = NULL;
1035 int ret = -ENOMEM;
1036
1037 /* Skip if can be re-fill on fault */
1038 if (!vma_is_anonymous(dst_vma))
1039 return 0;
1040
1041 pgtable = pte_alloc_one(dst_mm);
1042 if (unlikely(!pgtable))
1043 goto out;
1044
1045 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049 ret = -EAGAIN;
1050 pmd = *src_pmd;
1051
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd))) {
1054 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 if (is_writable_migration_entry(entry)) {
1058 entry = make_readable_migration_entry(
1059 swp_offset(entry));
1060 pmd = swp_entry_to_pmd(entry);
1061 if (pmd_swp_soft_dirty(*src_pmd))
1062 pmd = pmd_swp_mksoft_dirty(pmd);
1063 if (pmd_swp_uffd_wp(*src_pmd))
1064 pmd = pmd_swp_mkuffd_wp(pmd);
1065 set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 }
1067 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068 mm_inc_nr_ptes(dst_mm);
1069 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 if (!userfaultfd_wp(dst_vma))
1071 pmd = pmd_swp_clear_uffd_wp(pmd);
1072 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073 ret = 0;
1074 goto out_unlock;
1075 }
1076#endif
1077
1078 if (unlikely(!pmd_trans_huge(pmd))) {
1079 pte_free(dst_mm, pgtable);
1080 goto out_unlock;
1081 }
1082 /*
1083 * When page table lock is held, the huge zero pmd should not be
1084 * under splitting since we don't split the page itself, only pmd to
1085 * a page table.
1086 */
1087 if (is_huge_zero_pmd(pmd)) {
1088 /*
1089 * get_huge_zero_page() will never allocate a new page here,
1090 * since we already have a zero page to copy. It just takes a
1091 * reference.
1092 */
1093 mm_get_huge_zero_page(dst_mm);
1094 goto out_zero_page;
1095 }
1096
1097 src_page = pmd_page(pmd);
1098 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099
1100 /*
1101 * If this page is a potentially pinned page, split and retry the fault
1102 * with smaller page size. Normally this should not happen because the
1103 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1104 * best effort that the pinned pages won't be replaced by another
1105 * random page during the coming copy-on-write.
1106 */
1107 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 pte_free(dst_mm, pgtable);
1109 spin_unlock(src_ptl);
1110 spin_unlock(dst_ptl);
1111 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 return -EAGAIN;
1113 }
1114
1115 get_page(src_page);
1116 page_dup_rmap(src_page, true);
1117 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118out_zero_page:
1119 mm_inc_nr_ptes(dst_mm);
1120 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 if (!userfaultfd_wp(dst_vma))
1123 pmd = pmd_clear_uffd_wp(pmd);
1124 pmd = pmd_mkold(pmd_wrprotect(pmd));
1125 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126
1127 ret = 0;
1128out_unlock:
1129 spin_unlock(src_ptl);
1130 spin_unlock(dst_ptl);
1131out:
1132 return ret;
1133}
1134
1135#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137 pud_t *pud, int flags)
1138{
1139 pud_t _pud;
1140
1141 _pud = pud_mkyoung(*pud);
1142 if (flags & FOLL_WRITE)
1143 _pud = pud_mkdirty(_pud);
1144 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145 pud, _pud, flags & FOLL_WRITE))
1146 update_mmu_cache_pud(vma, addr, pud);
1147}
1148
1149struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151{
1152 unsigned long pfn = pud_pfn(*pud);
1153 struct mm_struct *mm = vma->vm_mm;
1154 struct page *page;
1155
1156 assert_spin_locked(pud_lockptr(mm, pud));
1157
1158 if (flags & FOLL_WRITE && !pud_write(*pud))
1159 return NULL;
1160
1161 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163 (FOLL_PIN | FOLL_GET)))
1164 return NULL;
1165
1166 if (pud_present(*pud) && pud_devmap(*pud))
1167 /* pass */;
1168 else
1169 return NULL;
1170
1171 if (flags & FOLL_TOUCH)
1172 touch_pud(vma, addr, pud, flags);
1173
1174 /*
1175 * device mapped pages can only be returned if the
1176 * caller will manage the page reference count.
1177 *
1178 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179 */
1180 if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 return ERR_PTR(-EEXIST);
1182
1183 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 *pgmap = get_dev_pagemap(pfn, *pgmap);
1185 if (!*pgmap)
1186 return ERR_PTR(-EFAULT);
1187 page = pfn_to_page(pfn);
1188 if (!try_grab_page(page, flags))
1189 page = ERR_PTR(-ENOMEM);
1190
1191 return page;
1192}
1193
1194int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196 struct vm_area_struct *vma)
1197{
1198 spinlock_t *dst_ptl, *src_ptl;
1199 pud_t pud;
1200 int ret;
1201
1202 dst_ptl = pud_lock(dst_mm, dst_pud);
1203 src_ptl = pud_lockptr(src_mm, src_pud);
1204 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205
1206 ret = -EAGAIN;
1207 pud = *src_pud;
1208 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209 goto out_unlock;
1210
1211 /*
1212 * When page table lock is held, the huge zero pud should not be
1213 * under splitting since we don't split the page itself, only pud to
1214 * a page table.
1215 */
1216 if (is_huge_zero_pud(pud)) {
1217 /* No huge zero pud yet */
1218 }
1219
1220 /* Please refer to comments in copy_huge_pmd() */
1221 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 spin_unlock(src_ptl);
1223 spin_unlock(dst_ptl);
1224 __split_huge_pud(vma, src_pud, addr);
1225 return -EAGAIN;
1226 }
1227
1228 pudp_set_wrprotect(src_mm, addr, src_pud);
1229 pud = pud_mkold(pud_wrprotect(pud));
1230 set_pud_at(dst_mm, addr, dst_pud, pud);
1231
1232 ret = 0;
1233out_unlock:
1234 spin_unlock(src_ptl);
1235 spin_unlock(dst_ptl);
1236 return ret;
1237}
1238
1239void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240{
1241 pud_t entry;
1242 unsigned long haddr;
1243 bool write = vmf->flags & FAULT_FLAG_WRITE;
1244
1245 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247 goto unlock;
1248
1249 entry = pud_mkyoung(orig_pud);
1250 if (write)
1251 entry = pud_mkdirty(entry);
1252 haddr = vmf->address & HPAGE_PUD_MASK;
1253 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255
1256unlock:
1257 spin_unlock(vmf->ptl);
1258}
1259#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260
1261void huge_pmd_set_accessed(struct vm_fault *vmf)
1262{
1263 pmd_t entry;
1264 unsigned long haddr;
1265 bool write = vmf->flags & FAULT_FLAG_WRITE;
1266 pmd_t orig_pmd = vmf->orig_pmd;
1267
1268 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 goto unlock;
1271
1272 entry = pmd_mkyoung(orig_pmd);
1273 if (write)
1274 entry = pmd_mkdirty(entry);
1275 haddr = vmf->address & HPAGE_PMD_MASK;
1276 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278
1279unlock:
1280 spin_unlock(vmf->ptl);
1281}
1282
1283vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284{
1285 struct vm_area_struct *vma = vmf->vma;
1286 struct page *page;
1287 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288 pmd_t orig_pmd = vmf->orig_pmd;
1289
1290 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292
1293 if (is_huge_zero_pmd(orig_pmd))
1294 goto fallback;
1295
1296 spin_lock(vmf->ptl);
1297
1298 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299 spin_unlock(vmf->ptl);
1300 return 0;
1301 }
1302
1303 page = pmd_page(orig_pmd);
1304 VM_BUG_ON_PAGE(!PageHead(page), page);
1305
1306 if (!trylock_page(page)) {
1307 get_page(page);
1308 spin_unlock(vmf->ptl);
1309 lock_page(page);
1310 spin_lock(vmf->ptl);
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 spin_unlock(vmf->ptl);
1313 unlock_page(page);
1314 put_page(page);
1315 return 0;
1316 }
1317 put_page(page);
1318 }
1319
1320 /*
1321 * See do_wp_page(): we can only map the page writable if there are
1322 * no additional references. Note that we always drain the LRU
1323 * pagevecs immediately after adding a THP.
