Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52#include "raid1-10.c"
53
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61{
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80}
81
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97{
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119}
120
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131{
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137}
138
139#define RESYNC_DEPTH 32
140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147{
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
178 */
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
181 else
182 need_pages = 1;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
186 bio = r1_bio->bios[j];
187
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
204out_free_pages:
205 while (--j >= 0)
206 resync_free_pages(&rps[j]);
207
208out_free_bio:
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
211 kfree(rps);
212
213out_free_r1bio:
214 rbio_pool_free(r1_bio, data);
215 return NULL;
216}
217
218static void r1buf_pool_free(void *__r1_bio, void *data)
219{
220 struct pool_info *pi = data;
221 int i;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
224
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r1bio, data);
235}
236
237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238{
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 }
247}
248
249static void free_r1bio(struct r1bio *r1_bio)
250{
251 struct r1conf *conf = r1_bio->mddev->private;
252
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
255}
256
257static void put_buf(struct r1bio *r1_bio)
258{
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
261 int i;
262
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
268
269 mempool_free(r1_bio, &conf->r1buf_pool);
270
271 lower_barrier(conf, sect);
272}
273
274static void reschedule_retry(struct r1bio *r1_bio)
275{
276 unsigned long flags;
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
279 int idx;
280
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296static void call_bio_endio(struct r1bio *r1_bio)
297{
298 struct bio *bio = r1_bio->master_bio;
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
302
303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 bio_end_io_acct(bio, r1_bio->start_time);
305 bio_endio(bio);
306}
307
308static void raid_end_bio_io(struct r1bio *r1_bio)
309{
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 /* if nobody has done the final endio yet, do it now */
314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 (unsigned long long) bio->bi_iter.bi_sector,
318 (unsigned long long) bio_end_sector(bio) - 1);
319
320 call_bio_endio(r1_bio);
321 }
322 /*
323 * Wake up any possible resync thread that waits for the device
324 * to go idle. All I/Os, even write-behind writes, are done.
325 */
326 allow_barrier(conf, r1_bio->sector);
327
328 free_r1bio(r1_bio);
329}
330
331/*
332 * Update disk head position estimator based on IRQ completion info.
333 */
334static inline void update_head_pos(int disk, struct r1bio *r1_bio)
335{
336 struct r1conf *conf = r1_bio->mddev->private;
337
338 conf->mirrors[disk].head_position =
339 r1_bio->sector + (r1_bio->sectors);
340}
341
342/*
343 * Find the disk number which triggered given bio
344 */
345static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
346{
347 int mirror;
348 struct r1conf *conf = r1_bio->mddev->private;
349 int raid_disks = conf->raid_disks;
350
351 for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 if (r1_bio->bios[mirror] == bio)
353 break;
354
355 BUG_ON(mirror == raid_disks * 2);
356 update_head_pos(mirror, r1_bio);
357
358 return mirror;
359}
360
361static void raid1_end_read_request(struct bio *bio)
362{
363 int uptodate = !bio->bi_status;
364 struct r1bio *r1_bio = bio->bi_private;
365 struct r1conf *conf = r1_bio->mddev->private;
366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
367
368 /*
369 * this branch is our 'one mirror IO has finished' event handler:
370 */
371 update_head_pos(r1_bio->read_disk, r1_bio);
372
373 if (uptodate)
374 set_bit(R1BIO_Uptodate, &r1_bio->state);
375 else if (test_bit(FailFast, &rdev->flags) &&
376 test_bit(R1BIO_FailFast, &r1_bio->state))
377 /* This was a fail-fast read so we definitely
378 * want to retry */
379 ;
380 else {
381 /* If all other devices have failed, we want to return
382 * the error upwards rather than fail the last device.
383 * Here we redefine "uptodate" to mean "Don't want to retry"
384 */
385 unsigned long flags;
386 spin_lock_irqsave(&conf->device_lock, flags);
387 if (r1_bio->mddev->degraded == conf->raid_disks ||
388 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 test_bit(In_sync, &rdev->flags)))
390 uptodate = 1;
391 spin_unlock_irqrestore(&conf->device_lock, flags);
392 }
393
394 if (uptodate) {
395 raid_end_bio_io(r1_bio);
396 rdev_dec_pending(rdev, conf->mddev);
397 } else {
398 /*
399 * oops, read error:
400 */
401 char b[BDEVNAME_SIZE];
402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 bdevname(rdev->bdev, b),
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
409 }
410}
411
412static void close_write(struct r1bio *r1_bio)
413{
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
419 }
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 r1_bio->sectors,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
426}
427
428static void r1_bio_write_done(struct r1bio *r1_bio)
429{
430 if (!atomic_dec_and_test(&r1_bio->remaining))
431 return;
432
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
435 else {
436 close_write(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
439 else
440 raid_end_bio_io(r1_bio);
441 }
442}
443
444static void raid1_end_write_request(struct bio *bio)
445{
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 bool discard_error;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
455
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457
458 /*
459 * 'one mirror IO has finished' event handler:
460 */
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
466
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
472 }
473
474 /*
475 * When the device is faulty, it is not necessary to
476 * handle write error.
477 */
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
480 else {
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
485 to_put = bio;
486 }
487 } else {
488 /*
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
492 * fails.
493 *
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
497 */
498 sector_t first_bad;
499 int bad_sectors;
500
501 r1_bio->bios[mirror] = NULL;
502 to_put = bio;
503 /*
504 * Do not set R1BIO_Uptodate if the current device is
505 * rebuilding or Faulty. This is because we cannot use
506 * such device for properly reading the data back (we could
507 * potentially use it, if the current write would have felt
508 * before rdev->recovery_offset, but for simplicity we don't
509 * check this here.
510 */
511 if (test_bit(In_sync, &rdev->flags) &&
512 !test_bit(Faulty, &rdev->flags))
513 set_bit(R1BIO_Uptodate, &r1_bio->state);
514
515 /* Maybe we can clear some bad blocks. */
516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
517 &first_bad, &bad_sectors) && !discard_error) {
518 r1_bio->bios[mirror] = IO_MADE_GOOD;
519 set_bit(R1BIO_MadeGood, &r1_bio->state);
520 }
521 }
522
523 if (behind) {
524 if (test_bit(CollisionCheck, &rdev->flags))
525 remove_serial(rdev, lo, hi);
526 if (test_bit(WriteMostly, &rdev->flags))
527 atomic_dec(&r1_bio->behind_remaining);
528
529 /*
530 * In behind mode, we ACK the master bio once the I/O
531 * has safely reached all non-writemostly
532 * disks. Setting the Returned bit ensures that this
533 * gets done only once -- we don't ever want to return
534 * -EIO here, instead we'll wait
535 */
536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538 /* Maybe we can return now */
539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540 struct bio *mbio = r1_bio->master_bio;
541 pr_debug("raid1: behind end write sectors"
542 " %llu-%llu\n",
543 (unsigned long long) mbio->bi_iter.bi_sector,
544 (unsigned long long) bio_end_sector(mbio) - 1);
545 call_bio_endio(r1_bio);
546 }
547 }
548 } else if (rdev->mddev->serialize_policy)
549 remove_serial(rdev, lo, hi);
550 if (r1_bio->bios[mirror] == NULL)
551 rdev_dec_pending(rdev, conf->mddev);
552
553 /*
554 * Let's see if all mirrored write operations have finished
555 * already.
556 */
557 r1_bio_write_done(r1_bio);
558
559 if (to_put)
560 bio_put(to_put);
561}
562
563static sector_t align_to_barrier_unit_end(sector_t start_sector,
564 sector_t sectors)
565{
566 sector_t len;
567
568 WARN_ON(sectors == 0);
569 /*
570 * len is the number of sectors from start_sector to end of the
571 * barrier unit which start_sector belongs to.
572 */
573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
574 start_sector;
575
576 if (len > sectors)
577 len = sectors;
578
579 return len;
580}
581
582/*
583 * This routine returns the disk from which the requested read should
584 * be done. There is a per-array 'next expected sequential IO' sector
585 * number - if this matches on the next IO then we use the last disk.
586 * There is also a per-disk 'last know head position' sector that is
587 * maintained from IRQ contexts, both the normal and the resync IO
588 * completion handlers update this position correctly. If there is no
589 * perfect sequential match then we pick the disk whose head is closest.
590 *
591 * If there are 2 mirrors in the same 2 devices, performance degrades
592 * because position is mirror, not device based.
593 *
594 * The rdev for the device selected will have nr_pending incremented.
595 */
596static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
597{
598 const sector_t this_sector = r1_bio->sector;
599 int sectors;
600 int best_good_sectors;
601 int best_disk, best_dist_disk, best_pending_disk;
602 int has_nonrot_disk;
603 int disk;
604 sector_t best_dist;
605 unsigned int min_pending;
606 struct md_rdev *rdev;
607 int choose_first;
608 int choose_next_idle;
609
610 rcu_read_lock();
611 /*
612 * Check if we can balance. We can balance on the whole
613 * device if no resync is going on, or below the resync window.
614 * We take the first readable disk when above the resync window.
615 */
616 retry:
617 sectors = r1_bio->sectors;
618 best_disk = -1;
619 best_dist_disk = -1;
620 best_dist = MaxSector;
621 best_pending_disk = -1;
622 min_pending = UINT_MAX;
623 best_good_sectors = 0;
624 has_nonrot_disk = 0;
625 choose_next_idle = 0;
626 clear_bit(R1BIO_FailFast, &r1_bio->state);
627
628 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629 (mddev_is_clustered(conf->mddev) &&
630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
631 this_sector + sectors)))
632 choose_first = 1;
633 else
634 choose_first = 0;
635
636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 sector_t dist;
638 sector_t first_bad;
639 int bad_sectors;
640 unsigned int pending;
641 bool nonrot;
642
643 rdev = rcu_dereference(conf->mirrors[disk].rdev);
644 if (r1_bio->bios[disk] == IO_BLOCKED
645 || rdev == NULL
646 || test_bit(Faulty, &rdev->flags))
647 continue;
648 if (!test_bit(In_sync, &rdev->flags) &&
649 rdev->recovery_offset < this_sector + sectors)
650 continue;
651 if (test_bit(WriteMostly, &rdev->flags)) {
652 /* Don't balance among write-mostly, just
653 * use the first as a last resort */
654 if (best_dist_disk < 0) {
655 if (is_badblock(rdev, this_sector, sectors,
656 &first_bad, &bad_sectors)) {
657 if (first_bad <= this_sector)
658 /* Cannot use this */
659 continue;
660 best_good_sectors = first_bad - this_sector;
661 } else
662 best_good_sectors = sectors;
663 best_dist_disk = disk;
664 best_pending_disk = disk;
665 }
666 continue;
667 }
668 /* This is a reasonable device to use. It might
669 * even be best.
670 */
671 if (is_badblock(rdev, this_sector, sectors,
672 &first_bad, &bad_sectors)) {
673 if (best_dist < MaxSector)
674 /* already have a better device */
675 continue;
676 if (first_bad <= this_sector) {
677 /* cannot read here. If this is the 'primary'
678 * device, then we must not read beyond
679 * bad_sectors from another device..
680 */
681 bad_sectors -= (this_sector - first_bad);
682 if (choose_first && sectors > bad_sectors)
683 sectors = bad_sectors;
684 if (best_good_sectors > sectors)
685 best_good_sectors = sectors;
686
687 } else {
688 sector_t good_sectors = first_bad - this_sector;
689 if (good_sectors > best_good_sectors) {
690 best_good_sectors = good_sectors;
691 best_disk = disk;
692 }
693 if (choose_first)
694 break;
695 }
696 continue;
697 } else {
698 if ((sectors > best_good_sectors) && (best_disk >= 0))
699 best_disk = -1;
700 best_good_sectors = sectors;
701 }
702
703 if (best_disk >= 0)
704 /* At least two disks to choose from so failfast is OK */
705 set_bit(R1BIO_FailFast, &r1_bio->state);
706
707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708 has_nonrot_disk |= nonrot;
709 pending = atomic_read(&rdev->nr_pending);
710 dist = abs(this_sector - conf->mirrors[disk].head_position);
711 if (choose_first) {
712 best_disk = disk;
713 break;
714 }
715 /* Don't change to another disk for sequential reads */
716 if (conf->mirrors[disk].next_seq_sect == this_sector
717 || dist == 0) {
718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719 struct raid1_info *mirror = &conf->mirrors[disk];
720
721 best_disk = disk;
722 /*
723 * If buffered sequential IO size exceeds optimal
724 * iosize, check if there is idle disk. If yes, choose
725 * the idle disk. read_balance could already choose an
726 * idle disk before noticing it's a sequential IO in
727 * this disk. This doesn't matter because this disk
728 * will idle, next time it will be utilized after the
729 * first disk has IO size exceeds optimal iosize. In
730 * this way, iosize of the first disk will be optimal
731 * iosize at least. iosize of the second disk might be
732 * small, but not a big deal since when the second disk
733 * starts IO, the first disk is likely still busy.
