Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47
48static struct dso *machine__kernel_dso(struct machine *machine)
49{
50 return machine->vmlinux_map->dso;
51}
52
53static void dsos__init(struct dsos *dsos)
54{
55 INIT_LIST_HEAD(&dsos->head);
56 dsos->root = RB_ROOT;
57 init_rwsem(&dsos->lock);
58}
59
60static void machine__threads_init(struct machine *machine)
61{
62 int i;
63
64 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 struct threads *threads = &machine->threads[i];
66 threads->entries = RB_ROOT_CACHED;
67 init_rwsem(&threads->lock);
68 threads->nr = 0;
69 INIT_LIST_HEAD(&threads->dead);
70 threads->last_match = NULL;
71 }
72}
73
74static int machine__set_mmap_name(struct machine *machine)
75{
76 if (machine__is_host(machine))
77 machine->mmap_name = strdup("[kernel.kallsyms]");
78 else if (machine__is_default_guest(machine))
79 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 machine->pid) < 0)
82 machine->mmap_name = NULL;
83
84 return machine->mmap_name ? 0 : -ENOMEM;
85}
86
87int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
88{
89 int err = -ENOMEM;
90
91 memset(machine, 0, sizeof(*machine));
92 machine->kmaps = maps__new(machine);
93 if (machine->kmaps == NULL)
94 return -ENOMEM;
95
96 RB_CLEAR_NODE(&machine->rb_node);
97 dsos__init(&machine->dsos);
98
99 machine__threads_init(machine);
100
101 machine->vdso_info = NULL;
102 machine->env = NULL;
103
104 machine->pid = pid;
105
106 machine->id_hdr_size = 0;
107 machine->kptr_restrict_warned = false;
108 machine->comm_exec = false;
109 machine->kernel_start = 0;
110 machine->vmlinux_map = NULL;
111
112 machine->root_dir = strdup(root_dir);
113 if (machine->root_dir == NULL)
114 goto out;
115
116 if (machine__set_mmap_name(machine))
117 goto out;
118
119 if (pid != HOST_KERNEL_ID) {
120 struct thread *thread = machine__findnew_thread(machine, -1,
121 pid);
122 char comm[64];
123
124 if (thread == NULL)
125 goto out;
126
127 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
128 thread__set_comm(thread, comm, 0);
129 thread__put(thread);
130 }
131
132 machine->current_tid = NULL;
133 err = 0;
134
135out:
136 if (err) {
137 zfree(&machine->kmaps);
138 zfree(&machine->root_dir);
139 zfree(&machine->mmap_name);
140 }
141 return 0;
142}
143
144struct machine *machine__new_host(void)
145{
146 struct machine *machine = malloc(sizeof(*machine));
147
148 if (machine != NULL) {
149 machine__init(machine, "", HOST_KERNEL_ID);
150
151 if (machine__create_kernel_maps(machine) < 0)
152 goto out_delete;
153 }
154
155 return machine;
156out_delete:
157 free(machine);
158 return NULL;
159}
160
161struct machine *machine__new_kallsyms(void)
162{
163 struct machine *machine = machine__new_host();
164 /*
165 * FIXME:
166 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
167 * ask for not using the kcore parsing code, once this one is fixed
168 * to create a map per module.
169 */
170 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
171 machine__delete(machine);
172 machine = NULL;
173 }
174
175 return machine;
176}
177
178static void dsos__purge(struct dsos *dsos)
179{
180 struct dso *pos, *n;
181
182 down_write(&dsos->lock);
183
184 list_for_each_entry_safe(pos, n, &dsos->head, node) {
185 RB_CLEAR_NODE(&pos->rb_node);
186 pos->root = NULL;
187 list_del_init(&pos->node);
188 dso__put(pos);
189 }
190
191 up_write(&dsos->lock);
192}
193
194static void dsos__exit(struct dsos *dsos)
195{
196 dsos__purge(dsos);
197 exit_rwsem(&dsos->lock);
198}
199
200void machine__delete_threads(struct machine *machine)
201{
202 struct rb_node *nd;
203 int i;
204
205 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
206 struct threads *threads = &machine->threads[i];
207 down_write(&threads->lock);
208 nd = rb_first_cached(&threads->entries);
209 while (nd) {
210 struct thread *t = rb_entry(nd, struct thread, rb_node);
211
212 nd = rb_next(nd);
213 __machine__remove_thread(machine, t, false);
214 }
215 up_write(&threads->lock);
216 }
217}
218
219void machine__exit(struct machine *machine)
220{
221 int i;
222
223 if (machine == NULL)
224 return;
225
226 machine__destroy_kernel_maps(machine);
227 maps__delete(machine->kmaps);
228 dsos__exit(&machine->dsos);
229 machine__exit_vdso(machine);
230 zfree(&machine->root_dir);
231 zfree(&machine->mmap_name);
232 zfree(&machine->current_tid);
233
234 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
235 struct threads *threads = &machine->threads[i];
236 struct thread *thread, *n;
237 /*
238 * Forget about the dead, at this point whatever threads were
239 * left in the dead lists better have a reference count taken
240 * by who is using them, and then, when they drop those references
241 * and it finally hits zero, thread__put() will check and see that
242 * its not in the dead threads list and will not try to remove it
243 * from there, just calling thread__delete() straight away.
244 */
245 list_for_each_entry_safe(thread, n, &threads->dead, node)
246 list_del_init(&thread->node);
247
248 exit_rwsem(&threads->lock);
249 }
250}
251
252void machine__delete(struct machine *machine)
253{
254 if (machine) {
255 machine__exit(machine);
256 free(machine);
257 }
258}
259
260void machines__init(struct machines *machines)
261{
262 machine__init(&machines->host, "", HOST_KERNEL_ID);
263 machines->guests = RB_ROOT_CACHED;
264}
265
266void machines__exit(struct machines *machines)
267{
268 machine__exit(&machines->host);
269 /* XXX exit guest */
270}
271
272struct machine *machines__add(struct machines *machines, pid_t pid,
273 const char *root_dir)
274{
275 struct rb_node **p = &machines->guests.rb_root.rb_node;
276 struct rb_node *parent = NULL;
277 struct machine *pos, *machine = malloc(sizeof(*machine));
278 bool leftmost = true;
279
280 if (machine == NULL)
281 return NULL;
282
283 if (machine__init(machine, root_dir, pid) != 0) {
284 free(machine);
285 return NULL;
286 }
287
288 while (*p != NULL) {
289 parent = *p;
290 pos = rb_entry(parent, struct machine, rb_node);
291 if (pid < pos->pid)
292 p = &(*p)->rb_left;
293 else {
294 p = &(*p)->rb_right;
295 leftmost = false;
296 }
297 }
298
299 rb_link_node(&machine->rb_node, parent, p);
300 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
301
302 return machine;
303}
304
305void machines__set_comm_exec(struct machines *machines, bool comm_exec)
306{
307 struct rb_node *nd;
308
309 machines->host.comm_exec = comm_exec;
310
311 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
312 struct machine *machine = rb_entry(nd, struct machine, rb_node);
313
314 machine->comm_exec = comm_exec;
315 }
316}
317
318struct machine *machines__find(struct machines *machines, pid_t pid)
319{
320 struct rb_node **p = &machines->guests.rb_root.rb_node;
321 struct rb_node *parent = NULL;
322 struct machine *machine;
323 struct machine *default_machine = NULL;
324
325 if (pid == HOST_KERNEL_ID)
326 return &machines->host;
327
328 while (*p != NULL) {
329 parent = *p;
330 machine = rb_entry(parent, struct machine, rb_node);
331 if (pid < machine->pid)
332 p = &(*p)->rb_left;
333 else if (pid > machine->pid)
334 p = &(*p)->rb_right;
335 else
336 return machine;
337 if (!machine->pid)
338 default_machine = machine;
339 }
340
341 return default_machine;
342}
343
344struct machine *machines__findnew(struct machines *machines, pid_t pid)
345{
346 char path[PATH_MAX];
347 const char *root_dir = "";
348 struct machine *machine = machines__find(machines, pid);
349
350 if (machine && (machine->pid == pid))
351 goto out;
352
353 if ((pid != HOST_KERNEL_ID) &&
354 (pid != DEFAULT_GUEST_KERNEL_ID) &&
355 (symbol_conf.guestmount)) {
356 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
357 if (access(path, R_OK)) {
358 static struct strlist *seen;
359
360 if (!seen)
361 seen = strlist__new(NULL, NULL);
362
363 if (!strlist__has_entry(seen, path)) {
364 pr_err("Can't access file %s\n", path);
365 strlist__add(seen, path);
366 }
367 machine = NULL;
368 goto out;
369 }
370 root_dir = path;
371 }
372
373 machine = machines__add(machines, pid, root_dir);
374out:
375 return machine;
376}
377
378struct machine *machines__find_guest(struct machines *machines, pid_t pid)
379{
380 struct machine *machine = machines__find(machines, pid);
381
382 if (!machine)
383 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
384 return machine;
385}
386
387void machines__process_guests(struct machines *machines,
388 machine__process_t process, void *data)
389{
390 struct rb_node *nd;
391
392 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
393 struct machine *pos = rb_entry(nd, struct machine, rb_node);
394 process(pos, data);
395 }
396}
397
398void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
399{
400 struct rb_node *node;
401 struct machine *machine;
402
403 machines->host.id_hdr_size = id_hdr_size;
404
405 for (node = rb_first_cached(&machines->guests); node;
406 node = rb_next(node)) {
407 machine = rb_entry(node, struct machine, rb_node);
408 machine->id_hdr_size = id_hdr_size;
409 }
410
411 return;
412}
413
414static void machine__update_thread_pid(struct machine *machine,
415 struct thread *th, pid_t pid)
416{
417 struct thread *leader;
418
419 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
420 return;
421
422 th->pid_ = pid;
423
424 if (th->pid_ == th->tid)
425 return;
426
427 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
428 if (!leader)
429 goto out_err;
430
431 if (!leader->maps)
432 leader->maps = maps__new(machine);
433
434 if (!leader->maps)
435 goto out_err;
436
437 if (th->maps == leader->maps)
438 return;
439
440 if (th->maps) {
441 /*
442 * Maps are created from MMAP events which provide the pid and
443 * tid. Consequently there never should be any maps on a thread
444 * with an unknown pid. Just print an error if there are.