1324 */
1325 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1326 goto unlock_fallback;
1327 if (PageSwapCache(page))
1328 try_to_free_swap(page);
1329 if (page_count(page) == 1) {
1330 pmd_t entry;
1331 entry = pmd_mkyoung(orig_pmd);
1332 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1333 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1334 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1335 unlock_page(page);
1336 spin_unlock(vmf->ptl);
1337 return VM_FAULT_WRITE;
1338 }
1339
1340unlock_fallback:
1341 unlock_page(page);
1342 spin_unlock(vmf->ptl);
1343fallback:
1344 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1345 return VM_FAULT_FALLBACK;
1346}
1347
1348/*
1349 * FOLL_FORCE can write to even unwritable pmd's, but only
1350 * after we've gone through a COW cycle and they are dirty.
1351 */
1352static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1353{
1354 return pmd_write(pmd) ||
1355 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1356}
1357
1358struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1359 unsigned long addr,
1360 pmd_t *pmd,
1361 unsigned int flags)
1362{
1363 struct mm_struct *mm = vma->vm_mm;
1364 struct page *page = NULL;
1365
1366 assert_spin_locked(pmd_lockptr(mm, pmd));
1367
1368 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1369 goto out;
1370
1371 /* Avoid dumping huge zero page */
1372 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1373 return ERR_PTR(-EFAULT);
1374
1375 /* Full NUMA hinting faults to serialise migration in fault paths */
1376 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1377 goto out;
1378
1379 page = pmd_page(*pmd);
1380 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1381
1382 if (!try_grab_page(page, flags))
1383 return ERR_PTR(-ENOMEM);
1384
1385 if (flags & FOLL_TOUCH)
1386 touch_pmd(vma, addr, pmd, flags);
1387
1388 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1389 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1390
1391out:
1392 return page;
1393}
1394
1395/* NUMA hinting page fault entry point for trans huge pmds */
1396vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1397{
1398 struct vm_area_struct *vma = vmf->vma;
1399 pmd_t oldpmd = vmf->orig_pmd;
1400 pmd_t pmd;
1401 struct page *page;
1402 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1403 int page_nid = NUMA_NO_NODE;
1404 int target_nid, last_cpupid = -1;
1405 bool migrated = false;
1406 bool was_writable = pmd_savedwrite(oldpmd);
1407 int flags = 0;
1408
1409 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1410 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1411 spin_unlock(vmf->ptl);
1412 goto out;
1413 }
1414
1415 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1416 page = vm_normal_page_pmd(vma, haddr, pmd);
1417 if (!page)
1418 goto out_map;
1419
1420 /* See similar comment in do_numa_page for explanation */
1421 if (!was_writable)
1422 flags |= TNF_NO_GROUP;
1423
1424 page_nid = page_to_nid(page);
1425 last_cpupid = page_cpupid_last(page);
1426 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1427 &flags);
1428
1429 if (target_nid == NUMA_NO_NODE) {
1430 put_page(page);
1431 goto out_map;
1432 }
1433
1434 spin_unlock(vmf->ptl);
1435
1436 migrated = migrate_misplaced_page(page, vma, target_nid);
1437 if (migrated) {
1438 flags |= TNF_MIGRATED;
1439 page_nid = target_nid;
1440 } else {
1441 flags |= TNF_MIGRATE_FAIL;
1442 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1443 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1444 spin_unlock(vmf->ptl);
1445 goto out;
1446 }
1447 goto out_map;
1448 }
1449
1450out:
1451 if (page_nid != NUMA_NO_NODE)
1452 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1453 flags);
1454
1455 return 0;
1456
1457out_map:
1458 /* Restore the PMD */
1459 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1460 pmd = pmd_mkyoung(pmd);
1461 if (was_writable)
1462 pmd = pmd_mkwrite(pmd);
1463 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1464 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1465 spin_unlock(vmf->ptl);
1466 goto out;
1467}
1468
1469/*
1470 * Return true if we do MADV_FREE successfully on entire pmd page.
1471 * Otherwise, return false.
1472 */
1473bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1474 pmd_t *pmd, unsigned long addr, unsigned long next)
1475{
1476 spinlock_t *ptl;
1477 pmd_t orig_pmd;
1478 struct page *page;
1479 struct mm_struct *mm = tlb->mm;
1480 bool ret = false;
1481
1482 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1483
1484 ptl = pmd_trans_huge_lock(pmd, vma);
1485 if (!ptl)
1486 goto out_unlocked;
1487
1488 orig_pmd = *pmd;
1489 if (is_huge_zero_pmd(orig_pmd))
1490 goto out;
1491
1492 if (unlikely(!pmd_present(orig_pmd))) {
1493 VM_BUG_ON(thp_migration_supported() &&
1494 !is_pmd_migration_entry(orig_pmd));
1495 goto out;
1496 }
1497
1498 page = pmd_page(orig_pmd);
1499 /*
1500 * If other processes are mapping this page, we couldn't discard
1501 * the page unless they all do MADV_FREE so let's skip the page.
1502 */
1503 if (total_mapcount(page) != 1)
1504 goto out;
1505
1506 if (!trylock_page(page))
1507 goto out;
1508
1509 /*
1510 * If user want to discard part-pages of THP, split it so MADV_FREE
1511 * will deactivate only them.
1512 */
1513 if (next - addr != HPAGE_PMD_SIZE) {
1514 get_page(page);
1515 spin_unlock(ptl);
1516 split_huge_page(page);
1517 unlock_page(page);
1518 put_page(page);
1519 goto out_unlocked;
1520 }
1521
1522 if (PageDirty(page))
1523 ClearPageDirty(page);
1524 unlock_page(page);
1525
1526 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1527 pmdp_invalidate(vma, addr, pmd);
1528 orig_pmd = pmd_mkold(orig_pmd);
1529 orig_pmd = pmd_mkclean(orig_pmd);
1530
1531 set_pmd_at(mm, addr, pmd, orig_pmd);
1532 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1533 }
1534
1535 mark_page_lazyfree(page);
1536 ret = true;
1537out:
1538 spin_unlock(ptl);
1539out_unlocked:
1540 return ret;
1541}
1542
1543static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1544{
1545 pgtable_t pgtable;
1546
1547 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1548 pte_free(mm, pgtable);
1549 mm_dec_nr_ptes(mm);
1550}
1551
1552int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1553 pmd_t *pmd, unsigned long addr)
1554{
1555 pmd_t orig_pmd;
1556 spinlock_t *ptl;
1557
1558 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1559
1560 ptl = __pmd_trans_huge_lock(pmd, vma);
1561 if (!ptl)
1562 return 0;
1563 /*
1564 * For architectures like ppc64 we look at deposited pgtable
1565 * when calling pmdp_huge_get_and_clear. So do the
1566 * pgtable_trans_huge_withdraw after finishing pmdp related
1567 * operations.
