Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136#include <linux/static_key.h>
137#include <linux/hashtable.h>
138#include <linux/vmalloc.h>
139#include <linux/if_macvlan.h>
140#include <linux/errqueue.h>
141#include <linux/hrtimer.h>
142#include <linux/netfilter_ingress.h>
143#include <linux/crash_dump.h>
144#include <linux/sctp.h>
145#include <net/udp_tunnel.h>
146#include <linux/net_namespace.h>
147#include <linux/indirect_call_wrapper.h>
148#include <net/devlink.h>
149#include <linux/pm_runtime.h>
150#include <linux/prandom.h>
151#include <linux/once_lite.h>
152
153#include "net-sysfs.h"
154
155#define MAX_GRO_SKBS 8
156
157/* This should be increased if a protocol with a bigger head is added. */
158#define GRO_MAX_HEAD (MAX_HEADER + 128)
159
160static DEFINE_SPINLOCK(ptype_lock);
161static DEFINE_SPINLOCK(offload_lock);
162struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163struct list_head ptype_all __read_mostly; /* Taps */
164static struct list_head offload_base __read_mostly;
165
166static int netif_rx_internal(struct sk_buff *skb);
167static int call_netdevice_notifiers_info(unsigned long val,
168 struct netdev_notifier_info *info);
169static int call_netdevice_notifiers_extack(unsigned long val,
170 struct net_device *dev,
171 struct netlink_ext_ack *extack);
172static struct napi_struct *napi_by_id(unsigned int napi_id);
173
174/*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193DEFINE_RWLOCK(dev_base_lock);
194EXPORT_SYMBOL(dev_base_lock);
195
196static DEFINE_MUTEX(ifalias_mutex);
197
198/* protects napi_hash addition/deletion and napi_gen_id */
199static DEFINE_SPINLOCK(napi_hash_lock);
200
201static unsigned int napi_gen_id = NR_CPUS;
202static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203
204static DECLARE_RWSEM(devnet_rename_sem);
205
206static inline void dev_base_seq_inc(struct net *net)
207{
208 while (++net->dev_base_seq == 0)
209 ;
210}
211
212static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213{
214 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215
216 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217}
218
219static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220{
221 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222}
223
224static inline void rps_lock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_lock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231static inline void rps_unlock(struct softnet_data *sd)
232{
233#ifdef CONFIG_RPS
234 spin_unlock(&sd->input_pkt_queue.lock);
235#endif
236}
237
238static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
239 const char *name)
240{
241 struct netdev_name_node *name_node;
242
243 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
244 if (!name_node)
245 return NULL;
246 INIT_HLIST_NODE(&name_node->hlist);
247 name_node->dev = dev;
248 name_node->name = name;
249 return name_node;
250}
251
252static struct netdev_name_node *
253netdev_name_node_head_alloc(struct net_device *dev)
254{
255 struct netdev_name_node *name_node;
256
257 name_node = netdev_name_node_alloc(dev, dev->name);
258 if (!name_node)
259 return NULL;
260 INIT_LIST_HEAD(&name_node->list);
261 return name_node;
262}
263
264static void netdev_name_node_free(struct netdev_name_node *name_node)
265{
266 kfree(name_node);
267}
268
269static void netdev_name_node_add(struct net *net,
270 struct netdev_name_node *name_node)
271{
272 hlist_add_head_rcu(&name_node->hlist,
273 dev_name_hash(net, name_node->name));
274}
275
276static void netdev_name_node_del(struct netdev_name_node *name_node)
277{
278 hlist_del_rcu(&name_node->hlist);
279}
280
281static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
282 const char *name)
283{
284 struct hlist_head *head = dev_name_hash(net, name);
285 struct netdev_name_node *name_node;
286
287 hlist_for_each_entry(name_node, head, hlist)
288 if (!strcmp(name_node->name, name))
289 return name_node;
290 return NULL;
291}
292
293static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
294 const char *name)
295{
296 struct hlist_head *head = dev_name_hash(net, name);
297 struct netdev_name_node *name_node;
298
299 hlist_for_each_entry_rcu(name_node, head, hlist)
300 if (!strcmp(name_node->name, name))
301 return name_node;
302 return NULL;
303}
304
305int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306{
307 struct netdev_name_node *name_node;
308 struct net *net = dev_net(dev);
309
310 name_node = netdev_name_node_lookup(net, name);
311 if (name_node)
312 return -EEXIST;
313 name_node = netdev_name_node_alloc(dev, name);
314 if (!name_node)
315 return -ENOMEM;
316 netdev_name_node_add(net, name_node);
317 /* The node that holds dev->name acts as a head of per-device list. */
318 list_add_tail(&name_node->list, &dev->name_node->list);
319
320 return 0;
321}
322EXPORT_SYMBOL(netdev_name_node_alt_create);
323
324static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325{
326 list_del(&name_node->list);
327 netdev_name_node_del(name_node);
328 kfree(name_node->name);
329 netdev_name_node_free(name_node);
330}
331
332int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333{
334 struct netdev_name_node *name_node;
335 struct net *net = dev_net(dev);
336
337 name_node = netdev_name_node_lookup(net, name);
338 if (!name_node)
339 return -ENOENT;
340 /* lookup might have found our primary name or a name belonging
341 * to another device.
342 */
343 if (name_node == dev->name_node || name_node->dev != dev)
344 return -EINVAL;
345
346 __netdev_name_node_alt_destroy(name_node);
347
348 return 0;
349}
350EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351
352static void netdev_name_node_alt_flush(struct net_device *dev)
353{
354 struct netdev_name_node *name_node, *tmp;
355
356 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
357 __netdev_name_node_alt_destroy(name_node);
358}
359
360/* Device list insertion */
361static void list_netdevice(struct net_device *dev)
362{
363 struct net *net = dev_net(dev);
364
365 ASSERT_RTNL();
366
367 write_lock_bh(&dev_base_lock);
368 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
369 netdev_name_node_add(net, dev->name_node);
370 hlist_add_head_rcu(&dev->index_hlist,
371 dev_index_hash(net, dev->ifindex));
372 write_unlock_bh(&dev_base_lock);
373
374 dev_base_seq_inc(net);
375}
376
377/* Device list removal
378 * caller must respect a RCU grace period before freeing/reusing dev
379 */
380static void unlist_netdevice(struct net_device *dev)
381{
382 ASSERT_RTNL();
383
384 /* Unlink dev from the device chain */
385 write_lock_bh(&dev_base_lock);
386 list_del_rcu(&dev->dev_list);
387 netdev_name_node_del(dev->name_node);
388 hlist_del_rcu(&dev->index_hlist);
389 write_unlock_bh(&dev_base_lock);
390
391 dev_base_seq_inc(dev_net(dev));
392}
393
394/*
395 * Our notifier list
396 */
397
398static RAW_NOTIFIER_HEAD(netdev_chain);
399
400/*
401 * Device drivers call our routines to queue packets here. We empty the
402 * queue in the local softnet handler.
403 */
404
405DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
406EXPORT_PER_CPU_SYMBOL(softnet_data);
407
408#ifdef CONFIG_LOCKDEP
409/*
410 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
411 * according to dev->type
412 */
413static const unsigned short netdev_lock_type[] = {
414 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
415 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
416 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
417 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
418 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
419 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
420 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
421 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
422 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
423 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
424 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
425 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
426 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
427 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
428 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429
430static const char *const netdev_lock_name[] = {
431 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
432 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
433 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
434 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
435 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
436 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
437 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
438 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
439 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
440 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
441 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
442 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
443 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
444 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
445 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446
447static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
448static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449
450static inline unsigned short netdev_lock_pos(unsigned short dev_type)
451{
452 int i;
453
454 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
455 if (netdev_lock_type[i] == dev_type)
456 return i;
457 /* the last key is used by default */
458 return ARRAY_SIZE(netdev_lock_type) - 1;
459}
460
461static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
462 unsigned short dev_type)
463{
464 int i;
465
466 i = netdev_lock_pos(dev_type);
467 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
468 netdev_lock_name[i]);
469}
470
471static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
472{
473 int i;
474
475 i = netdev_lock_pos(dev->type);
476 lockdep_set_class_and_name(&dev->addr_list_lock,
477 &netdev_addr_lock_key[i],
478 netdev_lock_name[i]);
479}
480#else
481static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
483{
484}
485
486static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
487{
488}
489#endif
490
491/*******************************************************************************
492 *
493 * Protocol management and registration routines
494 *
495 *******************************************************************************/
496
497
498/*
499 * Add a protocol ID to the list. Now that the input handler is
500 * smarter we can dispense with all the messy stuff that used to be
501 * here.
502 *
503 * BEWARE!!! Protocol handlers, mangling input packets,
504 * MUST BE last in hash buckets and checking protocol handlers
505 * MUST start from promiscuous ptype_all chain in net_bh.
506 * It is true now, do not change it.
507 * Explanation follows: if protocol handler, mangling packet, will
508 * be the first on list, it is not able to sense, that packet
509 * is cloned and should be copied-on-write, so that it will
510 * change it and subsequent readers will get broken packet.
511 * --ANK (980803)
512 */
513
514static inline struct list_head *ptype_head(const struct packet_type *pt)
515{
516 if (pt->type == htons(ETH_P_ALL))
517 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518 else
519 return pt->dev ? &pt->dev->ptype_specific :
520 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
521}
522
523/**
524 * dev_add_pack - add packet handler
525 * @pt: packet type declaration
526 *
527 * Add a protocol handler to the networking stack. The passed &packet_type
528 * is linked into kernel lists and may not be freed until it has been
529 * removed from the kernel lists.
530 *
531 * This call does not sleep therefore it can not
532 * guarantee all CPU's that are in middle of receiving packets
533 * will see the new packet type (until the next received packet).
534 */
535
536void dev_add_pack(struct packet_type *pt)
537{
538 struct list_head *head = ptype_head(pt);
539
540 spin_lock(&ptype_lock);
541 list_add_rcu(&pt->list, head);
542 spin_unlock(&ptype_lock);
543}
544EXPORT_SYMBOL(dev_add_pack);
545
546/**
547 * __dev_remove_pack - remove packet handler
548 * @pt: packet type declaration
549 *
550 * Remove a protocol handler that was previously added to the kernel
551 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
552 * from the kernel lists and can be freed or reused once this function
553 * returns.
554 *
555 * The packet type might still be in use by receivers
556 * and must not be freed until after all the CPU's have gone
557 * through a quiescent state.
558 */
559void __dev_remove_pack(struct packet_type *pt)
560{
561 struct list_head *head = ptype_head(pt);
562 struct packet_type *pt1;
563
564 spin_lock(&ptype_lock);
565
566 list_for_each_entry(pt1, head, list) {
567 if (pt == pt1) {
568 list_del_rcu(&pt->list);
569 goto out;
570 }
571 }
572
573 pr_warn("dev_remove_pack: %p not found\n", pt);
574out:
575 spin_unlock(&ptype_lock);
576}
577EXPORT_SYMBOL(__dev_remove_pack);
578
579/**
580 * dev_remove_pack - remove packet handler
581 * @pt: packet type declaration
582 *
583 * Remove a protocol handler that was previously added to the kernel
584 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
585 * from the kernel lists and can be freed or reused once this function
586 * returns.
587 *
588 * This call sleeps to guarantee that no CPU is looking at the packet
589 * type after return.
590 */
591void dev_remove_pack(struct packet_type *pt)
592{
593 __dev_remove_pack(pt);
594
595 synchronize_net();
596}
597EXPORT_SYMBOL(dev_remove_pack);
598
599
600/**
601 * dev_add_offload - register offload handlers
602 * @po: protocol offload declaration
603 *
604 * Add protocol offload handlers to the networking stack. The passed
605 * &proto_offload is linked into kernel lists and may not be freed until
606 * it has been removed from the kernel lists.
607 *
608 * This call does not sleep therefore it can not
609 * guarantee all CPU's that are in middle of receiving packets
610 * will see the new offload handlers (until the next received packet).
611 */
612void dev_add_offload(struct packet_offload *po)
613{
614 struct packet_offload *elem;
615
616 spin_lock(&offload_lock);
617 list_for_each_entry(elem, &offload_base, list) {
618 if (po->priority < elem->priority)
619 break;
620 }
621 list_add_rcu(&po->list, elem->list.prev);
622 spin_unlock(&offload_lock);
623}
624EXPORT_SYMBOL(dev_add_offload);
625
626/**
627 * __dev_remove_offload - remove offload handler
628 * @po: packet offload declaration
629 *
630 * Remove a protocol offload handler that was previously added to the
631 * kernel offload handlers by dev_add_offload(). The passed &offload_type
632 * is removed from the kernel lists and can be freed or reused once this
633 * function returns.
634 *
635 * The packet type might still be in use by receivers
636 * and must not be freed until after all the CPU's have gone
637 * through a quiescent state.
638 */
639static void __dev_remove_offload(struct packet_offload *po)
640{
641 struct list_head *head = &offload_base;
642 struct packet_offload *po1;
643
644 spin_lock(&offload_lock);
645
646 list_for_each_entry(po1, head, list) {
647 if (po == po1) {
648 list_del_rcu(&po->list);
649 goto out;
650 }
651 }
652
653 pr_warn("dev_remove_offload: %p not found\n", po);
654out:
655 spin_unlock(&offload_lock);
656}
657
658/**
659 * dev_remove_offload - remove packet offload handler
660 * @po: packet offload declaration
661 *
662 * Remove a packet offload handler that was previously added to the kernel
663 * offload handlers by dev_add_offload(). The passed &offload_type is
664 * removed from the kernel lists and can be freed or reused once this
665 * function returns.
666 *
667 * This call sleeps to guarantee that no CPU is looking at the packet
668 * type after return.
669 */
670void dev_remove_offload(struct packet_offload *po)
671{
672 __dev_remove_offload(po);
673
674 synchronize_net();
675}
676EXPORT_SYMBOL(dev_remove_offload);
677
678/******************************************************************************
679 *
680 * Device Boot-time Settings Routines
681 *
682 ******************************************************************************/
683
684/* Boot time configuration table */
685static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
686
687/**
688 * netdev_boot_setup_add - add new setup entry
689 * @name: name of the device
690 * @map: configured settings for the device
691 *
692 * Adds new setup entry to the dev_boot_setup list. The function
693 * returns 0 on error and 1 on success. This is a generic routine to
694 * all netdevices.
695 */
696static int netdev_boot_setup_add(char *name, struct ifmap *map)
697{
698 struct netdev_boot_setup *s;
699 int i;
700
701 s = dev_boot_setup;
702 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
703 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
704 memset(s[i].name, 0, sizeof(s[i].name));
705 strlcpy(s[i].name, name, IFNAMSIZ);
706 memcpy(&s[i].map, map, sizeof(s[i].map));
707 break;
708 }
709 }
710
711 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712}
713
714/**
715 * netdev_boot_setup_check - check boot time settings
716 * @dev: the netdevice
717 *
718 * Check boot time settings for the device.
719 * The found settings are set for the device to be used
720 * later in the device probing.
721 * Returns 0 if no settings found, 1 if they are.
722 */
723int netdev_boot_setup_check(struct net_device *dev)
724{
725 struct netdev_boot_setup *s = dev_boot_setup;
726 int i;
727
728 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
729 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
730 !strcmp(dev->name, s[i].name)) {
731 dev->irq = s[i].map.irq;
732 dev->base_addr = s[i].map.base_addr;
733 dev->mem_start = s[i].map.mem_start;
734 dev->mem_end = s[i].map.mem_end;
735 return 1;
736 }
737 }
738 return 0;
739}
740EXPORT_SYMBOL(netdev_boot_setup_check);
741
742
743/**
744 * netdev_boot_base - get address from boot time settings
745 * @prefix: prefix for network device
746 * @unit: id for network device
747 *
748 * Check boot time settings for the base address of device.
749 * The found settings are set for the device to be used
750 * later in the device probing.
751 * Returns 0 if no settings found.
752 */
753unsigned long netdev_boot_base(const char *prefix, int unit)
754{
755 const struct netdev_boot_setup *s = dev_boot_setup;
756 char name[IFNAMSIZ];
757 int i;
758
759 sprintf(name, "%s%d", prefix, unit);
760
761 /*
762 * If device already registered then return base of 1
763 * to indicate not to probe for this interface
764 */
765 if (__dev_get_by_name(&init_net, name))
766 return 1;
767
768 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
769 if (!strcmp(name, s[i].name))
770 return s[i].map.base_addr;
771 return 0;
772}
773
774/*
775 * Saves at boot time configured settings for any netdevice.
776 */
777int __init netdev_boot_setup(char *str)
778{
779 int ints[5];
780 struct ifmap map;
781
782 str = get_options(str, ARRAY_SIZE(ints), ints);
783 if (!str || !*str)
784 return 0;
785
786 /* Save settings */
787 memset(&map, 0, sizeof(map));
788 if (ints[0] > 0)
789 map.irq = ints[1];
790 if (ints[0] > 1)
791 map.base_addr = ints[2];
792 if (ints[0] > 2)
793 map.mem_start = ints[3];
794 if (ints[0] > 3)
795 map.mem_end = ints[4];
796
797 /* Add new entry to the list */
798 return netdev_boot_setup_add(str, &map);
799}
800
801__setup("netdev=", netdev_boot_setup);
802
803/*******************************************************************************
804 *
805 * Device Interface Subroutines
806 *
807 *******************************************************************************/
808
809/**
810 * dev_get_iflink - get 'iflink' value of a interface
811 * @dev: targeted interface
812 *
813 * Indicates the ifindex the interface is linked to.
814 * Physical interfaces have the same 'ifindex' and 'iflink' values.
815 */
816
817int dev_get_iflink(const struct net_device *dev)
818{
819 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
820 return dev->netdev_ops->ndo_get_iflink(dev);
821
822 return dev->ifindex;
823}
824EXPORT_SYMBOL(dev_get_iflink);
825
826/**
827 * dev_fill_metadata_dst - Retrieve tunnel egress information.
828 * @dev: targeted interface
829 * @skb: The packet.
830 *
831 * For better visibility of tunnel traffic OVS needs to retrieve
832 * egress tunnel information for a packet. Following API allows
833 * user to get this info.
834 */
835int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836{
837 struct ip_tunnel_info *info;
838
839 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
840 return -EINVAL;
841
842 info = skb_tunnel_info_unclone(skb);
843 if (!info)
844 return -ENOMEM;
845 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
846 return -EINVAL;
847
848 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849}
850EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851
852static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853{
854 int k = stack->num_paths++;
855
856 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
857 return NULL;
858
859 return &stack->path[k];
860}
861
862int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
863 struct net_device_path_stack *stack)
864{
865 const struct net_device *last_dev;
866 struct net_device_path_ctx ctx = {
867 .dev = dev,
868 .daddr = daddr,
869 };
870 struct net_device_path *path;
871 int ret = 0;
872
873 stack->num_paths = 0;
874 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875 last_dev = ctx.dev;
876 path = dev_fwd_path(stack);
877 if (!path)
878 return -1;
879
880 memset(path, 0, sizeof(struct net_device_path));
881 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
882 if (ret < 0)
883 return -1;
884
885 if (WARN_ON_ONCE(last_dev == ctx.dev))
886 return -1;
887 }
888 path = dev_fwd_path(stack);
889 if (!path)
890 return -1;
891 path->type = DEV_PATH_ETHERNET;
892 path->dev = ctx.dev;
893
894 return ret;
895}
896EXPORT_SYMBOL_GPL(dev_fill_forward_path);
897
898/**
899 * __dev_get_by_name - find a device by its name
900 * @net: the applicable net namespace
901 * @name: name to find
902 *
903 * Find an interface by name. Must be called under RTNL semaphore
904 * or @dev_base_lock. If the name is found a pointer to the device
905 * is returned. If the name is not found then %NULL is returned. The
906 * reference counters are not incremented so the caller must be
907 * careful with locks.
908 */
909
910struct net_device *__dev_get_by_name(struct net *net, const char *name)
911{
912 struct netdev_name_node *node_name;
913
914 node_name = netdev_name_node_lookup(net, name);
915 return node_name ? node_name->dev : NULL;
916}
917EXPORT_SYMBOL(__dev_get_by_name);
918
919/**
920 * dev_get_by_name_rcu - find a device by its name
921 * @net: the applicable net namespace
922 * @name: name to find
923 *
924 * Find an interface by name.
925 * If the name is found a pointer to the device is returned.
926 * If the name is not found then %NULL is returned.
927 * The reference counters are not incremented so the caller must be
928 * careful with locks. The caller must hold RCU lock.
929 */
930
931struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932{
933 struct netdev_name_node *node_name;
934
935 node_name = netdev_name_node_lookup_rcu(net, name);
936 return node_name ? node_name->dev : NULL;
937}
938EXPORT_SYMBOL(dev_get_by_name_rcu);
939
940/**
941 * dev_get_by_name - find a device by its name
942 * @net: the applicable net namespace
943 * @name: name to find
944 *
945 * Find an interface by name. This can be called from any
946 * context and does its own locking. The returned handle has
947 * the usage count incremented and the caller must use dev_put() to
948 * release it when it is no longer needed. %NULL is returned if no
949 * matching device is found.
950 */
951
952struct net_device *dev_get_by_name(struct net *net, const char *name)
953{
954 struct net_device *dev;
955
956 rcu_read_lock();
957 dev = dev_get_by_name_rcu(net, name);
958 if (dev)
959 dev_hold(dev);
960 rcu_read_unlock();
961 return dev;
962}
963EXPORT_SYMBOL(dev_get_by_name);
964
965/**
966 * __dev_get_by_index - find a device by its ifindex
967 * @net: the applicable net namespace
968 * @ifindex: index of device
969 *
970 * Search for an interface by index. Returns %NULL if the device
971 * is not found or a pointer to the device. The device has not
972 * had its reference counter increased so the caller must be careful
973 * about locking. The caller must hold either the RTNL semaphore
974 * or @dev_base_lock.
975 */
976
977struct net_device *__dev_get_by_index(struct net *net, int ifindex)
978{
979 struct net_device *dev;
980 struct hlist_head *head = dev_index_hash(net, ifindex);
981
982 hlist_for_each_entry(dev, head, index_hlist)
983 if (dev->ifindex == ifindex)
984 return dev;
985
986 return NULL;
987}
988EXPORT_SYMBOL(__dev_get_by_index);
989
990/**
991 * dev_get_by_index_rcu - find a device by its ifindex
992 * @net: the applicable net namespace
993 * @ifindex: index of device
994 *
995 * Search for an interface by index. Returns %NULL if the device
996 * is not found or a pointer to the device. The device has not
997 * had its reference counter increased so the caller must be careful
998 * about locking. The caller must hold RCU lock.
999 */
1000
1001struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002{
1003 struct net_device *dev;
1004 struct hlist_head *head = dev_index_hash(net, ifindex);
1005
1006 hlist_for_each_entry_rcu(dev, head, index_hlist)
1007 if (dev->ifindex == ifindex)
1008 return dev;
1009
1010 return NULL;
1011}
1012EXPORT_SYMBOL(dev_get_by_index_rcu);
1013
1014
1015/**
1016 * dev_get_by_index - find a device by its ifindex
1017 * @net: the applicable net namespace
1018 * @ifindex: index of device
1019 *
1020 * Search for an interface by index. Returns NULL if the device
1021 * is not found or a pointer to the device. The device returned has
1022 * had a reference added and the pointer is safe until the user calls
1023 * dev_put to indicate they have finished with it.
1024 */
1025
1026struct net_device *dev_get_by_index(struct net *net, int ifindex)
1027{
1028 struct net_device *dev;
1029
1030 rcu_read_lock();
1031 dev = dev_get_by_index_rcu(net, ifindex);
1032 if (dev)
1033 dev_hold(dev);
1034 rcu_read_unlock();
1035 return dev;
1036}
1037EXPORT_SYMBOL(dev_get_by_index);
1038
1039/**
1040 * dev_get_by_napi_id - find a device by napi_id
1041 * @napi_id: ID of the NAPI struct
1042 *
1043 * Search for an interface by NAPI ID. Returns %NULL if the device
1044 * is not found or a pointer to the device. The device has not had
1045 * its reference counter increased so the caller must be careful
1046 * about locking. The caller must hold RCU lock.
1047 */
1048
1049struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050{
1051 struct napi_struct *napi;
1052
1053 WARN_ON_ONCE(!rcu_read_lock_held());
1054
1055 if (napi_id < MIN_NAPI_ID)
1056 return NULL;
1057
1058 napi = napi_by_id(napi_id);
1059
1060 return napi ? napi->dev : NULL;
1061}
1062EXPORT_SYMBOL(dev_get_by_napi_id);
1063
1064/**
1065 * netdev_get_name - get a netdevice name, knowing its ifindex.
1066 * @net: network namespace
1067 * @name: a pointer to the buffer where the name will be stored.
1068 * @ifindex: the ifindex of the interface to get the name from.
1069 */
1070int netdev_get_name(struct net *net, char *name, int ifindex)
1071{
1072 struct net_device *dev;
1073 int ret;
1074
1075 down_read(&devnet_rename_sem);
1076 rcu_read_lock();
1077
1078 dev = dev_get_by_index_rcu(net, ifindex);
1079 if (!dev) {
1080 ret = -ENODEV;
1081 goto out;
1082 }
1083
1084 strcpy(name, dev->name);
1085
1086 ret = 0;
1087out:
1088 rcu_read_unlock();
1089 up_read(&devnet_rename_sem);
1090 return ret;
1091}
1092
1093/**
1094 * dev_getbyhwaddr_rcu - find a device by its hardware address
1095 * @net: the applicable net namespace
1096 * @type: media type of device
1097 * @ha: hardware address
1098 *
1099 * Search for an interface by MAC address. Returns NULL if the device
1100 * is not found or a pointer to the device.
1101 * The caller must hold RCU or RTNL.
1102 * The returned device has not had its ref count increased
1103 * and the caller must therefore be careful about locking
1104 *
1105 */
1106
1107struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1108 const char *ha)
1109{
1110 struct net_device *dev;
1111
1112 for_each_netdev_rcu(net, dev)
1113 if (dev->type == type &&
1114 !memcmp(dev->dev_addr, ha, dev->addr_len))
1115 return dev;
1116
1117 return NULL;
1118}
1119EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1120
1121struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1122{
1123 struct net_device *dev, *ret = NULL;
1124
1125 rcu_read_lock();
1126 for_each_netdev_rcu(net, dev)
1127 if (dev->type == type) {
1128 dev_hold(dev);
1129 ret = dev;
1130 break;
1131 }
1132 rcu_read_unlock();
1133 return ret;
1134}
1135EXPORT_SYMBOL(dev_getfirstbyhwtype);
1136
1137/**
1138 * __dev_get_by_flags - find any device with given flags
1139 * @net: the applicable net namespace
1140 * @if_flags: IFF_* values
1141 * @mask: bitmask of bits in if_flags to check
1142 *
1143 * Search for any interface with the given flags. Returns NULL if a device
1144 * is not found or a pointer to the device. Must be called inside
1145 * rtnl_lock(), and result refcount is unchanged.
1146 */
1147
1148struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1149 unsigned short mask)
1150{
1151 struct net_device *dev, *ret;
1152
1153 ASSERT_RTNL();
1154
1155 ret = NULL;
1156 for_each_netdev(net, dev) {
1157 if (((dev->flags ^ if_flags) & mask) == 0) {
1158 ret = dev;
1159 break;
1160 }
1161 }
1162 return ret;
1163}
1164EXPORT_SYMBOL(__dev_get_by_flags);
1165
1166/**
1167 * dev_valid_name - check if name is okay for network device
1168 * @name: name string
1169 *
1170 * Network device names need to be valid file names to
1171 * allow sysfs to work. We also disallow any kind of
1172 * whitespace.
1173 */
1174bool dev_valid_name(const char *name)
1175{
1176 if (*name == '\0')
1177 return false;
1178 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1179 return false;
1180 if (!strcmp(name, ".") || !strcmp(name, ".."))
1181 return false;
1182
1183 while (*name) {
1184 if (*name == '/' || *name == ':' || isspace(*name))
1185 return false;
1186 name++;
1187 }
1188 return true;
1189}
1190EXPORT_SYMBOL(dev_valid_name);
1191
1192/**
1193 * __dev_alloc_name - allocate a name for a device
1194 * @net: network namespace to allocate the device name in
1195 * @name: name format string
1196 * @buf: scratch buffer and result name string
1197 *
1198 * Passed a format string - eg "lt%d" it will try and find a suitable
1199 * id. It scans list of devices to build up a free map, then chooses
1200 * the first empty slot. The caller must hold the dev_base or rtnl lock
1201 * while allocating the name and adding the device in order to avoid
1202 * duplicates.
1203 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1204 * Returns the number of the unit assigned or a negative errno code.
1205 */
1206
1207static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1208{
1209 int i = 0;
1210 const char *p;
1211 const int max_netdevices = 8*PAGE_SIZE;
1212 unsigned long *inuse;
1213 struct net_device *d;
1214
1215 if (!dev_valid_name(name))
1216 return -EINVAL;
1217
1218 p = strchr(name, '%');
1219 if (p) {
1220 /*
1221 * Verify the string as this thing may have come from
1222 * the user. There must be either one "%d" and no other "%"
1223 * characters.
1224 */
1225 if (p[1] != 'd' || strchr(p + 2, '%'))
1226 return -EINVAL;
1227
1228 /* Use one page as a bit array of possible slots */
1229 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1230 if (!inuse)
1231 return -ENOMEM;
1232
1233 for_each_netdev(net, d) {
1234 struct netdev_name_node *name_node;
1235 list_for_each_entry(name_node, &d->name_node->list, list) {
1236 if (!sscanf(name_node->name, name, &i))
1237 continue;
1238 if (i < 0 || i >= max_netdevices)
1239 continue;
1240
1241 /* avoid cases where sscanf is not exact inverse of printf */
1242 snprintf(buf, IFNAMSIZ, name, i);
1243 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1244 set_bit(i, inuse);
1245 }
1246 if (!sscanf(d->name, name, &i))
1247 continue;
1248 if (i < 0 || i >= max_netdevices)
1249 continue;
1250
1251 /* avoid cases where sscanf is not exact inverse of printf */
1252 snprintf(buf, IFNAMSIZ, name, i);
1253 if (!strncmp(buf, d->name, IFNAMSIZ))
1254 set_bit(i, inuse);
1255 }
1256
1257 i = find_first_zero_bit(inuse, max_netdevices);
1258 free_page((unsigned long) inuse);
1259 }
1260
1261 snprintf(buf, IFNAMSIZ, name, i);
1262 if (!__dev_get_by_name(net, buf))
1263 return i;
1264
1265 /* It is possible to run out of possible slots
1266 * when the name is long and there isn't enough space left
1267 * for the digits, or if all bits are used.
1268 */
1269 return -ENFILE;
1270}
1271
1272static int dev_alloc_name_ns(struct net *net,
1273 struct net_device *dev,
1274 const char *name)
1275{
1276 char buf[IFNAMSIZ];
1277 int ret;
1278
1279 BUG_ON(!net);
1280 ret = __dev_alloc_name(net, name, buf);
1281 if (ret >= 0)
1282 strlcpy(dev->name, buf, IFNAMSIZ);
1283 return ret;
1284}
1285
1286/**
1287 * dev_alloc_name - allocate a name for a device
1288 * @dev: device
1289 * @name: name format string
1290 *
1291 * Passed a format string - eg "lt%d" it will try and find a suitable
1292 * id. It scans list of devices to build up a free map, then chooses
1293 * the first empty slot. The caller must hold the dev_base or rtnl lock
1294 * while allocating the name and adding the device in order to avoid
1295 * duplicates.
1296 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1297 * Returns the number of the unit assigned or a negative errno code.
1298 */
1299
1300int dev_alloc_name(struct net_device *dev, const char *name)
1301{
1302 return dev_alloc_name_ns(dev_net(dev), dev, name);
1303}
1304EXPORT_SYMBOL(dev_alloc_name);
1305
1306static int dev_get_valid_name(struct net *net, struct net_device *dev,
1307 const char *name)
1308{
1309 BUG_ON(!net);
1310
1311 if (!dev_valid_name(name))
1312 return -EINVAL;
1313
1314 if (strchr(name, '%'))
1315 return dev_alloc_name_ns(net, dev, name);
1316 else if (__dev_get_by_name(net, name))
1317 return -EEXIST;
1318 else if (dev->name != name)
1319 strlcpy(dev->name, name, IFNAMSIZ);
1320
1321 return 0;
1322}
1323
1324/**
1325 * dev_change_name - change name of a device
1326 * @dev: device
1327 * @newname: name (or format string) must be at least IFNAMSIZ
1328 *
1329 * Change name of a device, can pass format strings "eth%d".
1330 * for wildcarding.
1331 */
1332int dev_change_name(struct net_device *dev, const char *newname)
1333{
1334 unsigned char old_assign_type;
1335 char oldname[IFNAMSIZ];
1336 int err = 0;
1337 int ret;
1338 struct net *net;
1339
1340 ASSERT_RTNL();
1341 BUG_ON(!dev_net(dev));
1342
1343 net = dev_net(dev);
1344
1345 /* Some auto-enslaved devices e.g. failover slaves are
1346 * special, as userspace might rename the device after
1347 * the interface had been brought up and running since
1348 * the point kernel initiated auto-enslavement. Allow
1349 * live name change even when these slave devices are
1350 * up and running.
1351 *
1352 * Typically, users of these auto-enslaving devices
1353 * don't actually care about slave name change, as
1354 * they are supposed to operate on master interface
1355 * directly.
1356 */
1357 if (dev->flags & IFF_UP &&
1358 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1359 return -EBUSY;
1360
1361 down_write(&devnet_rename_sem);
1362
1363 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1364 up_write(&devnet_rename_sem);
1365 return 0;
1366 }
1367
1368 memcpy(oldname, dev->name, IFNAMSIZ);
1369
1370 err = dev_get_valid_name(net, dev, newname);
1371 if (err < 0) {
1372 up_write(&devnet_rename_sem);
1373 return err;
1374 }
1375
1376 if (oldname[0] && !strchr(oldname, '%'))
1377 netdev_info(dev, "renamed from %s\n", oldname);
1378
1379 old_assign_type = dev->name_assign_type;
1380 dev->name_assign_type = NET_NAME_RENAMED;
1381
1382rollback:
1383 ret = device_rename(&dev->dev, dev->name);
1384 if (ret) {
1385 memcpy(dev->name, oldname, IFNAMSIZ);
1386 dev->name_assign_type = old_assign_type;
1387 up_write(&devnet_rename_sem);
1388 return ret;
1389 }
1390
1391 up_write(&devnet_rename_sem);
1392
1393 netdev_adjacent_rename_links(dev, oldname);
1394
1395 write_lock_bh(&dev_base_lock);
1396 netdev_name_node_del(dev->name_node);
1397 write_unlock_bh(&dev_base_lock);
1398
1399 synchronize_rcu();
1400
1401 write_lock_bh(&dev_base_lock);
1402 netdev_name_node_add(net, dev->name_node);
1403 write_unlock_bh(&dev_base_lock);
1404
1405 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1406 ret = notifier_to_errno(ret);
1407
1408 if (ret) {
1409 /* err >= 0 after dev_alloc_name() or stores the first errno */
1410 if (err >= 0) {
1411 err = ret;
1412 down_write(&devnet_rename_sem);
1413 memcpy(dev->name, oldname, IFNAMSIZ);
1414 memcpy(oldname, newname, IFNAMSIZ);
1415 dev->name_assign_type = old_assign_type;
1416 old_assign_type = NET_NAME_RENAMED;
1417 goto rollback;
1418 } else {
1419 pr_err("%s: name change rollback failed: %d\n",
1420 dev->name, ret);
1421 }
1422 }
1423
1424 return err;
1425}
1426
1427/**
1428 * dev_set_alias - change ifalias of a device
1429 * @dev: device
1430 * @alias: name up to IFALIASZ
1431 * @len: limit of bytes to copy from info
1432 *
1433 * Set ifalias for a device,
1434 */
1435int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436{
1437 struct dev_ifalias *new_alias = NULL;
1438
1439 if (len >= IFALIASZ)
1440 return -EINVAL;
1441
1442 if (len) {
1443 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1444 if (!new_alias)
1445 return -ENOMEM;
1446
1447 memcpy(new_alias->ifalias, alias, len);
1448 new_alias->ifalias[len] = 0;
1449 }
1450
1451 mutex_lock(&ifalias_mutex);
1452 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1453 mutex_is_locked(&ifalias_mutex));
1454 mutex_unlock(&ifalias_mutex);
1455
1456 if (new_alias)
1457 kfree_rcu(new_alias, rcuhead);
1458
1459 return len;
1460}
1461EXPORT_SYMBOL(dev_set_alias);
1462
1463/**
1464 * dev_get_alias - get ifalias of a device
1465 * @dev: device
1466 * @name: buffer to store name of ifalias
1467 * @len: size of buffer
1468 *
1469 * get ifalias for a device. Caller must make sure dev cannot go
1470 * away, e.g. rcu read lock or own a reference count to device.
1471 */
1472int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473{
1474 const struct dev_ifalias *alias;
1475 int ret = 0;
1476
1477 rcu_read_lock();
1478 alias = rcu_dereference(dev->ifalias);
1479 if (alias)
1480 ret = snprintf(name, len, "%s", alias->ifalias);
1481 rcu_read_unlock();
1482
1483 return ret;
1484}
1485
1486/**
1487 * netdev_features_change - device changes features
1488 * @dev: device to cause notification
1489 *
1490 * Called to indicate a device has changed features.
1491 */
1492void netdev_features_change(struct net_device *dev)
1493{
1494 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1495}
1496EXPORT_SYMBOL(netdev_features_change);
1497
1498/**
1499 * netdev_state_change - device changes state
1500 * @dev: device to cause notification
1501 *
1502 * Called to indicate a device has changed state. This function calls
1503 * the notifier chains for netdev_chain and sends a NEWLINK message
1504 * to the routing socket.
1505 */
1506void netdev_state_change(struct net_device *dev)
1507{
1508 if (dev->flags & IFF_UP) {
1509 struct netdev_notifier_change_info change_info = {
1510 .info.dev = dev,
1511 };
1512
1513 call_netdevice_notifiers_info(NETDEV_CHANGE,
1514 &change_info.info);
1515 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1516 }
1517}
1518EXPORT_SYMBOL(netdev_state_change);
1519
1520/**
1521 * __netdev_notify_peers - notify network peers about existence of @dev,
1522 * to be called when rtnl lock is already held.
1523 * @dev: network device
1524 *
1525 * Generate traffic such that interested network peers are aware of
1526 * @dev, such as by generating a gratuitous ARP. This may be used when
1527 * a device wants to inform the rest of the network about some sort of
1528 * reconfiguration such as a failover event or virtual machine
1529 * migration.
1530 */
1531void __netdev_notify_peers(struct net_device *dev)
1532{
1533 ASSERT_RTNL();
1534 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1535 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536}
1537EXPORT_SYMBOL(__netdev_notify_peers);
1538
1539/**
1540 * netdev_notify_peers - notify network peers about existence of @dev
1541 * @dev: network device
1542 *
1543 * Generate traffic such that interested network peers are aware of
1544 * @dev, such as by generating a gratuitous ARP. This may be used when
1545 * a device wants to inform the rest of the network about some sort of
1546 * reconfiguration such as a failover event or virtual machine
1547 * migration.