445 */
446 if (!maps__empty(th->maps))
447 pr_err("Discarding thread maps for %d:%d\n",
448 th->pid_, th->tid);
449 maps__put(th->maps);
450 }
451
452 th->maps = maps__get(leader->maps);
453out_put:
454 thread__put(leader);
455 return;
456out_err:
457 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
458 goto out_put;
459}
460
461/*
462 * Front-end cache - TID lookups come in blocks,
463 * so most of the time we dont have to look up
464 * the full rbtree:
465 */
466static struct thread*
467__threads__get_last_match(struct threads *threads, struct machine *machine,
468 int pid, int tid)
469{
470 struct thread *th;
471
472 th = threads->last_match;
473 if (th != NULL) {
474 if (th->tid == tid) {
475 machine__update_thread_pid(machine, th, pid);
476 return thread__get(th);
477 }
478
479 threads->last_match = NULL;
480 }
481
482 return NULL;
483}
484
485static struct thread*
486threads__get_last_match(struct threads *threads, struct machine *machine,
487 int pid, int tid)
488{
489 struct thread *th = NULL;
490
491 if (perf_singlethreaded)
492 th = __threads__get_last_match(threads, machine, pid, tid);
493
494 return th;
495}
496
497static void
498__threads__set_last_match(struct threads *threads, struct thread *th)
499{
500 threads->last_match = th;
501}
502
503static void
504threads__set_last_match(struct threads *threads, struct thread *th)
505{
506 if (perf_singlethreaded)
507 __threads__set_last_match(threads, th);
508}
509
510/*
511 * Caller must eventually drop thread->refcnt returned with a successful
512 * lookup/new thread inserted.
513 */
514static struct thread *____machine__findnew_thread(struct machine *machine,
515 struct threads *threads,
516 pid_t pid, pid_t tid,
517 bool create)
518{
519 struct rb_node **p = &threads->entries.rb_root.rb_node;
520 struct rb_node *parent = NULL;
521 struct thread *th;
522 bool leftmost = true;
523
524 th = threads__get_last_match(threads, machine, pid, tid);
525 if (th)
526 return th;
527
528 while (*p != NULL) {
529 parent = *p;
530 th = rb_entry(parent, struct thread, rb_node);
531
532 if (th->tid == tid) {
533 threads__set_last_match(threads, th);
534 machine__update_thread_pid(machine, th, pid);
535 return thread__get(th);
536 }
537
538 if (tid < th->tid)
539 p = &(*p)->rb_left;
540 else {
541 p = &(*p)->rb_right;
542 leftmost = false;
543 }
544 }
545
546 if (!create)
547 return NULL;
548
549 th = thread__new(pid, tid);
550 if (th != NULL) {
551 rb_link_node(&th->rb_node, parent, p);
552 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
553
554 /*
555 * We have to initialize maps separately after rb tree is updated.
556 *
557 * The reason is that we call machine__findnew_thread
558 * within thread__init_maps to find the thread
559 * leader and that would screwed the rb tree.
560 */
561 if (thread__init_maps(th, machine)) {
562 rb_erase_cached(&th->rb_node, &threads->entries);
563 RB_CLEAR_NODE(&th->rb_node);
564 thread__put(th);
565 return NULL;
566 }
567 /*
568 * It is now in the rbtree, get a ref
569 */
570 thread__get(th);
571 threads__set_last_match(threads, th);
572 ++threads->nr;
573 }
574
575 return th;
576}
577
578struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
579{
580 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
581}
582
583struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
584 pid_t tid)
585{
586 struct threads *threads = machine__threads(machine, tid);
587 struct thread *th;
588
589 down_write(&threads->lock);
590 th = __machine__findnew_thread(machine, pid, tid);
591 up_write(&threads->lock);
592 return th;
593}
594
595struct thread *machine__find_thread(struct machine *machine, pid_t pid,
596 pid_t tid)
597{
598 struct threads *threads = machine__threads(machine, tid);
599 struct thread *th;
600
601 down_read(&threads->lock);
602 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
603 up_read(&threads->lock);
604 return th;
605}
606
607/*
608 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
609 * So here a single thread is created for that, but actually there is a separate
610 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
611 * is only 1. That causes problems for some tools, requiring workarounds. For
612 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
613 */
614struct thread *machine__idle_thread(struct machine *machine)
615{
616 struct thread *thread = machine__findnew_thread(machine, 0, 0);
617
618 if (!thread || thread__set_comm(thread, "swapper", 0) ||
619 thread__set_namespaces(thread, 0, NULL))
620 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
621
622 return thread;
623}
624
625struct comm *machine__thread_exec_comm(struct machine *machine,
626 struct thread *thread)
627{
628 if (machine->comm_exec)
629 return thread__exec_comm(thread);
630 else
631 return thread__comm(thread);
632}
633
634int machine__process_comm_event(struct machine *machine, union perf_event *event,
635 struct perf_sample *sample)
636{
637 struct thread *thread = machine__findnew_thread(machine,
638 event->comm.pid,
639 event->comm.tid);
640 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
641 int err = 0;
642
643 if (exec)
644 machine->comm_exec = true;
645
646 if (dump_trace)
647 perf_event__fprintf_comm(event, stdout);
648
649 if (thread == NULL ||
650 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
651 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
652 err = -1;
653 }
654
655 thread__put(thread);
656
657 return err;
658}
659
660int machine__process_namespaces_event(struct machine *machine __maybe_unused,
661 union perf_event *event,
662 struct perf_sample *sample __maybe_unused)
663{
664 struct thread *thread = machine__findnew_thread(machine,
665 event->namespaces.pid,
666 event->namespaces.tid);
667 int err = 0;
668
669 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
670 "\nWARNING: kernel seems to support more namespaces than perf"
671 " tool.\nTry updating the perf tool..\n\n");
672
673 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
674 "\nWARNING: perf tool seems to support more namespaces than"
675 " the kernel.\nTry updating the kernel..\n\n");
676
677 if (dump_trace)
678 perf_event__fprintf_namespaces(event, stdout);
679
680 if (thread == NULL ||
681 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
682 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
683 err = -1;
684 }
685
686 thread__put(thread);
687
688 return err;
689}
690
691int machine__process_cgroup_event(struct machine *machine,
692 union perf_event *event,
693 struct perf_sample *sample __maybe_unused)
694{
695 struct cgroup *cgrp;
696
697 if (dump_trace)
698 perf_event__fprintf_cgroup(event, stdout);
699
700 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
701 if (cgrp == NULL)
702 return -ENOMEM;
703
704 return 0;
705}
706
707int machine__process_lost_event(struct machine *machine __maybe_unused,
708 union perf_event *event, struct perf_sample *sample __maybe_unused)
709{
710 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
711 event->lost.id, event->lost.lost);
712 return 0;
713}
714
715int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
716 union perf_event *event, struct perf_sample *sample)
717{
718 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
719 sample->id, event->lost_samples.lost);
720 return 0;
721}
722
723static struct dso *machine__findnew_module_dso(struct machine *machine,
724 struct kmod_path *m,
725 const char *filename)
726{
727 struct dso *dso;
728
729 down_write(&machine->dsos.lock);
730
731 dso = __dsos__find(&machine->dsos, m->name, true);
732 if (!dso) {
733 dso = __dsos__addnew(&machine->dsos, m->name);
734 if (dso == NULL)
735 goto out_unlock;
736
737 dso__set_module_info(dso, m, machine);
738 dso__set_long_name(dso, strdup(filename), true);
739 dso->kernel = DSO_SPACE__KERNEL;
740 }
741
742 dso__get(dso);
743out_unlock:
744 up_write(&machine->dsos.lock);
745 return dso;
746}
747
748int machine__process_aux_event(struct machine *machine __maybe_unused,
749 union perf_event *event)
750{
751 if (dump_trace)
752 perf_event__fprintf_aux(event, stdout);
753 return 0;
754}
755
756int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
757 union perf_event *event)
758{
759 if (dump_trace)
760 perf_event__fprintf_itrace_start(event, stdout);
761 return 0;
762}
763
764int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
765 union perf_event *event)
766{
767 if (dump_trace)
768 perf_event__fprintf_aux_output_hw_id(event, stdout);
769 return 0;
770}
771
772int machine__process_switch_event(struct machine *machine __maybe_unused,
773 union perf_event *event)
774{
775 if (dump_trace)
776 perf_event__fprintf_switch(event, stdout);
777 return 0;
778}
779
780static int machine__process_ksymbol_register(struct machine *machine,
781 union perf_event *event,
782 struct perf_sample *sample __maybe_unused)
783{
784 struct symbol *sym;
785 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
786
787 if (!map) {
788 struct dso *dso = dso__new(event->ksymbol.name);
789
790 if (dso) {
791 dso->kernel = DSO_SPACE__KERNEL;
792 map = map__new2(0, dso);
793 dso__put(dso);
794 }
795
796 if (!dso || !map) {
797 return -ENOMEM;
798 }
799
800 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
801 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
802 map->dso->data.file_size = event->ksymbol.len;
803 dso__set_loaded(map->dso);
804 }
805
806 map->start = event->ksymbol.addr;
807 map->end = map->start + event->ksymbol.len;
808 maps__insert(machine__kernel_maps(machine), map);
809 map__put(map);
810 dso__set_loaded(dso);
811
812 if (is_bpf_image(event->ksymbol.name)) {
813 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
814 dso__set_long_name(dso, "", false);
815 }
816 }
817
818 sym = symbol__new(map->map_ip(map, map->start),
819 event->ksymbol.len,
820 0, 0, event->ksymbol.name);
821 if (!sym)
822 return -ENOMEM;
823 dso__insert_symbol(map->dso, sym);
824 return 0;
825}
826
827static int machine__process_ksymbol_unregister(struct machine *machine,
828 union perf_event *event,
829 struct perf_sample *sample __maybe_unused)
830{
831 struct symbol *sym;
832 struct map *map;
833
834 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
835 if (!map)
836 return 0;
837
838 if (map != machine->vmlinux_map)
839 maps__remove(machine__kernel_maps(machine), map);
840 else {
841 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
842 if (sym)
843 dso__delete_symbol(map->dso, sym);
844 }
845
846 return 0;
847}
848
849int machine__process_ksymbol(struct machine *machine __maybe_unused,
850 union perf_event *event,
851 struct perf_sample *sample)
852{
853 if (dump_trace)
854 perf_event__fprintf_ksymbol(event, stdout);
855
856 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
857 return machine__process_ksymbol_unregister(machine, event,
858 sample);
859 return machine__process_ksymbol_register(machine, event, sample);
860}
861
862int machine__process_text_poke(struct machine *machine, union perf_event *event,
863 struct perf_sample *sample __maybe_unused)
864{
865 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
866 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
867
868 if (dump_trace)
869 perf_event__fprintf_text_poke(event, machine, stdout);
870
871 if (!event->text_poke.new_len)
872 return 0;
873
874 if (cpumode != PERF_RECORD_MISC_KERNEL) {
875 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
876 return 0;
877 }
878
879 if (map && map->dso) {
880 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
881 int ret;
882
883 /*
884 * Kernel maps might be changed when loading symbols so loading
885 * must be done prior to using kernel maps.