1568 */
1569 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1570 tlb->fullmm);
1571 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1572 if (vma_is_special_huge(vma)) {
1573 if (arch_needs_pgtable_deposit())
1574 zap_deposited_table(tlb->mm, pmd);
1575 spin_unlock(ptl);
1576 } else if (is_huge_zero_pmd(orig_pmd)) {
1577 zap_deposited_table(tlb->mm, pmd);
1578 spin_unlock(ptl);
1579 } else {
1580 struct page *page = NULL;
1581 int flush_needed = 1;
1582
1583 if (pmd_present(orig_pmd)) {
1584 page = pmd_page(orig_pmd);
1585 page_remove_rmap(page, vma, true);
1586 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1587 VM_BUG_ON_PAGE(!PageHead(page), page);
1588 } else if (thp_migration_supported()) {
1589 swp_entry_t entry;
1590
1591 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1592 entry = pmd_to_swp_entry(orig_pmd);
1593 page = pfn_swap_entry_to_page(entry);
1594 flush_needed = 0;
1595 } else
1596 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1597
1598 if (PageAnon(page)) {
1599 zap_deposited_table(tlb->mm, pmd);
1600 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1601 } else {
1602 if (arch_needs_pgtable_deposit())
1603 zap_deposited_table(tlb->mm, pmd);
1604 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1605 }
1606
1607 spin_unlock(ptl);
1608 if (flush_needed)
1609 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1610 }
1611 return 1;
1612}
1613
1614#ifndef pmd_move_must_withdraw
1615static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1616 spinlock_t *old_pmd_ptl,
1617 struct vm_area_struct *vma)
1618{
1619 /*
1620 * With split pmd lock we also need to move preallocated
1621 * PTE page table if new_pmd is on different PMD page table.
1622 *
1623 * We also don't deposit and withdraw tables for file pages.
1624 */
1625 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1626}
1627#endif
1628
1629static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1630{
1631#ifdef CONFIG_MEM_SOFT_DIRTY
1632 if (unlikely(is_pmd_migration_entry(pmd)))
1633 pmd = pmd_swp_mksoft_dirty(pmd);
1634 else if (pmd_present(pmd))
1635 pmd = pmd_mksoft_dirty(pmd);
1636#endif
1637 return pmd;
1638}
1639
1640bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1641 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1642{
1643 spinlock_t *old_ptl, *new_ptl;
1644 pmd_t pmd;
1645 struct mm_struct *mm = vma->vm_mm;
1646 bool force_flush = false;
1647
1648 /*
1649 * The destination pmd shouldn't be established, free_pgtables()
1650 * should have release it.
1651 */
1652 if (WARN_ON(!pmd_none(*new_pmd))) {
1653 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1654 return false;
1655 }
1656
1657 /*
1658 * We don't have to worry about the ordering of src and dst
1659 * ptlocks because exclusive mmap_lock prevents deadlock.
1660 */
1661 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1662 if (old_ptl) {
1663 new_ptl = pmd_lockptr(mm, new_pmd);
1664 if (new_ptl != old_ptl)
1665 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1666 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1667 if (pmd_present(pmd))
1668 force_flush = true;
1669 VM_BUG_ON(!pmd_none(*new_pmd));
1670
1671 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1672 pgtable_t pgtable;
1673 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1674 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1675 }
1676 pmd = move_soft_dirty_pmd(pmd);
1677 set_pmd_at(mm, new_addr, new_pmd, pmd);
1678 if (force_flush)
1679 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1680 if (new_ptl != old_ptl)
1681 spin_unlock(new_ptl);
1682 spin_unlock(old_ptl);
1683 return true;
1684 }
1685 return false;
1686}
1687
1688/*
1689 * Returns
1690 * - 0 if PMD could not be locked
1691 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1692 * or if prot_numa but THP migration is not supported
1693 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1694 */
1695int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1696 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1697{
1698 struct mm_struct *mm = vma->vm_mm;
1699 spinlock_t *ptl;
1700 pmd_t entry;
1701 bool preserve_write;
1702 int ret;
1703 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1704 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1705 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1706
1707 if (prot_numa && !thp_migration_supported())
1708 return 1;
1709
1710 ptl = __pmd_trans_huge_lock(pmd, vma);
1711 if (!ptl)
1712 return 0;
1713
1714 preserve_write = prot_numa && pmd_write(*pmd);
1715 ret = 1;
1716
1717#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1718 if (is_swap_pmd(*pmd)) {
1719 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1720
1721 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1722 if (is_writable_migration_entry(entry)) {
1723 pmd_t newpmd;
1724 /*
1725 * A protection check is difficult so
1726 * just be safe and disable write
1727 */
1728 entry = make_readable_migration_entry(
1729 swp_offset(entry));
1730 newpmd = swp_entry_to_pmd(entry);
1731 if (pmd_swp_soft_dirty(*pmd))
1732 newpmd = pmd_swp_mksoft_dirty(newpmd);
1733 if (pmd_swp_uffd_wp(*pmd))
1734 newpmd = pmd_swp_mkuffd_wp(newpmd);
1735 set_pmd_at(mm, addr, pmd, newpmd);
1736 }
1737 goto unlock;
1738 }
1739#endif
1740
1741 if (prot_numa) {
1742 struct page *page;
1743 /*
1744 * Avoid trapping faults against the zero page. The read-only
1745 * data is likely to be read-cached on the local CPU and
1746 * local/remote hits to the zero page are not interesting.
1747 */
1748 if (is_huge_zero_pmd(*pmd))
1749 goto unlock;
1750
1751 if (pmd_protnone(*pmd))
1752 goto unlock;
1753
1754 page = pmd_page(*pmd);
1755 /*
1756 * Skip scanning top tier node if normal numa
1757 * balancing is disabled
1758 */
1759 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1760 node_is_toptier(page_to_nid(page)))
1761 goto unlock;
1762 }
1763 /*
1764 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1765 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1766 * which is also under mmap_read_lock(mm):
1767 *
1768 * CPU0: CPU1:
1769 * change_huge_pmd(prot_numa=1)
1770 * pmdp_huge_get_and_clear_notify()
1771 * madvise_dontneed()
1772 * zap_pmd_range()
1773 * pmd_trans_huge(*pmd) == 0 (without ptl)
1774 * // skip the pmd
1775 * set_pmd_at();
1776 * // pmd is re-established
1777 *
1778 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1779 * which may break userspace.
1780 *
1781 * pmdp_invalidate() is required to make sure we don't miss
1782 * dirty/young flags set by hardware.
1783 */
1784 entry = pmdp_invalidate(vma, addr, pmd);
1785
1786 entry = pmd_modify(entry, newprot);
1787 if (preserve_write)
1788 entry = pmd_mk_savedwrite(entry);
1789 if (uffd_wp) {
1790 entry = pmd_wrprotect(entry);
1791 entry = pmd_mkuffd_wp(entry);
1792 } else if (uffd_wp_resolve) {
1793 /*
1794 * Leave the write bit to be handled by PF interrupt
1795 * handler, then things like COW could be properly
1796 * handled.
1797 */
1798 entry = pmd_clear_uffd_wp(entry);
1799 }
1800 ret = HPAGE_PMD_NR;
1801 set_pmd_at(mm, addr, pmd, entry);
1802 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1803unlock:
1804 spin_unlock(ptl);
1805 return ret;
1806}
1807
1808/*
1809 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1810 *
1811 * Note that if it returns page table lock pointer, this routine returns without
1812 * unlocking page table lock. So callers must unlock it.
1813 */
1814spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1815{
1816 spinlock_t *ptl;
1817 ptl = pmd_lock(vma->vm_mm, pmd);
1818 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1819 pmd_devmap(*pmd)))
1820 return ptl;
1821 spin_unlock(ptl);
1822 return NULL;
1823}
1824
1825/*
1826 * Returns true if a given pud maps a thp, false otherwise.
1827 *
1828 * Note that if it returns true, this routine returns without unlocking page
1829 * table lock. So callers must unlock it.
1830 */
1831spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1832{
1833 spinlock_t *ptl;
1834
1835 ptl = pud_lock(vma->vm_mm, pud);
1836 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1837 return ptl;
1838 spin_unlock(ptl);
1839 return NULL;
1840}
1841
1842#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1843int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1844 pud_t *pud, unsigned long addr)
1845{
1846 spinlock_t *ptl;
1847
1848 ptl = __pud_trans_huge_lock(pud, vma);
1849 if (!ptl)
1850 return 0;
1851 /*
1852 * For architectures like ppc64 we look at deposited pgtable
1853 * when calling pudp_huge_get_and_clear. So do the
1854 * pgtable_trans_huge_withdraw after finishing pudp related
1855 * operations.
