Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2021 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740static struct key *builtin_regdb_keys;
741
742static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743{
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784}
785
786static int __init load_builtin_regdb_keys(void)
787{
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801#endif
802#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805#endif
806
807 return 0;
808}
809
810static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
811{
812 const struct firmware *sig;
813 bool result;
814
815 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
816 return false;
817
818 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
819 builtin_regdb_keys,
820 VERIFYING_UNSPECIFIED_SIGNATURE,
821 NULL, NULL) == 0;
822
823 release_firmware(sig);
824
825 return result;
826}
827
828static void free_regdb_keyring(void)
829{
830 key_put(builtin_regdb_keys);
831}
832#else
833static int load_builtin_regdb_keys(void)
834{
835 return 0;
836}
837
838static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
839{
840 return true;
841}
842
843static void free_regdb_keyring(void)
844{
845}
846#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
847
848static bool valid_regdb(const u8 *data, unsigned int size)
849{
850 const struct fwdb_header *hdr = (void *)data;
851 const struct fwdb_country *country;
852
853 if (size < sizeof(*hdr))
854 return false;
855
856 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
857 return false;
858
859 if (hdr->version != cpu_to_be32(FWDB_VERSION))
860 return false;
861
862 if (!regdb_has_valid_signature(data, size))
863 return false;
864
865 country = &hdr->country[0];
866 while ((u8 *)(country + 1) <= data + size) {
867 if (!country->coll_ptr)
868 break;
869 if (!valid_country(data, size, country))
870 return false;
871 country++;
872 }
873
874 return true;
875}
876
877static void set_wmm_rule(const struct fwdb_header *db,
878 const struct fwdb_country *country,
879 const struct fwdb_rule *rule,
880 struct ieee80211_reg_rule *rrule)
881{
882 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883 struct fwdb_wmm_rule *wmm;
884 unsigned int i, wmm_ptr;
885
886 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887 wmm = (void *)((u8 *)db + wmm_ptr);
888
889 if (!valid_wmm(wmm)) {
890 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892 country->alpha2[0], country->alpha2[1]);
893 return;
894 }
895
896 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897 wmm_rule->client[i].cw_min =
898 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
901 wmm_rule->client[i].cot =
902 1000 * be16_to_cpu(wmm->client[i].cot);
903 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
907 }
908
909 rrule->has_wmm = true;
910}
911
912static int __regdb_query_wmm(const struct fwdb_header *db,
913 const struct fwdb_country *country, int freq,
914 struct ieee80211_reg_rule *rrule)
915{
916 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
918 int i;
919
920 for (i = 0; i < coll->n_rules; i++) {
921 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
924
925 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
926 continue;
927
928 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930 set_wmm_rule(db, country, rule, rrule);
931 return 0;
932 }
933 }
934
935 return -ENODATA;
936}
937
938int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
939{
940 const struct fwdb_header *hdr = regdb;
941 const struct fwdb_country *country;
942
943 if (!regdb)
944 return -ENODATA;
945
946 if (IS_ERR(regdb))
947 return PTR_ERR(regdb);
948
949 country = &hdr->country[0];
950 while (country->coll_ptr) {
951 if (alpha2_equal(alpha2, country->alpha2))
952 return __regdb_query_wmm(regdb, country, freq, rule);
953
954 country++;
955 }
956
957 return -ENODATA;
958}
959EXPORT_SYMBOL(reg_query_regdb_wmm);
960
961static int regdb_query_country(const struct fwdb_header *db,
962 const struct fwdb_country *country)
963{
964 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966 struct ieee80211_regdomain *regdom;
967 unsigned int i;
968
969 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
970 GFP_KERNEL);
971 if (!regdom)
972 return -ENOMEM;
973
974 regdom->n_reg_rules = coll->n_rules;
975 regdom->alpha2[0] = country->alpha2[0];
976 regdom->alpha2[1] = country->alpha2[1];
977 regdom->dfs_region = coll->dfs_region;
978
979 for (i = 0; i < regdom->n_reg_rules; i++) {
980 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
984
985 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
988
989 rrule->power_rule.max_antenna_gain = 0;
990 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
991
992 rrule->flags = 0;
993 if (rule->flags & FWDB_FLAG_NO_OFDM)
994 rrule->flags |= NL80211_RRF_NO_OFDM;
995 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997 if (rule->flags & FWDB_FLAG_DFS)
998 rrule->flags |= NL80211_RRF_DFS;
999 if (rule->flags & FWDB_FLAG_NO_IR)
1000 rrule->flags |= NL80211_RRF_NO_IR;
1001 if (rule->flags & FWDB_FLAG_AUTO_BW)
1002 rrule->flags |= NL80211_RRF_AUTO_BW;
1003
1004 rrule->dfs_cac_ms = 0;
1005
1006 /* handle optional data */
1007 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1008 rrule->dfs_cac_ms =
1009 1000 * be16_to_cpu(rule->cac_timeout);
1010 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011 set_wmm_rule(db, country, rule, rrule);
1012 }
1013
1014 return reg_schedule_apply(regdom);
1015}
1016
1017static int query_regdb(const char *alpha2)
1018{
1019 const struct fwdb_header *hdr = regdb;
1020 const struct fwdb_country *country;
1021
1022 ASSERT_RTNL();
1023
1024 if (IS_ERR(regdb))
1025 return PTR_ERR(regdb);
1026
1027 country = &hdr->country[0];
1028 while (country->coll_ptr) {
1029 if (alpha2_equal(alpha2, country->alpha2))
1030 return regdb_query_country(regdb, country);
1031 country++;
1032 }
1033
1034 return -ENODATA;
1035}
1036
1037static void regdb_fw_cb(const struct firmware *fw, void *context)
1038{
1039 int set_error = 0;
1040 bool restore = true;
1041 void *db;
1042
1043 if (!fw) {
1044 pr_info("failed to load regulatory.db\n");
1045 set_error = -ENODATA;
1046 } else if (!valid_regdb(fw->data, fw->size)) {
1047 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048 set_error = -EINVAL;
1049 }
1050
1051 rtnl_lock();
1052 if (regdb && !IS_ERR(regdb)) {
1053 /* negative case - a bug
1054 * positive case - can happen due to race in case of multiple cb's in
1055 * queue, due to usage of asynchronous callback
1056 *
1057 * Either case, just restore and free new db.
1058 */
1059 } else if (set_error) {
1060 regdb = ERR_PTR(set_error);
1061 } else if (fw) {
1062 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1063 if (db) {
1064 regdb = db;
1065 restore = context && query_regdb(context);
1066 } else {
1067 restore = true;
1068 }
1069 }
1070
1071 if (restore)
1072 restore_regulatory_settings(true, false);
1073
1074 rtnl_unlock();
1075
1076 kfree(context);
1077
1078 release_firmware(fw);
1079}
1080
1081static int query_regdb_file(const char *alpha2)
1082{
1083 ASSERT_RTNL();
1084
1085 if (regdb)
1086 return query_regdb(alpha2);
1087
1088 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1089 if (!alpha2)
1090 return -ENOMEM;
1091
1092 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093 ®_pdev->dev, GFP_KERNEL,
1094 (void *)alpha2, regdb_fw_cb);
1095}
1096
1097int reg_reload_regdb(void)
1098{
1099 const struct firmware *fw;
1100 void *db;
1101 int err;
1102 const struct ieee80211_regdomain *current_regdomain;
1103 struct regulatory_request *request;
1104
1105 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1106 if (err)
1107 return err;
1108
1109 if (!valid_regdb(fw->data, fw->size)) {
1110 err = -ENODATA;
1111 goto out;
1112 }
1113
1114 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1115 if (!db) {
1116 err = -ENOMEM;
1117 goto out;
1118 }
1119
1120 rtnl_lock();
1121 if (!IS_ERR_OR_NULL(regdb))
1122 kfree(regdb);
1123 regdb = db;
1124
1125 /* reset regulatory domain */
1126 current_regdomain = get_cfg80211_regdom();
1127
1128 request = kzalloc(sizeof(*request), GFP_KERNEL);
1129 if (!request) {
1130 err = -ENOMEM;
1131 goto out_unlock;
1132 }
1133
1134 request->wiphy_idx = WIPHY_IDX_INVALID;
1135 request->alpha2[0] = current_regdomain->alpha2[0];
1136 request->alpha2[1] = current_regdomain->alpha2[1];
1137 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1139
1140 reg_process_hint(request);
1141
1142out_unlock:
1143 rtnl_unlock();
1144 out:
1145 release_firmware(fw);
1146 return err;
1147}
1148
1149static bool reg_query_database(struct regulatory_request *request)
1150{
1151 if (query_regdb_file(request->alpha2) == 0)
1152 return true;
1153
1154 if (call_crda(request->alpha2) == 0)
1155 return true;
1156
1157 return false;
1158}
1159
1160bool reg_is_valid_request(const char *alpha2)
1161{
1162 struct regulatory_request *lr = get_last_request();
1163
1164 if (!lr || lr->processed)
1165 return false;
1166
1167 return alpha2_equal(lr->alpha2, alpha2);
1168}
1169
1170static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1171{
1172 struct regulatory_request *lr = get_last_request();
1173
1174 /*
1175 * Follow the driver's regulatory domain, if present, unless a country
1176 * IE has been processed or a user wants to help complaince further
1177 */
1178 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1180 wiphy->regd)
1181 return get_wiphy_regdom(wiphy);
1182
1183 return get_cfg80211_regdom();
1184}
1185
1186static unsigned int
1187reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188 const struct ieee80211_reg_rule *rule)
1189{
1190 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191 const struct ieee80211_freq_range *freq_range_tmp;
1192 const struct ieee80211_reg_rule *tmp;
1193 u32 start_freq, end_freq, idx, no;
1194
1195 for (idx = 0; idx < rd->n_reg_rules; idx++)
1196 if (rule == &rd->reg_rules[idx])
1197 break;
1198
1199 if (idx == rd->n_reg_rules)
1200 return 0;
1201
1202 /* get start_freq */
1203 no = idx;
1204
1205 while (no) {
1206 tmp = &rd->reg_rules[--no];
1207 freq_range_tmp = &tmp->freq_range;
1208
1209 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1210 break;
1211
1212 freq_range = freq_range_tmp;
1213 }
1214
1215 start_freq = freq_range->start_freq_khz;
1216
1217 /* get end_freq */
1218 freq_range = &rule->freq_range;
1219 no = idx;
1220
1221 while (no < rd->n_reg_rules - 1) {
1222 tmp = &rd->reg_rules[++no];
1223 freq_range_tmp = &tmp->freq_range;
1224
1225 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1226 break;
1227
1228 freq_range = freq_range_tmp;
1229 }
1230
1231 end_freq = freq_range->end_freq_khz;
1232
1233 return end_freq - start_freq;
1234}
1235
1236unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237 const struct ieee80211_reg_rule *rule)
1238{
1239 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1240
1241 if (rule->flags & NL80211_RRF_NO_320MHZ)
1242 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1243 if (rule->flags & NL80211_RRF_NO_160MHZ)
1244 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1245 if (rule->flags & NL80211_RRF_NO_80MHZ)
1246 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1247
1248 /*
1249 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1250 * are not allowed.
1251 */
1252 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1253 rule->flags & NL80211_RRF_NO_HT40PLUS)
1254 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1255
1256 return bw;
1257}
1258
1259/* Sanity check on a regulatory rule */
1260static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1261{
1262 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1263 u32 freq_diff;
1264
1265 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1266 return false;
1267
1268 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1269 return false;
1270
1271 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1272
1273 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1274 freq_range->max_bandwidth_khz > freq_diff)
1275 return false;
1276
1277 return true;
1278}
1279
1280static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1281{
1282 const struct ieee80211_reg_rule *reg_rule = NULL;
1283 unsigned int i;
1284
1285 if (!rd->n_reg_rules)
1286 return false;
1287
1288 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1289 return false;
1290
1291 for (i = 0; i < rd->n_reg_rules; i++) {
1292 reg_rule = &rd->reg_rules[i];
1293 if (!is_valid_reg_rule(reg_rule))
1294 return false;
1295 }
1296
1297 return true;
1298}
1299
1300/**
1301 * freq_in_rule_band - tells us if a frequency is in a frequency band
1302 * @freq_range: frequency rule we want to query
1303 * @freq_khz: frequency we are inquiring about
1304 *
1305 * This lets us know if a specific frequency rule is or is not relevant to
1306 * a specific frequency's band. Bands are device specific and artificial
1307 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1308 * however it is safe for now to assume that a frequency rule should not be
1309 * part of a frequency's band if the start freq or end freq are off by more
1310 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1311 * 60 GHz band.
1312 * This resolution can be lowered and should be considered as we add
1313 * regulatory rule support for other "bands".
1314 **/
1315static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1316 u32 freq_khz)
1317{
1318#define ONE_GHZ_IN_KHZ 1000000
1319 /*
1320 * From 802.11ad: directional multi-gigabit (DMG):
1321 * Pertaining to operation in a frequency band containing a channel
1322 * with the Channel starting frequency above 45 GHz.
