Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/export.h>
11#include <linux/list.h>
12#include <linux/slab.h>
13#include <linux/xarray.h>
14
15/*
16 * Coding conventions in this file:
17 *
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
21 * ambiguity.
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
25 * this function.
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
29 */
30
31static inline unsigned int xa_lock_type(const struct xarray *xa)
32{
33 return (__force unsigned int)xa->xa_flags & 3;
34}
35
36static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37{
38 if (lock_type == XA_LOCK_IRQ)
39 xas_lock_irq(xas);
40 else if (lock_type == XA_LOCK_BH)
41 xas_lock_bh(xas);
42 else
43 xas_lock(xas);
44}
45
46static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47{
48 if (lock_type == XA_LOCK_IRQ)
49 xas_unlock_irq(xas);
50 else if (lock_type == XA_LOCK_BH)
51 xas_unlock_bh(xas);
52 else
53 xas_unlock(xas);
54}
55
56static inline bool xa_track_free(const struct xarray *xa)
57{
58 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
59}
60
61static inline bool xa_zero_busy(const struct xarray *xa)
62{
63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
64}
65
66static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67{
68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
69 xa->xa_flags |= XA_FLAGS_MARK(mark);
70}
71
72static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73{
74 if (xa->xa_flags & XA_FLAGS_MARK(mark))
75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
76}
77
78static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79{
80 return node->marks[(__force unsigned)mark];
81}
82
83static inline bool node_get_mark(struct xa_node *node,
84 unsigned int offset, xa_mark_t mark)
85{
86 return test_bit(offset, node_marks(node, mark));
87}
88
89/* returns true if the bit was set */
90static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
91 xa_mark_t mark)
92{
93 return __test_and_set_bit(offset, node_marks(node, mark));
94}
95
96/* returns true if the bit was set */
97static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
98 xa_mark_t mark)
99{
100 return __test_and_clear_bit(offset, node_marks(node, mark));
101}
102
103static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104{
105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
106}
107
108static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109{
110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
111}
112
113#define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
115} while (0)
116
117/*
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
120 *
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
123 */
124static void xas_squash_marks(const struct xa_state *xas)
125{
126 unsigned int mark = 0;
127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128
129 if (!xas->xa_sibs)
130 return;
131
132 do {
133 unsigned long *marks = xas->xa_node->marks[mark];
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
135 continue;
136 __set_bit(xas->xa_offset, marks);
137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
138 } while (mark++ != (__force unsigned)XA_MARK_MAX);
139}
140
141/* extracts the offset within this node from the index */
142static unsigned int get_offset(unsigned long index, struct xa_node *node)
143{
144 return (index >> node->shift) & XA_CHUNK_MASK;
145}
146
147static void xas_set_offset(struct xa_state *xas)
148{
149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
150}
151
152/* move the index either forwards (find) or backwards (sibling slot) */
153static void xas_move_index(struct xa_state *xas, unsigned long offset)
154{
155 unsigned int shift = xas->xa_node->shift;
156 xas->xa_index &= ~XA_CHUNK_MASK << shift;
157 xas->xa_index += offset << shift;
158}
159
160static void xas_next_offset(struct xa_state *xas)
161{
162 xas->xa_offset++;
163 xas_move_index(xas, xas->xa_offset);
164}
165
166static void *set_bounds(struct xa_state *xas)
167{
168 xas->xa_node = XAS_BOUNDS;
169 return NULL;
170}
171
172/*
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
178 */
179static void *xas_start(struct xa_state *xas)
180{
181 void *entry;
182
183 if (xas_valid(xas))
184 return xas_reload(xas);
185 if (xas_error(xas))
186 return NULL;
187
188 entry = xa_head(xas->xa);
189 if (!xa_is_node(entry)) {
190 if (xas->xa_index)
191 return set_bounds(xas);
192 } else {
193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
194 return set_bounds(xas);
195 }
196
197 xas->xa_node = NULL;
198 return entry;
199}
200
201static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202{
203 unsigned int offset = get_offset(xas->xa_index, node);
204 void *entry = xa_entry(xas->xa, node, offset);
205
206 xas->xa_node = node;
207 if (xa_is_sibling(entry)) {
208 offset = xa_to_sibling(entry);
209 entry = xa_entry(xas->xa, node, offset);
210 if (node->shift && xa_is_node(entry))
211 entry = XA_RETRY_ENTRY;
212 }
213
214 xas->xa_offset = offset;
215 return entry;
216}
217
218/**
219 * xas_load() - Load an entry from the XArray (advanced).
220 * @xas: XArray operation state.
221 *
222 * Usually walks the @xas to the appropriate state to load the entry
223 * stored at xa_index. However, it will do nothing and return %NULL if
224 * @xas is in an error state. xas_load() will never expand the tree.
225 *
226 * If the xa_state is set up to operate on a multi-index entry, xas_load()
227 * may return %NULL or an internal entry, even if there are entries
228 * present within the range specified by @xas.
229 *
230 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
231 * Return: Usually an entry in the XArray, but see description for exceptions.
232 */
233void *xas_load(struct xa_state *xas)
234{
235 void *entry = xas_start(xas);
236
237 while (xa_is_node(entry)) {
238 struct xa_node *node = xa_to_node(entry);
239
240 if (xas->xa_shift > node->shift)
241 break;
242 entry = xas_descend(xas, node);
243 if (node->shift == 0)
244 break;
245 }
246 return entry;
247}
248EXPORT_SYMBOL_GPL(xas_load);
249
250/* Move the radix tree node cache here */
251extern struct kmem_cache *radix_tree_node_cachep;
252extern void radix_tree_node_rcu_free(struct rcu_head *head);
253
254#define XA_RCU_FREE ((struct xarray *)1)
255
256static void xa_node_free(struct xa_node *node)
257{
258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
259 node->array = XA_RCU_FREE;
260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
261}
262
263/*
264 * xas_destroy() - Free any resources allocated during the XArray operation.
265 * @xas: XArray operation state.
266 *
267 * This function is now internal-only.
268 */
269static void xas_destroy(struct xa_state *xas)
270{
271 struct xa_node *next, *node = xas->xa_alloc;
272
273 while (node) {
274 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
275 next = rcu_dereference_raw(node->parent);
276 radix_tree_node_rcu_free(&node->rcu_head);
277 xas->xa_alloc = node = next;
278 }
279}
280
281/**
282 * xas_nomem() - Allocate memory if needed.
283 * @xas: XArray operation state.
284 * @gfp: Memory allocation flags.
285 *
286 * If we need to add new nodes to the XArray, we try to allocate memory
287 * with GFP_NOWAIT while holding the lock, which will usually succeed.
288 * If it fails, @xas is flagged as needing memory to continue. The caller
289 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
290 * the caller should retry the operation.
291 *
292 * Forward progress is guaranteed as one node is allocated here and
293 * stored in the xa_state where it will be found by xas_alloc(). More
294 * nodes will likely be found in the slab allocator, but we do not tie
295 * them up here.
296 *
297 * Return: true if memory was needed, and was successfully allocated.
298 */
299bool xas_nomem(struct xa_state *xas, gfp_t gfp)
300{
301 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
302 xas_destroy(xas);
303 return false;
304 }
305 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
306 gfp |= __GFP_ACCOUNT;
307 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
308 if (!xas->xa_alloc)
309 return false;
310 xas->xa_alloc->parent = NULL;
311 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
312 xas->xa_node = XAS_RESTART;
313 return true;
314}
315EXPORT_SYMBOL_GPL(xas_nomem);
316
317/*
318 * __xas_nomem() - Drop locks and allocate memory if needed.
319 * @xas: XArray operation state.
320 * @gfp: Memory allocation flags.
321 *
322 * Internal variant of xas_nomem().
323 *
324 * Return: true if memory was needed, and was successfully allocated.