1856 */
1857 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1858 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1859 if (vma_is_special_huge(vma)) {
1860 spin_unlock(ptl);
1861 /* No zero page support yet */
1862 } else {
1863 /* No support for anonymous PUD pages yet */
1864 BUG();
1865 }
1866 return 1;
1867}
1868
1869static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1870 unsigned long haddr)
1871{
1872 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1873 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1874 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1875 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1876
1877 count_vm_event(THP_SPLIT_PUD);
1878
1879 pudp_huge_clear_flush_notify(vma, haddr, pud);
1880}
1881
1882void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1883 unsigned long address)
1884{
1885 spinlock_t *ptl;
1886 struct mmu_notifier_range range;
1887
1888 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1889 address & HPAGE_PUD_MASK,
1890 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1891 mmu_notifier_invalidate_range_start(&range);
1892 ptl = pud_lock(vma->vm_mm, pud);
1893 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1894 goto out;
1895 __split_huge_pud_locked(vma, pud, range.start);
1896
1897out:
1898 spin_unlock(ptl);
1899 /*
1900 * No need to double call mmu_notifier->invalidate_range() callback as
1901 * the above pudp_huge_clear_flush_notify() did already call it.
1902 */
1903 mmu_notifier_invalidate_range_only_end(&range);
1904}
1905#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1906
1907static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1908 unsigned long haddr, pmd_t *pmd)
1909{
1910 struct mm_struct *mm = vma->vm_mm;
1911 pgtable_t pgtable;
1912 pmd_t _pmd;
1913 int i;
1914
1915 /*
1916 * Leave pmd empty until pte is filled note that it is fine to delay
1917 * notification until mmu_notifier_invalidate_range_end() as we are
1918 * replacing a zero pmd write protected page with a zero pte write
1919 * protected page.
1920 *
1921 * See Documentation/vm/mmu_notifier.rst
1922 */
1923 pmdp_huge_clear_flush(vma, haddr, pmd);
1924
1925 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1926 pmd_populate(mm, &_pmd, pgtable);
1927
1928 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1929 pte_t *pte, entry;
1930 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1931 entry = pte_mkspecial(entry);
1932 pte = pte_offset_map(&_pmd, haddr);
1933 VM_BUG_ON(!pte_none(*pte));
1934 set_pte_at(mm, haddr, pte, entry);
1935 pte_unmap(pte);
1936 }
1937 smp_wmb(); /* make pte visible before pmd */
1938 pmd_populate(mm, pmd, pgtable);
1939}
1940
1941static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1942 unsigned long haddr, bool freeze)
1943{
1944 struct mm_struct *mm = vma->vm_mm;
1945 struct page *page;
1946 pgtable_t pgtable;
1947 pmd_t old_pmd, _pmd;
1948 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1949 unsigned long addr;
1950 int i;
1951
1952 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1953 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1954 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1955 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1956 && !pmd_devmap(*pmd));
1957
1958 count_vm_event(THP_SPLIT_PMD);
1959
1960 if (!vma_is_anonymous(vma)) {
1961 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1962 /*
1963 * We are going to unmap this huge page. So
1964 * just go ahead and zap it
1965 */
1966 if (arch_needs_pgtable_deposit())
1967 zap_deposited_table(mm, pmd);
1968 if (vma_is_special_huge(vma))
1969 return;
1970 if (unlikely(is_pmd_migration_entry(old_pmd))) {
1971 swp_entry_t entry;
1972
1973 entry = pmd_to_swp_entry(old_pmd);
1974 page = pfn_swap_entry_to_page(entry);
1975 } else {
1976 page = pmd_page(old_pmd);
1977 if (!PageDirty(page) && pmd_dirty(old_pmd))
1978 set_page_dirty(page);
1979 if (!PageReferenced(page) && pmd_young(old_pmd))
1980 SetPageReferenced(page);
1981 page_remove_rmap(page, vma, true);
1982 put_page(page);
1983 }
1984 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1985 return;
1986 }
1987
1988 if (is_huge_zero_pmd(*pmd)) {
1989 /*
1990 * FIXME: Do we want to invalidate secondary mmu by calling
1991 * mmu_notifier_invalidate_range() see comments below inside
1992 * __split_huge_pmd() ?
1993 *
1994 * We are going from a zero huge page write protected to zero
1995 * small page also write protected so it does not seems useful
1996 * to invalidate secondary mmu at this time.
1997 */
1998 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1999 }
2000
2001 /*
2002 * Up to this point the pmd is present and huge and userland has the
2003 * whole access to the hugepage during the split (which happens in
2004 * place). If we overwrite the pmd with the not-huge version pointing
2005 * to the pte here (which of course we could if all CPUs were bug
2006 * free), userland could trigger a small page size TLB miss on the
2007 * small sized TLB while the hugepage TLB entry is still established in
2008 * the huge TLB. Some CPU doesn't like that.
2009 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2010 * 383 on page 105. Intel should be safe but is also warns that it's
2011 * only safe if the permission and cache attributes of the two entries
2012 * loaded in the two TLB is identical (which should be the case here).
2013 * But it is generally safer to never allow small and huge TLB entries
2014 * for the same virtual address to be loaded simultaneously. So instead
2015 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2016 * current pmd notpresent (atomically because here the pmd_trans_huge
2017 * must remain set at all times on the pmd until the split is complete
2018 * for this pmd), then we flush the SMP TLB and finally we write the
2019 * non-huge version of the pmd entry with pmd_populate.
2020 */
2021 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2022
2023 pmd_migration = is_pmd_migration_entry(old_pmd);
2024 if (unlikely(pmd_migration)) {
2025 swp_entry_t entry;
2026
2027 entry = pmd_to_swp_entry(old_pmd);
2028 page = pfn_swap_entry_to_page(entry);
2029 write = is_writable_migration_entry(entry);
2030 young = false;
2031 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2032 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2033 } else {
2034 page = pmd_page(old_pmd);
2035 if (pmd_dirty(old_pmd))
2036 SetPageDirty(page);
2037 write = pmd_write(old_pmd);
2038 young = pmd_young(old_pmd);
2039 soft_dirty = pmd_soft_dirty(old_pmd);
2040 uffd_wp = pmd_uffd_wp(old_pmd);
2041 VM_BUG_ON_PAGE(!page_count(page), page);
2042 page_ref_add(page, HPAGE_PMD_NR - 1);
2043 }
2044
2045 /*
2046 * Withdraw the table only after we mark the pmd entry invalid.
2047 * This's critical for some architectures (Power).
2048 */
2049 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 pmd_populate(mm, &_pmd, pgtable);
2051
2052 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2053 pte_t entry, *pte;
2054 /*
2055 * Note that NUMA hinting access restrictions are not
2056 * transferred to avoid any possibility of altering
2057 * permissions across VMAs.
2058 */
2059 if (freeze || pmd_migration) {
2060 swp_entry_t swp_entry;
2061 if (write)
2062 swp_entry = make_writable_migration_entry(
2063 page_to_pfn(page + i));
2064 else
2065 swp_entry = make_readable_migration_entry(
2066 page_to_pfn(page + i));
2067 entry = swp_entry_to_pte(swp_entry);
2068 if (soft_dirty)
2069 entry = pte_swp_mksoft_dirty(entry);
2070 if (uffd_wp)
2071 entry = pte_swp_mkuffd_wp(entry);
2072 } else {
2073 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2074 entry = maybe_mkwrite(entry, vma);
2075 if (!write)
2076 entry = pte_wrprotect(entry);
2077 if (!young)
2078 entry = pte_mkold(entry);
2079 if (soft_dirty)
2080 entry = pte_mksoft_dirty(entry);
2081 if (uffd_wp)
2082 entry = pte_mkuffd_wp(entry);
2083 }
2084 pte = pte_offset_map(&_pmd, addr);
2085 BUG_ON(!pte_none(*pte));
2086 set_pte_at(mm, addr, pte, entry);
2087 if (!pmd_migration)
2088 atomic_inc(&page[i]._mapcount);
2089 pte_unmap(pte);
2090 }
2091
2092 if (!pmd_migration) {
2093 /*
2094 * Set PG_double_map before dropping compound_mapcount to avoid
2095 * false-negative page_mapped().