1548 */
1549void netdev_notify_peers(struct net_device *dev)
1550{
1551 rtnl_lock();
1552 __netdev_notify_peers(dev);
1553 rtnl_unlock();
1554}
1555EXPORT_SYMBOL(netdev_notify_peers);
1556
1557static int napi_threaded_poll(void *data);
1558
1559static int napi_kthread_create(struct napi_struct *n)
1560{
1561 int err = 0;
1562
1563 /* Create and wake up the kthread once to put it in
1564 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1565 * warning and work with loadavg.
1566 */
1567 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1568 n->dev->name, n->napi_id);
1569 if (IS_ERR(n->thread)) {
1570 err = PTR_ERR(n->thread);
1571 pr_err("kthread_run failed with err %d\n", err);
1572 n->thread = NULL;
1573 }
1574
1575 return err;
1576}
1577
1578static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1579{
1580 const struct net_device_ops *ops = dev->netdev_ops;
1581 int ret;
1582
1583 ASSERT_RTNL();
1584
1585 if (!netif_device_present(dev)) {
1586 /* may be detached because parent is runtime-suspended */
1587 if (dev->dev.parent)
1588 pm_runtime_resume(dev->dev.parent);
1589 if (!netif_device_present(dev))
1590 return -ENODEV;
1591 }
1592
1593 /* Block netpoll from trying to do any rx path servicing.
1594 * If we don't do this there is a chance ndo_poll_controller
1595 * or ndo_poll may be running while we open the device
1596 */
1597 netpoll_poll_disable(dev);
1598
1599 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1600 ret = notifier_to_errno(ret);
1601 if (ret)
1602 return ret;
1603
1604 set_bit(__LINK_STATE_START, &dev->state);
1605
1606 if (ops->ndo_validate_addr)
1607 ret = ops->ndo_validate_addr(dev);
1608
1609 if (!ret && ops->ndo_open)
1610 ret = ops->ndo_open(dev);
1611
1612 netpoll_poll_enable(dev);
1613
1614 if (ret)
1615 clear_bit(__LINK_STATE_START, &dev->state);
1616 else {
1617 dev->flags |= IFF_UP;
1618 dev_set_rx_mode(dev);
1619 dev_activate(dev);
1620 add_device_randomness(dev->dev_addr, dev->addr_len);
1621 }
1622
1623 return ret;
1624}
1625
1626/**
1627 * dev_open - prepare an interface for use.
1628 * @dev: device to open
1629 * @extack: netlink extended ack
1630 *
1631 * Takes a device from down to up state. The device's private open
1632 * function is invoked and then the multicast lists are loaded. Finally
1633 * the device is moved into the up state and a %NETDEV_UP message is
1634 * sent to the netdev notifier chain.
1635 *
1636 * Calling this function on an active interface is a nop. On a failure
1637 * a negative errno code is returned.
1638 */
1639int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1640{
1641 int ret;
1642
1643 if (dev->flags & IFF_UP)
1644 return 0;
1645
1646 ret = __dev_open(dev, extack);
1647 if (ret < 0)
1648 return ret;
1649
1650 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1651 call_netdevice_notifiers(NETDEV_UP, dev);
1652
1653 return ret;
1654}
1655EXPORT_SYMBOL(dev_open);
1656
1657static void __dev_close_many(struct list_head *head)
1658{
1659 struct net_device *dev;
1660
1661 ASSERT_RTNL();
1662 might_sleep();
1663
1664 list_for_each_entry(dev, head, close_list) {
1665 /* Temporarily disable netpoll until the interface is down */
1666 netpoll_poll_disable(dev);
1667
1668 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1669
1670 clear_bit(__LINK_STATE_START, &dev->state);
1671
1672 /* Synchronize to scheduled poll. We cannot touch poll list, it
1673 * can be even on different cpu. So just clear netif_running().
1674 *
1675 * dev->stop() will invoke napi_disable() on all of it's
1676 * napi_struct instances on this device.
1677 */
1678 smp_mb__after_atomic(); /* Commit netif_running(). */
1679 }
1680
1681 dev_deactivate_many(head);
1682
1683 list_for_each_entry(dev, head, close_list) {
1684 const struct net_device_ops *ops = dev->netdev_ops;
1685
1686 /*
1687 * Call the device specific close. This cannot fail.
1688 * Only if device is UP
1689 *
1690 * We allow it to be called even after a DETACH hot-plug
1691 * event.
1692 */
1693 if (ops->ndo_stop)
1694 ops->ndo_stop(dev);
1695
1696 dev->flags &= ~IFF_UP;
1697 netpoll_poll_enable(dev);
1698 }
1699}
1700
1701static void __dev_close(struct net_device *dev)
1702{
1703 LIST_HEAD(single);
1704
1705 list_add(&dev->close_list, &single);
1706 __dev_close_many(&single);
1707 list_del(&single);
1708}
1709
1710void dev_close_many(struct list_head *head, bool unlink)
1711{
1712 struct net_device *dev, *tmp;
1713
1714 /* Remove the devices that don't need to be closed */
1715 list_for_each_entry_safe(dev, tmp, head, close_list)
1716 if (!(dev->flags & IFF_UP))
1717 list_del_init(&dev->close_list);
1718
1719 __dev_close_many(head);
1720
1721 list_for_each_entry_safe(dev, tmp, head, close_list) {
1722 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1723 call_netdevice_notifiers(NETDEV_DOWN, dev);
1724 if (unlink)
1725 list_del_init(&dev->close_list);
1726 }
1727}
1728EXPORT_SYMBOL(dev_close_many);
1729
1730/**
1731 * dev_close - shutdown an interface.
1732 * @dev: device to shutdown
1733 *
1734 * This function moves an active device into down state. A
1735 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1736 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1737 * chain.
1738 */
1739void dev_close(struct net_device *dev)
1740{
1741 if (dev->flags & IFF_UP) {
1742 LIST_HEAD(single);
1743
1744 list_add(&dev->close_list, &single);
1745 dev_close_many(&single, true);
1746 list_del(&single);
1747 }
1748}
1749EXPORT_SYMBOL(dev_close);
1750
1751
1752/**
1753 * dev_disable_lro - disable Large Receive Offload on a device
1754 * @dev: device
1755 *
1756 * Disable Large Receive Offload (LRO) on a net device. Must be
1757 * called under RTNL. This is needed if received packets may be
1758 * forwarded to another interface.
1759 */
1760void dev_disable_lro(struct net_device *dev)
1761{
1762 struct net_device *lower_dev;
1763 struct list_head *iter;
1764
1765 dev->wanted_features &= ~NETIF_F_LRO;
1766 netdev_update_features(dev);
1767
1768 if (unlikely(dev->features & NETIF_F_LRO))
1769 netdev_WARN(dev, "failed to disable LRO!\n");
1770
1771 netdev_for_each_lower_dev(dev, lower_dev, iter)
1772 dev_disable_lro(lower_dev);
1773}
1774EXPORT_SYMBOL(dev_disable_lro);
1775
1776/**
1777 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778 * @dev: device
1779 *
1780 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1781 * called under RTNL. This is needed if Generic XDP is installed on
1782 * the device.
1783 */
1784static void dev_disable_gro_hw(struct net_device *dev)
1785{
1786 dev->wanted_features &= ~NETIF_F_GRO_HW;
1787 netdev_update_features(dev);
1788
1789 if (unlikely(dev->features & NETIF_F_GRO_HW))
1790 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791}
1792
1793const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794{
1795#define N(val) \
1796 case NETDEV_##val: \
1797 return "NETDEV_" __stringify(val);
1798 switch (cmd) {
1799 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1803 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1804 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1805 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808 N(PRE_CHANGEADDR)
1809 }
1810#undef N
1811 return "UNKNOWN_NETDEV_EVENT";
1812}
1813EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814
1815static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1816 struct net_device *dev)
1817{
1818 struct netdev_notifier_info info = {
1819 .dev = dev,
1820 };
1821
1822 return nb->notifier_call(nb, val, &info);
1823}
1824
1825static int call_netdevice_register_notifiers(struct notifier_block *nb,
1826 struct net_device *dev)
1827{
1828 int err;
1829
1830 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1831 err = notifier_to_errno(err);
1832 if (err)
1833 return err;
1834
1835 if (!(dev->flags & IFF_UP))
1836 return 0;
1837
1838 call_netdevice_notifier(nb, NETDEV_UP, dev);
1839 return 0;
1840}
1841
1842static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1843 struct net_device *dev)
1844{
1845 if (dev->flags & IFF_UP) {
1846 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847 dev);
1848 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849 }
1850 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1851}
1852
1853static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1854 struct net *net)
1855{
1856 struct net_device *dev;
1857 int err;
1858
1859 for_each_netdev(net, dev) {
1860 err = call_netdevice_register_notifiers(nb, dev);
1861 if (err)
1862 goto rollback;
1863 }
1864 return 0;
1865
1866rollback:
1867 for_each_netdev_continue_reverse(net, dev)
1868 call_netdevice_unregister_notifiers(nb, dev);
1869 return err;
1870}
1871
1872static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1873 struct net *net)
1874{
1875 struct net_device *dev;
1876
1877 for_each_netdev(net, dev)
1878 call_netdevice_unregister_notifiers(nb, dev);
1879}
1880
1881static int dev_boot_phase = 1;
1882
1883/**
1884 * register_netdevice_notifier - register a network notifier block
1885 * @nb: notifier
1886 *
1887 * Register a notifier to be called when network device events occur.
1888 * The notifier passed is linked into the kernel structures and must
1889 * not be reused until it has been unregistered. A negative errno code
1890 * is returned on a failure.
1891 *
1892 * When registered all registration and up events are replayed
1893 * to the new notifier to allow device to have a race free
1894 * view of the network device list.
1895 */
1896
1897int register_netdevice_notifier(struct notifier_block *nb)
1898{
1899 struct net *net;
1900 int err;
1901
1902 /* Close race with setup_net() and cleanup_net() */
1903 down_write(&pernet_ops_rwsem);
1904 rtnl_lock();
1905 err = raw_notifier_chain_register(&netdev_chain, nb);
1906 if (err)
1907 goto unlock;
1908 if (dev_boot_phase)
1909 goto unlock;
1910 for_each_net(net) {
1911 err = call_netdevice_register_net_notifiers(nb, net);
1912 if (err)
1913 goto rollback;
1914 }
1915
1916unlock:
1917 rtnl_unlock();
1918 up_write(&pernet_ops_rwsem);
1919 return err;
1920
1921rollback:
1922 for_each_net_continue_reverse(net)
1923 call_netdevice_unregister_net_notifiers(nb, net);
1924
1925 raw_notifier_chain_unregister(&netdev_chain, nb);
1926 goto unlock;
1927}
1928EXPORT_SYMBOL(register_netdevice_notifier);
1929
1930/**
1931 * unregister_netdevice_notifier - unregister a network notifier block
1932 * @nb: notifier
1933 *
1934 * Unregister a notifier previously registered by
1935 * register_netdevice_notifier(). The notifier is unlinked into the
1936 * kernel structures and may then be reused. A negative errno code
1937 * is returned on a failure.
1938 *
1939 * After unregistering unregister and down device events are synthesized
1940 * for all devices on the device list to the removed notifier to remove
1941 * the need for special case cleanup code.
1942 */
1943
1944int unregister_netdevice_notifier(struct notifier_block *nb)
1945{
1946 struct net *net;
1947 int err;
1948
1949 /* Close race with setup_net() and cleanup_net() */
1950 down_write(&pernet_ops_rwsem);
1951 rtnl_lock();
1952 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1953 if (err)
1954 goto unlock;
1955
1956 for_each_net(net)
1957 call_netdevice_unregister_net_notifiers(nb, net);
1958
1959unlock:
1960 rtnl_unlock();
1961 up_write(&pernet_ops_rwsem);
1962 return err;
1963}
1964EXPORT_SYMBOL(unregister_netdevice_notifier);
1965
1966static int __register_netdevice_notifier_net(struct net *net,
1967 struct notifier_block *nb,
1968 bool ignore_call_fail)
1969{
1970 int err;
1971
1972 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1973 if (err)
1974 return err;
1975 if (dev_boot_phase)
1976 return 0;
1977
1978 err = call_netdevice_register_net_notifiers(nb, net);
1979 if (err && !ignore_call_fail)
1980 goto chain_unregister;
1981
1982 return 0;
1983
1984chain_unregister:
1985 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1986 return err;
1987}
1988
1989static int __unregister_netdevice_notifier_net(struct net *net,
1990 struct notifier_block *nb)
1991{
1992 int err;
1993
1994 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1995 if (err)
1996 return err;
1997
1998 call_netdevice_unregister_net_notifiers(nb, net);
1999 return 0;
2000}
2001
2002/**
2003 * register_netdevice_notifier_net - register a per-netns network notifier block
2004 * @net: network namespace
2005 * @nb: notifier
2006 *
2007 * Register a notifier to be called when network device events occur.
2008 * The notifier passed is linked into the kernel structures and must
2009 * not be reused until it has been unregistered. A negative errno code
2010 * is returned on a failure.
2011 *
2012 * When registered all registration and up events are replayed
2013 * to the new notifier to allow device to have a race free
2014 * view of the network device list.
2015 */
2016
2017int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2018{
2019 int err;
2020
2021 rtnl_lock();
2022 err = __register_netdevice_notifier_net(net, nb, false);
2023 rtnl_unlock();
2024 return err;
2025}
2026EXPORT_SYMBOL(register_netdevice_notifier_net);
2027
2028/**
2029 * unregister_netdevice_notifier_net - unregister a per-netns
2030 * network notifier block
2031 * @net: network namespace
2032 * @nb: notifier
2033 *
2034 * Unregister a notifier previously registered by
2035 * register_netdevice_notifier(). The notifier is unlinked into the
2036 * kernel structures and may then be reused. A negative errno code
2037 * is returned on a failure.
2038 *
2039 * After unregistering unregister and down device events are synthesized
2040 * for all devices on the device list to the removed notifier to remove
2041 * the need for special case cleanup code.
2042 */
2043
2044int unregister_netdevice_notifier_net(struct net *net,
2045 struct notifier_block *nb)
2046{
2047 int err;
2048
2049 rtnl_lock();
2050 err = __unregister_netdevice_notifier_net(net, nb);
2051 rtnl_unlock();
2052 return err;
2053}
2054EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2055
2056int register_netdevice_notifier_dev_net(struct net_device *dev,
2057 struct notifier_block *nb,
2058 struct netdev_net_notifier *nn)
2059{
2060 int err;
2061
2062 rtnl_lock();
2063 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2064 if (!err) {
2065 nn->nb = nb;
2066 list_add(&nn->list, &dev->net_notifier_list);
2067 }
2068 rtnl_unlock();
2069 return err;
2070}
2071EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072
2073int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2074 struct notifier_block *nb,
2075 struct netdev_net_notifier *nn)
2076{
2077 int err;
2078
2079 rtnl_lock();
2080 list_del(&nn->list);
2081 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2082 rtnl_unlock();
2083 return err;
2084}
2085EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086
2087static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2088 struct net *net)
2089{
2090 struct netdev_net_notifier *nn;
2091
2092 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2093 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2094 __register_netdevice_notifier_net(net, nn->nb, true);
2095 }
2096}
2097
2098/**
2099 * call_netdevice_notifiers_info - call all network notifier blocks
2100 * @val: value passed unmodified to notifier function
2101 * @info: notifier information data
2102 *
2103 * Call all network notifier blocks. Parameters and return value
2104 * are as for raw_notifier_call_chain().
2105 */
2106
2107static int call_netdevice_notifiers_info(unsigned long val,
2108 struct netdev_notifier_info *info)
2109{
2110 struct net *net = dev_net(info->dev);
2111 int ret;
2112
2113 ASSERT_RTNL();
2114
2115 /* Run per-netns notifier block chain first, then run the global one.
2116 * Hopefully, one day, the global one is going to be removed after
2117 * all notifier block registrators get converted to be per-netns.
2118 */
2119 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2120 if (ret & NOTIFY_STOP_MASK)
2121 return ret;
2122 return raw_notifier_call_chain(&netdev_chain, val, info);
2123}
2124
2125static int call_netdevice_notifiers_extack(unsigned long val,
2126 struct net_device *dev,
2127 struct netlink_ext_ack *extack)
2128{
2129 struct netdev_notifier_info info = {
2130 .dev = dev,
2131 .extack = extack,
2132 };
2133
2134 return call_netdevice_notifiers_info(val, &info);
2135}
2136
2137/**
2138 * call_netdevice_notifiers - call all network notifier blocks
2139 * @val: value passed unmodified to notifier function
2140 * @dev: net_device pointer passed unmodified to notifier function
2141 *
2142 * Call all network notifier blocks. Parameters and return value
2143 * are as for raw_notifier_call_chain().
2144 */
2145
2146int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2147{
2148 return call_netdevice_notifiers_extack(val, dev, NULL);
2149}
2150EXPORT_SYMBOL(call_netdevice_notifiers);
2151
2152/**
2153 * call_netdevice_notifiers_mtu - call all network notifier blocks
2154 * @val: value passed unmodified to notifier function
2155 * @dev: net_device pointer passed unmodified to notifier function
2156 * @arg: additional u32 argument passed to the notifier function
2157 *
2158 * Call all network notifier blocks. Parameters and return value
2159 * are as for raw_notifier_call_chain().
2160 */
2161static int call_netdevice_notifiers_mtu(unsigned long val,
2162 struct net_device *dev, u32 arg)
2163{
2164 struct netdev_notifier_info_ext info = {
2165 .info.dev = dev,
2166 .ext.mtu = arg,
2167 };
2168
2169 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170
2171 return call_netdevice_notifiers_info(val, &info.info);
2172}
2173
2174#ifdef CONFIG_NET_INGRESS
2175static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2176
2177void net_inc_ingress_queue(void)
2178{
2179 static_branch_inc(&ingress_needed_key);
2180}
2181EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182
2183void net_dec_ingress_queue(void)
2184{
2185 static_branch_dec(&ingress_needed_key);
2186}
2187EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2188#endif
2189
2190#ifdef CONFIG_NET_EGRESS
2191static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2192
2193void net_inc_egress_queue(void)
2194{
2195 static_branch_inc(&egress_needed_key);
2196}
2197EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198
2199void net_dec_egress_queue(void)
2200{
2201 static_branch_dec(&egress_needed_key);
2202}
2203EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2204#endif
2205
2206static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2207#ifdef CONFIG_JUMP_LABEL
2208static atomic_t netstamp_needed_deferred;
2209static atomic_t netstamp_wanted;
2210static void netstamp_clear(struct work_struct *work)
2211{
2212 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2213 int wanted;
2214
2215 wanted = atomic_add_return(deferred, &netstamp_wanted);
2216 if (wanted > 0)
2217 static_branch_enable(&netstamp_needed_key);
2218 else
2219 static_branch_disable(&netstamp_needed_key);
2220}
2221static DECLARE_WORK(netstamp_work, netstamp_clear);
2222#endif
2223
2224void net_enable_timestamp(void)
2225{
2226#ifdef CONFIG_JUMP_LABEL
2227 int wanted;
2228
2229 while (1) {
2230 wanted = atomic_read(&netstamp_wanted);
2231 if (wanted <= 0)
2232 break;
2233 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2234 return;
2235 }
2236 atomic_inc(&netstamp_needed_deferred);
2237 schedule_work(&netstamp_work);
2238#else
2239 static_branch_inc(&netstamp_needed_key);
2240#endif
2241}
2242EXPORT_SYMBOL(net_enable_timestamp);
2243
2244void net_disable_timestamp(void)
2245{
2246#ifdef CONFIG_JUMP_LABEL
2247 int wanted;
2248
2249 while (1) {
2250 wanted = atomic_read(&netstamp_wanted);
2251 if (wanted <= 1)
2252 break;
2253 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2254 return;
2255 }
2256 atomic_dec(&netstamp_needed_deferred);
2257 schedule_work(&netstamp_work);
2258#else
2259 static_branch_dec(&netstamp_needed_key);
2260#endif
2261}
2262EXPORT_SYMBOL(net_disable_timestamp);
2263
2264static inline void net_timestamp_set(struct sk_buff *skb)
2265{
2266 skb->tstamp = 0;
2267 if (static_branch_unlikely(&netstamp_needed_key))
2268 __net_timestamp(skb);
2269}
2270
2271#define net_timestamp_check(COND, SKB) \
2272 if (static_branch_unlikely(&netstamp_needed_key)) { \
2273 if ((COND) && !(SKB)->tstamp) \
2274 __net_timestamp(SKB); \
2275 } \
2276
2277bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2278{
2279 return __is_skb_forwardable(dev, skb, true);
2280}
2281EXPORT_SYMBOL_GPL(is_skb_forwardable);
2282
2283static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2284 bool check_mtu)
2285{
2286 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2287
2288 if (likely(!ret)) {
2289 skb->protocol = eth_type_trans(skb, dev);
2290 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2291 }
2292
2293 return ret;
2294}
2295
2296int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297{
2298 return __dev_forward_skb2(dev, skb, true);
2299}
2300EXPORT_SYMBOL_GPL(__dev_forward_skb);
2301
2302/**
2303 * dev_forward_skb - loopback an skb to another netif
2304 *
2305 * @dev: destination network device
2306 * @skb: buffer to forward
2307 *
2308 * return values:
2309 * NET_RX_SUCCESS (no congestion)
2310 * NET_RX_DROP (packet was dropped, but freed)
2311 *
2312 * dev_forward_skb can be used for injecting an skb from the
2313 * start_xmit function of one device into the receive queue
2314 * of another device.
2315 *
2316 * The receiving device may be in another namespace, so
2317 * we have to clear all information in the skb that could
2318 * impact namespace isolation.
2319 */
2320int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321{
2322 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2323}
2324EXPORT_SYMBOL_GPL(dev_forward_skb);
2325
2326int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327{
2328 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2329}
2330
2331static inline int deliver_skb(struct sk_buff *skb,
2332 struct packet_type *pt_prev,
2333 struct net_device *orig_dev)
2334{
2335 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2336 return -ENOMEM;
2337 refcount_inc(&skb->users);
2338 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2339}
2340
2341static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2342 struct packet_type **pt,
2343 struct net_device *orig_dev,
2344 __be16 type,
2345 struct list_head *ptype_list)
2346{
2347 struct packet_type *ptype, *pt_prev = *pt;
2348
2349 list_for_each_entry_rcu(ptype, ptype_list, list) {
2350 if (ptype->type != type)
2351 continue;
2352 if (pt_prev)
2353 deliver_skb(skb, pt_prev, orig_dev);
2354 pt_prev = ptype;
2355 }
2356 *pt = pt_prev;
2357}
2358
2359static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360{
2361 if (!ptype->af_packet_priv || !skb->sk)
2362 return false;
2363
2364 if (ptype->id_match)
2365 return ptype->id_match(ptype, skb->sk);
2366 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2367 return true;
2368
2369 return false;
2370}
2371
2372/**
2373 * dev_nit_active - return true if any network interface taps are in use
2374 *
2375 * @dev: network device to check for the presence of taps
2376 */
2377bool dev_nit_active(struct net_device *dev)
2378{
2379 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380}
2381EXPORT_SYMBOL_GPL(dev_nit_active);
2382
2383/*
2384 * Support routine. Sends outgoing frames to any network
2385 * taps currently in use.
2386 */
2387
2388void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2389{
2390 struct packet_type *ptype;
2391 struct sk_buff *skb2 = NULL;
2392 struct packet_type *pt_prev = NULL;
2393 struct list_head *ptype_list = &ptype_all;
2394
2395 rcu_read_lock();
2396again:
2397 list_for_each_entry_rcu(ptype, ptype_list, list) {
2398 if (ptype->ignore_outgoing)
2399 continue;
2400
2401 /* Never send packets back to the socket
2402 * they originated from - MvS (miquels@drinkel.ow.org)
2403 */
2404 if (skb_loop_sk(ptype, skb))
2405 continue;
2406
2407 if (pt_prev) {
2408 deliver_skb(skb2, pt_prev, skb->dev);
2409 pt_prev = ptype;
2410 continue;
2411 }
2412
2413 /* need to clone skb, done only once */
2414 skb2 = skb_clone(skb, GFP_ATOMIC);
2415 if (!skb2)
2416 goto out_unlock;
2417
2418 net_timestamp_set(skb2);
2419
2420 /* skb->nh should be correctly
2421 * set by sender, so that the second statement is
2422 * just protection against buggy protocols.
2423 */
2424 skb_reset_mac_header(skb2);
2425
2426 if (skb_network_header(skb2) < skb2->data ||
2427 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2428 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2429 ntohs(skb2->protocol),
2430 dev->name);
2431 skb_reset_network_header(skb2);
2432 }
2433
2434 skb2->transport_header = skb2->network_header;
2435 skb2->pkt_type = PACKET_OUTGOING;
2436 pt_prev = ptype;
2437 }
2438
2439 if (ptype_list == &ptype_all) {
2440 ptype_list = &dev->ptype_all;
2441 goto again;
2442 }
2443out_unlock:
2444 if (pt_prev) {
2445 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2446 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2447 else
2448 kfree_skb(skb2);
2449 }
2450 rcu_read_unlock();
2451}
2452EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2453
2454/**
2455 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2456 * @dev: Network device
2457 * @txq: number of queues available
2458 *
2459 * If real_num_tx_queues is changed the tc mappings may no longer be
2460 * valid. To resolve this verify the tc mapping remains valid and if
2461 * not NULL the mapping. With no priorities mapping to this
2462 * offset/count pair it will no longer be used. In the worst case TC0
2463 * is invalid nothing can be done so disable priority mappings. If is
2464 * expected that drivers will fix this mapping if they can before
2465 * calling netif_set_real_num_tx_queues.
2466 */
2467static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2468{
2469 int i;
2470 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471
2472 /* If TC0 is invalidated disable TC mapping */
2473 if (tc->offset + tc->count > txq) {
2474 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2475 dev->num_tc = 0;
2476 return;
2477 }
2478
2479 /* Invalidated prio to tc mappings set to TC0 */
2480 for (i = 1; i < TC_BITMASK + 1; i++) {
2481 int q = netdev_get_prio_tc_map(dev, i);
2482
2483 tc = &dev->tc_to_txq[q];
2484 if (tc->offset + tc->count > txq) {
2485 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486 i, q);
2487 netdev_set_prio_tc_map(dev, i, 0);
2488 }
2489 }
2490}
2491
2492int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2493{
2494 if (dev->num_tc) {
2495 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2496 int i;
2497
2498 /* walk through the TCs and see if it falls into any of them */
2499 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2500 if ((txq - tc->offset) < tc->count)
2501 return i;
2502 }
2503
2504 /* didn't find it, just return -1 to indicate no match */
2505 return -1;
2506 }
2507
2508 return 0;
2509}
2510EXPORT_SYMBOL(netdev_txq_to_tc);
2511
2512#ifdef CONFIG_XPS
2513static struct static_key xps_needed __read_mostly;
2514static struct static_key xps_rxqs_needed __read_mostly;
2515static DEFINE_MUTEX(xps_map_mutex);
2516#define xmap_dereference(P) \
2517 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518
2519static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2520 struct xps_dev_maps *old_maps, int tci, u16 index)
2521{
2522 struct xps_map *map = NULL;
2523 int pos;
2524
2525 if (dev_maps)
2526 map = xmap_dereference(dev_maps->attr_map[tci]);
2527 if (!map)
2528 return false;
2529
2530 for (pos = map->len; pos--;) {
2531 if (map->queues[pos] != index)
2532 continue;
2533
2534 if (map->len > 1) {
2535 map->queues[pos] = map->queues[--map->len];
2536 break;
2537 }
2538
2539 if (old_maps)
2540 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2541 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2542 kfree_rcu(map, rcu);
2543 return false;
2544 }
2545
2546 return true;
2547}
2548
2549static bool remove_xps_queue_cpu(struct net_device *dev,
2550 struct xps_dev_maps *dev_maps,
2551 int cpu, u16 offset, u16 count)
2552{
2553 int num_tc = dev_maps->num_tc;
2554 bool active = false;
2555 int tci;
2556
2557 for (tci = cpu * num_tc; num_tc--; tci++) {
2558 int i, j;
2559
2560 for (i = count, j = offset; i--; j++) {
2561 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2562 break;
2563 }
2564
2565 active |= i < 0;
2566 }
2567
2568 return active;
2569}
2570
2571static void reset_xps_maps(struct net_device *dev,
2572 struct xps_dev_maps *dev_maps,
2573 enum xps_map_type type)
2574{
2575 static_key_slow_dec_cpuslocked(&xps_needed);
2576 if (type == XPS_RXQS)
2577 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578
2579 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580
2581 kfree_rcu(dev_maps, rcu);
2582}
2583
2584static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2585 u16 offset, u16 count)
2586{
2587 struct xps_dev_maps *dev_maps;
2588 bool active = false;
2589 int i, j;
2590
2591 dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 if (!dev_maps)
2593 return;
2594
2595 for (j = 0; j < dev_maps->nr_ids; j++)
2596 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2597 if (!active)
2598 reset_xps_maps(dev, dev_maps, type);
2599
2600 if (type == XPS_CPUS) {
2601 for (i = offset + (count - 1); count--; i--)
2602 netdev_queue_numa_node_write(
2603 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2604 }
2605}
2606
2607static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2608 u16 count)
2609{
2610 if (!static_key_false(&xps_needed))
2611 return;
2612
2613 cpus_read_lock();
2614 mutex_lock(&xps_map_mutex);
2615
2616 if (static_key_false(&xps_rxqs_needed))
2617 clean_xps_maps(dev, XPS_RXQS, offset, count);
2618
2619 clean_xps_maps(dev, XPS_CPUS, offset, count);
2620
2621 mutex_unlock(&xps_map_mutex);
2622 cpus_read_unlock();
2623}
2624
2625static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626{
2627 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2628}
2629
2630static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2631 u16 index, bool is_rxqs_map)
2632{
2633 struct xps_map *new_map;
2634 int alloc_len = XPS_MIN_MAP_ALLOC;
2635 int i, pos;
2636
2637 for (pos = 0; map && pos < map->len; pos++) {
2638 if (map->queues[pos] != index)
2639 continue;
2640 return map;
2641 }
2642
2643 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2644 if (map) {
2645 if (pos < map->alloc_len)
2646 return map;
2647
2648 alloc_len = map->alloc_len * 2;
2649 }
2650
2651 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2652 * map
2653 */
2654 if (is_rxqs_map)
2655 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656 else
2657 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2658 cpu_to_node(attr_index));
2659 if (!new_map)
2660 return NULL;
2661
2662 for (i = 0; i < pos; i++)
2663 new_map->queues[i] = map->queues[i];
2664 new_map->alloc_len = alloc_len;
2665 new_map->len = pos;
2666
2667 return new_map;
2668}
2669
2670/* Copy xps maps at a given index */
2671static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2672 struct xps_dev_maps *new_dev_maps, int index,
2673 int tc, bool skip_tc)
2674{
2675 int i, tci = index * dev_maps->num_tc;
2676 struct xps_map *map;
2677
2678 /* copy maps belonging to foreign traffic classes */
2679 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2680 if (i == tc && skip_tc)
2681 continue;
2682
2683 /* fill in the new device map from the old device map */
2684 map = xmap_dereference(dev_maps->attr_map[tci]);
2685 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2686 }
2687}
2688
2689/* Must be called under cpus_read_lock */
2690int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2691 u16 index, enum xps_map_type type)
2692{
2693 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2694 const unsigned long *online_mask = NULL;
2695 bool active = false, copy = false;
2696 int i, j, tci, numa_node_id = -2;
2697 int maps_sz, num_tc = 1, tc = 0;
2698 struct xps_map *map, *new_map;
2699 unsigned int nr_ids;
2700
2701 if (dev->num_tc) {
2702 /* Do not allow XPS on subordinate device directly */
2703 num_tc = dev->num_tc;
2704 if (num_tc < 0)
2705 return -EINVAL;
2706
2707 /* If queue belongs to subordinate dev use its map */
2708 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709
2710 tc = netdev_txq_to_tc(dev, index);
2711 if (tc < 0)
2712 return -EINVAL;
2713 }
2714
2715 mutex_lock(&xps_map_mutex);
2716
2717 dev_maps = xmap_dereference(dev->xps_maps[type]);
2718 if (type == XPS_RXQS) {
2719 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2720 nr_ids = dev->num_rx_queues;
2721 } else {
2722 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2723 if (num_possible_cpus() > 1)
2724 online_mask = cpumask_bits(cpu_online_mask);
2725 nr_ids = nr_cpu_ids;
2726 }
2727
2728 if (maps_sz < L1_CACHE_BYTES)
2729 maps_sz = L1_CACHE_BYTES;
2730
2731 /* The old dev_maps could be larger or smaller than the one we're
2732 * setting up now, as dev->num_tc or nr_ids could have been updated in
2733 * between. We could try to be smart, but let's be safe instead and only
2734 * copy foreign traffic classes if the two map sizes match.
2735 */
2736 if (dev_maps &&
2737 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2738 copy = true;
2739
2740 /* allocate memory for queue storage */
2741 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742 j < nr_ids;) {
2743 if (!new_dev_maps) {
2744 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2745 if (!new_dev_maps) {
2746 mutex_unlock(&xps_map_mutex);
2747 return -ENOMEM;
2748 }
2749
2750 new_dev_maps->nr_ids = nr_ids;
2751 new_dev_maps->num_tc = num_tc;
2752 }
2753
2754 tci = j * num_tc + tc;
2755 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2756
2757 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2758 if (!map)
2759 goto error;
2760
2761 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762 }
2763
2764 if (!new_dev_maps)
2765 goto out_no_new_maps;
2766
2767 if (!dev_maps) {
2768 /* Increment static keys at most once per type */
2769 static_key_slow_inc_cpuslocked(&xps_needed);
2770 if (type == XPS_RXQS)
2771 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2772 }
2773
2774 for (j = 0; j < nr_ids; j++) {
2775 bool skip_tc = false;
2776
2777 tci = j * num_tc + tc;
2778 if (netif_attr_test_mask(j, mask, nr_ids) &&
2779 netif_attr_test_online(j, online_mask, nr_ids)) {
2780 /* add tx-queue to CPU/rx-queue maps */
2781 int pos = 0;
2782
2783 skip_tc = true;
2784
2785 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2786 while ((pos < map->len) && (map->queues[pos] != index))
2787 pos++;
2788
2789 if (pos == map->len)
2790 map->queues[map->len++] = index;
2791#ifdef CONFIG_NUMA
2792 if (type == XPS_CPUS) {
2793 if (numa_node_id == -2)
2794 numa_node_id = cpu_to_node(j);
2795 else if (numa_node_id != cpu_to_node(j))
2796 numa_node_id = -1;
2797 }
2798#endif
2799 }
2800
2801 if (copy)
2802 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2803 skip_tc);
2804 }
2805
2806 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2807
2808 /* Cleanup old maps */
2809 if (!dev_maps)
2810 goto out_no_old_maps;
2811
2812 for (j = 0; j < dev_maps->nr_ids; j++) {
2813 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2814 map = xmap_dereference(dev_maps->attr_map[tci]);
2815 if (!map)
2816 continue;
2817
2818 if (copy) {
2819 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820 if (map == new_map)
2821 continue;
2822 }
2823
2824 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2825 kfree_rcu(map, rcu);
2826 }
2827 }
2828
2829 old_dev_maps = dev_maps;
2830
2831out_no_old_maps:
2832 dev_maps = new_dev_maps;
2833 active = true;
2834
2835out_no_new_maps:
2836 if (type == XPS_CPUS)
2837 /* update Tx queue numa node */
2838 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2839 (numa_node_id >= 0) ?
2840 numa_node_id : NUMA_NO_NODE);
2841
2842 if (!dev_maps)
2843 goto out_no_maps;
2844
2845 /* removes tx-queue from unused CPUs/rx-queues */
2846 for (j = 0; j < dev_maps->nr_ids; j++) {
2847 tci = j * dev_maps->num_tc;
2848
2849 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850 if (i == tc &&
2851 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2852 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2853 continue;
2854
2855 active |= remove_xps_queue(dev_maps,
2856 copy ? old_dev_maps : NULL,
2857 tci, index);
2858 }
2859 }
2860
2861 if (old_dev_maps)
2862 kfree_rcu(old_dev_maps, rcu);
2863
2864 /* free map if not active */
2865 if (!active)
2866 reset_xps_maps(dev, dev_maps, type);
2867
2868out_no_maps:
2869 mutex_unlock(&xps_map_mutex);
2870
2871 return 0;
2872error:
2873 /* remove any maps that we added */
2874 for (j = 0; j < nr_ids; j++) {
2875 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2876 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2877 map = copy ?
2878 xmap_dereference(dev_maps->attr_map[tci]) :
2879 NULL;
2880 if (new_map && new_map != map)
2881 kfree(new_map);
2882 }
2883 }
2884
2885 mutex_unlock(&xps_map_mutex);
2886
2887 kfree(new_dev_maps);
2888 return -ENOMEM;
2889}
2890EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2891
2892int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2893 u16 index)
2894{
2895 int ret;
2896
2897 cpus_read_lock();
2898 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2899 cpus_read_unlock();
2900
2901 return ret;
2902}
2903EXPORT_SYMBOL(netif_set_xps_queue);
2904
2905#endif
2906static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907{
2908 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909
2910 /* Unbind any subordinate channels */
2911 while (txq-- != &dev->_tx[0]) {
2912 if (txq->sb_dev)
2913 netdev_unbind_sb_channel(dev, txq->sb_dev);
2914 }
2915}
2916
2917void netdev_reset_tc(struct net_device *dev)
2918{
2919#ifdef CONFIG_XPS
2920 netif_reset_xps_queues_gt(dev, 0);
2921#endif
2922 netdev_unbind_all_sb_channels(dev);
2923
2924 /* Reset TC configuration of device */
2925 dev->num_tc = 0;
2926 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2927 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928}
2929EXPORT_SYMBOL(netdev_reset_tc);
2930
2931int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932{
2933 if (tc >= dev->num_tc)
2934 return -EINVAL;
2935
2936#ifdef CONFIG_XPS
2937 netif_reset_xps_queues(dev, offset, count);
2938#endif
2939 dev->tc_to_txq[tc].count = count;
2940 dev->tc_to_txq[tc].offset = offset;
2941 return 0;
2942}
2943EXPORT_SYMBOL(netdev_set_tc_queue);
2944
2945int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946{
2947 if (num_tc > TC_MAX_QUEUE)
2948 return -EINVAL;
2949
2950#ifdef CONFIG_XPS
2951 netif_reset_xps_queues_gt(dev, 0);
2952#endif
2953 netdev_unbind_all_sb_channels(dev);
2954
2955 dev->num_tc = num_tc;
2956 return 0;
2957}
2958EXPORT_SYMBOL(netdev_set_num_tc);
2959
2960void netdev_unbind_sb_channel(struct net_device *dev,
2961 struct net_device *sb_dev)
2962{
2963 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2964
2965#ifdef CONFIG_XPS
2966 netif_reset_xps_queues_gt(sb_dev, 0);
2967#endif
2968 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2969 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970
2971 while (txq-- != &dev->_tx[0]) {
2972 if (txq->sb_dev == sb_dev)
2973 txq->sb_dev = NULL;
2974 }
2975}
2976EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977
2978int netdev_bind_sb_channel_queue(struct net_device *dev,
2979 struct net_device *sb_dev,
2980 u8 tc, u16 count, u16 offset)
2981{
2982 /* Make certain the sb_dev and dev are already configured */
2983 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2984 return -EINVAL;
2985
2986 /* We cannot hand out queues we don't have */
2987 if ((offset + count) > dev->real_num_tx_queues)
2988 return -EINVAL;
2989
2990 /* Record the mapping */
2991 sb_dev->tc_to_txq[tc].count = count;
2992 sb_dev->tc_to_txq[tc].offset = offset;
2993
2994 /* Provide a way for Tx queue to find the tc_to_txq map or
2995 * XPS map for itself.