325 */
326static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
327 __must_hold(xas->xa->xa_lock)
328{
329 unsigned int lock_type = xa_lock_type(xas->xa);
330
331 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
332 xas_destroy(xas);
333 return false;
334 }
335 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
336 gfp |= __GFP_ACCOUNT;
337 if (gfpflags_allow_blocking(gfp)) {
338 xas_unlock_type(xas, lock_type);
339 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
340 xas_lock_type(xas, lock_type);
341 } else {
342 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
343 }
344 if (!xas->xa_alloc)
345 return false;
346 xas->xa_alloc->parent = NULL;
347 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
348 xas->xa_node = XAS_RESTART;
349 return true;
350}
351
352static void xas_update(struct xa_state *xas, struct xa_node *node)
353{
354 if (xas->xa_update)
355 xas->xa_update(node);
356 else
357 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
358}
359
360static void *xas_alloc(struct xa_state *xas, unsigned int shift)
361{
362 struct xa_node *parent = xas->xa_node;
363 struct xa_node *node = xas->xa_alloc;
364
365 if (xas_invalid(xas))
366 return NULL;
367
368 if (node) {
369 xas->xa_alloc = NULL;
370 } else {
371 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
372
373 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
374 gfp |= __GFP_ACCOUNT;
375
376 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
377 if (!node) {
378 xas_set_err(xas, -ENOMEM);
379 return NULL;
380 }
381 }
382
383 if (parent) {
384 node->offset = xas->xa_offset;
385 parent->count++;
386 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
387 xas_update(xas, parent);
388 }
389 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
390 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
391 node->shift = shift;
392 node->count = 0;
393 node->nr_values = 0;
394 RCU_INIT_POINTER(node->parent, xas->xa_node);
395 node->array = xas->xa;
396
397 return node;
398}
399
400#ifdef CONFIG_XARRAY_MULTI
401/* Returns the number of indices covered by a given xa_state */
402static unsigned long xas_size(const struct xa_state *xas)
403{
404 return (xas->xa_sibs + 1UL) << xas->xa_shift;
405}
406#endif
407
408/*
409 * Use this to calculate the maximum index that will need to be created
410 * in order to add the entry described by @xas. Because we cannot store a
411 * multi-index entry at index 0, the calculation is a little more complex
412 * than you might expect.
413 */
414static unsigned long xas_max(struct xa_state *xas)
415{
416 unsigned long max = xas->xa_index;
417
418#ifdef CONFIG_XARRAY_MULTI
419 if (xas->xa_shift || xas->xa_sibs) {
420 unsigned long mask = xas_size(xas) - 1;
421 max |= mask;
422 if (mask == max)
423 max++;
424 }
425#endif
426
427 return max;
428}
429
430/* The maximum index that can be contained in the array without expanding it */
431static unsigned long max_index(void *entry)
432{
433 if (!xa_is_node(entry))
434 return 0;
435 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
436}
437
438static void xas_shrink(struct xa_state *xas)
439{
440 struct xarray *xa = xas->xa;
441 struct xa_node *node = xas->xa_node;
442
443 for (;;) {
444 void *entry;
445
446 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
447 if (node->count != 1)
448 break;
449 entry = xa_entry_locked(xa, node, 0);
450 if (!entry)
451 break;
452 if (!xa_is_node(entry) && node->shift)
453 break;
454 if (xa_is_zero(entry) && xa_zero_busy(xa))
455 entry = NULL;
456 xas->xa_node = XAS_BOUNDS;
457
458 RCU_INIT_POINTER(xa->xa_head, entry);
459 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
460 xa_mark_clear(xa, XA_FREE_MARK);
461
462 node->count = 0;
463 node->nr_values = 0;
464 if (!xa_is_node(entry))
465 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
466 xas_update(xas, node);
467 xa_node_free(node);
468 if (!xa_is_node(entry))
469 break;
470 node = xa_to_node(entry);
471 node->parent = NULL;
472 }
473}
474
475/*
476 * xas_delete_node() - Attempt to delete an xa_node
477 * @xas: Array operation state.
478 *
479 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
480 * a non-zero reference count.
481 */
482static void xas_delete_node(struct xa_state *xas)
483{
484 struct xa_node *node = xas->xa_node;
485
486 for (;;) {
487 struct xa_node *parent;
488
489 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
490 if (node->count)
491 break;
492
493 parent = xa_parent_locked(xas->xa, node);
494 xas->xa_node = parent;
495 xas->xa_offset = node->offset;
496 xa_node_free(node);
497
498 if (!parent) {
499 xas->xa->xa_head = NULL;
500 xas->xa_node = XAS_BOUNDS;
501 return;
502 }
503
504 parent->slots[xas->xa_offset] = NULL;
505 parent->count--;
506 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
507 node = parent;
508 xas_update(xas, node);
509 }
510
511 if (!node->parent)
512 xas_shrink(xas);
513}
514
515/**
516 * xas_free_nodes() - Free this node and all nodes that it references
517 * @xas: Array operation state.
518 * @top: Node to free
519 *
520 * This node has been removed from the tree. We must now free it and all
521 * of its subnodes. There may be RCU walkers with references into the tree,
522 * so we must replace all entries with retry markers.
523 */
524static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
525{
526 unsigned int offset = 0;
527 struct xa_node *node = top;
528
529 for (;;) {
530 void *entry = xa_entry_locked(xas->xa, node, offset);
531
532 if (node->shift && xa_is_node(entry)) {
533 node = xa_to_node(entry);
534 offset = 0;
535 continue;
536 }
537 if (entry)
538 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
539 offset++;
540 while (offset == XA_CHUNK_SIZE) {
541 struct xa_node *parent;
542
543 parent = xa_parent_locked(xas->xa, node);
544 offset = node->offset + 1;
545 node->count = 0;
546 node->nr_values = 0;
547 xas_update(xas, node);
548 xa_node_free(node);
549 if (node == top)
550 return;
551 node = parent;
552 }
553 }
554}
555
556/*
557 * xas_expand adds nodes to the head of the tree until it has reached
558 * sufficient height to be able to contain @xas->xa_index
559 */
560static int xas_expand(struct xa_state *xas, void *head)
561{
562 struct xarray *xa = xas->xa;
563 struct xa_node *node = NULL;
564 unsigned int shift = 0;
565 unsigned long max = xas_max(xas);
566
567 if (!head) {
568 if (max == 0)
569 return 0;
570 while ((max >> shift) >= XA_CHUNK_SIZE)
571 shift += XA_CHUNK_SHIFT;
572 return shift + XA_CHUNK_SHIFT;
573 } else if (xa_is_node(head)) {
574 node = xa_to_node(head);
575 shift = node->shift + XA_CHUNK_SHIFT;
576 }
577 xas->xa_node = NULL;
578
579 while (max > max_index(head)) {
580 xa_mark_t mark = 0;
581
582 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
583 node = xas_alloc(xas, shift);
584 if (!node)
585 return -ENOMEM;
586
587 node->count = 1;
588 if (xa_is_value(head))
589 node->nr_values = 1;
590 RCU_INIT_POINTER(node->slots[0], head);
591
592 /* Propagate the aggregated mark info to the new child */
593 for (;;) {
594 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
595 node_mark_all(node, XA_FREE_MARK);
596 if (!xa_marked(xa, XA_FREE_MARK)) {
597 node_clear_mark(node, 0, XA_FREE_MARK);
598 xa_mark_set(xa, XA_FREE_MARK);
599 }
600 } else if (xa_marked(xa, mark)) {
601 node_set_mark(node, 0, mark);
602 }
603 if (mark == XA_MARK_MAX)
604 break;
605 mark_inc(mark);
606 }
607
608 /*
609 * Now that the new node is fully initialised, we can add
610 * it to the tree
611 */
612 if (xa_is_node(head)) {
613 xa_to_node(head)->offset = 0;
614 rcu_assign_pointer(xa_to_node(head)->parent, node);
615 }
616 head = xa_mk_node(node);
617 rcu_assign_pointer(xa->xa_head, head);
618 xas_update(xas, node);
619
620 shift += XA_CHUNK_SHIFT;
621 }
622
623 xas->xa_node = node;
624 return shift;
625}
626
627/*
628 * xas_create() - Create a slot to store an entry in.
629 * @xas: XArray operation state.
630 * @allow_root: %true if we can store the entry in the root directly
631 *
632 * Most users will not need to call this function directly, as it is called
633 * by xas_store(). It is useful for doing conditional store operations
634 * (see the xa_cmpxchg() implementation for an example).
635 *
636 * Return: If the slot already existed, returns the contents of this slot.
637 * If the slot was newly created, returns %NULL. If it failed to create the
638 * slot, returns %NULL and indicates the error in @xas.