886 */
887 map__load(map);
888 ret = dso__data_write_cache_addr(map->dso, map, machine,
889 event->text_poke.addr,
890 new_bytes,
891 event->text_poke.new_len);
892 if (ret != event->text_poke.new_len)
893 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
894 event->text_poke.addr);
895 } else {
896 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
897 event->text_poke.addr);
898 }
899
900 return 0;
901}
902
903static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
904 const char *filename)
905{
906 struct map *map = NULL;
907 struct kmod_path m;
908 struct dso *dso;
909
910 if (kmod_path__parse_name(&m, filename))
911 return NULL;
912
913 dso = machine__findnew_module_dso(machine, &m, filename);
914 if (dso == NULL)
915 goto out;
916
917 map = map__new2(start, dso);
918 if (map == NULL)
919 goto out;
920
921 maps__insert(machine__kernel_maps(machine), map);
922
923 /* Put the map here because maps__insert already got it */
924 map__put(map);
925out:
926 /* put the dso here, corresponding to machine__findnew_module_dso */
927 dso__put(dso);
928 zfree(&m.name);
929 return map;
930}
931
932size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
933{
934 struct rb_node *nd;
935 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
936
937 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
938 struct machine *pos = rb_entry(nd, struct machine, rb_node);
939 ret += __dsos__fprintf(&pos->dsos.head, fp);
940 }
941
942 return ret;
943}
944
945size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
946 bool (skip)(struct dso *dso, int parm), int parm)
947{
948 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
949}
950
951size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
952 bool (skip)(struct dso *dso, int parm), int parm)
953{
954 struct rb_node *nd;
955 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
956
957 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
958 struct machine *pos = rb_entry(nd, struct machine, rb_node);
959 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
960 }
961 return ret;
962}
963
964size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
965{
966 int i;
967 size_t printed = 0;
968 struct dso *kdso = machine__kernel_dso(machine);
969
970 if (kdso->has_build_id) {
971 char filename[PATH_MAX];
972 if (dso__build_id_filename(kdso, filename, sizeof(filename),
973 false))
974 printed += fprintf(fp, "[0] %s\n", filename);
975 }
976
977 for (i = 0; i < vmlinux_path__nr_entries; ++i)
978 printed += fprintf(fp, "[%d] %s\n",
979 i + kdso->has_build_id, vmlinux_path[i]);
980
981 return printed;
982}
983
984size_t machine__fprintf(struct machine *machine, FILE *fp)
985{
986 struct rb_node *nd;
987 size_t ret;
988 int i;
989
990 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
991 struct threads *threads = &machine->threads[i];
992
993 down_read(&threads->lock);
994
995 ret = fprintf(fp, "Threads: %u\n", threads->nr);
996
997 for (nd = rb_first_cached(&threads->entries); nd;
998 nd = rb_next(nd)) {
999 struct thread *pos = rb_entry(nd, struct thread, rb_node);
1000
1001 ret += thread__fprintf(pos, fp);
1002 }
1003
1004 up_read(&threads->lock);
1005 }
1006 return ret;
1007}
1008
1009static struct dso *machine__get_kernel(struct machine *machine)
1010{
1011 const char *vmlinux_name = machine->mmap_name;
1012 struct dso *kernel;
1013
1014 if (machine__is_host(machine)) {
1015 if (symbol_conf.vmlinux_name)
1016 vmlinux_name = symbol_conf.vmlinux_name;
1017
1018 kernel = machine__findnew_kernel(machine, vmlinux_name,
1019 "[kernel]", DSO_SPACE__KERNEL);
1020 } else {
1021 if (symbol_conf.default_guest_vmlinux_name)
1022 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1023
1024 kernel = machine__findnew_kernel(machine, vmlinux_name,
1025 "[guest.kernel]",
1026 DSO_SPACE__KERNEL_GUEST);
1027 }
1028
1029 if (kernel != NULL && (!kernel->has_build_id))
1030 dso__read_running_kernel_build_id(kernel, machine);
1031
1032 return kernel;
1033}
1034
1035struct process_args {
1036 u64 start;
1037};
1038
1039void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1040 size_t bufsz)
1041{
1042 if (machine__is_default_guest(machine))
1043 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1044 else
1045 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1046}
1047
1048const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1049
1050/* Figure out the start address of kernel map from /proc/kallsyms.
1051 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1052 * symbol_name if it's not that important.
1053 */
1054static int machine__get_running_kernel_start(struct machine *machine,
1055 const char **symbol_name,
1056 u64 *start, u64 *end)
1057{
1058 char filename[PATH_MAX];
1059 int i, err = -1;
1060 const char *name;
1061 u64 addr = 0;
1062
1063 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1064
1065 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1066 return 0;
1067
1068 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1069 err = kallsyms__get_function_start(filename, name, &addr);
1070 if (!err)
1071 break;
1072 }
1073
1074 if (err)
1075 return -1;
1076
1077 if (symbol_name)
1078 *symbol_name = name;
1079
1080 *start = addr;
1081
1082 err = kallsyms__get_function_start(filename, "_etext", &addr);
1083 if (!err)
1084 *end = addr;
1085
1086 return 0;
1087}
1088
1089int machine__create_extra_kernel_map(struct machine *machine,
1090 struct dso *kernel,
1091 struct extra_kernel_map *xm)
1092{
1093 struct kmap *kmap;
1094 struct map *map;
1095
1096 map = map__new2(xm->start, kernel);
1097 if (!map)
1098 return -1;
1099
1100 map->end = xm->end;
1101 map->pgoff = xm->pgoff;
1102
1103 kmap = map__kmap(map);
1104
1105 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1106
1107 maps__insert(machine__kernel_maps(machine), map);
1108
1109 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1110 kmap->name, map->start, map->end);
1111
1112 map__put(map);
1113
1114 return 0;
1115}
1116
1117static u64 find_entry_trampoline(struct dso *dso)
1118{
1119 /* Duplicates are removed so lookup all aliases */
1120 const char *syms[] = {
1121 "_entry_trampoline",
1122 "__entry_trampoline_start",
1123 "entry_SYSCALL_64_trampoline",
1124 };
1125 struct symbol *sym = dso__first_symbol(dso);
1126 unsigned int i;
1127
1128 for (; sym; sym = dso__next_symbol(sym)) {
1129 if (sym->binding != STB_GLOBAL)
1130 continue;
1131 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1132 if (!strcmp(sym->name, syms[i]))
1133 return sym->start;
1134 }
1135 }
1136
1137 return 0;
1138}
1139
1140/*
1141 * These values can be used for kernels that do not have symbols for the entry
1142 * trampolines in kallsyms.
1143 */
1144#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1145#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1146#define X86_64_ENTRY_TRAMPOLINE 0x6000
1147
1148/* Map x86_64 PTI entry trampolines */
1149int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150 struct dso *kernel)
1151{
1152 struct maps *kmaps = machine__kernel_maps(machine);
1153 int nr_cpus_avail, cpu;
1154 bool found = false;
1155 struct map *map;
1156 u64 pgoff;
1157
1158 /*
1159 * In the vmlinux case, pgoff is a virtual address which must now be
1160 * mapped to a vmlinux offset.
1161 */
1162 maps__for_each_entry(kmaps, map) {
1163 struct kmap *kmap = __map__kmap(map);
1164 struct map *dest_map;
1165
1166 if (!kmap || !is_entry_trampoline(kmap->name))
1167 continue;
1168
1169 dest_map = maps__find(kmaps, map->pgoff);
1170 if (dest_map != map)
1171 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1172 found = true;
1173 }
1174 if (found || machine->trampolines_mapped)
1175 return 0;
1176
1177 pgoff = find_entry_trampoline(kernel);
1178 if (!pgoff)
1179 return 0;
1180
1181 nr_cpus_avail = machine__nr_cpus_avail(machine);
1182
1183 /* Add a 1 page map for each CPU's entry trampoline */
1184 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1185 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1186 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1187 X86_64_ENTRY_TRAMPOLINE;
1188 struct extra_kernel_map xm = {
1189 .start = va,
1190 .end = va + page_size,
1191 .pgoff = pgoff,
1192 };
1193
1194 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1195
1196 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1197 return -1;
1198 }
1199
1200 machine->trampolines_mapped = nr_cpus_avail;
1201
1202 return 0;
1203}
1204
1205int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1206 struct dso *kernel __maybe_unused)
1207{
1208 return 0;
1209}
1210
1211static int
1212__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1213{
1214 /* In case of renewal the kernel map, destroy previous one */
1215 machine__destroy_kernel_maps(machine);
1216
1217 machine->vmlinux_map = map__new2(0, kernel);
1218 if (machine->vmlinux_map == NULL)
1219 return -1;
1220
1221 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1222 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1223 return 0;
1224}
1225
1226void machine__destroy_kernel_maps(struct machine *machine)
1227{
1228 struct kmap *kmap;
1229 struct map *map = machine__kernel_map(machine);
1230
1231 if (map == NULL)
1232 return;
1233
1234 kmap = map__kmap(map);
1235 maps__remove(machine__kernel_maps(machine), map);
1236 if (kmap && kmap->ref_reloc_sym) {
1237 zfree((char **)&kmap->ref_reloc_sym->name);
1238 zfree(&kmap->ref_reloc_sym);
1239 }
1240
1241 map__zput(machine->vmlinux_map);
1242}
1243
1244int machines__create_guest_kernel_maps(struct machines *machines)
1245{
1246 int ret = 0;
1247 struct dirent **namelist = NULL;
1248 int i, items = 0;
1249 char path[PATH_MAX];
1250 pid_t pid;
1251 char *endp;
1252
1253 if (symbol_conf.default_guest_vmlinux_name ||
1254 symbol_conf.default_guest_modules ||
1255 symbol_conf.default_guest_kallsyms) {
1256 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1257 }
1258
1259 if (symbol_conf.guestmount) {
1260 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1261 if (items <= 0)
1262 return -ENOENT;
1263 for (i = 0; i < items; i++) {
1264 if (!isdigit(namelist[i]->d_name[0])) {
1265 /* Filter out . and .. */
1266 continue;
1267 }
1268 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1269 if ((*endp != '\0') ||
1270 (endp == namelist[i]->d_name) ||
1271 (errno == ERANGE)) {
1272 pr_debug("invalid directory (%s). Skipping.\n",
1273 namelist[i]->d_name);
1274 continue;
1275 }
1276 sprintf(path, "%s/%s/proc/kallsyms",
1277 symbol_conf.guestmount,
1278 namelist[i]->d_name);
1279 ret = access(path, R_OK);
1280 if (ret) {
1281 pr_debug("Can't access file %s\n", path);
1282 goto failure;
1283 }
1284 machines__create_kernel_maps(machines, pid);
1285 }
1286failure:
1287 free(namelist);
1288 }
1289
1290 return ret;
1291}
1292
1293void machines__destroy_kernel_maps(struct machines *machines)
1294{
1295 struct rb_node *next = rb_first_cached(&machines->guests);
1296
1297 machine__destroy_kernel_maps(&machines->host);
1298
1299 while (next) {
1300 struct machine *pos = rb_entry(next, struct machine, rb_node);
1301
1302 next = rb_next(&pos->rb_node);
1303 rb_erase_cached(&pos->rb_node, &machines->guests);
1304 machine__delete(pos);
1305 }
1306}
1307
1308int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1309{
1310 struct machine *machine = machines__findnew(machines, pid);
1311
1312 if (machine == NULL)
1313 return -1;
1314
1315 return machine__create_kernel_maps(machine);
1316}
1317
1318int machine__load_kallsyms(struct machine *machine, const char *filename)
1319{
1320 struct map *map = machine__kernel_map(machine);
1321 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1322
1323 if (ret > 0) {
1324 dso__set_loaded(map->dso);
1325 /*
1326 * Since /proc/kallsyms will have multiple sessions for the
1327 * kernel, with modules between them, fixup the end of all
1328 * sections.