2996 */
2997 while (count--)
2998 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2999
3000 return 0;
3001}
3002EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003
3004int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005{
3006 /* Do not use a multiqueue device to represent a subordinate channel */
3007 if (netif_is_multiqueue(dev))
3008 return -ENODEV;
3009
3010 /* We allow channels 1 - 32767 to be used for subordinate channels.
3011 * Channel 0 is meant to be "native" mode and used only to represent
3012 * the main root device. We allow writing 0 to reset the device back
3013 * to normal mode after being used as a subordinate channel.
3014 */
3015 if (channel > S16_MAX)
3016 return -EINVAL;
3017
3018 dev->num_tc = -channel;
3019
3020 return 0;
3021}
3022EXPORT_SYMBOL(netdev_set_sb_channel);
3023
3024/*
3025 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3026 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3027 */
3028int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3029{
3030 bool disabling;
3031 int rc;
3032
3033 disabling = txq < dev->real_num_tx_queues;
3034
3035 if (txq < 1 || txq > dev->num_tx_queues)
3036 return -EINVAL;
3037
3038 if (dev->reg_state == NETREG_REGISTERED ||
3039 dev->reg_state == NETREG_UNREGISTERING) {
3040 ASSERT_RTNL();
3041
3042 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3043 txq);
3044 if (rc)
3045 return rc;
3046
3047 if (dev->num_tc)
3048 netif_setup_tc(dev, txq);
3049
3050 dev->real_num_tx_queues = txq;
3051
3052 if (disabling) {
3053 synchronize_net();
3054 qdisc_reset_all_tx_gt(dev, txq);
3055#ifdef CONFIG_XPS
3056 netif_reset_xps_queues_gt(dev, txq);
3057#endif
3058 }
3059 } else {
3060 dev->real_num_tx_queues = txq;
3061 }
3062
3063 return 0;
3064}
3065EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3066
3067#ifdef CONFIG_SYSFS
3068/**
3069 * netif_set_real_num_rx_queues - set actual number of RX queues used
3070 * @dev: Network device
3071 * @rxq: Actual number of RX queues
3072 *
3073 * This must be called either with the rtnl_lock held or before
3074 * registration of the net device. Returns 0 on success, or a
3075 * negative error code. If called before registration, it always
3076 * succeeds.
3077 */
3078int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3079{
3080 int rc;
3081
3082 if (rxq < 1 || rxq > dev->num_rx_queues)
3083 return -EINVAL;
3084
3085 if (dev->reg_state == NETREG_REGISTERED) {
3086 ASSERT_RTNL();
3087
3088 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3089 rxq);
3090 if (rc)
3091 return rc;
3092 }
3093
3094 dev->real_num_rx_queues = rxq;
3095 return 0;
3096}
3097EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3098#endif
3099
3100/**
3101 * netif_get_num_default_rss_queues - default number of RSS queues
3102 *
3103 * This routine should set an upper limit on the number of RSS queues
3104 * used by default by multiqueue devices.
3105 */
3106int netif_get_num_default_rss_queues(void)
3107{
3108 return is_kdump_kernel() ?
3109 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3110}
3111EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112
3113static void __netif_reschedule(struct Qdisc *q)
3114{
3115 struct softnet_data *sd;
3116 unsigned long flags;
3117
3118 local_irq_save(flags);
3119 sd = this_cpu_ptr(&softnet_data);
3120 q->next_sched = NULL;
3121 *sd->output_queue_tailp = q;
3122 sd->output_queue_tailp = &q->next_sched;
3123 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 local_irq_restore(flags);
3125}
3126
3127void __netif_schedule(struct Qdisc *q)
3128{
3129 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3130 __netif_reschedule(q);
3131}
3132EXPORT_SYMBOL(__netif_schedule);
3133
3134struct dev_kfree_skb_cb {
3135 enum skb_free_reason reason;
3136};
3137
3138static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3139{
3140 return (struct dev_kfree_skb_cb *)skb->cb;
3141}
3142
3143void netif_schedule_queue(struct netdev_queue *txq)
3144{
3145 rcu_read_lock();
3146 if (!netif_xmit_stopped(txq)) {
3147 struct Qdisc *q = rcu_dereference(txq->qdisc);
3148
3149 __netif_schedule(q);
3150 }
3151 rcu_read_unlock();
3152}
3153EXPORT_SYMBOL(netif_schedule_queue);
3154
3155void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156{
3157 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3158 struct Qdisc *q;
3159
3160 rcu_read_lock();
3161 q = rcu_dereference(dev_queue->qdisc);
3162 __netif_schedule(q);
3163 rcu_read_unlock();
3164 }
3165}
3166EXPORT_SYMBOL(netif_tx_wake_queue);
3167
3168void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3169{
3170 unsigned long flags;
3171
3172 if (unlikely(!skb))
3173 return;
3174
3175 if (likely(refcount_read(&skb->users) == 1)) {
3176 smp_rmb();
3177 refcount_set(&skb->users, 0);
3178 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3179 return;
3180 }
3181 get_kfree_skb_cb(skb)->reason = reason;
3182 local_irq_save(flags);
3183 skb->next = __this_cpu_read(softnet_data.completion_queue);
3184 __this_cpu_write(softnet_data.completion_queue, skb);
3185 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3186 local_irq_restore(flags);
3187}
3188EXPORT_SYMBOL(__dev_kfree_skb_irq);
3189
3190void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3191{
3192 if (in_irq() || irqs_disabled())
3193 __dev_kfree_skb_irq(skb, reason);
3194 else
3195 dev_kfree_skb(skb);
3196}
3197EXPORT_SYMBOL(__dev_kfree_skb_any);
3198
3199
3200/**
3201 * netif_device_detach - mark device as removed
3202 * @dev: network device
3203 *
3204 * Mark device as removed from system and therefore no longer available.
3205 */
3206void netif_device_detach(struct net_device *dev)
3207{
3208 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3209 netif_running(dev)) {
3210 netif_tx_stop_all_queues(dev);
3211 }
3212}
3213EXPORT_SYMBOL(netif_device_detach);
3214
3215/**
3216 * netif_device_attach - mark device as attached
3217 * @dev: network device
3218 *
3219 * Mark device as attached from system and restart if needed.
3220 */
3221void netif_device_attach(struct net_device *dev)
3222{
3223 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3224 netif_running(dev)) {
3225 netif_tx_wake_all_queues(dev);
3226 __netdev_watchdog_up(dev);
3227 }
3228}
3229EXPORT_SYMBOL(netif_device_attach);
3230
3231/*
3232 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3233 * to be used as a distribution range.
3234 */
3235static u16 skb_tx_hash(const struct net_device *dev,
3236 const struct net_device *sb_dev,
3237 struct sk_buff *skb)
3238{
3239 u32 hash;
3240 u16 qoffset = 0;
3241 u16 qcount = dev->real_num_tx_queues;
3242
3243 if (dev->num_tc) {
3244 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245
3246 qoffset = sb_dev->tc_to_txq[tc].offset;
3247 qcount = sb_dev->tc_to_txq[tc].count;
3248 }
3249
3250 if (skb_rx_queue_recorded(skb)) {
3251 hash = skb_get_rx_queue(skb);
3252 if (hash >= qoffset)
3253 hash -= qoffset;
3254 while (unlikely(hash >= qcount))
3255 hash -= qcount;
3256 return hash + qoffset;
3257 }
3258
3259 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3260}
3261
3262static void skb_warn_bad_offload(const struct sk_buff *skb)
3263{
3264 static const netdev_features_t null_features;
3265 struct net_device *dev = skb->dev;
3266 const char *name = "";
3267
3268 if (!net_ratelimit())
3269 return;
3270
3271 if (dev) {
3272 if (dev->dev.parent)
3273 name = dev_driver_string(dev->dev.parent);
3274 else
3275 name = netdev_name(dev);
3276 }
3277 skb_dump(KERN_WARNING, skb, false);
3278 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3279 name, dev ? &dev->features : &null_features,
3280 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3281}
3282
3283/*
3284 * Invalidate hardware checksum when packet is to be mangled, and
3285 * complete checksum manually on outgoing path.
3286 */
3287int skb_checksum_help(struct sk_buff *skb)
3288{
3289 __wsum csum;
3290 int ret = 0, offset;
3291
3292 if (skb->ip_summed == CHECKSUM_COMPLETE)
3293 goto out_set_summed;
3294
3295 if (unlikely(skb_is_gso(skb))) {
3296 skb_warn_bad_offload(skb);
3297 return -EINVAL;
3298 }
3299
3300 /* Before computing a checksum, we should make sure no frag could
3301 * be modified by an external entity : checksum could be wrong.
3302 */
3303 if (skb_has_shared_frag(skb)) {
3304 ret = __skb_linearize(skb);
3305 if (ret)
3306 goto out;
3307 }
3308
3309 offset = skb_checksum_start_offset(skb);
3310 BUG_ON(offset >= skb_headlen(skb));
3311 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312
3313 offset += skb->csum_offset;
3314 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315
3316 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3317 if (ret)
3318 goto out;
3319
3320 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3321out_set_summed:
3322 skb->ip_summed = CHECKSUM_NONE;
3323out:
3324 return ret;
3325}
3326EXPORT_SYMBOL(skb_checksum_help);
3327
3328int skb_crc32c_csum_help(struct sk_buff *skb)
3329{
3330 __le32 crc32c_csum;
3331 int ret = 0, offset, start;
3332
3333 if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 goto out;
3335
3336 if (unlikely(skb_is_gso(skb)))
3337 goto out;
3338
3339 /* Before computing a checksum, we should make sure no frag could
3340 * be modified by an external entity : checksum could be wrong.
3341 */
3342 if (unlikely(skb_has_shared_frag(skb))) {
3343 ret = __skb_linearize(skb);
3344 if (ret)
3345 goto out;
3346 }
3347 start = skb_checksum_start_offset(skb);
3348 offset = start + offsetof(struct sctphdr, checksum);
3349 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3350 ret = -EINVAL;
3351 goto out;
3352 }
3353
3354 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3355 if (ret)
3356 goto out;
3357
3358 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3359 skb->len - start, ~(__u32)0,
3360 crc32c_csum_stub));
3361 *(__le32 *)(skb->data + offset) = crc32c_csum;
3362 skb->ip_summed = CHECKSUM_NONE;
3363 skb->csum_not_inet = 0;
3364out:
3365 return ret;
3366}
3367
3368__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3369{
3370 __be16 type = skb->protocol;
3371
3372 /* Tunnel gso handlers can set protocol to ethernet. */
3373 if (type == htons(ETH_P_TEB)) {
3374 struct ethhdr *eth;
3375
3376 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3377 return 0;
3378
3379 eth = (struct ethhdr *)skb->data;
3380 type = eth->h_proto;
3381 }
3382
3383 return __vlan_get_protocol(skb, type, depth);
3384}
3385
3386/**
3387 * skb_mac_gso_segment - mac layer segmentation handler.
3388 * @skb: buffer to segment
3389 * @features: features for the output path (see dev->features)
3390 */
3391struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3392 netdev_features_t features)
3393{
3394 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3395 struct packet_offload *ptype;
3396 int vlan_depth = skb->mac_len;
3397 __be16 type = skb_network_protocol(skb, &vlan_depth);
3398
3399 if (unlikely(!type))
3400 return ERR_PTR(-EINVAL);
3401
3402 __skb_pull(skb, vlan_depth);
3403
3404 rcu_read_lock();
3405 list_for_each_entry_rcu(ptype, &offload_base, list) {
3406 if (ptype->type == type && ptype->callbacks.gso_segment) {
3407 segs = ptype->callbacks.gso_segment(skb, features);
3408 break;
3409 }
3410 }
3411 rcu_read_unlock();
3412
3413 __skb_push(skb, skb->data - skb_mac_header(skb));
3414
3415 return segs;
3416}
3417EXPORT_SYMBOL(skb_mac_gso_segment);
3418
3419
3420/* openvswitch calls this on rx path, so we need a different check.
3421 */
3422static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3423{
3424 if (tx_path)
3425 return skb->ip_summed != CHECKSUM_PARTIAL &&
3426 skb->ip_summed != CHECKSUM_UNNECESSARY;
3427
3428 return skb->ip_summed == CHECKSUM_NONE;
3429}
3430
3431/**
3432 * __skb_gso_segment - Perform segmentation on skb.
3433 * @skb: buffer to segment
3434 * @features: features for the output path (see dev->features)
3435 * @tx_path: whether it is called in TX path
3436 *
3437 * This function segments the given skb and returns a list of segments.
3438 *
3439 * It may return NULL if the skb requires no segmentation. This is
3440 * only possible when GSO is used for verifying header integrity.
3441 *
3442 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3443 */
3444struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3445 netdev_features_t features, bool tx_path)
3446{
3447 struct sk_buff *segs;
3448
3449 if (unlikely(skb_needs_check(skb, tx_path))) {
3450 int err;
3451
3452 /* We're going to init ->check field in TCP or UDP header */
3453 err = skb_cow_head(skb, 0);
3454 if (err < 0)
3455 return ERR_PTR(err);
3456 }
3457
3458 /* Only report GSO partial support if it will enable us to
3459 * support segmentation on this frame without needing additional
3460 * work.
3461 */
3462 if (features & NETIF_F_GSO_PARTIAL) {
3463 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3464 struct net_device *dev = skb->dev;
3465
3466 partial_features |= dev->features & dev->gso_partial_features;
3467 if (!skb_gso_ok(skb, features | partial_features))
3468 features &= ~NETIF_F_GSO_PARTIAL;
3469 }
3470
3471 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3472 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473
3474 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3475 SKB_GSO_CB(skb)->encap_level = 0;
3476
3477 skb_reset_mac_header(skb);
3478 skb_reset_mac_len(skb);
3479
3480 segs = skb_mac_gso_segment(skb, features);
3481
3482 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3483 skb_warn_bad_offload(skb);
3484
3485 return segs;
3486}
3487EXPORT_SYMBOL(__skb_gso_segment);
3488
3489/* Take action when hardware reception checksum errors are detected. */
3490#ifdef CONFIG_BUG
3491static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492{
3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 skb_dump(KERN_ERR, skb, true);
3495 dump_stack();
3496}
3497
3498void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3499{
3500 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3501}
3502EXPORT_SYMBOL(netdev_rx_csum_fault);
3503#endif
3504
3505/* XXX: check that highmem exists at all on the given machine. */
3506static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3507{
3508#ifdef CONFIG_HIGHMEM
3509 int i;
3510
3511 if (!(dev->features & NETIF_F_HIGHDMA)) {
3512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3514
3515 if (PageHighMem(skb_frag_page(frag)))
3516 return 1;
3517 }
3518 }
3519#endif
3520 return 0;
3521}
3522
3523/* If MPLS offload request, verify we are testing hardware MPLS features
3524 * instead of standard features for the netdev.
3525 */
3526#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3527static netdev_features_t net_mpls_features(struct sk_buff *skb,
3528 netdev_features_t features,
3529 __be16 type)
3530{
3531 if (eth_p_mpls(type))
3532 features &= skb->dev->mpls_features;
3533
3534 return features;
3535}
3536#else
3537static netdev_features_t net_mpls_features(struct sk_buff *skb,
3538 netdev_features_t features,
3539 __be16 type)
3540{
3541 return features;
3542}
3543#endif
3544
3545static netdev_features_t harmonize_features(struct sk_buff *skb,
3546 netdev_features_t features)
3547{
3548 __be16 type;
3549
3550 type = skb_network_protocol(skb, NULL);
3551 features = net_mpls_features(skb, features, type);
3552
3553 if (skb->ip_summed != CHECKSUM_NONE &&
3554 !can_checksum_protocol(features, type)) {
3555 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3556 }
3557 if (illegal_highdma(skb->dev, skb))
3558 features &= ~NETIF_F_SG;
3559
3560 return features;
3561}
3562
3563netdev_features_t passthru_features_check(struct sk_buff *skb,
3564 struct net_device *dev,
3565 netdev_features_t features)
3566{
3567 return features;
3568}
3569EXPORT_SYMBOL(passthru_features_check);
3570
3571static netdev_features_t dflt_features_check(struct sk_buff *skb,
3572 struct net_device *dev,
3573 netdev_features_t features)
3574{
3575 return vlan_features_check(skb, features);
3576}
3577
3578static netdev_features_t gso_features_check(const struct sk_buff *skb,
3579 struct net_device *dev,
3580 netdev_features_t features)
3581{
3582 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3583
3584 if (gso_segs > dev->gso_max_segs)
3585 return features & ~NETIF_F_GSO_MASK;
3586
3587 if (!skb_shinfo(skb)->gso_type) {
3588 skb_warn_bad_offload(skb);
3589 return features & ~NETIF_F_GSO_MASK;
3590 }
3591
3592 /* Support for GSO partial features requires software
3593 * intervention before we can actually process the packets
3594 * so we need to strip support for any partial features now
3595 * and we can pull them back in after we have partially
3596 * segmented the frame.
3597 */
3598 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3599 features &= ~dev->gso_partial_features;
3600
3601 /* Make sure to clear the IPv4 ID mangling feature if the
3602 * IPv4 header has the potential to be fragmented.
3603 */
3604 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3605 struct iphdr *iph = skb->encapsulation ?
3606 inner_ip_hdr(skb) : ip_hdr(skb);
3607
3608 if (!(iph->frag_off & htons(IP_DF)))
3609 features &= ~NETIF_F_TSO_MANGLEID;
3610 }
3611
3612 return features;
3613}
3614
3615netdev_features_t netif_skb_features(struct sk_buff *skb)
3616{
3617 struct net_device *dev = skb->dev;
3618 netdev_features_t features = dev->features;
3619
3620 if (skb_is_gso(skb))
3621 features = gso_features_check(skb, dev, features);
3622
3623 /* If encapsulation offload request, verify we are testing
3624 * hardware encapsulation features instead of standard
3625 * features for the netdev
3626 */
3627 if (skb->encapsulation)
3628 features &= dev->hw_enc_features;
3629
3630 if (skb_vlan_tagged(skb))
3631 features = netdev_intersect_features(features,
3632 dev->vlan_features |
3633 NETIF_F_HW_VLAN_CTAG_TX |
3634 NETIF_F_HW_VLAN_STAG_TX);
3635
3636 if (dev->netdev_ops->ndo_features_check)
3637 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3638 features);
3639 else
3640 features &= dflt_features_check(skb, dev, features);
3641
3642 return harmonize_features(skb, features);
3643}
3644EXPORT_SYMBOL(netif_skb_features);
3645
3646static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3647 struct netdev_queue *txq, bool more)
3648{
3649 unsigned int len;
3650 int rc;
3651
3652 if (dev_nit_active(dev))
3653 dev_queue_xmit_nit(skb, dev);
3654
3655 len = skb->len;
3656 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3657 trace_net_dev_start_xmit(skb, dev);
3658 rc = netdev_start_xmit(skb, dev, txq, more);
3659 trace_net_dev_xmit(skb, rc, dev, len);
3660
3661 return rc;
3662}
3663
3664struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3665 struct netdev_queue *txq, int *ret)
3666{
3667 struct sk_buff *skb = first;
3668 int rc = NETDEV_TX_OK;
3669
3670 while (skb) {
3671 struct sk_buff *next = skb->next;
3672
3673 skb_mark_not_on_list(skb);
3674 rc = xmit_one(skb, dev, txq, next != NULL);
3675 if (unlikely(!dev_xmit_complete(rc))) {
3676 skb->next = next;
3677 goto out;
3678 }
3679
3680 skb = next;
3681 if (netif_tx_queue_stopped(txq) && skb) {
3682 rc = NETDEV_TX_BUSY;
3683 break;
3684 }
3685 }
3686
3687out:
3688 *ret = rc;
3689 return skb;
3690}
3691
3692static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3693 netdev_features_t features)
3694{
3695 if (skb_vlan_tag_present(skb) &&
3696 !vlan_hw_offload_capable(features, skb->vlan_proto))
3697 skb = __vlan_hwaccel_push_inside(skb);
3698 return skb;
3699}
3700
3701int skb_csum_hwoffload_help(struct sk_buff *skb,
3702 const netdev_features_t features)
3703{
3704 if (unlikely(skb_csum_is_sctp(skb)))
3705 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3706 skb_crc32c_csum_help(skb);
3707
3708 if (features & NETIF_F_HW_CSUM)
3709 return 0;
3710
3711 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3712 switch (skb->csum_offset) {
3713 case offsetof(struct tcphdr, check):
3714 case offsetof(struct udphdr, check):
3715 return 0;
3716 }
3717 }
3718
3719 return skb_checksum_help(skb);
3720}
3721EXPORT_SYMBOL(skb_csum_hwoffload_help);
3722
3723static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3724{
3725 netdev_features_t features;
3726
3727 features = netif_skb_features(skb);
3728 skb = validate_xmit_vlan(skb, features);
3729 if (unlikely(!skb))
3730 goto out_null;
3731
3732 skb = sk_validate_xmit_skb(skb, dev);
3733 if (unlikely(!skb))
3734 goto out_null;
3735
3736 if (netif_needs_gso(skb, features)) {
3737 struct sk_buff *segs;
3738
3739 segs = skb_gso_segment(skb, features);
3740 if (IS_ERR(segs)) {
3741 goto out_kfree_skb;
3742 } else if (segs) {
3743 consume_skb(skb);
3744 skb = segs;
3745 }
3746 } else {
3747 if (skb_needs_linearize(skb, features) &&
3748 __skb_linearize(skb))
3749 goto out_kfree_skb;
3750
3751 /* If packet is not checksummed and device does not
3752 * support checksumming for this protocol, complete
3753 * checksumming here.
3754 */
3755 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756 if (skb->encapsulation)
3757 skb_set_inner_transport_header(skb,
3758 skb_checksum_start_offset(skb));
3759 else
3760 skb_set_transport_header(skb,
3761 skb_checksum_start_offset(skb));
3762 if (skb_csum_hwoffload_help(skb, features))
3763 goto out_kfree_skb;
3764 }
3765 }
3766
3767 skb = validate_xmit_xfrm(skb, features, again);
3768
3769 return skb;
3770
3771out_kfree_skb:
3772 kfree_skb(skb);
3773out_null:
3774 atomic_long_inc(&dev->tx_dropped);
3775 return NULL;
3776}
3777
3778struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3779{
3780 struct sk_buff *next, *head = NULL, *tail;
3781
3782 for (; skb != NULL; skb = next) {
3783 next = skb->next;
3784 skb_mark_not_on_list(skb);
3785
3786 /* in case skb wont be segmented, point to itself */
3787 skb->prev = skb;
3788
3789 skb = validate_xmit_skb(skb, dev, again);
3790 if (!skb)
3791 continue;
3792
3793 if (!head)
3794 head = skb;
3795 else
3796 tail->next = skb;
3797 /* If skb was segmented, skb->prev points to
3798 * the last segment. If not, it still contains skb.
3799 */
3800 tail = skb->prev;
3801 }
3802 return head;
3803}
3804EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3805
3806static void qdisc_pkt_len_init(struct sk_buff *skb)
3807{
3808 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3809
3810 qdisc_skb_cb(skb)->pkt_len = skb->len;
3811
3812 /* To get more precise estimation of bytes sent on wire,
3813 * we add to pkt_len the headers size of all segments
3814 */
3815 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3816 unsigned int hdr_len;
3817 u16 gso_segs = shinfo->gso_segs;
3818
3819 /* mac layer + network layer */
3820 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3821
3822 /* + transport layer */
3823 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3824 const struct tcphdr *th;
3825 struct tcphdr _tcphdr;
3826
3827 th = skb_header_pointer(skb, skb_transport_offset(skb),
3828 sizeof(_tcphdr), &_tcphdr);
3829 if (likely(th))
3830 hdr_len += __tcp_hdrlen(th);
3831 } else {
3832 struct udphdr _udphdr;
3833
3834 if (skb_header_pointer(skb, skb_transport_offset(skb),
3835 sizeof(_udphdr), &_udphdr))
3836 hdr_len += sizeof(struct udphdr);
3837 }
3838
3839 if (shinfo->gso_type & SKB_GSO_DODGY)
3840 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3841 shinfo->gso_size);
3842
3843 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3844 }
3845}
3846
3847static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3848 struct net_device *dev,
3849 struct netdev_queue *txq)
3850{
3851 spinlock_t *root_lock = qdisc_lock(q);
3852 struct sk_buff *to_free = NULL;
3853 bool contended;
3854 int rc;
3855
3856 qdisc_calculate_pkt_len(skb, q);
3857
3858 if (q->flags & TCQ_F_NOLOCK) {
3859 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3860 qdisc_run_begin(q)) {
3861 /* Retest nolock_qdisc_is_empty() within the protection
3862 * of q->seqlock to protect from racing with requeuing.
3863 */
3864 if (unlikely(!nolock_qdisc_is_empty(q))) {
3865 rc = q->enqueue(skb, q, &to_free) &
3866 NET_XMIT_MASK;
3867 __qdisc_run(q);
3868 qdisc_run_end(q);
3869
3870 goto no_lock_out;
3871 }
3872
3873 qdisc_bstats_cpu_update(q, skb);
3874 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875 !nolock_qdisc_is_empty(q))
3876 __qdisc_run(q);
3877
3878 qdisc_run_end(q);
3879 return NET_XMIT_SUCCESS;
3880 }
3881
3882 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3883 qdisc_run(q);
3884
3885no_lock_out:
3886 if (unlikely(to_free))
3887 kfree_skb_list(to_free);
3888 return rc;
3889 }
3890
3891 /*
3892 * Heuristic to force contended enqueues to serialize on a
3893 * separate lock before trying to get qdisc main lock.
3894 * This permits qdisc->running owner to get the lock more
3895 * often and dequeue packets faster.
3896 */
3897 contended = qdisc_is_running(q);
3898 if (unlikely(contended))
3899 spin_lock(&q->busylock);
3900
3901 spin_lock(root_lock);
3902 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3903 __qdisc_drop(skb, &to_free);
3904 rc = NET_XMIT_DROP;
3905 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3906 qdisc_run_begin(q)) {
3907 /*
3908 * This is a work-conserving queue; there are no old skbs
3909 * waiting to be sent out; and the qdisc is not running -
3910 * xmit the skb directly.
3911 */
3912
3913 qdisc_bstats_update(q, skb);
3914
3915 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3916 if (unlikely(contended)) {
3917 spin_unlock(&q->busylock);
3918 contended = false;
3919 }
3920 __qdisc_run(q);
3921 }
3922
3923 qdisc_run_end(q);
3924 rc = NET_XMIT_SUCCESS;
3925 } else {
3926 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3927 if (qdisc_run_begin(q)) {
3928 if (unlikely(contended)) {
3929 spin_unlock(&q->busylock);
3930 contended = false;
3931 }
3932 __qdisc_run(q);
3933 qdisc_run_end(q);
3934 }
3935 }
3936 spin_unlock(root_lock);
3937 if (unlikely(to_free))
3938 kfree_skb_list(to_free);
3939 if (unlikely(contended))
3940 spin_unlock(&q->busylock);
3941 return rc;
3942}
3943
3944#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3945static void skb_update_prio(struct sk_buff *skb)
3946{
3947 const struct netprio_map *map;
3948 const struct sock *sk;
3949 unsigned int prioidx;
3950
3951 if (skb->priority)
3952 return;
3953 map = rcu_dereference_bh(skb->dev->priomap);
3954 if (!map)
3955 return;
3956 sk = skb_to_full_sk(skb);
3957 if (!sk)
3958 return;
3959
3960 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3961
3962 if (prioidx < map->priomap_len)
3963 skb->priority = map->priomap[prioidx];
3964}
3965#else
3966#define skb_update_prio(skb)
3967#endif
3968
3969/**
3970 * dev_loopback_xmit - loop back @skb
3971 * @net: network namespace this loopback is happening in
3972 * @sk: sk needed to be a netfilter okfn
3973 * @skb: buffer to transmit
3974 */
3975int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3976{
3977 skb_reset_mac_header(skb);
3978 __skb_pull(skb, skb_network_offset(skb));
3979 skb->pkt_type = PACKET_LOOPBACK;
3980 skb->ip_summed = CHECKSUM_UNNECESSARY;
3981 WARN_ON(!skb_dst(skb));
3982 skb_dst_force(skb);
3983 netif_rx_ni(skb);
3984 return 0;
3985}
3986EXPORT_SYMBOL(dev_loopback_xmit);
3987
3988#ifdef CONFIG_NET_EGRESS
3989static struct sk_buff *
3990sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3991{
3992 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3993 struct tcf_result cl_res;
3994
3995 if (!miniq)
3996 return skb;
3997
3998 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3999 qdisc_skb_cb(skb)->mru = 0;
4000 qdisc_skb_cb(skb)->post_ct = false;
4001 mini_qdisc_bstats_cpu_update(miniq, skb);
4002
4003 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4004 case TC_ACT_OK:
4005 case TC_ACT_RECLASSIFY:
4006 skb->tc_index = TC_H_MIN(cl_res.classid);
4007 break;
4008 case TC_ACT_SHOT:
4009 mini_qdisc_qstats_cpu_drop(miniq);
4010 *ret = NET_XMIT_DROP;
4011 kfree_skb(skb);
4012 return NULL;
4013 case TC_ACT_STOLEN:
4014 case TC_ACT_QUEUED:
4015 case TC_ACT_TRAP:
4016 *ret = NET_XMIT_SUCCESS;
4017 consume_skb(skb);
4018 return NULL;
4019 case TC_ACT_REDIRECT:
4020 /* No need to push/pop skb's mac_header here on egress! */
4021 skb_do_redirect(skb);
4022 *ret = NET_XMIT_SUCCESS;
4023 return NULL;
4024 default:
4025 break;
4026 }
4027
4028 return skb;
4029}
4030#endif /* CONFIG_NET_EGRESS */
4031
4032#ifdef CONFIG_XPS
4033static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4034 struct xps_dev_maps *dev_maps, unsigned int tci)
4035{
4036 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4037 struct xps_map *map;
4038 int queue_index = -1;
4039
4040 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4041 return queue_index;
4042
4043 tci *= dev_maps->num_tc;
4044 tci += tc;
4045
4046 map = rcu_dereference(dev_maps->attr_map[tci]);
4047 if (map) {
4048 if (map->len == 1)
4049 queue_index = map->queues[0];
4050 else
4051 queue_index = map->queues[reciprocal_scale(
4052 skb_get_hash(skb), map->len)];
4053 if (unlikely(queue_index >= dev->real_num_tx_queues))
4054 queue_index = -1;
4055 }
4056 return queue_index;
4057}
4058#endif
4059
4060static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4061 struct sk_buff *skb)
4062{
4063#ifdef CONFIG_XPS
4064 struct xps_dev_maps *dev_maps;
4065 struct sock *sk = skb->sk;
4066 int queue_index = -1;
4067
4068 if (!static_key_false(&xps_needed))
4069 return -1;
4070
4071 rcu_read_lock();
4072 if (!static_key_false(&xps_rxqs_needed))
4073 goto get_cpus_map;
4074
4075 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4076 if (dev_maps) {
4077 int tci = sk_rx_queue_get(sk);
4078
4079 if (tci >= 0)
4080 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4081 tci);
4082 }
4083
4084get_cpus_map:
4085 if (queue_index < 0) {
4086 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4087 if (dev_maps) {
4088 unsigned int tci = skb->sender_cpu - 1;
4089
4090 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4091 tci);
4092 }
4093 }
4094 rcu_read_unlock();
4095
4096 return queue_index;
4097#else
4098 return -1;
4099#endif
4100}
4101
4102u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4103 struct net_device *sb_dev)
4104{
4105 return 0;
4106}
4107EXPORT_SYMBOL(dev_pick_tx_zero);
4108
4109u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4110 struct net_device *sb_dev)
4111{
4112 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4113}
4114EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4115
4116u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4117 struct net_device *sb_dev)
4118{
4119 struct sock *sk = skb->sk;
4120 int queue_index = sk_tx_queue_get(sk);
4121
4122 sb_dev = sb_dev ? : dev;
4123
4124 if (queue_index < 0 || skb->ooo_okay ||
4125 queue_index >= dev->real_num_tx_queues) {
4126 int new_index = get_xps_queue(dev, sb_dev, skb);
4127
4128 if (new_index < 0)
4129 new_index = skb_tx_hash(dev, sb_dev, skb);
4130
4131 if (queue_index != new_index && sk &&
4132 sk_fullsock(sk) &&
4133 rcu_access_pointer(sk->sk_dst_cache))
4134 sk_tx_queue_set(sk, new_index);
4135
4136 queue_index = new_index;
4137 }
4138
4139 return queue_index;
4140}
4141EXPORT_SYMBOL(netdev_pick_tx);
4142
4143struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4144 struct sk_buff *skb,
4145 struct net_device *sb_dev)
4146{
4147 int queue_index = 0;
4148
4149#ifdef CONFIG_XPS
4150 u32 sender_cpu = skb->sender_cpu - 1;
4151
4152 if (sender_cpu >= (u32)NR_CPUS)
4153 skb->sender_cpu = raw_smp_processor_id() + 1;
4154#endif
4155
4156 if (dev->real_num_tx_queues != 1) {
4157 const struct net_device_ops *ops = dev->netdev_ops;
4158
4159 if (ops->ndo_select_queue)
4160 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4161 else
4162 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4163
4164 queue_index = netdev_cap_txqueue(dev, queue_index);
4165 }
4166
4167 skb_set_queue_mapping(skb, queue_index);
4168 return netdev_get_tx_queue(dev, queue_index);
4169}
4170
4171/**
4172 * __dev_queue_xmit - transmit a buffer
4173 * @skb: buffer to transmit
4174 * @sb_dev: suboordinate device used for L2 forwarding offload
4175 *
4176 * Queue a buffer for transmission to a network device. The caller must
4177 * have set the device and priority and built the buffer before calling
4178 * this function. The function can be called from an interrupt.
4179 *
4180 * A negative errno code is returned on a failure. A success does not
4181 * guarantee the frame will be transmitted as it may be dropped due
4182 * to congestion or traffic shaping.
4183 *
4184 * -----------------------------------------------------------------------------------
4185 * I notice this method can also return errors from the queue disciplines,
4186 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4187 * be positive.
4188 *
4189 * Regardless of the return value, the skb is consumed, so it is currently
4190 * difficult to retry a send to this method. (You can bump the ref count
4191 * before sending to hold a reference for retry if you are careful.)
4192 *
4193 * When calling this method, interrupts MUST be enabled. This is because
4194 * the BH enable code must have IRQs enabled so that it will not deadlock.
4195 * --BLG
4196 */
4197static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4198{
4199 struct net_device *dev = skb->dev;
4200 struct netdev_queue *txq;
4201 struct Qdisc *q;
4202 int rc = -ENOMEM;
4203 bool again = false;
4204
4205 skb_reset_mac_header(skb);
4206
4207 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4208 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4209
4210 /* Disable soft irqs for various locks below. Also
4211 * stops preemption for RCU.
4212 */
4213 rcu_read_lock_bh();
4214
4215 skb_update_prio(skb);
4216
4217 qdisc_pkt_len_init(skb);
4218#ifdef CONFIG_NET_CLS_ACT
4219 skb->tc_at_ingress = 0;
4220# ifdef CONFIG_NET_EGRESS
4221 if (static_branch_unlikely(&egress_needed_key)) {
4222 skb = sch_handle_egress(skb, &rc, dev);
4223 if (!skb)
4224 goto out;
4225 }
4226# endif
4227#endif
4228 /* If device/qdisc don't need skb->dst, release it right now while
4229 * its hot in this cpu cache.
4230 */
4231 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4232 skb_dst_drop(skb);
4233 else
4234 skb_dst_force(skb);
4235
4236 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4237 q = rcu_dereference_bh(txq->qdisc);
4238
4239 trace_net_dev_queue(skb);
4240 if (q->enqueue) {
4241 rc = __dev_xmit_skb(skb, q, dev, txq);
4242 goto out;
4243 }
4244
4245 /* The device has no queue. Common case for software devices:
4246 * loopback, all the sorts of tunnels...
4247
4248 * Really, it is unlikely that netif_tx_lock protection is necessary
4249 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4250 * counters.)
4251 * However, it is possible, that they rely on protection
4252 * made by us here.
4253
4254 * Check this and shot the lock. It is not prone from deadlocks.
4255 *Either shot noqueue qdisc, it is even simpler 8)
4256 */
4257 if (dev->flags & IFF_UP) {
4258 int cpu = smp_processor_id(); /* ok because BHs are off */
4259
4260 if (txq->xmit_lock_owner != cpu) {
4261 if (dev_xmit_recursion())
4262 goto recursion_alert;
4263
4264 skb = validate_xmit_skb(skb, dev, &again);
4265 if (!skb)
4266 goto out;
4267
4268 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4269 HARD_TX_LOCK(dev, txq, cpu);
4270
4271 if (!netif_xmit_stopped(txq)) {
4272 dev_xmit_recursion_inc();
4273 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4274 dev_xmit_recursion_dec();
4275 if (dev_xmit_complete(rc)) {
4276 HARD_TX_UNLOCK(dev, txq);
4277 goto out;
4278 }
4279 }
4280 HARD_TX_UNLOCK(dev, txq);
4281 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4282 dev->name);
4283 } else {
4284 /* Recursion is detected! It is possible,
4285 * unfortunately
4286 */
4287recursion_alert:
4288 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4289 dev->name);
4290 }
4291 }
4292
4293 rc = -ENETDOWN;
4294 rcu_read_unlock_bh();
4295
4296 atomic_long_inc(&dev->tx_dropped);
4297 kfree_skb_list(skb);
4298 return rc;
4299out:
4300 rcu_read_unlock_bh();
4301 return rc;
4302}
4303
4304int dev_queue_xmit(struct sk_buff *skb)
4305{
4306 return __dev_queue_xmit(skb, NULL);
4307}
4308EXPORT_SYMBOL(dev_queue_xmit);
4309
4310int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4311{
4312 return __dev_queue_xmit(skb, sb_dev);
4313}
4314EXPORT_SYMBOL(dev_queue_xmit_accel);
4315
4316int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4317{
4318 struct net_device *dev = skb->dev;
4319 struct sk_buff *orig_skb = skb;
4320 struct netdev_queue *txq;
4321 int ret = NETDEV_TX_BUSY;
4322 bool again = false;
4323
4324 if (unlikely(!netif_running(dev) ||
4325 !netif_carrier_ok(dev)))
4326 goto drop;
4327
4328 skb = validate_xmit_skb_list(skb, dev, &again);
4329 if (skb != orig_skb)
4330 goto drop;
4331
4332 skb_set_queue_mapping(skb, queue_id);
4333 txq = skb_get_tx_queue(dev, skb);
4334 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4335
4336 local_bh_disable();
4337
4338 dev_xmit_recursion_inc();
4339 HARD_TX_LOCK(dev, txq, smp_processor_id());
4340 if (!netif_xmit_frozen_or_drv_stopped(txq))
4341 ret = netdev_start_xmit(skb, dev, txq, false);
4342 HARD_TX_UNLOCK(dev, txq);
4343 dev_xmit_recursion_dec();
4344
4345 local_bh_enable();
4346 return ret;
4347drop:
4348 atomic_long_inc(&dev->tx_dropped);
4349 kfree_skb_list(skb);
4350 return NET_XMIT_DROP;
4351}
4352EXPORT_SYMBOL(__dev_direct_xmit);
4353
4354/*************************************************************************
4355 * Receiver routines
4356 *************************************************************************/
4357
4358int netdev_max_backlog __read_mostly = 1000;
4359EXPORT_SYMBOL(netdev_max_backlog);
4360
4361int netdev_tstamp_prequeue __read_mostly = 1;
4362int netdev_budget __read_mostly = 300;
4363/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4364unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4365int weight_p __read_mostly = 64; /* old backlog weight */
4366int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4367int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4368int dev_rx_weight __read_mostly = 64;
4369int dev_tx_weight __read_mostly = 64;
4370/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4371int gro_normal_batch __read_mostly = 8;
4372
4373/* Called with irq disabled */
4374static inline void ____napi_schedule(struct softnet_data *sd,
4375 struct napi_struct *napi)
4376{
4377 struct task_struct *thread;
4378
4379 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4380 /* Paired with smp_mb__before_atomic() in
4381 * napi_enable()/dev_set_threaded().