639 */
640static void *xas_create(struct xa_state *xas, bool allow_root)
641{
642 struct xarray *xa = xas->xa;
643 void *entry;
644 void __rcu **slot;
645 struct xa_node *node = xas->xa_node;
646 int shift;
647 unsigned int order = xas->xa_shift;
648
649 if (xas_top(node)) {
650 entry = xa_head_locked(xa);
651 xas->xa_node = NULL;
652 if (!entry && xa_zero_busy(xa))
653 entry = XA_ZERO_ENTRY;
654 shift = xas_expand(xas, entry);
655 if (shift < 0)
656 return NULL;
657 if (!shift && !allow_root)
658 shift = XA_CHUNK_SHIFT;
659 entry = xa_head_locked(xa);
660 slot = &xa->xa_head;
661 } else if (xas_error(xas)) {
662 return NULL;
663 } else if (node) {
664 unsigned int offset = xas->xa_offset;
665
666 shift = node->shift;
667 entry = xa_entry_locked(xa, node, offset);
668 slot = &node->slots[offset];
669 } else {
670 shift = 0;
671 entry = xa_head_locked(xa);
672 slot = &xa->xa_head;
673 }
674
675 while (shift > order) {
676 shift -= XA_CHUNK_SHIFT;
677 if (!entry) {
678 node = xas_alloc(xas, shift);
679 if (!node)
680 break;
681 if (xa_track_free(xa))
682 node_mark_all(node, XA_FREE_MARK);
683 rcu_assign_pointer(*slot, xa_mk_node(node));
684 } else if (xa_is_node(entry)) {
685 node = xa_to_node(entry);
686 } else {
687 break;
688 }
689 entry = xas_descend(xas, node);
690 slot = &node->slots[xas->xa_offset];
691 }
692
693 return entry;
694}
695
696/**
697 * xas_create_range() - Ensure that stores to this range will succeed
698 * @xas: XArray operation state.
699 *
700 * Creates all of the slots in the range covered by @xas. Sets @xas to
701 * create single-index entries and positions it at the beginning of the
702 * range. This is for the benefit of users which have not yet been
703 * converted to use multi-index entries.
704 */
705void xas_create_range(struct xa_state *xas)
706{
707 unsigned long index = xas->xa_index;
708 unsigned char shift = xas->xa_shift;
709 unsigned char sibs = xas->xa_sibs;
710
711 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
712 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
713 xas->xa_offset |= sibs;
714 xas->xa_shift = 0;
715 xas->xa_sibs = 0;
716
717 for (;;) {
718 xas_create(xas, true);
719 if (xas_error(xas))
720 goto restore;
721 if (xas->xa_index <= (index | XA_CHUNK_MASK))
722 goto success;
723 xas->xa_index -= XA_CHUNK_SIZE;
724
725 for (;;) {
726 struct xa_node *node = xas->xa_node;
727 if (node->shift >= shift)
728 break;
729 xas->xa_node = xa_parent_locked(xas->xa, node);
730 xas->xa_offset = node->offset - 1;
731 if (node->offset != 0)
732 break;
733 }
734 }
735
736restore:
737 xas->xa_shift = shift;
738 xas->xa_sibs = sibs;
739 xas->xa_index = index;
740 return;
741success:
742 xas->xa_index = index;
743 if (xas->xa_node)
744 xas_set_offset(xas);
745}
746EXPORT_SYMBOL_GPL(xas_create_range);
747
748static void update_node(struct xa_state *xas, struct xa_node *node,
749 int count, int values)
750{
751 if (!node || (!count && !values))
752 return;
753
754 node->count += count;
755 node->nr_values += values;
756 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
757 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
758 xas_update(xas, node);
759 if (count < 0)
760 xas_delete_node(xas);
761}
762
763/**
764 * xas_store() - Store this entry in the XArray.
765 * @xas: XArray operation state.
766 * @entry: New entry.
767 *
768 * If @xas is operating on a multi-index entry, the entry returned by this
769 * function is essentially meaningless (it may be an internal entry or it
770 * may be %NULL, even if there are non-NULL entries at some of the indices
771 * covered by the range). This is not a problem for any current users,
772 * and can be changed if needed.
773 *
774 * Return: The old entry at this index.
775 */
776void *xas_store(struct xa_state *xas, void *entry)
777{
778 struct xa_node *node;
779 void __rcu **slot = &xas->xa->xa_head;
780 unsigned int offset, max;
781 int count = 0;
782 int values = 0;
783 void *first, *next;
784 bool value = xa_is_value(entry);
785
786 if (entry) {
787 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
788 first = xas_create(xas, allow_root);
789 } else {
790 first = xas_load(xas);
791 }
792
793 if (xas_invalid(xas))
794 return first;
795 node = xas->xa_node;
796 if (node && (xas->xa_shift < node->shift))
797 xas->xa_sibs = 0;
798 if ((first == entry) && !xas->xa_sibs)
799 return first;
800
801 next = first;
802 offset = xas->xa_offset;
803 max = xas->xa_offset + xas->xa_sibs;
804 if (node) {
805 slot = &node->slots[offset];
806 if (xas->xa_sibs)
807 xas_squash_marks(xas);
808 }
809 if (!entry)
810 xas_init_marks(xas);
811
812 for (;;) {
813 /*
814 * Must clear the marks before setting the entry to NULL,
815 * otherwise xas_for_each_marked may find a NULL entry and
816 * stop early. rcu_assign_pointer contains a release barrier
817 * so the mark clearing will appear to happen before the
818 * entry is set to NULL.
819 */
820 rcu_assign_pointer(*slot, entry);
821 if (xa_is_node(next) && (!node || node->shift))
822 xas_free_nodes(xas, xa_to_node(next));
823 if (!node)
824 break;
825 count += !next - !entry;
826 values += !xa_is_value(first) - !value;
827 if (entry) {
828 if (offset == max)
829 break;
830 if (!xa_is_sibling(entry))
831 entry = xa_mk_sibling(xas->xa_offset);
832 } else {
833 if (offset == XA_CHUNK_MASK)
834 break;
835 }
836 next = xa_entry_locked(xas->xa, node, ++offset);
837 if (!xa_is_sibling(next)) {
838 if (!entry && (offset > max))
839 break;
840 first = next;
841 }
842 slot++;
843 }
844
845 update_node(xas, node, count, values);
846 return first;
847}
848EXPORT_SYMBOL_GPL(xas_store);
849
850/**
851 * xas_get_mark() - Returns the state of this mark.
852 * @xas: XArray operation state.
853 * @mark: Mark number.
854 *
855 * Return: true if the mark is set, false if the mark is clear or @xas
856 * is in an error state.
857 */
858bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
859{
860 if (xas_invalid(xas))
861 return false;
862 if (!xas->xa_node)
863 return xa_marked(xas->xa, mark);
864 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
865}
866EXPORT_SYMBOL_GPL(xas_get_mark);
867
868/**
869 * xas_set_mark() - Sets the mark on this entry and its parents.
870 * @xas: XArray operation state.
871 * @mark: Mark number.
872 *
873 * Sets the specified mark on this entry, and walks up the tree setting it
874 * on all the ancestor entries. Does nothing if @xas has not been walked to
875 * an entry, or is in an error state.
876 */
877void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
878{
879 struct xa_node *node = xas->xa_node;
880 unsigned int offset = xas->xa_offset;
881
882 if (xas_invalid(xas))
883 return;
884
885 while (node) {
886 if (node_set_mark(node, offset, mark))
887 return;
888 offset = node->offset;
889 node = xa_parent_locked(xas->xa, node);
890 }
891
892 if (!xa_marked(xas->xa, mark))
893 xa_mark_set(xas->xa, mark);
894}
895EXPORT_SYMBOL_GPL(xas_set_mark);
896
897/**
898 * xas_clear_mark() - Clears the mark on this entry and its parents.
899 * @xas: XArray operation state.
900 * @mark: Mark number.
901 *
902 * Clears the specified mark on this entry, and walks back to the head
903 * attempting to clear it on all the ancestor entries. Does nothing if
904 * @xas has not been walked to an entry, or is in an error state.
905 */
906void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
907{
908 struct xa_node *node = xas->xa_node;
909 unsigned int offset = xas->xa_offset;
910
911 if (xas_invalid(xas))
912 return;
913
914 while (node) {
915 if (!node_clear_mark(node, offset, mark))
916 return;
917 if (node_any_mark(node, mark))
918 return;
919
920 offset = node->offset;
921 node = xa_parent_locked(xas->xa, node);
922 }
923
924 if (xa_marked(xas->xa, mark))
925 xa_mark_clear(xas->xa, mark);
926}
927EXPORT_SYMBOL_GPL(xas_clear_mark);
928
929/**
930 * xas_init_marks() - Initialise all marks for the entry
931 * @xas: Array operations state.
932 *
933 * Initialise all marks for the entry specified by @xas. If we're tracking
934 * free entries with a mark, we need to set it on all entries. All other
935 * marks are cleared.
936 *
937 * This implementation is not as efficient as it could be; we may walk
938 * up the tree multiple times.