1323 */
1324 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1325 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1326 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1327 return true;
1328 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1329 return true;
1330 return false;
1331#undef ONE_GHZ_IN_KHZ
1332}
1333
1334/*
1335 * Later on we can perhaps use the more restrictive DFS
1336 * region but we don't have information for that yet so
1337 * for now simply disallow conflicts.
1338 */
1339static enum nl80211_dfs_regions
1340reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1341 const enum nl80211_dfs_regions dfs_region2)
1342{
1343 if (dfs_region1 != dfs_region2)
1344 return NL80211_DFS_UNSET;
1345 return dfs_region1;
1346}
1347
1348static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1349 const struct ieee80211_wmm_ac *wmm_ac2,
1350 struct ieee80211_wmm_ac *intersect)
1351{
1352 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1353 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1354 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1355 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1356}
1357
1358/*
1359 * Helper for regdom_intersect(), this does the real
1360 * mathematical intersection fun
1361 */
1362static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1363 const struct ieee80211_regdomain *rd2,
1364 const struct ieee80211_reg_rule *rule1,
1365 const struct ieee80211_reg_rule *rule2,
1366 struct ieee80211_reg_rule *intersected_rule)
1367{
1368 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1369 struct ieee80211_freq_range *freq_range;
1370 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1371 struct ieee80211_power_rule *power_rule;
1372 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1373 struct ieee80211_wmm_rule *wmm_rule;
1374 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1375
1376 freq_range1 = &rule1->freq_range;
1377 freq_range2 = &rule2->freq_range;
1378 freq_range = &intersected_rule->freq_range;
1379
1380 power_rule1 = &rule1->power_rule;
1381 power_rule2 = &rule2->power_rule;
1382 power_rule = &intersected_rule->power_rule;
1383
1384 wmm_rule1 = &rule1->wmm_rule;
1385 wmm_rule2 = &rule2->wmm_rule;
1386 wmm_rule = &intersected_rule->wmm_rule;
1387
1388 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1389 freq_range2->start_freq_khz);
1390 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1391 freq_range2->end_freq_khz);
1392
1393 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1394 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1395
1396 if (rule1->flags & NL80211_RRF_AUTO_BW)
1397 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1398 if (rule2->flags & NL80211_RRF_AUTO_BW)
1399 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1400
1401 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1402
1403 intersected_rule->flags = rule1->flags | rule2->flags;
1404
1405 /*
1406 * In case NL80211_RRF_AUTO_BW requested for both rules
1407 * set AUTO_BW in intersected rule also. Next we will
1408 * calculate BW correctly in handle_channel function.
1409 * In other case remove AUTO_BW flag while we calculate
1410 * maximum bandwidth correctly and auto calculation is
1411 * not required.
1412 */
1413 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1414 (rule2->flags & NL80211_RRF_AUTO_BW))
1415 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1416 else
1417 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1418
1419 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1420 if (freq_range->max_bandwidth_khz > freq_diff)
1421 freq_range->max_bandwidth_khz = freq_diff;
1422
1423 power_rule->max_eirp = min(power_rule1->max_eirp,
1424 power_rule2->max_eirp);
1425 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1426 power_rule2->max_antenna_gain);
1427
1428 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1429 rule2->dfs_cac_ms);
1430
1431 if (rule1->has_wmm && rule2->has_wmm) {
1432 u8 ac;
1433
1434 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1435 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1436 &wmm_rule2->client[ac],
1437 &wmm_rule->client[ac]);
1438 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1439 &wmm_rule2->ap[ac],
1440 &wmm_rule->ap[ac]);
1441 }
1442
1443 intersected_rule->has_wmm = true;
1444 } else if (rule1->has_wmm) {
1445 *wmm_rule = *wmm_rule1;
1446 intersected_rule->has_wmm = true;
1447 } else if (rule2->has_wmm) {
1448 *wmm_rule = *wmm_rule2;
1449 intersected_rule->has_wmm = true;
1450 } else {
1451 intersected_rule->has_wmm = false;
1452 }
1453
1454 if (!is_valid_reg_rule(intersected_rule))
1455 return -EINVAL;
1456
1457 return 0;
1458}
1459
1460/* check whether old rule contains new rule */
1461static bool rule_contains(struct ieee80211_reg_rule *r1,
1462 struct ieee80211_reg_rule *r2)
1463{
1464 /* for simplicity, currently consider only same flags */
1465 if (r1->flags != r2->flags)
1466 return false;
1467
1468 /* verify r1 is more restrictive */
1469 if ((r1->power_rule.max_antenna_gain >
1470 r2->power_rule.max_antenna_gain) ||
1471 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1472 return false;
1473
1474 /* make sure r2's range is contained within r1 */
1475 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1476 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1477 return false;
1478
1479 /* and finally verify that r1.max_bw >= r2.max_bw */
1480 if (r1->freq_range.max_bandwidth_khz <
1481 r2->freq_range.max_bandwidth_khz)
1482 return false;
1483
1484 return true;
1485}
1486
1487/* add or extend current rules. do nothing if rule is already contained */
1488static void add_rule(struct ieee80211_reg_rule *rule,
1489 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1490{
1491 struct ieee80211_reg_rule *tmp_rule;
1492 int i;
1493
1494 for (i = 0; i < *n_rules; i++) {
1495 tmp_rule = ®_rules[i];
1496 /* rule is already contained - do nothing */
1497 if (rule_contains(tmp_rule, rule))
1498 return;
1499
1500 /* extend rule if possible */
1501 if (rule_contains(rule, tmp_rule)) {
1502 memcpy(tmp_rule, rule, sizeof(*rule));
1503 return;
1504 }
1505 }
1506
1507 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1508 (*n_rules)++;
1509}
1510
1511/**
1512 * regdom_intersect - do the intersection between two regulatory domains
1513 * @rd1: first regulatory domain
1514 * @rd2: second regulatory domain
1515 *
1516 * Use this function to get the intersection between two regulatory domains.
1517 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1518 * as no one single alpha2 can represent this regulatory domain.
1519 *
1520 * Returns a pointer to the regulatory domain structure which will hold the
1521 * resulting intersection of rules between rd1 and rd2. We will
1522 * kzalloc() this structure for you.
1523 */
1524static struct ieee80211_regdomain *
1525regdom_intersect(const struct ieee80211_regdomain *rd1,
1526 const struct ieee80211_regdomain *rd2)
1527{
1528 int r;
1529 unsigned int x, y;
1530 unsigned int num_rules = 0;
1531 const struct ieee80211_reg_rule *rule1, *rule2;
1532 struct ieee80211_reg_rule intersected_rule;
1533 struct ieee80211_regdomain *rd;
1534
1535 if (!rd1 || !rd2)
1536 return NULL;
1537
1538 /*
1539 * First we get a count of the rules we'll need, then we actually
1540 * build them. This is to so we can malloc() and free() a
1541 * regdomain once. The reason we use reg_rules_intersect() here
1542 * is it will return -EINVAL if the rule computed makes no sense.
1543 * All rules that do check out OK are valid.
1544 */
1545
1546 for (x = 0; x < rd1->n_reg_rules; x++) {
1547 rule1 = &rd1->reg_rules[x];
1548 for (y = 0; y < rd2->n_reg_rules; y++) {
1549 rule2 = &rd2->reg_rules[y];
1550 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1551 &intersected_rule))
1552 num_rules++;
1553 }
1554 }
1555
1556 if (!num_rules)
1557 return NULL;
1558
1559 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1560 if (!rd)
1561 return NULL;
1562
1563 for (x = 0; x < rd1->n_reg_rules; x++) {
1564 rule1 = &rd1->reg_rules[x];
1565 for (y = 0; y < rd2->n_reg_rules; y++) {
1566 rule2 = &rd2->reg_rules[y];
1567 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1568 &intersected_rule);
1569 /*
1570 * No need to memset here the intersected rule here as
1571 * we're not using the stack anymore
1572 */
1573 if (r)
1574 continue;
1575
1576 add_rule(&intersected_rule, rd->reg_rules,
1577 &rd->n_reg_rules);
1578 }
1579 }
1580
1581 rd->alpha2[0] = '9';
1582 rd->alpha2[1] = '8';
1583 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1584 rd2->dfs_region);
1585
1586 return rd;
1587}
1588
1589/*
1590 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1591 * want to just have the channel structure use these
1592 */
1593static u32 map_regdom_flags(u32 rd_flags)
1594{
1595 u32 channel_flags = 0;
1596 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1597 channel_flags |= IEEE80211_CHAN_NO_IR;
1598 if (rd_flags & NL80211_RRF_DFS)
1599 channel_flags |= IEEE80211_CHAN_RADAR;
1600 if (rd_flags & NL80211_RRF_NO_OFDM)
1601 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1602 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1603 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1604 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1605 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1606 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1607 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1608 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1609 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1610 if (rd_flags & NL80211_RRF_NO_80MHZ)
1611 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1612 if (rd_flags & NL80211_RRF_NO_160MHZ)
1613 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1614 if (rd_flags & NL80211_RRF_NO_HE)
1615 channel_flags |= IEEE80211_CHAN_NO_HE;
1616 if (rd_flags & NL80211_RRF_NO_320MHZ)
1617 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1618 return channel_flags;
1619}
1620
1621static const struct ieee80211_reg_rule *
1622freq_reg_info_regd(u32 center_freq,
1623 const struct ieee80211_regdomain *regd, u32 bw)
1624{
1625 int i;
1626 bool band_rule_found = false;
1627 bool bw_fits = false;
1628
1629 if (!regd)
1630 return ERR_PTR(-EINVAL);
1631
1632 for (i = 0; i < regd->n_reg_rules; i++) {
1633 const struct ieee80211_reg_rule *rr;
1634 const struct ieee80211_freq_range *fr = NULL;
1635
1636 rr = ®d->reg_rules[i];
1637 fr = &rr->freq_range;
1638
1639 /*
1640 * We only need to know if one frequency rule was
1641 * in center_freq's band, that's enough, so let's
1642 * not overwrite it once found
1643 */
1644 if (!band_rule_found)
1645 band_rule_found = freq_in_rule_band(fr, center_freq);
1646
1647 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1648
1649 if (band_rule_found && bw_fits)
1650 return rr;
1651 }
1652
1653 if (!band_rule_found)
1654 return ERR_PTR(-ERANGE);
1655
1656 return ERR_PTR(-EINVAL);
1657}
1658
1659static const struct ieee80211_reg_rule *
1660__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1661{
1662 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1663 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1664 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1665 int i = ARRAY_SIZE(bws) - 1;
1666 u32 bw;
1667
1668 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1669 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1670 if (!IS_ERR(reg_rule))
1671 return reg_rule;
1672 }
1673
1674 return reg_rule;
1675}
1676
1677const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1678 u32 center_freq)
1679{
1680 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1681
1682 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1683}
1684EXPORT_SYMBOL(freq_reg_info);
1685
1686const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1687{
1688 switch (initiator) {
1689 case NL80211_REGDOM_SET_BY_CORE:
1690 return "core";
1691 case NL80211_REGDOM_SET_BY_USER:
1692 return "user";
1693 case NL80211_REGDOM_SET_BY_DRIVER:
1694 return "driver";
1695 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1696 return "country element";
1697 default:
1698 WARN_ON(1);
1699 return "bug";
1700 }
1701}
1702EXPORT_SYMBOL(reg_initiator_name);
1703
1704static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1705 const struct ieee80211_reg_rule *reg_rule,
1706 const struct ieee80211_channel *chan)
1707{
1708 const struct ieee80211_freq_range *freq_range = NULL;
1709 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1710 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1711
1712 freq_range = ®_rule->freq_range;
1713
1714 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1715 center_freq_khz = ieee80211_channel_to_khz(chan);
1716 /* Check if auto calculation requested */
1717 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1718 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1719
1720 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1721 if (!cfg80211_does_bw_fit_range(freq_range,
1722 center_freq_khz,
1723 MHZ_TO_KHZ(10)))
1724 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1725 if (!cfg80211_does_bw_fit_range(freq_range,
1726 center_freq_khz,
1727 MHZ_TO_KHZ(20)))
1728 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1729
1730 if (is_s1g) {
1731 /* S1G is strict about non overlapping channels. We can
1732 * calculate which bandwidth is allowed per channel by finding
1733 * the largest bandwidth which cleanly divides the freq_range.
1734 */
1735 int edge_offset;
1736 int ch_bw = max_bandwidth_khz;
1737
1738 while (ch_bw) {
1739 edge_offset = (center_freq_khz - ch_bw / 2) -
1740 freq_range->start_freq_khz;
1741 if (edge_offset % ch_bw == 0) {
1742 switch (KHZ_TO_MHZ(ch_bw)) {
1743 case 1:
1744 bw_flags |= IEEE80211_CHAN_1MHZ;
1745 break;
1746 case 2:
1747 bw_flags |= IEEE80211_CHAN_2MHZ;
1748 break;
1749 case 4:
1750 bw_flags |= IEEE80211_CHAN_4MHZ;
1751 break;
1752 case 8:
1753 bw_flags |= IEEE80211_CHAN_8MHZ;
1754 break;
1755 case 16:
1756 bw_flags |= IEEE80211_CHAN_16MHZ;
1757 break;
1758 default:
1759 /* If we got here, no bandwidths fit on
1760 * this frequency, ie. band edge.