4382 * Use READ_ONCE() to guarantee a complete
4383 * read on napi->thread. Only call
4384 * wake_up_process() when it's not NULL.
4385 */
4386 thread = READ_ONCE(napi->thread);
4387 if (thread) {
4388 /* Avoid doing set_bit() if the thread is in
4389 * INTERRUPTIBLE state, cause napi_thread_wait()
4390 * makes sure to proceed with napi polling
4391 * if the thread is explicitly woken from here.
4392 */
4393 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4394 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4395 wake_up_process(thread);
4396 return;
4397 }
4398 }
4399
4400 list_add_tail(&napi->poll_list, &sd->poll_list);
4401 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4402}
4403
4404#ifdef CONFIG_RPS
4405
4406/* One global table that all flow-based protocols share. */
4407struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4408EXPORT_SYMBOL(rps_sock_flow_table);
4409u32 rps_cpu_mask __read_mostly;
4410EXPORT_SYMBOL(rps_cpu_mask);
4411
4412struct static_key_false rps_needed __read_mostly;
4413EXPORT_SYMBOL(rps_needed);
4414struct static_key_false rfs_needed __read_mostly;
4415EXPORT_SYMBOL(rfs_needed);
4416
4417static struct rps_dev_flow *
4418set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4419 struct rps_dev_flow *rflow, u16 next_cpu)
4420{
4421 if (next_cpu < nr_cpu_ids) {
4422#ifdef CONFIG_RFS_ACCEL
4423 struct netdev_rx_queue *rxqueue;
4424 struct rps_dev_flow_table *flow_table;
4425 struct rps_dev_flow *old_rflow;
4426 u32 flow_id;
4427 u16 rxq_index;
4428 int rc;
4429
4430 /* Should we steer this flow to a different hardware queue? */
4431 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4432 !(dev->features & NETIF_F_NTUPLE))
4433 goto out;
4434 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4435 if (rxq_index == skb_get_rx_queue(skb))
4436 goto out;
4437
4438 rxqueue = dev->_rx + rxq_index;
4439 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440 if (!flow_table)
4441 goto out;
4442 flow_id = skb_get_hash(skb) & flow_table->mask;
4443 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4444 rxq_index, flow_id);
4445 if (rc < 0)
4446 goto out;
4447 old_rflow = rflow;
4448 rflow = &flow_table->flows[flow_id];
4449 rflow->filter = rc;
4450 if (old_rflow->filter == rflow->filter)
4451 old_rflow->filter = RPS_NO_FILTER;
4452 out:
4453#endif
4454 rflow->last_qtail =
4455 per_cpu(softnet_data, next_cpu).input_queue_head;
4456 }
4457
4458 rflow->cpu = next_cpu;
4459 return rflow;
4460}
4461
4462/*
4463 * get_rps_cpu is called from netif_receive_skb and returns the target
4464 * CPU from the RPS map of the receiving queue for a given skb.
4465 * rcu_read_lock must be held on entry.
4466 */
4467static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4468 struct rps_dev_flow **rflowp)
4469{
4470 const struct rps_sock_flow_table *sock_flow_table;
4471 struct netdev_rx_queue *rxqueue = dev->_rx;
4472 struct rps_dev_flow_table *flow_table;
4473 struct rps_map *map;
4474 int cpu = -1;
4475 u32 tcpu;
4476 u32 hash;
4477
4478 if (skb_rx_queue_recorded(skb)) {
4479 u16 index = skb_get_rx_queue(skb);
4480
4481 if (unlikely(index >= dev->real_num_rx_queues)) {
4482 WARN_ONCE(dev->real_num_rx_queues > 1,
4483 "%s received packet on queue %u, but number "
4484 "of RX queues is %u\n",
4485 dev->name, index, dev->real_num_rx_queues);
4486 goto done;
4487 }
4488 rxqueue += index;
4489 }
4490
4491 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4492
4493 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494 map = rcu_dereference(rxqueue->rps_map);
4495 if (!flow_table && !map)
4496 goto done;
4497
4498 skb_reset_network_header(skb);
4499 hash = skb_get_hash(skb);
4500 if (!hash)
4501 goto done;
4502
4503 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4504 if (flow_table && sock_flow_table) {
4505 struct rps_dev_flow *rflow;
4506 u32 next_cpu;
4507 u32 ident;
4508
4509 /* First check into global flow table if there is a match */
4510 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4511 if ((ident ^ hash) & ~rps_cpu_mask)
4512 goto try_rps;
4513
4514 next_cpu = ident & rps_cpu_mask;
4515
4516 /* OK, now we know there is a match,
4517 * we can look at the local (per receive queue) flow table
4518 */
4519 rflow = &flow_table->flows[hash & flow_table->mask];
4520 tcpu = rflow->cpu;
4521
4522 /*
4523 * If the desired CPU (where last recvmsg was done) is
4524 * different from current CPU (one in the rx-queue flow
4525 * table entry), switch if one of the following holds:
4526 * - Current CPU is unset (>= nr_cpu_ids).
4527 * - Current CPU is offline.
4528 * - The current CPU's queue tail has advanced beyond the
4529 * last packet that was enqueued using this table entry.
4530 * This guarantees that all previous packets for the flow
4531 * have been dequeued, thus preserving in order delivery.
4532 */
4533 if (unlikely(tcpu != next_cpu) &&
4534 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4535 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4536 rflow->last_qtail)) >= 0)) {
4537 tcpu = next_cpu;
4538 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4539 }
4540
4541 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4542 *rflowp = rflow;
4543 cpu = tcpu;
4544 goto done;
4545 }
4546 }
4547
4548try_rps:
4549
4550 if (map) {
4551 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4552 if (cpu_online(tcpu)) {
4553 cpu = tcpu;
4554 goto done;
4555 }
4556 }
4557
4558done:
4559 return cpu;
4560}
4561
4562#ifdef CONFIG_RFS_ACCEL
4563
4564/**
4565 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4566 * @dev: Device on which the filter was set
4567 * @rxq_index: RX queue index
4568 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4569 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4570 *
4571 * Drivers that implement ndo_rx_flow_steer() should periodically call
4572 * this function for each installed filter and remove the filters for
4573 * which it returns %true.
4574 */
4575bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4576 u32 flow_id, u16 filter_id)
4577{
4578 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4579 struct rps_dev_flow_table *flow_table;
4580 struct rps_dev_flow *rflow;
4581 bool expire = true;
4582 unsigned int cpu;
4583
4584 rcu_read_lock();
4585 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4586 if (flow_table && flow_id <= flow_table->mask) {
4587 rflow = &flow_table->flows[flow_id];
4588 cpu = READ_ONCE(rflow->cpu);
4589 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4590 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4591 rflow->last_qtail) <
4592 (int)(10 * flow_table->mask)))
4593 expire = false;
4594 }
4595 rcu_read_unlock();
4596 return expire;
4597}
4598EXPORT_SYMBOL(rps_may_expire_flow);
4599
4600#endif /* CONFIG_RFS_ACCEL */
4601
4602/* Called from hardirq (IPI) context */
4603static void rps_trigger_softirq(void *data)
4604{
4605 struct softnet_data *sd = data;
4606
4607 ____napi_schedule(sd, &sd->backlog);
4608 sd->received_rps++;
4609}
4610
4611#endif /* CONFIG_RPS */
4612
4613/*
4614 * Check if this softnet_data structure is another cpu one
4615 * If yes, queue it to our IPI list and return 1
4616 * If no, return 0
4617 */
4618static int rps_ipi_queued(struct softnet_data *sd)
4619{
4620#ifdef CONFIG_RPS
4621 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4622
4623 if (sd != mysd) {
4624 sd->rps_ipi_next = mysd->rps_ipi_list;
4625 mysd->rps_ipi_list = sd;
4626
4627 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4628 return 1;
4629 }
4630#endif /* CONFIG_RPS */
4631 return 0;
4632}
4633
4634#ifdef CONFIG_NET_FLOW_LIMIT
4635int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4636#endif
4637
4638static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4639{
4640#ifdef CONFIG_NET_FLOW_LIMIT
4641 struct sd_flow_limit *fl;
4642 struct softnet_data *sd;
4643 unsigned int old_flow, new_flow;
4644
4645 if (qlen < (netdev_max_backlog >> 1))
4646 return false;
4647
4648 sd = this_cpu_ptr(&softnet_data);
4649
4650 rcu_read_lock();
4651 fl = rcu_dereference(sd->flow_limit);
4652 if (fl) {
4653 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4654 old_flow = fl->history[fl->history_head];
4655 fl->history[fl->history_head] = new_flow;
4656
4657 fl->history_head++;
4658 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4659
4660 if (likely(fl->buckets[old_flow]))
4661 fl->buckets[old_flow]--;
4662
4663 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4664 fl->count++;
4665 rcu_read_unlock();
4666 return true;
4667 }
4668 }
4669 rcu_read_unlock();
4670#endif
4671 return false;
4672}
4673
4674/*
4675 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4676 * queue (may be a remote CPU queue).
4677 */
4678static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4679 unsigned int *qtail)
4680{
4681 struct softnet_data *sd;
4682 unsigned long flags;
4683 unsigned int qlen;
4684
4685 sd = &per_cpu(softnet_data, cpu);
4686
4687 local_irq_save(flags);
4688
4689 rps_lock(sd);
4690 if (!netif_running(skb->dev))
4691 goto drop;
4692 qlen = skb_queue_len(&sd->input_pkt_queue);
4693 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4694 if (qlen) {
4695enqueue:
4696 __skb_queue_tail(&sd->input_pkt_queue, skb);
4697 input_queue_tail_incr_save(sd, qtail);
4698 rps_unlock(sd);
4699 local_irq_restore(flags);
4700 return NET_RX_SUCCESS;
4701 }
4702
4703 /* Schedule NAPI for backlog device
4704 * We can use non atomic operation since we own the queue lock
4705 */
4706 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4707 if (!rps_ipi_queued(sd))
4708 ____napi_schedule(sd, &sd->backlog);
4709 }
4710 goto enqueue;
4711 }
4712
4713drop:
4714 sd->dropped++;
4715 rps_unlock(sd);
4716
4717 local_irq_restore(flags);
4718
4719 atomic_long_inc(&skb->dev->rx_dropped);
4720 kfree_skb(skb);
4721 return NET_RX_DROP;
4722}
4723
4724static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4725{
4726 struct net_device *dev = skb->dev;
4727 struct netdev_rx_queue *rxqueue;
4728
4729 rxqueue = dev->_rx;
4730
4731 if (skb_rx_queue_recorded(skb)) {
4732 u16 index = skb_get_rx_queue(skb);
4733
4734 if (unlikely(index >= dev->real_num_rx_queues)) {
4735 WARN_ONCE(dev->real_num_rx_queues > 1,
4736 "%s received packet on queue %u, but number "
4737 "of RX queues is %u\n",
4738 dev->name, index, dev->real_num_rx_queues);
4739
4740 return rxqueue; /* Return first rxqueue */
4741 }
4742 rxqueue += index;
4743 }
4744 return rxqueue;
4745}
4746
4747static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4748 struct xdp_buff *xdp,
4749 struct bpf_prog *xdp_prog)
4750{
4751 void *orig_data, *orig_data_end, *hard_start;
4752 struct netdev_rx_queue *rxqueue;
4753 u32 metalen, act = XDP_DROP;
4754 bool orig_bcast, orig_host;
4755 u32 mac_len, frame_sz;
4756 __be16 orig_eth_type;
4757 struct ethhdr *eth;
4758 int off;
4759
4760 /* Reinjected packets coming from act_mirred or similar should
4761 * not get XDP generic processing.
4762 */
4763 if (skb_is_redirected(skb))
4764 return XDP_PASS;
4765
4766 /* XDP packets must be linear and must have sufficient headroom
4767 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4768 * native XDP provides, thus we need to do it here as well.
4769 */
4770 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4771 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4772 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4773 int troom = skb->tail + skb->data_len - skb->end;
4774
4775 /* In case we have to go down the path and also linearize,
4776 * then lets do the pskb_expand_head() work just once here.
4777 */
4778 if (pskb_expand_head(skb,
4779 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4780 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4781 goto do_drop;
4782 if (skb_linearize(skb))
4783 goto do_drop;
4784 }
4785
4786 /* The XDP program wants to see the packet starting at the MAC
4787 * header.
4788 */
4789 mac_len = skb->data - skb_mac_header(skb);
4790 hard_start = skb->data - skb_headroom(skb);
4791
4792 /* SKB "head" area always have tailroom for skb_shared_info */
4793 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4794 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4795
4796 rxqueue = netif_get_rxqueue(skb);
4797 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4798 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4799 skb_headlen(skb) + mac_len, true);
4800
4801 orig_data_end = xdp->data_end;
4802 orig_data = xdp->data;
4803 eth = (struct ethhdr *)xdp->data;
4804 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4805 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4806 orig_eth_type = eth->h_proto;
4807
4808 act = bpf_prog_run_xdp(xdp_prog, xdp);
4809
4810 /* check if bpf_xdp_adjust_head was used */
4811 off = xdp->data - orig_data;
4812 if (off) {
4813 if (off > 0)
4814 __skb_pull(skb, off);
4815 else if (off < 0)
4816 __skb_push(skb, -off);
4817
4818 skb->mac_header += off;
4819 skb_reset_network_header(skb);
4820 }
4821
4822 /* check if bpf_xdp_adjust_tail was used */
4823 off = xdp->data_end - orig_data_end;
4824 if (off != 0) {
4825 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4826 skb->len += off; /* positive on grow, negative on shrink */
4827 }
4828
4829 /* check if XDP changed eth hdr such SKB needs update */
4830 eth = (struct ethhdr *)xdp->data;
4831 if ((orig_eth_type != eth->h_proto) ||
4832 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4833 skb->dev->dev_addr)) ||
4834 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4835 __skb_push(skb, ETH_HLEN);
4836 skb->pkt_type = PACKET_HOST;
4837 skb->protocol = eth_type_trans(skb, skb->dev);
4838 }
4839
4840 switch (act) {
4841 case XDP_REDIRECT:
4842 case XDP_TX:
4843 __skb_push(skb, mac_len);
4844 break;
4845 case XDP_PASS:
4846 metalen = xdp->data - xdp->data_meta;
4847 if (metalen)
4848 skb_metadata_set(skb, metalen);
4849 break;
4850 default:
4851 bpf_warn_invalid_xdp_action(act);
4852 fallthrough;
4853 case XDP_ABORTED:
4854 trace_xdp_exception(skb->dev, xdp_prog, act);
4855 fallthrough;
4856 case XDP_DROP:
4857 do_drop:
4858 kfree_skb(skb);
4859 break;
4860 }
4861
4862 return act;
4863}
4864
4865/* When doing generic XDP we have to bypass the qdisc layer and the
4866 * network taps in order to match in-driver-XDP behavior.
4867 */
4868void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4869{
4870 struct net_device *dev = skb->dev;
4871 struct netdev_queue *txq;
4872 bool free_skb = true;
4873 int cpu, rc;
4874
4875 txq = netdev_core_pick_tx(dev, skb, NULL);
4876 cpu = smp_processor_id();
4877 HARD_TX_LOCK(dev, txq, cpu);
4878 if (!netif_xmit_stopped(txq)) {
4879 rc = netdev_start_xmit(skb, dev, txq, 0);
4880 if (dev_xmit_complete(rc))
4881 free_skb = false;
4882 }
4883 HARD_TX_UNLOCK(dev, txq);
4884 if (free_skb) {
4885 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4886 kfree_skb(skb);
4887 }
4888}
4889
4890static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891
4892int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893{
4894 if (xdp_prog) {
4895 struct xdp_buff xdp;
4896 u32 act;
4897 int err;
4898
4899 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900 if (act != XDP_PASS) {
4901 switch (act) {
4902 case XDP_REDIRECT:
4903 err = xdp_do_generic_redirect(skb->dev, skb,
4904 &xdp, xdp_prog);
4905 if (err)
4906 goto out_redir;
4907 break;
4908 case XDP_TX:
4909 generic_xdp_tx(skb, xdp_prog);
4910 break;
4911 }
4912 return XDP_DROP;
4913 }
4914 }
4915 return XDP_PASS;
4916out_redir:
4917 kfree_skb(skb);
4918 return XDP_DROP;
4919}
4920EXPORT_SYMBOL_GPL(do_xdp_generic);
4921
4922static int netif_rx_internal(struct sk_buff *skb)
4923{
4924 int ret;
4925
4926 net_timestamp_check(netdev_tstamp_prequeue, skb);
4927
4928 trace_netif_rx(skb);
4929
4930#ifdef CONFIG_RPS
4931 if (static_branch_unlikely(&rps_needed)) {
4932 struct rps_dev_flow voidflow, *rflow = &voidflow;
4933 int cpu;
4934
4935 preempt_disable();
4936 rcu_read_lock();
4937
4938 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4939 if (cpu < 0)
4940 cpu = smp_processor_id();
4941
4942 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4943
4944 rcu_read_unlock();
4945 preempt_enable();
4946 } else
4947#endif
4948 {
4949 unsigned int qtail;
4950
4951 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4952 put_cpu();
4953 }
4954 return ret;
4955}
4956
4957/**
4958 * netif_rx - post buffer to the network code
4959 * @skb: buffer to post
4960 *
4961 * This function receives a packet from a device driver and queues it for
4962 * the upper (protocol) levels to process. It always succeeds. The buffer
4963 * may be dropped during processing for congestion control or by the
4964 * protocol layers.
4965 *
4966 * return values:
4967 * NET_RX_SUCCESS (no congestion)
4968 * NET_RX_DROP (packet was dropped)
4969 *
4970 */
4971
4972int netif_rx(struct sk_buff *skb)
4973{
4974 int ret;
4975
4976 trace_netif_rx_entry(skb);
4977
4978 ret = netif_rx_internal(skb);
4979 trace_netif_rx_exit(ret);
4980
4981 return ret;
4982}
4983EXPORT_SYMBOL(netif_rx);
4984
4985int netif_rx_ni(struct sk_buff *skb)
4986{
4987 int err;
4988
4989 trace_netif_rx_ni_entry(skb);
4990
4991 preempt_disable();
4992 err = netif_rx_internal(skb);
4993 if (local_softirq_pending())
4994 do_softirq();
4995 preempt_enable();
4996 trace_netif_rx_ni_exit(err);
4997
4998 return err;
4999}
5000EXPORT_SYMBOL(netif_rx_ni);
5001
5002int netif_rx_any_context(struct sk_buff *skb)
5003{
5004 /*
5005 * If invoked from contexts which do not invoke bottom half
5006 * processing either at return from interrupt or when softrqs are
5007 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5008 * directly.
5009 */
5010 if (in_interrupt())
5011 return netif_rx(skb);
5012 else
5013 return netif_rx_ni(skb);
5014}
5015EXPORT_SYMBOL(netif_rx_any_context);
5016
5017static __latent_entropy void net_tx_action(struct softirq_action *h)
5018{
5019 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5020
5021 if (sd->completion_queue) {
5022 struct sk_buff *clist;
5023
5024 local_irq_disable();
5025 clist = sd->completion_queue;
5026 sd->completion_queue = NULL;
5027 local_irq_enable();
5028
5029 while (clist) {
5030 struct sk_buff *skb = clist;
5031
5032 clist = clist->next;
5033
5034 WARN_ON(refcount_read(&skb->users));
5035 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5036 trace_consume_skb(skb);
5037 else
5038 trace_kfree_skb(skb, net_tx_action);
5039
5040 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041 __kfree_skb(skb);
5042 else
5043 __kfree_skb_defer(skb);
5044 }
5045 }
5046
5047 if (sd->output_queue) {
5048 struct Qdisc *head;
5049
5050 local_irq_disable();
5051 head = sd->output_queue;
5052 sd->output_queue = NULL;
5053 sd->output_queue_tailp = &sd->output_queue;
5054 local_irq_enable();
5055
5056 rcu_read_lock();
5057
5058 while (head) {
5059 struct Qdisc *q = head;
5060 spinlock_t *root_lock = NULL;
5061
5062 head = head->next_sched;
5063
5064 /* We need to make sure head->next_sched is read
5065 * before clearing __QDISC_STATE_SCHED
5066 */
5067 smp_mb__before_atomic();
5068
5069 if (!(q->flags & TCQ_F_NOLOCK)) {
5070 root_lock = qdisc_lock(q);
5071 spin_lock(root_lock);
5072 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5073 &q->state))) {
5074 /* There is a synchronize_net() between
5075 * STATE_DEACTIVATED flag being set and
5076 * qdisc_reset()/some_qdisc_is_busy() in
5077 * dev_deactivate(), so we can safely bail out
5078 * early here to avoid data race between
5079 * qdisc_deactivate() and some_qdisc_is_busy()
5080 * for lockless qdisc.
5081 */
5082 clear_bit(__QDISC_STATE_SCHED, &q->state);
5083 continue;
5084 }
5085
5086 clear_bit(__QDISC_STATE_SCHED, &q->state);
5087 qdisc_run(q);
5088 if (root_lock)
5089 spin_unlock(root_lock);
5090 }
5091
5092 rcu_read_unlock();
5093 }
5094
5095 xfrm_dev_backlog(sd);
5096}
5097
5098#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5099/* This hook is defined here for ATM LANE */
5100int (*br_fdb_test_addr_hook)(struct net_device *dev,
5101 unsigned char *addr) __read_mostly;
5102EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5103#endif
5104
5105static inline struct sk_buff *
5106sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5107 struct net_device *orig_dev, bool *another)
5108{
5109#ifdef CONFIG_NET_CLS_ACT
5110 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5111 struct tcf_result cl_res;
5112
5113 /* If there's at least one ingress present somewhere (so
5114 * we get here via enabled static key), remaining devices
5115 * that are not configured with an ingress qdisc will bail
5116 * out here.
5117 */
5118 if (!miniq)
5119 return skb;
5120
5121 if (*pt_prev) {
5122 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5123 *pt_prev = NULL;
5124 }
5125
5126 qdisc_skb_cb(skb)->pkt_len = skb->len;
5127 qdisc_skb_cb(skb)->mru = 0;
5128 qdisc_skb_cb(skb)->post_ct = false;
5129 skb->tc_at_ingress = 1;
5130 mini_qdisc_bstats_cpu_update(miniq, skb);
5131
5132 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5133 &cl_res, false)) {
5134 case TC_ACT_OK:
5135 case TC_ACT_RECLASSIFY:
5136 skb->tc_index = TC_H_MIN(cl_res.classid);
5137 break;
5138 case TC_ACT_SHOT:
5139 mini_qdisc_qstats_cpu_drop(miniq);
5140 kfree_skb(skb);
5141 return NULL;
5142 case TC_ACT_STOLEN:
5143 case TC_ACT_QUEUED:
5144 case TC_ACT_TRAP:
5145 consume_skb(skb);
5146 return NULL;
5147 case TC_ACT_REDIRECT:
5148 /* skb_mac_header check was done by cls/act_bpf, so
5149 * we can safely push the L2 header back before
5150 * redirecting to another netdev
5151 */
5152 __skb_push(skb, skb->mac_len);
5153 if (skb_do_redirect(skb) == -EAGAIN) {
5154 __skb_pull(skb, skb->mac_len);
5155 *another = true;
5156 break;
5157 }
5158 return NULL;
5159 case TC_ACT_CONSUMED:
5160 return NULL;
5161 default:
5162 break;
5163 }
5164#endif /* CONFIG_NET_CLS_ACT */
5165 return skb;
5166}
5167
5168/**
5169 * netdev_is_rx_handler_busy - check if receive handler is registered
5170 * @dev: device to check
5171 *
5172 * Check if a receive handler is already registered for a given device.
5173 * Return true if there one.
5174 *
5175 * The caller must hold the rtnl_mutex.
5176 */
5177bool netdev_is_rx_handler_busy(struct net_device *dev)
5178{
5179 ASSERT_RTNL();
5180 return dev && rtnl_dereference(dev->rx_handler);
5181}
5182EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5183
5184/**
5185 * netdev_rx_handler_register - register receive handler
5186 * @dev: device to register a handler for
5187 * @rx_handler: receive handler to register
5188 * @rx_handler_data: data pointer that is used by rx handler
5189 *
5190 * Register a receive handler for a device. This handler will then be
5191 * called from __netif_receive_skb. A negative errno code is returned
5192 * on a failure.
5193 *
5194 * The caller must hold the rtnl_mutex.
5195 *
5196 * For a general description of rx_handler, see enum rx_handler_result.
5197 */
5198int netdev_rx_handler_register(struct net_device *dev,
5199 rx_handler_func_t *rx_handler,
5200 void *rx_handler_data)
5201{
5202 if (netdev_is_rx_handler_busy(dev))
5203 return -EBUSY;
5204
5205 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5206 return -EINVAL;
5207
5208 /* Note: rx_handler_data must be set before rx_handler */
5209 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5210 rcu_assign_pointer(dev->rx_handler, rx_handler);
5211
5212 return 0;
5213}
5214EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5215
5216/**
5217 * netdev_rx_handler_unregister - unregister receive handler
5218 * @dev: device to unregister a handler from
5219 *
5220 * Unregister a receive handler from a device.
5221 *
5222 * The caller must hold the rtnl_mutex.
5223 */
5224void netdev_rx_handler_unregister(struct net_device *dev)
5225{
5226
5227 ASSERT_RTNL();
5228 RCU_INIT_POINTER(dev->rx_handler, NULL);
5229 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5230 * section has a guarantee to see a non NULL rx_handler_data
5231 * as well.
5232 */
5233 synchronize_net();
5234 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5235}
5236EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5237
5238/*
5239 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5240 * the special handling of PFMEMALLOC skbs.
5241 */
5242static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5243{
5244 switch (skb->protocol) {
5245 case htons(ETH_P_ARP):
5246 case htons(ETH_P_IP):
5247 case htons(ETH_P_IPV6):
5248 case htons(ETH_P_8021Q):
5249 case htons(ETH_P_8021AD):
5250 return true;
5251 default:
5252 return false;
5253 }
5254}
5255
5256static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5257 int *ret, struct net_device *orig_dev)
5258{
5259 if (nf_hook_ingress_active(skb)) {
5260 int ingress_retval;
5261
5262 if (*pt_prev) {
5263 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5264 *pt_prev = NULL;
5265 }
5266
5267 rcu_read_lock();
5268 ingress_retval = nf_hook_ingress(skb);
5269 rcu_read_unlock();
5270 return ingress_retval;
5271 }
5272 return 0;
5273}
5274
5275static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5276 struct packet_type **ppt_prev)
5277{
5278 struct packet_type *ptype, *pt_prev;
5279 rx_handler_func_t *rx_handler;
5280 struct sk_buff *skb = *pskb;
5281 struct net_device *orig_dev;
5282 bool deliver_exact = false;
5283 int ret = NET_RX_DROP;
5284 __be16 type;
5285
5286 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5287
5288 trace_netif_receive_skb(skb);
5289
5290 orig_dev = skb->dev;
5291
5292 skb_reset_network_header(skb);
5293 if (!skb_transport_header_was_set(skb))
5294 skb_reset_transport_header(skb);
5295 skb_reset_mac_len(skb);
5296
5297 pt_prev = NULL;
5298
5299another_round:
5300 skb->skb_iif = skb->dev->ifindex;
5301
5302 __this_cpu_inc(softnet_data.processed);
5303
5304 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5305 int ret2;
5306
5307 migrate_disable();
5308 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5309 migrate_enable();
5310
5311 if (ret2 != XDP_PASS) {
5312 ret = NET_RX_DROP;
5313 goto out;
5314 }
5315 skb_reset_mac_len(skb);
5316 }
5317
5318 if (eth_type_vlan(skb->protocol)) {
5319 skb = skb_vlan_untag(skb);
5320 if (unlikely(!skb))
5321 goto out;
5322 }
5323
5324 if (skb_skip_tc_classify(skb))
5325 goto skip_classify;
5326
5327 if (pfmemalloc)
5328 goto skip_taps;
5329
5330 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5331 if (pt_prev)
5332 ret = deliver_skb(skb, pt_prev, orig_dev);
5333 pt_prev = ptype;
5334 }
5335
5336 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5337 if (pt_prev)
5338 ret = deliver_skb(skb, pt_prev, orig_dev);
5339 pt_prev = ptype;
5340 }
5341
5342skip_taps:
5343#ifdef CONFIG_NET_INGRESS
5344 if (static_branch_unlikely(&ingress_needed_key)) {
5345 bool another = false;
5346
5347 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5348 &another);
5349 if (another)
5350 goto another_round;
5351 if (!skb)
5352 goto out;
5353
5354 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5355 goto out;
5356 }
5357#endif
5358 skb_reset_redirect(skb);
5359skip_classify:
5360 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5361 goto drop;
5362
5363 if (skb_vlan_tag_present(skb)) {
5364 if (pt_prev) {
5365 ret = deliver_skb(skb, pt_prev, orig_dev);
5366 pt_prev = NULL;
5367 }
5368 if (vlan_do_receive(&skb))
5369 goto another_round;
5370 else if (unlikely(!skb))
5371 goto out;
5372 }
5373
5374 rx_handler = rcu_dereference(skb->dev->rx_handler);
5375 if (rx_handler) {
5376 if (pt_prev) {
5377 ret = deliver_skb(skb, pt_prev, orig_dev);
5378 pt_prev = NULL;
5379 }
5380 switch (rx_handler(&skb)) {
5381 case RX_HANDLER_CONSUMED:
5382 ret = NET_RX_SUCCESS;
5383 goto out;
5384 case RX_HANDLER_ANOTHER:
5385 goto another_round;
5386 case RX_HANDLER_EXACT:
5387 deliver_exact = true;
5388 break;
5389 case RX_HANDLER_PASS:
5390 break;
5391 default:
5392 BUG();
5393 }
5394 }
5395
5396 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5397check_vlan_id:
5398 if (skb_vlan_tag_get_id(skb)) {
5399 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5400 * find vlan device.
5401 */
5402 skb->pkt_type = PACKET_OTHERHOST;
5403 } else if (eth_type_vlan(skb->protocol)) {
5404 /* Outer header is 802.1P with vlan 0, inner header is
5405 * 802.1Q or 802.1AD and vlan_do_receive() above could
5406 * not find vlan dev for vlan id 0.
5407 */
5408 __vlan_hwaccel_clear_tag(skb);
5409 skb = skb_vlan_untag(skb);
5410 if (unlikely(!skb))
5411 goto out;
5412 if (vlan_do_receive(&skb))
5413 /* After stripping off 802.1P header with vlan 0
5414 * vlan dev is found for inner header.
5415 */
5416 goto another_round;
5417 else if (unlikely(!skb))
5418 goto out;
5419 else
5420 /* We have stripped outer 802.1P vlan 0 header.
5421 * But could not find vlan dev.
5422 * check again for vlan id to set OTHERHOST.
5423 */
5424 goto check_vlan_id;
5425 }
5426 /* Note: we might in the future use prio bits
5427 * and set skb->priority like in vlan_do_receive()
5428 * For the time being, just ignore Priority Code Point
5429 */
5430 __vlan_hwaccel_clear_tag(skb);
5431 }
5432
5433 type = skb->protocol;
5434
5435 /* deliver only exact match when indicated */
5436 if (likely(!deliver_exact)) {
5437 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438 &ptype_base[ntohs(type) &
5439 PTYPE_HASH_MASK]);
5440 }
5441
5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 &orig_dev->ptype_specific);
5444
5445 if (unlikely(skb->dev != orig_dev)) {
5446 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5447 &skb->dev->ptype_specific);
5448 }
5449
5450 if (pt_prev) {
5451 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5452 goto drop;
5453 *ppt_prev = pt_prev;
5454 } else {
5455drop:
5456 if (!deliver_exact)
5457 atomic_long_inc(&skb->dev->rx_dropped);
5458 else
5459 atomic_long_inc(&skb->dev->rx_nohandler);
5460 kfree_skb(skb);
5461 /* Jamal, now you will not able to escape explaining
5462 * me how you were going to use this. :-)
5463 */
5464 ret = NET_RX_DROP;
5465 }
5466
5467out:
5468 /* The invariant here is that if *ppt_prev is not NULL
5469 * then skb should also be non-NULL.
5470 *
5471 * Apparently *ppt_prev assignment above holds this invariant due to
5472 * skb dereferencing near it.
5473 */
5474 *pskb = skb;
5475 return ret;
5476}
5477
5478static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5479{
5480 struct net_device *orig_dev = skb->dev;
5481 struct packet_type *pt_prev = NULL;
5482 int ret;
5483
5484 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5485 if (pt_prev)
5486 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5487 skb->dev, pt_prev, orig_dev);
5488 return ret;
5489}
5490
5491/**
5492 * netif_receive_skb_core - special purpose version of netif_receive_skb
5493 * @skb: buffer to process
5494 *
5495 * More direct receive version of netif_receive_skb(). It should
5496 * only be used by callers that have a need to skip RPS and Generic XDP.
5497 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5498 *
5499 * This function may only be called from softirq context and interrupts
5500 * should be enabled.
5501 *
5502 * Return values (usually ignored):
5503 * NET_RX_SUCCESS: no congestion
5504 * NET_RX_DROP: packet was dropped
5505 */
5506int netif_receive_skb_core(struct sk_buff *skb)
5507{
5508 int ret;
5509
5510 rcu_read_lock();
5511 ret = __netif_receive_skb_one_core(skb, false);
5512 rcu_read_unlock();
5513
5514 return ret;
5515}
5516EXPORT_SYMBOL(netif_receive_skb_core);
5517
5518static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5519 struct packet_type *pt_prev,
5520 struct net_device *orig_dev)
5521{
5522 struct sk_buff *skb, *next;
5523
5524 if (!pt_prev)
5525 return;
5526 if (list_empty(head))
5527 return;
5528 if (pt_prev->list_func != NULL)
5529 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5530 ip_list_rcv, head, pt_prev, orig_dev);
5531 else
5532 list_for_each_entry_safe(skb, next, head, list) {
5533 skb_list_del_init(skb);
5534 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5535 }
5536}
5537
5538static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5539{
5540 /* Fast-path assumptions:
5541 * - There is no RX handler.
5542 * - Only one packet_type matches.
5543 * If either of these fails, we will end up doing some per-packet
5544 * processing in-line, then handling the 'last ptype' for the whole
5545 * sublist. This can't cause out-of-order delivery to any single ptype,
5546 * because the 'last ptype' must be constant across the sublist, and all
5547 * other ptypes are handled per-packet.
5548 */
5549 /* Current (common) ptype of sublist */
5550 struct packet_type *pt_curr = NULL;
5551 /* Current (common) orig_dev of sublist */
5552 struct net_device *od_curr = NULL;
5553 struct list_head sublist;
5554 struct sk_buff *skb, *next;
5555
5556 INIT_LIST_HEAD(&sublist);
5557 list_for_each_entry_safe(skb, next, head, list) {
5558 struct net_device *orig_dev = skb->dev;
5559 struct packet_type *pt_prev = NULL;
5560
5561 skb_list_del_init(skb);
5562 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5563 if (!pt_prev)
5564 continue;
5565 if (pt_curr != pt_prev || od_curr != orig_dev) {
5566 /* dispatch old sublist */
5567 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5568 /* start new sublist */
5569 INIT_LIST_HEAD(&sublist);
5570 pt_curr = pt_prev;
5571 od_curr = orig_dev;
5572 }
5573 list_add_tail(&skb->list, &sublist);
5574 }
5575
5576 /* dispatch final sublist */
5577 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5578}
5579
5580static int __netif_receive_skb(struct sk_buff *skb)
5581{
5582 int ret;
5583
5584 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5585 unsigned int noreclaim_flag;
5586
5587 /*
5588 * PFMEMALLOC skbs are special, they should
5589 * - be delivered to SOCK_MEMALLOC sockets only
5590 * - stay away from userspace
5591 * - have bounded memory usage
5592 *
5593 * Use PF_MEMALLOC as this saves us from propagating the allocation
5594 * context down to all allocation sites.
5595 */
5596 noreclaim_flag = memalloc_noreclaim_save();
5597 ret = __netif_receive_skb_one_core(skb, true);
5598 memalloc_noreclaim_restore(noreclaim_flag);
5599 } else
5600 ret = __netif_receive_skb_one_core(skb, false);
5601
5602 return ret;
5603}
5604
5605static void __netif_receive_skb_list(struct list_head *head)
5606{
5607 unsigned long noreclaim_flag = 0;
5608 struct sk_buff *skb, *next;
5609 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5610
5611 list_for_each_entry_safe(skb, next, head, list) {
5612 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5613 struct list_head sublist;
5614
5615 /* Handle the previous sublist */
5616 list_cut_before(&sublist, head, &skb->list);
5617 if (!list_empty(&sublist))
5618 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5619 pfmemalloc = !pfmemalloc;
5620 /* See comments in __netif_receive_skb */
5621 if (pfmemalloc)
5622 noreclaim_flag = memalloc_noreclaim_save();
5623 else
5624 memalloc_noreclaim_restore(noreclaim_flag);
5625 }
5626 }
5627 /* Handle the remaining sublist */
5628 if (!list_empty(head))
5629 __netif_receive_skb_list_core(head, pfmemalloc);
5630 /* Restore pflags */
5631 if (pfmemalloc)
5632 memalloc_noreclaim_restore(noreclaim_flag);
5633}
5634
5635static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5636{
5637 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5638 struct bpf_prog *new = xdp->prog;
5639 int ret = 0;
5640
5641 if (new) {
5642 u32 i;
5643
5644 mutex_lock(&new->aux->used_maps_mutex);
5645
5646 /* generic XDP does not work with DEVMAPs that can
5647 * have a bpf_prog installed on an entry
5648 */
5649 for (i = 0; i < new->aux->used_map_cnt; i++) {
5650 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5651 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5652 mutex_unlock(&new->aux->used_maps_mutex);
5653 return -EINVAL;
5654 }
5655 }
5656
5657 mutex_unlock(&new->aux->used_maps_mutex);
5658 }
5659
5660 switch (xdp->command) {
5661 case XDP_SETUP_PROG:
5662 rcu_assign_pointer(dev->xdp_prog, new);
5663 if (old)
5664 bpf_prog_put(old);
5665
5666 if (old && !new) {
5667 static_branch_dec(&generic_xdp_needed_key);
5668 } else if (new && !old) {
5669 static_branch_inc(&generic_xdp_needed_key);
5670 dev_disable_lro(dev);
5671 dev_disable_gro_hw(dev);
5672 }
5673 break;
5674
5675 default:
5676 ret = -EINVAL;
5677 break;
5678 }
5679
5680 return ret;
5681}
5682
5683static int netif_receive_skb_internal(struct sk_buff *skb)
5684{
5685 int ret;
5686
5687 net_timestamp_check(netdev_tstamp_prequeue, skb);
5688
5689 if (skb_defer_rx_timestamp(skb))
5690 return NET_RX_SUCCESS;
5691
5692 rcu_read_lock();
5693#ifdef CONFIG_RPS
5694 if (static_branch_unlikely(&rps_needed)) {
5695 struct rps_dev_flow voidflow, *rflow = &voidflow;
5696 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5697
5698 if (cpu >= 0) {
5699 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5700 rcu_read_unlock();
5701 return ret;
5702 }
5703 }
5704#endif
5705 ret = __netif_receive_skb(skb);
5706 rcu_read_unlock();
5707 return ret;
5708}
5709
5710static void netif_receive_skb_list_internal(struct list_head *head)
5711{
5712 struct sk_buff *skb, *next;
5713 struct list_head sublist;
5714
5715 INIT_LIST_HEAD(&sublist);
5716 list_for_each_entry_safe(skb, next, head, list) {
5717 net_timestamp_check(netdev_tstamp_prequeue, skb);
5718 skb_list_del_init(skb);
5719 if (!skb_defer_rx_timestamp(skb))
5720 list_add_tail(&skb->list, &sublist);
5721 }
5722 list_splice_init(&sublist, head);
5723
5724 rcu_read_lock();
5725#ifdef CONFIG_RPS
5726 if (static_branch_unlikely(&rps_needed)) {
5727 list_for_each_entry_safe(skb, next, head, list) {
5728 struct rps_dev_flow voidflow, *rflow = &voidflow;
5729 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730
5731 if (cpu >= 0) {
5732 /* Will be handled, remove from list */
5733 skb_list_del_init(skb);
5734 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5735 }
5736 }
5737 }
5738#endif
5739 __netif_receive_skb_list(head);
5740 rcu_read_unlock();
5741}
5742
5743/**
5744 * netif_receive_skb - process receive buffer from network
5745 * @skb: buffer to process
5746 *
5747 * netif_receive_skb() is the main receive data processing function.