734 */
735 if (nonrot && opt_iosize > 0 &&
736 mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >=
739 mirror->seq_start) {
740 choose_next_idle = 1;
741 continue;
742 }
743 break;
744 }
745
746 if (choose_next_idle)
747 continue;
748
749 if (min_pending > pending) {
750 min_pending = pending;
751 best_pending_disk = disk;
752 }
753
754 if (dist < best_dist) {
755 best_dist = dist;
756 best_dist_disk = disk;
757 }
758 }
759
760 /*
761 * If all disks are rotational, choose the closest disk. If any disk is
762 * non-rotational, choose the disk with less pending request even the
763 * disk is rotational, which might/might not be optimal for raids with
764 * mixed ratation/non-rotational disks depending on workload.
765 */
766 if (best_disk == -1) {
767 if (has_nonrot_disk || min_pending == 0)
768 best_disk = best_pending_disk;
769 else
770 best_disk = best_dist_disk;
771 }
772
773 if (best_disk >= 0) {
774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
775 if (!rdev)
776 goto retry;
777 atomic_inc(&rdev->nr_pending);
778 sectors = best_good_sectors;
779
780 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781 conf->mirrors[best_disk].seq_start = this_sector;
782
783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
784 }
785 rcu_read_unlock();
786 *max_sectors = sectors;
787
788 return best_disk;
789}
790
791static void flush_bio_list(struct r1conf *conf, struct bio *bio)
792{
793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
794 md_bitmap_unplug(conf->mddev->bitmap);
795 wake_up(&conf->wait_barrier);
796
797 while (bio) { /* submit pending writes */
798 struct bio *next = bio->bi_next;
799 struct md_rdev *rdev = (void *)bio->bi_bdev;
800 bio->bi_next = NULL;
801 bio_set_dev(bio, rdev->bdev);
802 if (test_bit(Faulty, &rdev->flags)) {
803 bio_io_error(bio);
804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
806 /* Just ignore it */
807 bio_endio(bio);
808 else
809 submit_bio_noacct(bio);
810 bio = next;
811 cond_resched();
812 }
813}
814
815static void flush_pending_writes(struct r1conf *conf)
816{
817 /* Any writes that have been queued but are awaiting
818 * bitmap updates get flushed here.
819 */
820 spin_lock_irq(&conf->device_lock);
821
822 if (conf->pending_bio_list.head) {
823 struct blk_plug plug;
824 struct bio *bio;
825
826 bio = bio_list_get(&conf->pending_bio_list);
827 spin_unlock_irq(&conf->device_lock);
828
829 /*
830 * As this is called in a wait_event() loop (see freeze_array),
831 * current->state might be TASK_UNINTERRUPTIBLE which will
832 * cause a warning when we prepare to wait again. As it is
833 * rare that this path is taken, it is perfectly safe to force
834 * us to go around the wait_event() loop again, so the warning
835 * is a false-positive. Silence the warning by resetting
836 * thread state
837 */
838 __set_current_state(TASK_RUNNING);
839 blk_start_plug(&plug);
840 flush_bio_list(conf, bio);
841 blk_finish_plug(&plug);
842 } else
843 spin_unlock_irq(&conf->device_lock);
844}
845
846/* Barriers....
847 * Sometimes we need to suspend IO while we do something else,
848 * either some resync/recovery, or reconfigure the array.
849 * To do this we raise a 'barrier'.
850 * The 'barrier' is a counter that can be raised multiple times
851 * to count how many activities are happening which preclude
852 * normal IO.
853 * We can only raise the barrier if there is no pending IO.
854 * i.e. if nr_pending == 0.
855 * We choose only to raise the barrier if no-one is waiting for the
856 * barrier to go down. This means that as soon as an IO request
857 * is ready, no other operations which require a barrier will start
858 * until the IO request has had a chance.
859 *
860 * So: regular IO calls 'wait_barrier'. When that returns there
861 * is no backgroup IO happening, It must arrange to call
862 * allow_barrier when it has finished its IO.
863 * backgroup IO calls must call raise_barrier. Once that returns
864 * there is no normal IO happeing. It must arrange to call
865 * lower_barrier when the particular background IO completes.
866 *
867 * If resync/recovery is interrupted, returns -EINTR;
868 * Otherwise, returns 0.
869 */
870static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
871{
872 int idx = sector_to_idx(sector_nr);
873
874 spin_lock_irq(&conf->resync_lock);
875
876 /* Wait until no block IO is waiting */
877 wait_event_lock_irq(conf->wait_barrier,
878 !atomic_read(&conf->nr_waiting[idx]),
879 conf->resync_lock);
880
881 /* block any new IO from starting */
882 atomic_inc(&conf->barrier[idx]);
883 /*
884 * In raise_barrier() we firstly increase conf->barrier[idx] then
885 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
886 * increase conf->nr_pending[idx] then check conf->barrier[idx].
887 * A memory barrier here to make sure conf->nr_pending[idx] won't
888 * be fetched before conf->barrier[idx] is increased. Otherwise
889 * there will be a race between raise_barrier() and _wait_barrier().
890 */
891 smp_mb__after_atomic();
892
893 /* For these conditions we must wait:
894 * A: while the array is in frozen state
895 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
896 * existing in corresponding I/O barrier bucket.
897 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
898 * max resync count which allowed on current I/O barrier bucket.
899 */
900 wait_event_lock_irq(conf->wait_barrier,
901 (!conf->array_frozen &&
902 !atomic_read(&conf->nr_pending[idx]) &&
903 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
904 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
905 conf->resync_lock);
906
907 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
908 atomic_dec(&conf->barrier[idx]);
909 spin_unlock_irq(&conf->resync_lock);
910 wake_up(&conf->wait_barrier);
911 return -EINTR;
912 }
913
914 atomic_inc(&conf->nr_sync_pending);
915 spin_unlock_irq(&conf->resync_lock);
916
917 return 0;
918}
919
920static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
921{
922 int idx = sector_to_idx(sector_nr);
923
924 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
925
926 atomic_dec(&conf->barrier[idx]);
927 atomic_dec(&conf->nr_sync_pending);
928 wake_up(&conf->wait_barrier);
929}
930
931static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
932{
933 bool ret = true;
934
935 /*
936 * We need to increase conf->nr_pending[idx] very early here,
937 * then raise_barrier() can be blocked when it waits for
938 * conf->nr_pending[idx] to be 0. Then we can avoid holding
939 * conf->resync_lock when there is no barrier raised in same
940 * barrier unit bucket. Also if the array is frozen, I/O
941 * should be blocked until array is unfrozen.
942 */
943 atomic_inc(&conf->nr_pending[idx]);
944 /*
945 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
946 * check conf->barrier[idx]. In raise_barrier() we firstly increase
947 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
948 * barrier is necessary here to make sure conf->barrier[idx] won't be
949 * fetched before conf->nr_pending[idx] is increased. Otherwise there
950 * will be a race between _wait_barrier() and raise_barrier().
951 */
952 smp_mb__after_atomic();
953
954 /*
955 * Don't worry about checking two atomic_t variables at same time
956 * here. If during we check conf->barrier[idx], the array is
957 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
958 * 0, it is safe to return and make the I/O continue. Because the
959 * array is frozen, all I/O returned here will eventually complete
960 * or be queued, no race will happen. See code comment in
961 * frozen_array().
962 */
963 if (!READ_ONCE(conf->array_frozen) &&
964 !atomic_read(&conf->barrier[idx]))
965 return ret;
966
967 /*
968 * After holding conf->resync_lock, conf->nr_pending[idx]
969 * should be decreased before waiting for barrier to drop.
970 * Otherwise, we may encounter a race condition because
971 * raise_barrer() might be waiting for conf->nr_pending[idx]
972 * to be 0 at same time.
973 */
974 spin_lock_irq(&conf->resync_lock);
975 atomic_inc(&conf->nr_waiting[idx]);
976 atomic_dec(&conf->nr_pending[idx]);
977 /*
978 * In case freeze_array() is waiting for
979 * get_unqueued_pending() == extra
980 */
981 wake_up(&conf->wait_barrier);
982 /* Wait for the barrier in same barrier unit bucket to drop. */
983
984 /* Return false when nowait flag is set */
985 if (nowait) {
986 ret = false;
987 } else {
988 wait_event_lock_irq(conf->wait_barrier,
989 !conf->array_frozen &&
990 !atomic_read(&conf->barrier[idx]),
991 conf->resync_lock);
992 atomic_inc(&conf->nr_pending[idx]);
993 }
994
995 atomic_dec(&conf->nr_waiting[idx]);
996 spin_unlock_irq(&conf->resync_lock);
997 return ret;
998}
999
1000static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1001{
1002 int idx = sector_to_idx(sector_nr);
1003 bool ret = true;
1004
1005 /*
1006 * Very similar to _wait_barrier(). The difference is, for read
1007 * I/O we don't need wait for sync I/O, but if the whole array
1008 * is frozen, the read I/O still has to wait until the array is
1009 * unfrozen. Since there is no ordering requirement with
1010 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1011 */
1012 atomic_inc(&conf->nr_pending[idx]);
1013
1014 if (!READ_ONCE(conf->array_frozen))
1015 return ret;
1016
1017 spin_lock_irq(&conf->resync_lock);
1018 atomic_inc(&conf->nr_waiting[idx]);
1019 atomic_dec(&conf->nr_pending[idx]);
1020 /*
1021 * In case freeze_array() is waiting for
1022 * get_unqueued_pending() == extra
1023 */
1024 wake_up(&conf->wait_barrier);
1025 /* Wait for array to be unfrozen */
1026
1027 /* Return false when nowait flag is set */
1028 if (nowait) {
1029 /* Return false when nowait flag is set */
1030 ret = false;
1031 } else {
1032 wait_event_lock_irq(conf->wait_barrier,
1033 !conf->array_frozen,
1034 conf->resync_lock);
1035 atomic_inc(&conf->nr_pending[idx]);
1036 }
1037
1038 atomic_dec(&conf->nr_waiting[idx]);
1039 spin_unlock_irq(&conf->resync_lock);
1040 return ret;
1041}
1042
1043static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1044{
1045 int idx = sector_to_idx(sector_nr);
1046
1047 return _wait_barrier(conf, idx, nowait);
1048}
1049
1050static void _allow_barrier(struct r1conf *conf, int idx)
1051{
1052 atomic_dec(&conf->nr_pending[idx]);
1053 wake_up(&conf->wait_barrier);
1054}
1055
1056static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1057{
1058 int idx = sector_to_idx(sector_nr);
1059
1060 _allow_barrier(conf, idx);
1061}
1062
1063/* conf->resync_lock should be held */
1064static int get_unqueued_pending(struct r1conf *conf)
1065{
1066 int idx, ret;
1067
1068 ret = atomic_read(&conf->nr_sync_pending);
1069 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1070 ret += atomic_read(&conf->nr_pending[idx]) -
1071 atomic_read(&conf->nr_queued[idx]);
1072
1073 return ret;
1074}
1075
1076static void freeze_array(struct r1conf *conf, int extra)
1077{
1078 /* Stop sync I/O and normal I/O and wait for everything to
1079 * go quiet.
1080 * This is called in two situations:
1081 * 1) management command handlers (reshape, remove disk, quiesce).
1082 * 2) one normal I/O request failed.
1083
1084 * After array_frozen is set to 1, new sync IO will be blocked at
1085 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1086 * or wait_read_barrier(). The flying I/Os will either complete or be
1087 * queued. When everything goes quite, there are only queued I/Os left.
1088
1089 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1090 * barrier bucket index which this I/O request hits. When all sync and
1091 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1092 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1093 * in handle_read_error(), we may call freeze_array() before trying to
1094 * fix the read error. In this case, the error read I/O is not queued,
1095 * so get_unqueued_pending() == 1.
1096 *
1097 * Therefore before this function returns, we need to wait until
1098 * get_unqueued_pendings(conf) gets equal to extra. For
1099 * normal I/O context, extra is 1, in rested situations extra is 0.