2096 */
2097 if (compound_mapcount(page) > 1 &&
2098 !TestSetPageDoubleMap(page)) {
2099 for (i = 0; i < HPAGE_PMD_NR; i++)
2100 atomic_inc(&page[i]._mapcount);
2101 }
2102
2103 lock_page_memcg(page);
2104 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2105 /* Last compound_mapcount is gone. */
2106 __mod_lruvec_page_state(page, NR_ANON_THPS,
2107 -HPAGE_PMD_NR);
2108 if (TestClearPageDoubleMap(page)) {
2109 /* No need in mapcount reference anymore */
2110 for (i = 0; i < HPAGE_PMD_NR; i++)
2111 atomic_dec(&page[i]._mapcount);
2112 }
2113 }
2114 unlock_page_memcg(page);
2115
2116 /* Above is effectively page_remove_rmap(page, vma, true) */
2117 munlock_vma_page(page, vma, true);
2118 }
2119
2120 smp_wmb(); /* make pte visible before pmd */
2121 pmd_populate(mm, pmd, pgtable);
2122
2123 if (freeze) {
2124 for (i = 0; i < HPAGE_PMD_NR; i++) {
2125 page_remove_rmap(page + i, vma, false);
2126 put_page(page + i);
2127 }
2128 }
2129}
2130
2131void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2132 unsigned long address, bool freeze, struct folio *folio)
2133{
2134 spinlock_t *ptl;
2135 struct mmu_notifier_range range;
2136
2137 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2138 address & HPAGE_PMD_MASK,
2139 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2140 mmu_notifier_invalidate_range_start(&range);
2141 ptl = pmd_lock(vma->vm_mm, pmd);
2142
2143 /*
2144 * If caller asks to setup a migration entry, we need a folio to check
2145 * pmd against. Otherwise we can end up replacing wrong folio.
2146 */
2147 VM_BUG_ON(freeze && !folio);
2148 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2149
2150 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2151 is_pmd_migration_entry(*pmd)) {
2152 if (folio && folio != page_folio(pmd_page(*pmd)))
2153 goto out;
2154 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2155 }
2156
2157out:
2158 spin_unlock(ptl);
2159 /*
2160 * No need to double call mmu_notifier->invalidate_range() callback.
2161 * They are 3 cases to consider inside __split_huge_pmd_locked():
2162 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2163 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2164 * fault will trigger a flush_notify before pointing to a new page
2165 * (it is fine if the secondary mmu keeps pointing to the old zero
2166 * page in the meantime)
2167 * 3) Split a huge pmd into pte pointing to the same page. No need
2168 * to invalidate secondary tlb entry they are all still valid.
2169 * any further changes to individual pte will notify. So no need
2170 * to call mmu_notifier->invalidate_range()
2171 */
2172 mmu_notifier_invalidate_range_only_end(&range);
2173}
2174
2175void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2176 bool freeze, struct folio *folio)
2177{
2178 pgd_t *pgd;
2179 p4d_t *p4d;
2180 pud_t *pud;
2181 pmd_t *pmd;
2182
2183 pgd = pgd_offset(vma->vm_mm, address);
2184 if (!pgd_present(*pgd))
2185 return;
2186
2187 p4d = p4d_offset(pgd, address);
2188 if (!p4d_present(*p4d))
2189 return;
2190
2191 pud = pud_offset(p4d, address);
2192 if (!pud_present(*pud))
2193 return;
2194
2195 pmd = pmd_offset(pud, address);
2196
2197 __split_huge_pmd(vma, pmd, address, freeze, folio);
2198}
2199
2200static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2201{
2202 /*
2203 * If the new address isn't hpage aligned and it could previously
2204 * contain an hugepage: check if we need to split an huge pmd.
2205 */
2206 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2207 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2208 ALIGN(address, HPAGE_PMD_SIZE)))
2209 split_huge_pmd_address(vma, address, false, NULL);
2210}
2211
2212void vma_adjust_trans_huge(struct vm_area_struct *vma,
2213 unsigned long start,
2214 unsigned long end,
2215 long adjust_next)
2216{
2217 /* Check if we need to split start first. */
2218 split_huge_pmd_if_needed(vma, start);
2219
2220 /* Check if we need to split end next. */
2221 split_huge_pmd_if_needed(vma, end);
2222
2223 /*
2224 * If we're also updating the vma->vm_next->vm_start,
2225 * check if we need to split it.
2226 */
2227 if (adjust_next > 0) {
2228 struct vm_area_struct *next = vma->vm_next;
2229 unsigned long nstart = next->vm_start;
2230 nstart += adjust_next;
2231 split_huge_pmd_if_needed(next, nstart);
2232 }
2233}
2234
2235static void unmap_page(struct page *page)
2236{
2237 struct folio *folio = page_folio(page);
2238 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2239 TTU_SYNC;
2240
2241 VM_BUG_ON_PAGE(!PageHead(page), page);
2242
2243 /*
2244 * Anon pages need migration entries to preserve them, but file
2245 * pages can simply be left unmapped, then faulted back on demand.
2246 * If that is ever changed (perhaps for mlock), update remap_page().
2247 */
2248 if (folio_test_anon(folio))
2249 try_to_migrate(folio, ttu_flags);
2250 else
2251 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2252
2253 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2254}
2255
2256static void remap_page(struct folio *folio, unsigned long nr)
2257{
2258 int i = 0;
2259
2260 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2261 if (!folio_test_anon(folio))
2262 return;
2263 for (;;) {
2264 remove_migration_ptes(folio, folio, true);
2265 i += folio_nr_pages(folio);
2266 if (i >= nr)
2267 break;
2268 folio = folio_next(folio);
2269 }
2270}
2271
2272static void lru_add_page_tail(struct page *head, struct page *tail,
2273 struct lruvec *lruvec, struct list_head *list)
2274{
2275 VM_BUG_ON_PAGE(!PageHead(head), head);
2276 VM_BUG_ON_PAGE(PageCompound(tail), head);
2277 VM_BUG_ON_PAGE(PageLRU(tail), head);
2278 lockdep_assert_held(&lruvec->lru_lock);
2279
2280 if (list) {
2281 /* page reclaim is reclaiming a huge page */
2282 VM_WARN_ON(PageLRU(head));
2283 get_page(tail);
2284 list_add_tail(&tail->lru, list);
2285 } else {
2286 /* head is still on lru (and we have it frozen) */
2287 VM_WARN_ON(!PageLRU(head));
2288 if (PageUnevictable(tail))
2289 tail->mlock_count = 0;
2290 else
2291 list_add_tail(&tail->lru, &head->lru);
2292 SetPageLRU(tail);
2293 }
2294}
2295
2296static void __split_huge_page_tail(struct page *head, int tail,
2297 struct lruvec *lruvec, struct list_head *list)
2298{
2299 struct page *page_tail = head + tail;
2300
2301 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2302
2303 /*
2304 * Clone page flags before unfreezing refcount.
2305 *
2306 * After successful get_page_unless_zero() might follow flags change,
2307 * for example lock_page() which set PG_waiters.