939 */
940void xas_init_marks(const struct xa_state *xas)
941{
942 xa_mark_t mark = 0;
943
944 for (;;) {
945 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
946 xas_set_mark(xas, mark);
947 else
948 xas_clear_mark(xas, mark);
949 if (mark == XA_MARK_MAX)
950 break;
951 mark_inc(mark);
952 }
953}
954EXPORT_SYMBOL_GPL(xas_init_marks);
955
956#ifdef CONFIG_XARRAY_MULTI
957static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
958{
959 unsigned int marks = 0;
960 xa_mark_t mark = XA_MARK_0;
961
962 for (;;) {
963 if (node_get_mark(node, offset, mark))
964 marks |= 1 << (__force unsigned int)mark;
965 if (mark == XA_MARK_MAX)
966 break;
967 mark_inc(mark);
968 }
969
970 return marks;
971}
972
973static void node_set_marks(struct xa_node *node, unsigned int offset,
974 struct xa_node *child, unsigned int marks)
975{
976 xa_mark_t mark = XA_MARK_0;
977
978 for (;;) {
979 if (marks & (1 << (__force unsigned int)mark)) {
980 node_set_mark(node, offset, mark);
981 if (child)
982 node_mark_all(child, mark);
983 }
984 if (mark == XA_MARK_MAX)
985 break;
986 mark_inc(mark);
987 }
988}
989
990/**
991 * xas_split_alloc() - Allocate memory for splitting an entry.
992 * @xas: XArray operation state.
993 * @entry: New entry which will be stored in the array.
994 * @order: Current entry order.
995 * @gfp: Memory allocation flags.
996 *
997 * This function should be called before calling xas_split().
998 * If necessary, it will allocate new nodes (and fill them with @entry)
999 * to prepare for the upcoming split of an entry of @order size into
1000 * entries of the order stored in the @xas.
1001 *
1002 * Context: May sleep if @gfp flags permit.
1003 */
1004void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1005 gfp_t gfp)
1006{
1007 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1008 unsigned int mask = xas->xa_sibs;
1009
1010 /* XXX: no support for splitting really large entries yet */
1011 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1012 goto nomem;
1013 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1014 return;
1015
1016 do {
1017 unsigned int i;
1018 void *sibling = NULL;
1019 struct xa_node *node;
1020
1021 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1022 if (!node)
1023 goto nomem;
1024 node->array = xas->xa;
1025 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1026 if ((i & mask) == 0) {
1027 RCU_INIT_POINTER(node->slots[i], entry);
1028 sibling = xa_mk_sibling(i);
1029 } else {
1030 RCU_INIT_POINTER(node->slots[i], sibling);
1031 }
1032 }
1033 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1034 xas->xa_alloc = node;
1035 } while (sibs-- > 0);
1036
1037 return;
1038nomem:
1039 xas_destroy(xas);
1040 xas_set_err(xas, -ENOMEM);
1041}
1042EXPORT_SYMBOL_GPL(xas_split_alloc);
1043
1044/**
1045 * xas_split() - Split a multi-index entry into smaller entries.
1046 * @xas: XArray operation state.
1047 * @entry: New entry to store in the array.
1048 * @order: Current entry order.
1049 *
1050 * The size of the new entries is set in @xas. The value in @entry is
1051 * copied to all the replacement entries.
1052 *
1053 * Context: Any context. The caller should hold the xa_lock.
1054 */
1055void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1056{
1057 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1058 unsigned int offset, marks;
1059 struct xa_node *node;
1060 void *curr = xas_load(xas);
1061 int values = 0;
1062
1063 node = xas->xa_node;
1064 if (xas_top(node))
1065 return;
1066
1067 marks = node_get_marks(node, xas->xa_offset);
1068
1069 offset = xas->xa_offset + sibs;
1070 do {
1071 if (xas->xa_shift < node->shift) {
1072 struct xa_node *child = xas->xa_alloc;
1073
1074 xas->xa_alloc = rcu_dereference_raw(child->parent);
1075 child->shift = node->shift - XA_CHUNK_SHIFT;
1076 child->offset = offset;
1077 child->count = XA_CHUNK_SIZE;
1078 child->nr_values = xa_is_value(entry) ?
1079 XA_CHUNK_SIZE : 0;
1080 RCU_INIT_POINTER(child->parent, node);
1081 node_set_marks(node, offset, child, marks);
1082 rcu_assign_pointer(node->slots[offset],
1083 xa_mk_node(child));
1084 if (xa_is_value(curr))
1085 values--;
1086 xas_update(xas, child);
1087 } else {
1088 unsigned int canon = offset - xas->xa_sibs;
1089
1090 node_set_marks(node, canon, NULL, marks);
1091 rcu_assign_pointer(node->slots[canon], entry);
1092 while (offset > canon)
1093 rcu_assign_pointer(node->slots[offset--],
1094 xa_mk_sibling(canon));
1095 values += (xa_is_value(entry) - xa_is_value(curr)) *
1096 (xas->xa_sibs + 1);
1097 }
1098 } while (offset-- > xas->xa_offset);
1099
1100 node->nr_values += values;
1101 xas_update(xas, node);
1102}
1103EXPORT_SYMBOL_GPL(xas_split);
1104#endif
1105
1106/**
1107 * xas_pause() - Pause a walk to drop a lock.
1108 * @xas: XArray operation state.
1109 *
1110 * Some users need to pause a walk and drop the lock they're holding in
1111 * order to yield to a higher priority thread or carry out an operation
1112 * on an entry. Those users should call this function before they drop
1113 * the lock. It resets the @xas to be suitable for the next iteration
1114 * of the loop after the user has reacquired the lock. If most entries
1115 * found during a walk require you to call xas_pause(), the xa_for_each()
1116 * iterator may be more appropriate.
1117 *
1118 * Note that xas_pause() only works for forward iteration. If a user needs
1119 * to pause a reverse iteration, we will need a xas_pause_rev().
1120 */
1121void xas_pause(struct xa_state *xas)
1122{
1123 struct xa_node *node = xas->xa_node;
1124
1125 if (xas_invalid(xas))
1126 return;
1127
1128 xas->xa_node = XAS_RESTART;
1129 if (node) {
1130 unsigned long offset = xas->xa_offset;
1131 while (++offset < XA_CHUNK_SIZE) {
1132 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1133 break;
1134 }
1135 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1136 if (xas->xa_index == 0)
1137 xas->xa_node = XAS_BOUNDS;
1138 } else {
1139 xas->xa_index++;
1140 }
1141}
1142EXPORT_SYMBOL_GPL(xas_pause);
1143
1144/*
1145 * __xas_prev() - Find the previous entry in the XArray.
1146 * @xas: XArray operation state.
1147 *
1148 * Helper function for xas_prev() which handles all the complex cases
1149 * out of line.
1150 */
1151void *__xas_prev(struct xa_state *xas)
1152{
1153 void *entry;
1154
1155 if (!xas_frozen(xas->xa_node))
1156 xas->xa_index--;
1157 if (!xas->xa_node)
1158 return set_bounds(xas);
1159 if (xas_not_node(xas->xa_node))
1160 return xas_load(xas);
1161
1162 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1163 xas->xa_offset--;
1164
1165 while (xas->xa_offset == 255) {
1166 xas->xa_offset = xas->xa_node->offset - 1;
1167 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1168 if (!xas->xa_node)
1169 return set_bounds(xas);
1170 }
1171
1172 for (;;) {
1173 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1174 if (!xa_is_node(entry))
1175 return entry;
1176
1177 xas->xa_node = xa_to_node(entry);
1178 xas_set_offset(xas);
1179 }
1180}
1181EXPORT_SYMBOL_GPL(__xas_prev);
1182
1183/*
1184 * __xas_next() - Find the next entry in the XArray.
1185 * @xas: XArray operation state.
1186 *
1187 * Helper function for xas_next() which handles all the complex cases
1188 * out of line.
1189 */
1190void *__xas_next(struct xa_state *xas)
1191{
1192 void *entry;
1193
1194 if (!xas_frozen(xas->xa_node))
1195 xas->xa_index++;
1196 if (!xas->xa_node)
1197 return set_bounds(xas);
1198 if (xas_not_node(xas->xa_node))
1199 return xas_load(xas);
1200
1201 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1202 xas->xa_offset++;
1203
1204 while (xas->xa_offset == XA_CHUNK_SIZE) {
1205 xas->xa_offset = xas->xa_node->offset + 1;
1206 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1207 if (!xas->xa_node)
1208 return set_bounds(xas);
1209 }
1210
1211 for (;;) {
1212 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1213 if (!xa_is_node(entry))
1214 return entry;
1215
1216 xas->xa_node = xa_to_node(entry);
1217 xas_set_offset(xas);
1218 }
1219}
1220EXPORT_SYMBOL_GPL(__xas_next);
1221
1222/**
1223 * xas_find() - Find the next present entry in the XArray.
1224 * @xas: XArray operation state.
1225 * @max: Highest index to return.