5748 * It always succeeds. The buffer may be dropped during processing
5749 * for congestion control or by the protocol layers.
5750 *
5751 * This function may only be called from softirq context and interrupts
5752 * should be enabled.
5753 *
5754 * Return values (usually ignored):
5755 * NET_RX_SUCCESS: no congestion
5756 * NET_RX_DROP: packet was dropped
5757 */
5758int netif_receive_skb(struct sk_buff *skb)
5759{
5760 int ret;
5761
5762 trace_netif_receive_skb_entry(skb);
5763
5764 ret = netif_receive_skb_internal(skb);
5765 trace_netif_receive_skb_exit(ret);
5766
5767 return ret;
5768}
5769EXPORT_SYMBOL(netif_receive_skb);
5770
5771/**
5772 * netif_receive_skb_list - process many receive buffers from network
5773 * @head: list of skbs to process.
5774 *
5775 * Since return value of netif_receive_skb() is normally ignored, and
5776 * wouldn't be meaningful for a list, this function returns void.
5777 *
5778 * This function may only be called from softirq context and interrupts
5779 * should be enabled.
5780 */
5781void netif_receive_skb_list(struct list_head *head)
5782{
5783 struct sk_buff *skb;
5784
5785 if (list_empty(head))
5786 return;
5787 if (trace_netif_receive_skb_list_entry_enabled()) {
5788 list_for_each_entry(skb, head, list)
5789 trace_netif_receive_skb_list_entry(skb);
5790 }
5791 netif_receive_skb_list_internal(head);
5792 trace_netif_receive_skb_list_exit(0);
5793}
5794EXPORT_SYMBOL(netif_receive_skb_list);
5795
5796static DEFINE_PER_CPU(struct work_struct, flush_works);
5797
5798/* Network device is going away, flush any packets still pending */
5799static void flush_backlog(struct work_struct *work)
5800{
5801 struct sk_buff *skb, *tmp;
5802 struct softnet_data *sd;
5803
5804 local_bh_disable();
5805 sd = this_cpu_ptr(&softnet_data);
5806
5807 local_irq_disable();
5808 rps_lock(sd);
5809 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5810 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5811 __skb_unlink(skb, &sd->input_pkt_queue);
5812 dev_kfree_skb_irq(skb);
5813 input_queue_head_incr(sd);
5814 }
5815 }
5816 rps_unlock(sd);
5817 local_irq_enable();
5818
5819 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5820 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5821 __skb_unlink(skb, &sd->process_queue);
5822 kfree_skb(skb);
5823 input_queue_head_incr(sd);
5824 }
5825 }
5826 local_bh_enable();
5827}
5828
5829static bool flush_required(int cpu)
5830{
5831#if IS_ENABLED(CONFIG_RPS)
5832 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5833 bool do_flush;
5834
5835 local_irq_disable();
5836 rps_lock(sd);
5837
5838 /* as insertion into process_queue happens with the rps lock held,
5839 * process_queue access may race only with dequeue
5840 */
5841 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5842 !skb_queue_empty_lockless(&sd->process_queue);
5843 rps_unlock(sd);
5844 local_irq_enable();
5845
5846 return do_flush;
5847#endif
5848 /* without RPS we can't safely check input_pkt_queue: during a
5849 * concurrent remote skb_queue_splice() we can detect as empty both
5850 * input_pkt_queue and process_queue even if the latter could end-up
5851 * containing a lot of packets.
5852 */
5853 return true;
5854}
5855
5856static void flush_all_backlogs(void)
5857{
5858 static cpumask_t flush_cpus;
5859 unsigned int cpu;
5860
5861 /* since we are under rtnl lock protection we can use static data
5862 * for the cpumask and avoid allocating on stack the possibly
5863 * large mask
5864 */
5865 ASSERT_RTNL();
5866
5867 get_online_cpus();
5868
5869 cpumask_clear(&flush_cpus);
5870 for_each_online_cpu(cpu) {
5871 if (flush_required(cpu)) {
5872 queue_work_on(cpu, system_highpri_wq,
5873 per_cpu_ptr(&flush_works, cpu));
5874 cpumask_set_cpu(cpu, &flush_cpus);
5875 }
5876 }
5877
5878 /* we can have in flight packet[s] on the cpus we are not flushing,
5879 * synchronize_net() in unregister_netdevice_many() will take care of
5880 * them
5881 */
5882 for_each_cpu(cpu, &flush_cpus)
5883 flush_work(per_cpu_ptr(&flush_works, cpu));
5884
5885 put_online_cpus();
5886}
5887
5888/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5889static void gro_normal_list(struct napi_struct *napi)
5890{
5891 if (!napi->rx_count)
5892 return;
5893 netif_receive_skb_list_internal(&napi->rx_list);
5894 INIT_LIST_HEAD(&napi->rx_list);
5895 napi->rx_count = 0;
5896}
5897
5898/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5899 * pass the whole batch up to the stack.
5900 */
5901static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5902{
5903 list_add_tail(&skb->list, &napi->rx_list);
5904 napi->rx_count += segs;
5905 if (napi->rx_count >= gro_normal_batch)
5906 gro_normal_list(napi);
5907}
5908
5909static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5910{
5911 struct packet_offload *ptype;
5912 __be16 type = skb->protocol;
5913 struct list_head *head = &offload_base;
5914 int err = -ENOENT;
5915
5916 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5917
5918 if (NAPI_GRO_CB(skb)->count == 1) {
5919 skb_shinfo(skb)->gso_size = 0;
5920 goto out;
5921 }
5922
5923 rcu_read_lock();
5924 list_for_each_entry_rcu(ptype, head, list) {
5925 if (ptype->type != type || !ptype->callbacks.gro_complete)
5926 continue;
5927
5928 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5929 ipv6_gro_complete, inet_gro_complete,
5930 skb, 0);
5931 break;
5932 }
5933 rcu_read_unlock();
5934
5935 if (err) {
5936 WARN_ON(&ptype->list == head);
5937 kfree_skb(skb);
5938 return NET_RX_SUCCESS;
5939 }
5940
5941out:
5942 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5943 return NET_RX_SUCCESS;
5944}
5945
5946static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5947 bool flush_old)
5948{
5949 struct list_head *head = &napi->gro_hash[index].list;
5950 struct sk_buff *skb, *p;
5951
5952 list_for_each_entry_safe_reverse(skb, p, head, list) {
5953 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5954 return;
5955 skb_list_del_init(skb);
5956 napi_gro_complete(napi, skb);
5957 napi->gro_hash[index].count--;
5958 }
5959
5960 if (!napi->gro_hash[index].count)
5961 __clear_bit(index, &napi->gro_bitmask);
5962}
5963
5964/* napi->gro_hash[].list contains packets ordered by age.
5965 * youngest packets at the head of it.
5966 * Complete skbs in reverse order to reduce latencies.
5967 */
5968void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5969{
5970 unsigned long bitmask = napi->gro_bitmask;
5971 unsigned int i, base = ~0U;
5972
5973 while ((i = ffs(bitmask)) != 0) {
5974 bitmask >>= i;
5975 base += i;
5976 __napi_gro_flush_chain(napi, base, flush_old);
5977 }
5978}
5979EXPORT_SYMBOL(napi_gro_flush);
5980
5981static void gro_list_prepare(const struct list_head *head,
5982 const struct sk_buff *skb)
5983{
5984 unsigned int maclen = skb->dev->hard_header_len;
5985 u32 hash = skb_get_hash_raw(skb);
5986 struct sk_buff *p;
5987
5988 list_for_each_entry(p, head, list) {
5989 unsigned long diffs;
5990
5991 NAPI_GRO_CB(p)->flush = 0;
5992
5993 if (hash != skb_get_hash_raw(p)) {
5994 NAPI_GRO_CB(p)->same_flow = 0;
5995 continue;
5996 }
5997
5998 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5999 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6000 if (skb_vlan_tag_present(p))
6001 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6002 diffs |= skb_metadata_dst_cmp(p, skb);
6003 diffs |= skb_metadata_differs(p, skb);
6004 if (maclen == ETH_HLEN)
6005 diffs |= compare_ether_header(skb_mac_header(p),
6006 skb_mac_header(skb));
6007 else if (!diffs)
6008 diffs = memcmp(skb_mac_header(p),
6009 skb_mac_header(skb),
6010 maclen);
6011 NAPI_GRO_CB(p)->same_flow = !diffs;
6012 }
6013}
6014
6015static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6016{
6017 const struct skb_shared_info *pinfo = skb_shinfo(skb);
6018 const skb_frag_t *frag0 = &pinfo->frags[0];
6019
6020 NAPI_GRO_CB(skb)->data_offset = 0;
6021 NAPI_GRO_CB(skb)->frag0 = NULL;
6022 NAPI_GRO_CB(skb)->frag0_len = 0;
6023
6024 if (!skb_headlen(skb) && pinfo->nr_frags &&
6025 !PageHighMem(skb_frag_page(frag0)) &&
6026 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6027 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6028 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6029 skb_frag_size(frag0),
6030 skb->end - skb->tail);
6031 }
6032}
6033
6034static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6035{
6036 struct skb_shared_info *pinfo = skb_shinfo(skb);
6037
6038 BUG_ON(skb->end - skb->tail < grow);
6039
6040 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6041
6042 skb->data_len -= grow;
6043 skb->tail += grow;
6044
6045 skb_frag_off_add(&pinfo->frags[0], grow);
6046 skb_frag_size_sub(&pinfo->frags[0], grow);
6047
6048 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6049 skb_frag_unref(skb, 0);
6050 memmove(pinfo->frags, pinfo->frags + 1,
6051 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6052 }
6053}
6054
6055static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6056{
6057 struct sk_buff *oldest;
6058
6059 oldest = list_last_entry(head, struct sk_buff, list);
6060
6061 /* We are called with head length >= MAX_GRO_SKBS, so this is
6062 * impossible.
6063 */
6064 if (WARN_ON_ONCE(!oldest))
6065 return;
6066
6067 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6068 * SKB to the chain.
6069 */
6070 skb_list_del_init(oldest);
6071 napi_gro_complete(napi, oldest);
6072}
6073
6074static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6075{
6076 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6077 struct gro_list *gro_list = &napi->gro_hash[bucket];
6078 struct list_head *head = &offload_base;
6079 struct packet_offload *ptype;
6080 __be16 type = skb->protocol;
6081 struct sk_buff *pp = NULL;
6082 enum gro_result ret;
6083 int same_flow;
6084 int grow;
6085
6086 if (netif_elide_gro(skb->dev))
6087 goto normal;
6088
6089 gro_list_prepare(&gro_list->list, skb);
6090
6091 rcu_read_lock();
6092 list_for_each_entry_rcu(ptype, head, list) {
6093 if (ptype->type != type || !ptype->callbacks.gro_receive)
6094 continue;
6095
6096 skb_set_network_header(skb, skb_gro_offset(skb));
6097 skb_reset_mac_len(skb);
6098 NAPI_GRO_CB(skb)->same_flow = 0;
6099 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6100 NAPI_GRO_CB(skb)->free = 0;
6101 NAPI_GRO_CB(skb)->encap_mark = 0;
6102 NAPI_GRO_CB(skb)->recursion_counter = 0;
6103 NAPI_GRO_CB(skb)->is_fou = 0;
6104 NAPI_GRO_CB(skb)->is_atomic = 1;
6105 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6106
6107 /* Setup for GRO checksum validation */
6108 switch (skb->ip_summed) {
6109 case CHECKSUM_COMPLETE:
6110 NAPI_GRO_CB(skb)->csum = skb->csum;
6111 NAPI_GRO_CB(skb)->csum_valid = 1;
6112 NAPI_GRO_CB(skb)->csum_cnt = 0;
6113 break;
6114 case CHECKSUM_UNNECESSARY:
6115 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6116 NAPI_GRO_CB(skb)->csum_valid = 0;
6117 break;
6118 default:
6119 NAPI_GRO_CB(skb)->csum_cnt = 0;
6120 NAPI_GRO_CB(skb)->csum_valid = 0;
6121 }
6122
6123 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6124 ipv6_gro_receive, inet_gro_receive,
6125 &gro_list->list, skb);
6126 break;
6127 }
6128 rcu_read_unlock();
6129
6130 if (&ptype->list == head)
6131 goto normal;
6132
6133 if (PTR_ERR(pp) == -EINPROGRESS) {
6134 ret = GRO_CONSUMED;
6135 goto ok;
6136 }
6137
6138 same_flow = NAPI_GRO_CB(skb)->same_flow;
6139 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6140
6141 if (pp) {
6142 skb_list_del_init(pp);
6143 napi_gro_complete(napi, pp);
6144 gro_list->count--;
6145 }
6146
6147 if (same_flow)
6148 goto ok;
6149
6150 if (NAPI_GRO_CB(skb)->flush)
6151 goto normal;
6152
6153 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6154 gro_flush_oldest(napi, &gro_list->list);
6155 else
6156 gro_list->count++;
6157
6158 NAPI_GRO_CB(skb)->count = 1;
6159 NAPI_GRO_CB(skb)->age = jiffies;
6160 NAPI_GRO_CB(skb)->last = skb;
6161 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6162 list_add(&skb->list, &gro_list->list);
6163 ret = GRO_HELD;
6164
6165pull:
6166 grow = skb_gro_offset(skb) - skb_headlen(skb);
6167 if (grow > 0)
6168 gro_pull_from_frag0(skb, grow);
6169ok:
6170 if (gro_list->count) {
6171 if (!test_bit(bucket, &napi->gro_bitmask))
6172 __set_bit(bucket, &napi->gro_bitmask);
6173 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6174 __clear_bit(bucket, &napi->gro_bitmask);
6175 }
6176
6177 return ret;
6178
6179normal:
6180 ret = GRO_NORMAL;
6181 goto pull;
6182}
6183
6184struct packet_offload *gro_find_receive_by_type(__be16 type)
6185{
6186 struct list_head *offload_head = &offload_base;
6187 struct packet_offload *ptype;
6188
6189 list_for_each_entry_rcu(ptype, offload_head, list) {
6190 if (ptype->type != type || !ptype->callbacks.gro_receive)
6191 continue;
6192 return ptype;
6193 }
6194 return NULL;
6195}
6196EXPORT_SYMBOL(gro_find_receive_by_type);
6197
6198struct packet_offload *gro_find_complete_by_type(__be16 type)
6199{
6200 struct list_head *offload_head = &offload_base;
6201 struct packet_offload *ptype;
6202
6203 list_for_each_entry_rcu(ptype, offload_head, list) {
6204 if (ptype->type != type || !ptype->callbacks.gro_complete)
6205 continue;
6206 return ptype;
6207 }
6208 return NULL;
6209}
6210EXPORT_SYMBOL(gro_find_complete_by_type);
6211
6212static gro_result_t napi_skb_finish(struct napi_struct *napi,
6213 struct sk_buff *skb,
6214 gro_result_t ret)
6215{
6216 switch (ret) {
6217 case GRO_NORMAL:
6218 gro_normal_one(napi, skb, 1);
6219 break;
6220
6221 case GRO_MERGED_FREE:
6222 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6223 napi_skb_free_stolen_head(skb);
6224 else
6225 __kfree_skb_defer(skb);
6226 break;
6227
6228 case GRO_HELD:
6229 case GRO_MERGED:
6230 case GRO_CONSUMED:
6231 break;
6232 }
6233
6234 return ret;
6235}
6236
6237gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6238{
6239 gro_result_t ret;
6240
6241 skb_mark_napi_id(skb, napi);
6242 trace_napi_gro_receive_entry(skb);
6243
6244 skb_gro_reset_offset(skb, 0);
6245
6246 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6247 trace_napi_gro_receive_exit(ret);
6248
6249 return ret;
6250}
6251EXPORT_SYMBOL(napi_gro_receive);
6252
6253static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6254{
6255 if (unlikely(skb->pfmemalloc)) {
6256 consume_skb(skb);
6257 return;
6258 }
6259 __skb_pull(skb, skb_headlen(skb));
6260 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6261 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6262 __vlan_hwaccel_clear_tag(skb);
6263 skb->dev = napi->dev;
6264 skb->skb_iif = 0;
6265
6266 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6267 skb->pkt_type = PACKET_HOST;
6268
6269 skb->encapsulation = 0;
6270 skb_shinfo(skb)->gso_type = 0;
6271 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6272 skb_ext_reset(skb);
6273
6274 napi->skb = skb;
6275}
6276
6277struct sk_buff *napi_get_frags(struct napi_struct *napi)
6278{
6279 struct sk_buff *skb = napi->skb;
6280
6281 if (!skb) {
6282 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6283 if (skb) {
6284 napi->skb = skb;
6285 skb_mark_napi_id(skb, napi);
6286 }
6287 }
6288 return skb;
6289}
6290EXPORT_SYMBOL(napi_get_frags);
6291
6292static gro_result_t napi_frags_finish(struct napi_struct *napi,
6293 struct sk_buff *skb,
6294 gro_result_t ret)
6295{
6296 switch (ret) {
6297 case GRO_NORMAL:
6298 case GRO_HELD:
6299 __skb_push(skb, ETH_HLEN);
6300 skb->protocol = eth_type_trans(skb, skb->dev);
6301 if (ret == GRO_NORMAL)
6302 gro_normal_one(napi, skb, 1);
6303 break;
6304
6305 case GRO_MERGED_FREE:
6306 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6307 napi_skb_free_stolen_head(skb);
6308 else
6309 napi_reuse_skb(napi, skb);
6310 break;
6311
6312 case GRO_MERGED:
6313 case GRO_CONSUMED:
6314 break;
6315 }
6316
6317 return ret;
6318}
6319
6320/* Upper GRO stack assumes network header starts at gro_offset=0
6321 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6322 * We copy ethernet header into skb->data to have a common layout.
6323 */
6324static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6325{
6326 struct sk_buff *skb = napi->skb;
6327 const struct ethhdr *eth;
6328 unsigned int hlen = sizeof(*eth);
6329
6330 napi->skb = NULL;
6331
6332 skb_reset_mac_header(skb);
6333 skb_gro_reset_offset(skb, hlen);
6334
6335 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6336 eth = skb_gro_header_slow(skb, hlen, 0);
6337 if (unlikely(!eth)) {
6338 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6339 __func__, napi->dev->name);
6340 napi_reuse_skb(napi, skb);
6341 return NULL;
6342 }
6343 } else {
6344 eth = (const struct ethhdr *)skb->data;
6345 gro_pull_from_frag0(skb, hlen);
6346 NAPI_GRO_CB(skb)->frag0 += hlen;
6347 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6348 }
6349 __skb_pull(skb, hlen);
6350
6351 /*
6352 * This works because the only protocols we care about don't require
6353 * special handling.
6354 * We'll fix it up properly in napi_frags_finish()
6355 */
6356 skb->protocol = eth->h_proto;
6357
6358 return skb;
6359}
6360
6361gro_result_t napi_gro_frags(struct napi_struct *napi)
6362{
6363 gro_result_t ret;
6364 struct sk_buff *skb = napi_frags_skb(napi);
6365
6366 trace_napi_gro_frags_entry(skb);
6367
6368 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6369 trace_napi_gro_frags_exit(ret);
6370
6371 return ret;
6372}
6373EXPORT_SYMBOL(napi_gro_frags);
6374
6375/* Compute the checksum from gro_offset and return the folded value
6376 * after adding in any pseudo checksum.
6377 */
6378__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6379{
6380 __wsum wsum;
6381 __sum16 sum;
6382
6383 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6384
6385 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6386 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6387 /* See comments in __skb_checksum_complete(). */
6388 if (likely(!sum)) {
6389 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6390 !skb->csum_complete_sw)
6391 netdev_rx_csum_fault(skb->dev, skb);
6392 }
6393
6394 NAPI_GRO_CB(skb)->csum = wsum;
6395 NAPI_GRO_CB(skb)->csum_valid = 1;
6396
6397 return sum;
6398}
6399EXPORT_SYMBOL(__skb_gro_checksum_complete);
6400
6401static void net_rps_send_ipi(struct softnet_data *remsd)
6402{
6403#ifdef CONFIG_RPS
6404 while (remsd) {
6405 struct softnet_data *next = remsd->rps_ipi_next;
6406
6407 if (cpu_online(remsd->cpu))
6408 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6409 remsd = next;
6410 }
6411#endif
6412}
6413
6414/*
6415 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6416 * Note: called with local irq disabled, but exits with local irq enabled.
6417 */
6418static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6419{
6420#ifdef CONFIG_RPS
6421 struct softnet_data *remsd = sd->rps_ipi_list;
6422
6423 if (remsd) {
6424 sd->rps_ipi_list = NULL;
6425
6426 local_irq_enable();
6427
6428 /* Send pending IPI's to kick RPS processing on remote cpus. */
6429 net_rps_send_ipi(remsd);
6430 } else
6431#endif
6432 local_irq_enable();
6433}
6434
6435static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6436{
6437#ifdef CONFIG_RPS
6438 return sd->rps_ipi_list != NULL;
6439#else
6440 return false;
6441#endif
6442}
6443
6444static int process_backlog(struct napi_struct *napi, int quota)
6445{
6446 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6447 bool again = true;
6448 int work = 0;
6449
6450 /* Check if we have pending ipi, its better to send them now,
6451 * not waiting net_rx_action() end.
6452 */
6453 if (sd_has_rps_ipi_waiting(sd)) {
6454 local_irq_disable();
6455 net_rps_action_and_irq_enable(sd);
6456 }
6457
6458 napi->weight = dev_rx_weight;
6459 while (again) {
6460 struct sk_buff *skb;
6461
6462 while ((skb = __skb_dequeue(&sd->process_queue))) {
6463 rcu_read_lock();
6464 __netif_receive_skb(skb);
6465 rcu_read_unlock();
6466 input_queue_head_incr(sd);
6467 if (++work >= quota)
6468 return work;
6469
6470 }
6471
6472 local_irq_disable();
6473 rps_lock(sd);
6474 if (skb_queue_empty(&sd->input_pkt_queue)) {
6475 /*
6476 * Inline a custom version of __napi_complete().
6477 * only current cpu owns and manipulates this napi,
6478 * and NAPI_STATE_SCHED is the only possible flag set
6479 * on backlog.
6480 * We can use a plain write instead of clear_bit(),
6481 * and we dont need an smp_mb() memory barrier.
6482 */
6483 napi->state = 0;
6484 again = false;
6485 } else {
6486 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6487 &sd->process_queue);
6488 }
6489 rps_unlock(sd);
6490 local_irq_enable();
6491 }
6492
6493 return work;
6494}
6495
6496/**
6497 * __napi_schedule - schedule for receive
6498 * @n: entry to schedule
6499 *
6500 * The entry's receive function will be scheduled to run.
6501 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6502 */
6503void __napi_schedule(struct napi_struct *n)
6504{
6505 unsigned long flags;
6506
6507 local_irq_save(flags);
6508 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6509 local_irq_restore(flags);
6510}
6511EXPORT_SYMBOL(__napi_schedule);
6512
6513/**
6514 * napi_schedule_prep - check if napi can be scheduled
6515 * @n: napi context
6516 *
6517 * Test if NAPI routine is already running, and if not mark
6518 * it as running. This is used as a condition variable to
6519 * insure only one NAPI poll instance runs. We also make
6520 * sure there is no pending NAPI disable.
6521 */
6522bool napi_schedule_prep(struct napi_struct *n)
6523{
6524 unsigned long val, new;
6525
6526 do {
6527 val = READ_ONCE(n->state);
6528 if (unlikely(val & NAPIF_STATE_DISABLE))
6529 return false;
6530 new = val | NAPIF_STATE_SCHED;
6531
6532 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6533 * This was suggested by Alexander Duyck, as compiler
6534 * emits better code than :
6535 * if (val & NAPIF_STATE_SCHED)
6536 * new |= NAPIF_STATE_MISSED;
6537 */
6538 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6539 NAPIF_STATE_MISSED;
6540 } while (cmpxchg(&n->state, val, new) != val);
6541
6542 return !(val & NAPIF_STATE_SCHED);
6543}
6544EXPORT_SYMBOL(napi_schedule_prep);
6545
6546/**
6547 * __napi_schedule_irqoff - schedule for receive
6548 * @n: entry to schedule
6549 *
6550 * Variant of __napi_schedule() assuming hard irqs are masked.
6551 *
6552 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6553 * because the interrupt disabled assumption might not be true
6554 * due to force-threaded interrupts and spinlock substitution.
6555 */
6556void __napi_schedule_irqoff(struct napi_struct *n)
6557{
6558 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6559 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6560 else
6561 __napi_schedule(n);
6562}
6563EXPORT_SYMBOL(__napi_schedule_irqoff);
6564
6565bool napi_complete_done(struct napi_struct *n, int work_done)
6566{
6567 unsigned long flags, val, new, timeout = 0;
6568 bool ret = true;
6569
6570 /*
6571 * 1) Don't let napi dequeue from the cpu poll list
6572 * just in case its running on a different cpu.
6573 * 2) If we are busy polling, do nothing here, we have
6574 * the guarantee we will be called later.
6575 */
6576 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6577 NAPIF_STATE_IN_BUSY_POLL)))
6578 return false;
6579
6580 if (work_done) {
6581 if (n->gro_bitmask)
6582 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6583 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6584 }
6585 if (n->defer_hard_irqs_count > 0) {
6586 n->defer_hard_irqs_count--;
6587 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6588 if (timeout)
6589 ret = false;
6590 }
6591 if (n->gro_bitmask) {
6592 /* When the NAPI instance uses a timeout and keeps postponing
6593 * it, we need to bound somehow the time packets are kept in
6594 * the GRO layer
6595 */
6596 napi_gro_flush(n, !!timeout);
6597 }
6598
6599 gro_normal_list(n);
6600
6601 if (unlikely(!list_empty(&n->poll_list))) {
6602 /* If n->poll_list is not empty, we need to mask irqs */
6603 local_irq_save(flags);
6604 list_del_init(&n->poll_list);
6605 local_irq_restore(flags);
6606 }
6607
6608 do {
6609 val = READ_ONCE(n->state);
6610
6611 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6612
6613 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6614 NAPIF_STATE_SCHED_THREADED |
6615 NAPIF_STATE_PREFER_BUSY_POLL);
6616
6617 /* If STATE_MISSED was set, leave STATE_SCHED set,
6618 * because we will call napi->poll() one more time.
6619 * This C code was suggested by Alexander Duyck to help gcc.
6620 */
6621 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6622 NAPIF_STATE_SCHED;
6623 } while (cmpxchg(&n->state, val, new) != val);
6624
6625 if (unlikely(val & NAPIF_STATE_MISSED)) {
6626 __napi_schedule(n);
6627 return false;
6628 }
6629
6630 if (timeout)
6631 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6632 HRTIMER_MODE_REL_PINNED);
6633 return ret;
6634}
6635EXPORT_SYMBOL(napi_complete_done);
6636
6637/* must be called under rcu_read_lock(), as we dont take a reference */
6638static struct napi_struct *napi_by_id(unsigned int napi_id)
6639{
6640 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6641 struct napi_struct *napi;
6642
6643 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6644 if (napi->napi_id == napi_id)
6645 return napi;
6646
6647 return NULL;
6648}
6649
6650#if defined(CONFIG_NET_RX_BUSY_POLL)
6651
6652static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6653{
6654 if (!skip_schedule) {
6655 gro_normal_list(napi);
6656 __napi_schedule(napi);
6657 return;
6658 }
6659
6660 if (napi->gro_bitmask) {
6661 /* flush too old packets
6662 * If HZ < 1000, flush all packets.
6663 */
6664 napi_gro_flush(napi, HZ >= 1000);
6665 }
6666
6667 gro_normal_list(napi);
6668 clear_bit(NAPI_STATE_SCHED, &napi->state);
6669}
6670
6671static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6672 u16 budget)
6673{
6674 bool skip_schedule = false;
6675 unsigned long timeout;
6676 int rc;
6677
6678 /* Busy polling means there is a high chance device driver hard irq
6679 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6680 * set in napi_schedule_prep().
6681 * Since we are about to call napi->poll() once more, we can safely
6682 * clear NAPI_STATE_MISSED.
6683 *
6684 * Note: x86 could use a single "lock and ..." instruction
6685 * to perform these two clear_bit()
6686 */
6687 clear_bit(NAPI_STATE_MISSED, &napi->state);
6688 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6689
6690 local_bh_disable();
6691
6692 if (prefer_busy_poll) {
6693 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6694 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6695 if (napi->defer_hard_irqs_count && timeout) {
6696 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6697 skip_schedule = true;
6698 }
6699 }
6700
6701 /* All we really want here is to re-enable device interrupts.
6702 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6703 */
6704 rc = napi->poll(napi, budget);
6705 /* We can't gro_normal_list() here, because napi->poll() might have
6706 * rearmed the napi (napi_complete_done()) in which case it could
6707 * already be running on another CPU.
6708 */
6709 trace_napi_poll(napi, rc, budget);
6710 netpoll_poll_unlock(have_poll_lock);
6711 if (rc == budget)
6712 __busy_poll_stop(napi, skip_schedule);
6713 local_bh_enable();
6714}
6715
6716void napi_busy_loop(unsigned int napi_id,
6717 bool (*loop_end)(void *, unsigned long),
6718 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6719{
6720 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6721 int (*napi_poll)(struct napi_struct *napi, int budget);
6722 void *have_poll_lock = NULL;
6723 struct napi_struct *napi;
6724
6725restart:
6726 napi_poll = NULL;
6727
6728 rcu_read_lock();
6729
6730 napi = napi_by_id(napi_id);
6731 if (!napi)
6732 goto out;
6733
6734 preempt_disable();
6735 for (;;) {
6736 int work = 0;
6737
6738 local_bh_disable();
6739 if (!napi_poll) {
6740 unsigned long val = READ_ONCE(napi->state);
6741
6742 /* If multiple threads are competing for this napi,
6743 * we avoid dirtying napi->state as much as we can.
6744 */
6745 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6746 NAPIF_STATE_IN_BUSY_POLL)) {
6747 if (prefer_busy_poll)
6748 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6749 goto count;
6750 }
6751 if (cmpxchg(&napi->state, val,
6752 val | NAPIF_STATE_IN_BUSY_POLL |
6753 NAPIF_STATE_SCHED) != val) {
6754 if (prefer_busy_poll)
6755 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6756 goto count;
6757 }
6758 have_poll_lock = netpoll_poll_lock(napi);
6759 napi_poll = napi->poll;
6760 }
6761 work = napi_poll(napi, budget);
6762 trace_napi_poll(napi, work, budget);
6763 gro_normal_list(napi);
6764count:
6765 if (work > 0)
6766 __NET_ADD_STATS(dev_net(napi->dev),
6767 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6768 local_bh_enable();
6769
6770 if (!loop_end || loop_end(loop_end_arg, start_time))
6771 break;
6772
6773 if (unlikely(need_resched())) {
6774 if (napi_poll)
6775 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6776 preempt_enable();
6777 rcu_read_unlock();
6778 cond_resched();
6779 if (loop_end(loop_end_arg, start_time))
6780 return;
6781 goto restart;
6782 }
6783 cpu_relax();
6784 }
6785 if (napi_poll)
6786 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6787 preempt_enable();
6788out:
6789 rcu_read_unlock();
6790}
6791EXPORT_SYMBOL(napi_busy_loop);
6792
6793#endif /* CONFIG_NET_RX_BUSY_POLL */
6794
6795static void napi_hash_add(struct napi_struct *napi)
6796{
6797 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6798 return;
6799
6800 spin_lock(&napi_hash_lock);
6801
6802 /* 0..NR_CPUS range is reserved for sender_cpu use */
6803 do {
6804 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6805 napi_gen_id = MIN_NAPI_ID;
6806 } while (napi_by_id(napi_gen_id));
6807 napi->napi_id = napi_gen_id;
6808
6809 hlist_add_head_rcu(&napi->napi_hash_node,
6810 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6811
6812 spin_unlock(&napi_hash_lock);
6813}
6814
6815/* Warning : caller is responsible to make sure rcu grace period
6816 * is respected before freeing memory containing @napi
6817 */
6818static void napi_hash_del(struct napi_struct *napi)
6819{
6820 spin_lock(&napi_hash_lock);
6821
6822 hlist_del_init_rcu(&napi->napi_hash_node);
6823
6824 spin_unlock(&napi_hash_lock);
6825}
6826
6827static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6828{
6829 struct napi_struct *napi;
6830
6831 napi = container_of(timer, struct napi_struct, timer);
6832
6833 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6834 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6835 */
6836 if (!napi_disable_pending(napi) &&
6837 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6838 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6839 __napi_schedule_irqoff(napi);
6840 }
6841
6842 return HRTIMER_NORESTART;
6843}
6844
6845static void init_gro_hash(struct napi_struct *napi)
6846{
6847 int i;
6848
6849 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6850 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6851 napi->gro_hash[i].count = 0;
6852 }
6853 napi->gro_bitmask = 0;
6854}
6855
6856int dev_set_threaded(struct net_device *dev, bool threaded)
6857{
6858 struct napi_struct *napi;
6859 int err = 0;
6860
6861 if (dev->threaded == threaded)
6862 return 0;
6863
6864 if (threaded) {
6865 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6866 if (!napi->thread) {
6867 err = napi_kthread_create(napi);
6868 if (err) {
6869 threaded = false;
6870 break;
6871 }
6872 }
6873 }
6874 }
6875
6876 dev->threaded = threaded;
6877
6878 /* Make sure kthread is created before THREADED bit
6879 * is set.
6880 */
6881 smp_mb__before_atomic();
6882
6883 /* Setting/unsetting threaded mode on a napi might not immediately
6884 * take effect, if the current napi instance is actively being
6885 * polled. In this case, the switch between threaded mode and
6886 * softirq mode will happen in the next round of napi_schedule().
6887 * This should not cause hiccups/stalls to the live traffic.
6888 */
6889 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6890 if (threaded)
6891 set_bit(NAPI_STATE_THREADED, &napi->state);
6892 else
6893 clear_bit(NAPI_STATE_THREADED, &napi->state);
6894 }
6895
6896 return err;
6897}
6898EXPORT_SYMBOL(dev_set_threaded);
6899
6900void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6901 int (*poll)(struct napi_struct *, int), int weight)
6902{
6903 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6904 return;
6905
6906 INIT_LIST_HEAD(&napi->poll_list);
6907 INIT_HLIST_NODE(&napi->napi_hash_node);
6908 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6909 napi->timer.function = napi_watchdog;
6910 init_gro_hash(napi);
6911 napi->skb = NULL;
6912 INIT_LIST_HEAD(&napi->rx_list);
6913 napi->rx_count = 0;
6914 napi->poll = poll;
6915 if (weight > NAPI_POLL_WEIGHT)
6916 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6917 weight);
6918 napi->weight = weight;
6919 napi->dev = dev;
6920#ifdef CONFIG_NETPOLL
6921 napi->poll_owner = -1;
6922#endif
6923 set_bit(NAPI_STATE_SCHED, &napi->state);
6924 set_bit(NAPI_STATE_NPSVC, &napi->state);
6925 list_add_rcu(&napi->dev_list, &dev->napi_list);
6926 napi_hash_add(napi);
6927 /* Create kthread for this napi if dev->threaded is set.
6928 * Clear dev->threaded if kthread creation failed so that
6929 * threaded mode will not be enabled in napi_enable().
6930 */
6931 if (dev->threaded && napi_kthread_create(napi))
6932 dev->threaded = 0;
6933}
6934EXPORT_SYMBOL(netif_napi_add);
6935
6936void napi_disable(struct napi_struct *n)
6937{
6938 might_sleep();
6939 set_bit(NAPI_STATE_DISABLE, &n->state);
6940
6941 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6942 msleep(1);
6943 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6944 msleep(1);
6945
6946 hrtimer_cancel(&n->timer);
6947
6948 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6949 clear_bit(NAPI_STATE_DISABLE, &n->state);
6950 clear_bit(NAPI_STATE_THREADED, &n->state);
6951}
6952EXPORT_SYMBOL(napi_disable);
6953
6954/**
6955 * napi_enable - enable NAPI scheduling
6956 * @n: NAPI context
6957 *
6958 * Resume NAPI from being scheduled on this context.
6959 * Must be paired with napi_disable.
6960 */
6961void napi_enable(struct napi_struct *n)
6962{
6963 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6964 smp_mb__before_atomic();
6965 clear_bit(NAPI_STATE_SCHED, &n->state);
6966 clear_bit(NAPI_STATE_NPSVC, &n->state);
6967 if (n->dev->threaded && n->thread)
6968 set_bit(NAPI_STATE_THREADED, &n->state);
6969}
6970EXPORT_SYMBOL(napi_enable);
6971
6972static void flush_gro_hash(struct napi_struct *napi)
6973{
6974 int i;
6975
6976 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6977 struct sk_buff *skb, *n;
6978
6979 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6980 kfree_skb(skb);
6981 napi->gro_hash[i].count = 0;
6982 }
6983}
6984
6985/* Must be called in process context */
6986void __netif_napi_del(struct napi_struct *napi)
6987{
6988 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6989 return;
6990
6991 napi_hash_del(napi);
6992 list_del_rcu(&napi->dev_list);
6993 napi_free_frags(napi);
6994
6995 flush_gro_hash(napi);
6996 napi->gro_bitmask = 0;
6997
6998 if (napi->thread) {
6999 kthread_stop(napi->thread);
7000 napi->thread = NULL;
7001 }
7002}
7003EXPORT_SYMBOL(__netif_napi_del);
7004
7005static int __napi_poll(struct napi_struct *n, bool *repoll)
7006{
7007 int work, weight;
7008
7009 weight = n->weight;
7010
7011 /* This NAPI_STATE_SCHED test is for avoiding a race
7012 * with netpoll's poll_napi(). Only the entity which
7013 * obtains the lock and sees NAPI_STATE_SCHED set will
7014 * actually make the ->poll() call. Therefore we avoid
7015 * accidentally calling ->poll() when NAPI is not scheduled.