2308 */
2309 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2310 page_tail->flags |= (head->flags &
2311 ((1L << PG_referenced) |
2312 (1L << PG_swapbacked) |
2313 (1L << PG_swapcache) |
2314 (1L << PG_mlocked) |
2315 (1L << PG_uptodate) |
2316 (1L << PG_active) |
2317 (1L << PG_workingset) |
2318 (1L << PG_locked) |
2319 (1L << PG_unevictable) |
2320#ifdef CONFIG_64BIT
2321 (1L << PG_arch_2) |
2322#endif
2323 (1L << PG_dirty)));
2324
2325 /* ->mapping in first tail page is compound_mapcount */
2326 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2327 page_tail);
2328 page_tail->mapping = head->mapping;
2329 page_tail->index = head->index + tail;
2330
2331 /* Page flags must be visible before we make the page non-compound. */
2332 smp_wmb();
2333
2334 /*
2335 * Clear PageTail before unfreezing page refcount.
2336 *
2337 * After successful get_page_unless_zero() might follow put_page()
2338 * which needs correct compound_head().
2339 */
2340 clear_compound_head(page_tail);
2341
2342 /* Finally unfreeze refcount. Additional reference from page cache. */
2343 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2344 PageSwapCache(head)));
2345
2346 if (page_is_young(head))
2347 set_page_young(page_tail);
2348 if (page_is_idle(head))
2349 set_page_idle(page_tail);
2350
2351 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2352
2353 /*
2354 * always add to the tail because some iterators expect new
2355 * pages to show after the currently processed elements - e.g.
2356 * migrate_pages
2357 */
2358 lru_add_page_tail(head, page_tail, lruvec, list);
2359}
2360
2361static void __split_huge_page(struct page *page, struct list_head *list,
2362 pgoff_t end)
2363{
2364 struct folio *folio = page_folio(page);
2365 struct page *head = &folio->page;
2366 struct lruvec *lruvec;
2367 struct address_space *swap_cache = NULL;
2368 unsigned long offset = 0;
2369 unsigned int nr = thp_nr_pages(head);
2370 int i;
2371
2372 /* complete memcg works before add pages to LRU */
2373 split_page_memcg(head, nr);
2374
2375 if (PageAnon(head) && PageSwapCache(head)) {
2376 swp_entry_t entry = { .val = page_private(head) };
2377
2378 offset = swp_offset(entry);
2379 swap_cache = swap_address_space(entry);
2380 xa_lock(&swap_cache->i_pages);
2381 }
2382
2383 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2384 lruvec = folio_lruvec_lock(folio);
2385
2386 ClearPageHasHWPoisoned(head);
2387
2388 for (i = nr - 1; i >= 1; i--) {
2389 __split_huge_page_tail(head, i, lruvec, list);
2390 /* Some pages can be beyond EOF: drop them from page cache */
2391 if (head[i].index >= end) {
2392 ClearPageDirty(head + i);
2393 __delete_from_page_cache(head + i, NULL);
2394 if (shmem_mapping(head->mapping))
2395 shmem_uncharge(head->mapping->host, 1);
2396 put_page(head + i);
2397 } else if (!PageAnon(page)) {
2398 __xa_store(&head->mapping->i_pages, head[i].index,
2399 head + i, 0);
2400 } else if (swap_cache) {
2401 __xa_store(&swap_cache->i_pages, offset + i,
2402 head + i, 0);
2403 }
2404 }
2405
2406 ClearPageCompound(head);
2407 unlock_page_lruvec(lruvec);
2408 /* Caller disabled irqs, so they are still disabled here */
2409
2410 split_page_owner(head, nr);
2411
2412 /* See comment in __split_huge_page_tail() */
2413 if (PageAnon(head)) {
2414 /* Additional pin to swap cache */
2415 if (PageSwapCache(head)) {
2416 page_ref_add(head, 2);
2417 xa_unlock(&swap_cache->i_pages);
2418 } else {
2419 page_ref_inc(head);
2420 }
2421 } else {
2422 /* Additional pin to page cache */
2423 page_ref_add(head, 2);
2424 xa_unlock(&head->mapping->i_pages);
2425 }
2426 local_irq_enable();
2427
2428 remap_page(folio, nr);
2429
2430 if (PageSwapCache(head)) {
2431 swp_entry_t entry = { .val = page_private(head) };
2432
2433 split_swap_cluster(entry);
2434 }
2435
2436 for (i = 0; i < nr; i++) {
2437 struct page *subpage = head + i;
2438 if (subpage == page)
2439 continue;
2440 unlock_page(subpage);
2441
2442 /*
2443 * Subpages may be freed if there wasn't any mapping
2444 * like if add_to_swap() is running on a lru page that
2445 * had its mapping zapped. And freeing these pages
2446 * requires taking the lru_lock so we do the put_page
2447 * of the tail pages after the split is complete.
2448 */
2449 put_page(subpage);
2450 }
2451}
2452
2453/* Racy check whether the huge page can be split */
2454bool can_split_folio(struct folio *folio, int *pextra_pins)
2455{
2456 int extra_pins;
2457
2458 /* Additional pins from page cache */
2459 if (folio_test_anon(folio))
2460 extra_pins = folio_test_swapcache(folio) ?
2461 folio_nr_pages(folio) : 0;
2462 else
2463 extra_pins = folio_nr_pages(folio);
2464 if (pextra_pins)
2465 *pextra_pins = extra_pins;
2466 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2467}
2468
2469/*
2470 * This function splits huge page into normal pages. @page can point to any
2471 * subpage of huge page to split. Split doesn't change the position of @page.
2472 *
2473 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2474 * The huge page must be locked.
2475 *
2476 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2477 *
2478 * Both head page and tail pages will inherit mapping, flags, and so on from
2479 * the hugepage.
2480 *
2481 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2482 * they are not mapped.
2483 *
2484 * Returns 0 if the hugepage is split successfully.
2485 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2486 * us.
2487 */
2488int split_huge_page_to_list(struct page *page, struct list_head *list)
2489{
2490 struct folio *folio = page_folio(page);
2491 struct page *head = &folio->page;
2492 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2493 XA_STATE(xas, &head->mapping->i_pages, head->index);
2494 struct anon_vma *anon_vma = NULL;
2495 struct address_space *mapping = NULL;
2496 int extra_pins, ret;
2497 pgoff_t end;
2498
2499 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2500 VM_BUG_ON_PAGE(!PageLocked(head), head);
2501 VM_BUG_ON_PAGE(!PageCompound(head), head);
2502
2503 if (PageWriteback(head))
2504 return -EBUSY;
2505
2506 if (PageAnon(head)) {
2507 /*
2508 * The caller does not necessarily hold an mmap_lock that would
2509 * prevent the anon_vma disappearing so we first we take a
2510 * reference to it and then lock the anon_vma for write. This
2511 * is similar to folio_lock_anon_vma_read except the write lock
2512 * is taken to serialise against parallel split or collapse
2513 * operations.
2514 */
2515 anon_vma = page_get_anon_vma(head);
2516 if (!anon_vma) {
2517 ret = -EBUSY;
2518 goto out;
2519 }
2520 end = -1;
2521 mapping = NULL;
2522 anon_vma_lock_write(anon_vma);
2523 } else {
2524 mapping = head->mapping;
2525
2526 /* Truncated ? */
2527 if (!mapping) {
2528 ret = -EBUSY;
2529 goto out;
2530 }
2531
2532 xas_split_alloc(&xas, head, compound_order(head),
2533 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2534 if (xas_error(&xas)) {
2535 ret = xas_error(&xas);
2536 goto out;
2537 }
2538
2539 anon_vma = NULL;
2540 i_mmap_lock_read(mapping);
2541
2542 /*
2543 *__split_huge_page() may need to trim off pages beyond EOF:
2544 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2545 * which cannot be nested inside the page tree lock. So note
2546 * end now: i_size itself may be changed at any moment, but
2547 * head page lock is good enough to serialize the trimming.