1100 */
1101 spin_lock_irq(&conf->resync_lock);
1102 conf->array_frozen = 1;
1103 raid1_log(conf->mddev, "wait freeze");
1104 wait_event_lock_irq_cmd(
1105 conf->wait_barrier,
1106 get_unqueued_pending(conf) == extra,
1107 conf->resync_lock,
1108 flush_pending_writes(conf));
1109 spin_unlock_irq(&conf->resync_lock);
1110}
1111static void unfreeze_array(struct r1conf *conf)
1112{
1113 /* reverse the effect of the freeze */
1114 spin_lock_irq(&conf->resync_lock);
1115 conf->array_frozen = 0;
1116 spin_unlock_irq(&conf->resync_lock);
1117 wake_up(&conf->wait_barrier);
1118}
1119
1120static void alloc_behind_master_bio(struct r1bio *r1_bio,
1121 struct bio *bio)
1122{
1123 int size = bio->bi_iter.bi_size;
1124 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1125 int i = 0;
1126 struct bio *behind_bio = NULL;
1127
1128 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1129 &r1_bio->mddev->bio_set);
1130 if (!behind_bio)
1131 return;
1132
1133 /* discard op, we don't support writezero/writesame yet */
1134 if (!bio_has_data(bio)) {
1135 behind_bio->bi_iter.bi_size = size;
1136 goto skip_copy;
1137 }
1138
1139 while (i < vcnt && size) {
1140 struct page *page;
1141 int len = min_t(int, PAGE_SIZE, size);
1142
1143 page = alloc_page(GFP_NOIO);
1144 if (unlikely(!page))
1145 goto free_pages;
1146
1147 bio_add_page(behind_bio, page, len, 0);
1148
1149 size -= len;
1150 i++;
1151 }
1152
1153 bio_copy_data(behind_bio, bio);
1154skip_copy:
1155 r1_bio->behind_master_bio = behind_bio;
1156 set_bit(R1BIO_BehindIO, &r1_bio->state);
1157
1158 return;
1159
1160free_pages:
1161 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1162 bio->bi_iter.bi_size);
1163 bio_free_pages(behind_bio);
1164 bio_put(behind_bio);
1165}
1166
1167static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1168{
1169 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1170 cb);
1171 struct mddev *mddev = plug->cb.data;
1172 struct r1conf *conf = mddev->private;
1173 struct bio *bio;
1174
1175 if (from_schedule || current->bio_list) {
1176 spin_lock_irq(&conf->device_lock);
1177 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1178 spin_unlock_irq(&conf->device_lock);
1179 wake_up(&conf->wait_barrier);
1180 md_wakeup_thread(mddev->thread);
1181 kfree(plug);
1182 return;
1183 }
1184
1185 /* we aren't scheduling, so we can do the write-out directly. */
1186 bio = bio_list_get(&plug->pending);
1187 flush_bio_list(conf, bio);
1188 kfree(plug);
1189}
1190
1191static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1192{
1193 r1_bio->master_bio = bio;
1194 r1_bio->sectors = bio_sectors(bio);
1195 r1_bio->state = 0;
1196 r1_bio->mddev = mddev;
1197 r1_bio->sector = bio->bi_iter.bi_sector;
1198}
1199
1200static inline struct r1bio *
1201alloc_r1bio(struct mddev *mddev, struct bio *bio)
1202{
1203 struct r1conf *conf = mddev->private;
1204 struct r1bio *r1_bio;
1205
1206 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1207 /* Ensure no bio records IO_BLOCKED */
1208 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1209 init_r1bio(r1_bio, mddev, bio);
1210 return r1_bio;
1211}
1212
1213static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1214 int max_read_sectors, struct r1bio *r1_bio)
1215{
1216 struct r1conf *conf = mddev->private;
1217 struct raid1_info *mirror;
1218 struct bio *read_bio;
1219 struct bitmap *bitmap = mddev->bitmap;
1220 const int op = bio_op(bio);
1221 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1222 int max_sectors;
1223 int rdisk;
1224 bool r1bio_existed = !!r1_bio;
1225 char b[BDEVNAME_SIZE];
1226
1227 /*
1228 * If r1_bio is set, we are blocking the raid1d thread
1229 * so there is a tiny risk of deadlock. So ask for
1230 * emergency memory if needed.
1231 */
1232 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1233
1234 if (r1bio_existed) {
1235 /* Need to get the block device name carefully */
1236 struct md_rdev *rdev;
1237 rcu_read_lock();
1238 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1239 if (rdev)
1240 bdevname(rdev->bdev, b);
1241 else
1242 strcpy(b, "???");
1243 rcu_read_unlock();
1244 }
1245
1246 /*
1247 * Still need barrier for READ in case that whole
1248 * array is frozen.
1249 */
1250 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1251 bio->bi_opf & REQ_NOWAIT)) {
1252 bio_wouldblock_error(bio);
1253 return;
1254 }
1255
1256 if (!r1_bio)
1257 r1_bio = alloc_r1bio(mddev, bio);
1258 else
1259 init_r1bio(r1_bio, mddev, bio);
1260 r1_bio->sectors = max_read_sectors;
1261
1262 /*
1263 * make_request() can abort the operation when read-ahead is being
1264 * used and no empty request is available.
1265 */
1266 rdisk = read_balance(conf, r1_bio, &max_sectors);
1267
1268 if (rdisk < 0) {
1269 /* couldn't find anywhere to read from */
1270 if (r1bio_existed) {
1271 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1272 mdname(mddev),
1273 b,
1274 (unsigned long long)r1_bio->sector);
1275 }
1276 raid_end_bio_io(r1_bio);
1277 return;
1278 }
1279 mirror = conf->mirrors + rdisk;
1280
1281 if (r1bio_existed)
1282 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1283 mdname(mddev),
1284 (unsigned long long)r1_bio->sector,
1285 bdevname(mirror->rdev->bdev, b));
1286
1287 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1288 bitmap) {
1289 /*
1290 * Reading from a write-mostly device must take care not to
1291 * over-take any writes that are 'behind'
1292 */
1293 raid1_log(mddev, "wait behind writes");
1294 wait_event(bitmap->behind_wait,
1295 atomic_read(&bitmap->behind_writes) == 0);
1296 }
1297
1298 if (max_sectors < bio_sectors(bio)) {
1299 struct bio *split = bio_split(bio, max_sectors,
1300 gfp, &conf->bio_split);
1301 bio_chain(split, bio);
1302 submit_bio_noacct(bio);
1303 bio = split;
1304 r1_bio->master_bio = bio;
1305 r1_bio->sectors = max_sectors;
1306 }
1307
1308 r1_bio->read_disk = rdisk;
1309
1310 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1311 r1_bio->start_time = bio_start_io_acct(bio);
1312
1313 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1314 &mddev->bio_set);
1315
1316 r1_bio->bios[rdisk] = read_bio;
1317
1318 read_bio->bi_iter.bi_sector = r1_bio->sector +
1319 mirror->rdev->data_offset;
1320 read_bio->bi_end_io = raid1_end_read_request;
1321 bio_set_op_attrs(read_bio, op, do_sync);
1322 if (test_bit(FailFast, &mirror->rdev->flags) &&
1323 test_bit(R1BIO_FailFast, &r1_bio->state))
1324 read_bio->bi_opf |= MD_FAILFAST;
1325 read_bio->bi_private = r1_bio;
1326
1327 if (mddev->gendisk)
1328 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1329 r1_bio->sector);
1330
1331 submit_bio_noacct(read_bio);
1332}
1333
1334static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1335 int max_write_sectors)
1336{
1337 struct r1conf *conf = mddev->private;
1338 struct r1bio *r1_bio;
1339 int i, disks;
1340 struct bitmap *bitmap = mddev->bitmap;
1341 unsigned long flags;
1342 struct md_rdev *blocked_rdev;
1343 struct blk_plug_cb *cb;
1344 struct raid1_plug_cb *plug = NULL;
1345 int first_clone;
1346 int max_sectors;
1347 bool write_behind = false;
1348
1349 if (mddev_is_clustered(mddev) &&
1350 md_cluster_ops->area_resyncing(mddev, WRITE,
1351 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1352
1353 DEFINE_WAIT(w);
1354 if (bio->bi_opf & REQ_NOWAIT) {
1355 bio_wouldblock_error(bio);
1356 return;
1357 }
1358 for (;;) {
1359 prepare_to_wait(&conf->wait_barrier,
1360 &w, TASK_IDLE);
1361 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1362 bio->bi_iter.bi_sector,
1363 bio_end_sector(bio)))
1364 break;
1365 schedule();
1366 }
1367 finish_wait(&conf->wait_barrier, &w);
1368 }
1369
1370 /*
1371 * Register the new request and wait if the reconstruction
1372 * thread has put up a bar for new requests.
1373 * Continue immediately if no resync is active currently.
1374 */
1375 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1376 bio->bi_opf & REQ_NOWAIT)) {
1377 bio_wouldblock_error(bio);
1378 return;
1379 }
1380
1381 r1_bio = alloc_r1bio(mddev, bio);
1382 r1_bio->sectors = max_write_sectors;
1383
1384 /* first select target devices under rcu_lock and
1385 * inc refcount on their rdev. Record them by setting
1386 * bios[x] to bio
1387 * If there are known/acknowledged bad blocks on any device on
1388 * which we have seen a write error, we want to avoid writing those
1389 * blocks.
1390 * This potentially requires several writes to write around
1391 * the bad blocks. Each set of writes gets it's own r1bio
1392 * with a set of bios attached.
1393 */
1394
1395 disks = conf->raid_disks * 2;
1396 retry_write:
1397 blocked_rdev = NULL;
1398 rcu_read_lock();
1399 max_sectors = r1_bio->sectors;
1400 for (i = 0; i < disks; i++) {
1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1402
1403 /*
1404 * The write-behind io is only attempted on drives marked as
1405 * write-mostly, which means we could allocate write behind
1406 * bio later.
1407 */
1408 if (rdev && test_bit(WriteMostly, &rdev->flags))
1409 write_behind = true;
1410
1411 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1412 atomic_inc(&rdev->nr_pending);
1413 blocked_rdev = rdev;
1414 break;
1415 }
1416 r1_bio->bios[i] = NULL;
1417 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1418 if (i < conf->raid_disks)
1419 set_bit(R1BIO_Degraded, &r1_bio->state);
1420 continue;
1421 }
1422
1423 atomic_inc(&rdev->nr_pending);
1424 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1425 sector_t first_bad;
1426 int bad_sectors;
1427 int is_bad;
1428
1429 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1430 &first_bad, &bad_sectors);
1431 if (is_bad < 0) {
1432 /* mustn't write here until the bad block is
1433 * acknowledged*/
1434 set_bit(BlockedBadBlocks, &rdev->flags);
1435 blocked_rdev = rdev;
1436 break;
1437 }
1438 if (is_bad && first_bad <= r1_bio->sector) {
1439 /* Cannot write here at all */
1440 bad_sectors -= (r1_bio->sector - first_bad);
1441 if (bad_sectors < max_sectors)
1442 /* mustn't write more than bad_sectors
1443 * to other devices yet
1444 */
1445 max_sectors = bad_sectors;
1446 rdev_dec_pending(rdev, mddev);
1447 /* We don't set R1BIO_Degraded as that
1448 * only applies if the disk is
1449 * missing, so it might be re-added,
1450 * and we want to know to recover this
1451 * chunk.
1452 * In this case the device is here,
1453 * and the fact that this chunk is not
1454 * in-sync is recorded in the bad
1455 * block log
1456 */
1457 continue;
1458 }
1459 if (is_bad) {
1460 int good_sectors = first_bad - r1_bio->sector;
1461 if (good_sectors < max_sectors)
1462 max_sectors = good_sectors;
1463 }
1464 }
1465 r1_bio->bios[i] = bio;
1466 }
1467 rcu_read_unlock();
1468
1469 if (unlikely(blocked_rdev)) {
1470 /* Wait for this device to become unblocked */
1471 int j;
1472
1473 for (j = 0; j < i; j++)
1474 if (r1_bio->bios[j])
1475 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1476 r1_bio->state = 0;
1477 allow_barrier(conf, bio->bi_iter.bi_sector);
1478
1479 if (bio->bi_opf & REQ_NOWAIT) {
1480 bio_wouldblock_error(bio);
1481 return;
1482 }
1483 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1484 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1485 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1486 goto retry_write;
1487 }
1488
1489 /*
1490 * When using a bitmap, we may call alloc_behind_master_bio below.
1491 * alloc_behind_master_bio allocates a copy of the data payload a page
1492 * at a time and thus needs a new bio that can fit the whole payload
1493 * this bio in page sized chunks.