1761 */
1762 bw_flags |= IEEE80211_CHAN_DISABLED;
1763 break;
1764 }
1765 break;
1766 }
1767 ch_bw /= 2;
1768 }
1769 } else {
1770 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1771 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1772 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1773 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1774 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1775 bw_flags |= IEEE80211_CHAN_NO_HT40;
1776 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1777 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1778 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1779 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1781 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1782 }
1783 return bw_flags;
1784}
1785
1786static void handle_channel_single_rule(struct wiphy *wiphy,
1787 enum nl80211_reg_initiator initiator,
1788 struct ieee80211_channel *chan,
1789 u32 flags,
1790 struct regulatory_request *lr,
1791 struct wiphy *request_wiphy,
1792 const struct ieee80211_reg_rule *reg_rule)
1793{
1794 u32 bw_flags = 0;
1795 const struct ieee80211_power_rule *power_rule = NULL;
1796 const struct ieee80211_regdomain *regd;
1797
1798 regd = reg_get_regdomain(wiphy);
1799
1800 power_rule = ®_rule->power_rule;
1801 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1802
1803 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1804 request_wiphy && request_wiphy == wiphy &&
1805 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1806 /*
1807 * This guarantees the driver's requested regulatory domain
1808 * will always be used as a base for further regulatory
1809 * settings
1810 */
1811 chan->flags = chan->orig_flags =
1812 map_regdom_flags(reg_rule->flags) | bw_flags;
1813 chan->max_antenna_gain = chan->orig_mag =
1814 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1815 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1816 (int) MBM_TO_DBM(power_rule->max_eirp);
1817
1818 if (chan->flags & IEEE80211_CHAN_RADAR) {
1819 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1820 if (reg_rule->dfs_cac_ms)
1821 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1822 }
1823
1824 return;
1825 }
1826
1827 chan->dfs_state = NL80211_DFS_USABLE;
1828 chan->dfs_state_entered = jiffies;
1829
1830 chan->beacon_found = false;
1831 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1832 chan->max_antenna_gain =
1833 min_t(int, chan->orig_mag,
1834 MBI_TO_DBI(power_rule->max_antenna_gain));
1835 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1836
1837 if (chan->flags & IEEE80211_CHAN_RADAR) {
1838 if (reg_rule->dfs_cac_ms)
1839 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1840 else
1841 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1842 }
1843
1844 if (chan->orig_mpwr) {
1845 /*
1846 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1847 * will always follow the passed country IE power settings.
1848 */
1849 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1850 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1851 chan->max_power = chan->max_reg_power;
1852 else
1853 chan->max_power = min(chan->orig_mpwr,
1854 chan->max_reg_power);
1855 } else
1856 chan->max_power = chan->max_reg_power;
1857}
1858
1859static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1860 enum nl80211_reg_initiator initiator,
1861 struct ieee80211_channel *chan,
1862 u32 flags,
1863 struct regulatory_request *lr,
1864 struct wiphy *request_wiphy,
1865 const struct ieee80211_reg_rule *rrule1,
1866 const struct ieee80211_reg_rule *rrule2,
1867 struct ieee80211_freq_range *comb_range)
1868{
1869 u32 bw_flags1 = 0;
1870 u32 bw_flags2 = 0;
1871 const struct ieee80211_power_rule *power_rule1 = NULL;
1872 const struct ieee80211_power_rule *power_rule2 = NULL;
1873 const struct ieee80211_regdomain *regd;
1874
1875 regd = reg_get_regdomain(wiphy);
1876
1877 power_rule1 = &rrule1->power_rule;
1878 power_rule2 = &rrule2->power_rule;
1879 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1880 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1881
1882 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1883 request_wiphy && request_wiphy == wiphy &&
1884 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1885 /* This guarantees the driver's requested regulatory domain
1886 * will always be used as a base for further regulatory
1887 * settings
1888 */
1889 chan->flags =
1890 map_regdom_flags(rrule1->flags) |
1891 map_regdom_flags(rrule2->flags) |
1892 bw_flags1 |
1893 bw_flags2;
1894 chan->orig_flags = chan->flags;
1895 chan->max_antenna_gain =
1896 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1897 MBI_TO_DBI(power_rule2->max_antenna_gain));
1898 chan->orig_mag = chan->max_antenna_gain;
1899 chan->max_reg_power =
1900 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1901 MBM_TO_DBM(power_rule2->max_eirp));
1902 chan->max_power = chan->max_reg_power;
1903 chan->orig_mpwr = chan->max_reg_power;
1904
1905 if (chan->flags & IEEE80211_CHAN_RADAR) {
1906 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1907 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1908 chan->dfs_cac_ms = max_t(unsigned int,
1909 rrule1->dfs_cac_ms,
1910 rrule2->dfs_cac_ms);
1911 }
1912
1913 return;
1914 }
1915
1916 chan->dfs_state = NL80211_DFS_USABLE;
1917 chan->dfs_state_entered = jiffies;
1918
1919 chan->beacon_found = false;
1920 chan->flags = flags | bw_flags1 | bw_flags2 |
1921 map_regdom_flags(rrule1->flags) |
1922 map_regdom_flags(rrule2->flags);
1923
1924 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1925 * (otherwise no adj. rule case), recheck therefore
1926 */
1927 if (cfg80211_does_bw_fit_range(comb_range,
1928 ieee80211_channel_to_khz(chan),
1929 MHZ_TO_KHZ(10)))
1930 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1931 if (cfg80211_does_bw_fit_range(comb_range,
1932 ieee80211_channel_to_khz(chan),
1933 MHZ_TO_KHZ(20)))
1934 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1935
1936 chan->max_antenna_gain =
1937 min_t(int, chan->orig_mag,
1938 min_t(int,
1939 MBI_TO_DBI(power_rule1->max_antenna_gain),
1940 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1941 chan->max_reg_power = min_t(int,
1942 MBM_TO_DBM(power_rule1->max_eirp),
1943 MBM_TO_DBM(power_rule2->max_eirp));
1944
1945 if (chan->flags & IEEE80211_CHAN_RADAR) {
1946 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1947 chan->dfs_cac_ms = max_t(unsigned int,
1948 rrule1->dfs_cac_ms,
1949 rrule2->dfs_cac_ms);
1950 else
1951 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1952 }
1953
1954 if (chan->orig_mpwr) {
1955 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1956 * will always follow the passed country IE power settings.
1957 */
1958 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1959 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1960 chan->max_power = chan->max_reg_power;
1961 else
1962 chan->max_power = min(chan->orig_mpwr,
1963 chan->max_reg_power);
1964 } else {
1965 chan->max_power = chan->max_reg_power;
1966 }
1967}
1968
1969/* Note that right now we assume the desired channel bandwidth
1970 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1971 * per channel, the primary and the extension channel).
1972 */
1973static void handle_channel(struct wiphy *wiphy,
1974 enum nl80211_reg_initiator initiator,
1975 struct ieee80211_channel *chan)
1976{
1977 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1978 struct regulatory_request *lr = get_last_request();
1979 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1980 const struct ieee80211_reg_rule *rrule = NULL;
1981 const struct ieee80211_reg_rule *rrule1 = NULL;
1982 const struct ieee80211_reg_rule *rrule2 = NULL;
1983
1984 u32 flags = chan->orig_flags;
1985
1986 rrule = freq_reg_info(wiphy, orig_chan_freq);
1987 if (IS_ERR(rrule)) {
1988 /* check for adjacent match, therefore get rules for
1989 * chan - 20 MHz and chan + 20 MHz and test
1990 * if reg rules are adjacent
1991 */
1992 rrule1 = freq_reg_info(wiphy,
1993 orig_chan_freq - MHZ_TO_KHZ(20));
1994 rrule2 = freq_reg_info(wiphy,
1995 orig_chan_freq + MHZ_TO_KHZ(20));
1996 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1997 struct ieee80211_freq_range comb_range;
1998
1999 if (rrule1->freq_range.end_freq_khz !=
2000 rrule2->freq_range.start_freq_khz)
2001 goto disable_chan;
2002
2003 comb_range.start_freq_khz =
2004 rrule1->freq_range.start_freq_khz;
2005 comb_range.end_freq_khz =
2006 rrule2->freq_range.end_freq_khz;
2007 comb_range.max_bandwidth_khz =
2008 min_t(u32,
2009 rrule1->freq_range.max_bandwidth_khz,
2010 rrule2->freq_range.max_bandwidth_khz);
2011
2012 if (!cfg80211_does_bw_fit_range(&comb_range,
2013 orig_chan_freq,
2014 MHZ_TO_KHZ(20)))
2015 goto disable_chan;
2016
2017 handle_channel_adjacent_rules(wiphy, initiator, chan,
2018 flags, lr, request_wiphy,
2019 rrule1, rrule2,
2020 &comb_range);
2021 return;
2022 }
2023
2024disable_chan:
2025 /* We will disable all channels that do not match our
2026 * received regulatory rule unless the hint is coming
2027 * from a Country IE and the Country IE had no information
2028 * about a band. The IEEE 802.11 spec allows for an AP
2029 * to send only a subset of the regulatory rules allowed,
2030 * so an AP in the US that only supports 2.4 GHz may only send
2031 * a country IE with information for the 2.4 GHz band
2032 * while 5 GHz is still supported.
2033 */
2034 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2035 PTR_ERR(rrule) == -ERANGE)
2036 return;
2037
2038 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2039 request_wiphy && request_wiphy == wiphy &&
2040 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2041 pr_debug("Disabling freq %d.%03d MHz for good\n",
2042 chan->center_freq, chan->freq_offset);
2043 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2044 chan->flags = chan->orig_flags;
2045 } else {
2046 pr_debug("Disabling freq %d.%03d MHz\n",
2047 chan->center_freq, chan->freq_offset);
2048 chan->flags |= IEEE80211_CHAN_DISABLED;
2049 }
2050 return;
2051 }
2052
2053 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2054 request_wiphy, rrule);
2055}
2056
2057static void handle_band(struct wiphy *wiphy,
2058 enum nl80211_reg_initiator initiator,
2059 struct ieee80211_supported_band *sband)
2060{
2061 unsigned int i;
2062
2063 if (!sband)
2064 return;
2065
2066 for (i = 0; i < sband->n_channels; i++)
2067 handle_channel(wiphy, initiator, &sband->channels[i]);
2068}
2069
2070static bool reg_request_cell_base(struct regulatory_request *request)
2071{
2072 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2073 return false;
2074 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2075}
2076
2077bool reg_last_request_cell_base(void)
2078{
2079 return reg_request_cell_base(get_last_request());
2080}
2081
2082#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2083/* Core specific check */
2084static enum reg_request_treatment
2085reg_ignore_cell_hint(struct regulatory_request *pending_request)
2086{
2087 struct regulatory_request *lr = get_last_request();
2088
2089 if (!reg_num_devs_support_basehint)
2090 return REG_REQ_IGNORE;
2091
2092 if (reg_request_cell_base(lr) &&
2093 !regdom_changes(pending_request->alpha2))
2094 return REG_REQ_ALREADY_SET;
2095
2096 return REG_REQ_OK;
2097}
2098
2099/* Device specific check */
2100static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2101{
2102 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2103}
2104#else
2105static enum reg_request_treatment
2106reg_ignore_cell_hint(struct regulatory_request *pending_request)
2107{
2108 return REG_REQ_IGNORE;
2109}
2110
2111static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2112{
2113 return true;
2114}
2115#endif
2116
2117static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2118{
2119 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2120 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2121 return true;
2122 return false;
2123}
2124
2125static bool ignore_reg_update(struct wiphy *wiphy,
2126 enum nl80211_reg_initiator initiator)
2127{
2128 struct regulatory_request *lr = get_last_request();
2129
2130 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2131 return true;
2132
2133 if (!lr) {
2134 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2135 reg_initiator_name(initiator));
2136 return true;
2137 }
2138
2139 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2140 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2141 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2142 reg_initiator_name(initiator));
2143 return true;
2144 }
2145
2146 /*
2147 * wiphy->regd will be set once the device has its own
2148 * desired regulatory domain set
2149 */
2150 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2151 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2152 !is_world_regdom(lr->alpha2)) {
2153 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2154 reg_initiator_name(initiator));
2155 return true;
2156 }
2157
2158 if (reg_request_cell_base(lr))
2159 return reg_dev_ignore_cell_hint(wiphy);
2160
2161 return false;
2162}
2163
2164static bool reg_is_world_roaming(struct wiphy *wiphy)
2165{
2166 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2167 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2168 struct regulatory_request *lr = get_last_request();
2169
2170 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2171 return true;
2172
2173 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2174 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2175 return true;
2176
2177 return false;
2178}
2179
2180static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2181 struct reg_beacon *reg_beacon)
2182{
2183 struct ieee80211_supported_band *sband;
2184 struct ieee80211_channel *chan;
2185 bool channel_changed = false;
2186 struct ieee80211_channel chan_before;
2187
2188 sband = wiphy->bands[reg_beacon->chan.band];
2189 chan = &sband->channels[chan_idx];
2190
2191 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2192 return;
2193
2194 if (chan->beacon_found)
2195 return;
2196
2197 chan->beacon_found = true;
2198
2199 if (!reg_is_world_roaming(wiphy))
2200 return;
2201
2202 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2203 return;
2204
2205 chan_before = *chan;
2206
2207 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2208 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2209 channel_changed = true;
2210 }
2211
2212 if (channel_changed)
2213 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2214}
2215
2216/*
2217 * Called when a scan on a wiphy finds a beacon on
2218 * new channel
2219 */
2220static void wiphy_update_new_beacon(struct wiphy *wiphy,
2221 struct reg_beacon *reg_beacon)
2222{
2223 unsigned int i;
2224 struct ieee80211_supported_band *sband;
2225
2226 if (!wiphy->bands[reg_beacon->chan.band])
2227 return;
2228
2229 sband = wiphy->bands[reg_beacon->chan.band];
2230
2231 for (i = 0; i < sband->n_channels; i++)
2232 handle_reg_beacon(wiphy, i, reg_beacon);
2233}
2234
2235/*
2236 * Called upon reg changes or a new wiphy is added
2237 */
2238static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2239{
2240 unsigned int i;
2241 struct ieee80211_supported_band *sband;
2242 struct reg_beacon *reg_beacon;
2243
2244 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2245 if (!wiphy->bands[reg_beacon->chan.band])
2246 continue;
2247 sband = wiphy->bands[reg_beacon->chan.band];
2248 for (i = 0; i < sband->n_channels; i++)
2249 handle_reg_beacon(wiphy, i, reg_beacon);
2250 }
2251}
2252
2253/* Reap the advantages of previously found beacons */
2254static void reg_process_beacons(struct wiphy *wiphy)
2255{
2256 /*
2257 * Means we are just firing up cfg80211, so no beacons would
2258 * have been processed yet.