2548 */
2549 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2550 if (shmem_mapping(mapping))
2551 end = shmem_fallocend(mapping->host, end);
2552 }
2553
2554 /*
2555 * Racy check if we can split the page, before unmap_page() will
2556 * split PMDs
2557 */
2558 if (!can_split_folio(folio, &extra_pins)) {
2559 ret = -EBUSY;
2560 goto out_unlock;
2561 }
2562
2563 unmap_page(head);
2564
2565 /* block interrupt reentry in xa_lock and spinlock */
2566 local_irq_disable();
2567 if (mapping) {
2568 /*
2569 * Check if the head page is present in page cache.
2570 * We assume all tail are present too, if head is there.
2571 */
2572 xas_lock(&xas);
2573 xas_reset(&xas);
2574 if (xas_load(&xas) != head)
2575 goto fail;
2576 }
2577
2578 /* Prevent deferred_split_scan() touching ->_refcount */
2579 spin_lock(&ds_queue->split_queue_lock);
2580 if (page_ref_freeze(head, 1 + extra_pins)) {
2581 if (!list_empty(page_deferred_list(head))) {
2582 ds_queue->split_queue_len--;
2583 list_del(page_deferred_list(head));
2584 }
2585 spin_unlock(&ds_queue->split_queue_lock);
2586 if (mapping) {
2587 int nr = thp_nr_pages(head);
2588
2589 xas_split(&xas, head, thp_order(head));
2590 if (PageSwapBacked(head)) {
2591 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2592 -nr);
2593 } else {
2594 __mod_lruvec_page_state(head, NR_FILE_THPS,
2595 -nr);
2596 filemap_nr_thps_dec(mapping);
2597 }
2598 }
2599
2600 __split_huge_page(page, list, end);
2601 ret = 0;
2602 } else {
2603 spin_unlock(&ds_queue->split_queue_lock);
2604fail:
2605 if (mapping)
2606 xas_unlock(&xas);
2607 local_irq_enable();
2608 remap_page(folio, folio_nr_pages(folio));
2609 ret = -EBUSY;
2610 }
2611
2612out_unlock:
2613 if (anon_vma) {
2614 anon_vma_unlock_write(anon_vma);
2615 put_anon_vma(anon_vma);
2616 }
2617 if (mapping)
2618 i_mmap_unlock_read(mapping);
2619out:
2620 /* Free any memory we didn't use */
2621 xas_nomem(&xas, 0);
2622 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2623 return ret;
2624}
2625
2626void free_transhuge_page(struct page *page)
2627{
2628 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2629 unsigned long flags;
2630
2631 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2632 if (!list_empty(page_deferred_list(page))) {
2633 ds_queue->split_queue_len--;
2634 list_del(page_deferred_list(page));
2635 }
2636 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2637 free_compound_page(page);
2638}
2639
2640void deferred_split_huge_page(struct page *page)
2641{
2642 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2643#ifdef CONFIG_MEMCG
2644 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2645#endif
2646 unsigned long flags;
2647
2648 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2649
2650 /*
2651 * The try_to_unmap() in page reclaim path might reach here too,
2652 * this may cause a race condition to corrupt deferred split queue.
2653 * And, if page reclaim is already handling the same page, it is
2654 * unnecessary to handle it again in shrinker.
2655 *
2656 * Check PageSwapCache to determine if the page is being
2657 * handled by page reclaim since THP swap would add the page into
2658 * swap cache before calling try_to_unmap().
2659 */
2660 if (PageSwapCache(page))
2661 return;
2662
2663 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2664 if (list_empty(page_deferred_list(page))) {
2665 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2666 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2667 ds_queue->split_queue_len++;
2668#ifdef CONFIG_MEMCG
2669 if (memcg)
2670 set_shrinker_bit(memcg, page_to_nid(page),
2671 deferred_split_shrinker.id);
2672#endif
2673 }
2674 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2675}
2676
2677static unsigned long deferred_split_count(struct shrinker *shrink,
2678 struct shrink_control *sc)
2679{
2680 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2681 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2682
2683#ifdef CONFIG_MEMCG
2684 if (sc->memcg)
2685 ds_queue = &sc->memcg->deferred_split_queue;
2686#endif
2687 return READ_ONCE(ds_queue->split_queue_len);
2688}
2689
2690static unsigned long deferred_split_scan(struct shrinker *shrink,
2691 struct shrink_control *sc)
2692{
2693 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2694 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2695 unsigned long flags;
2696 LIST_HEAD(list), *pos, *next;
2697 struct page *page;
2698 int split = 0;
2699
2700#ifdef CONFIG_MEMCG
2701 if (sc->memcg)
2702 ds_queue = &sc->memcg->deferred_split_queue;
2703#endif
2704
2705 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2706 /* Take pin on all head pages to avoid freeing them under us */
2707 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2708 page = list_entry((void *)pos, struct page, deferred_list);
2709 page = compound_head(page);
2710 if (get_page_unless_zero(page)) {
2711 list_move(page_deferred_list(page), &list);
2712 } else {
2713 /* We lost race with put_compound_page() */
2714 list_del_init(page_deferred_list(page));
2715 ds_queue->split_queue_len--;
2716 }
2717 if (!--sc->nr_to_scan)
2718 break;
2719 }
2720 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2721
2722 list_for_each_safe(pos, next, &list) {
2723 page = list_entry((void *)pos, struct page, deferred_list);
2724 if (!trylock_page(page))
2725 goto next;
2726 /* split_huge_page() removes page from list on success */
2727 if (!split_huge_page(page))
2728 split++;
2729 unlock_page(page);
2730next:
2731 put_page(page);
2732 }
2733
2734 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2735 list_splice_tail(&list, &ds_queue->split_queue);
2736 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2737
2738 /*
2739 * Stop shrinker if we didn't split any page, but the queue is empty.
2740 * This can happen if pages were freed under us.
2741 */
2742 if (!split && list_empty(&ds_queue->split_queue))
2743 return SHRINK_STOP;
2744 return split;
2745}
2746
2747static struct shrinker deferred_split_shrinker = {
2748 .count_objects = deferred_split_count,
2749 .scan_objects = deferred_split_scan,
2750 .seeks = DEFAULT_SEEKS,
2751 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2752 SHRINKER_NONSLAB,
2753};
2754
2755#ifdef CONFIG_DEBUG_FS
2756static void split_huge_pages_all(void)
2757{
2758 struct zone *zone;
2759 struct page *page;
2760 unsigned long pfn, max_zone_pfn;
2761 unsigned long total = 0, split = 0;
2762
2763 pr_debug("Split all THPs\n");
2764 for_each_populated_zone(zone) {
2765 max_zone_pfn = zone_end_pfn(zone);
2766 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2767 if (!pfn_valid(pfn))
2768 continue;
2769
2770 page = pfn_to_page(pfn);
2771 if (!get_page_unless_zero(page))
2772 continue;
2773
2774 if (zone != page_zone(page))
2775 goto next;
2776
2777 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2778 goto next;
2779
2780 total++;
2781 lock_page(page);
2782 if (!split_huge_page(page))
2783 split++;
2784 unlock_page(page);
2785next:
2786 put_page(page);
2787 cond_resched();
2788 }
2789 }
2790
2791 pr_debug("%lu of %lu THP split\n", split, total);
2792}
2793
2794static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2795{
2796 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2797 is_vm_hugetlb_page(vma);
2798}
2799
2800static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2801 unsigned long vaddr_end)
2802{
2803 int ret = 0;
2804 struct task_struct *task;
2805 struct mm_struct *mm;
2806 unsigned long total = 0, split = 0;
2807 unsigned long addr;
2808
2809 vaddr_start &= PAGE_MASK;
2810 vaddr_end &= PAGE_MASK;
2811
2812 /* Find the task_struct from pid */
2813 rcu_read_lock();
2814 task = find_task_by_vpid(pid);
2815 if (!task) {
2816 rcu_read_unlock();
2817 ret = -ESRCH;
2818 goto out;
2819 }
2820 get_task_struct(task);
2821 rcu_read_unlock();
2822
2823 /* Find the mm_struct */
2824 mm = get_task_mm(task);
2825 put_task_struct(task);
2826
2827 if (!mm) {
2828 ret = -EINVAL;
2829 goto out;
2830 }
2831
2832 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2833 pid, vaddr_start, vaddr_end);
2834
2835 mmap_read_lock(mm);
2836 /*
2837 * always increase addr by PAGE_SIZE, since we could have a PTE page
2838 * table filled with PTE-mapped THPs, each of which is distinct.