7016 */
7017 work = 0;
7018 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7019 work = n->poll(n, weight);
7020 trace_napi_poll(n, work, weight);
7021 }
7022
7023 if (unlikely(work > weight))
7024 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7025 n->poll, work, weight);
7026
7027 if (likely(work < weight))
7028 return work;
7029
7030 /* Drivers must not modify the NAPI state if they
7031 * consume the entire weight. In such cases this code
7032 * still "owns" the NAPI instance and therefore can
7033 * move the instance around on the list at-will.
7034 */
7035 if (unlikely(napi_disable_pending(n))) {
7036 napi_complete(n);
7037 return work;
7038 }
7039
7040 /* The NAPI context has more processing work, but busy-polling
7041 * is preferred. Exit early.
7042 */
7043 if (napi_prefer_busy_poll(n)) {
7044 if (napi_complete_done(n, work)) {
7045 /* If timeout is not set, we need to make sure
7046 * that the NAPI is re-scheduled.
7047 */
7048 napi_schedule(n);
7049 }
7050 return work;
7051 }
7052
7053 if (n->gro_bitmask) {
7054 /* flush too old packets
7055 * If HZ < 1000, flush all packets.
7056 */
7057 napi_gro_flush(n, HZ >= 1000);
7058 }
7059
7060 gro_normal_list(n);
7061
7062 /* Some drivers may have called napi_schedule
7063 * prior to exhausting their budget.
7064 */
7065 if (unlikely(!list_empty(&n->poll_list))) {
7066 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7067 n->dev ? n->dev->name : "backlog");
7068 return work;
7069 }
7070
7071 *repoll = true;
7072
7073 return work;
7074}
7075
7076static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7077{
7078 bool do_repoll = false;
7079 void *have;
7080 int work;
7081
7082 list_del_init(&n->poll_list);
7083
7084 have = netpoll_poll_lock(n);
7085
7086 work = __napi_poll(n, &do_repoll);
7087
7088 if (do_repoll)
7089 list_add_tail(&n->poll_list, repoll);
7090
7091 netpoll_poll_unlock(have);
7092
7093 return work;
7094}
7095
7096static int napi_thread_wait(struct napi_struct *napi)
7097{
7098 bool woken = false;
7099
7100 set_current_state(TASK_INTERRUPTIBLE);
7101
7102 while (!kthread_should_stop()) {
7103 /* Testing SCHED_THREADED bit here to make sure the current
7104 * kthread owns this napi and could poll on this napi.
7105 * Testing SCHED bit is not enough because SCHED bit might be
7106 * set by some other busy poll thread or by napi_disable().
7107 */
7108 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7109 WARN_ON(!list_empty(&napi->poll_list));
7110 __set_current_state(TASK_RUNNING);
7111 return 0;
7112 }
7113
7114 schedule();
7115 /* woken being true indicates this thread owns this napi. */
7116 woken = true;
7117 set_current_state(TASK_INTERRUPTIBLE);
7118 }
7119 __set_current_state(TASK_RUNNING);
7120
7121 return -1;
7122}
7123
7124static int napi_threaded_poll(void *data)
7125{
7126 struct napi_struct *napi = data;
7127 void *have;
7128
7129 while (!napi_thread_wait(napi)) {
7130 for (;;) {
7131 bool repoll = false;
7132
7133 local_bh_disable();
7134
7135 have = netpoll_poll_lock(napi);
7136 __napi_poll(napi, &repoll);
7137 netpoll_poll_unlock(have);
7138
7139 local_bh_enable();
7140
7141 if (!repoll)
7142 break;
7143
7144 cond_resched();
7145 }
7146 }
7147 return 0;
7148}
7149
7150static __latent_entropy void net_rx_action(struct softirq_action *h)
7151{
7152 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7153 unsigned long time_limit = jiffies +
7154 usecs_to_jiffies(netdev_budget_usecs);
7155 int budget = netdev_budget;
7156 LIST_HEAD(list);
7157 LIST_HEAD(repoll);
7158
7159 local_irq_disable();
7160 list_splice_init(&sd->poll_list, &list);
7161 local_irq_enable();
7162
7163 for (;;) {
7164 struct napi_struct *n;
7165
7166 if (list_empty(&list)) {
7167 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7168 return;
7169 break;
7170 }
7171
7172 n = list_first_entry(&list, struct napi_struct, poll_list);
7173 budget -= napi_poll(n, &repoll);
7174
7175 /* If softirq window is exhausted then punt.
7176 * Allow this to run for 2 jiffies since which will allow
7177 * an average latency of 1.5/HZ.
7178 */
7179 if (unlikely(budget <= 0 ||
7180 time_after_eq(jiffies, time_limit))) {
7181 sd->time_squeeze++;
7182 break;
7183 }
7184 }
7185
7186 local_irq_disable();
7187
7188 list_splice_tail_init(&sd->poll_list, &list);
7189 list_splice_tail(&repoll, &list);
7190 list_splice(&list, &sd->poll_list);
7191 if (!list_empty(&sd->poll_list))
7192 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7193
7194 net_rps_action_and_irq_enable(sd);
7195}
7196
7197struct netdev_adjacent {
7198 struct net_device *dev;
7199
7200 /* upper master flag, there can only be one master device per list */
7201 bool master;
7202
7203 /* lookup ignore flag */
7204 bool ignore;
7205
7206 /* counter for the number of times this device was added to us */
7207 u16 ref_nr;
7208
7209 /* private field for the users */
7210 void *private;
7211
7212 struct list_head list;
7213 struct rcu_head rcu;
7214};
7215
7216static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7217 struct list_head *adj_list)
7218{
7219 struct netdev_adjacent *adj;
7220
7221 list_for_each_entry(adj, adj_list, list) {
7222 if (adj->dev == adj_dev)
7223 return adj;
7224 }
7225 return NULL;
7226}
7227
7228static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7229 struct netdev_nested_priv *priv)
7230{
7231 struct net_device *dev = (struct net_device *)priv->data;
7232
7233 return upper_dev == dev;
7234}
7235
7236/**
7237 * netdev_has_upper_dev - Check if device is linked to an upper device
7238 * @dev: device
7239 * @upper_dev: upper device to check
7240 *
7241 * Find out if a device is linked to specified upper device and return true
7242 * in case it is. Note that this checks only immediate upper device,
7243 * not through a complete stack of devices. The caller must hold the RTNL lock.
7244 */
7245bool netdev_has_upper_dev(struct net_device *dev,
7246 struct net_device *upper_dev)
7247{
7248 struct netdev_nested_priv priv = {
7249 .data = (void *)upper_dev,
7250 };
7251
7252 ASSERT_RTNL();
7253
7254 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7255 &priv);
7256}
7257EXPORT_SYMBOL(netdev_has_upper_dev);
7258
7259/**
7260 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7261 * @dev: device
7262 * @upper_dev: upper device to check
7263 *
7264 * Find out if a device is linked to specified upper device and return true
7265 * in case it is. Note that this checks the entire upper device chain.
7266 * The caller must hold rcu lock.
7267 */
7268
7269bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7270 struct net_device *upper_dev)
7271{
7272 struct netdev_nested_priv priv = {
7273 .data = (void *)upper_dev,
7274 };
7275
7276 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7277 &priv);
7278}
7279EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7280
7281/**
7282 * netdev_has_any_upper_dev - Check if device is linked to some device
7283 * @dev: device
7284 *
7285 * Find out if a device is linked to an upper device and return true in case
7286 * it is. The caller must hold the RTNL lock.
7287 */
7288bool netdev_has_any_upper_dev(struct net_device *dev)
7289{
7290 ASSERT_RTNL();
7291
7292 return !list_empty(&dev->adj_list.upper);
7293}
7294EXPORT_SYMBOL(netdev_has_any_upper_dev);
7295
7296/**
7297 * netdev_master_upper_dev_get - Get master upper device
7298 * @dev: device
7299 *
7300 * Find a master upper device and return pointer to it or NULL in case
7301 * it's not there. The caller must hold the RTNL lock.
7302 */
7303struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7304{
7305 struct netdev_adjacent *upper;
7306
7307 ASSERT_RTNL();
7308
7309 if (list_empty(&dev->adj_list.upper))
7310 return NULL;
7311
7312 upper = list_first_entry(&dev->adj_list.upper,
7313 struct netdev_adjacent, list);
7314 if (likely(upper->master))
7315 return upper->dev;
7316 return NULL;
7317}
7318EXPORT_SYMBOL(netdev_master_upper_dev_get);
7319
7320static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7321{
7322 struct netdev_adjacent *upper;
7323
7324 ASSERT_RTNL();
7325
7326 if (list_empty(&dev->adj_list.upper))
7327 return NULL;
7328
7329 upper = list_first_entry(&dev->adj_list.upper,
7330 struct netdev_adjacent, list);
7331 if (likely(upper->master) && !upper->ignore)
7332 return upper->dev;
7333 return NULL;
7334}
7335
7336/**
7337 * netdev_has_any_lower_dev - Check if device is linked to some device
7338 * @dev: device
7339 *
7340 * Find out if a device is linked to a lower device and return true in case
7341 * it is. The caller must hold the RTNL lock.
7342 */
7343static bool netdev_has_any_lower_dev(struct net_device *dev)
7344{
7345 ASSERT_RTNL();
7346
7347 return !list_empty(&dev->adj_list.lower);
7348}
7349
7350void *netdev_adjacent_get_private(struct list_head *adj_list)
7351{
7352 struct netdev_adjacent *adj;
7353
7354 adj = list_entry(adj_list, struct netdev_adjacent, list);
7355
7356 return adj->private;
7357}
7358EXPORT_SYMBOL(netdev_adjacent_get_private);
7359
7360/**
7361 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7362 * @dev: device
7363 * @iter: list_head ** of the current position
7364 *
7365 * Gets the next device from the dev's upper list, starting from iter
7366 * position. The caller must hold RCU read lock.
7367 */
7368struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7369 struct list_head **iter)
7370{
7371 struct netdev_adjacent *upper;
7372
7373 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7374
7375 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7376
7377 if (&upper->list == &dev->adj_list.upper)
7378 return NULL;
7379
7380 *iter = &upper->list;
7381
7382 return upper->dev;
7383}
7384EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7385
7386static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7387 struct list_head **iter,
7388 bool *ignore)
7389{
7390 struct netdev_adjacent *upper;
7391
7392 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7393
7394 if (&upper->list == &dev->adj_list.upper)
7395 return NULL;
7396
7397 *iter = &upper->list;
7398 *ignore = upper->ignore;
7399
7400 return upper->dev;
7401}
7402
7403static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7404 struct list_head **iter)
7405{
7406 struct netdev_adjacent *upper;
7407
7408 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7409
7410 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7411
7412 if (&upper->list == &dev->adj_list.upper)
7413 return NULL;
7414
7415 *iter = &upper->list;
7416
7417 return upper->dev;
7418}
7419
7420static int __netdev_walk_all_upper_dev(struct net_device *dev,
7421 int (*fn)(struct net_device *dev,
7422 struct netdev_nested_priv *priv),
7423 struct netdev_nested_priv *priv)
7424{
7425 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7426 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7427 int ret, cur = 0;
7428 bool ignore;
7429
7430 now = dev;
7431 iter = &dev->adj_list.upper;
7432
7433 while (1) {
7434 if (now != dev) {
7435 ret = fn(now, priv);
7436 if (ret)
7437 return ret;
7438 }
7439
7440 next = NULL;
7441 while (1) {
7442 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7443 if (!udev)
7444 break;
7445 if (ignore)
7446 continue;
7447
7448 next = udev;
7449 niter = &udev->adj_list.upper;
7450 dev_stack[cur] = now;
7451 iter_stack[cur++] = iter;
7452 break;
7453 }
7454
7455 if (!next) {
7456 if (!cur)
7457 return 0;
7458 next = dev_stack[--cur];
7459 niter = iter_stack[cur];
7460 }
7461
7462 now = next;
7463 iter = niter;
7464 }
7465
7466 return 0;
7467}
7468
7469int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7470 int (*fn)(struct net_device *dev,
7471 struct netdev_nested_priv *priv),
7472 struct netdev_nested_priv *priv)
7473{
7474 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7475 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7476 int ret, cur = 0;
7477
7478 now = dev;
7479 iter = &dev->adj_list.upper;
7480
7481 while (1) {
7482 if (now != dev) {
7483 ret = fn(now, priv);
7484 if (ret)
7485 return ret;
7486 }
7487
7488 next = NULL;
7489 while (1) {
7490 udev = netdev_next_upper_dev_rcu(now, &iter);
7491 if (!udev)
7492 break;
7493
7494 next = udev;
7495 niter = &udev->adj_list.upper;
7496 dev_stack[cur] = now;
7497 iter_stack[cur++] = iter;
7498 break;
7499 }
7500
7501 if (!next) {
7502 if (!cur)
7503 return 0;
7504 next = dev_stack[--cur];
7505 niter = iter_stack[cur];
7506 }
7507
7508 now = next;
7509 iter = niter;
7510 }
7511
7512 return 0;
7513}
7514EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7515
7516static bool __netdev_has_upper_dev(struct net_device *dev,
7517 struct net_device *upper_dev)
7518{
7519 struct netdev_nested_priv priv = {
7520 .flags = 0,
7521 .data = (void *)upper_dev,
7522 };
7523
7524 ASSERT_RTNL();
7525
7526 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7527 &priv);
7528}
7529
7530/**
7531 * netdev_lower_get_next_private - Get the next ->private from the
7532 * lower neighbour list
7533 * @dev: device
7534 * @iter: list_head ** of the current position
7535 *
7536 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7537 * list, starting from iter position. The caller must hold either hold the
7538 * RTNL lock or its own locking that guarantees that the neighbour lower
7539 * list will remain unchanged.
7540 */
7541void *netdev_lower_get_next_private(struct net_device *dev,
7542 struct list_head **iter)
7543{
7544 struct netdev_adjacent *lower;
7545
7546 lower = list_entry(*iter, struct netdev_adjacent, list);
7547
7548 if (&lower->list == &dev->adj_list.lower)
7549 return NULL;
7550
7551 *iter = lower->list.next;
7552
7553 return lower->private;
7554}
7555EXPORT_SYMBOL(netdev_lower_get_next_private);
7556
7557/**
7558 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7559 * lower neighbour list, RCU
7560 * variant
7561 * @dev: device
7562 * @iter: list_head ** of the current position
7563 *
7564 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7565 * list, starting from iter position. The caller must hold RCU read lock.
7566 */
7567void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7568 struct list_head **iter)
7569{
7570 struct netdev_adjacent *lower;
7571
7572 WARN_ON_ONCE(!rcu_read_lock_held());
7573
7574 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7575
7576 if (&lower->list == &dev->adj_list.lower)
7577 return NULL;
7578
7579 *iter = &lower->list;
7580
7581 return lower->private;
7582}
7583EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7584
7585/**
7586 * netdev_lower_get_next - Get the next device from the lower neighbour
7587 * list
7588 * @dev: device
7589 * @iter: list_head ** of the current position
7590 *
7591 * Gets the next netdev_adjacent from the dev's lower neighbour
7592 * list, starting from iter position. The caller must hold RTNL lock or
7593 * its own locking that guarantees that the neighbour lower
7594 * list will remain unchanged.
7595 */
7596void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7597{
7598 struct netdev_adjacent *lower;
7599
7600 lower = list_entry(*iter, struct netdev_adjacent, list);
7601
7602 if (&lower->list == &dev->adj_list.lower)
7603 return NULL;
7604
7605 *iter = lower->list.next;
7606
7607 return lower->dev;
7608}
7609EXPORT_SYMBOL(netdev_lower_get_next);
7610
7611static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7612 struct list_head **iter)
7613{
7614 struct netdev_adjacent *lower;
7615
7616 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7617
7618 if (&lower->list == &dev->adj_list.lower)
7619 return NULL;
7620
7621 *iter = &lower->list;
7622
7623 return lower->dev;
7624}
7625
7626static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7627 struct list_head **iter,
7628 bool *ignore)
7629{
7630 struct netdev_adjacent *lower;
7631
7632 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7633
7634 if (&lower->list == &dev->adj_list.lower)
7635 return NULL;
7636
7637 *iter = &lower->list;
7638 *ignore = lower->ignore;
7639
7640 return lower->dev;
7641}
7642
7643int netdev_walk_all_lower_dev(struct net_device *dev,
7644 int (*fn)(struct net_device *dev,
7645 struct netdev_nested_priv *priv),
7646 struct netdev_nested_priv *priv)
7647{
7648 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7649 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7650 int ret, cur = 0;
7651
7652 now = dev;
7653 iter = &dev->adj_list.lower;
7654
7655 while (1) {
7656 if (now != dev) {
7657 ret = fn(now, priv);
7658 if (ret)
7659 return ret;
7660 }
7661
7662 next = NULL;
7663 while (1) {
7664 ldev = netdev_next_lower_dev(now, &iter);
7665 if (!ldev)
7666 break;
7667
7668 next = ldev;
7669 niter = &ldev->adj_list.lower;
7670 dev_stack[cur] = now;
7671 iter_stack[cur++] = iter;
7672 break;
7673 }
7674
7675 if (!next) {
7676 if (!cur)
7677 return 0;
7678 next = dev_stack[--cur];
7679 niter = iter_stack[cur];
7680 }
7681
7682 now = next;
7683 iter = niter;
7684 }
7685
7686 return 0;
7687}
7688EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7689
7690static int __netdev_walk_all_lower_dev(struct net_device *dev,
7691 int (*fn)(struct net_device *dev,
7692 struct netdev_nested_priv *priv),
7693 struct netdev_nested_priv *priv)
7694{
7695 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7696 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7697 int ret, cur = 0;
7698 bool ignore;
7699
7700 now = dev;
7701 iter = &dev->adj_list.lower;
7702
7703 while (1) {
7704 if (now != dev) {
7705 ret = fn(now, priv);
7706 if (ret)
7707 return ret;
7708 }
7709
7710 next = NULL;
7711 while (1) {
7712 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7713 if (!ldev)
7714 break;
7715 if (ignore)
7716 continue;
7717
7718 next = ldev;
7719 niter = &ldev->adj_list.lower;
7720 dev_stack[cur] = now;
7721 iter_stack[cur++] = iter;
7722 break;
7723 }
7724
7725 if (!next) {
7726 if (!cur)
7727 return 0;
7728 next = dev_stack[--cur];
7729 niter = iter_stack[cur];
7730 }
7731
7732 now = next;
7733 iter = niter;
7734 }
7735
7736 return 0;
7737}
7738
7739struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7740 struct list_head **iter)
7741{
7742 struct netdev_adjacent *lower;
7743
7744 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7745 if (&lower->list == &dev->adj_list.lower)
7746 return NULL;
7747
7748 *iter = &lower->list;
7749
7750 return lower->dev;
7751}
7752EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7753
7754static u8 __netdev_upper_depth(struct net_device *dev)
7755{
7756 struct net_device *udev;
7757 struct list_head *iter;
7758 u8 max_depth = 0;
7759 bool ignore;
7760
7761 for (iter = &dev->adj_list.upper,
7762 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7763 udev;
7764 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7765 if (ignore)
7766 continue;
7767 if (max_depth < udev->upper_level)
7768 max_depth = udev->upper_level;
7769 }
7770
7771 return max_depth;
7772}
7773
7774static u8 __netdev_lower_depth(struct net_device *dev)
7775{
7776 struct net_device *ldev;
7777 struct list_head *iter;
7778 u8 max_depth = 0;
7779 bool ignore;
7780
7781 for (iter = &dev->adj_list.lower,
7782 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7783 ldev;
7784 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7785 if (ignore)
7786 continue;
7787 if (max_depth < ldev->lower_level)
7788 max_depth = ldev->lower_level;
7789 }
7790
7791 return max_depth;
7792}
7793
7794static int __netdev_update_upper_level(struct net_device *dev,
7795 struct netdev_nested_priv *__unused)
7796{
7797 dev->upper_level = __netdev_upper_depth(dev) + 1;
7798 return 0;
7799}
7800
7801static int __netdev_update_lower_level(struct net_device *dev,
7802 struct netdev_nested_priv *priv)
7803{
7804 dev->lower_level = __netdev_lower_depth(dev) + 1;
7805
7806#ifdef CONFIG_LOCKDEP
7807 if (!priv)
7808 return 0;
7809
7810 if (priv->flags & NESTED_SYNC_IMM)
7811 dev->nested_level = dev->lower_level - 1;
7812 if (priv->flags & NESTED_SYNC_TODO)
7813 net_unlink_todo(dev);
7814#endif
7815 return 0;
7816}
7817
7818int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7819 int (*fn)(struct net_device *dev,
7820 struct netdev_nested_priv *priv),
7821 struct netdev_nested_priv *priv)
7822{
7823 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7824 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7825 int ret, cur = 0;
7826
7827 now = dev;
7828 iter = &dev->adj_list.lower;
7829
7830 while (1) {
7831 if (now != dev) {
7832 ret = fn(now, priv);
7833 if (ret)
7834 return ret;
7835 }
7836
7837 next = NULL;
7838 while (1) {
7839 ldev = netdev_next_lower_dev_rcu(now, &iter);
7840 if (!ldev)
7841 break;
7842
7843 next = ldev;
7844 niter = &ldev->adj_list.lower;
7845 dev_stack[cur] = now;
7846 iter_stack[cur++] = iter;
7847 break;
7848 }
7849
7850 if (!next) {
7851 if (!cur)
7852 return 0;
7853 next = dev_stack[--cur];
7854 niter = iter_stack[cur];
7855 }
7856
7857 now = next;
7858 iter = niter;
7859 }
7860
7861 return 0;
7862}
7863EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7864
7865/**
7866 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7867 * lower neighbour list, RCU
7868 * variant
7869 * @dev: device
7870 *
7871 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7872 * list. The caller must hold RCU read lock.
7873 */
7874void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7875{
7876 struct netdev_adjacent *lower;
7877
7878 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7879 struct netdev_adjacent, list);
7880 if (lower)
7881 return lower->private;
7882 return NULL;
7883}
7884EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7885
7886/**
7887 * netdev_master_upper_dev_get_rcu - Get master upper device
7888 * @dev: device
7889 *
7890 * Find a master upper device and return pointer to it or NULL in case
7891 * it's not there. The caller must hold the RCU read lock.
7892 */
7893struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7894{
7895 struct netdev_adjacent *upper;
7896
7897 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7898 struct netdev_adjacent, list);
7899 if (upper && likely(upper->master))
7900 return upper->dev;
7901 return NULL;
7902}
7903EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7904
7905static int netdev_adjacent_sysfs_add(struct net_device *dev,
7906 struct net_device *adj_dev,
7907 struct list_head *dev_list)
7908{
7909 char linkname[IFNAMSIZ+7];
7910
7911 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7912 "upper_%s" : "lower_%s", adj_dev->name);
7913 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7914 linkname);
7915}
7916static void netdev_adjacent_sysfs_del(struct net_device *dev,
7917 char *name,
7918 struct list_head *dev_list)
7919{
7920 char linkname[IFNAMSIZ+7];
7921
7922 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7923 "upper_%s" : "lower_%s", name);
7924 sysfs_remove_link(&(dev->dev.kobj), linkname);
7925}
7926
7927static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7928 struct net_device *adj_dev,
7929 struct list_head *dev_list)
7930{
7931 return (dev_list == &dev->adj_list.upper ||
7932 dev_list == &dev->adj_list.lower) &&
7933 net_eq(dev_net(dev), dev_net(adj_dev));
7934}
7935
7936static int __netdev_adjacent_dev_insert(struct net_device *dev,
7937 struct net_device *adj_dev,
7938 struct list_head *dev_list,
7939 void *private, bool master)
7940{
7941 struct netdev_adjacent *adj;
7942 int ret;
7943
7944 adj = __netdev_find_adj(adj_dev, dev_list);
7945
7946 if (adj) {
7947 adj->ref_nr += 1;
7948 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7949 dev->name, adj_dev->name, adj->ref_nr);
7950
7951 return 0;
7952 }
7953
7954 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7955 if (!adj)
7956 return -ENOMEM;
7957
7958 adj->dev = adj_dev;
7959 adj->master = master;
7960 adj->ref_nr = 1;
7961 adj->private = private;
7962 adj->ignore = false;
7963 dev_hold(adj_dev);
7964
7965 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7966 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7967
7968 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7969 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7970 if (ret)
7971 goto free_adj;
7972 }
7973
7974 /* Ensure that master link is always the first item in list. */
7975 if (master) {
7976 ret = sysfs_create_link(&(dev->dev.kobj),
7977 &(adj_dev->dev.kobj), "master");
7978 if (ret)
7979 goto remove_symlinks;
7980
7981 list_add_rcu(&adj->list, dev_list);
7982 } else {
7983 list_add_tail_rcu(&adj->list, dev_list);
7984 }
7985
7986 return 0;
7987
7988remove_symlinks:
7989 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7990 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7991free_adj:
7992 kfree(adj);
7993 dev_put(adj_dev);
7994
7995 return ret;
7996}
7997
7998static void __netdev_adjacent_dev_remove(struct net_device *dev,
7999 struct net_device *adj_dev,
8000 u16 ref_nr,
8001 struct list_head *dev_list)
8002{
8003 struct netdev_adjacent *adj;
8004
8005 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8006 dev->name, adj_dev->name, ref_nr);
8007
8008 adj = __netdev_find_adj(adj_dev, dev_list);
8009
8010 if (!adj) {
8011 pr_err("Adjacency does not exist for device %s from %s\n",
8012 dev->name, adj_dev->name);
8013 WARN_ON(1);
8014 return;
8015 }
8016
8017 if (adj->ref_nr > ref_nr) {
8018 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8019 dev->name, adj_dev->name, ref_nr,
8020 adj->ref_nr - ref_nr);
8021 adj->ref_nr -= ref_nr;
8022 return;
8023 }
8024
8025 if (adj->master)
8026 sysfs_remove_link(&(dev->dev.kobj), "master");
8027
8028 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8029 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8030
8031 list_del_rcu(&adj->list);
8032 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8033 adj_dev->name, dev->name, adj_dev->name);
8034 dev_put(adj_dev);
8035 kfree_rcu(adj, rcu);
8036}
8037
8038static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8039 struct net_device *upper_dev,
8040 struct list_head *up_list,
8041 struct list_head *down_list,
8042 void *private, bool master)
8043{
8044 int ret;
8045
8046 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8047 private, master);
8048 if (ret)
8049 return ret;
8050
8051 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8052 private, false);
8053 if (ret) {
8054 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8055 return ret;
8056 }
8057
8058 return 0;
8059}
8060
8061static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8062 struct net_device *upper_dev,
8063 u16 ref_nr,
8064 struct list_head *up_list,
8065 struct list_head *down_list)
8066{
8067 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8068 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8069}
8070
8071static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8072 struct net_device *upper_dev,
8073 void *private, bool master)
8074{
8075 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8076 &dev->adj_list.upper,
8077 &upper_dev->adj_list.lower,
8078 private, master);
8079}
8080
8081static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8082 struct net_device *upper_dev)
8083{
8084 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8085 &dev->adj_list.upper,
8086 &upper_dev->adj_list.lower);
8087}
8088
8089static int __netdev_upper_dev_link(struct net_device *dev,
8090 struct net_device *upper_dev, bool master,
8091 void *upper_priv, void *upper_info,
8092 struct netdev_nested_priv *priv,
8093 struct netlink_ext_ack *extack)
8094{
8095 struct netdev_notifier_changeupper_info changeupper_info = {
8096 .info = {
8097 .dev = dev,
8098 .extack = extack,
8099 },
8100 .upper_dev = upper_dev,
8101 .master = master,
8102 .linking = true,
8103 .upper_info = upper_info,
8104 };
8105 struct net_device *master_dev;
8106 int ret = 0;
8107
8108 ASSERT_RTNL();
8109
8110 if (dev == upper_dev)
8111 return -EBUSY;
8112
8113 /* To prevent loops, check if dev is not upper device to upper_dev. */
8114 if (__netdev_has_upper_dev(upper_dev, dev))
8115 return -EBUSY;
8116
8117 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8118 return -EMLINK;
8119
8120 if (!master) {
8121 if (__netdev_has_upper_dev(dev, upper_dev))
8122 return -EEXIST;
8123 } else {
8124 master_dev = __netdev_master_upper_dev_get(dev);
8125 if (master_dev)
8126 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8127 }
8128
8129 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8130 &changeupper_info.info);
8131 ret = notifier_to_errno(ret);
8132 if (ret)
8133 return ret;
8134
8135 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8136 master);
8137 if (ret)
8138 return ret;
8139
8140 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8141 &changeupper_info.info);
8142 ret = notifier_to_errno(ret);
8143 if (ret)
8144 goto rollback;
8145
8146 __netdev_update_upper_level(dev, NULL);
8147 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8148
8149 __netdev_update_lower_level(upper_dev, priv);
8150 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8151 priv);
8152
8153 return 0;
8154
8155rollback:
8156 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8157
8158 return ret;
8159}
8160
8161/**
8162 * netdev_upper_dev_link - Add a link to the upper device
8163 * @dev: device
8164 * @upper_dev: new upper device
8165 * @extack: netlink extended ack
8166 *
8167 * Adds a link to device which is upper to this one. The caller must hold
8168 * the RTNL lock. On a failure a negative errno code is returned.
8169 * On success the reference counts are adjusted and the function
8170 * returns zero.
8171 */
8172int netdev_upper_dev_link(struct net_device *dev,
8173 struct net_device *upper_dev,
8174 struct netlink_ext_ack *extack)
8175{
8176 struct netdev_nested_priv priv = {
8177 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8178 .data = NULL,
8179 };
8180
8181 return __netdev_upper_dev_link(dev, upper_dev, false,
8182 NULL, NULL, &priv, extack);
8183}
8184EXPORT_SYMBOL(netdev_upper_dev_link);
8185
8186/**
8187 * netdev_master_upper_dev_link - Add a master link to the upper device
8188 * @dev: device
8189 * @upper_dev: new upper device
8190 * @upper_priv: upper device private
8191 * @upper_info: upper info to be passed down via notifier
8192 * @extack: netlink extended ack
8193 *
8194 * Adds a link to device which is upper to this one. In this case, only
8195 * one master upper device can be linked, although other non-master devices
8196 * might be linked as well. The caller must hold the RTNL lock.
8197 * On a failure a negative errno code is returned. On success the reference
8198 * counts are adjusted and the function returns zero.
8199 */
8200int netdev_master_upper_dev_link(struct net_device *dev,
8201 struct net_device *upper_dev,
8202 void *upper_priv, void *upper_info,
8203 struct netlink_ext_ack *extack)
8204{
8205 struct netdev_nested_priv priv = {
8206 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8207 .data = NULL,
8208 };
8209
8210 return __netdev_upper_dev_link(dev, upper_dev, true,
8211 upper_priv, upper_info, &priv, extack);
8212}
8213EXPORT_SYMBOL(netdev_master_upper_dev_link);
8214
8215static void __netdev_upper_dev_unlink(struct net_device *dev,
8216 struct net_device *upper_dev,
8217 struct netdev_nested_priv *priv)
8218{
8219 struct netdev_notifier_changeupper_info changeupper_info = {
8220 .info = {
8221 .dev = dev,
8222 },
8223 .upper_dev = upper_dev,
8224 .linking = false,
8225 };
8226
8227 ASSERT_RTNL();
8228
8229 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8230
8231 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8232 &changeupper_info.info);
8233
8234 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8235
8236 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8237 &changeupper_info.info);
8238
8239 __netdev_update_upper_level(dev, NULL);
8240 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8241
8242 __netdev_update_lower_level(upper_dev, priv);
8243 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8244 priv);
8245}
8246
8247/**
8248 * netdev_upper_dev_unlink - Removes a link to upper device
8249 * @dev: device
8250 * @upper_dev: new upper device
8251 *
8252 * Removes a link to device which is upper to this one. The caller must hold
8253 * the RTNL lock.
8254 */
8255void netdev_upper_dev_unlink(struct net_device *dev,
8256 struct net_device *upper_dev)
8257{
8258 struct netdev_nested_priv priv = {
8259 .flags = NESTED_SYNC_TODO,
8260 .data = NULL,
8261 };
8262
8263 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8264}
8265EXPORT_SYMBOL(netdev_upper_dev_unlink);
8266
8267static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8268 struct net_device *lower_dev,
8269 bool val)
8270{
8271 struct netdev_adjacent *adj;
8272
8273 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8274 if (adj)
8275 adj->ignore = val;
8276
8277 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8278 if (adj)
8279 adj->ignore = val;
8280}
8281
8282static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8283 struct net_device *lower_dev)
8284{
8285 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8286}
8287
8288static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8289 struct net_device *lower_dev)
8290{
8291 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8292}
8293
8294int netdev_adjacent_change_prepare(struct net_device *old_dev,
8295 struct net_device *new_dev,
8296 struct net_device *dev,
8297 struct netlink_ext_ack *extack)
8298{
8299 struct netdev_nested_priv priv = {
8300 .flags = 0,
8301 .data = NULL,
8302 };
8303 int err;
8304
8305 if (!new_dev)
8306 return 0;
8307
8308 if (old_dev && new_dev != old_dev)
8309 netdev_adjacent_dev_disable(dev, old_dev);
8310 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8311 extack);
8312 if (err) {
8313 if (old_dev && new_dev != old_dev)
8314 netdev_adjacent_dev_enable(dev, old_dev);
8315 return err;
8316 }
8317
8318 return 0;
8319}
8320EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8321
8322void netdev_adjacent_change_commit(struct net_device *old_dev,
8323 struct net_device *new_dev,
8324 struct net_device *dev)
8325{
8326 struct netdev_nested_priv priv = {
8327 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8328 .data = NULL,
8329 };
8330
8331 if (!new_dev || !old_dev)
8332 return;
8333
8334 if (new_dev == old_dev)
8335 return;
8336
8337 netdev_adjacent_dev_enable(dev, old_dev);
8338 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8339}
8340EXPORT_SYMBOL(netdev_adjacent_change_commit);
8341
8342void netdev_adjacent_change_abort(struct net_device *old_dev,
8343 struct net_device *new_dev,
8344 struct net_device *dev)
8345{
8346 struct netdev_nested_priv priv = {
8347 .flags = 0,
8348 .data = NULL,
8349 };
8350
8351 if (!new_dev)
8352 return;
8353
8354 if (old_dev && new_dev != old_dev)
8355 netdev_adjacent_dev_enable(dev, old_dev);
8356
8357 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8358}
8359EXPORT_SYMBOL(netdev_adjacent_change_abort);
8360
8361/**
8362 * netdev_bonding_info_change - Dispatch event about slave change
8363 * @dev: device
8364 * @bonding_info: info to dispatch
8365 *
8366 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8367 * The caller must hold the RTNL lock.
8368 */
8369void netdev_bonding_info_change(struct net_device *dev,
8370 struct netdev_bonding_info *bonding_info)
8371{
8372 struct netdev_notifier_bonding_info info = {
8373 .info.dev = dev,
8374 };
8375
8376 memcpy(&info.bonding_info, bonding_info,
8377 sizeof(struct netdev_bonding_info));
8378 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8379 &info.info);
8380}
8381EXPORT_SYMBOL(netdev_bonding_info_change);
8382
8383/**
8384 * netdev_get_xmit_slave - Get the xmit slave of master device
8385 * @dev: device
8386 * @skb: The packet
8387 * @all_slaves: assume all the slaves are active
8388 *
8389 * The reference counters are not incremented so the caller must be
8390 * careful with locks. The caller must hold RCU lock.
8391 * %NULL is returned if no slave is found.
8392 */
8393
8394struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8395 struct sk_buff *skb,
8396 bool all_slaves)
8397{
8398 const struct net_device_ops *ops = dev->netdev_ops;
8399
8400 if (!ops->ndo_get_xmit_slave)
8401 return NULL;
8402 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8403}
8404EXPORT_SYMBOL(netdev_get_xmit_slave);
8405
8406static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8407 struct sock *sk)
8408{
8409 const struct net_device_ops *ops = dev->netdev_ops;
8410
8411 if (!ops->ndo_sk_get_lower_dev)
8412 return NULL;
8413 return ops->ndo_sk_get_lower_dev(dev, sk);
8414}
8415
8416/**
8417 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8418 * @dev: device
8419 * @sk: the socket
8420 *
8421 * %NULL is returned if no lower device is found.
8422 */
8423
8424struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8425 struct sock *sk)
8426{
8427 struct net_device *lower;
8428
8429 lower = netdev_sk_get_lower_dev(dev, sk);
8430 while (lower) {
8431 dev = lower;
8432 lower = netdev_sk_get_lower_dev(dev, sk);
8433 }
8434
8435 return dev;
8436}
8437EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8438
8439static void netdev_adjacent_add_links(struct net_device *dev)
8440{
8441 struct netdev_adjacent *iter;
8442
8443 struct net *net = dev_net(dev);
8444
8445 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8446 if (!net_eq(net, dev_net(iter->dev)))
8447 continue;
8448 netdev_adjacent_sysfs_add(iter->dev, dev,
8449 &iter->dev->adj_list.lower);
8450 netdev_adjacent_sysfs_add(dev, iter->dev,
8451 &dev->adj_list.upper);
8452 }
8453
8454 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8455 if (!net_eq(net, dev_net(iter->dev)))
8456 continue;
8457 netdev_adjacent_sysfs_add(iter->dev, dev,
8458 &iter->dev->adj_list.upper);
8459 netdev_adjacent_sysfs_add(dev, iter->dev,
8460 &dev->adj_list.lower);
8461 }
8462}
8463
8464static void netdev_adjacent_del_links(struct net_device *dev)
8465{
8466 struct netdev_adjacent *iter;
8467
8468 struct net *net = dev_net(dev);
8469
8470 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8471 if (!net_eq(net, dev_net(iter->dev)))
8472 continue;
8473 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8474 &iter->dev->adj_list.lower);
8475 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8476 &dev->adj_list.upper);
8477 }
8478
8479 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8480 if (!net_eq(net, dev_net(iter->dev)))
8481 continue;
8482 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8483 &iter->dev->adj_list.upper);
8484 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8485 &dev->adj_list.lower);
8486 }
8487}
8488
8489void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8490{
8491 struct netdev_adjacent *iter;
8492
8493 struct net *net = dev_net(dev);
8494
8495 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8496 if (!net_eq(net, dev_net(iter->dev)))
8497 continue;
8498 netdev_adjacent_sysfs_del(iter->dev, oldname,
8499 &iter->dev->adj_list.lower);
8500 netdev_adjacent_sysfs_add(iter->dev, dev,
8501 &iter->dev->adj_list.lower);
8502 }
8503
8504 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8505 if (!net_eq(net, dev_net(iter->dev)))
8506 continue;
8507 netdev_adjacent_sysfs_del(iter->dev, oldname,
8508 &iter->dev->adj_list.upper);
8509 netdev_adjacent_sysfs_add(iter->dev, dev,
8510 &iter->dev->adj_list.upper);
8511 }
8512}
8513
8514void *netdev_lower_dev_get_private(struct net_device *dev,
8515 struct net_device *lower_dev)
8516{
8517 struct netdev_adjacent *lower;
8518
8519 if (!lower_dev)
8520 return NULL;
8521 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8522 if (!lower)
8523 return NULL;
8524
8525 return lower->private;
8526}
8527EXPORT_SYMBOL(netdev_lower_dev_get_private);
8528
8529
8530/**
8531 * netdev_lower_state_changed - Dispatch event about lower device state change
8532 * @lower_dev: device
8533 * @lower_state_info: state to dispatch
8534 *
8535 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8536 * The caller must hold the RTNL lock.