2259 */
2260 if (!last_request)
2261 return;
2262 wiphy_update_beacon_reg(wiphy);
2263}
2264
2265static bool is_ht40_allowed(struct ieee80211_channel *chan)
2266{
2267 if (!chan)
2268 return false;
2269 if (chan->flags & IEEE80211_CHAN_DISABLED)
2270 return false;
2271 /* This would happen when regulatory rules disallow HT40 completely */
2272 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2273 return false;
2274 return true;
2275}
2276
2277static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2278 struct ieee80211_channel *channel)
2279{
2280 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2281 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2282 const struct ieee80211_regdomain *regd;
2283 unsigned int i;
2284 u32 flags;
2285
2286 if (!is_ht40_allowed(channel)) {
2287 channel->flags |= IEEE80211_CHAN_NO_HT40;
2288 return;
2289 }
2290
2291 /*
2292 * We need to ensure the extension channels exist to
2293 * be able to use HT40- or HT40+, this finds them (or not)
2294 */
2295 for (i = 0; i < sband->n_channels; i++) {
2296 struct ieee80211_channel *c = &sband->channels[i];
2297
2298 if (c->center_freq == (channel->center_freq - 20))
2299 channel_before = c;
2300 if (c->center_freq == (channel->center_freq + 20))
2301 channel_after = c;
2302 }
2303
2304 flags = 0;
2305 regd = get_wiphy_regdom(wiphy);
2306 if (regd) {
2307 const struct ieee80211_reg_rule *reg_rule =
2308 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2309 regd, MHZ_TO_KHZ(20));
2310
2311 if (!IS_ERR(reg_rule))
2312 flags = reg_rule->flags;
2313 }
2314
2315 /*
2316 * Please note that this assumes target bandwidth is 20 MHz,
2317 * if that ever changes we also need to change the below logic
2318 * to include that as well.
2319 */
2320 if (!is_ht40_allowed(channel_before) ||
2321 flags & NL80211_RRF_NO_HT40MINUS)
2322 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2323 else
2324 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2325
2326 if (!is_ht40_allowed(channel_after) ||
2327 flags & NL80211_RRF_NO_HT40PLUS)
2328 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2329 else
2330 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2331}
2332
2333static void reg_process_ht_flags_band(struct wiphy *wiphy,
2334 struct ieee80211_supported_band *sband)
2335{
2336 unsigned int i;
2337
2338 if (!sband)
2339 return;
2340
2341 for (i = 0; i < sband->n_channels; i++)
2342 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2343}
2344
2345static void reg_process_ht_flags(struct wiphy *wiphy)
2346{
2347 enum nl80211_band band;
2348
2349 if (!wiphy)
2350 return;
2351
2352 for (band = 0; band < NUM_NL80211_BANDS; band++)
2353 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2354}
2355
2356static void reg_call_notifier(struct wiphy *wiphy,
2357 struct regulatory_request *request)
2358{
2359 if (wiphy->reg_notifier)
2360 wiphy->reg_notifier(wiphy, request);
2361}
2362
2363static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2364{
2365 struct cfg80211_chan_def chandef = {};
2366 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2367 enum nl80211_iftype iftype;
2368 bool ret;
2369
2370 wdev_lock(wdev);
2371 iftype = wdev->iftype;
2372
2373 /* make sure the interface is active */
2374 if (!wdev->netdev || !netif_running(wdev->netdev))
2375 goto wdev_inactive_unlock;
2376
2377 switch (iftype) {
2378 case NL80211_IFTYPE_AP:
2379 case NL80211_IFTYPE_P2P_GO:
2380 case NL80211_IFTYPE_MESH_POINT:
2381 if (!wdev->beacon_interval)
2382 goto wdev_inactive_unlock;
2383 chandef = wdev->chandef;
2384 break;
2385 case NL80211_IFTYPE_ADHOC:
2386 if (!wdev->ssid_len)
2387 goto wdev_inactive_unlock;
2388 chandef = wdev->chandef;
2389 break;
2390 case NL80211_IFTYPE_STATION:
2391 case NL80211_IFTYPE_P2P_CLIENT:
2392 if (!wdev->current_bss ||
2393 !wdev->current_bss->pub.channel)
2394 goto wdev_inactive_unlock;
2395
2396 if (!rdev->ops->get_channel ||
2397 rdev_get_channel(rdev, wdev, &chandef))
2398 cfg80211_chandef_create(&chandef,
2399 wdev->current_bss->pub.channel,
2400 NL80211_CHAN_NO_HT);
2401 break;
2402 case NL80211_IFTYPE_MONITOR:
2403 case NL80211_IFTYPE_AP_VLAN:
2404 case NL80211_IFTYPE_P2P_DEVICE:
2405 /* no enforcement required */
2406 break;
2407 default:
2408 /* others not implemented for now */
2409 WARN_ON(1);
2410 break;
2411 }
2412
2413 wdev_unlock(wdev);
2414
2415 switch (iftype) {
2416 case NL80211_IFTYPE_AP:
2417 case NL80211_IFTYPE_P2P_GO:
2418 case NL80211_IFTYPE_ADHOC:
2419 case NL80211_IFTYPE_MESH_POINT:
2420 wiphy_lock(wiphy);
2421 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2422 wiphy_unlock(wiphy);
2423
2424 return ret;
2425 case NL80211_IFTYPE_STATION:
2426 case NL80211_IFTYPE_P2P_CLIENT:
2427 return cfg80211_chandef_usable(wiphy, &chandef,
2428 IEEE80211_CHAN_DISABLED);
2429 default:
2430 break;
2431 }
2432
2433 return true;
2434
2435wdev_inactive_unlock:
2436 wdev_unlock(wdev);
2437 return true;
2438}
2439
2440static void reg_leave_invalid_chans(struct wiphy *wiphy)
2441{
2442 struct wireless_dev *wdev;
2443 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2444
2445 ASSERT_RTNL();
2446
2447 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2448 if (!reg_wdev_chan_valid(wiphy, wdev))
2449 cfg80211_leave(rdev, wdev);
2450}
2451
2452static void reg_check_chans_work(struct work_struct *work)
2453{
2454 struct cfg80211_registered_device *rdev;
2455
2456 pr_debug("Verifying active interfaces after reg change\n");
2457 rtnl_lock();
2458
2459 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2460 if (!(rdev->wiphy.regulatory_flags &
2461 REGULATORY_IGNORE_STALE_KICKOFF))
2462 reg_leave_invalid_chans(&rdev->wiphy);
2463
2464 rtnl_unlock();
2465}
2466
2467static void reg_check_channels(void)
2468{
2469 /*
2470 * Give usermode a chance to do something nicer (move to another
2471 * channel, orderly disconnection), before forcing a disconnection.
2472 */
2473 mod_delayed_work(system_power_efficient_wq,
2474 ®_check_chans,
2475 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2476}
2477
2478static void wiphy_update_regulatory(struct wiphy *wiphy,
2479 enum nl80211_reg_initiator initiator)
2480{
2481 enum nl80211_band band;
2482 struct regulatory_request *lr = get_last_request();
2483
2484 if (ignore_reg_update(wiphy, initiator)) {
2485 /*
2486 * Regulatory updates set by CORE are ignored for custom
2487 * regulatory cards. Let us notify the changes to the driver,
2488 * as some drivers used this to restore its orig_* reg domain.
2489 */
2490 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2491 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2492 !(wiphy->regulatory_flags &
2493 REGULATORY_WIPHY_SELF_MANAGED))
2494 reg_call_notifier(wiphy, lr);
2495 return;
2496 }
2497
2498 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2499
2500 for (band = 0; band < NUM_NL80211_BANDS; band++)
2501 handle_band(wiphy, initiator, wiphy->bands[band]);
2502
2503 reg_process_beacons(wiphy);
2504 reg_process_ht_flags(wiphy);
2505 reg_call_notifier(wiphy, lr);
2506}
2507
2508static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2509{
2510 struct cfg80211_registered_device *rdev;
2511 struct wiphy *wiphy;
2512
2513 ASSERT_RTNL();
2514
2515 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2516 wiphy = &rdev->wiphy;
2517 wiphy_update_regulatory(wiphy, initiator);
2518 }
2519
2520 reg_check_channels();
2521}
2522
2523static void handle_channel_custom(struct wiphy *wiphy,
2524 struct ieee80211_channel *chan,
2525 const struct ieee80211_regdomain *regd,
2526 u32 min_bw)
2527{
2528 u32 bw_flags = 0;
2529 const struct ieee80211_reg_rule *reg_rule = NULL;
2530 const struct ieee80211_power_rule *power_rule = NULL;
2531 u32 bw, center_freq_khz;
2532
2533 center_freq_khz = ieee80211_channel_to_khz(chan);
2534 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2535 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2536 if (!IS_ERR(reg_rule))
2537 break;
2538 }
2539
2540 if (IS_ERR_OR_NULL(reg_rule)) {
2541 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2542 chan->center_freq, chan->freq_offset);
2543 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2544 chan->flags |= IEEE80211_CHAN_DISABLED;
2545 } else {
2546 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2547 chan->flags = chan->orig_flags;
2548 }
2549 return;
2550 }
2551
2552 power_rule = ®_rule->power_rule;
2553 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2554
2555 chan->dfs_state_entered = jiffies;
2556 chan->dfs_state = NL80211_DFS_USABLE;
2557
2558 chan->beacon_found = false;
2559
2560 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2561 chan->flags = chan->orig_flags | bw_flags |
2562 map_regdom_flags(reg_rule->flags);
2563 else
2564 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2565
2566 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2567 chan->max_reg_power = chan->max_power =
2568 (int) MBM_TO_DBM(power_rule->max_eirp);
2569
2570 if (chan->flags & IEEE80211_CHAN_RADAR) {
2571 if (reg_rule->dfs_cac_ms)
2572 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2573 else
2574 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2575 }
2576
2577 chan->max_power = chan->max_reg_power;
2578}
2579
2580static void handle_band_custom(struct wiphy *wiphy,
2581 struct ieee80211_supported_band *sband,
2582 const struct ieee80211_regdomain *regd)
2583{
2584 unsigned int i;
2585
2586 if (!sband)
2587 return;
2588
2589 /*
2590 * We currently assume that you always want at least 20 MHz,
2591 * otherwise channel 12 might get enabled if this rule is
2592 * compatible to US, which permits 2402 - 2472 MHz.
2593 */
2594 for (i = 0; i < sband->n_channels; i++)
2595 handle_channel_custom(wiphy, &sband->channels[i], regd,
2596 MHZ_TO_KHZ(20));
2597}
2598
2599/* Used by drivers prior to wiphy registration */
2600void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2601 const struct ieee80211_regdomain *regd)
2602{
2603 const struct ieee80211_regdomain *new_regd, *tmp;
2604 enum nl80211_band band;
2605 unsigned int bands_set = 0;
2606
2607 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2608 "wiphy should have REGULATORY_CUSTOM_REG\n");
2609 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2610
2611 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2612 if (!wiphy->bands[band])
2613 continue;
2614 handle_band_custom(wiphy, wiphy->bands[band], regd);
2615 bands_set++;
2616 }
2617
2618 /*
2619 * no point in calling this if it won't have any effect
2620 * on your device's supported bands.