1494 */
1495 if (write_behind && bitmap)
1496 max_sectors = min_t(int, max_sectors,
1497 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1498 if (max_sectors < bio_sectors(bio)) {
1499 struct bio *split = bio_split(bio, max_sectors,
1500 GFP_NOIO, &conf->bio_split);
1501 bio_chain(split, bio);
1502 submit_bio_noacct(bio);
1503 bio = split;
1504 r1_bio->master_bio = bio;
1505 r1_bio->sectors = max_sectors;
1506 }
1507
1508 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1509 r1_bio->start_time = bio_start_io_acct(bio);
1510 atomic_set(&r1_bio->remaining, 1);
1511 atomic_set(&r1_bio->behind_remaining, 0);
1512
1513 first_clone = 1;
1514
1515 for (i = 0; i < disks; i++) {
1516 struct bio *mbio = NULL;
1517 struct md_rdev *rdev = conf->mirrors[i].rdev;
1518 if (!r1_bio->bios[i])
1519 continue;
1520
1521 if (first_clone) {
1522 /* do behind I/O ?
1523 * Not if there are too many, or cannot
1524 * allocate memory, or a reader on WriteMostly
1525 * is waiting for behind writes to flush */
1526 if (bitmap &&
1527 test_bit(WriteMostly, &rdev->flags) &&
1528 (atomic_read(&bitmap->behind_writes)
1529 < mddev->bitmap_info.max_write_behind) &&
1530 !waitqueue_active(&bitmap->behind_wait)) {
1531 alloc_behind_master_bio(r1_bio, bio);
1532 }
1533
1534 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1535 test_bit(R1BIO_BehindIO, &r1_bio->state));
1536 first_clone = 0;
1537 }
1538
1539 if (r1_bio->behind_master_bio) {
1540 mbio = bio_alloc_clone(rdev->bdev,
1541 r1_bio->behind_master_bio,
1542 GFP_NOIO, &mddev->bio_set);
1543 if (test_bit(CollisionCheck, &rdev->flags))
1544 wait_for_serialization(rdev, r1_bio);
1545 if (test_bit(WriteMostly, &rdev->flags))
1546 atomic_inc(&r1_bio->behind_remaining);
1547 } else {
1548 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1549 &mddev->bio_set);
1550
1551 if (mddev->serialize_policy)
1552 wait_for_serialization(rdev, r1_bio);
1553 }
1554
1555 r1_bio->bios[i] = mbio;
1556
1557 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1558 mbio->bi_end_io = raid1_end_write_request;
1559 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1560 if (test_bit(FailFast, &rdev->flags) &&
1561 !test_bit(WriteMostly, &rdev->flags) &&
1562 conf->raid_disks - mddev->degraded > 1)
1563 mbio->bi_opf |= MD_FAILFAST;
1564 mbio->bi_private = r1_bio;
1565
1566 atomic_inc(&r1_bio->remaining);
1567
1568 if (mddev->gendisk)
1569 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1570 r1_bio->sector);
1571 /* flush_pending_writes() needs access to the rdev so...*/
1572 mbio->bi_bdev = (void *)rdev;
1573
1574 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1575 if (cb)
1576 plug = container_of(cb, struct raid1_plug_cb, cb);
1577 else
1578 plug = NULL;
1579 if (plug) {
1580 bio_list_add(&plug->pending, mbio);
1581 } else {
1582 spin_lock_irqsave(&conf->device_lock, flags);
1583 bio_list_add(&conf->pending_bio_list, mbio);
1584 spin_unlock_irqrestore(&conf->device_lock, flags);
1585 md_wakeup_thread(mddev->thread);
1586 }
1587 }
1588
1589 r1_bio_write_done(r1_bio);
1590
1591 /* In case raid1d snuck in to freeze_array */
1592 wake_up(&conf->wait_barrier);
1593}
1594
1595static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1596{
1597 sector_t sectors;
1598
1599 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1600 && md_flush_request(mddev, bio))
1601 return true;
1602
1603 /*
1604 * There is a limit to the maximum size, but
1605 * the read/write handler might find a lower limit
1606 * due to bad blocks. To avoid multiple splits,
1607 * we pass the maximum number of sectors down
1608 * and let the lower level perform the split.
1609 */
1610 sectors = align_to_barrier_unit_end(
1611 bio->bi_iter.bi_sector, bio_sectors(bio));
1612
1613 if (bio_data_dir(bio) == READ)
1614 raid1_read_request(mddev, bio, sectors, NULL);
1615 else {
1616 if (!md_write_start(mddev,bio))
1617 return false;
1618 raid1_write_request(mddev, bio, sectors);
1619 }
1620 return true;
1621}
1622
1623static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1624{
1625 struct r1conf *conf = mddev->private;
1626 int i;
1627
1628 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1629 conf->raid_disks - mddev->degraded);
1630 rcu_read_lock();
1631 for (i = 0; i < conf->raid_disks; i++) {
1632 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1633 seq_printf(seq, "%s",
1634 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1635 }
1636 rcu_read_unlock();
1637 seq_printf(seq, "]");
1638}
1639
1640static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1641{
1642 char b[BDEVNAME_SIZE];
1643 struct r1conf *conf = mddev->private;
1644 unsigned long flags;
1645
1646 /*
1647 * If it is not operational, then we have already marked it as dead
1648 * else if it is the last working disks with "fail_last_dev == false",
1649 * ignore the error, let the next level up know.
1650 * else mark the drive as failed
1651 */
1652 spin_lock_irqsave(&conf->device_lock, flags);
1653 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1654 && (conf->raid_disks - mddev->degraded) == 1) {
1655 /*
1656 * Don't fail the drive, act as though we were just a
1657 * normal single drive.
1658 * However don't try a recovery from this drive as
1659 * it is very likely to fail.
1660 */
1661 conf->recovery_disabled = mddev->recovery_disabled;
1662 spin_unlock_irqrestore(&conf->device_lock, flags);
1663 return;
1664 }
1665 set_bit(Blocked, &rdev->flags);
1666 if (test_and_clear_bit(In_sync, &rdev->flags))
1667 mddev->degraded++;
1668 set_bit(Faulty, &rdev->flags);
1669 spin_unlock_irqrestore(&conf->device_lock, flags);
1670 /*
1671 * if recovery is running, make sure it aborts.
1672 */
1673 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1674 set_mask_bits(&mddev->sb_flags, 0,
1675 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1676 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1677 "md/raid1:%s: Operation continuing on %d devices.\n",
1678 mdname(mddev), bdevname(rdev->bdev, b),
1679 mdname(mddev), conf->raid_disks - mddev->degraded);
1680}
1681
1682static void print_conf(struct r1conf *conf)
1683{
1684 int i;
1685
1686 pr_debug("RAID1 conf printout:\n");
1687 if (!conf) {
1688 pr_debug("(!conf)\n");
1689 return;
1690 }
1691 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1692 conf->raid_disks);
1693
1694 rcu_read_lock();
1695 for (i = 0; i < conf->raid_disks; i++) {
1696 char b[BDEVNAME_SIZE];
1697 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1698 if (rdev)
1699 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1700 i, !test_bit(In_sync, &rdev->flags),
1701 !test_bit(Faulty, &rdev->flags),
1702 bdevname(rdev->bdev,b));
1703 }
1704 rcu_read_unlock();
1705}
1706
1707static void close_sync(struct r1conf *conf)
1708{
1709 int idx;
1710
1711 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1712 _wait_barrier(conf, idx, false);
1713 _allow_barrier(conf, idx);
1714 }
1715
1716 mempool_exit(&conf->r1buf_pool);
1717}
1718
1719static int raid1_spare_active(struct mddev *mddev)
1720{
1721 int i;
1722 struct r1conf *conf = mddev->private;
1723 int count = 0;
1724 unsigned long flags;
1725
1726 /*
1727 * Find all failed disks within the RAID1 configuration
1728 * and mark them readable.
1729 * Called under mddev lock, so rcu protection not needed.
1730 * device_lock used to avoid races with raid1_end_read_request
1731 * which expects 'In_sync' flags and ->degraded to be consistent.
1732 */
1733 spin_lock_irqsave(&conf->device_lock, flags);
1734 for (i = 0; i < conf->raid_disks; i++) {
1735 struct md_rdev *rdev = conf->mirrors[i].rdev;
1736 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1737 if (repl
1738 && !test_bit(Candidate, &repl->flags)
1739 && repl->recovery_offset == MaxSector
1740 && !test_bit(Faulty, &repl->flags)
1741 && !test_and_set_bit(In_sync, &repl->flags)) {
1742 /* replacement has just become active */
1743 if (!rdev ||
1744 !test_and_clear_bit(In_sync, &rdev->flags))
1745 count++;
1746 if (rdev) {
1747 /* Replaced device not technically
1748 * faulty, but we need to be sure
1749 * it gets removed and never re-added
1750 */
1751 set_bit(Faulty, &rdev->flags);
1752 sysfs_notify_dirent_safe(
1753 rdev->sysfs_state);
1754 }
1755 }
1756 if (rdev
1757 && rdev->recovery_offset == MaxSector
1758 && !test_bit(Faulty, &rdev->flags)
1759 && !test_and_set_bit(In_sync, &rdev->flags)) {
1760 count++;
1761 sysfs_notify_dirent_safe(rdev->sysfs_state);
1762 }
1763 }
1764 mddev->degraded -= count;
1765 spin_unlock_irqrestore(&conf->device_lock, flags);
1766
1767 print_conf(conf);
1768 return count;
1769}
1770
1771static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1772{
1773 struct r1conf *conf = mddev->private;
1774 int err = -EEXIST;
1775 int mirror = 0;
1776 struct raid1_info *p;
1777 int first = 0;
1778 int last = conf->raid_disks - 1;
1779
1780 if (mddev->recovery_disabled == conf->recovery_disabled)
1781 return -EBUSY;
1782
1783 if (md_integrity_add_rdev(rdev, mddev))
1784 return -ENXIO;
1785
1786 if (rdev->raid_disk >= 0)
1787 first = last = rdev->raid_disk;
1788
1789 /*
1790 * find the disk ... but prefer rdev->saved_raid_disk
1791 * if possible.
1792 */
1793 if (rdev->saved_raid_disk >= 0 &&
1794 rdev->saved_raid_disk >= first &&
1795 rdev->saved_raid_disk < conf->raid_disks &&
1796 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1797 first = last = rdev->saved_raid_disk;
1798
1799 for (mirror = first; mirror <= last; mirror++) {
1800 p = conf->mirrors + mirror;
1801 if (!p->rdev) {
1802 if (mddev->gendisk)
1803 disk_stack_limits(mddev->gendisk, rdev->bdev,
1804 rdev->data_offset << 9);
1805
1806 p->head_position = 0;
1807 rdev->raid_disk = mirror;
1808 err = 0;
1809 /* As all devices are equivalent, we don't need a full recovery
1810 * if this was recently any drive of the array
1811 */
1812 if (rdev->saved_raid_disk < 0)
1813 conf->fullsync = 1;
1814 rcu_assign_pointer(p->rdev, rdev);
1815 break;
1816 }
1817 if (test_bit(WantReplacement, &p->rdev->flags) &&
1818 p[conf->raid_disks].rdev == NULL) {
1819 /* Add this device as a replacement */
1820 clear_bit(In_sync, &rdev->flags);
1821 set_bit(Replacement, &rdev->flags);
1822 rdev->raid_disk = mirror;
1823 err = 0;
1824 conf->fullsync = 1;
1825 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1826 break;
1827 }
1828 }
1829 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1830 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1831 print_conf(conf);
1832 return err;
1833}
1834
1835static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1836{
1837 struct r1conf *conf = mddev->private;
1838 int err = 0;
1839 int number = rdev->raid_disk;
1840 struct raid1_info *p = conf->mirrors + number;
1841
1842 if (rdev != p->rdev)
1843 p = conf->mirrors + conf->raid_disks + number;
1844
1845 print_conf(conf);
1846 if (rdev == p->rdev) {
1847 if (test_bit(In_sync, &rdev->flags) ||
1848 atomic_read(&rdev->nr_pending)) {
1849 err = -EBUSY;
1850 goto abort;
1851 }
1852 /* Only remove non-faulty devices if recovery
1853 * is not possible.
1854 */
1855 if (!test_bit(Faulty, &rdev->flags) &&
1856 mddev->recovery_disabled != conf->recovery_disabled &&
1857 mddev->degraded < conf->raid_disks) {
1858 err = -EBUSY;
1859 goto abort;
1860 }
1861 p->rdev = NULL;
1862 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1863 synchronize_rcu();
1864 if (atomic_read(&rdev->nr_pending)) {
1865 /* lost the race, try later */
1866 err = -EBUSY;
1867 p->rdev = rdev;
1868 goto abort;
1869 }
1870 }
1871 if (conf->mirrors[conf->raid_disks + number].rdev) {
1872 /* We just removed a device that is being replaced.
1873 * Move down the replacement. We drain all IO before
1874 * doing this to avoid confusion.