8537 */
8538void netdev_lower_state_changed(struct net_device *lower_dev,
8539 void *lower_state_info)
8540{
8541 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8542 .info.dev = lower_dev,
8543 };
8544
8545 ASSERT_RTNL();
8546 changelowerstate_info.lower_state_info = lower_state_info;
8547 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8548 &changelowerstate_info.info);
8549}
8550EXPORT_SYMBOL(netdev_lower_state_changed);
8551
8552static void dev_change_rx_flags(struct net_device *dev, int flags)
8553{
8554 const struct net_device_ops *ops = dev->netdev_ops;
8555
8556 if (ops->ndo_change_rx_flags)
8557 ops->ndo_change_rx_flags(dev, flags);
8558}
8559
8560static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8561{
8562 unsigned int old_flags = dev->flags;
8563 kuid_t uid;
8564 kgid_t gid;
8565
8566 ASSERT_RTNL();
8567
8568 dev->flags |= IFF_PROMISC;
8569 dev->promiscuity += inc;
8570 if (dev->promiscuity == 0) {
8571 /*
8572 * Avoid overflow.
8573 * If inc causes overflow, untouch promisc and return error.
8574 */
8575 if (inc < 0)
8576 dev->flags &= ~IFF_PROMISC;
8577 else {
8578 dev->promiscuity -= inc;
8579 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8580 dev->name);
8581 return -EOVERFLOW;
8582 }
8583 }
8584 if (dev->flags != old_flags) {
8585 pr_info("device %s %s promiscuous mode\n",
8586 dev->name,
8587 dev->flags & IFF_PROMISC ? "entered" : "left");
8588 if (audit_enabled) {
8589 current_uid_gid(&uid, &gid);
8590 audit_log(audit_context(), GFP_ATOMIC,
8591 AUDIT_ANOM_PROMISCUOUS,
8592 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8593 dev->name, (dev->flags & IFF_PROMISC),
8594 (old_flags & IFF_PROMISC),
8595 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8596 from_kuid(&init_user_ns, uid),
8597 from_kgid(&init_user_ns, gid),
8598 audit_get_sessionid(current));
8599 }
8600
8601 dev_change_rx_flags(dev, IFF_PROMISC);
8602 }
8603 if (notify)
8604 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8605 return 0;
8606}
8607
8608/**
8609 * dev_set_promiscuity - update promiscuity count on a device
8610 * @dev: device
8611 * @inc: modifier
8612 *
8613 * Add or remove promiscuity from a device. While the count in the device
8614 * remains above zero the interface remains promiscuous. Once it hits zero
8615 * the device reverts back to normal filtering operation. A negative inc
8616 * value is used to drop promiscuity on the device.
8617 * Return 0 if successful or a negative errno code on error.
8618 */
8619int dev_set_promiscuity(struct net_device *dev, int inc)
8620{
8621 unsigned int old_flags = dev->flags;
8622 int err;
8623
8624 err = __dev_set_promiscuity(dev, inc, true);
8625 if (err < 0)
8626 return err;
8627 if (dev->flags != old_flags)
8628 dev_set_rx_mode(dev);
8629 return err;
8630}
8631EXPORT_SYMBOL(dev_set_promiscuity);
8632
8633static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8634{
8635 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8636
8637 ASSERT_RTNL();
8638
8639 dev->flags |= IFF_ALLMULTI;
8640 dev->allmulti += inc;
8641 if (dev->allmulti == 0) {
8642 /*
8643 * Avoid overflow.
8644 * If inc causes overflow, untouch allmulti and return error.
8645 */
8646 if (inc < 0)
8647 dev->flags &= ~IFF_ALLMULTI;
8648 else {
8649 dev->allmulti -= inc;
8650 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8651 dev->name);
8652 return -EOVERFLOW;
8653 }
8654 }
8655 if (dev->flags ^ old_flags) {
8656 dev_change_rx_flags(dev, IFF_ALLMULTI);
8657 dev_set_rx_mode(dev);
8658 if (notify)
8659 __dev_notify_flags(dev, old_flags,
8660 dev->gflags ^ old_gflags);
8661 }
8662 return 0;
8663}
8664
8665/**
8666 * dev_set_allmulti - update allmulti count on a device
8667 * @dev: device
8668 * @inc: modifier
8669 *
8670 * Add or remove reception of all multicast frames to a device. While the
8671 * count in the device remains above zero the interface remains listening
8672 * to all interfaces. Once it hits zero the device reverts back to normal
8673 * filtering operation. A negative @inc value is used to drop the counter
8674 * when releasing a resource needing all multicasts.
8675 * Return 0 if successful or a negative errno code on error.
8676 */
8677
8678int dev_set_allmulti(struct net_device *dev, int inc)
8679{
8680 return __dev_set_allmulti(dev, inc, true);
8681}
8682EXPORT_SYMBOL(dev_set_allmulti);
8683
8684/*
8685 * Upload unicast and multicast address lists to device and
8686 * configure RX filtering. When the device doesn't support unicast
8687 * filtering it is put in promiscuous mode while unicast addresses
8688 * are present.
8689 */
8690void __dev_set_rx_mode(struct net_device *dev)
8691{
8692 const struct net_device_ops *ops = dev->netdev_ops;
8693
8694 /* dev_open will call this function so the list will stay sane. */
8695 if (!(dev->flags&IFF_UP))
8696 return;
8697
8698 if (!netif_device_present(dev))
8699 return;
8700
8701 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8702 /* Unicast addresses changes may only happen under the rtnl,
8703 * therefore calling __dev_set_promiscuity here is safe.
8704 */
8705 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8706 __dev_set_promiscuity(dev, 1, false);
8707 dev->uc_promisc = true;
8708 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8709 __dev_set_promiscuity(dev, -1, false);
8710 dev->uc_promisc = false;
8711 }
8712 }
8713
8714 if (ops->ndo_set_rx_mode)
8715 ops->ndo_set_rx_mode(dev);
8716}
8717
8718void dev_set_rx_mode(struct net_device *dev)
8719{
8720 netif_addr_lock_bh(dev);
8721 __dev_set_rx_mode(dev);
8722 netif_addr_unlock_bh(dev);
8723}
8724
8725/**
8726 * dev_get_flags - get flags reported to userspace
8727 * @dev: device
8728 *
8729 * Get the combination of flag bits exported through APIs to userspace.
8730 */
8731unsigned int dev_get_flags(const struct net_device *dev)
8732{
8733 unsigned int flags;
8734
8735 flags = (dev->flags & ~(IFF_PROMISC |
8736 IFF_ALLMULTI |
8737 IFF_RUNNING |
8738 IFF_LOWER_UP |
8739 IFF_DORMANT)) |
8740 (dev->gflags & (IFF_PROMISC |
8741 IFF_ALLMULTI));
8742
8743 if (netif_running(dev)) {
8744 if (netif_oper_up(dev))
8745 flags |= IFF_RUNNING;
8746 if (netif_carrier_ok(dev))
8747 flags |= IFF_LOWER_UP;
8748 if (netif_dormant(dev))
8749 flags |= IFF_DORMANT;
8750 }
8751
8752 return flags;
8753}
8754EXPORT_SYMBOL(dev_get_flags);
8755
8756int __dev_change_flags(struct net_device *dev, unsigned int flags,
8757 struct netlink_ext_ack *extack)
8758{
8759 unsigned int old_flags = dev->flags;
8760 int ret;
8761
8762 ASSERT_RTNL();
8763
8764 /*
8765 * Set the flags on our device.
8766 */
8767
8768 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8769 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8770 IFF_AUTOMEDIA)) |
8771 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8772 IFF_ALLMULTI));
8773
8774 /*
8775 * Load in the correct multicast list now the flags have changed.
8776 */
8777
8778 if ((old_flags ^ flags) & IFF_MULTICAST)
8779 dev_change_rx_flags(dev, IFF_MULTICAST);
8780
8781 dev_set_rx_mode(dev);
8782
8783 /*
8784 * Have we downed the interface. We handle IFF_UP ourselves
8785 * according to user attempts to set it, rather than blindly
8786 * setting it.
8787 */
8788
8789 ret = 0;
8790 if ((old_flags ^ flags) & IFF_UP) {
8791 if (old_flags & IFF_UP)
8792 __dev_close(dev);
8793 else
8794 ret = __dev_open(dev, extack);
8795 }
8796
8797 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8798 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8799 unsigned int old_flags = dev->flags;
8800
8801 dev->gflags ^= IFF_PROMISC;
8802
8803 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8804 if (dev->flags != old_flags)
8805 dev_set_rx_mode(dev);
8806 }
8807
8808 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8809 * is important. Some (broken) drivers set IFF_PROMISC, when
8810 * IFF_ALLMULTI is requested not asking us and not reporting.
8811 */
8812 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8813 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8814
8815 dev->gflags ^= IFF_ALLMULTI;
8816 __dev_set_allmulti(dev, inc, false);
8817 }
8818
8819 return ret;
8820}
8821
8822void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8823 unsigned int gchanges)
8824{
8825 unsigned int changes = dev->flags ^ old_flags;
8826
8827 if (gchanges)
8828 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8829
8830 if (changes & IFF_UP) {
8831 if (dev->flags & IFF_UP)
8832 call_netdevice_notifiers(NETDEV_UP, dev);
8833 else
8834 call_netdevice_notifiers(NETDEV_DOWN, dev);
8835 }
8836
8837 if (dev->flags & IFF_UP &&
8838 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8839 struct netdev_notifier_change_info change_info = {
8840 .info = {
8841 .dev = dev,
8842 },
8843 .flags_changed = changes,
8844 };
8845
8846 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8847 }
8848}
8849
8850/**
8851 * dev_change_flags - change device settings
8852 * @dev: device
8853 * @flags: device state flags
8854 * @extack: netlink extended ack
8855 *
8856 * Change settings on device based state flags. The flags are
8857 * in the userspace exported format.
8858 */
8859int dev_change_flags(struct net_device *dev, unsigned int flags,
8860 struct netlink_ext_ack *extack)
8861{
8862 int ret;
8863 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8864
8865 ret = __dev_change_flags(dev, flags, extack);
8866 if (ret < 0)
8867 return ret;
8868
8869 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8870 __dev_notify_flags(dev, old_flags, changes);
8871 return ret;
8872}
8873EXPORT_SYMBOL(dev_change_flags);
8874
8875int __dev_set_mtu(struct net_device *dev, int new_mtu)
8876{
8877 const struct net_device_ops *ops = dev->netdev_ops;
8878
8879 if (ops->ndo_change_mtu)
8880 return ops->ndo_change_mtu(dev, new_mtu);
8881
8882 /* Pairs with all the lockless reads of dev->mtu in the stack */
8883 WRITE_ONCE(dev->mtu, new_mtu);
8884 return 0;
8885}
8886EXPORT_SYMBOL(__dev_set_mtu);
8887
8888int dev_validate_mtu(struct net_device *dev, int new_mtu,
8889 struct netlink_ext_ack *extack)
8890{
8891 /* MTU must be positive, and in range */
8892 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8893 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8894 return -EINVAL;
8895 }
8896
8897 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8898 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8899 return -EINVAL;
8900 }
8901 return 0;
8902}
8903
8904/**
8905 * dev_set_mtu_ext - Change maximum transfer unit
8906 * @dev: device
8907 * @new_mtu: new transfer unit
8908 * @extack: netlink extended ack
8909 *
8910 * Change the maximum transfer size of the network device.
8911 */
8912int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8913 struct netlink_ext_ack *extack)
8914{
8915 int err, orig_mtu;
8916
8917 if (new_mtu == dev->mtu)
8918 return 0;
8919
8920 err = dev_validate_mtu(dev, new_mtu, extack);
8921 if (err)
8922 return err;
8923
8924 if (!netif_device_present(dev))
8925 return -ENODEV;
8926
8927 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8928 err = notifier_to_errno(err);
8929 if (err)
8930 return err;
8931
8932 orig_mtu = dev->mtu;
8933 err = __dev_set_mtu(dev, new_mtu);
8934
8935 if (!err) {
8936 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8937 orig_mtu);
8938 err = notifier_to_errno(err);
8939 if (err) {
8940 /* setting mtu back and notifying everyone again,
8941 * so that they have a chance to revert changes.
8942 */
8943 __dev_set_mtu(dev, orig_mtu);
8944 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8945 new_mtu);
8946 }
8947 }
8948 return err;
8949}
8950
8951int dev_set_mtu(struct net_device *dev, int new_mtu)
8952{
8953 struct netlink_ext_ack extack;
8954 int err;
8955
8956 memset(&extack, 0, sizeof(extack));
8957 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8958 if (err && extack._msg)
8959 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8960 return err;
8961}
8962EXPORT_SYMBOL(dev_set_mtu);
8963
8964/**
8965 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8966 * @dev: device
8967 * @new_len: new tx queue length
8968 */
8969int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8970{
8971 unsigned int orig_len = dev->tx_queue_len;
8972 int res;
8973
8974 if (new_len != (unsigned int)new_len)
8975 return -ERANGE;
8976
8977 if (new_len != orig_len) {
8978 dev->tx_queue_len = new_len;
8979 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8980 res = notifier_to_errno(res);
8981 if (res)
8982 goto err_rollback;
8983 res = dev_qdisc_change_tx_queue_len(dev);
8984 if (res)
8985 goto err_rollback;
8986 }
8987
8988 return 0;
8989
8990err_rollback:
8991 netdev_err(dev, "refused to change device tx_queue_len\n");
8992 dev->tx_queue_len = orig_len;
8993 return res;
8994}
8995
8996/**
8997 * dev_set_group - Change group this device belongs to
8998 * @dev: device
8999 * @new_group: group this device should belong to
9000 */
9001void dev_set_group(struct net_device *dev, int new_group)
9002{
9003 dev->group = new_group;
9004}
9005EXPORT_SYMBOL(dev_set_group);
9006
9007/**
9008 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9009 * @dev: device
9010 * @addr: new address
9011 * @extack: netlink extended ack
9012 */
9013int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9014 struct netlink_ext_ack *extack)
9015{
9016 struct netdev_notifier_pre_changeaddr_info info = {
9017 .info.dev = dev,
9018 .info.extack = extack,
9019 .dev_addr = addr,
9020 };
9021 int rc;
9022
9023 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9024 return notifier_to_errno(rc);
9025}
9026EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9027
9028/**
9029 * dev_set_mac_address - Change Media Access Control Address
9030 * @dev: device
9031 * @sa: new address
9032 * @extack: netlink extended ack
9033 *
9034 * Change the hardware (MAC) address of the device
9035 */
9036int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9037 struct netlink_ext_ack *extack)
9038{
9039 const struct net_device_ops *ops = dev->netdev_ops;
9040 int err;
9041
9042 if (!ops->ndo_set_mac_address)
9043 return -EOPNOTSUPP;
9044 if (sa->sa_family != dev->type)
9045 return -EINVAL;
9046 if (!netif_device_present(dev))
9047 return -ENODEV;
9048 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9049 if (err)
9050 return err;
9051 err = ops->ndo_set_mac_address(dev, sa);
9052 if (err)
9053 return err;
9054 dev->addr_assign_type = NET_ADDR_SET;
9055 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9056 add_device_randomness(dev->dev_addr, dev->addr_len);
9057 return 0;
9058}
9059EXPORT_SYMBOL(dev_set_mac_address);
9060
9061static DECLARE_RWSEM(dev_addr_sem);
9062
9063int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9064 struct netlink_ext_ack *extack)
9065{
9066 int ret;
9067
9068 down_write(&dev_addr_sem);
9069 ret = dev_set_mac_address(dev, sa, extack);
9070 up_write(&dev_addr_sem);
9071 return ret;
9072}
9073EXPORT_SYMBOL(dev_set_mac_address_user);
9074
9075int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9076{
9077 size_t size = sizeof(sa->sa_data);
9078 struct net_device *dev;
9079 int ret = 0;
9080
9081 down_read(&dev_addr_sem);
9082 rcu_read_lock();
9083
9084 dev = dev_get_by_name_rcu(net, dev_name);
9085 if (!dev) {
9086 ret = -ENODEV;
9087 goto unlock;
9088 }
9089 if (!dev->addr_len)
9090 memset(sa->sa_data, 0, size);
9091 else
9092 memcpy(sa->sa_data, dev->dev_addr,
9093 min_t(size_t, size, dev->addr_len));
9094 sa->sa_family = dev->type;
9095
9096unlock:
9097 rcu_read_unlock();
9098 up_read(&dev_addr_sem);
9099 return ret;
9100}
9101EXPORT_SYMBOL(dev_get_mac_address);
9102
9103/**
9104 * dev_change_carrier - Change device carrier
9105 * @dev: device
9106 * @new_carrier: new value
9107 *
9108 * Change device carrier
9109 */
9110int dev_change_carrier(struct net_device *dev, bool new_carrier)
9111{
9112 const struct net_device_ops *ops = dev->netdev_ops;
9113
9114 if (!ops->ndo_change_carrier)
9115 return -EOPNOTSUPP;
9116 if (!netif_device_present(dev))
9117 return -ENODEV;
9118 return ops->ndo_change_carrier(dev, new_carrier);
9119}
9120EXPORT_SYMBOL(dev_change_carrier);
9121
9122/**
9123 * dev_get_phys_port_id - Get device physical port ID
9124 * @dev: device
9125 * @ppid: port ID
9126 *
9127 * Get device physical port ID
9128 */
9129int dev_get_phys_port_id(struct net_device *dev,
9130 struct netdev_phys_item_id *ppid)
9131{
9132 const struct net_device_ops *ops = dev->netdev_ops;
9133
9134 if (!ops->ndo_get_phys_port_id)
9135 return -EOPNOTSUPP;
9136 return ops->ndo_get_phys_port_id(dev, ppid);
9137}
9138EXPORT_SYMBOL(dev_get_phys_port_id);
9139
9140/**
9141 * dev_get_phys_port_name - Get device physical port name
9142 * @dev: device
9143 * @name: port name
9144 * @len: limit of bytes to copy to name
9145 *
9146 * Get device physical port name
9147 */
9148int dev_get_phys_port_name(struct net_device *dev,
9149 char *name, size_t len)
9150{
9151 const struct net_device_ops *ops = dev->netdev_ops;
9152 int err;
9153
9154 if (ops->ndo_get_phys_port_name) {
9155 err = ops->ndo_get_phys_port_name(dev, name, len);
9156 if (err != -EOPNOTSUPP)
9157 return err;
9158 }
9159 return devlink_compat_phys_port_name_get(dev, name, len);
9160}
9161EXPORT_SYMBOL(dev_get_phys_port_name);
9162
9163/**
9164 * dev_get_port_parent_id - Get the device's port parent identifier
9165 * @dev: network device
9166 * @ppid: pointer to a storage for the port's parent identifier
9167 * @recurse: allow/disallow recursion to lower devices
9168 *
9169 * Get the devices's port parent identifier
9170 */
9171int dev_get_port_parent_id(struct net_device *dev,
9172 struct netdev_phys_item_id *ppid,
9173 bool recurse)
9174{
9175 const struct net_device_ops *ops = dev->netdev_ops;
9176 struct netdev_phys_item_id first = { };
9177 struct net_device *lower_dev;
9178 struct list_head *iter;
9179 int err;
9180
9181 if (ops->ndo_get_port_parent_id) {
9182 err = ops->ndo_get_port_parent_id(dev, ppid);
9183 if (err != -EOPNOTSUPP)
9184 return err;
9185 }
9186
9187 err = devlink_compat_switch_id_get(dev, ppid);
9188 if (!err || err != -EOPNOTSUPP)
9189 return err;
9190
9191 if (!recurse)
9192 return -EOPNOTSUPP;
9193
9194 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9195 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9196 if (err)
9197 break;
9198 if (!first.id_len)
9199 first = *ppid;
9200 else if (memcmp(&first, ppid, sizeof(*ppid)))
9201 return -EOPNOTSUPP;
9202 }
9203
9204 return err;
9205}
9206EXPORT_SYMBOL(dev_get_port_parent_id);
9207
9208/**
9209 * netdev_port_same_parent_id - Indicate if two network devices have
9210 * the same port parent identifier
9211 * @a: first network device
9212 * @b: second network device
9213 */
9214bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9215{
9216 struct netdev_phys_item_id a_id = { };
9217 struct netdev_phys_item_id b_id = { };
9218
9219 if (dev_get_port_parent_id(a, &a_id, true) ||
9220 dev_get_port_parent_id(b, &b_id, true))
9221 return false;
9222
9223 return netdev_phys_item_id_same(&a_id, &b_id);
9224}
9225EXPORT_SYMBOL(netdev_port_same_parent_id);
9226
9227/**
9228 * dev_change_proto_down - update protocol port state information
9229 * @dev: device
9230 * @proto_down: new value
9231 *
9232 * This info can be used by switch drivers to set the phys state of the
9233 * port.
9234 */
9235int dev_change_proto_down(struct net_device *dev, bool proto_down)
9236{
9237 const struct net_device_ops *ops = dev->netdev_ops;
9238
9239 if (!ops->ndo_change_proto_down)
9240 return -EOPNOTSUPP;
9241 if (!netif_device_present(dev))
9242 return -ENODEV;
9243 return ops->ndo_change_proto_down(dev, proto_down);
9244}
9245EXPORT_SYMBOL(dev_change_proto_down);
9246
9247/**
9248 * dev_change_proto_down_generic - generic implementation for
9249 * ndo_change_proto_down that sets carrier according to
9250 * proto_down.
9251 *
9252 * @dev: device
9253 * @proto_down: new value
9254 */
9255int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9256{
9257 if (proto_down)
9258 netif_carrier_off(dev);
9259 else
9260 netif_carrier_on(dev);
9261 dev->proto_down = proto_down;
9262 return 0;
9263}
9264EXPORT_SYMBOL(dev_change_proto_down_generic);
9265
9266/**
9267 * dev_change_proto_down_reason - proto down reason
9268 *
9269 * @dev: device
9270 * @mask: proto down mask
9271 * @value: proto down value
9272 */
9273void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9274 u32 value)
9275{
9276 int b;
9277
9278 if (!mask) {
9279 dev->proto_down_reason = value;
9280 } else {
9281 for_each_set_bit(b, &mask, 32) {
9282 if (value & (1 << b))
9283 dev->proto_down_reason |= BIT(b);
9284 else
9285 dev->proto_down_reason &= ~BIT(b);
9286 }
9287 }
9288}
9289EXPORT_SYMBOL(dev_change_proto_down_reason);
9290
9291struct bpf_xdp_link {
9292 struct bpf_link link;
9293 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9294 int flags;
9295};
9296
9297static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9298{
9299 if (flags & XDP_FLAGS_HW_MODE)
9300 return XDP_MODE_HW;
9301 if (flags & XDP_FLAGS_DRV_MODE)
9302 return XDP_MODE_DRV;
9303 if (flags & XDP_FLAGS_SKB_MODE)
9304 return XDP_MODE_SKB;
9305 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9306}
9307
9308static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9309{
9310 switch (mode) {
9311 case XDP_MODE_SKB:
9312 return generic_xdp_install;
9313 case XDP_MODE_DRV:
9314 case XDP_MODE_HW:
9315 return dev->netdev_ops->ndo_bpf;
9316 default:
9317 return NULL;
9318 }
9319}
9320
9321static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9322 enum bpf_xdp_mode mode)
9323{
9324 return dev->xdp_state[mode].link;
9325}
9326
9327static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9328 enum bpf_xdp_mode mode)
9329{
9330 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9331
9332 if (link)
9333 return link->link.prog;
9334 return dev->xdp_state[mode].prog;
9335}
9336
9337static u8 dev_xdp_prog_count(struct net_device *dev)
9338{
9339 u8 count = 0;
9340 int i;
9341
9342 for (i = 0; i < __MAX_XDP_MODE; i++)
9343 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9344 count++;
9345 return count;
9346}
9347
9348u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9349{
9350 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9351
9352 return prog ? prog->aux->id : 0;
9353}
9354
9355static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9356 struct bpf_xdp_link *link)
9357{
9358 dev->xdp_state[mode].link = link;
9359 dev->xdp_state[mode].prog = NULL;
9360}
9361
9362static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9363 struct bpf_prog *prog)
9364{
9365 dev->xdp_state[mode].link = NULL;
9366 dev->xdp_state[mode].prog = prog;
9367}
9368
9369static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9370 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9371 u32 flags, struct bpf_prog *prog)
9372{
9373 struct netdev_bpf xdp;
9374 int err;
9375
9376 memset(&xdp, 0, sizeof(xdp));
9377 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9378 xdp.extack = extack;
9379 xdp.flags = flags;
9380 xdp.prog = prog;
9381
9382 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9383 * "moved" into driver), so they don't increment it on their own, but
9384 * they do decrement refcnt when program is detached or replaced.
9385 * Given net_device also owns link/prog, we need to bump refcnt here
9386 * to prevent drivers from underflowing it.
9387 */
9388 if (prog)
9389 bpf_prog_inc(prog);
9390 err = bpf_op(dev, &xdp);
9391 if (err) {
9392 if (prog)
9393 bpf_prog_put(prog);
9394 return err;
9395 }
9396
9397 if (mode != XDP_MODE_HW)
9398 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9399
9400 return 0;
9401}
9402
9403static void dev_xdp_uninstall(struct net_device *dev)
9404{
9405 struct bpf_xdp_link *link;
9406 struct bpf_prog *prog;
9407 enum bpf_xdp_mode mode;
9408 bpf_op_t bpf_op;
9409
9410 ASSERT_RTNL();
9411
9412 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9413 prog = dev_xdp_prog(dev, mode);
9414 if (!prog)
9415 continue;
9416
9417 bpf_op = dev_xdp_bpf_op(dev, mode);
9418 if (!bpf_op)
9419 continue;
9420
9421 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9422
9423 /* auto-detach link from net device */
9424 link = dev_xdp_link(dev, mode);
9425 if (link)
9426 link->dev = NULL;
9427 else
9428 bpf_prog_put(prog);
9429
9430 dev_xdp_set_link(dev, mode, NULL);
9431 }
9432}
9433
9434static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9435 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9436 struct bpf_prog *old_prog, u32 flags)
9437{
9438 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9439 struct bpf_prog *cur_prog;
9440 enum bpf_xdp_mode mode;
9441 bpf_op_t bpf_op;
9442 int err;
9443
9444 ASSERT_RTNL();
9445
9446 /* either link or prog attachment, never both */
9447 if (link && (new_prog || old_prog))
9448 return -EINVAL;
9449 /* link supports only XDP mode flags */
9450 if (link && (flags & ~XDP_FLAGS_MODES)) {
9451 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9452 return -EINVAL;
9453 }
9454 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9455 if (num_modes > 1) {
9456 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9457 return -EINVAL;
9458 }
9459 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9460 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9461 NL_SET_ERR_MSG(extack,
9462 "More than one program loaded, unset mode is ambiguous");
9463 return -EINVAL;
9464 }
9465 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9466 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9467 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9468 return -EINVAL;
9469 }
9470
9471 mode = dev_xdp_mode(dev, flags);
9472 /* can't replace attached link */
9473 if (dev_xdp_link(dev, mode)) {
9474 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9475 return -EBUSY;
9476 }
9477
9478 cur_prog = dev_xdp_prog(dev, mode);
9479 /* can't replace attached prog with link */
9480 if (link && cur_prog) {
9481 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9482 return -EBUSY;
9483 }
9484 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9485 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9486 return -EEXIST;
9487 }
9488
9489 /* put effective new program into new_prog */
9490 if (link)
9491 new_prog = link->link.prog;
9492
9493 if (new_prog) {
9494 bool offload = mode == XDP_MODE_HW;
9495 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9496 ? XDP_MODE_DRV : XDP_MODE_SKB;
9497
9498 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9499 NL_SET_ERR_MSG(extack, "XDP program already attached");
9500 return -EBUSY;
9501 }
9502 if (!offload && dev_xdp_prog(dev, other_mode)) {
9503 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9504 return -EEXIST;
9505 }
9506 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9507 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9508 return -EINVAL;
9509 }
9510 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9511 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9512 return -EINVAL;
9513 }
9514 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9515 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9516 return -EINVAL;
9517 }
9518 }
9519
9520 /* don't call drivers if the effective program didn't change */
9521 if (new_prog != cur_prog) {
9522 bpf_op = dev_xdp_bpf_op(dev, mode);
9523 if (!bpf_op) {
9524 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9525 return -EOPNOTSUPP;
9526 }
9527
9528 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9529 if (err)
9530 return err;
9531 }
9532
9533 if (link)
9534 dev_xdp_set_link(dev, mode, link);
9535 else
9536 dev_xdp_set_prog(dev, mode, new_prog);
9537 if (cur_prog)
9538 bpf_prog_put(cur_prog);
9539
9540 return 0;
9541}
9542
9543static int dev_xdp_attach_link(struct net_device *dev,
9544 struct netlink_ext_ack *extack,
9545 struct bpf_xdp_link *link)
9546{
9547 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9548}
9549
9550static int dev_xdp_detach_link(struct net_device *dev,
9551 struct netlink_ext_ack *extack,
9552 struct bpf_xdp_link *link)
9553{
9554 enum bpf_xdp_mode mode;
9555 bpf_op_t bpf_op;
9556
9557 ASSERT_RTNL();
9558
9559 mode = dev_xdp_mode(dev, link->flags);
9560 if (dev_xdp_link(dev, mode) != link)
9561 return -EINVAL;
9562
9563 bpf_op = dev_xdp_bpf_op(dev, mode);
9564 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9565 dev_xdp_set_link(dev, mode, NULL);
9566 return 0;
9567}
9568
9569static void bpf_xdp_link_release(struct bpf_link *link)
9570{
9571 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9572
9573 rtnl_lock();
9574
9575 /* if racing with net_device's tear down, xdp_link->dev might be
9576 * already NULL, in which case link was already auto-detached
9577 */
9578 if (xdp_link->dev) {
9579 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9580 xdp_link->dev = NULL;
9581 }
9582
9583 rtnl_unlock();
9584}
9585
9586static int bpf_xdp_link_detach(struct bpf_link *link)
9587{
9588 bpf_xdp_link_release(link);
9589 return 0;
9590}
9591
9592static void bpf_xdp_link_dealloc(struct bpf_link *link)
9593{
9594 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9595
9596 kfree(xdp_link);
9597}
9598
9599static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9600 struct seq_file *seq)
9601{
9602 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9603 u32 ifindex = 0;
9604
9605 rtnl_lock();
9606 if (xdp_link->dev)
9607 ifindex = xdp_link->dev->ifindex;
9608 rtnl_unlock();
9609
9610 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9611}
9612
9613static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9614 struct bpf_link_info *info)
9615{
9616 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9617 u32 ifindex = 0;
9618
9619 rtnl_lock();
9620 if (xdp_link->dev)
9621 ifindex = xdp_link->dev->ifindex;
9622 rtnl_unlock();
9623
9624 info->xdp.ifindex = ifindex;
9625 return 0;
9626}
9627
9628static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9629 struct bpf_prog *old_prog)
9630{
9631 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9632 enum bpf_xdp_mode mode;
9633 bpf_op_t bpf_op;
9634 int err = 0;
9635
9636 rtnl_lock();
9637
9638 /* link might have been auto-released already, so fail */
9639 if (!xdp_link->dev) {
9640 err = -ENOLINK;
9641 goto out_unlock;
9642 }
9643
9644 if (old_prog && link->prog != old_prog) {
9645 err = -EPERM;
9646 goto out_unlock;
9647 }
9648 old_prog = link->prog;
9649 if (old_prog == new_prog) {
9650 /* no-op, don't disturb drivers */
9651 bpf_prog_put(new_prog);
9652 goto out_unlock;
9653 }
9654
9655 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9656 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9657 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9658 xdp_link->flags, new_prog);
9659 if (err)
9660 goto out_unlock;
9661
9662 old_prog = xchg(&link->prog, new_prog);
9663 bpf_prog_put(old_prog);
9664
9665out_unlock:
9666 rtnl_unlock();
9667 return err;
9668}
9669
9670static const struct bpf_link_ops bpf_xdp_link_lops = {
9671 .release = bpf_xdp_link_release,
9672 .dealloc = bpf_xdp_link_dealloc,
9673 .detach = bpf_xdp_link_detach,
9674 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9675 .fill_link_info = bpf_xdp_link_fill_link_info,
9676 .update_prog = bpf_xdp_link_update,
9677};
9678
9679int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9680{
9681 struct net *net = current->nsproxy->net_ns;
9682 struct bpf_link_primer link_primer;
9683 struct bpf_xdp_link *link;
9684 struct net_device *dev;
9685 int err, fd;
9686
9687 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9688 if (!dev)
9689 return -EINVAL;
9690
9691 link = kzalloc(sizeof(*link), GFP_USER);
9692 if (!link) {
9693 err = -ENOMEM;
9694 goto out_put_dev;
9695 }
9696
9697 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9698 link->dev = dev;
9699 link->flags = attr->link_create.flags;
9700
9701 err = bpf_link_prime(&link->link, &link_primer);
9702 if (err) {
9703 kfree(link);
9704 goto out_put_dev;
9705 }
9706
9707 rtnl_lock();
9708 err = dev_xdp_attach_link(dev, NULL, link);
9709 rtnl_unlock();
9710
9711 if (err) {
9712 bpf_link_cleanup(&link_primer);
9713 goto out_put_dev;
9714 }
9715
9716 fd = bpf_link_settle(&link_primer);
9717 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9718 dev_put(dev);
9719 return fd;
9720
9721out_put_dev:
9722 dev_put(dev);
9723 return err;
9724}
9725
9726/**
9727 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9728 * @dev: device
9729 * @extack: netlink extended ack
9730 * @fd: new program fd or negative value to clear
9731 * @expected_fd: old program fd that userspace expects to replace or clear
9732 * @flags: xdp-related flags
9733 *
9734 * Set or clear a bpf program for a device
9735 */
9736int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9737 int fd, int expected_fd, u32 flags)
9738{
9739 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9740 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9741 int err;
9742
9743 ASSERT_RTNL();
9744
9745 if (fd >= 0) {
9746 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9747 mode != XDP_MODE_SKB);
9748 if (IS_ERR(new_prog))
9749 return PTR_ERR(new_prog);
9750 }
9751
9752 if (expected_fd >= 0) {
9753 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9754 mode != XDP_MODE_SKB);
9755 if (IS_ERR(old_prog)) {
9756 err = PTR_ERR(old_prog);
9757 old_prog = NULL;
9758 goto err_out;
9759 }
9760 }
9761
9762 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9763
9764err_out:
9765 if (err && new_prog)
9766 bpf_prog_put(new_prog);
9767 if (old_prog)
9768 bpf_prog_put(old_prog);
9769 return err;
9770}
9771
9772/**
9773 * dev_new_index - allocate an ifindex
9774 * @net: the applicable net namespace
9775 *
9776 * Returns a suitable unique value for a new device interface
9777 * number. The caller must hold the rtnl semaphore or the
9778 * dev_base_lock to be sure it remains unique.
9779 */
9780static int dev_new_index(struct net *net)
9781{
9782 int ifindex = net->ifindex;
9783
9784 for (;;) {
9785 if (++ifindex <= 0)
9786 ifindex = 1;
9787 if (!__dev_get_by_index(net, ifindex))
9788 return net->ifindex = ifindex;
9789 }
9790}
9791
9792/* Delayed registration/unregisteration */
9793static LIST_HEAD(net_todo_list);
9794DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9795
9796static void net_set_todo(struct net_device *dev)
9797{
9798 list_add_tail(&dev->todo_list, &net_todo_list);
9799 dev_net(dev)->dev_unreg_count++;
9800}
9801
9802static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9803 struct net_device *upper, netdev_features_t features)
9804{
9805 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9806 netdev_features_t feature;
9807 int feature_bit;
9808
9809 for_each_netdev_feature(upper_disables, feature_bit) {
9810 feature = __NETIF_F_BIT(feature_bit);
9811 if (!(upper->wanted_features & feature)
9812 && (features & feature)) {
9813 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9814 &feature, upper->name);
9815 features &= ~feature;
9816 }
9817 }
9818
9819 return features;
9820}
9821
9822static void netdev_sync_lower_features(struct net_device *upper,
9823 struct net_device *lower, netdev_features_t features)
9824{
9825 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9826 netdev_features_t feature;
9827 int feature_bit;
9828
9829 for_each_netdev_feature(upper_disables, feature_bit) {
9830 feature = __NETIF_F_BIT(feature_bit);
9831 if (!(features & feature) && (lower->features & feature)) {
9832 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9833 &feature, lower->name);
9834 lower->wanted_features &= ~feature;
9835 __netdev_update_features(lower);
9836
9837 if (unlikely(lower->features & feature))
9838 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9839 &feature, lower->name);
9840 else
9841 netdev_features_change(lower);
9842 }
9843 }
9844}
9845
9846static netdev_features_t netdev_fix_features(struct net_device *dev,
9847 netdev_features_t features)
9848{
9849 /* Fix illegal checksum combinations */
9850 if ((features & NETIF_F_HW_CSUM) &&
9851 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9852 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9853 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9854 }
9855
9856 /* TSO requires that SG is present as well. */
9857 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9858 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9859 features &= ~NETIF_F_ALL_TSO;
9860 }
9861
9862 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9863 !(features & NETIF_F_IP_CSUM)) {
9864 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9865 features &= ~NETIF_F_TSO;
9866 features &= ~NETIF_F_TSO_ECN;
9867 }
9868
9869 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9870 !(features & NETIF_F_IPV6_CSUM)) {
9871 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9872 features &= ~NETIF_F_TSO6;
9873 }
9874
9875 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9876 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9877 features &= ~NETIF_F_TSO_MANGLEID;
9878
9879 /* TSO ECN requires that TSO is present as well. */
9880 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9881 features &= ~NETIF_F_TSO_ECN;
9882
9883 /* Software GSO depends on SG. */
9884 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9885 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9886 features &= ~NETIF_F_GSO;
9887 }
9888
9889 /* GSO partial features require GSO partial be set */
9890 if ((features & dev->gso_partial_features) &&
9891 !(features & NETIF_F_GSO_PARTIAL)) {
9892 netdev_dbg(dev,
9893 "Dropping partially supported GSO features since no GSO partial.\n");
9894 features &= ~dev->gso_partial_features;
9895 }
9896
9897 if (!(features & NETIF_F_RXCSUM)) {
9898 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9899 * successfully merged by hardware must also have the
9900 * checksum verified by hardware. If the user does not
9901 * want to enable RXCSUM, logically, we should disable GRO_HW.