1329 */
1330 maps__fixup_end(machine__kernel_maps(machine));
1331 }
1332
1333 return ret;
1334}
1335
1336int machine__load_vmlinux_path(struct machine *machine)
1337{
1338 struct map *map = machine__kernel_map(machine);
1339 int ret = dso__load_vmlinux_path(map->dso, map);
1340
1341 if (ret > 0)
1342 dso__set_loaded(map->dso);
1343
1344 return ret;
1345}
1346
1347static char *get_kernel_version(const char *root_dir)
1348{
1349 char version[PATH_MAX];
1350 FILE *file;
1351 char *name, *tmp;
1352 const char *prefix = "Linux version ";
1353
1354 sprintf(version, "%s/proc/version", root_dir);
1355 file = fopen(version, "r");
1356 if (!file)
1357 return NULL;
1358
1359 tmp = fgets(version, sizeof(version), file);
1360 fclose(file);
1361 if (!tmp)
1362 return NULL;
1363
1364 name = strstr(version, prefix);
1365 if (!name)
1366 return NULL;
1367 name += strlen(prefix);
1368 tmp = strchr(name, ' ');
1369 if (tmp)
1370 *tmp = '\0';
1371
1372 return strdup(name);
1373}
1374
1375static bool is_kmod_dso(struct dso *dso)
1376{
1377 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1378 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1379}
1380
1381static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1382{
1383 char *long_name;
1384 struct map *map = maps__find_by_name(maps, m->name);
1385
1386 if (map == NULL)
1387 return 0;
1388
1389 long_name = strdup(path);
1390 if (long_name == NULL)
1391 return -ENOMEM;
1392
1393 dso__set_long_name(map->dso, long_name, true);
1394 dso__kernel_module_get_build_id(map->dso, "");
1395
1396 /*
1397 * Full name could reveal us kmod compression, so
1398 * we need to update the symtab_type if needed.
1399 */
1400 if (m->comp && is_kmod_dso(map->dso)) {
1401 map->dso->symtab_type++;
1402 map->dso->comp = m->comp;
1403 }
1404
1405 return 0;
1406}
1407
1408static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1409{
1410 struct dirent *dent;
1411 DIR *dir = opendir(dir_name);
1412 int ret = 0;
1413
1414 if (!dir) {
1415 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1416 return -1;
1417 }
1418
1419 while ((dent = readdir(dir)) != NULL) {
1420 char path[PATH_MAX];
1421 struct stat st;
1422
1423 /*sshfs might return bad dent->d_type, so we have to stat*/
1424 path__join(path, sizeof(path), dir_name, dent->d_name);
1425 if (stat(path, &st))
1426 continue;
1427
1428 if (S_ISDIR(st.st_mode)) {
1429 if (!strcmp(dent->d_name, ".") ||
1430 !strcmp(dent->d_name, ".."))
1431 continue;
1432
1433 /* Do not follow top-level source and build symlinks */
1434 if (depth == 0) {
1435 if (!strcmp(dent->d_name, "source") ||
1436 !strcmp(dent->d_name, "build"))
1437 continue;
1438 }
1439
1440 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1441 if (ret < 0)
1442 goto out;
1443 } else {
1444 struct kmod_path m;
1445
1446 ret = kmod_path__parse_name(&m, dent->d_name);
1447 if (ret)
1448 goto out;
1449
1450 if (m.kmod)
1451 ret = maps__set_module_path(maps, path, &m);
1452
1453 zfree(&m.name);
1454
1455 if (ret)
1456 goto out;
1457 }
1458 }
1459
1460out:
1461 closedir(dir);
1462 return ret;
1463}
1464
1465static int machine__set_modules_path(struct machine *machine)
1466{
1467 char *version;
1468 char modules_path[PATH_MAX];
1469
1470 version = get_kernel_version(machine->root_dir);
1471 if (!version)
1472 return -1;
1473
1474 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1475 machine->root_dir, version);
1476 free(version);
1477
1478 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1479}
1480int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1481 u64 *size __maybe_unused,
1482 const char *name __maybe_unused)
1483{
1484 return 0;
1485}
1486
1487static int machine__create_module(void *arg, const char *name, u64 start,
1488 u64 size)
1489{
1490 struct machine *machine = arg;
1491 struct map *map;
1492
1493 if (arch__fix_module_text_start(&start, &size, name) < 0)
1494 return -1;
1495
1496 map = machine__addnew_module_map(machine, start, name);
1497 if (map == NULL)
1498 return -1;
1499 map->end = start + size;
1500
1501 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1502
1503 return 0;
1504}
1505
1506static int machine__create_modules(struct machine *machine)
1507{
1508 const char *modules;
1509 char path[PATH_MAX];
1510
1511 if (machine__is_default_guest(machine)) {
1512 modules = symbol_conf.default_guest_modules;
1513 } else {
1514 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1515 modules = path;
1516 }
1517
1518 if (symbol__restricted_filename(modules, "/proc/modules"))
1519 return -1;
1520
1521 if (modules__parse(modules, machine, machine__create_module))
1522 return -1;
1523
1524 if (!machine__set_modules_path(machine))
1525 return 0;
1526
1527 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1528
1529 return 0;
1530}
1531
1532static void machine__set_kernel_mmap(struct machine *machine,
1533 u64 start, u64 end)
1534{
1535 machine->vmlinux_map->start = start;
1536 machine->vmlinux_map->end = end;
1537 /*
1538 * Be a bit paranoid here, some perf.data file came with
1539 * a zero sized synthesized MMAP event for the kernel.
1540 */
1541 if (start == 0 && end == 0)
1542 machine->vmlinux_map->end = ~0ULL;
1543}
1544
1545static void machine__update_kernel_mmap(struct machine *machine,
1546 u64 start, u64 end)
1547{
1548 struct map *map = machine__kernel_map(machine);
1549
1550 map__get(map);
1551 maps__remove(machine__kernel_maps(machine), map);
1552
1553 machine__set_kernel_mmap(machine, start, end);
1554
1555 maps__insert(machine__kernel_maps(machine), map);
1556 map__put(map);
1557}
1558
1559int machine__create_kernel_maps(struct machine *machine)
1560{
1561 struct dso *kernel = machine__get_kernel(machine);
1562 const char *name = NULL;
1563 struct map *map;
1564 u64 start = 0, end = ~0ULL;
1565 int ret;
1566
1567 if (kernel == NULL)
1568 return -1;
1569
1570 ret = __machine__create_kernel_maps(machine, kernel);
1571 if (ret < 0)
1572 goto out_put;
1573
1574 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575 if (machine__is_host(machine))
1576 pr_debug("Problems creating module maps, "
1577 "continuing anyway...\n");
1578 else
1579 pr_debug("Problems creating module maps for guest %d, "
1580 "continuing anyway...\n", machine->pid);
1581 }
1582
1583 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584 if (name &&
1585 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586 machine__destroy_kernel_maps(machine);
1587 ret = -1;
1588 goto out_put;
1589 }
1590
1591 /*
1592 * we have a real start address now, so re-order the kmaps
1593 * assume it's the last in the kmaps
1594 */
1595 machine__update_kernel_mmap(machine, start, end);
1596 }
1597
1598 if (machine__create_extra_kernel_maps(machine, kernel))
1599 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1600
1601 if (end == ~0ULL) {
1602 /* update end address of the kernel map using adjacent module address */
1603 map = map__next(machine__kernel_map(machine));
1604 if (map)
1605 machine__set_kernel_mmap(machine, start, map->start);
1606 }
1607
1608out_put:
1609 dso__put(kernel);
1610 return ret;
1611}
1612
1613static bool machine__uses_kcore(struct machine *machine)
1614{
1615 struct dso *dso;
1616
1617 list_for_each_entry(dso, &machine->dsos.head, node) {
1618 if (dso__is_kcore(dso))
1619 return true;
1620 }
1621
1622 return false;
1623}
1624
1625static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1626 struct extra_kernel_map *xm)
1627{
1628 return machine__is(machine, "x86_64") &&
1629 is_entry_trampoline(xm->name);
1630}
1631
1632static int machine__process_extra_kernel_map(struct machine *machine,
1633 struct extra_kernel_map *xm)
1634{
1635 struct dso *kernel = machine__kernel_dso(machine);
1636
1637 if (kernel == NULL)
1638 return -1;
1639
1640 return machine__create_extra_kernel_map(machine, kernel, xm);
1641}
1642
1643static int machine__process_kernel_mmap_event(struct machine *machine,
1644 struct extra_kernel_map *xm,
1645 struct build_id *bid)
1646{
1647 struct map *map;
1648 enum dso_space_type dso_space;
1649 bool is_kernel_mmap;
1650
1651 /* If we have maps from kcore then we do not need or want any others */
1652 if (machine__uses_kcore(machine))
1653 return 0;
1654
1655 if (machine__is_host(machine))
1656 dso_space = DSO_SPACE__KERNEL;
1657 else
1658 dso_space = DSO_SPACE__KERNEL_GUEST;
1659
1660 is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1661 strlen(machine->mmap_name) - 1) == 0;
1662 if (xm->name[0] == '/' ||
1663 (!is_kernel_mmap && xm->name[0] == '[')) {
1664 map = machine__addnew_module_map(machine, xm->start,
1665 xm->name);
1666 if (map == NULL)
1667 goto out_problem;
1668
1669 map->end = map->start + xm->end - xm->start;
1670
1671 if (build_id__is_defined(bid))
1672 dso__set_build_id(map->dso, bid);
1673
1674 } else if (is_kernel_mmap) {
1675 const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1676 /*
1677 * Should be there already, from the build-id table in
1678 * the header.
1679 */
1680 struct dso *kernel = NULL;
1681 struct dso *dso;
1682
1683 down_read(&machine->dsos.lock);
1684
1685 list_for_each_entry(dso, &machine->dsos.head, node) {
1686
1687 /*
1688 * The cpumode passed to is_kernel_module is not the
1689 * cpumode of *this* event. If we insist on passing
1690 * correct cpumode to is_kernel_module, we should
1691 * record the cpumode when we adding this dso to the
1692 * linked list.
1693 *
1694 * However we don't really need passing correct
1695 * cpumode. We know the correct cpumode must be kernel
1696 * mode (if not, we should not link it onto kernel_dsos
1697 * list).
1698 *
1699 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1700 * is_kernel_module() treats it as a kernel cpumode.
1701 */
1702
1703 if (!dso->kernel ||
1704 is_kernel_module(dso->long_name,
1705 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1706 continue;
1707
1708
1709 kernel = dso;
1710 break;
1711 }
1712
1713 up_read(&machine->dsos.lock);
1714
1715 if (kernel == NULL)
1716 kernel = machine__findnew_dso(machine, machine->mmap_name);
1717 if (kernel == NULL)
1718 goto out_problem;
1719
1720 kernel->kernel = dso_space;
1721 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1722 dso__put(kernel);
1723 goto out_problem;
1724 }
1725
1726 if (strstr(kernel->long_name, "vmlinux"))
1727 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1728
1729 machine__update_kernel_mmap(machine, xm->start, xm->end);
1730
1731 if (build_id__is_defined(bid))
1732 dso__set_build_id(kernel, bid);
1733
1734 /*
1735 * Avoid using a zero address (kptr_restrict) for the ref reloc
1736 * symbol. Effectively having zero here means that at record
1737 * time /proc/sys/kernel/kptr_restrict was non zero.