1875 */
1876 struct md_rdev *repl =
1877 conf->mirrors[conf->raid_disks + number].rdev;
1878 freeze_array(conf, 0);
1879 if (atomic_read(&repl->nr_pending)) {
1880 /* It means that some queued IO of retry_list
1881 * hold repl. Thus, we cannot set replacement
1882 * as NULL, avoiding rdev NULL pointer
1883 * dereference in sync_request_write and
1884 * handle_write_finished.
1885 */
1886 err = -EBUSY;
1887 unfreeze_array(conf);
1888 goto abort;
1889 }
1890 clear_bit(Replacement, &repl->flags);
1891 p->rdev = repl;
1892 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1893 unfreeze_array(conf);
1894 }
1895
1896 clear_bit(WantReplacement, &rdev->flags);
1897 err = md_integrity_register(mddev);
1898 }
1899abort:
1900
1901 print_conf(conf);
1902 return err;
1903}
1904
1905static void end_sync_read(struct bio *bio)
1906{
1907 struct r1bio *r1_bio = get_resync_r1bio(bio);
1908
1909 update_head_pos(r1_bio->read_disk, r1_bio);
1910
1911 /*
1912 * we have read a block, now it needs to be re-written,
1913 * or re-read if the read failed.
1914 * We don't do much here, just schedule handling by raid1d
1915 */
1916 if (!bio->bi_status)
1917 set_bit(R1BIO_Uptodate, &r1_bio->state);
1918
1919 if (atomic_dec_and_test(&r1_bio->remaining))
1920 reschedule_retry(r1_bio);
1921}
1922
1923static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1924{
1925 sector_t sync_blocks = 0;
1926 sector_t s = r1_bio->sector;
1927 long sectors_to_go = r1_bio->sectors;
1928
1929 /* make sure these bits don't get cleared. */
1930 do {
1931 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1932 s += sync_blocks;
1933 sectors_to_go -= sync_blocks;
1934 } while (sectors_to_go > 0);
1935}
1936
1937static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1938{
1939 if (atomic_dec_and_test(&r1_bio->remaining)) {
1940 struct mddev *mddev = r1_bio->mddev;
1941 int s = r1_bio->sectors;
1942
1943 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1944 test_bit(R1BIO_WriteError, &r1_bio->state))
1945 reschedule_retry(r1_bio);
1946 else {
1947 put_buf(r1_bio);
1948 md_done_sync(mddev, s, uptodate);
1949 }
1950 }
1951}
1952
1953static void end_sync_write(struct bio *bio)
1954{
1955 int uptodate = !bio->bi_status;
1956 struct r1bio *r1_bio = get_resync_r1bio(bio);
1957 struct mddev *mddev = r1_bio->mddev;
1958 struct r1conf *conf = mddev->private;
1959 sector_t first_bad;
1960 int bad_sectors;
1961 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1962
1963 if (!uptodate) {
1964 abort_sync_write(mddev, r1_bio);
1965 set_bit(WriteErrorSeen, &rdev->flags);
1966 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1967 set_bit(MD_RECOVERY_NEEDED, &
1968 mddev->recovery);
1969 set_bit(R1BIO_WriteError, &r1_bio->state);
1970 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1971 &first_bad, &bad_sectors) &&
1972 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1973 r1_bio->sector,
1974 r1_bio->sectors,
1975 &first_bad, &bad_sectors)
1976 )
1977 set_bit(R1BIO_MadeGood, &r1_bio->state);
1978
1979 put_sync_write_buf(r1_bio, uptodate);
1980}
1981
1982static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1983 int sectors, struct page *page, int rw)
1984{
1985 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1986 /* success */
1987 return 1;
1988 if (rw == WRITE) {
1989 set_bit(WriteErrorSeen, &rdev->flags);
1990 if (!test_and_set_bit(WantReplacement,
1991 &rdev->flags))
1992 set_bit(MD_RECOVERY_NEEDED, &
1993 rdev->mddev->recovery);
1994 }
1995 /* need to record an error - either for the block or the device */
1996 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1997 md_error(rdev->mddev, rdev);
1998 return 0;
1999}
2000
2001static int fix_sync_read_error(struct r1bio *r1_bio)
2002{
2003 /* Try some synchronous reads of other devices to get
2004 * good data, much like with normal read errors. Only
2005 * read into the pages we already have so we don't
2006 * need to re-issue the read request.
2007 * We don't need to freeze the array, because being in an
2008 * active sync request, there is no normal IO, and
2009 * no overlapping syncs.
2010 * We don't need to check is_badblock() again as we
2011 * made sure that anything with a bad block in range
2012 * will have bi_end_io clear.
2013 */
2014 struct mddev *mddev = r1_bio->mddev;
2015 struct r1conf *conf = mddev->private;
2016 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2017 struct page **pages = get_resync_pages(bio)->pages;
2018 sector_t sect = r1_bio->sector;
2019 int sectors = r1_bio->sectors;
2020 int idx = 0;
2021 struct md_rdev *rdev;
2022
2023 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2024 if (test_bit(FailFast, &rdev->flags)) {
2025 /* Don't try recovering from here - just fail it
2026 * ... unless it is the last working device of course */
2027 md_error(mddev, rdev);
2028 if (test_bit(Faulty, &rdev->flags))
2029 /* Don't try to read from here, but make sure
2030 * put_buf does it's thing
2031 */
2032 bio->bi_end_io = end_sync_write;
2033 }
2034
2035 while(sectors) {
2036 int s = sectors;
2037 int d = r1_bio->read_disk;
2038 int success = 0;
2039 int start;
2040
2041 if (s > (PAGE_SIZE>>9))
2042 s = PAGE_SIZE >> 9;
2043 do {
2044 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2045 /* No rcu protection needed here devices
2046 * can only be removed when no resync is
2047 * active, and resync is currently active
2048 */
2049 rdev = conf->mirrors[d].rdev;
2050 if (sync_page_io(rdev, sect, s<<9,
2051 pages[idx],
2052 REQ_OP_READ, 0, false)) {
2053 success = 1;
2054 break;
2055 }
2056 }
2057 d++;
2058 if (d == conf->raid_disks * 2)
2059 d = 0;
2060 } while (!success && d != r1_bio->read_disk);
2061
2062 if (!success) {
2063 int abort = 0;
2064 /* Cannot read from anywhere, this block is lost.
2065 * Record a bad block on each device. If that doesn't
2066 * work just disable and interrupt the recovery.
2067 * Don't fail devices as that won't really help.
2068 */
2069 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2070 mdname(mddev), bio->bi_bdev,
2071 (unsigned long long)r1_bio->sector);
2072 for (d = 0; d < conf->raid_disks * 2; d++) {
2073 rdev = conf->mirrors[d].rdev;
2074 if (!rdev || test_bit(Faulty, &rdev->flags))
2075 continue;
2076 if (!rdev_set_badblocks(rdev, sect, s, 0))
2077 abort = 1;
2078 }
2079 if (abort) {
2080 conf->recovery_disabled =
2081 mddev->recovery_disabled;
2082 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2083 md_done_sync(mddev, r1_bio->sectors, 0);
2084 put_buf(r1_bio);
2085 return 0;
2086 }
2087 /* Try next page */
2088 sectors -= s;
2089 sect += s;
2090 idx++;
2091 continue;
2092 }
2093
2094 start = d;
2095 /* write it back and re-read */
2096 while (d != r1_bio->read_disk) {
2097 if (d == 0)
2098 d = conf->raid_disks * 2;
2099 d--;
2100 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2101 continue;
2102 rdev = conf->mirrors[d].rdev;
2103 if (r1_sync_page_io(rdev, sect, s,
2104 pages[idx],
2105 WRITE) == 0) {
2106 r1_bio->bios[d]->bi_end_io = NULL;
2107 rdev_dec_pending(rdev, mddev);
2108 }
2109 }
2110 d = start;
2111 while (d != r1_bio->read_disk) {
2112 if (d == 0)
2113 d = conf->raid_disks * 2;
2114 d--;
2115 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2116 continue;
2117 rdev = conf->mirrors[d].rdev;
2118 if (r1_sync_page_io(rdev, sect, s,
2119 pages[idx],
2120 READ) != 0)
2121 atomic_add(s, &rdev->corrected_errors);
2122 }
2123 sectors -= s;
2124 sect += s;
2125 idx ++;
2126 }
2127 set_bit(R1BIO_Uptodate, &r1_bio->state);
2128 bio->bi_status = 0;
2129 return 1;
2130}
2131
2132static void process_checks(struct r1bio *r1_bio)
2133{
2134 /* We have read all readable devices. If we haven't
2135 * got the block, then there is no hope left.
2136 * If we have, then we want to do a comparison
2137 * and skip the write if everything is the same.
2138 * If any blocks failed to read, then we need to
2139 * attempt an over-write
2140 */
2141 struct mddev *mddev = r1_bio->mddev;
2142 struct r1conf *conf = mddev->private;
2143 int primary;
2144 int i;
2145 int vcnt;
2146
2147 /* Fix variable parts of all bios */
2148 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2149 for (i = 0; i < conf->raid_disks * 2; i++) {
2150 blk_status_t status;
2151 struct bio *b = r1_bio->bios[i];
2152 struct resync_pages *rp = get_resync_pages(b);
2153 if (b->bi_end_io != end_sync_read)
2154 continue;
2155 /* fixup the bio for reuse, but preserve errno */
2156 status = b->bi_status;
2157 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2158 b->bi_status = status;
2159 b->bi_iter.bi_sector = r1_bio->sector +
2160 conf->mirrors[i].rdev->data_offset;
2161 b->bi_end_io = end_sync_read;
2162 rp->raid_bio = r1_bio;
2163 b->bi_private = rp;
2164
2165 /* initialize bvec table again */
2166 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2167 }
2168 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2169 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2170 !r1_bio->bios[primary]->bi_status) {
2171 r1_bio->bios[primary]->bi_end_io = NULL;
2172 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2173 break;
2174 }
2175 r1_bio->read_disk = primary;
2176 for (i = 0; i < conf->raid_disks * 2; i++) {
2177 int j = 0;
2178 struct bio *pbio = r1_bio->bios[primary];
2179 struct bio *sbio = r1_bio->bios[i];
2180 blk_status_t status = sbio->bi_status;
2181 struct page **ppages = get_resync_pages(pbio)->pages;
2182 struct page **spages = get_resync_pages(sbio)->pages;
2183 struct bio_vec *bi;
2184 int page_len[RESYNC_PAGES] = { 0 };
2185 struct bvec_iter_all iter_all;
2186
2187 if (sbio->bi_end_io != end_sync_read)
2188 continue;
2189 /* Now we can 'fixup' the error value */
2190 sbio->bi_status = 0;
2191
2192 bio_for_each_segment_all(bi, sbio, iter_all)
2193 page_len[j++] = bi->bv_len;
2194
2195 if (!status) {
2196 for (j = vcnt; j-- ; ) {
2197 if (memcmp(page_address(ppages[j]),
2198 page_address(spages[j]),
2199 page_len[j]))
2200 break;
2201 }
2202 } else
2203 j = 0;
2204 if (j >= 0)
2205 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2206 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2207 && !status)) {
2208 /* No need to write to this device. */
2209 sbio->bi_end_io = NULL;
2210 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2211 continue;
2212 }
2213
2214 bio_copy_data(sbio, pbio);
2215 }
2216}
2217
2218static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2219{
2220 struct r1conf *conf = mddev->private;
2221 int i;
2222 int disks = conf->raid_disks * 2;
2223 struct bio *wbio;
2224
2225 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2226 /* ouch - failed to read all of that. */
2227 if (!fix_sync_read_error(r1_bio))
2228 return;
2229
2230 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2231 process_checks(r1_bio);
2232
2233 /*
2234 * schedule writes
2235 */
2236 atomic_set(&r1_bio->remaining, 1);
2237 for (i = 0; i < disks ; i++) {
2238 wbio = r1_bio->bios[i];
2239 if (wbio->bi_end_io == NULL ||
2240 (wbio->bi_end_io == end_sync_read &&
2241 (i == r1_bio->read_disk ||
2242 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2243 continue;
2244 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2245 abort_sync_write(mddev, r1_bio);
2246 continue;
2247 }
2248
2249 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2250 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2251 wbio->bi_opf |= MD_FAILFAST;
2252
2253 wbio->bi_end_io = end_sync_write;
2254 atomic_inc(&r1_bio->remaining);
2255 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2256
2257 submit_bio_noacct(wbio);
2258 }
2259
2260 put_sync_write_buf(r1_bio, 1);
2261}
2262
2263/*
2264 * This is a kernel thread which:
2265 *
2266 * 1. Retries failed read operations on working mirrors.