1226 *
1227 * If the @xas has not yet been walked to an entry, return the entry
1228 * which has an index >= xas.xa_index. If it has been walked, the entry
1229 * currently being pointed at has been processed, and so we move to the
1230 * next entry.
1231 *
1232 * If no entry is found and the array is smaller than @max, the iterator
1233 * is set to the smallest index not yet in the array. This allows @xas
1234 * to be immediately passed to xas_store().
1235 *
1236 * Return: The entry, if found, otherwise %NULL.
1237 */
1238void *xas_find(struct xa_state *xas, unsigned long max)
1239{
1240 void *entry;
1241
1242 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1243 return NULL;
1244 if (xas->xa_index > max)
1245 return set_bounds(xas);
1246
1247 if (!xas->xa_node) {
1248 xas->xa_index = 1;
1249 return set_bounds(xas);
1250 } else if (xas->xa_node == XAS_RESTART) {
1251 entry = xas_load(xas);
1252 if (entry || xas_not_node(xas->xa_node))
1253 return entry;
1254 } else if (!xas->xa_node->shift &&
1255 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1256 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1257 }
1258
1259 xas_next_offset(xas);
1260
1261 while (xas->xa_node && (xas->xa_index <= max)) {
1262 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1263 xas->xa_offset = xas->xa_node->offset + 1;
1264 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1265 continue;
1266 }
1267
1268 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1269 if (xa_is_node(entry)) {
1270 xas->xa_node = xa_to_node(entry);
1271 xas->xa_offset = 0;
1272 continue;
1273 }
1274 if (entry && !xa_is_sibling(entry))
1275 return entry;
1276
1277 xas_next_offset(xas);
1278 }
1279
1280 if (!xas->xa_node)
1281 xas->xa_node = XAS_BOUNDS;
1282 return NULL;
1283}
1284EXPORT_SYMBOL_GPL(xas_find);
1285
1286/**
1287 * xas_find_marked() - Find the next marked entry in the XArray.
1288 * @xas: XArray operation state.
1289 * @max: Highest index to return.
1290 * @mark: Mark number to search for.
1291 *
1292 * If the @xas has not yet been walked to an entry, return the marked entry
1293 * which has an index >= xas.xa_index. If it has been walked, the entry
1294 * currently being pointed at has been processed, and so we return the
1295 * first marked entry with an index > xas.xa_index.
1296 *
1297 * If no marked entry is found and the array is smaller than @max, @xas is
1298 * set to the bounds state and xas->xa_index is set to the smallest index
1299 * not yet in the array. This allows @xas to be immediately passed to
1300 * xas_store().
1301 *
1302 * If no entry is found before @max is reached, @xas is set to the restart
1303 * state.
1304 *
1305 * Return: The entry, if found, otherwise %NULL.
1306 */
1307void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1308{
1309 bool advance = true;
1310 unsigned int offset;
1311 void *entry;
1312
1313 if (xas_error(xas))
1314 return NULL;
1315 if (xas->xa_index > max)
1316 goto max;
1317
1318 if (!xas->xa_node) {
1319 xas->xa_index = 1;
1320 goto out;
1321 } else if (xas_top(xas->xa_node)) {
1322 advance = false;
1323 entry = xa_head(xas->xa);
1324 xas->xa_node = NULL;
1325 if (xas->xa_index > max_index(entry))
1326 goto out;
1327 if (!xa_is_node(entry)) {
1328 if (xa_marked(xas->xa, mark))
1329 return entry;
1330 xas->xa_index = 1;
1331 goto out;
1332 }
1333 xas->xa_node = xa_to_node(entry);
1334 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1335 }
1336
1337 while (xas->xa_index <= max) {
1338 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1339 xas->xa_offset = xas->xa_node->offset + 1;
1340 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1341 if (!xas->xa_node)
1342 break;
1343 advance = false;
1344 continue;
1345 }
1346
1347 if (!advance) {
1348 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1349 if (xa_is_sibling(entry)) {
1350 xas->xa_offset = xa_to_sibling(entry);
1351 xas_move_index(xas, xas->xa_offset);
1352 }
1353 }
1354
1355 offset = xas_find_chunk(xas, advance, mark);
1356 if (offset > xas->xa_offset) {
1357 advance = false;
1358 xas_move_index(xas, offset);
1359 /* Mind the wrap */
1360 if ((xas->xa_index - 1) >= max)
1361 goto max;
1362 xas->xa_offset = offset;
1363 if (offset == XA_CHUNK_SIZE)
1364 continue;
1365 }
1366
1367 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1368 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1369 continue;
1370 if (!xa_is_node(entry))
1371 return entry;
1372 xas->xa_node = xa_to_node(entry);
1373 xas_set_offset(xas);
1374 }
1375
1376out:
1377 if (xas->xa_index > max)
1378 goto max;
1379 return set_bounds(xas);
1380max:
1381 xas->xa_node = XAS_RESTART;
1382 return NULL;
1383}
1384EXPORT_SYMBOL_GPL(xas_find_marked);
1385
1386/**
1387 * xas_find_conflict() - Find the next present entry in a range.
1388 * @xas: XArray operation state.
1389 *
1390 * The @xas describes both a range and a position within that range.
1391 *
1392 * Context: Any context. Expects xa_lock to be held.
1393 * Return: The next entry in the range covered by @xas or %NULL.
1394 */
1395void *xas_find_conflict(struct xa_state *xas)
1396{
1397 void *curr;
1398
1399 if (xas_error(xas))
1400 return NULL;
1401
1402 if (!xas->xa_node)
1403 return NULL;
1404
1405 if (xas_top(xas->xa_node)) {
1406 curr = xas_start(xas);
1407 if (!curr)
1408 return NULL;
1409 while (xa_is_node(curr)) {
1410 struct xa_node *node = xa_to_node(curr);
1411 curr = xas_descend(xas, node);
1412 }
1413 if (curr)
1414 return curr;
1415 }
1416
1417 if (xas->xa_node->shift > xas->xa_shift)
1418 return NULL;
1419
1420 for (;;) {
1421 if (xas->xa_node->shift == xas->xa_shift) {
1422 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1423 break;
1424 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1425 xas->xa_offset = xas->xa_node->offset;
1426 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1427 if (!xas->xa_node)
1428 break;
1429 continue;
1430 }
1431 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1432 if (xa_is_sibling(curr))
1433 continue;
1434 while (xa_is_node(curr)) {
1435 xas->xa_node = xa_to_node(curr);
1436 xas->xa_offset = 0;
1437 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1438 }
1439 if (curr)
1440 return curr;
1441 }
1442 xas->xa_offset -= xas->xa_sibs;
1443 return NULL;
1444}
1445EXPORT_SYMBOL_GPL(xas_find_conflict);
1446
1447/**
1448 * xa_load() - Load an entry from an XArray.
1449 * @xa: XArray.
1450 * @index: index into array.
1451 *
1452 * Context: Any context. Takes and releases the RCU lock.
1453 * Return: The entry at @index in @xa.
1454 */
1455void *xa_load(struct xarray *xa, unsigned long index)
1456{
1457 XA_STATE(xas, xa, index);
1458 void *entry;
1459
1460 rcu_read_lock();
1461 do {
1462 entry = xas_load(&xas);
1463 if (xa_is_zero(entry))
1464 entry = NULL;
1465 } while (xas_retry(&xas, entry));
1466 rcu_read_unlock();
1467
1468 return entry;
1469}
1470EXPORT_SYMBOL(xa_load);
1471
1472static void *xas_result(struct xa_state *xas, void *curr)
1473{
1474 if (xa_is_zero(curr))
1475 return NULL;
1476 if (xas_error(xas))
1477 curr = xas->xa_node;
1478 return curr;
1479}
1480
1481/**
1482 * __xa_erase() - Erase this entry from the XArray while locked.
1483 * @xa: XArray.
1484 * @index: Index into array.
1485 *
1486 * After this function returns, loading from @index will return %NULL.
1487 * If the index is part of a multi-index entry, all indices will be erased
1488 * and none of the entries will be part of a multi-index entry.
1489 *
1490 * Context: Any context. Expects xa_lock to be held on entry.
1491 * Return: The entry which used to be at this index.
1492 */
1493void *__xa_erase(struct xarray *xa, unsigned long index)
1494{
1495 XA_STATE(xas, xa, index);
1496 return xas_result(&xas, xas_store(&xas, NULL));
1497}
1498EXPORT_SYMBOL(__xa_erase);
1499
1500/**
1501 * xa_erase() - Erase this entry from the XArray.
1502 * @xa: XArray.
1503 * @index: Index of entry.
1504 *
1505 * After this function returns, loading from @index will return %NULL.
1506 * If the index is part of a multi-index entry, all indices will be erased
1507 * and none of the entries will be part of a multi-index entry.