1738 */
1739 if (xm->pgoff != 0) {
1740 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1741 symbol_name,
1742 xm->pgoff);
1743 }
1744
1745 if (machine__is_default_guest(machine)) {
1746 /*
1747 * preload dso of guest kernel and modules
1748 */
1749 dso__load(kernel, machine__kernel_map(machine));
1750 }
1751 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1752 return machine__process_extra_kernel_map(machine, xm);
1753 }
1754 return 0;
1755out_problem:
1756 return -1;
1757}
1758
1759int machine__process_mmap2_event(struct machine *machine,
1760 union perf_event *event,
1761 struct perf_sample *sample)
1762{
1763 struct thread *thread;
1764 struct map *map;
1765 struct dso_id dso_id = {
1766 .maj = event->mmap2.maj,
1767 .min = event->mmap2.min,
1768 .ino = event->mmap2.ino,
1769 .ino_generation = event->mmap2.ino_generation,
1770 };
1771 struct build_id __bid, *bid = NULL;
1772 int ret = 0;
1773
1774 if (dump_trace)
1775 perf_event__fprintf_mmap2(event, stdout);
1776
1777 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1778 bid = &__bid;
1779 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1780 }
1781
1782 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1783 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1784 struct extra_kernel_map xm = {
1785 .start = event->mmap2.start,
1786 .end = event->mmap2.start + event->mmap2.len,
1787 .pgoff = event->mmap2.pgoff,
1788 };
1789
1790 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1791 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1792 if (ret < 0)
1793 goto out_problem;
1794 return 0;
1795 }
1796
1797 thread = machine__findnew_thread(machine, event->mmap2.pid,
1798 event->mmap2.tid);
1799 if (thread == NULL)
1800 goto out_problem;
1801
1802 map = map__new(machine, event->mmap2.start,
1803 event->mmap2.len, event->mmap2.pgoff,
1804 &dso_id, event->mmap2.prot,
1805 event->mmap2.flags, bid,
1806 event->mmap2.filename, thread);
1807
1808 if (map == NULL)
1809 goto out_problem_map;
1810
1811 ret = thread__insert_map(thread, map);
1812 if (ret)
1813 goto out_problem_insert;
1814
1815 thread__put(thread);
1816 map__put(map);
1817 return 0;
1818
1819out_problem_insert:
1820 map__put(map);
1821out_problem_map:
1822 thread__put(thread);
1823out_problem:
1824 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1825 return 0;
1826}
1827
1828int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1829 struct perf_sample *sample)
1830{
1831 struct thread *thread;
1832 struct map *map;
1833 u32 prot = 0;
1834 int ret = 0;
1835
1836 if (dump_trace)
1837 perf_event__fprintf_mmap(event, stdout);
1838
1839 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1840 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1841 struct extra_kernel_map xm = {
1842 .start = event->mmap.start,
1843 .end = event->mmap.start + event->mmap.len,
1844 .pgoff = event->mmap.pgoff,
1845 };
1846
1847 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1848 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1849 if (ret < 0)
1850 goto out_problem;
1851 return 0;
1852 }
1853
1854 thread = machine__findnew_thread(machine, event->mmap.pid,
1855 event->mmap.tid);
1856 if (thread == NULL)
1857 goto out_problem;
1858
1859 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1860 prot = PROT_EXEC;
1861
1862 map = map__new(machine, event->mmap.start,
1863 event->mmap.len, event->mmap.pgoff,
1864 NULL, prot, 0, NULL, event->mmap.filename, thread);
1865
1866 if (map == NULL)
1867 goto out_problem_map;
1868
1869 ret = thread__insert_map(thread, map);
1870 if (ret)
1871 goto out_problem_insert;
1872
1873 thread__put(thread);
1874 map__put(map);
1875 return 0;
1876
1877out_problem_insert:
1878 map__put(map);
1879out_problem_map:
1880 thread__put(thread);
1881out_problem:
1882 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1883 return 0;
1884}
1885
1886static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1887{
1888 struct threads *threads = machine__threads(machine, th->tid);
1889
1890 if (threads->last_match == th)
1891 threads__set_last_match(threads, NULL);
1892
1893 if (lock)
1894 down_write(&threads->lock);
1895
1896 BUG_ON(refcount_read(&th->refcnt) == 0);
1897
1898 rb_erase_cached(&th->rb_node, &threads->entries);
1899 RB_CLEAR_NODE(&th->rb_node);
1900 --threads->nr;
1901 /*
1902 * Move it first to the dead_threads list, then drop the reference,
1903 * if this is the last reference, then the thread__delete destructor
1904 * will be called and we will remove it from the dead_threads list.
1905 */
1906 list_add_tail(&th->node, &threads->dead);
1907
1908 /*
1909 * We need to do the put here because if this is the last refcount,
1910 * then we will be touching the threads->dead head when removing the
1911 * thread.
1912 */
1913 thread__put(th);
1914
1915 if (lock)
1916 up_write(&threads->lock);
1917}
1918
1919void machine__remove_thread(struct machine *machine, struct thread *th)
1920{
1921 return __machine__remove_thread(machine, th, true);
1922}
1923
1924int machine__process_fork_event(struct machine *machine, union perf_event *event,
1925 struct perf_sample *sample)
1926{
1927 struct thread *thread = machine__find_thread(machine,
1928 event->fork.pid,
1929 event->fork.tid);
1930 struct thread *parent = machine__findnew_thread(machine,
1931 event->fork.ppid,
1932 event->fork.ptid);
1933 bool do_maps_clone = true;
1934 int err = 0;
1935
1936 if (dump_trace)
1937 perf_event__fprintf_task(event, stdout);
1938
1939 /*
1940 * There may be an existing thread that is not actually the parent,
1941 * either because we are processing events out of order, or because the
1942 * (fork) event that would have removed the thread was lost. Assume the
1943 * latter case and continue on as best we can.
1944 */
1945 if (parent->pid_ != (pid_t)event->fork.ppid) {
1946 dump_printf("removing erroneous parent thread %d/%d\n",
1947 parent->pid_, parent->tid);
1948 machine__remove_thread(machine, parent);
1949 thread__put(parent);
1950 parent = machine__findnew_thread(machine, event->fork.ppid,
1951 event->fork.ptid);
1952 }
1953
1954 /* if a thread currently exists for the thread id remove it */
1955 if (thread != NULL) {
1956 machine__remove_thread(machine, thread);
1957 thread__put(thread);
1958 }
1959
1960 thread = machine__findnew_thread(machine, event->fork.pid,
1961 event->fork.tid);
1962 /*
1963 * When synthesizing FORK events, we are trying to create thread
1964 * objects for the already running tasks on the machine.
1965 *
1966 * Normally, for a kernel FORK event, we want to clone the parent's
1967 * maps because that is what the kernel just did.
1968 *
1969 * But when synthesizing, this should not be done. If we do, we end up
1970 * with overlapping maps as we process the synthesized MMAP2 events that
1971 * get delivered shortly thereafter.
1972 *
1973 * Use the FORK event misc flags in an internal way to signal this
1974 * situation, so we can elide the map clone when appropriate.
1975 */
1976 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1977 do_maps_clone = false;
1978
1979 if (thread == NULL || parent == NULL ||
1980 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1981 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1982 err = -1;
1983 }
1984 thread__put(thread);
1985 thread__put(parent);
1986
1987 return err;
1988}
1989
1990int machine__process_exit_event(struct machine *machine, union perf_event *event,
1991 struct perf_sample *sample __maybe_unused)
1992{
1993 struct thread *thread = machine__find_thread(machine,
1994 event->fork.pid,
1995 event->fork.tid);
1996
1997 if (dump_trace)
1998 perf_event__fprintf_task(event, stdout);
1999
2000 if (thread != NULL) {
2001 thread__exited(thread);
2002 thread__put(thread);
2003 }
2004
2005 return 0;
2006}
2007
2008int machine__process_event(struct machine *machine, union perf_event *event,
2009 struct perf_sample *sample)
2010{
2011 int ret;
2012
2013 switch (event->header.type) {
2014 case PERF_RECORD_COMM:
2015 ret = machine__process_comm_event(machine, event, sample); break;
2016 case PERF_RECORD_MMAP:
2017 ret = machine__process_mmap_event(machine, event, sample); break;
2018 case PERF_RECORD_NAMESPACES:
2019 ret = machine__process_namespaces_event(machine, event, sample); break;
2020 case PERF_RECORD_CGROUP:
2021 ret = machine__process_cgroup_event(machine, event, sample); break;
2022 case PERF_RECORD_MMAP2:
2023 ret = machine__process_mmap2_event(machine, event, sample); break;
2024 case PERF_RECORD_FORK:
2025 ret = machine__process_fork_event(machine, event, sample); break;
2026 case PERF_RECORD_EXIT:
2027 ret = machine__process_exit_event(machine, event, sample); break;
2028 case PERF_RECORD_LOST:
2029 ret = machine__process_lost_event(machine, event, sample); break;
2030 case PERF_RECORD_AUX:
2031 ret = machine__process_aux_event(machine, event); break;
2032 case PERF_RECORD_ITRACE_START:
2033 ret = machine__process_itrace_start_event(machine, event); break;
2034 case PERF_RECORD_LOST_SAMPLES:
2035 ret = machine__process_lost_samples_event(machine, event, sample); break;
2036 case PERF_RECORD_SWITCH:
2037 case PERF_RECORD_SWITCH_CPU_WIDE:
2038 ret = machine__process_switch_event(machine, event); break;
2039 case PERF_RECORD_KSYMBOL:
2040 ret = machine__process_ksymbol(machine, event, sample); break;
2041 case PERF_RECORD_BPF_EVENT:
2042 ret = machine__process_bpf(machine, event, sample); break;
2043 case PERF_RECORD_TEXT_POKE:
2044 ret = machine__process_text_poke(machine, event, sample); break;
2045 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2046 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2047 default:
2048 ret = -1;
2049 break;
2050 }
2051
2052 return ret;
2053}
2054
2055static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2056{
2057 if (!regexec(regex, sym->name, 0, NULL, 0))
2058 return true;
2059 return false;
2060}
2061
2062static void ip__resolve_ams(struct thread *thread,
2063 struct addr_map_symbol *ams,
2064 u64 ip)
2065{
2066 struct addr_location al;
2067
2068 memset(&al, 0, sizeof(al));
2069 /*
2070 * We cannot use the header.misc hint to determine whether a
2071 * branch stack address is user, kernel, guest, hypervisor.
2072 * Branches may straddle the kernel/user/hypervisor boundaries.