2839 */
2840 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2841 struct vm_area_struct *vma = find_vma(mm, addr);
2842 struct page *page;
2843
2844 if (!vma || addr < vma->vm_start)
2845 break;
2846
2847 /* skip special VMA and hugetlb VMA */
2848 if (vma_not_suitable_for_thp_split(vma)) {
2849 addr = vma->vm_end;
2850 continue;
2851 }
2852
2853 /* FOLL_DUMP to ignore special (like zero) pages */
2854 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2855
2856 if (IS_ERR(page))
2857 continue;
2858 if (!page)
2859 continue;
2860
2861 if (!is_transparent_hugepage(page))
2862 goto next;
2863
2864 total++;
2865 if (!can_split_folio(page_folio(page), NULL))
2866 goto next;
2867
2868 if (!trylock_page(page))
2869 goto next;
2870
2871 if (!split_huge_page(page))
2872 split++;
2873
2874 unlock_page(page);
2875next:
2876 put_page(page);
2877 cond_resched();
2878 }
2879 mmap_read_unlock(mm);
2880 mmput(mm);
2881
2882 pr_debug("%lu of %lu THP split\n", split, total);
2883
2884out:
2885 return ret;
2886}
2887
2888static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2889 pgoff_t off_end)
2890{
2891 struct filename *file;
2892 struct file *candidate;
2893 struct address_space *mapping;
2894 int ret = -EINVAL;
2895 pgoff_t index;
2896 int nr_pages = 1;
2897 unsigned long total = 0, split = 0;
2898
2899 file = getname_kernel(file_path);
2900 if (IS_ERR(file))
2901 return ret;
2902
2903 candidate = file_open_name(file, O_RDONLY, 0);
2904 if (IS_ERR(candidate))
2905 goto out;
2906
2907 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2908 file_path, off_start, off_end);
2909
2910 mapping = candidate->f_mapping;
2911
2912 for (index = off_start; index < off_end; index += nr_pages) {
2913 struct page *fpage = pagecache_get_page(mapping, index,
2914 FGP_ENTRY | FGP_HEAD, 0);
2915
2916 nr_pages = 1;
2917 if (xa_is_value(fpage) || !fpage)
2918 continue;
2919
2920 if (!is_transparent_hugepage(fpage))
2921 goto next;
2922
2923 total++;
2924 nr_pages = thp_nr_pages(fpage);
2925
2926 if (!trylock_page(fpage))
2927 goto next;
2928
2929 if (!split_huge_page(fpage))
2930 split++;
2931
2932 unlock_page(fpage);
2933next:
2934 put_page(fpage);
2935 cond_resched();
2936 }
2937
2938 filp_close(candidate, NULL);
2939 ret = 0;
2940
2941 pr_debug("%lu of %lu file-backed THP split\n", split, total);
2942out:
2943 putname(file);
2944 return ret;
2945}
2946
2947#define MAX_INPUT_BUF_SZ 255
2948
2949static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
2950 size_t count, loff_t *ppops)
2951{
2952 static DEFINE_MUTEX(split_debug_mutex);
2953 ssize_t ret;
2954 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
2955 char input_buf[MAX_INPUT_BUF_SZ];
2956 int pid;
2957 unsigned long vaddr_start, vaddr_end;
2958
2959 ret = mutex_lock_interruptible(&split_debug_mutex);
2960 if (ret)
2961 return ret;
2962
2963 ret = -EFAULT;
2964
2965 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
2966 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
2967 goto out;
2968
2969 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
2970
2971 if (input_buf[0] == '/') {
2972 char *tok;
2973 char *buf = input_buf;
2974 char file_path[MAX_INPUT_BUF_SZ];
2975 pgoff_t off_start = 0, off_end = 0;
2976 size_t input_len = strlen(input_buf);
2977
2978 tok = strsep(&buf, ",");
2979 if (tok) {
2980 strcpy(file_path, tok);
2981 } else {
2982 ret = -EINVAL;
2983 goto out;
2984 }
2985
2986 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
2987 if (ret != 2) {
2988 ret = -EINVAL;
2989 goto out;
2990 }
2991 ret = split_huge_pages_in_file(file_path, off_start, off_end);
2992 if (!ret)
2993 ret = input_len;
2994
2995 goto out;
2996 }
2997
2998 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
2999 if (ret == 1 && pid == 1) {
3000 split_huge_pages_all();
3001 ret = strlen(input_buf);
3002 goto out;
3003 } else if (ret != 3) {
3004 ret = -EINVAL;
3005 goto out;
3006 }
3007
3008 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3009 if (!ret)
3010 ret = strlen(input_buf);
3011out:
3012 mutex_unlock(&split_debug_mutex);
3013 return ret;
3014
3015}
3016
3017static const struct file_operations split_huge_pages_fops = {
3018 .owner = THIS_MODULE,
3019 .write = split_huge_pages_write,
3020 .llseek = no_llseek,
3021};
3022
3023static int __init split_huge_pages_debugfs(void)
3024{
3025 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3026 &split_huge_pages_fops);
3027 return 0;
3028}
3029late_initcall(split_huge_pages_debugfs);
3030#endif
3031
3032#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3033void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3034 struct page *page)
3035{
3036 struct vm_area_struct *vma = pvmw->vma;
3037 struct mm_struct *mm = vma->vm_mm;
3038 unsigned long address = pvmw->address;
3039 pmd_t pmdval;
3040 swp_entry_t entry;
3041 pmd_t pmdswp;
3042
3043 if (!(pvmw->pmd && !pvmw->pte))
3044 return;
3045
3046 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3047 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3048 if (pmd_dirty(pmdval))
3049 set_page_dirty(page);
3050 if (pmd_write(pmdval))
3051 entry = make_writable_migration_entry(page_to_pfn(page));
3052 else
3053 entry = make_readable_migration_entry(page_to_pfn(page));
3054 pmdswp = swp_entry_to_pmd(entry);
3055 if (pmd_soft_dirty(pmdval))
3056 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3057 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3058 page_remove_rmap(page, vma, true);
3059 put_page(page);
3060 trace_set_migration_pmd(address, pmd_val(pmdswp));
3061}
3062
3063void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3064{
3065 struct vm_area_struct *vma = pvmw->vma;
3066 struct mm_struct *mm = vma->vm_mm;
3067 unsigned long address = pvmw->address;
3068 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3069 pmd_t pmde;
3070 swp_entry_t entry;
3071
3072 if (!(pvmw->pmd && !pvmw->pte))
3073 return;
3074
3075 entry = pmd_to_swp_entry(*pvmw->pmd);
3076 get_page(new);
3077 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3078 if (pmd_swp_soft_dirty(*pvmw->pmd))
3079 pmde = pmd_mksoft_dirty(pmde);
3080 if (is_writable_migration_entry(entry))
3081 pmde = maybe_pmd_mkwrite(pmde, vma);
3082 if (pmd_swp_uffd_wp(*pvmw->pmd))
3083 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3084
3085 if (PageAnon(new))
3086 page_add_anon_rmap(new, vma, mmun_start, true);
3087 else
3088 page_add_file_rmap(new, vma, true);
3089 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3090
3091 /* No need to invalidate - it was non-present before */
3092 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3093 trace_remove_migration_pmd(address, pmd_val(pmde));
3094}
3095#endif