1508 *
1509 * Context: Any context. Takes and releases the xa_lock.
1510 * Return: The entry which used to be at this index.
1511 */
1512void *xa_erase(struct xarray *xa, unsigned long index)
1513{
1514 void *entry;
1515
1516 xa_lock(xa);
1517 entry = __xa_erase(xa, index);
1518 xa_unlock(xa);
1519
1520 return entry;
1521}
1522EXPORT_SYMBOL(xa_erase);
1523
1524/**
1525 * __xa_store() - Store this entry in the XArray.
1526 * @xa: XArray.
1527 * @index: Index into array.
1528 * @entry: New entry.
1529 * @gfp: Memory allocation flags.
1530 *
1531 * You must already be holding the xa_lock when calling this function.
1532 * It will drop the lock if needed to allocate memory, and then reacquire
1533 * it afterwards.
1534 *
1535 * Context: Any context. Expects xa_lock to be held on entry. May
1536 * release and reacquire xa_lock if @gfp flags permit.
1537 * Return: The old entry at this index or xa_err() if an error happened.
1538 */
1539void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1540{
1541 XA_STATE(xas, xa, index);
1542 void *curr;
1543
1544 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1545 return XA_ERROR(-EINVAL);
1546 if (xa_track_free(xa) && !entry)
1547 entry = XA_ZERO_ENTRY;
1548
1549 do {
1550 curr = xas_store(&xas, entry);
1551 if (xa_track_free(xa))
1552 xas_clear_mark(&xas, XA_FREE_MARK);
1553 } while (__xas_nomem(&xas, gfp));
1554
1555 return xas_result(&xas, curr);
1556}
1557EXPORT_SYMBOL(__xa_store);
1558
1559/**
1560 * xa_store() - Store this entry in the XArray.
1561 * @xa: XArray.
1562 * @index: Index into array.
1563 * @entry: New entry.
1564 * @gfp: Memory allocation flags.
1565 *
1566 * After this function returns, loads from this index will return @entry.
1567 * Storing into an existing multi-index entry updates the entry of every index.
1568 * The marks associated with @index are unaffected unless @entry is %NULL.
1569 *
1570 * Context: Any context. Takes and releases the xa_lock.
1571 * May sleep if the @gfp flags permit.
1572 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1573 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1574 * failed.
1575 */
1576void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1577{
1578 void *curr;
1579
1580 xa_lock(xa);
1581 curr = __xa_store(xa, index, entry, gfp);
1582 xa_unlock(xa);
1583
1584 return curr;
1585}
1586EXPORT_SYMBOL(xa_store);
1587
1588/**
1589 * __xa_cmpxchg() - Store this entry in the XArray.
1590 * @xa: XArray.
1591 * @index: Index into array.
1592 * @old: Old value to test against.
1593 * @entry: New entry.
1594 * @gfp: Memory allocation flags.
1595 *
1596 * You must already be holding the xa_lock when calling this function.
1597 * It will drop the lock if needed to allocate memory, and then reacquire
1598 * it afterwards.
1599 *
1600 * Context: Any context. Expects xa_lock to be held on entry. May
1601 * release and reacquire xa_lock if @gfp flags permit.
1602 * Return: The old entry at this index or xa_err() if an error happened.
1603 */
1604void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1605 void *old, void *entry, gfp_t gfp)
1606{
1607 XA_STATE(xas, xa, index);
1608 void *curr;
1609
1610 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1611 return XA_ERROR(-EINVAL);
1612
1613 do {
1614 curr = xas_load(&xas);
1615 if (curr == old) {
1616 xas_store(&xas, entry);
1617 if (xa_track_free(xa) && entry && !curr)
1618 xas_clear_mark(&xas, XA_FREE_MARK);
1619 }
1620 } while (__xas_nomem(&xas, gfp));
1621
1622 return xas_result(&xas, curr);
1623}
1624EXPORT_SYMBOL(__xa_cmpxchg);
1625
1626/**
1627 * __xa_insert() - Store this entry in the XArray if no entry is present.
1628 * @xa: XArray.
1629 * @index: Index into array.
1630 * @entry: New entry.
1631 * @gfp: Memory allocation flags.
1632 *
1633 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1634 * if no entry is present. Inserting will fail if a reserved entry is
1635 * present, even though loading from this index will return NULL.
1636 *
1637 * Context: Any context. Expects xa_lock to be held on entry. May
1638 * release and reacquire xa_lock if @gfp flags permit.
1639 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1640 * -ENOMEM if memory could not be allocated.
1641 */
1642int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1643{
1644 XA_STATE(xas, xa, index);
1645 void *curr;
1646
1647 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1648 return -EINVAL;
1649 if (!entry)
1650 entry = XA_ZERO_ENTRY;
1651
1652 do {
1653 curr = xas_load(&xas);
1654 if (!curr) {
1655 xas_store(&xas, entry);
1656 if (xa_track_free(xa))
1657 xas_clear_mark(&xas, XA_FREE_MARK);
1658 } else {
1659 xas_set_err(&xas, -EBUSY);
1660 }
1661 } while (__xas_nomem(&xas, gfp));
1662
1663 return xas_error(&xas);
1664}
1665EXPORT_SYMBOL(__xa_insert);
1666
1667#ifdef CONFIG_XARRAY_MULTI
1668static void xas_set_range(struct xa_state *xas, unsigned long first,
1669 unsigned long last)
1670{
1671 unsigned int shift = 0;
1672 unsigned long sibs = last - first;
1673 unsigned int offset = XA_CHUNK_MASK;
1674
1675 xas_set(xas, first);
1676
1677 while ((first & XA_CHUNK_MASK) == 0) {
1678 if (sibs < XA_CHUNK_MASK)
1679 break;
1680 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1681 break;
1682 shift += XA_CHUNK_SHIFT;
1683 if (offset == XA_CHUNK_MASK)
1684 offset = sibs & XA_CHUNK_MASK;
1685 sibs >>= XA_CHUNK_SHIFT;
1686 first >>= XA_CHUNK_SHIFT;
1687 }
1688
1689 offset = first & XA_CHUNK_MASK;
1690 if (offset + sibs > XA_CHUNK_MASK)
1691 sibs = XA_CHUNK_MASK - offset;
1692 if ((((first + sibs + 1) << shift) - 1) > last)
1693 sibs -= 1;
1694
1695 xas->xa_shift = shift;
1696 xas->xa_sibs = sibs;
1697}
1698
1699/**
1700 * xa_store_range() - Store this entry at a range of indices in the XArray.
1701 * @xa: XArray.
1702 * @first: First index to affect.
1703 * @last: Last index to affect.
1704 * @entry: New entry.
1705 * @gfp: Memory allocation flags.
1706 *
1707 * After this function returns, loads from any index between @first and @last,
1708 * inclusive will return @entry.
1709 * Storing into an existing multi-index entry updates the entry of every index.
1710 * The marks associated with @index are unaffected unless @entry is %NULL.
1711 *
1712 * Context: Process context. Takes and releases the xa_lock. May sleep
1713 * if the @gfp flags permit.
1714 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1715 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1716 */
1717void *xa_store_range(struct xarray *xa, unsigned long first,
1718 unsigned long last, void *entry, gfp_t gfp)
1719{
1720 XA_STATE(xas, xa, 0);
1721
1722 if (WARN_ON_ONCE(xa_is_internal(entry)))
1723 return XA_ERROR(-EINVAL);
1724 if (last < first)
1725 return XA_ERROR(-EINVAL);
1726
1727 do {
1728 xas_lock(&xas);
1729 if (entry) {
1730 unsigned int order = BITS_PER_LONG;
1731 if (last + 1)
1732 order = __ffs(last + 1);
1733 xas_set_order(&xas, last, order);
1734 xas_create(&xas, true);
1735 if (xas_error(&xas))
1736 goto unlock;
1737 }
1738 do {
1739 xas_set_range(&xas, first, last);
1740 xas_store(&xas, entry);
1741 if (xas_error(&xas))
1742 goto unlock;
1743 first += xas_size(&xas);
1744 } while (first <= last);
1745unlock:
1746 xas_unlock(&xas);
1747 } while (xas_nomem(&xas, gfp));
1748
1749 return xas_result(&xas, NULL);
1750}
1751EXPORT_SYMBOL(xa_store_range);
1752
1753/**
1754 * xa_get_order() - Get the order of an entry.
1755 * @xa: XArray.
1756 * @index: Index of the entry.
1757 *
1758 * Return: A number between 0 and 63 indicating the order of the entry.