2621 */
2622 WARN_ON(!bands_set);
2623 new_regd = reg_copy_regd(regd);
2624 if (IS_ERR(new_regd))
2625 return;
2626
2627 rtnl_lock();
2628 wiphy_lock(wiphy);
2629
2630 tmp = get_wiphy_regdom(wiphy);
2631 rcu_assign_pointer(wiphy->regd, new_regd);
2632 rcu_free_regdom(tmp);
2633
2634 wiphy_unlock(wiphy);
2635 rtnl_unlock();
2636}
2637EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2638
2639static void reg_set_request_processed(void)
2640{
2641 bool need_more_processing = false;
2642 struct regulatory_request *lr = get_last_request();
2643
2644 lr->processed = true;
2645
2646 spin_lock(®_requests_lock);
2647 if (!list_empty(®_requests_list))
2648 need_more_processing = true;
2649 spin_unlock(®_requests_lock);
2650
2651 cancel_crda_timeout();
2652
2653 if (need_more_processing)
2654 schedule_work(®_work);
2655}
2656
2657/**
2658 * reg_process_hint_core - process core regulatory requests
2659 * @core_request: a pending core regulatory request
2660 *
2661 * The wireless subsystem can use this function to process
2662 * a regulatory request issued by the regulatory core.
2663 */
2664static enum reg_request_treatment
2665reg_process_hint_core(struct regulatory_request *core_request)
2666{
2667 if (reg_query_database(core_request)) {
2668 core_request->intersect = false;
2669 core_request->processed = false;
2670 reg_update_last_request(core_request);
2671 return REG_REQ_OK;
2672 }
2673
2674 return REG_REQ_IGNORE;
2675}
2676
2677static enum reg_request_treatment
2678__reg_process_hint_user(struct regulatory_request *user_request)
2679{
2680 struct regulatory_request *lr = get_last_request();
2681
2682 if (reg_request_cell_base(user_request))
2683 return reg_ignore_cell_hint(user_request);
2684
2685 if (reg_request_cell_base(lr))
2686 return REG_REQ_IGNORE;
2687
2688 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2689 return REG_REQ_INTERSECT;
2690 /*
2691 * If the user knows better the user should set the regdom
2692 * to their country before the IE is picked up
2693 */
2694 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2695 lr->intersect)
2696 return REG_REQ_IGNORE;
2697 /*
2698 * Process user requests only after previous user/driver/core
2699 * requests have been processed
2700 */
2701 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2702 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2703 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2704 regdom_changes(lr->alpha2))
2705 return REG_REQ_IGNORE;
2706
2707 if (!regdom_changes(user_request->alpha2))
2708 return REG_REQ_ALREADY_SET;
2709
2710 return REG_REQ_OK;
2711}
2712
2713/**
2714 * reg_process_hint_user - process user regulatory requests
2715 * @user_request: a pending user regulatory request
2716 *
2717 * The wireless subsystem can use this function to process
2718 * a regulatory request initiated by userspace.
2719 */
2720static enum reg_request_treatment
2721reg_process_hint_user(struct regulatory_request *user_request)
2722{
2723 enum reg_request_treatment treatment;
2724
2725 treatment = __reg_process_hint_user(user_request);
2726 if (treatment == REG_REQ_IGNORE ||
2727 treatment == REG_REQ_ALREADY_SET)
2728 return REG_REQ_IGNORE;
2729
2730 user_request->intersect = treatment == REG_REQ_INTERSECT;
2731 user_request->processed = false;
2732
2733 if (reg_query_database(user_request)) {
2734 reg_update_last_request(user_request);
2735 user_alpha2[0] = user_request->alpha2[0];
2736 user_alpha2[1] = user_request->alpha2[1];
2737 return REG_REQ_OK;
2738 }
2739
2740 return REG_REQ_IGNORE;
2741}
2742
2743static enum reg_request_treatment
2744__reg_process_hint_driver(struct regulatory_request *driver_request)
2745{
2746 struct regulatory_request *lr = get_last_request();
2747
2748 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2749 if (regdom_changes(driver_request->alpha2))
2750 return REG_REQ_OK;
2751 return REG_REQ_ALREADY_SET;
2752 }
2753
2754 /*
2755 * This would happen if you unplug and plug your card
2756 * back in or if you add a new device for which the previously
2757 * loaded card also agrees on the regulatory domain.
2758 */
2759 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2760 !regdom_changes(driver_request->alpha2))
2761 return REG_REQ_ALREADY_SET;
2762
2763 return REG_REQ_INTERSECT;
2764}
2765
2766/**
2767 * reg_process_hint_driver - process driver regulatory requests
2768 * @wiphy: the wireless device for the regulatory request
2769 * @driver_request: a pending driver regulatory request
2770 *
2771 * The wireless subsystem can use this function to process
2772 * a regulatory request issued by an 802.11 driver.
2773 *
2774 * Returns one of the different reg request treatment values.
2775 */
2776static enum reg_request_treatment
2777reg_process_hint_driver(struct wiphy *wiphy,
2778 struct regulatory_request *driver_request)
2779{
2780 const struct ieee80211_regdomain *regd, *tmp;
2781 enum reg_request_treatment treatment;
2782
2783 treatment = __reg_process_hint_driver(driver_request);
2784
2785 switch (treatment) {
2786 case REG_REQ_OK:
2787 break;
2788 case REG_REQ_IGNORE:
2789 return REG_REQ_IGNORE;
2790 case REG_REQ_INTERSECT:
2791 case REG_REQ_ALREADY_SET:
2792 regd = reg_copy_regd(get_cfg80211_regdom());
2793 if (IS_ERR(regd))
2794 return REG_REQ_IGNORE;
2795
2796 tmp = get_wiphy_regdom(wiphy);
2797 ASSERT_RTNL();
2798 wiphy_lock(wiphy);
2799 rcu_assign_pointer(wiphy->regd, regd);
2800 wiphy_unlock(wiphy);
2801 rcu_free_regdom(tmp);
2802 }
2803
2804
2805 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2806 driver_request->processed = false;
2807
2808 /*
2809 * Since CRDA will not be called in this case as we already
2810 * have applied the requested regulatory domain before we just
2811 * inform userspace we have processed the request
2812 */
2813 if (treatment == REG_REQ_ALREADY_SET) {
2814 nl80211_send_reg_change_event(driver_request);
2815 reg_update_last_request(driver_request);
2816 reg_set_request_processed();
2817 return REG_REQ_ALREADY_SET;
2818 }
2819
2820 if (reg_query_database(driver_request)) {
2821 reg_update_last_request(driver_request);
2822 return REG_REQ_OK;
2823 }
2824
2825 return REG_REQ_IGNORE;
2826}
2827
2828static enum reg_request_treatment
2829__reg_process_hint_country_ie(struct wiphy *wiphy,
2830 struct regulatory_request *country_ie_request)
2831{
2832 struct wiphy *last_wiphy = NULL;
2833 struct regulatory_request *lr = get_last_request();
2834
2835 if (reg_request_cell_base(lr)) {
2836 /* Trust a Cell base station over the AP's country IE */
2837 if (regdom_changes(country_ie_request->alpha2))
2838 return REG_REQ_IGNORE;
2839 return REG_REQ_ALREADY_SET;
2840 } else {
2841 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2842 return REG_REQ_IGNORE;
2843 }
2844
2845 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2846 return -EINVAL;
2847
2848 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2849 return REG_REQ_OK;
2850
2851 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2852
2853 if (last_wiphy != wiphy) {
2854 /*
2855 * Two cards with two APs claiming different
2856 * Country IE alpha2s. We could
2857 * intersect them, but that seems unlikely
2858 * to be correct. Reject second one for now.
2859 */
2860 if (regdom_changes(country_ie_request->alpha2))
2861 return REG_REQ_IGNORE;
2862 return REG_REQ_ALREADY_SET;
2863 }
2864
2865 if (regdom_changes(country_ie_request->alpha2))
2866 return REG_REQ_OK;
2867 return REG_REQ_ALREADY_SET;
2868}
2869
2870/**
2871 * reg_process_hint_country_ie - process regulatory requests from country IEs
2872 * @wiphy: the wireless device for the regulatory request
2873 * @country_ie_request: a regulatory request from a country IE
2874 *
2875 * The wireless subsystem can use this function to process
2876 * a regulatory request issued by a country Information Element.
2877 *
2878 * Returns one of the different reg request treatment values.
2879 */
2880static enum reg_request_treatment
2881reg_process_hint_country_ie(struct wiphy *wiphy,
2882 struct regulatory_request *country_ie_request)
2883{
2884 enum reg_request_treatment treatment;
2885
2886 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2887
2888 switch (treatment) {
2889 case REG_REQ_OK:
2890 break;
2891 case REG_REQ_IGNORE:
2892 return REG_REQ_IGNORE;
2893 case REG_REQ_ALREADY_SET:
2894 reg_free_request(country_ie_request);
2895 return REG_REQ_ALREADY_SET;
2896 case REG_REQ_INTERSECT:
2897 /*
2898 * This doesn't happen yet, not sure we
2899 * ever want to support it for this case.
2900 */
2901 WARN_ONCE(1, "Unexpected intersection for country elements");
2902 return REG_REQ_IGNORE;
2903 }
2904
2905 country_ie_request->intersect = false;
2906 country_ie_request->processed = false;
2907
2908 if (reg_query_database(country_ie_request)) {
2909 reg_update_last_request(country_ie_request);
2910 return REG_REQ_OK;
2911 }
2912
2913 return REG_REQ_IGNORE;
2914}
2915
2916bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2917{
2918 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2919 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2920 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2921 bool dfs_domain_same;
2922
2923 rcu_read_lock();
2924
2925 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2926 wiphy1_regd = rcu_dereference(wiphy1->regd);
2927 if (!wiphy1_regd)
2928 wiphy1_regd = cfg80211_regd;
2929
2930 wiphy2_regd = rcu_dereference(wiphy2->regd);
2931 if (!wiphy2_regd)
2932 wiphy2_regd = cfg80211_regd;
2933
2934 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2935
2936 rcu_read_unlock();
2937
2938 return dfs_domain_same;
2939}
2940
2941static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2942 struct ieee80211_channel *src_chan)
2943{
2944 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2945 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2946 return;
2947
2948 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2949 src_chan->flags & IEEE80211_CHAN_DISABLED)
2950 return;
2951
2952 if (src_chan->center_freq == dst_chan->center_freq &&
2953 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2954 dst_chan->dfs_state = src_chan->dfs_state;
2955 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2956 }
2957}
2958
2959static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2960 struct wiphy *src_wiphy)
2961{
2962 struct ieee80211_supported_band *src_sband, *dst_sband;
2963 struct ieee80211_channel *src_chan, *dst_chan;
2964 int i, j, band;
2965
2966 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2967 return;
2968
2969 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2970 dst_sband = dst_wiphy->bands[band];
2971 src_sband = src_wiphy->bands[band];
2972 if (!dst_sband || !src_sband)
2973 continue;
2974
2975 for (i = 0; i < dst_sband->n_channels; i++) {
2976 dst_chan = &dst_sband->channels[i];
2977 for (j = 0; j < src_sband->n_channels; j++) {
2978 src_chan = &src_sband->channels[j];
2979 reg_copy_dfs_chan_state(dst_chan, src_chan);
2980 }
2981 }
2982 }
2983}
2984
2985static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2986{
2987 struct cfg80211_registered_device *rdev;
2988
2989 ASSERT_RTNL();
2990
2991 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2992 if (wiphy == &rdev->wiphy)
2993 continue;
2994 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2995 }
2996}
2997
2998/* This processes *all* regulatory hints */
2999static void reg_process_hint(struct regulatory_request *reg_request)
3000{
3001 struct wiphy *wiphy = NULL;
3002 enum reg_request_treatment treatment;
3003 enum nl80211_reg_initiator initiator = reg_request->initiator;
3004
3005 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3006 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3007
3008 switch (initiator) {
3009 case NL80211_REGDOM_SET_BY_CORE:
3010 treatment = reg_process_hint_core(reg_request);
3011 break;
3012 case NL80211_REGDOM_SET_BY_USER:
3013 treatment = reg_process_hint_user(reg_request);
3014 break;
3015 case NL80211_REGDOM_SET_BY_DRIVER:
3016 if (!wiphy)
3017 goto out_free;
3018 treatment = reg_process_hint_driver(wiphy, reg_request);
3019 break;
3020 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3021 if (!wiphy)
3022 goto out_free;
3023 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3024 break;
3025 default:
3026 WARN(1, "invalid initiator %d\n", initiator);
3027 goto out_free;
3028 }
3029
3030 if (treatment == REG_REQ_IGNORE)
3031 goto out_free;
3032
3033 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3034 "unexpected treatment value %d\n", treatment);
3035
3036 /* This is required so that the orig_* parameters are saved.
3037 * NOTE: treatment must be set for any case that reaches here!