2267 * 2. Updates the raid superblock when problems encounter.
2268 * 3. Performs writes following reads for array synchronising.
2269 */
2270
2271static void fix_read_error(struct r1conf *conf, int read_disk,
2272 sector_t sect, int sectors)
2273{
2274 struct mddev *mddev = conf->mddev;
2275 while(sectors) {
2276 int s = sectors;
2277 int d = read_disk;
2278 int success = 0;
2279 int start;
2280 struct md_rdev *rdev;
2281
2282 if (s > (PAGE_SIZE>>9))
2283 s = PAGE_SIZE >> 9;
2284
2285 do {
2286 sector_t first_bad;
2287 int bad_sectors;
2288
2289 rcu_read_lock();
2290 rdev = rcu_dereference(conf->mirrors[d].rdev);
2291 if (rdev &&
2292 (test_bit(In_sync, &rdev->flags) ||
2293 (!test_bit(Faulty, &rdev->flags) &&
2294 rdev->recovery_offset >= sect + s)) &&
2295 is_badblock(rdev, sect, s,
2296 &first_bad, &bad_sectors) == 0) {
2297 atomic_inc(&rdev->nr_pending);
2298 rcu_read_unlock();
2299 if (sync_page_io(rdev, sect, s<<9,
2300 conf->tmppage, REQ_OP_READ, 0, false))
2301 success = 1;
2302 rdev_dec_pending(rdev, mddev);
2303 if (success)
2304 break;
2305 } else
2306 rcu_read_unlock();
2307 d++;
2308 if (d == conf->raid_disks * 2)
2309 d = 0;
2310 } while (!success && d != read_disk);
2311
2312 if (!success) {
2313 /* Cannot read from anywhere - mark it bad */
2314 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2315 if (!rdev_set_badblocks(rdev, sect, s, 0))
2316 md_error(mddev, rdev);
2317 break;
2318 }
2319 /* write it back and re-read */
2320 start = d;
2321 while (d != read_disk) {
2322 if (d==0)
2323 d = conf->raid_disks * 2;
2324 d--;
2325 rcu_read_lock();
2326 rdev = rcu_dereference(conf->mirrors[d].rdev);
2327 if (rdev &&
2328 !test_bit(Faulty, &rdev->flags)) {
2329 atomic_inc(&rdev->nr_pending);
2330 rcu_read_unlock();
2331 r1_sync_page_io(rdev, sect, s,
2332 conf->tmppage, WRITE);
2333 rdev_dec_pending(rdev, mddev);
2334 } else
2335 rcu_read_unlock();
2336 }
2337 d = start;
2338 while (d != read_disk) {
2339 char b[BDEVNAME_SIZE];
2340 if (d==0)
2341 d = conf->raid_disks * 2;
2342 d--;
2343 rcu_read_lock();
2344 rdev = rcu_dereference(conf->mirrors[d].rdev);
2345 if (rdev &&
2346 !test_bit(Faulty, &rdev->flags)) {
2347 atomic_inc(&rdev->nr_pending);
2348 rcu_read_unlock();
2349 if (r1_sync_page_io(rdev, sect, s,
2350 conf->tmppage, READ)) {
2351 atomic_add(s, &rdev->corrected_errors);
2352 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2353 mdname(mddev), s,
2354 (unsigned long long)(sect +
2355 rdev->data_offset),
2356 bdevname(rdev->bdev, b));
2357 }
2358 rdev_dec_pending(rdev, mddev);
2359 } else
2360 rcu_read_unlock();
2361 }
2362 sectors -= s;
2363 sect += s;
2364 }
2365}
2366
2367static int narrow_write_error(struct r1bio *r1_bio, int i)
2368{
2369 struct mddev *mddev = r1_bio->mddev;
2370 struct r1conf *conf = mddev->private;
2371 struct md_rdev *rdev = conf->mirrors[i].rdev;
2372
2373 /* bio has the data to be written to device 'i' where
2374 * we just recently had a write error.
2375 * We repeatedly clone the bio and trim down to one block,
2376 * then try the write. Where the write fails we record
2377 * a bad block.
2378 * It is conceivable that the bio doesn't exactly align with
2379 * blocks. We must handle this somehow.
2380 *
2381 * We currently own a reference on the rdev.
2382 */
2383
2384 int block_sectors;
2385 sector_t sector;
2386 int sectors;
2387 int sect_to_write = r1_bio->sectors;
2388 int ok = 1;
2389
2390 if (rdev->badblocks.shift < 0)
2391 return 0;
2392
2393 block_sectors = roundup(1 << rdev->badblocks.shift,
2394 bdev_logical_block_size(rdev->bdev) >> 9);
2395 sector = r1_bio->sector;
2396 sectors = ((sector + block_sectors)
2397 & ~(sector_t)(block_sectors - 1))
2398 - sector;
2399
2400 while (sect_to_write) {
2401 struct bio *wbio;
2402 if (sectors > sect_to_write)
2403 sectors = sect_to_write;
2404 /* Write at 'sector' for 'sectors'*/
2405
2406 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2407 wbio = bio_alloc_clone(rdev->bdev,
2408 r1_bio->behind_master_bio,
2409 GFP_NOIO, &mddev->bio_set);
2410 } else {
2411 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2412 GFP_NOIO, &mddev->bio_set);
2413 }
2414
2415 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2416 wbio->bi_iter.bi_sector = r1_bio->sector;
2417 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2418
2419 bio_trim(wbio, sector - r1_bio->sector, sectors);
2420 wbio->bi_iter.bi_sector += rdev->data_offset;
2421
2422 if (submit_bio_wait(wbio) < 0)
2423 /* failure! */
2424 ok = rdev_set_badblocks(rdev, sector,
2425 sectors, 0)
2426 && ok;
2427
2428 bio_put(wbio);
2429 sect_to_write -= sectors;
2430 sector += sectors;
2431 sectors = block_sectors;
2432 }
2433 return ok;
2434}
2435
2436static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2437{
2438 int m;
2439 int s = r1_bio->sectors;
2440 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2441 struct md_rdev *rdev = conf->mirrors[m].rdev;
2442 struct bio *bio = r1_bio->bios[m];
2443 if (bio->bi_end_io == NULL)
2444 continue;
2445 if (!bio->bi_status &&
2446 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2447 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2448 }
2449 if (bio->bi_status &&
2450 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2451 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2452 md_error(conf->mddev, rdev);
2453 }
2454 }
2455 put_buf(r1_bio);
2456 md_done_sync(conf->mddev, s, 1);
2457}
2458
2459static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2460{
2461 int m, idx;
2462 bool fail = false;
2463
2464 for (m = 0; m < conf->raid_disks * 2 ; m++)
2465 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2466 struct md_rdev *rdev = conf->mirrors[m].rdev;
2467 rdev_clear_badblocks(rdev,
2468 r1_bio->sector,
2469 r1_bio->sectors, 0);
2470 rdev_dec_pending(rdev, conf->mddev);
2471 } else if (r1_bio->bios[m] != NULL) {
2472 /* This drive got a write error. We need to
2473 * narrow down and record precise write
2474 * errors.
2475 */
2476 fail = true;
2477 if (!narrow_write_error(r1_bio, m)) {
2478 md_error(conf->mddev,
2479 conf->mirrors[m].rdev);
2480 /* an I/O failed, we can't clear the bitmap */
2481 set_bit(R1BIO_Degraded, &r1_bio->state);
2482 }
2483 rdev_dec_pending(conf->mirrors[m].rdev,
2484 conf->mddev);
2485 }
2486 if (fail) {
2487 spin_lock_irq(&conf->device_lock);
2488 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2489 idx = sector_to_idx(r1_bio->sector);
2490 atomic_inc(&conf->nr_queued[idx]);
2491 spin_unlock_irq(&conf->device_lock);
2492 /*
2493 * In case freeze_array() is waiting for condition
2494 * get_unqueued_pending() == extra to be true.
2495 */
2496 wake_up(&conf->wait_barrier);
2497 md_wakeup_thread(conf->mddev->thread);
2498 } else {
2499 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2500 close_write(r1_bio);
2501 raid_end_bio_io(r1_bio);
2502 }
2503}
2504
2505static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2506{
2507 struct mddev *mddev = conf->mddev;
2508 struct bio *bio;
2509 struct md_rdev *rdev;
2510
2511 clear_bit(R1BIO_ReadError, &r1_bio->state);
2512 /* we got a read error. Maybe the drive is bad. Maybe just
2513 * the block and we can fix it.
2514 * We freeze all other IO, and try reading the block from
2515 * other devices. When we find one, we re-write
2516 * and check it that fixes the read error.
2517 * This is all done synchronously while the array is
2518 * frozen
2519 */
2520
2521 bio = r1_bio->bios[r1_bio->read_disk];
2522 bio_put(bio);
2523 r1_bio->bios[r1_bio->read_disk] = NULL;
2524
2525 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2526 if (mddev->ro == 0
2527 && !test_bit(FailFast, &rdev->flags)) {
2528 freeze_array(conf, 1);
2529 fix_read_error(conf, r1_bio->read_disk,
2530 r1_bio->sector, r1_bio->sectors);
2531 unfreeze_array(conf);
2532 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2533 md_error(mddev, rdev);
2534 } else {
2535 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2536 }
2537
2538 rdev_dec_pending(rdev, conf->mddev);
2539 allow_barrier(conf, r1_bio->sector);
2540 bio = r1_bio->master_bio;
2541
2542 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2543 r1_bio->state = 0;
2544 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2545}
2546
2547static void raid1d(struct md_thread *thread)
2548{
2549 struct mddev *mddev = thread->mddev;
2550 struct r1bio *r1_bio;
2551 unsigned long flags;
2552 struct r1conf *conf = mddev->private;
2553 struct list_head *head = &conf->retry_list;
2554 struct blk_plug plug;
2555 int idx;
2556
2557 md_check_recovery(mddev);
2558
2559 if (!list_empty_careful(&conf->bio_end_io_list) &&
2560 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2561 LIST_HEAD(tmp);
2562 spin_lock_irqsave(&conf->device_lock, flags);
2563 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2564 list_splice_init(&conf->bio_end_io_list, &tmp);
2565 spin_unlock_irqrestore(&conf->device_lock, flags);
2566 while (!list_empty(&tmp)) {
2567 r1_bio = list_first_entry(&tmp, struct r1bio,
2568 retry_list);
2569 list_del(&r1_bio->retry_list);
2570 idx = sector_to_idx(r1_bio->sector);
2571 atomic_dec(&conf->nr_queued[idx]);
2572 if (mddev->degraded)
2573 set_bit(R1BIO_Degraded, &r1_bio->state);
2574 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2575 close_write(r1_bio);
2576 raid_end_bio_io(r1_bio);
2577 }
2578 }
2579
2580 blk_start_plug(&plug);
2581 for (;;) {
2582
2583 flush_pending_writes(conf);
2584
2585 spin_lock_irqsave(&conf->device_lock, flags);
2586 if (list_empty(head)) {
2587 spin_unlock_irqrestore(&conf->device_lock, flags);
2588 break;
2589 }
2590 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2591 list_del(head->prev);
2592 idx = sector_to_idx(r1_bio->sector);
2593 atomic_dec(&conf->nr_queued[idx]);
2594 spin_unlock_irqrestore(&conf->device_lock, flags);
2595
2596 mddev = r1_bio->mddev;
2597 conf = mddev->private;
2598 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2599 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2600 test_bit(R1BIO_WriteError, &r1_bio->state))
2601 handle_sync_write_finished(conf, r1_bio);
2602 else
2603 sync_request_write(mddev, r1_bio);
2604 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2605 test_bit(R1BIO_WriteError, &r1_bio->state))
2606 handle_write_finished(conf, r1_bio);
2607 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2608 handle_read_error(conf, r1_bio);
2609 else
2610 WARN_ON_ONCE(1);
2611
2612 cond_resched();
2613 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2614 md_check_recovery(mddev);
2615 }
2616 blk_finish_plug(&plug);
2617}
2618
2619static int init_resync(struct r1conf *conf)
2620{
2621 int buffs;
2622
2623 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2624 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2625
2626 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2627 r1buf_pool_free, conf->poolinfo);
2628}
2629
2630static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2631{
2632 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2633 struct resync_pages *rps;
2634 struct bio *bio;
2635 int i;
2636
2637 for (i = conf->poolinfo->raid_disks; i--; ) {
2638 bio = r1bio->bios[i];
2639 rps = bio->bi_private;
2640 bio_reset(bio, NULL, 0);
2641 bio->bi_private = rps;
2642 }
2643 r1bio->master_bio = NULL;
2644 return r1bio;
2645}
2646
2647/*
2648 * perform a "sync" on one "block"
2649 *
2650 * We need to make sure that no normal I/O request - particularly write
2651 * requests - conflict with active sync requests.