1759 */
1760int xa_get_order(struct xarray *xa, unsigned long index)
1761{
1762 XA_STATE(xas, xa, index);
1763 void *entry;
1764 int order = 0;
1765
1766 rcu_read_lock();
1767 entry = xas_load(&xas);
1768
1769 if (!entry)
1770 goto unlock;
1771
1772 if (!xas.xa_node)
1773 goto unlock;
1774
1775 for (;;) {
1776 unsigned int slot = xas.xa_offset + (1 << order);
1777
1778 if (slot >= XA_CHUNK_SIZE)
1779 break;
1780 if (!xa_is_sibling(xas.xa_node->slots[slot]))
1781 break;
1782 order++;
1783 }
1784
1785 order += xas.xa_node->shift;
1786unlock:
1787 rcu_read_unlock();
1788
1789 return order;
1790}
1791EXPORT_SYMBOL(xa_get_order);
1792#endif /* CONFIG_XARRAY_MULTI */
1793
1794/**
1795 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1796 * @xa: XArray.
1797 * @id: Pointer to ID.
1798 * @limit: Range for allocated ID.
1799 * @entry: New entry.
1800 * @gfp: Memory allocation flags.
1801 *
1802 * Finds an empty entry in @xa between @limit.min and @limit.max,
1803 * stores the index into the @id pointer, then stores the entry at
1804 * that index. A concurrent lookup will not see an uninitialised @id.
1805 *
1806 * Context: Any context. Expects xa_lock to be held on entry. May
1807 * release and reacquire xa_lock if @gfp flags permit.
1808 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1809 * -EBUSY if there are no free entries in @limit.
1810 */
1811int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1812 struct xa_limit limit, gfp_t gfp)
1813{
1814 XA_STATE(xas, xa, 0);
1815
1816 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1817 return -EINVAL;
1818 if (WARN_ON_ONCE(!xa_track_free(xa)))
1819 return -EINVAL;
1820
1821 if (!entry)
1822 entry = XA_ZERO_ENTRY;
1823
1824 do {
1825 xas.xa_index = limit.min;
1826 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1827 if (xas.xa_node == XAS_RESTART)
1828 xas_set_err(&xas, -EBUSY);
1829 else
1830 *id = xas.xa_index;
1831 xas_store(&xas, entry);
1832 xas_clear_mark(&xas, XA_FREE_MARK);
1833 } while (__xas_nomem(&xas, gfp));
1834
1835 return xas_error(&xas);
1836}
1837EXPORT_SYMBOL(__xa_alloc);
1838
1839/**
1840 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1841 * @xa: XArray.
1842 * @id: Pointer to ID.
1843 * @entry: New entry.
1844 * @limit: Range of allocated ID.
1845 * @next: Pointer to next ID to allocate.
1846 * @gfp: Memory allocation flags.
1847 *
1848 * Finds an empty entry in @xa between @limit.min and @limit.max,
1849 * stores the index into the @id pointer, then stores the entry at
1850 * that index. A concurrent lookup will not see an uninitialised @id.
1851 * The search for an empty entry will start at @next and will wrap
1852 * around if necessary.
1853 *
1854 * Context: Any context. Expects xa_lock to be held on entry. May
1855 * release and reacquire xa_lock if @gfp flags permit.
1856 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1857 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1858 * allocated or -EBUSY if there are no free entries in @limit.
1859 */
1860int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1861 struct xa_limit limit, u32 *next, gfp_t gfp)
1862{
1863 u32 min = limit.min;
1864 int ret;
1865
1866 limit.min = max(min, *next);
1867 ret = __xa_alloc(xa, id, entry, limit, gfp);
1868 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1869 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1870 ret = 1;
1871 }
1872
1873 if (ret < 0 && limit.min > min) {
1874 limit.min = min;
1875 ret = __xa_alloc(xa, id, entry, limit, gfp);
1876 if (ret == 0)
1877 ret = 1;
1878 }
1879
1880 if (ret >= 0) {
1881 *next = *id + 1;
1882 if (*next == 0)
1883 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1884 }
1885 return ret;
1886}
1887EXPORT_SYMBOL(__xa_alloc_cyclic);
1888
1889/**
1890 * __xa_set_mark() - Set this mark on this entry while locked.
1891 * @xa: XArray.
1892 * @index: Index of entry.
1893 * @mark: Mark number.
1894 *
1895 * Attempting to set a mark on a %NULL entry does not succeed.
1896 *
1897 * Context: Any context. Expects xa_lock to be held on entry.
1898 */
1899void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1900{
1901 XA_STATE(xas, xa, index);
1902 void *entry = xas_load(&xas);
1903
1904 if (entry)
1905 xas_set_mark(&xas, mark);
1906}
1907EXPORT_SYMBOL(__xa_set_mark);
1908
1909/**
1910 * __xa_clear_mark() - Clear this mark on this entry while locked.
1911 * @xa: XArray.
1912 * @index: Index of entry.
1913 * @mark: Mark number.
1914 *
1915 * Context: Any context. Expects xa_lock to be held on entry.
1916 */
1917void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1918{
1919 XA_STATE(xas, xa, index);
1920 void *entry = xas_load(&xas);
1921
1922 if (entry)
1923 xas_clear_mark(&xas, mark);
1924}
1925EXPORT_SYMBOL(__xa_clear_mark);
1926
1927/**
1928 * xa_get_mark() - Inquire whether this mark is set on this entry.
1929 * @xa: XArray.
1930 * @index: Index of entry.
1931 * @mark: Mark number.
1932 *
1933 * This function uses the RCU read lock, so the result may be out of date
1934 * by the time it returns. If you need the result to be stable, use a lock.
1935 *
1936 * Context: Any context. Takes and releases the RCU lock.
1937 * Return: True if the entry at @index has this mark set, false if it doesn't.
1938 */
1939bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1940{
1941 XA_STATE(xas, xa, index);
1942 void *entry;
1943
1944 rcu_read_lock();
1945 entry = xas_start(&xas);
1946 while (xas_get_mark(&xas, mark)) {
1947 if (!xa_is_node(entry))
1948 goto found;
1949 entry = xas_descend(&xas, xa_to_node(entry));
1950 }
1951 rcu_read_unlock();
1952 return false;
1953 found:
1954 rcu_read_unlock();
1955 return true;
1956}
1957EXPORT_SYMBOL(xa_get_mark);
1958
1959/**
1960 * xa_set_mark() - Set this mark on this entry.
1961 * @xa: XArray.
1962 * @index: Index of entry.
1963 * @mark: Mark number.
1964 *
1965 * Attempting to set a mark on a %NULL entry does not succeed.
1966 *
1967 * Context: Process context. Takes and releases the xa_lock.
1968 */
1969void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1970{
1971 xa_lock(xa);
1972 __xa_set_mark(xa, index, mark);
1973 xa_unlock(xa);
1974}
1975EXPORT_SYMBOL(xa_set_mark);
1976
1977/**
1978 * xa_clear_mark() - Clear this mark on this entry.
1979 * @xa: XArray.
1980 * @index: Index of entry.
1981 * @mark: Mark number.
1982 *
1983 * Clearing a mark always succeeds.
1984 *
1985 * Context: Process context. Takes and releases the xa_lock.
1986 */
1987void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1988{
1989 xa_lock(xa);
1990 __xa_clear_mark(xa, index, mark);
1991 xa_unlock(xa);
1992}
1993EXPORT_SYMBOL(xa_clear_mark);
1994
1995/**
1996 * xa_find() - Search the XArray for an entry.
1997 * @xa: XArray.
1998 * @indexp: Pointer to an index.
1999 * @max: Maximum index to search to.
2000 * @filter: Selection criterion.
2001 *
2002 * Finds the entry in @xa which matches the @filter, and has the lowest
2003 * index that is at least @indexp and no more than @max.
2004 * If an entry is found, @indexp is updated to be the index of the entry.
2005 * This function is protected by the RCU read lock, so it may not find
2006 * entries which are being simultaneously added. It will not return an
2007 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2008 *
2009 * Context: Any context. Takes and releases the RCU lock.
2010 * Return: The entry, if found, otherwise %NULL.
2011 */
2012void *xa_find(struct xarray *xa, unsigned long *indexp,
2013 unsigned long max, xa_mark_t filter)
2014{
2015 XA_STATE(xas, xa, *indexp);
2016 void *entry;
2017
2018 rcu_read_lock();
2019 do {
2020 if ((__force unsigned int)filter < XA_MAX_MARKS)
2021 entry = xas_find_marked(&xas, max, filter);
2022 else
2023 entry = xas_find(&xas, max);
2024 } while (xas_retry(&xas, entry));
2025 rcu_read_unlock();
2026
2027 if (entry)
2028 *indexp = xas.xa_index;
2029 return entry;
2030}
2031EXPORT_SYMBOL(xa_find);
2032
2033static bool xas_sibling(struct xa_state *xas)
2034{
2035 struct xa_node *node = xas->xa_node;
2036 unsigned long mask;
2037
2038 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2039 return false;
2040 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2041 return (xas->xa_index & mask) >
2042 ((unsigned long)xas->xa_offset << node->shift);
2043}
2044
2045/**
2046 * xa_find_after() - Search the XArray for a present entry.