3038 */
3039 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3040 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3041 wiphy_update_regulatory(wiphy, initiator);
3042 wiphy_all_share_dfs_chan_state(wiphy);
3043 reg_check_channels();
3044 }
3045
3046 return;
3047
3048out_free:
3049 reg_free_request(reg_request);
3050}
3051
3052static void notify_self_managed_wiphys(struct regulatory_request *request)
3053{
3054 struct cfg80211_registered_device *rdev;
3055 struct wiphy *wiphy;
3056
3057 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3058 wiphy = &rdev->wiphy;
3059 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3060 request->initiator == NL80211_REGDOM_SET_BY_USER)
3061 reg_call_notifier(wiphy, request);
3062 }
3063}
3064
3065/*
3066 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3067 * Regulatory hints come on a first come first serve basis and we
3068 * must process each one atomically.
3069 */
3070static void reg_process_pending_hints(void)
3071{
3072 struct regulatory_request *reg_request, *lr;
3073
3074 lr = get_last_request();
3075
3076 /* When last_request->processed becomes true this will be rescheduled */
3077 if (lr && !lr->processed) {
3078 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3079 return;
3080 }
3081
3082 spin_lock(®_requests_lock);
3083
3084 if (list_empty(®_requests_list)) {
3085 spin_unlock(®_requests_lock);
3086 return;
3087 }
3088
3089 reg_request = list_first_entry(®_requests_list,
3090 struct regulatory_request,
3091 list);
3092 list_del_init(®_request->list);
3093
3094 spin_unlock(®_requests_lock);
3095
3096 notify_self_managed_wiphys(reg_request);
3097
3098 reg_process_hint(reg_request);
3099
3100 lr = get_last_request();
3101
3102 spin_lock(®_requests_lock);
3103 if (!list_empty(®_requests_list) && lr && lr->processed)
3104 schedule_work(®_work);
3105 spin_unlock(®_requests_lock);
3106}
3107
3108/* Processes beacon hints -- this has nothing to do with country IEs */
3109static void reg_process_pending_beacon_hints(void)
3110{
3111 struct cfg80211_registered_device *rdev;
3112 struct reg_beacon *pending_beacon, *tmp;
3113
3114 /* This goes through the _pending_ beacon list */
3115 spin_lock_bh(®_pending_beacons_lock);
3116
3117 list_for_each_entry_safe(pending_beacon, tmp,
3118 ®_pending_beacons, list) {
3119 list_del_init(&pending_beacon->list);
3120
3121 /* Applies the beacon hint to current wiphys */
3122 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3123 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3124
3125 /* Remembers the beacon hint for new wiphys or reg changes */
3126 list_add_tail(&pending_beacon->list, ®_beacon_list);
3127 }
3128
3129 spin_unlock_bh(®_pending_beacons_lock);
3130}
3131
3132static void reg_process_self_managed_hint(struct wiphy *wiphy)
3133{
3134 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3135 const struct ieee80211_regdomain *tmp;
3136 const struct ieee80211_regdomain *regd;
3137 enum nl80211_band band;
3138 struct regulatory_request request = {};
3139
3140 ASSERT_RTNL();
3141 lockdep_assert_wiphy(wiphy);
3142
3143 spin_lock(®_requests_lock);
3144 regd = rdev->requested_regd;
3145 rdev->requested_regd = NULL;
3146 spin_unlock(®_requests_lock);
3147
3148 if (!regd)
3149 return;
3150
3151 tmp = get_wiphy_regdom(wiphy);
3152 rcu_assign_pointer(wiphy->regd, regd);
3153 rcu_free_regdom(tmp);
3154
3155 for (band = 0; band < NUM_NL80211_BANDS; band++)
3156 handle_band_custom(wiphy, wiphy->bands[band], regd);
3157
3158 reg_process_ht_flags(wiphy);
3159
3160 request.wiphy_idx = get_wiphy_idx(wiphy);
3161 request.alpha2[0] = regd->alpha2[0];
3162 request.alpha2[1] = regd->alpha2[1];
3163 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3164
3165 nl80211_send_wiphy_reg_change_event(&request);
3166}
3167
3168static void reg_process_self_managed_hints(void)
3169{
3170 struct cfg80211_registered_device *rdev;
3171
3172 ASSERT_RTNL();
3173
3174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3175 wiphy_lock(&rdev->wiphy);
3176 reg_process_self_managed_hint(&rdev->wiphy);
3177 wiphy_unlock(&rdev->wiphy);
3178 }
3179
3180 reg_check_channels();
3181}
3182
3183static void reg_todo(struct work_struct *work)
3184{
3185 rtnl_lock();
3186 reg_process_pending_hints();
3187 reg_process_pending_beacon_hints();
3188 reg_process_self_managed_hints();
3189 rtnl_unlock();
3190}
3191
3192static void queue_regulatory_request(struct regulatory_request *request)
3193{
3194 request->alpha2[0] = toupper(request->alpha2[0]);
3195 request->alpha2[1] = toupper(request->alpha2[1]);
3196
3197 spin_lock(®_requests_lock);
3198 list_add_tail(&request->list, ®_requests_list);
3199 spin_unlock(®_requests_lock);
3200
3201 schedule_work(®_work);
3202}
3203
3204/*
3205 * Core regulatory hint -- happens during cfg80211_init()
3206 * and when we restore regulatory settings.
3207 */
3208static int regulatory_hint_core(const char *alpha2)
3209{
3210 struct regulatory_request *request;
3211
3212 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3213 if (!request)
3214 return -ENOMEM;
3215
3216 request->alpha2[0] = alpha2[0];
3217 request->alpha2[1] = alpha2[1];
3218 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3219 request->wiphy_idx = WIPHY_IDX_INVALID;
3220
3221 queue_regulatory_request(request);
3222
3223 return 0;
3224}
3225
3226/* User hints */
3227int regulatory_hint_user(const char *alpha2,
3228 enum nl80211_user_reg_hint_type user_reg_hint_type)
3229{
3230 struct regulatory_request *request;
3231
3232 if (WARN_ON(!alpha2))
3233 return -EINVAL;
3234
3235 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3236 return -EINVAL;
3237
3238 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239 if (!request)
3240 return -ENOMEM;
3241
3242 request->wiphy_idx = WIPHY_IDX_INVALID;
3243 request->alpha2[0] = alpha2[0];
3244 request->alpha2[1] = alpha2[1];
3245 request->initiator = NL80211_REGDOM_SET_BY_USER;
3246 request->user_reg_hint_type = user_reg_hint_type;
3247
3248 /* Allow calling CRDA again */
3249 reset_crda_timeouts();
3250
3251 queue_regulatory_request(request);
3252
3253 return 0;
3254}
3255
3256int regulatory_hint_indoor(bool is_indoor, u32 portid)
3257{
3258 spin_lock(®_indoor_lock);
3259
3260 /* It is possible that more than one user space process is trying to
3261 * configure the indoor setting. To handle such cases, clear the indoor
3262 * setting in case that some process does not think that the device
3263 * is operating in an indoor environment. In addition, if a user space
3264 * process indicates that it is controlling the indoor setting, save its
3265 * portid, i.e., make it the owner.
3266 */
3267 reg_is_indoor = is_indoor;
3268 if (reg_is_indoor) {
3269 if (!reg_is_indoor_portid)
3270 reg_is_indoor_portid = portid;
3271 } else {
3272 reg_is_indoor_portid = 0;
3273 }
3274
3275 spin_unlock(®_indoor_lock);
3276
3277 if (!is_indoor)
3278 reg_check_channels();
3279
3280 return 0;
3281}
3282
3283void regulatory_netlink_notify(u32 portid)
3284{
3285 spin_lock(®_indoor_lock);
3286
3287 if (reg_is_indoor_portid != portid) {
3288 spin_unlock(®_indoor_lock);
3289 return;
3290 }
3291
3292 reg_is_indoor = false;
3293 reg_is_indoor_portid = 0;
3294
3295 spin_unlock(®_indoor_lock);
3296
3297 reg_check_channels();
3298}
3299
3300/* Driver hints */
3301int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3302{
3303 struct regulatory_request *request;
3304
3305 if (WARN_ON(!alpha2 || !wiphy))
3306 return -EINVAL;
3307
3308 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3309
3310 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3311 if (!request)
3312 return -ENOMEM;
3313
3314 request->wiphy_idx = get_wiphy_idx(wiphy);
3315
3316 request->alpha2[0] = alpha2[0];
3317 request->alpha2[1] = alpha2[1];
3318 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3319
3320 /* Allow calling CRDA again */
3321 reset_crda_timeouts();
3322
3323 queue_regulatory_request(request);
3324
3325 return 0;
3326}
3327EXPORT_SYMBOL(regulatory_hint);
3328
3329void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3330 const u8 *country_ie, u8 country_ie_len)
3331{
3332 char alpha2[2];
3333 enum environment_cap env = ENVIRON_ANY;
3334 struct regulatory_request *request = NULL, *lr;
3335
3336 /* IE len must be evenly divisible by 2 */
3337 if (country_ie_len & 0x01)
3338 return;
3339
3340 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3341 return;
3342
3343 request = kzalloc(sizeof(*request), GFP_KERNEL);
3344 if (!request)
3345 return;
3346
3347 alpha2[0] = country_ie[0];
3348 alpha2[1] = country_ie[1];
3349
3350 if (country_ie[2] == 'I')
3351 env = ENVIRON_INDOOR;
3352 else if (country_ie[2] == 'O')
3353 env = ENVIRON_OUTDOOR;
3354
3355 rcu_read_lock();
3356 lr = get_last_request();
3357
3358 if (unlikely(!lr))
3359 goto out;
3360
3361 /*
3362 * We will run this only upon a successful connection on cfg80211.
3363 * We leave conflict resolution to the workqueue, where can hold
3364 * the RTNL.
3365 */
3366 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3367 lr->wiphy_idx != WIPHY_IDX_INVALID)
3368 goto out;
3369
3370 request->wiphy_idx = get_wiphy_idx(wiphy);
3371 request->alpha2[0] = alpha2[0];
3372 request->alpha2[1] = alpha2[1];
3373 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3374 request->country_ie_env = env;
3375
3376 /* Allow calling CRDA again */
3377 reset_crda_timeouts();
3378
3379 queue_regulatory_request(request);
3380 request = NULL;
3381out:
3382 kfree(request);
3383 rcu_read_unlock();
3384}
3385
3386static void restore_alpha2(char *alpha2, bool reset_user)
3387{
3388 /* indicates there is no alpha2 to consider for restoration */
3389 alpha2[0] = '9';
3390 alpha2[1] = '7';
3391
3392 /* The user setting has precedence over the module parameter */
3393 if (is_user_regdom_saved()) {
3394 /* Unless we're asked to ignore it and reset it */
3395 if (reset_user) {
3396 pr_debug("Restoring regulatory settings including user preference\n");
3397 user_alpha2[0] = '9';
3398 user_alpha2[1] = '7';
3399
3400 /*
3401 * If we're ignoring user settings, we still need to
3402 * check the module parameter to ensure we put things
3403 * back as they were for a full restore.
3404 */
3405 if (!is_world_regdom(ieee80211_regdom)) {
3406 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3407 ieee80211_regdom[0], ieee80211_regdom[1]);
3408 alpha2[0] = ieee80211_regdom[0];
3409 alpha2[1] = ieee80211_regdom[1];
3410 }
3411 } else {
3412 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3413 user_alpha2[0], user_alpha2[1]);
3414 alpha2[0] = user_alpha2[0];
3415 alpha2[1] = user_alpha2[1];
3416 }
3417 } else if (!is_world_regdom(ieee80211_regdom)) {
3418 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3419 ieee80211_regdom[0], ieee80211_regdom[1]);
3420 alpha2[0] = ieee80211_regdom[0];
3421 alpha2[1] = ieee80211_regdom[1];
3422 } else
3423 pr_debug("Restoring regulatory settings\n");
3424}
3425
3426static void restore_custom_reg_settings(struct wiphy *wiphy)
3427{
3428 struct ieee80211_supported_band *sband;
3429 enum nl80211_band band;
3430 struct ieee80211_channel *chan;
3431 int i;
3432
3433 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3434 sband = wiphy->bands[band];
3435 if (!sband)
3436 continue;
3437 for (i = 0; i < sband->n_channels; i++) {
3438 chan = &sband->channels[i];
3439 chan->flags = chan->orig_flags;
3440 chan->max_antenna_gain = chan->orig_mag;
3441 chan->max_power = chan->orig_mpwr;
3442 chan->beacon_found = false;
3443 }
3444 }
3445}
3446
3447/*
3448 * Restoring regulatory settings involves ignoring any
3449 * possibly stale country IE information and user regulatory
3450 * settings if so desired, this includes any beacon hints
3451 * learned as we could have traveled outside to another country
3452 * after disconnection. To restore regulatory settings we do
3453 * exactly what we did at bootup:
3454 *
3455 * - send a core regulatory hint
3456 * - send a user regulatory hint if applicable
3457 *
3458 * Device drivers that send a regulatory hint for a specific country
3459 * keep their own regulatory domain on wiphy->regd so that does
3460 * not need to be remembered.