2073 * Thus, we have to try consecutively until we find a match
2074 * or else, the symbol is unknown
2075 */
2076 thread__find_cpumode_addr_location(thread, ip, &al);
2077
2078 ams->addr = ip;
2079 ams->al_addr = al.addr;
2080 ams->al_level = al.level;
2081 ams->ms.maps = al.maps;
2082 ams->ms.sym = al.sym;
2083 ams->ms.map = al.map;
2084 ams->phys_addr = 0;
2085 ams->data_page_size = 0;
2086}
2087
2088static void ip__resolve_data(struct thread *thread,
2089 u8 m, struct addr_map_symbol *ams,
2090 u64 addr, u64 phys_addr, u64 daddr_page_size)
2091{
2092 struct addr_location al;
2093
2094 memset(&al, 0, sizeof(al));
2095
2096 thread__find_symbol(thread, m, addr, &al);
2097
2098 ams->addr = addr;
2099 ams->al_addr = al.addr;
2100 ams->al_level = al.level;
2101 ams->ms.maps = al.maps;
2102 ams->ms.sym = al.sym;
2103 ams->ms.map = al.map;
2104 ams->phys_addr = phys_addr;
2105 ams->data_page_size = daddr_page_size;
2106}
2107
2108struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2109 struct addr_location *al)
2110{
2111 struct mem_info *mi = mem_info__new();
2112
2113 if (!mi)
2114 return NULL;
2115
2116 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2117 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2118 sample->addr, sample->phys_addr,
2119 sample->data_page_size);
2120 mi->data_src.val = sample->data_src;
2121
2122 return mi;
2123}
2124
2125static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2126{
2127 struct map *map = ms->map;
2128 char *srcline = NULL;
2129
2130 if (!map || callchain_param.key == CCKEY_FUNCTION)
2131 return srcline;
2132
2133 srcline = srcline__tree_find(&map->dso->srclines, ip);
2134 if (!srcline) {
2135 bool show_sym = false;
2136 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2137
2138 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2139 ms->sym, show_sym, show_addr, ip);
2140 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2141 }
2142
2143 return srcline;
2144}
2145
2146struct iterations {
2147 int nr_loop_iter;
2148 u64 cycles;
2149};
2150
2151static int add_callchain_ip(struct thread *thread,
2152 struct callchain_cursor *cursor,
2153 struct symbol **parent,
2154 struct addr_location *root_al,
2155 u8 *cpumode,
2156 u64 ip,
2157 bool branch,
2158 struct branch_flags *flags,
2159 struct iterations *iter,
2160 u64 branch_from)
2161{
2162 struct map_symbol ms;
2163 struct addr_location al;
2164 int nr_loop_iter = 0;
2165 u64 iter_cycles = 0;
2166 const char *srcline = NULL;
2167
2168 al.filtered = 0;
2169 al.sym = NULL;
2170 al.srcline = NULL;
2171 if (!cpumode) {
2172 thread__find_cpumode_addr_location(thread, ip, &al);
2173 } else {
2174 if (ip >= PERF_CONTEXT_MAX) {
2175 switch (ip) {
2176 case PERF_CONTEXT_HV:
2177 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2178 break;
2179 case PERF_CONTEXT_KERNEL:
2180 *cpumode = PERF_RECORD_MISC_KERNEL;
2181 break;
2182 case PERF_CONTEXT_USER:
2183 *cpumode = PERF_RECORD_MISC_USER;
2184 break;
2185 default:
2186 pr_debug("invalid callchain context: "
2187 "%"PRId64"\n", (s64) ip);
2188 /*
2189 * It seems the callchain is corrupted.
2190 * Discard all.
2191 */
2192 callchain_cursor_reset(cursor);
2193 return 1;
2194 }
2195 return 0;
2196 }
2197 thread__find_symbol(thread, *cpumode, ip, &al);
2198 }
2199
2200 if (al.sym != NULL) {
2201 if (perf_hpp_list.parent && !*parent &&
2202 symbol__match_regex(al.sym, &parent_regex))
2203 *parent = al.sym;
2204 else if (have_ignore_callees && root_al &&
2205 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2206 /* Treat this symbol as the root,
2207 forgetting its callees. */
2208 *root_al = al;
2209 callchain_cursor_reset(cursor);
2210 }
2211 }
2212
2213 if (symbol_conf.hide_unresolved && al.sym == NULL)
2214 return 0;
2215
2216 if (iter) {
2217 nr_loop_iter = iter->nr_loop_iter;
2218 iter_cycles = iter->cycles;
2219 }
2220
2221 ms.maps = al.maps;
2222 ms.map = al.map;
2223 ms.sym = al.sym;
2224 srcline = callchain_srcline(&ms, al.addr);
2225 return callchain_cursor_append(cursor, ip, &ms,
2226 branch, flags, nr_loop_iter,
2227 iter_cycles, branch_from, srcline);
2228}
2229
2230struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2231 struct addr_location *al)
2232{
2233 unsigned int i;
2234 const struct branch_stack *bs = sample->branch_stack;
2235 struct branch_entry *entries = perf_sample__branch_entries(sample);
2236 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2237
2238 if (!bi)
2239 return NULL;
2240
2241 for (i = 0; i < bs->nr; i++) {
2242 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2243 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2244 bi[i].flags = entries[i].flags;
2245 }
2246 return bi;
2247}
2248
2249static void save_iterations(struct iterations *iter,
2250 struct branch_entry *be, int nr)
2251{
2252 int i;
2253
2254 iter->nr_loop_iter++;
2255 iter->cycles = 0;
2256
2257 for (i = 0; i < nr; i++)
2258 iter->cycles += be[i].flags.cycles;
2259}
2260
2261#define CHASHSZ 127
2262#define CHASHBITS 7
2263#define NO_ENTRY 0xff
2264
2265#define PERF_MAX_BRANCH_DEPTH 127
2266
2267/* Remove loops. */
2268static int remove_loops(struct branch_entry *l, int nr,
2269 struct iterations *iter)
2270{
2271 int i, j, off;
2272 unsigned char chash[CHASHSZ];
2273
2274 memset(chash, NO_ENTRY, sizeof(chash));
2275
2276 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2277
2278 for (i = 0; i < nr; i++) {
2279 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2280
2281 /* no collision handling for now */
2282 if (chash[h] == NO_ENTRY) {
2283 chash[h] = i;
2284 } else if (l[chash[h]].from == l[i].from) {
2285 bool is_loop = true;
2286 /* check if it is a real loop */
2287 off = 0;
2288 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2289 if (l[j].from != l[i + off].from) {
2290 is_loop = false;
2291 break;
2292 }
2293 if (is_loop) {
2294 j = nr - (i + off);
2295 if (j > 0) {
2296 save_iterations(iter + i + off,
2297 l + i, off);
2298
2299 memmove(iter + i, iter + i + off,
2300 j * sizeof(*iter));
2301
2302 memmove(l + i, l + i + off,
2303 j * sizeof(*l));
2304 }
2305
2306 nr -= off;
2307 }
2308 }
2309 }
2310 return nr;
2311}
2312
2313static int lbr_callchain_add_kernel_ip(struct thread *thread,
2314 struct callchain_cursor *cursor,
2315 struct perf_sample *sample,
2316 struct symbol **parent,
2317 struct addr_location *root_al,
2318 u64 branch_from,
2319 bool callee, int end)
2320{
2321 struct ip_callchain *chain = sample->callchain;
2322 u8 cpumode = PERF_RECORD_MISC_USER;
2323 int err, i;
2324
2325 if (callee) {
2326 for (i = 0; i < end + 1; i++) {
2327 err = add_callchain_ip(thread, cursor, parent,
2328 root_al, &cpumode, chain->ips[i],
2329 false, NULL, NULL, branch_from);
2330 if (err)
2331 return err;
2332 }
2333 return 0;
2334 }
2335
2336 for (i = end; i >= 0; i--) {
2337 err = add_callchain_ip(thread, cursor, parent,
2338 root_al, &cpumode, chain->ips[i],
2339 false, NULL, NULL, branch_from);
2340 if (err)
2341 return err;
2342 }
2343
2344 return 0;
2345}
2346
2347static void save_lbr_cursor_node(struct thread *thread,
2348 struct callchain_cursor *cursor,
2349 int idx)
2350{
2351 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2352
2353 if (!lbr_stitch)
2354 return;
2355
2356 if (cursor->pos == cursor->nr) {
2357 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2358 return;
2359 }
2360
2361 if (!cursor->curr)
2362 cursor->curr = cursor->first;
2363 else
2364 cursor->curr = cursor->curr->next;
2365 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2366 sizeof(struct callchain_cursor_node));
2367
2368 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2369 cursor->pos++;
2370}
2371
2372static int lbr_callchain_add_lbr_ip(struct thread *thread,
2373 struct callchain_cursor *cursor,
2374 struct perf_sample *sample,
2375 struct symbol **parent,
2376 struct addr_location *root_al,
2377 u64 *branch_from,
2378 bool callee)
2379{
2380 struct branch_stack *lbr_stack = sample->branch_stack;
2381 struct branch_entry *entries = perf_sample__branch_entries(sample);
2382 u8 cpumode = PERF_RECORD_MISC_USER;
2383 int lbr_nr = lbr_stack->nr;
2384 struct branch_flags *flags;
2385 int err, i;
2386 u64 ip;
2387
2388 /*
2389 * The curr and pos are not used in writing session. They are cleared
2390 * in callchain_cursor_commit() when the writing session is closed.
2391 * Using curr and pos to track the current cursor node.
2392 */
2393 if (thread->lbr_stitch) {
2394 cursor->curr = NULL;
2395 cursor->pos = cursor->nr;
2396 if (cursor->nr) {
2397 cursor->curr = cursor->first;
2398 for (i = 0; i < (int)(cursor->nr - 1); i++)
2399 cursor->curr = cursor->curr->next;
2400 }
2401 }
2402
2403 if (callee) {
2404 /* Add LBR ip from first entries.to */
2405 ip = entries[0].to;
2406 flags = &entries[0].flags;
2407 *branch_from = entries[0].from;
2408 err = add_callchain_ip(thread, cursor, parent,
2409 root_al, &cpumode, ip,
2410 true, flags, NULL,
2411 *branch_from);
2412 if (err)
2413 return err;
2414
2415 /*
2416 * The number of cursor node increases.
2417 * Move the current cursor node.
2418 * But does not need to save current cursor node for entry 0.
2419 * It's impossible to stitch the whole LBRs of previous sample.