2652 *
2653 * This is achieved by tracking pending requests and a 'barrier' concept
2654 * that can be installed to exclude normal IO requests.
2655 */
2656
2657static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2658 int *skipped)
2659{
2660 struct r1conf *conf = mddev->private;
2661 struct r1bio *r1_bio;
2662 struct bio *bio;
2663 sector_t max_sector, nr_sectors;
2664 int disk = -1;
2665 int i;
2666 int wonly = -1;
2667 int write_targets = 0, read_targets = 0;
2668 sector_t sync_blocks;
2669 int still_degraded = 0;
2670 int good_sectors = RESYNC_SECTORS;
2671 int min_bad = 0; /* number of sectors that are bad in all devices */
2672 int idx = sector_to_idx(sector_nr);
2673 int page_idx = 0;
2674
2675 if (!mempool_initialized(&conf->r1buf_pool))
2676 if (init_resync(conf))
2677 return 0;
2678
2679 max_sector = mddev->dev_sectors;
2680 if (sector_nr >= max_sector) {
2681 /* If we aborted, we need to abort the
2682 * sync on the 'current' bitmap chunk (there will
2683 * only be one in raid1 resync.
2684 * We can find the current addess in mddev->curr_resync
2685 */
2686 if (mddev->curr_resync < max_sector) /* aborted */
2687 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2688 &sync_blocks, 1);
2689 else /* completed sync */
2690 conf->fullsync = 0;
2691
2692 md_bitmap_close_sync(mddev->bitmap);
2693 close_sync(conf);
2694
2695 if (mddev_is_clustered(mddev)) {
2696 conf->cluster_sync_low = 0;
2697 conf->cluster_sync_high = 0;
2698 }
2699 return 0;
2700 }
2701
2702 if (mddev->bitmap == NULL &&
2703 mddev->recovery_cp == MaxSector &&
2704 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2705 conf->fullsync == 0) {
2706 *skipped = 1;
2707 return max_sector - sector_nr;
2708 }
2709 /* before building a request, check if we can skip these blocks..
2710 * This call the bitmap_start_sync doesn't actually record anything
2711 */
2712 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2713 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2714 /* We can skip this block, and probably several more */
2715 *skipped = 1;
2716 return sync_blocks;
2717 }
2718
2719 /*
2720 * If there is non-resync activity waiting for a turn, then let it
2721 * though before starting on this new sync request.
2722 */
2723 if (atomic_read(&conf->nr_waiting[idx]))
2724 schedule_timeout_uninterruptible(1);
2725
2726 /* we are incrementing sector_nr below. To be safe, we check against
2727 * sector_nr + two times RESYNC_SECTORS
2728 */
2729
2730 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2731 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2732
2733
2734 if (raise_barrier(conf, sector_nr))
2735 return 0;
2736
2737 r1_bio = raid1_alloc_init_r1buf(conf);
2738
2739 rcu_read_lock();
2740 /*
2741 * If we get a correctably read error during resync or recovery,
2742 * we might want to read from a different device. So we
2743 * flag all drives that could conceivably be read from for READ,
2744 * and any others (which will be non-In_sync devices) for WRITE.
2745 * If a read fails, we try reading from something else for which READ
2746 * is OK.
2747 */
2748
2749 r1_bio->mddev = mddev;
2750 r1_bio->sector = sector_nr;
2751 r1_bio->state = 0;
2752 set_bit(R1BIO_IsSync, &r1_bio->state);
2753 /* make sure good_sectors won't go across barrier unit boundary */
2754 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2755
2756 for (i = 0; i < conf->raid_disks * 2; i++) {
2757 struct md_rdev *rdev;
2758 bio = r1_bio->bios[i];
2759
2760 rdev = rcu_dereference(conf->mirrors[i].rdev);
2761 if (rdev == NULL ||
2762 test_bit(Faulty, &rdev->flags)) {
2763 if (i < conf->raid_disks)
2764 still_degraded = 1;
2765 } else if (!test_bit(In_sync, &rdev->flags)) {
2766 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2767 bio->bi_end_io = end_sync_write;
2768 write_targets ++;
2769 } else {
2770 /* may need to read from here */
2771 sector_t first_bad = MaxSector;
2772 int bad_sectors;
2773
2774 if (is_badblock(rdev, sector_nr, good_sectors,
2775 &first_bad, &bad_sectors)) {
2776 if (first_bad > sector_nr)
2777 good_sectors = first_bad - sector_nr;
2778 else {
2779 bad_sectors -= (sector_nr - first_bad);
2780 if (min_bad == 0 ||
2781 min_bad > bad_sectors)
2782 min_bad = bad_sectors;
2783 }
2784 }
2785 if (sector_nr < first_bad) {
2786 if (test_bit(WriteMostly, &rdev->flags)) {
2787 if (wonly < 0)
2788 wonly = i;
2789 } else {
2790 if (disk < 0)
2791 disk = i;
2792 }
2793 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2794 bio->bi_end_io = end_sync_read;
2795 read_targets++;
2796 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2797 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2798 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2799 /*
2800 * The device is suitable for reading (InSync),
2801 * but has bad block(s) here. Let's try to correct them,
2802 * if we are doing resync or repair. Otherwise, leave
2803 * this device alone for this sync request.
2804 */
2805 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2806 bio->bi_end_io = end_sync_write;
2807 write_targets++;
2808 }
2809 }
2810 if (rdev && bio->bi_end_io) {
2811 atomic_inc(&rdev->nr_pending);
2812 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2813 bio_set_dev(bio, rdev->bdev);
2814 if (test_bit(FailFast, &rdev->flags))
2815 bio->bi_opf |= MD_FAILFAST;
2816 }
2817 }
2818 rcu_read_unlock();
2819 if (disk < 0)
2820 disk = wonly;
2821 r1_bio->read_disk = disk;
2822
2823 if (read_targets == 0 && min_bad > 0) {
2824 /* These sectors are bad on all InSync devices, so we
2825 * need to mark them bad on all write targets
2826 */
2827 int ok = 1;
2828 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2829 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2830 struct md_rdev *rdev = conf->mirrors[i].rdev;
2831 ok = rdev_set_badblocks(rdev, sector_nr,
2832 min_bad, 0
2833 ) && ok;
2834 }
2835 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2836 *skipped = 1;
2837 put_buf(r1_bio);
2838
2839 if (!ok) {
2840 /* Cannot record the badblocks, so need to
2841 * abort the resync.
2842 * If there are multiple read targets, could just
2843 * fail the really bad ones ???
2844 */
2845 conf->recovery_disabled = mddev->recovery_disabled;
2846 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2847 return 0;
2848 } else
2849 return min_bad;
2850
2851 }
2852 if (min_bad > 0 && min_bad < good_sectors) {
2853 /* only resync enough to reach the next bad->good
2854 * transition */
2855 good_sectors = min_bad;
2856 }
2857
2858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2859 /* extra read targets are also write targets */
2860 write_targets += read_targets-1;
2861
2862 if (write_targets == 0 || read_targets == 0) {
2863 /* There is nowhere to write, so all non-sync
2864 * drives must be failed - so we are finished
2865 */
2866 sector_t rv;
2867 if (min_bad > 0)
2868 max_sector = sector_nr + min_bad;
2869 rv = max_sector - sector_nr;
2870 *skipped = 1;
2871 put_buf(r1_bio);
2872 return rv;
2873 }
2874
2875 if (max_sector > mddev->resync_max)
2876 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2877 if (max_sector > sector_nr + good_sectors)
2878 max_sector = sector_nr + good_sectors;
2879 nr_sectors = 0;
2880 sync_blocks = 0;
2881 do {
2882 struct page *page;
2883 int len = PAGE_SIZE;
2884 if (sector_nr + (len>>9) > max_sector)
2885 len = (max_sector - sector_nr) << 9;
2886 if (len == 0)
2887 break;
2888 if (sync_blocks == 0) {
2889 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2890 &sync_blocks, still_degraded) &&
2891 !conf->fullsync &&
2892 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2893 break;
2894 if ((len >> 9) > sync_blocks)
2895 len = sync_blocks<<9;
2896 }
2897
2898 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2899 struct resync_pages *rp;
2900
2901 bio = r1_bio->bios[i];
2902 rp = get_resync_pages(bio);
2903 if (bio->bi_end_io) {
2904 page = resync_fetch_page(rp, page_idx);
2905
2906 /*
2907 * won't fail because the vec table is big
2908 * enough to hold all these pages
2909 */
2910 bio_add_page(bio, page, len, 0);
2911 }
2912 }
2913 nr_sectors += len>>9;
2914 sector_nr += len>>9;
2915 sync_blocks -= (len>>9);
2916 } while (++page_idx < RESYNC_PAGES);
2917
2918 r1_bio->sectors = nr_sectors;
2919
2920 if (mddev_is_clustered(mddev) &&
2921 conf->cluster_sync_high < sector_nr + nr_sectors) {
2922 conf->cluster_sync_low = mddev->curr_resync_completed;
2923 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2924 /* Send resync message */
2925 md_cluster_ops->resync_info_update(mddev,
2926 conf->cluster_sync_low,
2927 conf->cluster_sync_high);
2928 }
2929
2930 /* For a user-requested sync, we read all readable devices and do a
2931 * compare
2932 */
2933 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2934 atomic_set(&r1_bio->remaining, read_targets);
2935 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2936 bio = r1_bio->bios[i];
2937 if (bio->bi_end_io == end_sync_read) {
2938 read_targets--;
2939 md_sync_acct_bio(bio, nr_sectors);
2940 if (read_targets == 1)
2941 bio->bi_opf &= ~MD_FAILFAST;
2942 submit_bio_noacct(bio);
2943 }
2944 }
2945 } else {
2946 atomic_set(&r1_bio->remaining, 1);
2947 bio = r1_bio->bios[r1_bio->read_disk];
2948 md_sync_acct_bio(bio, nr_sectors);
2949 if (read_targets == 1)
2950 bio->bi_opf &= ~MD_FAILFAST;
2951 submit_bio_noacct(bio);
2952 }
2953 return nr_sectors;
2954}
2955
2956static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2957{
2958 if (sectors)
2959 return sectors;
2960
2961 return mddev->dev_sectors;
2962}
2963
2964static struct r1conf *setup_conf(struct mddev *mddev)
2965{
2966 struct r1conf *conf;
2967 int i;
2968 struct raid1_info *disk;
2969 struct md_rdev *rdev;
2970 int err = -ENOMEM;
2971
2972 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2973 if (!conf)
2974 goto abort;
2975
2976 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2977 sizeof(atomic_t), GFP_KERNEL);
2978 if (!conf->nr_pending)
2979 goto abort;
2980
2981 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2982 sizeof(atomic_t), GFP_KERNEL);
2983 if (!conf->nr_waiting)
2984 goto abort;
2985
2986 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2987 sizeof(atomic_t), GFP_KERNEL);
2988 if (!conf->nr_queued)
2989 goto abort;
2990
2991 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2992 sizeof(atomic_t), GFP_KERNEL);
2993 if (!conf->barrier)
2994 goto abort;
2995
2996 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2997 mddev->raid_disks, 2),
2998 GFP_KERNEL);
2999 if (!conf->mirrors)
3000 goto abort;
3001
3002 conf->tmppage = alloc_page(GFP_KERNEL);
3003 if (!conf->tmppage)
3004 goto abort;
3005
3006 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3007 if (!conf->poolinfo)
3008 goto abort;
3009 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3010 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3011 rbio_pool_free, conf->poolinfo);
3012 if (err)
3013 goto abort;
3014
3015 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3016 if (err)
3017 goto abort;
3018
3019 conf->poolinfo->mddev = mddev;
3020
3021 err = -EINVAL;
3022 spin_lock_init(&conf->device_lock);
3023 rdev_for_each(rdev, mddev) {
3024 int disk_idx = rdev->raid_disk;
3025 if (disk_idx >= mddev->raid_disks
3026 || disk_idx < 0)