3461 */
3462static void restore_regulatory_settings(bool reset_user, bool cached)
3463{
3464 char alpha2[2];
3465 char world_alpha2[2];
3466 struct reg_beacon *reg_beacon, *btmp;
3467 LIST_HEAD(tmp_reg_req_list);
3468 struct cfg80211_registered_device *rdev;
3469
3470 ASSERT_RTNL();
3471
3472 /*
3473 * Clear the indoor setting in case that it is not controlled by user
3474 * space, as otherwise there is no guarantee that the device is still
3475 * operating in an indoor environment.
3476 */
3477 spin_lock(®_indoor_lock);
3478 if (reg_is_indoor && !reg_is_indoor_portid) {
3479 reg_is_indoor = false;
3480 reg_check_channels();
3481 }
3482 spin_unlock(®_indoor_lock);
3483
3484 reset_regdomains(true, &world_regdom);
3485 restore_alpha2(alpha2, reset_user);
3486
3487 /*
3488 * If there's any pending requests we simply
3489 * stash them to a temporary pending queue and
3490 * add then after we've restored regulatory
3491 * settings.
3492 */
3493 spin_lock(®_requests_lock);
3494 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3495 spin_unlock(®_requests_lock);
3496
3497 /* Clear beacon hints */
3498 spin_lock_bh(®_pending_beacons_lock);
3499 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3500 list_del(®_beacon->list);
3501 kfree(reg_beacon);
3502 }
3503 spin_unlock_bh(®_pending_beacons_lock);
3504
3505 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3506 list_del(®_beacon->list);
3507 kfree(reg_beacon);
3508 }
3509
3510 /* First restore to the basic regulatory settings */
3511 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3512 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3513
3514 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3515 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3516 continue;
3517 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3518 restore_custom_reg_settings(&rdev->wiphy);
3519 }
3520
3521 if (cached && (!is_an_alpha2(alpha2) ||
3522 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3523 reset_regdomains(false, cfg80211_world_regdom);
3524 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3525 print_regdomain(get_cfg80211_regdom());
3526 nl80211_send_reg_change_event(&core_request_world);
3527 reg_set_request_processed();
3528
3529 if (is_an_alpha2(alpha2) &&
3530 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3531 struct regulatory_request *ureq;
3532
3533 spin_lock(®_requests_lock);
3534 ureq = list_last_entry(®_requests_list,
3535 struct regulatory_request,
3536 list);
3537 list_del(&ureq->list);
3538 spin_unlock(®_requests_lock);
3539
3540 notify_self_managed_wiphys(ureq);
3541 reg_update_last_request(ureq);
3542 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3543 REGD_SOURCE_CACHED);
3544 }
3545 } else {
3546 regulatory_hint_core(world_alpha2);
3547
3548 /*
3549 * This restores the ieee80211_regdom module parameter
3550 * preference or the last user requested regulatory
3551 * settings, user regulatory settings takes precedence.
3552 */
3553 if (is_an_alpha2(alpha2))
3554 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3555 }
3556
3557 spin_lock(®_requests_lock);
3558 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3559 spin_unlock(®_requests_lock);
3560
3561 pr_debug("Kicking the queue\n");
3562
3563 schedule_work(®_work);
3564}
3565
3566static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3567{
3568 struct cfg80211_registered_device *rdev;
3569 struct wireless_dev *wdev;
3570
3571 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3572 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3573 wdev_lock(wdev);
3574 if (!(wdev->wiphy->regulatory_flags & flag)) {
3575 wdev_unlock(wdev);
3576 return false;
3577 }
3578 wdev_unlock(wdev);
3579 }
3580 }
3581
3582 return true;
3583}
3584
3585void regulatory_hint_disconnect(void)
3586{
3587 /* Restore of regulatory settings is not required when wiphy(s)
3588 * ignore IE from connected access point but clearance of beacon hints
3589 * is required when wiphy(s) supports beacon hints.
3590 */
3591 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3592 struct reg_beacon *reg_beacon, *btmp;
3593
3594 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3595 return;
3596
3597 spin_lock_bh(®_pending_beacons_lock);
3598 list_for_each_entry_safe(reg_beacon, btmp,
3599 ®_pending_beacons, list) {
3600 list_del(®_beacon->list);
3601 kfree(reg_beacon);
3602 }
3603 spin_unlock_bh(®_pending_beacons_lock);
3604
3605 list_for_each_entry_safe(reg_beacon, btmp,
3606 ®_beacon_list, list) {
3607 list_del(®_beacon->list);
3608 kfree(reg_beacon);
3609 }
3610
3611 return;
3612 }
3613
3614 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3615 restore_regulatory_settings(false, true);
3616}
3617
3618static bool freq_is_chan_12_13_14(u32 freq)
3619{
3620 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3621 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3622 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3623 return true;
3624 return false;
3625}
3626
3627static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3628{
3629 struct reg_beacon *pending_beacon;
3630
3631 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3632 if (ieee80211_channel_equal(beacon_chan,
3633 &pending_beacon->chan))
3634 return true;
3635 return false;
3636}
3637
3638int regulatory_hint_found_beacon(struct wiphy *wiphy,
3639 struct ieee80211_channel *beacon_chan,
3640 gfp_t gfp)
3641{
3642 struct reg_beacon *reg_beacon;
3643 bool processing;
3644
3645 if (beacon_chan->beacon_found ||
3646 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3647 (beacon_chan->band == NL80211_BAND_2GHZ &&
3648 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3649 return 0;
3650
3651 spin_lock_bh(®_pending_beacons_lock);
3652 processing = pending_reg_beacon(beacon_chan);
3653 spin_unlock_bh(®_pending_beacons_lock);
3654
3655 if (processing)
3656 return 0;
3657
3658 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3659 if (!reg_beacon)
3660 return -ENOMEM;
3661
3662 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3663 beacon_chan->center_freq, beacon_chan->freq_offset,
3664 ieee80211_freq_khz_to_channel(
3665 ieee80211_channel_to_khz(beacon_chan)),
3666 wiphy_name(wiphy));
3667
3668 memcpy(®_beacon->chan, beacon_chan,
3669 sizeof(struct ieee80211_channel));
3670
3671 /*
3672 * Since we can be called from BH or and non-BH context
3673 * we must use spin_lock_bh()
3674 */
3675 spin_lock_bh(®_pending_beacons_lock);
3676 list_add_tail(®_beacon->list, ®_pending_beacons);
3677 spin_unlock_bh(®_pending_beacons_lock);
3678
3679 schedule_work(®_work);
3680
3681 return 0;
3682}
3683
3684static void print_rd_rules(const struct ieee80211_regdomain *rd)
3685{
3686 unsigned int i;
3687 const struct ieee80211_reg_rule *reg_rule = NULL;
3688 const struct ieee80211_freq_range *freq_range = NULL;
3689 const struct ieee80211_power_rule *power_rule = NULL;
3690 char bw[32], cac_time[32];
3691
3692 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3693
3694 for (i = 0; i < rd->n_reg_rules; i++) {
3695 reg_rule = &rd->reg_rules[i];
3696 freq_range = ®_rule->freq_range;
3697 power_rule = ®_rule->power_rule;
3698
3699 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3700 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3701 freq_range->max_bandwidth_khz,
3702 reg_get_max_bandwidth(rd, reg_rule));
3703 else
3704 snprintf(bw, sizeof(bw), "%d KHz",
3705 freq_range->max_bandwidth_khz);
3706
3707 if (reg_rule->flags & NL80211_RRF_DFS)
3708 scnprintf(cac_time, sizeof(cac_time), "%u s",
3709 reg_rule->dfs_cac_ms/1000);
3710 else
3711 scnprintf(cac_time, sizeof(cac_time), "N/A");
3712
3713
3714 /*
3715 * There may not be documentation for max antenna gain
3716 * in certain regions
3717 */
3718 if (power_rule->max_antenna_gain)
3719 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3720 freq_range->start_freq_khz,
3721 freq_range->end_freq_khz,
3722 bw,
3723 power_rule->max_antenna_gain,
3724 power_rule->max_eirp,
3725 cac_time);
3726 else
3727 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3728 freq_range->start_freq_khz,
3729 freq_range->end_freq_khz,
3730 bw,
3731 power_rule->max_eirp,
3732 cac_time);
3733 }
3734}
3735
3736bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3737{
3738 switch (dfs_region) {
3739 case NL80211_DFS_UNSET:
3740 case NL80211_DFS_FCC:
3741 case NL80211_DFS_ETSI:
3742 case NL80211_DFS_JP:
3743 return true;
3744 default:
3745 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3746 return false;
3747 }
3748}
3749
3750static void print_regdomain(const struct ieee80211_regdomain *rd)
3751{
3752 struct regulatory_request *lr = get_last_request();
3753
3754 if (is_intersected_alpha2(rd->alpha2)) {
3755 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3756 struct cfg80211_registered_device *rdev;
3757 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3758 if (rdev) {
3759 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3760 rdev->country_ie_alpha2[0],
3761 rdev->country_ie_alpha2[1]);
3762 } else
3763 pr_debug("Current regulatory domain intersected:\n");
3764 } else
3765 pr_debug("Current regulatory domain intersected:\n");
3766 } else if (is_world_regdom(rd->alpha2)) {
3767 pr_debug("World regulatory domain updated:\n");
3768 } else {
3769 if (is_unknown_alpha2(rd->alpha2))
3770 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3771 else {
3772 if (reg_request_cell_base(lr))
3773 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3774 rd->alpha2[0], rd->alpha2[1]);
3775 else
3776 pr_debug("Regulatory domain changed to country: %c%c\n",
3777 rd->alpha2[0], rd->alpha2[1]);
3778 }
3779 }
3780
3781 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3782 print_rd_rules(rd);
3783}
3784
3785static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3786{
3787 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3788 print_rd_rules(rd);
3789}
3790
3791static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3792{
3793 if (!is_world_regdom(rd->alpha2))
3794 return -EINVAL;
3795 update_world_regdomain(rd);
3796 return 0;
3797}
3798
3799static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3800 struct regulatory_request *user_request)
3801{
3802 const struct ieee80211_regdomain *intersected_rd = NULL;
3803
3804 if (!regdom_changes(rd->alpha2))
3805 return -EALREADY;
3806
3807 if (!is_valid_rd(rd)) {
3808 pr_err("Invalid regulatory domain detected: %c%c\n",
3809 rd->alpha2[0], rd->alpha2[1]);
3810 print_regdomain_info(rd);
3811 return -EINVAL;
3812 }
3813
3814 if (!user_request->intersect) {
3815 reset_regdomains(false, rd);
3816 return 0;
3817 }
3818
3819 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3820 if (!intersected_rd)
3821 return -EINVAL;
3822
3823 kfree(rd);
3824 rd = NULL;
3825 reset_regdomains(false, intersected_rd);
3826
3827 return 0;
3828}
3829
3830static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3831 struct regulatory_request *driver_request)
3832{
3833 const struct ieee80211_regdomain *regd;
3834 const struct ieee80211_regdomain *intersected_rd = NULL;
3835 const struct ieee80211_regdomain *tmp;
3836 struct wiphy *request_wiphy;
3837
3838 if (is_world_regdom(rd->alpha2))
3839 return -EINVAL;
3840
3841 if (!regdom_changes(rd->alpha2))
3842 return -EALREADY;
3843
3844 if (!is_valid_rd(rd)) {
3845 pr_err("Invalid regulatory domain detected: %c%c\n",
3846 rd->alpha2[0], rd->alpha2[1]);
3847 print_regdomain_info(rd);
3848 return -EINVAL;
3849 }
3850
3851 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3852 if (!request_wiphy)
3853 return -ENODEV;
3854
3855 if (!driver_request->intersect) {
3856 ASSERT_RTNL();
3857 wiphy_lock(request_wiphy);
3858 if (request_wiphy->regd) {
3859 wiphy_unlock(request_wiphy);
3860 return -EALREADY;
3861 }
3862
3863 regd = reg_copy_regd(rd);
3864 if (IS_ERR(regd)) {
3865 wiphy_unlock(request_wiphy);
3866 return PTR_ERR(regd);
3867 }
3868
3869 rcu_assign_pointer(request_wiphy->regd, regd);
3870 wiphy_unlock(request_wiphy);
3871 reset_regdomains(false, rd);
3872 return 0;
3873 }
3874
3875 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3876 if (!intersected_rd)
3877 return -EINVAL;
3878
3879 /*
3880 * We can trash what CRDA provided now.