2420 */
2421 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2422 if (!cursor->curr)
2423 cursor->curr = cursor->first;
2424 else
2425 cursor->curr = cursor->curr->next;
2426 cursor->pos++;
2427 }
2428
2429 /* Add LBR ip from entries.from one by one. */
2430 for (i = 0; i < lbr_nr; i++) {
2431 ip = entries[i].from;
2432 flags = &entries[i].flags;
2433 err = add_callchain_ip(thread, cursor, parent,
2434 root_al, &cpumode, ip,
2435 true, flags, NULL,
2436 *branch_from);
2437 if (err)
2438 return err;
2439 save_lbr_cursor_node(thread, cursor, i);
2440 }
2441 return 0;
2442 }
2443
2444 /* Add LBR ip from entries.from one by one. */
2445 for (i = lbr_nr - 1; i >= 0; i--) {
2446 ip = entries[i].from;
2447 flags = &entries[i].flags;
2448 err = add_callchain_ip(thread, cursor, parent,
2449 root_al, &cpumode, ip,
2450 true, flags, NULL,
2451 *branch_from);
2452 if (err)
2453 return err;
2454 save_lbr_cursor_node(thread, cursor, i);
2455 }
2456
2457 /* Add LBR ip from first entries.to */
2458 ip = entries[0].to;
2459 flags = &entries[0].flags;
2460 *branch_from = entries[0].from;
2461 err = add_callchain_ip(thread, cursor, parent,
2462 root_al, &cpumode, ip,
2463 true, flags, NULL,
2464 *branch_from);
2465 if (err)
2466 return err;
2467
2468 return 0;
2469}
2470
2471static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2472 struct callchain_cursor *cursor)
2473{
2474 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2475 struct callchain_cursor_node *cnode;
2476 struct stitch_list *stitch_node;
2477 int err;
2478
2479 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2480 cnode = &stitch_node->cursor;
2481
2482 err = callchain_cursor_append(cursor, cnode->ip,
2483 &cnode->ms,
2484 cnode->branch,
2485 &cnode->branch_flags,
2486 cnode->nr_loop_iter,
2487 cnode->iter_cycles,
2488 cnode->branch_from,
2489 cnode->srcline);
2490 if (err)
2491 return err;
2492 }
2493 return 0;
2494}
2495
2496static struct stitch_list *get_stitch_node(struct thread *thread)
2497{
2498 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2499 struct stitch_list *stitch_node;
2500
2501 if (!list_empty(&lbr_stitch->free_lists)) {
2502 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2503 struct stitch_list, node);
2504 list_del(&stitch_node->node);
2505
2506 return stitch_node;
2507 }
2508
2509 return malloc(sizeof(struct stitch_list));
2510}
2511
2512static bool has_stitched_lbr(struct thread *thread,
2513 struct perf_sample *cur,
2514 struct perf_sample *prev,
2515 unsigned int max_lbr,
2516 bool callee)
2517{
2518 struct branch_stack *cur_stack = cur->branch_stack;
2519 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2520 struct branch_stack *prev_stack = prev->branch_stack;
2521 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2522 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2523 int i, j, nr_identical_branches = 0;
2524 struct stitch_list *stitch_node;
2525 u64 cur_base, distance;
2526
2527 if (!cur_stack || !prev_stack)
2528 return false;
2529
2530 /* Find the physical index of the base-of-stack for current sample. */
2531 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2532
2533 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2534 (max_lbr + prev_stack->hw_idx - cur_base);
2535 /* Previous sample has shorter stack. Nothing can be stitched. */
2536 if (distance + 1 > prev_stack->nr)
2537 return false;
2538
2539 /*
2540 * Check if there are identical LBRs between two samples.
2541 * Identical LBRs must have same from, to and flags values. Also,
2542 * they have to be saved in the same LBR registers (same physical
2543 * index).
2544 *
2545 * Starts from the base-of-stack of current sample.
2546 */
2547 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2548 if ((prev_entries[i].from != cur_entries[j].from) ||
2549 (prev_entries[i].to != cur_entries[j].to) ||
2550 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2551 break;
2552 nr_identical_branches++;
2553 }
2554
2555 if (!nr_identical_branches)
2556 return false;
2557
2558 /*
2559 * Save the LBRs between the base-of-stack of previous sample
2560 * and the base-of-stack of current sample into lbr_stitch->lists.
2561 * These LBRs will be stitched later.
2562 */
2563 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2564
2565 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2566 continue;
2567
2568 stitch_node = get_stitch_node(thread);
2569 if (!stitch_node)
2570 return false;
2571
2572 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2573 sizeof(struct callchain_cursor_node));
2574
2575 if (callee)
2576 list_add(&stitch_node->node, &lbr_stitch->lists);
2577 else
2578 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2579 }
2580
2581 return true;
2582}
2583
2584static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2585{
2586 if (thread->lbr_stitch)
2587 return true;
2588
2589 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2590 if (!thread->lbr_stitch)
2591 goto err;
2592
2593 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2594 if (!thread->lbr_stitch->prev_lbr_cursor)
2595 goto free_lbr_stitch;
2596
2597 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2598 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2599
2600 return true;
2601
2602free_lbr_stitch:
2603 zfree(&thread->lbr_stitch);
2604err:
2605 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606 thread->lbr_stitch_enable = false;
2607 return false;
2608}
2609
2610/*
2611 * Resolve LBR callstack chain sample
2612 * Return:
2613 * 1 on success get LBR callchain information
2614 * 0 no available LBR callchain information, should try fp
2615 * negative error code on other errors.
2616 */
2617static int resolve_lbr_callchain_sample(struct thread *thread,
2618 struct callchain_cursor *cursor,
2619 struct perf_sample *sample,
2620 struct symbol **parent,
2621 struct addr_location *root_al,
2622 int max_stack,
2623 unsigned int max_lbr)
2624{
2625 bool callee = (callchain_param.order == ORDER_CALLEE);
2626 struct ip_callchain *chain = sample->callchain;
2627 int chain_nr = min(max_stack, (int)chain->nr), i;
2628 struct lbr_stitch *lbr_stitch;
2629 bool stitched_lbr = false;
2630 u64 branch_from = 0;
2631 int err;
2632
2633 for (i = 0; i < chain_nr; i++) {
2634 if (chain->ips[i] == PERF_CONTEXT_USER)
2635 break;
2636 }
2637
2638 /* LBR only affects the user callchain */
2639 if (i == chain_nr)
2640 return 0;
2641
2642 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2643 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644 lbr_stitch = thread->lbr_stitch;
2645
2646 stitched_lbr = has_stitched_lbr(thread, sample,
2647 &lbr_stitch->prev_sample,
2648 max_lbr, callee);
2649
2650 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651 list_replace_init(&lbr_stitch->lists,
2652 &lbr_stitch->free_lists);
2653 }
2654 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655 }
2656
2657 if (callee) {
2658 /* Add kernel ip */
2659 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660 parent, root_al, branch_from,
2661 true, i);
2662 if (err)
2663 goto error;
2664
2665 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666 root_al, &branch_from, true);
2667 if (err)
2668 goto error;
2669
2670 if (stitched_lbr) {
2671 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672 if (err)
2673 goto error;
2674 }
2675
2676 } else {
2677 if (stitched_lbr) {
2678 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679 if (err)
2680 goto error;
2681 }
2682 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683 root_al, &branch_from, false);
2684 if (err)
2685 goto error;
2686
2687 /* Add kernel ip */
2688 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689 parent, root_al, branch_from,
2690 false, i);
2691 if (err)
2692 goto error;
2693 }
2694 return 1;
2695
2696error:
2697 return (err < 0) ? err : 0;
2698}
2699
2700static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701 struct callchain_cursor *cursor,
2702 struct symbol **parent,
2703 struct addr_location *root_al,
2704 u8 *cpumode, int ent)
2705{
2706 int err = 0;
2707
2708 while (--ent >= 0) {
2709 u64 ip = chain->ips[ent];
2710
2711 if (ip >= PERF_CONTEXT_MAX) {
2712 err = add_callchain_ip(thread, cursor, parent,
2713 root_al, cpumode, ip,
2714 false, NULL, NULL, 0);
2715 break;
2716 }
2717 }
2718 return err;
2719}
2720
2721static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722 struct thread *thread, int usr_idx)
2723{
2724 if (machine__normalized_is(thread->maps->machine, "arm64"))
2725 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726 else
2727 return 0;
2728}
2729
2730static int thread__resolve_callchain_sample(struct thread *thread,
2731 struct callchain_cursor *cursor,
2732 struct evsel *evsel,
2733 struct perf_sample *sample,
2734 struct symbol **parent,
2735 struct addr_location *root_al,
2736 int max_stack)
2737{
2738 struct branch_stack *branch = sample->branch_stack;
2739 struct branch_entry *entries = perf_sample__branch_entries(sample);
2740 struct ip_callchain *chain = sample->callchain;
2741 int chain_nr = 0;
2742 u8 cpumode = PERF_RECORD_MISC_USER;
2743 int i, j, err, nr_entries, usr_idx;
2744 int skip_idx = -1;
2745 int first_call = 0;
2746 u64 leaf_frame_caller;
2747
2748 if (chain)
2749 chain_nr = chain->nr;
2750
2751 if (evsel__has_branch_callstack(evsel)) {
2752 struct perf_env *env = evsel__env(evsel);
2753
2754 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755 root_al, max_stack,
2756 !env ? 0 : env->max_branches);
2757 if (err)
2758 return (err < 0) ? err : 0;
2759 }
2760
2761 /*
2762 * Based on DWARF debug information, some architectures skip
2763 * a callchain entry saved by the kernel.
2764 */
2765 skip_idx = arch_skip_callchain_idx(thread, chain);
2766
2767 /*
2768 * Add branches to call stack for easier browsing. This gives
2769 * more context for a sample than just the callers.
2770 *
2771 * This uses individual histograms of paths compared to the
2772 * aggregated histograms the normal LBR mode uses.
2773 *
2774 * Limitations for now:
2775 * - No extra filters
2776 * - No annotations (should annotate somehow)
2777 */
2778
2779 if (branch && callchain_param.branch_callstack) {
2780 int nr = min(max_stack, (int)branch->nr);
2781 struct branch_entry be[nr];
2782 struct iterations iter[nr];
2783
2784 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785 pr_warning("corrupted branch chain. skipping...\n");
2786 goto check_calls;
2787 }
2788
2789 for (i = 0; i < nr; i++) {
2790 if (callchain_param.order == ORDER_CALLEE) {
2791 be[i] = entries[i];
2792
2793 if (chain == NULL)
2794 continue;
2795
2796 /*
2797 * Check for overlap into the callchain.
2798 * The return address is one off compared to
2799 * the branch entry. To adjust for this
2800 * assume the calling instruction is not longer
2801 * than 8 bytes.