3027 continue;
3028 if (test_bit(Replacement, &rdev->flags))
3029 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3030 else
3031 disk = conf->mirrors + disk_idx;
3032
3033 if (disk->rdev)
3034 goto abort;
3035 disk->rdev = rdev;
3036 disk->head_position = 0;
3037 disk->seq_start = MaxSector;
3038 }
3039 conf->raid_disks = mddev->raid_disks;
3040 conf->mddev = mddev;
3041 INIT_LIST_HEAD(&conf->retry_list);
3042 INIT_LIST_HEAD(&conf->bio_end_io_list);
3043
3044 spin_lock_init(&conf->resync_lock);
3045 init_waitqueue_head(&conf->wait_barrier);
3046
3047 bio_list_init(&conf->pending_bio_list);
3048 conf->recovery_disabled = mddev->recovery_disabled - 1;
3049
3050 err = -EIO;
3051 for (i = 0; i < conf->raid_disks * 2; i++) {
3052
3053 disk = conf->mirrors + i;
3054
3055 if (i < conf->raid_disks &&
3056 disk[conf->raid_disks].rdev) {
3057 /* This slot has a replacement. */
3058 if (!disk->rdev) {
3059 /* No original, just make the replacement
3060 * a recovering spare
3061 */
3062 disk->rdev =
3063 disk[conf->raid_disks].rdev;
3064 disk[conf->raid_disks].rdev = NULL;
3065 } else if (!test_bit(In_sync, &disk->rdev->flags))
3066 /* Original is not in_sync - bad */
3067 goto abort;
3068 }
3069
3070 if (!disk->rdev ||
3071 !test_bit(In_sync, &disk->rdev->flags)) {
3072 disk->head_position = 0;
3073 if (disk->rdev &&
3074 (disk->rdev->saved_raid_disk < 0))
3075 conf->fullsync = 1;
3076 }
3077 }
3078
3079 err = -ENOMEM;
3080 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3081 if (!conf->thread)
3082 goto abort;
3083
3084 return conf;
3085
3086 abort:
3087 if (conf) {
3088 mempool_exit(&conf->r1bio_pool);
3089 kfree(conf->mirrors);
3090 safe_put_page(conf->tmppage);
3091 kfree(conf->poolinfo);
3092 kfree(conf->nr_pending);
3093 kfree(conf->nr_waiting);
3094 kfree(conf->nr_queued);
3095 kfree(conf->barrier);
3096 bioset_exit(&conf->bio_split);
3097 kfree(conf);
3098 }
3099 return ERR_PTR(err);
3100}
3101
3102static void raid1_free(struct mddev *mddev, void *priv);
3103static int raid1_run(struct mddev *mddev)
3104{
3105 struct r1conf *conf;
3106 int i;
3107 struct md_rdev *rdev;
3108 int ret;
3109 bool discard_supported = false;
3110
3111 if (mddev->level != 1) {
3112 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3113 mdname(mddev), mddev->level);
3114 return -EIO;
3115 }
3116 if (mddev->reshape_position != MaxSector) {
3117 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3118 mdname(mddev));
3119 return -EIO;
3120 }
3121 if (mddev_init_writes_pending(mddev) < 0)
3122 return -ENOMEM;
3123 /*
3124 * copy the already verified devices into our private RAID1
3125 * bookkeeping area. [whatever we allocate in run(),
3126 * should be freed in raid1_free()]
3127 */
3128 if (mddev->private == NULL)
3129 conf = setup_conf(mddev);
3130 else
3131 conf = mddev->private;
3132
3133 if (IS_ERR(conf))
3134 return PTR_ERR(conf);
3135
3136 if (mddev->queue)
3137 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3138
3139 rdev_for_each(rdev, mddev) {
3140 if (!mddev->gendisk)
3141 continue;
3142 disk_stack_limits(mddev->gendisk, rdev->bdev,
3143 rdev->data_offset << 9);
3144 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3145 discard_supported = true;
3146 }
3147
3148 mddev->degraded = 0;
3149 for (i = 0; i < conf->raid_disks; i++)
3150 if (conf->mirrors[i].rdev == NULL ||
3151 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3152 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3153 mddev->degraded++;
3154 /*
3155 * RAID1 needs at least one disk in active
3156 */
3157 if (conf->raid_disks - mddev->degraded < 1) {
3158 ret = -EINVAL;
3159 goto abort;
3160 }
3161
3162 if (conf->raid_disks - mddev->degraded == 1)
3163 mddev->recovery_cp = MaxSector;
3164
3165 if (mddev->recovery_cp != MaxSector)
3166 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3167 mdname(mddev));
3168 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3169 mdname(mddev), mddev->raid_disks - mddev->degraded,
3170 mddev->raid_disks);
3171
3172 /*
3173 * Ok, everything is just fine now
3174 */
3175 mddev->thread = conf->thread;
3176 conf->thread = NULL;
3177 mddev->private = conf;
3178 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3179
3180 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3181
3182 if (mddev->queue) {
3183 if (discard_supported)
3184 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3185 mddev->queue);
3186 else
3187 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3188 mddev->queue);
3189 }
3190
3191 ret = md_integrity_register(mddev);
3192 if (ret) {
3193 md_unregister_thread(&mddev->thread);
3194 goto abort;
3195 }
3196 return 0;
3197
3198abort:
3199 raid1_free(mddev, conf);
3200 return ret;
3201}
3202
3203static void raid1_free(struct mddev *mddev, void *priv)
3204{
3205 struct r1conf *conf = priv;
3206
3207 mempool_exit(&conf->r1bio_pool);
3208 kfree(conf->mirrors);
3209 safe_put_page(conf->tmppage);
3210 kfree(conf->poolinfo);
3211 kfree(conf->nr_pending);
3212 kfree(conf->nr_waiting);
3213 kfree(conf->nr_queued);
3214 kfree(conf->barrier);
3215 bioset_exit(&conf->bio_split);
3216 kfree(conf);
3217}
3218
3219static int raid1_resize(struct mddev *mddev, sector_t sectors)
3220{
3221 /* no resync is happening, and there is enough space
3222 * on all devices, so we can resize.
3223 * We need to make sure resync covers any new space.
3224 * If the array is shrinking we should possibly wait until
3225 * any io in the removed space completes, but it hardly seems
3226 * worth it.
3227 */
3228 sector_t newsize = raid1_size(mddev, sectors, 0);
3229 if (mddev->external_size &&
3230 mddev->array_sectors > newsize)
3231 return -EINVAL;
3232 if (mddev->bitmap) {
3233 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3234 if (ret)
3235 return ret;
3236 }
3237 md_set_array_sectors(mddev, newsize);
3238 if (sectors > mddev->dev_sectors &&
3239 mddev->recovery_cp > mddev->dev_sectors) {
3240 mddev->recovery_cp = mddev->dev_sectors;
3241 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3242 }
3243 mddev->dev_sectors = sectors;
3244 mddev->resync_max_sectors = sectors;
3245 return 0;
3246}
3247
3248static int raid1_reshape(struct mddev *mddev)
3249{
3250 /* We need to:
3251 * 1/ resize the r1bio_pool
3252 * 2/ resize conf->mirrors
3253 *
3254 * We allocate a new r1bio_pool if we can.
3255 * Then raise a device barrier and wait until all IO stops.
3256 * Then resize conf->mirrors and swap in the new r1bio pool.
3257 *
3258 * At the same time, we "pack" the devices so that all the missing
3259 * devices have the higher raid_disk numbers.
3260 */
3261 mempool_t newpool, oldpool;
3262 struct pool_info *newpoolinfo;
3263 struct raid1_info *newmirrors;
3264 struct r1conf *conf = mddev->private;
3265 int cnt, raid_disks;
3266 unsigned long flags;
3267 int d, d2;
3268 int ret;
3269
3270 memset(&newpool, 0, sizeof(newpool));
3271 memset(&oldpool, 0, sizeof(oldpool));
3272
3273 /* Cannot change chunk_size, layout, or level */
3274 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3275 mddev->layout != mddev->new_layout ||
3276 mddev->level != mddev->new_level) {
3277 mddev->new_chunk_sectors = mddev->chunk_sectors;
3278 mddev->new_layout = mddev->layout;
3279 mddev->new_level = mddev->level;
3280 return -EINVAL;
3281 }
3282
3283 if (!mddev_is_clustered(mddev))
3284 md_allow_write(mddev);
3285
3286 raid_disks = mddev->raid_disks + mddev->delta_disks;
3287
3288 if (raid_disks < conf->raid_disks) {
3289 cnt=0;
3290 for (d= 0; d < conf->raid_disks; d++)
3291 if (conf->mirrors[d].rdev)
3292 cnt++;
3293 if (cnt > raid_disks)
3294 return -EBUSY;
3295 }
3296
3297 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3298 if (!newpoolinfo)
3299 return -ENOMEM;
3300 newpoolinfo->mddev = mddev;
3301 newpoolinfo->raid_disks = raid_disks * 2;
3302
3303 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3304 rbio_pool_free, newpoolinfo);
3305 if (ret) {
3306 kfree(newpoolinfo);
3307 return ret;
3308 }
3309 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3310 raid_disks, 2),
3311 GFP_KERNEL);
3312 if (!newmirrors) {
3313 kfree(newpoolinfo);
3314 mempool_exit(&newpool);
3315 return -ENOMEM;
3316 }
3317
3318 freeze_array(conf, 0);
3319
3320 /* ok, everything is stopped */
3321 oldpool = conf->r1bio_pool;
3322 conf->r1bio_pool = newpool;
3323
3324 for (d = d2 = 0; d < conf->raid_disks; d++) {
3325 struct md_rdev *rdev = conf->mirrors[d].rdev;
3326 if (rdev && rdev->raid_disk != d2) {
3327 sysfs_unlink_rdev(mddev, rdev);
3328 rdev->raid_disk = d2;
3329 sysfs_unlink_rdev(mddev, rdev);
3330 if (sysfs_link_rdev(mddev, rdev))
3331 pr_warn("md/raid1:%s: cannot register rd%d\n",
3332 mdname(mddev), rdev->raid_disk);
3333 }
3334 if (rdev)
3335 newmirrors[d2++].rdev = rdev;
3336 }
3337 kfree(conf->mirrors);
3338 conf->mirrors = newmirrors;
3339 kfree(conf->poolinfo);
3340 conf->poolinfo = newpoolinfo;
3341
3342 spin_lock_irqsave(&conf->device_lock, flags);
3343 mddev->degraded += (raid_disks - conf->raid_disks);
3344 spin_unlock_irqrestore(&conf->device_lock, flags);
3345 conf->raid_disks = mddev->raid_disks = raid_disks;
3346 mddev->delta_disks = 0;
3347
3348 unfreeze_array(conf);
3349
3350 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3351 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3352 md_wakeup_thread(mddev->thread);
3353
3354 mempool_exit(&oldpool);
3355 return 0;
3356}
3357
3358static void raid1_quiesce(struct mddev *mddev, int quiesce)
3359{
3360 struct r1conf *conf = mddev->private;
3361
3362 if (quiesce)
3363 freeze_array(conf, 0);
3364 else
3365 unfreeze_array(conf);
3366}
3367
3368static void *raid1_takeover(struct mddev *mddev)
3369{
3370 /* raid1 can take over:
3371 * raid5 with 2 devices, any layout or chunk size
3372 */
3373 if (mddev->level == 5 && mddev->raid_disks == 2) {
3374 struct r1conf *conf;
3375 mddev->new_level = 1;
3376 mddev->new_layout = 0;
3377 mddev->new_chunk_sectors = 0;
3378 conf = setup_conf(mddev);
3379 if (!IS_ERR(conf)) {
3380 /* Array must appear to be quiesced */
3381 conf->array_frozen = 1;
3382 mddev_clear_unsupported_flags(mddev,
3383 UNSUPPORTED_MDDEV_FLAGS);
3384 }
3385 return conf;
3386 }
3387 return ERR_PTR(-EINVAL);
3388}
3389
3390static struct md_personality raid1_personality =
3391{
3392 .name = "raid1",
3393 .level = 1,
3394 .owner = THIS_MODULE,
3395 .make_request = raid1_make_request,
3396 .run = raid1_run,
3397 .free = raid1_free,
3398 .status = raid1_status,
3399 .error_handler = raid1_error,
3400 .hot_add_disk = raid1_add_disk,
3401 .hot_remove_disk= raid1_remove_disk,
3402 .spare_active = raid1_spare_active,
3403 .sync_request = raid1_sync_request,
3404 .resize = raid1_resize,
3405 .size = raid1_size,
3406 .check_reshape = raid1_reshape,
3407 .quiesce = raid1_quiesce,
3408 .takeover = raid1_takeover,
3409};
3410
3411static int __init raid_init(void)
3412{
3413 return register_md_personality(&raid1_personality);
3414}
3415
3416static void raid_exit(void)
3417{
3418 unregister_md_personality(&raid1_personality);
3419}
3420
3421module_init(raid_init);
3422module_exit(raid_exit);
3423MODULE_LICENSE("GPL");
3424MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3425MODULE_ALIAS("md-personality-3"); /* RAID1 */
3426MODULE_ALIAS("md-raid1");
3427MODULE_ALIAS("md-level-1");