3881 * However if a driver requested this specific regulatory
3882 * domain we keep it for its private use
3883 */
3884 tmp = get_wiphy_regdom(request_wiphy);
3885 rcu_assign_pointer(request_wiphy->regd, rd);
3886 rcu_free_regdom(tmp);
3887
3888 rd = NULL;
3889
3890 reset_regdomains(false, intersected_rd);
3891
3892 return 0;
3893}
3894
3895static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3896 struct regulatory_request *country_ie_request)
3897{
3898 struct wiphy *request_wiphy;
3899
3900 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3901 !is_unknown_alpha2(rd->alpha2))
3902 return -EINVAL;
3903
3904 /*
3905 * Lets only bother proceeding on the same alpha2 if the current
3906 * rd is non static (it means CRDA was present and was used last)
3907 * and the pending request came in from a country IE
3908 */
3909
3910 if (!is_valid_rd(rd)) {
3911 pr_err("Invalid regulatory domain detected: %c%c\n",
3912 rd->alpha2[0], rd->alpha2[1]);
3913 print_regdomain_info(rd);
3914 return -EINVAL;
3915 }
3916
3917 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3918 if (!request_wiphy)
3919 return -ENODEV;
3920
3921 if (country_ie_request->intersect)
3922 return -EINVAL;
3923
3924 reset_regdomains(false, rd);
3925 return 0;
3926}
3927
3928/*
3929 * Use this call to set the current regulatory domain. Conflicts with
3930 * multiple drivers can be ironed out later. Caller must've already
3931 * kmalloc'd the rd structure.
3932 */
3933int set_regdom(const struct ieee80211_regdomain *rd,
3934 enum ieee80211_regd_source regd_src)
3935{
3936 struct regulatory_request *lr;
3937 bool user_reset = false;
3938 int r;
3939
3940 if (IS_ERR_OR_NULL(rd))
3941 return -ENODATA;
3942
3943 if (!reg_is_valid_request(rd->alpha2)) {
3944 kfree(rd);
3945 return -EINVAL;
3946 }
3947
3948 if (regd_src == REGD_SOURCE_CRDA)
3949 reset_crda_timeouts();
3950
3951 lr = get_last_request();
3952
3953 /* Note that this doesn't update the wiphys, this is done below */
3954 switch (lr->initiator) {
3955 case NL80211_REGDOM_SET_BY_CORE:
3956 r = reg_set_rd_core(rd);
3957 break;
3958 case NL80211_REGDOM_SET_BY_USER:
3959 cfg80211_save_user_regdom(rd);
3960 r = reg_set_rd_user(rd, lr);
3961 user_reset = true;
3962 break;
3963 case NL80211_REGDOM_SET_BY_DRIVER:
3964 r = reg_set_rd_driver(rd, lr);
3965 break;
3966 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3967 r = reg_set_rd_country_ie(rd, lr);
3968 break;
3969 default:
3970 WARN(1, "invalid initiator %d\n", lr->initiator);
3971 kfree(rd);
3972 return -EINVAL;
3973 }
3974
3975 if (r) {
3976 switch (r) {
3977 case -EALREADY:
3978 reg_set_request_processed();
3979 break;
3980 default:
3981 /* Back to world regulatory in case of errors */
3982 restore_regulatory_settings(user_reset, false);
3983 }
3984
3985 kfree(rd);
3986 return r;
3987 }
3988
3989 /* This would make this whole thing pointless */
3990 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3991 return -EINVAL;
3992
3993 /* update all wiphys now with the new established regulatory domain */
3994 update_all_wiphy_regulatory(lr->initiator);
3995
3996 print_regdomain(get_cfg80211_regdom());
3997
3998 nl80211_send_reg_change_event(lr);
3999
4000 reg_set_request_processed();
4001
4002 return 0;
4003}
4004
4005static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4006 struct ieee80211_regdomain *rd)
4007{
4008 const struct ieee80211_regdomain *regd;
4009 const struct ieee80211_regdomain *prev_regd;
4010 struct cfg80211_registered_device *rdev;
4011
4012 if (WARN_ON(!wiphy || !rd))
4013 return -EINVAL;
4014
4015 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4016 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4017 return -EPERM;
4018
4019 if (WARN(!is_valid_rd(rd),
4020 "Invalid regulatory domain detected: %c%c\n",
4021 rd->alpha2[0], rd->alpha2[1])) {
4022 print_regdomain_info(rd);
4023 return -EINVAL;
4024 }
4025
4026 regd = reg_copy_regd(rd);
4027 if (IS_ERR(regd))
4028 return PTR_ERR(regd);
4029
4030 rdev = wiphy_to_rdev(wiphy);
4031
4032 spin_lock(®_requests_lock);
4033 prev_regd = rdev->requested_regd;
4034 rdev->requested_regd = regd;
4035 spin_unlock(®_requests_lock);
4036
4037 kfree(prev_regd);
4038 return 0;
4039}
4040
4041int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4042 struct ieee80211_regdomain *rd)
4043{
4044 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4045
4046 if (ret)
4047 return ret;
4048
4049 schedule_work(®_work);
4050 return 0;
4051}
4052EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4053
4054int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4055 struct ieee80211_regdomain *rd)
4056{
4057 int ret;
4058
4059 ASSERT_RTNL();
4060
4061 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4062 if (ret)
4063 return ret;
4064
4065 /* process the request immediately */
4066 reg_process_self_managed_hint(wiphy);
4067 reg_check_channels();
4068 return 0;
4069}
4070EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4071
4072void wiphy_regulatory_register(struct wiphy *wiphy)
4073{
4074 struct regulatory_request *lr = get_last_request();
4075
4076 /* self-managed devices ignore beacon hints and country IE */
4077 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4078 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4079 REGULATORY_COUNTRY_IE_IGNORE;
4080
4081 /*
4082 * The last request may have been received before this
4083 * registration call. Call the driver notifier if
4084 * initiator is USER.
4085 */
4086 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4087 reg_call_notifier(wiphy, lr);
4088 }
4089
4090 if (!reg_dev_ignore_cell_hint(wiphy))
4091 reg_num_devs_support_basehint++;
4092
4093 wiphy_update_regulatory(wiphy, lr->initiator);
4094 wiphy_all_share_dfs_chan_state(wiphy);
4095 reg_process_self_managed_hints();
4096}
4097
4098void wiphy_regulatory_deregister(struct wiphy *wiphy)
4099{
4100 struct wiphy *request_wiphy = NULL;
4101 struct regulatory_request *lr;
4102
4103 lr = get_last_request();
4104
4105 if (!reg_dev_ignore_cell_hint(wiphy))
4106 reg_num_devs_support_basehint--;
4107
4108 rcu_free_regdom(get_wiphy_regdom(wiphy));
4109 RCU_INIT_POINTER(wiphy->regd, NULL);
4110
4111 if (lr)
4112 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4113
4114 if (!request_wiphy || request_wiphy != wiphy)
4115 return;
4116
4117 lr->wiphy_idx = WIPHY_IDX_INVALID;
4118 lr->country_ie_env = ENVIRON_ANY;
4119}
4120
4121/*
4122 * See FCC notices for UNII band definitions
4123 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4124 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4125 */
4126int cfg80211_get_unii(int freq)
4127{
4128 /* UNII-1 */
4129 if (freq >= 5150 && freq <= 5250)
4130 return 0;
4131
4132 /* UNII-2A */
4133 if (freq > 5250 && freq <= 5350)
4134 return 1;
4135
4136 /* UNII-2B */
4137 if (freq > 5350 && freq <= 5470)
4138 return 2;
4139
4140 /* UNII-2C */
4141 if (freq > 5470 && freq <= 5725)
4142 return 3;
4143
4144 /* UNII-3 */
4145 if (freq > 5725 && freq <= 5825)
4146 return 4;
4147
4148 /* UNII-5 */
4149 if (freq > 5925 && freq <= 6425)
4150 return 5;
4151
4152 /* UNII-6 */
4153 if (freq > 6425 && freq <= 6525)
4154 return 6;
4155
4156 /* UNII-7 */
4157 if (freq > 6525 && freq <= 6875)
4158 return 7;
4159
4160 /* UNII-8 */
4161 if (freq > 6875 && freq <= 7125)
4162 return 8;
4163
4164 return -EINVAL;
4165}
4166
4167bool regulatory_indoor_allowed(void)
4168{
4169 return reg_is_indoor;
4170}
4171
4172bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4173{
4174 const struct ieee80211_regdomain *regd = NULL;
4175 const struct ieee80211_regdomain *wiphy_regd = NULL;
4176 bool pre_cac_allowed = false;
4177
4178 rcu_read_lock();
4179
4180 regd = rcu_dereference(cfg80211_regdomain);
4181 wiphy_regd = rcu_dereference(wiphy->regd);
4182 if (!wiphy_regd) {
4183 if (regd->dfs_region == NL80211_DFS_ETSI)
4184 pre_cac_allowed = true;
4185
4186 rcu_read_unlock();
4187
4188 return pre_cac_allowed;
4189 }
4190
4191 if (regd->dfs_region == wiphy_regd->dfs_region &&
4192 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4193 pre_cac_allowed = true;
4194
4195 rcu_read_unlock();
4196
4197 return pre_cac_allowed;
4198}
4199EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4200
4201static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4202{
4203 struct wireless_dev *wdev;
4204 /* If we finished CAC or received radar, we should end any
4205 * CAC running on the same channels.
4206 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4207 * either all channels are available - those the CAC_FINISHED
4208 * event has effected another wdev state, or there is a channel
4209 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4210 * event has effected another wdev state.
4211 * In both cases we should end the CAC on the wdev.
4212 */
4213 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4214 if (wdev->cac_started &&
4215 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4216 rdev_end_cac(rdev, wdev->netdev);
4217 }
4218}
4219
4220void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4221 struct cfg80211_chan_def *chandef,
4222 enum nl80211_dfs_state dfs_state,
4223 enum nl80211_radar_event event)
4224{
4225 struct cfg80211_registered_device *rdev;
4226
4227 ASSERT_RTNL();
4228
4229 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4230 return;
4231
4232 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4233 if (wiphy == &rdev->wiphy)
4234 continue;
4235
4236 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4237 continue;
4238
4239 if (!ieee80211_get_channel(&rdev->wiphy,
4240 chandef->chan->center_freq))
4241 continue;
4242
4243 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4244
4245 if (event == NL80211_RADAR_DETECTED ||
4246 event == NL80211_RADAR_CAC_FINISHED) {
4247 cfg80211_sched_dfs_chan_update(rdev);
4248 cfg80211_check_and_end_cac(rdev);
4249 }
4250
4251 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4252 }
4253}
4254
4255static int __init regulatory_init_db(void)
4256{
4257 int err;
4258
4259 /*
4260 * It's possible that - due to other bugs/issues - cfg80211
4261 * never called regulatory_init() below, or that it failed;
4262 * in that case, don't try to do any further work here as
4263 * it's doomed to lead to crashes.
4264 */
4265 if (IS_ERR_OR_NULL(reg_pdev))
4266 return -EINVAL;
4267
4268 err = load_builtin_regdb_keys();
4269 if (err)
4270 return err;
4271
4272 /* We always try to get an update for the static regdomain */
4273 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4274 if (err) {
4275 if (err == -ENOMEM) {
4276 platform_device_unregister(reg_pdev);
4277 return err;
4278 }
4279 /*
4280 * N.B. kobject_uevent_env() can fail mainly for when we're out
4281 * memory which is handled and propagated appropriately above
4282 * but it can also fail during a netlink_broadcast() or during
4283 * early boot for call_usermodehelper(). For now treat these
4284 * errors as non-fatal.
4285 */
4286 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4287 }
4288
4289 /*
4290 * Finally, if the user set the module parameter treat it
4291 * as a user hint.
4292 */
4293 if (!is_world_regdom(ieee80211_regdom))
4294 regulatory_hint_user(ieee80211_regdom,
4295 NL80211_USER_REG_HINT_USER);
4296
4297 return 0;
4298}
4299#ifndef MODULE
4300late_initcall(regulatory_init_db);
4301#endif
4302
4303int __init regulatory_init(void)
4304{
4305 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4306 if (IS_ERR(reg_pdev))
4307 return PTR_ERR(reg_pdev);
4308
4309 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4310
4311 user_alpha2[0] = '9';
4312 user_alpha2[1] = '7';
4313
4314#ifdef MODULE
4315 return regulatory_init_db();
4316#else
4317 return 0;
4318#endif
4319}
4320
4321void regulatory_exit(void)
4322{
4323 struct regulatory_request *reg_request, *tmp;
4324 struct reg_beacon *reg_beacon, *btmp;
4325
4326 cancel_work_sync(®_work);
4327 cancel_crda_timeout_sync();
4328 cancel_delayed_work_sync(®_check_chans);
4329
4330 /* Lock to suppress warnings */
4331 rtnl_lock();
4332 reset_regdomains(true, NULL);
4333 rtnl_unlock();
4334
4335 dev_set_uevent_suppress(®_pdev->dev, true);
4336
4337 platform_device_unregister(reg_pdev);
4338
4339 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4340 list_del(®_beacon->list);
4341 kfree(reg_beacon);
4342 }
4343
4344 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4345 list_del(®_beacon->list);
4346 kfree(reg_beacon);
4347 }
4348
4349 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4350 list_del(®_request->list);
4351 kfree(reg_request);
4352 }
4353
4354 if (!IS_ERR_OR_NULL(regdb))
4355 kfree(regdb);
4356 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4357 kfree(cfg80211_user_regdom);
4358
4359 free_regdb_keyring();
4360}