2047 * @xa: XArray.
2048 * @indexp: Pointer to an index.
2049 * @max: Maximum index to search to.
2050 * @filter: Selection criterion.
2051 *
2052 * Finds the entry in @xa which matches the @filter and has the lowest
2053 * index that is above @indexp and no more than @max.
2054 * If an entry is found, @indexp is updated to be the index of the entry.
2055 * This function is protected by the RCU read lock, so it may miss entries
2056 * which are being simultaneously added. It will not return an
2057 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2058 *
2059 * Context: Any context. Takes and releases the RCU lock.
2060 * Return: The pointer, if found, otherwise %NULL.
2061 */
2062void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2063 unsigned long max, xa_mark_t filter)
2064{
2065 XA_STATE(xas, xa, *indexp + 1);
2066 void *entry;
2067
2068 if (xas.xa_index == 0)
2069 return NULL;
2070
2071 rcu_read_lock();
2072 for (;;) {
2073 if ((__force unsigned int)filter < XA_MAX_MARKS)
2074 entry = xas_find_marked(&xas, max, filter);
2075 else
2076 entry = xas_find(&xas, max);
2077
2078 if (xas_invalid(&xas))
2079 break;
2080 if (xas_sibling(&xas))
2081 continue;
2082 if (!xas_retry(&xas, entry))
2083 break;
2084 }
2085 rcu_read_unlock();
2086
2087 if (entry)
2088 *indexp = xas.xa_index;
2089 return entry;
2090}
2091EXPORT_SYMBOL(xa_find_after);
2092
2093static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2094 unsigned long max, unsigned int n)
2095{
2096 void *entry;
2097 unsigned int i = 0;
2098
2099 rcu_read_lock();
2100 xas_for_each(xas, entry, max) {
2101 if (xas_retry(xas, entry))
2102 continue;
2103 dst[i++] = entry;
2104 if (i == n)
2105 break;
2106 }
2107 rcu_read_unlock();
2108
2109 return i;
2110}
2111
2112static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2113 unsigned long max, unsigned int n, xa_mark_t mark)
2114{
2115 void *entry;
2116 unsigned int i = 0;
2117
2118 rcu_read_lock();
2119 xas_for_each_marked(xas, entry, max, mark) {
2120 if (xas_retry(xas, entry))
2121 continue;
2122 dst[i++] = entry;
2123 if (i == n)
2124 break;
2125 }
2126 rcu_read_unlock();
2127
2128 return i;
2129}
2130
2131/**
2132 * xa_extract() - Copy selected entries from the XArray into a normal array.
2133 * @xa: The source XArray to copy from.
2134 * @dst: The buffer to copy entries into.
2135 * @start: The first index in the XArray eligible to be selected.
2136 * @max: The last index in the XArray eligible to be selected.
2137 * @n: The maximum number of entries to copy.
2138 * @filter: Selection criterion.
2139 *
2140 * Copies up to @n entries that match @filter from the XArray. The
2141 * copied entries will have indices between @start and @max, inclusive.
2142 *
2143 * The @filter may be an XArray mark value, in which case entries which are
2144 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2145 * which case all entries which are not %NULL will be copied.
2146 *
2147 * The entries returned may not represent a snapshot of the XArray at a
2148 * moment in time. For example, if another thread stores to index 5, then
2149 * index 10, calling xa_extract() may return the old contents of index 5
2150 * and the new contents of index 10. Indices not modified while this
2151 * function is running will not be skipped.
2152 *
2153 * If you need stronger guarantees, holding the xa_lock across calls to this
2154 * function will prevent concurrent modification.
2155 *
2156 * Context: Any context. Takes and releases the RCU lock.
2157 * Return: The number of entries copied.
2158 */
2159unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2160 unsigned long max, unsigned int n, xa_mark_t filter)
2161{
2162 XA_STATE(xas, xa, start);
2163
2164 if (!n)
2165 return 0;
2166
2167 if ((__force unsigned int)filter < XA_MAX_MARKS)
2168 return xas_extract_marked(&xas, dst, max, n, filter);
2169 return xas_extract_present(&xas, dst, max, n);
2170}
2171EXPORT_SYMBOL(xa_extract);
2172
2173/**
2174 * xa_delete_node() - Private interface for workingset code.
2175 * @node: Node to be removed from the tree.
2176 * @update: Function to call to update ancestor nodes.
2177 *
2178 * Context: xa_lock must be held on entry and will not be released.
2179 */
2180void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2181{
2182 struct xa_state xas = {
2183 .xa = node->array,
2184 .xa_index = (unsigned long)node->offset <<
2185 (node->shift + XA_CHUNK_SHIFT),
2186 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2187 .xa_offset = node->offset,
2188 .xa_node = xa_parent_locked(node->array, node),
2189 .xa_update = update,
2190 };
2191
2192 xas_store(&xas, NULL);
2193}
2194EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2195
2196/**
2197 * xa_destroy() - Free all internal data structures.
2198 * @xa: XArray.
2199 *
2200 * After calling this function, the XArray is empty and has freed all memory
2201 * allocated for its internal data structures. You are responsible for
2202 * freeing the objects referenced by the XArray.
2203 *
2204 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2205 */
2206void xa_destroy(struct xarray *xa)
2207{
2208 XA_STATE(xas, xa, 0);
2209 unsigned long flags;
2210 void *entry;
2211
2212 xas.xa_node = NULL;
2213 xas_lock_irqsave(&xas, flags);
2214 entry = xa_head_locked(xa);
2215 RCU_INIT_POINTER(xa->xa_head, NULL);
2216 xas_init_marks(&xas);
2217 if (xa_zero_busy(xa))
2218 xa_mark_clear(xa, XA_FREE_MARK);
2219 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2220 if (xa_is_node(entry))
2221 xas_free_nodes(&xas, xa_to_node(entry));
2222 xas_unlock_irqrestore(&xas, flags);
2223}
2224EXPORT_SYMBOL(xa_destroy);
2225
2226#ifdef XA_DEBUG
2227void xa_dump_node(const struct xa_node *node)
2228{
2229 unsigned i, j;
2230
2231 if (!node)
2232 return;
2233 if ((unsigned long)node & 3) {
2234 pr_cont("node %px\n", node);
2235 return;
2236 }
2237
2238 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2239 "array %px list %px %px marks",
2240 node, node->parent ? "offset" : "max", node->offset,
2241 node->parent, node->shift, node->count, node->nr_values,
2242 node->array, node->private_list.prev, node->private_list.next);
2243 for (i = 0; i < XA_MAX_MARKS; i++)
2244 for (j = 0; j < XA_MARK_LONGS; j++)
2245 pr_cont(" %lx", node->marks[i][j]);
2246 pr_cont("\n");
2247}
2248
2249void xa_dump_index(unsigned long index, unsigned int shift)
2250{
2251 if (!shift)
2252 pr_info("%lu: ", index);
2253 else if (shift >= BITS_PER_LONG)
2254 pr_info("0-%lu: ", ~0UL);
2255 else
2256 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2257}
2258
2259void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2260{
2261 if (!entry)
2262 return;
2263
2264 xa_dump_index(index, shift);
2265
2266 if (xa_is_node(entry)) {
2267 if (shift == 0) {
2268 pr_cont("%px\n", entry);
2269 } else {
2270 unsigned long i;
2271 struct xa_node *node = xa_to_node(entry);
2272 xa_dump_node(node);
2273 for (i = 0; i < XA_CHUNK_SIZE; i++)
2274 xa_dump_entry(node->slots[i],
2275 index + (i << node->shift), node->shift);
2276 }
2277 } else if (xa_is_value(entry))
2278 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2279 xa_to_value(entry), entry);
2280 else if (!xa_is_internal(entry))
2281 pr_cont("%px\n", entry);
2282 else if (xa_is_retry(entry))
2283 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2284 else if (xa_is_sibling(entry))
2285 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2286 else if (xa_is_zero(entry))
2287 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2288 else
2289 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2290}
2291
2292void xa_dump(const struct xarray *xa)
2293{
2294 void *entry = xa->xa_head;
2295 unsigned int shift = 0;
2296
2297 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2298 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2299 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2300 if (xa_is_node(entry))
2301 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2302 xa_dump_entry(entry, 0, shift);
2303}
2304#endif