2802 */
2803 if (i == skip_idx ||
2804 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805 first_call++;
2806 else if (be[i].from < chain->ips[first_call] &&
2807 be[i].from >= chain->ips[first_call] - 8)
2808 first_call++;
2809 } else
2810 be[i] = entries[branch->nr - i - 1];
2811 }
2812
2813 memset(iter, 0, sizeof(struct iterations) * nr);
2814 nr = remove_loops(be, nr, iter);
2815
2816 for (i = 0; i < nr; i++) {
2817 err = add_callchain_ip(thread, cursor, parent,
2818 root_al,
2819 NULL, be[i].to,
2820 true, &be[i].flags,
2821 NULL, be[i].from);
2822
2823 if (!err)
2824 err = add_callchain_ip(thread, cursor, parent, root_al,
2825 NULL, be[i].from,
2826 true, &be[i].flags,
2827 &iter[i], 0);
2828 if (err == -EINVAL)
2829 break;
2830 if (err)
2831 return err;
2832 }
2833
2834 if (chain_nr == 0)
2835 return 0;
2836
2837 chain_nr -= nr;
2838 }
2839
2840check_calls:
2841 if (chain && callchain_param.order != ORDER_CALLEE) {
2842 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843 &cpumode, chain->nr - first_call);
2844 if (err)
2845 return (err < 0) ? err : 0;
2846 }
2847 for (i = first_call, nr_entries = 0;
2848 i < chain_nr && nr_entries < max_stack; i++) {
2849 u64 ip;
2850
2851 if (callchain_param.order == ORDER_CALLEE)
2852 j = i;
2853 else
2854 j = chain->nr - i - 1;
2855
2856#ifdef HAVE_SKIP_CALLCHAIN_IDX
2857 if (j == skip_idx)
2858 continue;
2859#endif
2860 ip = chain->ips[j];
2861 if (ip < PERF_CONTEXT_MAX)
2862 ++nr_entries;
2863 else if (callchain_param.order != ORDER_CALLEE) {
2864 err = find_prev_cpumode(chain, thread, cursor, parent,
2865 root_al, &cpumode, j);
2866 if (err)
2867 return (err < 0) ? err : 0;
2868 continue;
2869 }
2870
2871 /*
2872 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874 * the index will be different in order to add the missing frame
2875 * at the right place.
2876 */
2877
2878 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879
2880 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881
2882 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883
2884 /*
2885 * check if leaf_frame_Caller != ip to not add the same
2886 * value twice.
2887 */
2888
2889 if (leaf_frame_caller && leaf_frame_caller != ip) {
2890
2891 err = add_callchain_ip(thread, cursor, parent,
2892 root_al, &cpumode, leaf_frame_caller,
2893 false, NULL, NULL, 0);
2894 if (err)
2895 return (err < 0) ? err : 0;
2896 }
2897 }
2898
2899 err = add_callchain_ip(thread, cursor, parent,
2900 root_al, &cpumode, ip,
2901 false, NULL, NULL, 0);
2902
2903 if (err)
2904 return (err < 0) ? err : 0;
2905 }
2906
2907 return 0;
2908}
2909
2910static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911{
2912 struct symbol *sym = ms->sym;
2913 struct map *map = ms->map;
2914 struct inline_node *inline_node;
2915 struct inline_list *ilist;
2916 u64 addr;
2917 int ret = 1;
2918
2919 if (!symbol_conf.inline_name || !map || !sym)
2920 return ret;
2921
2922 addr = map__map_ip(map, ip);
2923 addr = map__rip_2objdump(map, addr);
2924
2925 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2926 if (!inline_node) {
2927 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2928 if (!inline_node)
2929 return ret;
2930 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2931 }
2932
2933 list_for_each_entry(ilist, &inline_node->val, list) {
2934 struct map_symbol ilist_ms = {
2935 .maps = ms->maps,
2936 .map = map,
2937 .sym = ilist->symbol,
2938 };
2939 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2940 NULL, 0, 0, 0, ilist->srcline);
2941
2942 if (ret != 0)
2943 return ret;
2944 }
2945
2946 return ret;
2947}
2948
2949static int unwind_entry(struct unwind_entry *entry, void *arg)
2950{
2951 struct callchain_cursor *cursor = arg;
2952 const char *srcline = NULL;
2953 u64 addr = entry->ip;
2954
2955 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2956 return 0;
2957
2958 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2959 return 0;
2960
2961 /*
2962 * Convert entry->ip from a virtual address to an offset in
2963 * its corresponding binary.
2964 */
2965 if (entry->ms.map)
2966 addr = map__map_ip(entry->ms.map, entry->ip);
2967
2968 srcline = callchain_srcline(&entry->ms, addr);
2969 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2970 false, NULL, 0, 0, 0, srcline);
2971}
2972
2973static int thread__resolve_callchain_unwind(struct thread *thread,
2974 struct callchain_cursor *cursor,
2975 struct evsel *evsel,
2976 struct perf_sample *sample,
2977 int max_stack)
2978{
2979 /* Can we do dwarf post unwind? */
2980 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2981 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2982 return 0;
2983
2984 /* Bail out if nothing was captured. */
2985 if ((!sample->user_regs.regs) ||
2986 (!sample->user_stack.size))
2987 return 0;
2988
2989 return unwind__get_entries(unwind_entry, cursor,
2990 thread, sample, max_stack, false);
2991}
2992
2993int thread__resolve_callchain(struct thread *thread,
2994 struct callchain_cursor *cursor,
2995 struct evsel *evsel,
2996 struct perf_sample *sample,
2997 struct symbol **parent,
2998 struct addr_location *root_al,
2999 int max_stack)
3000{
3001 int ret = 0;
3002
3003 callchain_cursor_reset(cursor);
3004
3005 if (callchain_param.order == ORDER_CALLEE) {
3006 ret = thread__resolve_callchain_sample(thread, cursor,
3007 evsel, sample,
3008 parent, root_al,
3009 max_stack);
3010 if (ret)
3011 return ret;
3012 ret = thread__resolve_callchain_unwind(thread, cursor,
3013 evsel, sample,
3014 max_stack);
3015 } else {
3016 ret = thread__resolve_callchain_unwind(thread, cursor,
3017 evsel, sample,
3018 max_stack);
3019 if (ret)
3020 return ret;
3021 ret = thread__resolve_callchain_sample(thread, cursor,
3022 evsel, sample,
3023 parent, root_al,
3024 max_stack);
3025 }
3026
3027 return ret;
3028}
3029
3030int machine__for_each_thread(struct machine *machine,
3031 int (*fn)(struct thread *thread, void *p),
3032 void *priv)
3033{
3034 struct threads *threads;
3035 struct rb_node *nd;
3036 struct thread *thread;
3037 int rc = 0;
3038 int i;
3039
3040 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3041 threads = &machine->threads[i];
3042 for (nd = rb_first_cached(&threads->entries); nd;
3043 nd = rb_next(nd)) {
3044 thread = rb_entry(nd, struct thread, rb_node);
3045 rc = fn(thread, priv);
3046 if (rc != 0)
3047 return rc;
3048 }
3049
3050 list_for_each_entry(thread, &threads->dead, node) {
3051 rc = fn(thread, priv);
3052 if (rc != 0)
3053 return rc;
3054 }
3055 }
3056 return rc;
3057}
3058
3059int machines__for_each_thread(struct machines *machines,
3060 int (*fn)(struct thread *thread, void *p),
3061 void *priv)
3062{
3063 struct rb_node *nd;
3064 int rc = 0;
3065
3066 rc = machine__for_each_thread(&machines->host, fn, priv);
3067 if (rc != 0)
3068 return rc;
3069
3070 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3071 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3072
3073 rc = machine__for_each_thread(machine, fn, priv);
3074 if (rc != 0)
3075 return rc;
3076 }
3077 return rc;
3078}
3079
3080pid_t machine__get_current_tid(struct machine *machine, int cpu)
3081{
3082 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3083
3084 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3085 return -1;
3086
3087 return machine->current_tid[cpu];
3088}
3089
3090int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3091 pid_t tid)
3092{
3093 struct thread *thread;
3094 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3095
3096 if (cpu < 0)
3097 return -EINVAL;
3098
3099 if (!machine->current_tid) {
3100 int i;
3101
3102 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3103 if (!machine->current_tid)
3104 return -ENOMEM;
3105 for (i = 0; i < nr_cpus; i++)
3106 machine->current_tid[i] = -1;
3107 }
3108
3109 if (cpu >= nr_cpus) {
3110 pr_err("Requested CPU %d too large. ", cpu);
3111 pr_err("Consider raising MAX_NR_CPUS\n");
3112 return -EINVAL;
3113 }
3114
3115 machine->current_tid[cpu] = tid;
3116
3117 thread = machine__findnew_thread(machine, pid, tid);
3118 if (!thread)
3119 return -ENOMEM;
3120
3121 thread->cpu = cpu;
3122 thread__put(thread);
3123
3124 return 0;
3125}
3126
3127/*
3128 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3129 * machine__normalized_is() if a normalized arch is needed.
3130 */
3131bool machine__is(struct machine *machine, const char *arch)
3132{
3133 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3134}
3135
3136bool machine__normalized_is(struct machine *machine, const char *arch)
3137{
3138 return machine && !strcmp(perf_env__arch(machine->env), arch);
3139}
3140
3141int machine__nr_cpus_avail(struct machine *machine)
3142{
3143 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3144}
3145
3146int machine__get_kernel_start(struct machine *machine)
3147{
3148 struct map *map = machine__kernel_map(machine);
3149 int err = 0;
3150
3151 /*
3152 * The only addresses above 2^63 are kernel addresses of a 64-bit
3153 * kernel. Note that addresses are unsigned so that on a 32-bit system
3154 * all addresses including kernel addresses are less than 2^32. In
3155 * that case (32-bit system), if the kernel mapping is unknown, all
3156 * addresses will be assumed to be in user space - see
3157 * machine__kernel_ip().
3158 */
3159 machine->kernel_start = 1ULL << 63;
3160 if (map) {
3161 err = map__load(map);
3162 /*
3163 * On x86_64, PTI entry trampolines are less than the
3164 * start of kernel text, but still above 2^63. So leave
3165 * kernel_start = 1ULL << 63 for x86_64.
3166 */
3167 if (!err && !machine__is(machine, "x86_64"))
3168 machine->kernel_start = map->start;
3169 }
3170 return err;
3171}
3172
3173u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3174{
3175 u8 addr_cpumode = cpumode;
3176 bool kernel_ip;
3177
3178 if (!machine->single_address_space)
3179 goto out;
3180
3181 kernel_ip = machine__kernel_ip(machine, addr);
3182 switch (cpumode) {
3183 case PERF_RECORD_MISC_KERNEL:
3184 case PERF_RECORD_MISC_USER:
3185 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3186 PERF_RECORD_MISC_USER;
3187 break;
3188 case PERF_RECORD_MISC_GUEST_KERNEL:
3189 case PERF_RECORD_MISC_GUEST_USER:
3190 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3191 PERF_RECORD_MISC_GUEST_USER;
3192 break;
3193 default:
3194 break;
3195 }
3196out:
3197 return addr_cpumode;
3198}
3199
3200struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3201{
3202 return dsos__findnew_id(&machine->dsos, filename, id);
3203}
3204
3205struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3206{
3207 return machine__findnew_dso_id(machine, filename, NULL);
3208}
3209
3210char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3211{
3212 struct machine *machine = vmachine;
3213 struct map *map;
3214 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3215
3216 if (sym == NULL)
3217 return NULL;
3218
3219 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3220 *addrp = map->unmap_ip(map, sym->start);
3221 return sym->name;
3222}
3223
3224int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3225{
3226 struct dso *pos;
3227 int err = 0;
3228
3229 list_for_each_entry(pos, &machine->dsos.head, node) {
3230 if (fn(pos, machine, priv))
3231 err = -1;
3232 }
3233 return err;
3234}