9902 */
9903 if (features & NETIF_F_GRO_HW) {
9904 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9905 features &= ~NETIF_F_GRO_HW;
9906 }
9907 }
9908
9909 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9910 if (features & NETIF_F_RXFCS) {
9911 if (features & NETIF_F_LRO) {
9912 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9913 features &= ~NETIF_F_LRO;
9914 }
9915
9916 if (features & NETIF_F_GRO_HW) {
9917 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9918 features &= ~NETIF_F_GRO_HW;
9919 }
9920 }
9921
9922 if (features & NETIF_F_HW_TLS_TX) {
9923 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9924 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9925 bool hw_csum = features & NETIF_F_HW_CSUM;
9926
9927 if (!ip_csum && !hw_csum) {
9928 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9929 features &= ~NETIF_F_HW_TLS_TX;
9930 }
9931 }
9932
9933 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9934 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9935 features &= ~NETIF_F_HW_TLS_RX;
9936 }
9937
9938 return features;
9939}
9940
9941int __netdev_update_features(struct net_device *dev)
9942{
9943 struct net_device *upper, *lower;
9944 netdev_features_t features;
9945 struct list_head *iter;
9946 int err = -1;
9947
9948 ASSERT_RTNL();
9949
9950 features = netdev_get_wanted_features(dev);
9951
9952 if (dev->netdev_ops->ndo_fix_features)
9953 features = dev->netdev_ops->ndo_fix_features(dev, features);
9954
9955 /* driver might be less strict about feature dependencies */
9956 features = netdev_fix_features(dev, features);
9957
9958 /* some features can't be enabled if they're off on an upper device */
9959 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9960 features = netdev_sync_upper_features(dev, upper, features);
9961
9962 if (dev->features == features)
9963 goto sync_lower;
9964
9965 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9966 &dev->features, &features);
9967
9968 if (dev->netdev_ops->ndo_set_features)
9969 err = dev->netdev_ops->ndo_set_features(dev, features);
9970 else
9971 err = 0;
9972
9973 if (unlikely(err < 0)) {
9974 netdev_err(dev,
9975 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9976 err, &features, &dev->features);
9977 /* return non-0 since some features might have changed and
9978 * it's better to fire a spurious notification than miss it
9979 */
9980 return -1;
9981 }
9982
9983sync_lower:
9984 /* some features must be disabled on lower devices when disabled
9985 * on an upper device (think: bonding master or bridge)
9986 */
9987 netdev_for_each_lower_dev(dev, lower, iter)
9988 netdev_sync_lower_features(dev, lower, features);
9989
9990 if (!err) {
9991 netdev_features_t diff = features ^ dev->features;
9992
9993 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9994 /* udp_tunnel_{get,drop}_rx_info both need
9995 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9996 * device, or they won't do anything.
9997 * Thus we need to update dev->features
9998 * *before* calling udp_tunnel_get_rx_info,
9999 * but *after* calling udp_tunnel_drop_rx_info.
10000 */
10001 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10002 dev->features = features;
10003 udp_tunnel_get_rx_info(dev);
10004 } else {
10005 udp_tunnel_drop_rx_info(dev);
10006 }
10007 }
10008
10009 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10010 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10011 dev->features = features;
10012 err |= vlan_get_rx_ctag_filter_info(dev);
10013 } else {
10014 vlan_drop_rx_ctag_filter_info(dev);
10015 }
10016 }
10017
10018 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10019 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10020 dev->features = features;
10021 err |= vlan_get_rx_stag_filter_info(dev);
10022 } else {
10023 vlan_drop_rx_stag_filter_info(dev);
10024 }
10025 }
10026
10027 dev->features = features;
10028 }
10029
10030 return err < 0 ? 0 : 1;
10031}
10032
10033/**
10034 * netdev_update_features - recalculate device features
10035 * @dev: the device to check
10036 *
10037 * Recalculate dev->features set and send notifications if it
10038 * has changed. Should be called after driver or hardware dependent
10039 * conditions might have changed that influence the features.
10040 */
10041void netdev_update_features(struct net_device *dev)
10042{
10043 if (__netdev_update_features(dev))
10044 netdev_features_change(dev);
10045}
10046EXPORT_SYMBOL(netdev_update_features);
10047
10048/**
10049 * netdev_change_features - recalculate device features
10050 * @dev: the device to check
10051 *
10052 * Recalculate dev->features set and send notifications even
10053 * if they have not changed. Should be called instead of
10054 * netdev_update_features() if also dev->vlan_features might
10055 * have changed to allow the changes to be propagated to stacked
10056 * VLAN devices.
10057 */
10058void netdev_change_features(struct net_device *dev)
10059{
10060 __netdev_update_features(dev);
10061 netdev_features_change(dev);
10062}
10063EXPORT_SYMBOL(netdev_change_features);
10064
10065/**
10066 * netif_stacked_transfer_operstate - transfer operstate
10067 * @rootdev: the root or lower level device to transfer state from
10068 * @dev: the device to transfer operstate to
10069 *
10070 * Transfer operational state from root to device. This is normally
10071 * called when a stacking relationship exists between the root
10072 * device and the device(a leaf device).
10073 */
10074void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10075 struct net_device *dev)
10076{
10077 if (rootdev->operstate == IF_OPER_DORMANT)
10078 netif_dormant_on(dev);
10079 else
10080 netif_dormant_off(dev);
10081
10082 if (rootdev->operstate == IF_OPER_TESTING)
10083 netif_testing_on(dev);
10084 else
10085 netif_testing_off(dev);
10086
10087 if (netif_carrier_ok(rootdev))
10088 netif_carrier_on(dev);
10089 else
10090 netif_carrier_off(dev);
10091}
10092EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10093
10094static int netif_alloc_rx_queues(struct net_device *dev)
10095{
10096 unsigned int i, count = dev->num_rx_queues;
10097 struct netdev_rx_queue *rx;
10098 size_t sz = count * sizeof(*rx);
10099 int err = 0;
10100
10101 BUG_ON(count < 1);
10102
10103 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10104 if (!rx)
10105 return -ENOMEM;
10106
10107 dev->_rx = rx;
10108
10109 for (i = 0; i < count; i++) {
10110 rx[i].dev = dev;
10111
10112 /* XDP RX-queue setup */
10113 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10114 if (err < 0)
10115 goto err_rxq_info;
10116 }
10117 return 0;
10118
10119err_rxq_info:
10120 /* Rollback successful reg's and free other resources */
10121 while (i--)
10122 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10123 kvfree(dev->_rx);
10124 dev->_rx = NULL;
10125 return err;
10126}
10127
10128static void netif_free_rx_queues(struct net_device *dev)
10129{
10130 unsigned int i, count = dev->num_rx_queues;
10131
10132 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10133 if (!dev->_rx)
10134 return;
10135
10136 for (i = 0; i < count; i++)
10137 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10138
10139 kvfree(dev->_rx);
10140}
10141
10142static void netdev_init_one_queue(struct net_device *dev,
10143 struct netdev_queue *queue, void *_unused)
10144{
10145 /* Initialize queue lock */
10146 spin_lock_init(&queue->_xmit_lock);
10147 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10148 queue->xmit_lock_owner = -1;
10149 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10150 queue->dev = dev;
10151#ifdef CONFIG_BQL
10152 dql_init(&queue->dql, HZ);
10153#endif
10154}
10155
10156static void netif_free_tx_queues(struct net_device *dev)
10157{
10158 kvfree(dev->_tx);
10159}
10160
10161static int netif_alloc_netdev_queues(struct net_device *dev)
10162{
10163 unsigned int count = dev->num_tx_queues;
10164 struct netdev_queue *tx;
10165 size_t sz = count * sizeof(*tx);
10166
10167 if (count < 1 || count > 0xffff)
10168 return -EINVAL;
10169
10170 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10171 if (!tx)
10172 return -ENOMEM;
10173
10174 dev->_tx = tx;
10175
10176 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10177 spin_lock_init(&dev->tx_global_lock);
10178
10179 return 0;
10180}
10181
10182void netif_tx_stop_all_queues(struct net_device *dev)
10183{
10184 unsigned int i;
10185
10186 for (i = 0; i < dev->num_tx_queues; i++) {
10187 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10188
10189 netif_tx_stop_queue(txq);
10190 }
10191}
10192EXPORT_SYMBOL(netif_tx_stop_all_queues);
10193
10194/**
10195 * register_netdevice - register a network device
10196 * @dev: device to register
10197 *
10198 * Take a completed network device structure and add it to the kernel
10199 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10200 * chain. 0 is returned on success. A negative errno code is returned
10201 * on a failure to set up the device, or if the name is a duplicate.
10202 *
10203 * Callers must hold the rtnl semaphore. You may want
10204 * register_netdev() instead of this.
10205 *
10206 * BUGS:
10207 * The locking appears insufficient to guarantee two parallel registers
10208 * will not get the same name.
10209 */
10210
10211int register_netdevice(struct net_device *dev)
10212{
10213 int ret;
10214 struct net *net = dev_net(dev);
10215
10216 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10217 NETDEV_FEATURE_COUNT);
10218 BUG_ON(dev_boot_phase);
10219 ASSERT_RTNL();
10220
10221 might_sleep();
10222
10223 /* When net_device's are persistent, this will be fatal. */
10224 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10225 BUG_ON(!net);
10226
10227 ret = ethtool_check_ops(dev->ethtool_ops);
10228 if (ret)
10229 return ret;
10230
10231 spin_lock_init(&dev->addr_list_lock);
10232 netdev_set_addr_lockdep_class(dev);
10233
10234 ret = dev_get_valid_name(net, dev, dev->name);
10235 if (ret < 0)
10236 goto out;
10237
10238 ret = -ENOMEM;
10239 dev->name_node = netdev_name_node_head_alloc(dev);
10240 if (!dev->name_node)
10241 goto out;
10242
10243 /* Init, if this function is available */
10244 if (dev->netdev_ops->ndo_init) {
10245 ret = dev->netdev_ops->ndo_init(dev);
10246 if (ret) {
10247 if (ret > 0)
10248 ret = -EIO;
10249 goto err_free_name;
10250 }
10251 }
10252
10253 if (((dev->hw_features | dev->features) &
10254 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10255 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10256 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10257 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10258 ret = -EINVAL;
10259 goto err_uninit;
10260 }
10261
10262 ret = -EBUSY;
10263 if (!dev->ifindex)
10264 dev->ifindex = dev_new_index(net);
10265 else if (__dev_get_by_index(net, dev->ifindex))
10266 goto err_uninit;
10267
10268 /* Transfer changeable features to wanted_features and enable
10269 * software offloads (GSO and GRO).
10270 */
10271 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10272 dev->features |= NETIF_F_SOFT_FEATURES;
10273
10274 if (dev->udp_tunnel_nic_info) {
10275 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10276 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10277 }
10278
10279 dev->wanted_features = dev->features & dev->hw_features;
10280
10281 if (!(dev->flags & IFF_LOOPBACK))
10282 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10283
10284 /* If IPv4 TCP segmentation offload is supported we should also
10285 * allow the device to enable segmenting the frame with the option
10286 * of ignoring a static IP ID value. This doesn't enable the
10287 * feature itself but allows the user to enable it later.
10288 */
10289 if (dev->hw_features & NETIF_F_TSO)
10290 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10291 if (dev->vlan_features & NETIF_F_TSO)
10292 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10293 if (dev->mpls_features & NETIF_F_TSO)
10294 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10295 if (dev->hw_enc_features & NETIF_F_TSO)
10296 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10297
10298 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10299 */
10300 dev->vlan_features |= NETIF_F_HIGHDMA;
10301
10302 /* Make NETIF_F_SG inheritable to tunnel devices.
10303 */
10304 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10305
10306 /* Make NETIF_F_SG inheritable to MPLS.
10307 */
10308 dev->mpls_features |= NETIF_F_SG;
10309
10310 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10311 ret = notifier_to_errno(ret);
10312 if (ret)
10313 goto err_uninit;
10314
10315 ret = netdev_register_kobject(dev);
10316 if (ret) {
10317 dev->reg_state = NETREG_UNREGISTERED;
10318 goto err_uninit;
10319 }
10320 dev->reg_state = NETREG_REGISTERED;
10321
10322 __netdev_update_features(dev);
10323
10324 /*
10325 * Default initial state at registry is that the
10326 * device is present.
10327 */
10328
10329 set_bit(__LINK_STATE_PRESENT, &dev->state);
10330
10331 linkwatch_init_dev(dev);
10332
10333 dev_init_scheduler(dev);
10334 dev_hold(dev);
10335 list_netdevice(dev);
10336 add_device_randomness(dev->dev_addr, dev->addr_len);
10337
10338 /* If the device has permanent device address, driver should
10339 * set dev_addr and also addr_assign_type should be set to
10340 * NET_ADDR_PERM (default value).
10341 */
10342 if (dev->addr_assign_type == NET_ADDR_PERM)
10343 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10344
10345 /* Notify protocols, that a new device appeared. */
10346 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10347 ret = notifier_to_errno(ret);
10348 if (ret) {
10349 /* Expect explicit free_netdev() on failure */
10350 dev->needs_free_netdev = false;
10351 unregister_netdevice_queue(dev, NULL);
10352 goto out;
10353 }
10354 /*
10355 * Prevent userspace races by waiting until the network
10356 * device is fully setup before sending notifications.
10357 */
10358 if (!dev->rtnl_link_ops ||
10359 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10360 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10361
10362out:
10363 return ret;
10364
10365err_uninit:
10366 if (dev->netdev_ops->ndo_uninit)
10367 dev->netdev_ops->ndo_uninit(dev);
10368 if (dev->priv_destructor)
10369 dev->priv_destructor(dev);
10370err_free_name:
10371 netdev_name_node_free(dev->name_node);
10372 goto out;
10373}
10374EXPORT_SYMBOL(register_netdevice);
10375
10376/**
10377 * init_dummy_netdev - init a dummy network device for NAPI
10378 * @dev: device to init
10379 *
10380 * This takes a network device structure and initialize the minimum
10381 * amount of fields so it can be used to schedule NAPI polls without
10382 * registering a full blown interface. This is to be used by drivers
10383 * that need to tie several hardware interfaces to a single NAPI
10384 * poll scheduler due to HW limitations.
10385 */
10386int init_dummy_netdev(struct net_device *dev)
10387{
10388 /* Clear everything. Note we don't initialize spinlocks
10389 * are they aren't supposed to be taken by any of the
10390 * NAPI code and this dummy netdev is supposed to be
10391 * only ever used for NAPI polls
10392 */
10393 memset(dev, 0, sizeof(struct net_device));
10394
10395 /* make sure we BUG if trying to hit standard
10396 * register/unregister code path
10397 */
10398 dev->reg_state = NETREG_DUMMY;
10399
10400 /* NAPI wants this */
10401 INIT_LIST_HEAD(&dev->napi_list);
10402
10403 /* a dummy interface is started by default */
10404 set_bit(__LINK_STATE_PRESENT, &dev->state);
10405 set_bit(__LINK_STATE_START, &dev->state);
10406
10407 /* napi_busy_loop stats accounting wants this */
10408 dev_net_set(dev, &init_net);
10409
10410 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10411 * because users of this 'device' dont need to change
10412 * its refcount.
10413 */
10414
10415 return 0;
10416}
10417EXPORT_SYMBOL_GPL(init_dummy_netdev);
10418
10419
10420/**
10421 * register_netdev - register a network device
10422 * @dev: device to register
10423 *
10424 * Take a completed network device structure and add it to the kernel
10425 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10426 * chain. 0 is returned on success. A negative errno code is returned
10427 * on a failure to set up the device, or if the name is a duplicate.
10428 *
10429 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10430 * and expands the device name if you passed a format string to
10431 * alloc_netdev.
10432 */
10433int register_netdev(struct net_device *dev)
10434{
10435 int err;
10436
10437 if (rtnl_lock_killable())
10438 return -EINTR;
10439 err = register_netdevice(dev);
10440 rtnl_unlock();
10441 return err;
10442}
10443EXPORT_SYMBOL(register_netdev);
10444
10445int netdev_refcnt_read(const struct net_device *dev)
10446{
10447#ifdef CONFIG_PCPU_DEV_REFCNT
10448 int i, refcnt = 0;
10449
10450 for_each_possible_cpu(i)
10451 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10452 return refcnt;
10453#else
10454 return refcount_read(&dev->dev_refcnt);
10455#endif
10456}
10457EXPORT_SYMBOL(netdev_refcnt_read);
10458
10459int netdev_unregister_timeout_secs __read_mostly = 10;
10460
10461#define WAIT_REFS_MIN_MSECS 1
10462#define WAIT_REFS_MAX_MSECS 250
10463/**
10464 * netdev_wait_allrefs - wait until all references are gone.
10465 * @dev: target net_device
10466 *
10467 * This is called when unregistering network devices.
10468 *
10469 * Any protocol or device that holds a reference should register
10470 * for netdevice notification, and cleanup and put back the
10471 * reference if they receive an UNREGISTER event.
10472 * We can get stuck here if buggy protocols don't correctly
10473 * call dev_put.
10474 */
10475static void netdev_wait_allrefs(struct net_device *dev)
10476{
10477 unsigned long rebroadcast_time, warning_time;
10478 int wait = 0, refcnt;
10479
10480 linkwatch_forget_dev(dev);
10481
10482 rebroadcast_time = warning_time = jiffies;
10483 refcnt = netdev_refcnt_read(dev);
10484
10485 while (refcnt != 1) {
10486 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10487 rtnl_lock();
10488
10489 /* Rebroadcast unregister notification */
10490 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10491
10492 __rtnl_unlock();
10493 rcu_barrier();
10494 rtnl_lock();
10495
10496 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10497 &dev->state)) {
10498 /* We must not have linkwatch events
10499 * pending on unregister. If this
10500 * happens, we simply run the queue
10501 * unscheduled, resulting in a noop
10502 * for this device.
10503 */
10504 linkwatch_run_queue();
10505 }
10506
10507 __rtnl_unlock();
10508
10509 rebroadcast_time = jiffies;
10510 }
10511
10512 if (!wait) {
10513 rcu_barrier();
10514 wait = WAIT_REFS_MIN_MSECS;
10515 } else {
10516 msleep(wait);
10517 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10518 }
10519
10520 refcnt = netdev_refcnt_read(dev);
10521
10522 if (refcnt != 1 &&
10523 time_after(jiffies, warning_time +
10524 netdev_unregister_timeout_secs * HZ)) {
10525 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10526 dev->name, refcnt);
10527 warning_time = jiffies;
10528 }
10529 }
10530}
10531
10532/* The sequence is:
10533 *
10534 * rtnl_lock();
10535 * ...
10536 * register_netdevice(x1);
10537 * register_netdevice(x2);
10538 * ...
10539 * unregister_netdevice(y1);
10540 * unregister_netdevice(y2);
10541 * ...
10542 * rtnl_unlock();
10543 * free_netdev(y1);
10544 * free_netdev(y2);
10545 *
10546 * We are invoked by rtnl_unlock().
10547 * This allows us to deal with problems:
10548 * 1) We can delete sysfs objects which invoke hotplug
10549 * without deadlocking with linkwatch via keventd.
10550 * 2) Since we run with the RTNL semaphore not held, we can sleep
10551 * safely in order to wait for the netdev refcnt to drop to zero.
10552 *
10553 * We must not return until all unregister events added during
10554 * the interval the lock was held have been completed.
10555 */
10556void netdev_run_todo(void)
10557{
10558 struct list_head list;
10559#ifdef CONFIG_LOCKDEP
10560 struct list_head unlink_list;
10561
10562 list_replace_init(&net_unlink_list, &unlink_list);
10563
10564 while (!list_empty(&unlink_list)) {
10565 struct net_device *dev = list_first_entry(&unlink_list,
10566 struct net_device,
10567 unlink_list);
10568 list_del_init(&dev->unlink_list);
10569 dev->nested_level = dev->lower_level - 1;
10570 }
10571#endif
10572
10573 /* Snapshot list, allow later requests */
10574 list_replace_init(&net_todo_list, &list);
10575
10576 __rtnl_unlock();
10577
10578
10579 /* Wait for rcu callbacks to finish before next phase */
10580 if (!list_empty(&list))
10581 rcu_barrier();
10582
10583 while (!list_empty(&list)) {
10584 struct net_device *dev
10585 = list_first_entry(&list, struct net_device, todo_list);
10586 list_del(&dev->todo_list);
10587
10588 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10589 pr_err("network todo '%s' but state %d\n",
10590 dev->name, dev->reg_state);
10591 dump_stack();
10592 continue;
10593 }
10594
10595 dev->reg_state = NETREG_UNREGISTERED;
10596
10597 netdev_wait_allrefs(dev);
10598
10599 /* paranoia */
10600 BUG_ON(netdev_refcnt_read(dev) != 1);
10601 BUG_ON(!list_empty(&dev->ptype_all));
10602 BUG_ON(!list_empty(&dev->ptype_specific));
10603 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10604 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10605#if IS_ENABLED(CONFIG_DECNET)
10606 WARN_ON(dev->dn_ptr);
10607#endif
10608 if (dev->priv_destructor)
10609 dev->priv_destructor(dev);
10610 if (dev->needs_free_netdev)
10611 free_netdev(dev);
10612
10613 /* Report a network device has been unregistered */
10614 rtnl_lock();
10615 dev_net(dev)->dev_unreg_count--;
10616 __rtnl_unlock();
10617 wake_up(&netdev_unregistering_wq);
10618
10619 /* Free network device */
10620 kobject_put(&dev->dev.kobj);
10621 }
10622}
10623
10624/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10625 * all the same fields in the same order as net_device_stats, with only
10626 * the type differing, but rtnl_link_stats64 may have additional fields
10627 * at the end for newer counters.
10628 */
10629void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10630 const struct net_device_stats *netdev_stats)
10631{
10632#if BITS_PER_LONG == 64
10633 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10634 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10635 /* zero out counters that only exist in rtnl_link_stats64 */
10636 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10637 sizeof(*stats64) - sizeof(*netdev_stats));
10638#else
10639 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10640 const unsigned long *src = (const unsigned long *)netdev_stats;
10641 u64 *dst = (u64 *)stats64;
10642
10643 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10644 for (i = 0; i < n; i++)
10645 dst[i] = src[i];
10646 /* zero out counters that only exist in rtnl_link_stats64 */
10647 memset((char *)stats64 + n * sizeof(u64), 0,
10648 sizeof(*stats64) - n * sizeof(u64));
10649#endif
10650}
10651EXPORT_SYMBOL(netdev_stats_to_stats64);
10652
10653/**
10654 * dev_get_stats - get network device statistics
10655 * @dev: device to get statistics from
10656 * @storage: place to store stats
10657 *
10658 * Get network statistics from device. Return @storage.
10659 * The device driver may provide its own method by setting
10660 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10661 * otherwise the internal statistics structure is used.
10662 */
10663struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10664 struct rtnl_link_stats64 *storage)
10665{
10666 const struct net_device_ops *ops = dev->netdev_ops;
10667
10668 if (ops->ndo_get_stats64) {
10669 memset(storage, 0, sizeof(*storage));
10670 ops->ndo_get_stats64(dev, storage);
10671 } else if (ops->ndo_get_stats) {
10672 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10673 } else {
10674 netdev_stats_to_stats64(storage, &dev->stats);
10675 }
10676 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10677 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10678 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10679 return storage;
10680}
10681EXPORT_SYMBOL(dev_get_stats);
10682
10683/**
10684 * dev_fetch_sw_netstats - get per-cpu network device statistics
10685 * @s: place to store stats
10686 * @netstats: per-cpu network stats to read from
10687 *
10688 * Read per-cpu network statistics and populate the related fields in @s.
10689 */
10690void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10691 const struct pcpu_sw_netstats __percpu *netstats)
10692{
10693 int cpu;
10694
10695 for_each_possible_cpu(cpu) {
10696 const struct pcpu_sw_netstats *stats;
10697 struct pcpu_sw_netstats tmp;
10698 unsigned int start;
10699
10700 stats = per_cpu_ptr(netstats, cpu);
10701 do {
10702 start = u64_stats_fetch_begin_irq(&stats->syncp);
10703 tmp.rx_packets = stats->rx_packets;
10704 tmp.rx_bytes = stats->rx_bytes;
10705 tmp.tx_packets = stats->tx_packets;
10706 tmp.tx_bytes = stats->tx_bytes;
10707 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10708
10709 s->rx_packets += tmp.rx_packets;
10710 s->rx_bytes += tmp.rx_bytes;
10711 s->tx_packets += tmp.tx_packets;
10712 s->tx_bytes += tmp.tx_bytes;
10713 }
10714}
10715EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10716
10717/**
10718 * dev_get_tstats64 - ndo_get_stats64 implementation
10719 * @dev: device to get statistics from
10720 * @s: place to store stats
10721 *
10722 * Populate @s from dev->stats and dev->tstats. Can be used as
10723 * ndo_get_stats64() callback.
10724 */
10725void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10726{
10727 netdev_stats_to_stats64(s, &dev->stats);
10728 dev_fetch_sw_netstats(s, dev->tstats);
10729}
10730EXPORT_SYMBOL_GPL(dev_get_tstats64);
10731
10732struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10733{
10734 struct netdev_queue *queue = dev_ingress_queue(dev);
10735
10736#ifdef CONFIG_NET_CLS_ACT
10737 if (queue)
10738 return queue;
10739 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10740 if (!queue)
10741 return NULL;
10742 netdev_init_one_queue(dev, queue, NULL);
10743 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10744 queue->qdisc_sleeping = &noop_qdisc;
10745 rcu_assign_pointer(dev->ingress_queue, queue);
10746#endif
10747 return queue;
10748}
10749
10750static const struct ethtool_ops default_ethtool_ops;
10751
10752void netdev_set_default_ethtool_ops(struct net_device *dev,
10753 const struct ethtool_ops *ops)
10754{
10755 if (dev->ethtool_ops == &default_ethtool_ops)
10756 dev->ethtool_ops = ops;
10757}
10758EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10759
10760void netdev_freemem(struct net_device *dev)
10761{
10762 char *addr = (char *)dev - dev->padded;
10763
10764 kvfree(addr);
10765}
10766
10767/**
10768 * alloc_netdev_mqs - allocate network device
10769 * @sizeof_priv: size of private data to allocate space for
10770 * @name: device name format string
10771 * @name_assign_type: origin of device name
10772 * @setup: callback to initialize device
10773 * @txqs: the number of TX subqueues to allocate
10774 * @rxqs: the number of RX subqueues to allocate
10775 *
10776 * Allocates a struct net_device with private data area for driver use
10777 * and performs basic initialization. Also allocates subqueue structs
10778 * for each queue on the device.
10779 */
10780struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10781 unsigned char name_assign_type,
10782 void (*setup)(struct net_device *),
10783 unsigned int txqs, unsigned int rxqs)
10784{
10785 struct net_device *dev;
10786 unsigned int alloc_size;
10787 struct net_device *p;
10788
10789 BUG_ON(strlen(name) >= sizeof(dev->name));
10790
10791 if (txqs < 1) {
10792 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10793 return NULL;
10794 }
10795
10796 if (rxqs < 1) {
10797 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10798 return NULL;
10799 }
10800
10801 alloc_size = sizeof(struct net_device);
10802 if (sizeof_priv) {
10803 /* ensure 32-byte alignment of private area */
10804 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10805 alloc_size += sizeof_priv;
10806 }
10807 /* ensure 32-byte alignment of whole construct */
10808 alloc_size += NETDEV_ALIGN - 1;
10809
10810 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10811 if (!p)
10812 return NULL;
10813
10814 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10815 dev->padded = (char *)dev - (char *)p;
10816
10817#ifdef CONFIG_PCPU_DEV_REFCNT
10818 dev->pcpu_refcnt = alloc_percpu(int);
10819 if (!dev->pcpu_refcnt)
10820 goto free_dev;
10821 dev_hold(dev);
10822#else
10823 refcount_set(&dev->dev_refcnt, 1);
10824#endif
10825
10826 if (dev_addr_init(dev))
10827 goto free_pcpu;
10828
10829 dev_mc_init(dev);
10830 dev_uc_init(dev);
10831
10832 dev_net_set(dev, &init_net);
10833
10834 dev->gso_max_size = GSO_MAX_SIZE;
10835 dev->gso_max_segs = GSO_MAX_SEGS;
10836 dev->upper_level = 1;
10837 dev->lower_level = 1;
10838#ifdef CONFIG_LOCKDEP
10839 dev->nested_level = 0;
10840 INIT_LIST_HEAD(&dev->unlink_list);
10841#endif
10842
10843 INIT_LIST_HEAD(&dev->napi_list);
10844 INIT_LIST_HEAD(&dev->unreg_list);
10845 INIT_LIST_HEAD(&dev->close_list);
10846 INIT_LIST_HEAD(&dev->link_watch_list);
10847 INIT_LIST_HEAD(&dev->adj_list.upper);
10848 INIT_LIST_HEAD(&dev->adj_list.lower);
10849 INIT_LIST_HEAD(&dev->ptype_all);
10850 INIT_LIST_HEAD(&dev->ptype_specific);
10851 INIT_LIST_HEAD(&dev->net_notifier_list);
10852#ifdef CONFIG_NET_SCHED
10853 hash_init(dev->qdisc_hash);
10854#endif
10855 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10856 setup(dev);
10857
10858 if (!dev->tx_queue_len) {
10859 dev->priv_flags |= IFF_NO_QUEUE;
10860 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10861 }
10862
10863 dev->num_tx_queues = txqs;
10864 dev->real_num_tx_queues = txqs;
10865 if (netif_alloc_netdev_queues(dev))
10866 goto free_all;
10867
10868 dev->num_rx_queues = rxqs;
10869 dev->real_num_rx_queues = rxqs;
10870 if (netif_alloc_rx_queues(dev))
10871 goto free_all;
10872
10873 strcpy(dev->name, name);
10874 dev->name_assign_type = name_assign_type;
10875 dev->group = INIT_NETDEV_GROUP;
10876 if (!dev->ethtool_ops)
10877 dev->ethtool_ops = &default_ethtool_ops;
10878
10879 nf_hook_ingress_init(dev);
10880
10881 return dev;
10882
10883free_all:
10884 free_netdev(dev);
10885 return NULL;
10886
10887free_pcpu:
10888#ifdef CONFIG_PCPU_DEV_REFCNT
10889 free_percpu(dev->pcpu_refcnt);
10890free_dev:
10891#endif
10892 netdev_freemem(dev);
10893 return NULL;
10894}
10895EXPORT_SYMBOL(alloc_netdev_mqs);
10896
10897/**
10898 * free_netdev - free network device
10899 * @dev: device
10900 *
10901 * This function does the last stage of destroying an allocated device
10902 * interface. The reference to the device object is released. If this
10903 * is the last reference then it will be freed.Must be called in process
10904 * context.
10905 */
10906void free_netdev(struct net_device *dev)
10907{
10908 struct napi_struct *p, *n;
10909
10910 might_sleep();
10911
10912 /* When called immediately after register_netdevice() failed the unwind
10913 * handling may still be dismantling the device. Handle that case by
10914 * deferring the free.
10915 */
10916 if (dev->reg_state == NETREG_UNREGISTERING) {
10917 ASSERT_RTNL();
10918 dev->needs_free_netdev = true;
10919 return;
10920 }
10921
10922 netif_free_tx_queues(dev);
10923 netif_free_rx_queues(dev);
10924
10925 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10926
10927 /* Flush device addresses */
10928 dev_addr_flush(dev);
10929
10930 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10931 netif_napi_del(p);
10932
10933#ifdef CONFIG_PCPU_DEV_REFCNT
10934 free_percpu(dev->pcpu_refcnt);
10935 dev->pcpu_refcnt = NULL;
10936#endif
10937 free_percpu(dev->xdp_bulkq);
10938 dev->xdp_bulkq = NULL;
10939
10940 /* Compatibility with error handling in drivers */
10941 if (dev->reg_state == NETREG_UNINITIALIZED) {
10942 netdev_freemem(dev);
10943 return;
10944 }
10945
10946 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10947 dev->reg_state = NETREG_RELEASED;
10948
10949 /* will free via device release */
10950 put_device(&dev->dev);
10951}
10952EXPORT_SYMBOL(free_netdev);
10953
10954/**
10955 * synchronize_net - Synchronize with packet receive processing
10956 *
10957 * Wait for packets currently being received to be done.
10958 * Does not block later packets from starting.
10959 */
10960void synchronize_net(void)
10961{
10962 might_sleep();
10963 if (rtnl_is_locked())
10964 synchronize_rcu_expedited();
10965 else
10966 synchronize_rcu();
10967}
10968EXPORT_SYMBOL(synchronize_net);
10969
10970/**
10971 * unregister_netdevice_queue - remove device from the kernel
10972 * @dev: device
10973 * @head: list
10974 *
10975 * This function shuts down a device interface and removes it
10976 * from the kernel tables.
10977 * If head not NULL, device is queued to be unregistered later.
10978 *
10979 * Callers must hold the rtnl semaphore. You may want
10980 * unregister_netdev() instead of this.
10981 */
10982
10983void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10984{
10985 ASSERT_RTNL();
10986
10987 if (head) {
10988 list_move_tail(&dev->unreg_list, head);
10989 } else {
10990 LIST_HEAD(single);
10991
10992 list_add(&dev->unreg_list, &single);
10993 unregister_netdevice_many(&single);
10994 }
10995}
10996EXPORT_SYMBOL(unregister_netdevice_queue);
10997
10998/**
10999 * unregister_netdevice_many - unregister many devices
11000 * @head: list of devices
11001 *
11002 * Note: As most callers use a stack allocated list_head,
11003 * we force a list_del() to make sure stack wont be corrupted later.
11004 */
11005void unregister_netdevice_many(struct list_head *head)
11006{
11007 struct net_device *dev, *tmp;
11008 LIST_HEAD(close_head);
11009
11010 BUG_ON(dev_boot_phase);
11011 ASSERT_RTNL();
11012
11013 if (list_empty(head))
11014 return;
11015
11016 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11017 /* Some devices call without registering
11018 * for initialization unwind. Remove those
11019 * devices and proceed with the remaining.
11020 */
11021 if (dev->reg_state == NETREG_UNINITIALIZED) {
11022 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11023 dev->name, dev);
11024
11025 WARN_ON(1);
11026 list_del(&dev->unreg_list);
11027 continue;
11028 }
11029 dev->dismantle = true;
11030 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11031 }
11032
11033 /* If device is running, close it first. */
11034 list_for_each_entry(dev, head, unreg_list)
11035 list_add_tail(&dev->close_list, &close_head);
11036 dev_close_many(&close_head, true);
11037
11038 list_for_each_entry(dev, head, unreg_list) {
11039 /* And unlink it from device chain. */
11040 unlist_netdevice(dev);
11041
11042 dev->reg_state = NETREG_UNREGISTERING;
11043 }
11044 flush_all_backlogs();
11045
11046 synchronize_net();
11047
11048 list_for_each_entry(dev, head, unreg_list) {
11049 struct sk_buff *skb = NULL;
11050
11051 /* Shutdown queueing discipline. */
11052 dev_shutdown(dev);
11053
11054 dev_xdp_uninstall(dev);
11055
11056 /* Notify protocols, that we are about to destroy
11057 * this device. They should clean all the things.
11058 */
11059 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11060
11061 if (!dev->rtnl_link_ops ||
11062 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11063 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11064 GFP_KERNEL, NULL, 0);
11065
11066 /*
11067 * Flush the unicast and multicast chains
11068 */
11069 dev_uc_flush(dev);
11070 dev_mc_flush(dev);
11071
11072 netdev_name_node_alt_flush(dev);
11073 netdev_name_node_free(dev->name_node);
11074
11075 if (dev->netdev_ops->ndo_uninit)
11076 dev->netdev_ops->ndo_uninit(dev);
11077
11078 if (skb)
11079 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11080
11081 /* Notifier chain MUST detach us all upper devices. */
11082 WARN_ON(netdev_has_any_upper_dev(dev));
11083 WARN_ON(netdev_has_any_lower_dev(dev));
11084
11085 /* Remove entries from kobject tree */
11086 netdev_unregister_kobject(dev);
11087#ifdef CONFIG_XPS
11088 /* Remove XPS queueing entries */
11089 netif_reset_xps_queues_gt(dev, 0);
11090#endif
11091 }
11092
11093 synchronize_net();
11094
11095 list_for_each_entry(dev, head, unreg_list) {
11096 dev_put(dev);
11097 net_set_todo(dev);
11098 }
11099
11100 list_del(head);
11101}
11102EXPORT_SYMBOL(unregister_netdevice_many);
11103
11104/**
11105 * unregister_netdev - remove device from the kernel
11106 * @dev: device
11107 *
11108 * This function shuts down a device interface and removes it
11109 * from the kernel tables.
11110 *
11111 * This is just a wrapper for unregister_netdevice that takes
11112 * the rtnl semaphore. In general you want to use this and not
11113 * unregister_netdevice.
11114 */
11115void unregister_netdev(struct net_device *dev)
11116{
11117 rtnl_lock();
11118 unregister_netdevice(dev);
11119 rtnl_unlock();
11120}
11121EXPORT_SYMBOL(unregister_netdev);
11122
11123/**
11124 * __dev_change_net_namespace - move device to different nethost namespace
11125 * @dev: device
11126 * @net: network namespace
11127 * @pat: If not NULL name pattern to try if the current device name
11128 * is already taken in the destination network namespace.
11129 * @new_ifindex: If not zero, specifies device index in the target
11130 * namespace.
11131 *
11132 * This function shuts down a device interface and moves it
11133 * to a new network namespace. On success 0 is returned, on
11134 * a failure a netagive errno code is returned.
11135 *
11136 * Callers must hold the rtnl semaphore.
11137 */
11138
11139int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11140 const char *pat, int new_ifindex)
11141{
11142 struct net *net_old = dev_net(dev);
11143 int err, new_nsid;
11144
11145 ASSERT_RTNL();
11146
11147 /* Don't allow namespace local devices to be moved. */
11148 err = -EINVAL;
11149 if (dev->features & NETIF_F_NETNS_LOCAL)
11150 goto out;
11151
11152 /* Ensure the device has been registrered */
11153 if (dev->reg_state != NETREG_REGISTERED)
11154 goto out;
11155
11156 /* Get out if there is nothing todo */
11157 err = 0;
11158 if (net_eq(net_old, net))
11159 goto out;
11160
11161 /* Pick the destination device name, and ensure
11162 * we can use it in the destination network namespace.
11163 */
11164 err = -EEXIST;
11165 if (__dev_get_by_name(net, dev->name)) {
11166 /* We get here if we can't use the current device name */
11167 if (!pat)
11168 goto out;
11169 err = dev_get_valid_name(net, dev, pat);
11170 if (err < 0)
11171 goto out;
11172 }
11173
11174 /* Check that new_ifindex isn't used yet. */
11175 err = -EBUSY;
11176 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11177 goto out;
11178
11179 /*
11180 * And now a mini version of register_netdevice unregister_netdevice.
11181 */
11182
11183 /* If device is running close it first. */
11184 dev_close(dev);
11185
11186 /* And unlink it from device chain */
11187 unlist_netdevice(dev);
11188
11189 synchronize_net();
11190
11191 /* Shutdown queueing discipline. */
11192 dev_shutdown(dev);
11193
11194 /* Notify protocols, that we are about to destroy
11195 * this device. They should clean all the things.
11196 *
11197 * Note that dev->reg_state stays at NETREG_REGISTERED.
11198 * This is wanted because this way 8021q and macvlan know
11199 * the device is just moving and can keep their slaves up.
11200 */
11201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11202 rcu_barrier();
11203
11204 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11205 /* If there is an ifindex conflict assign a new one */
11206 if (!new_ifindex) {
11207 if (__dev_get_by_index(net, dev->ifindex))
11208 new_ifindex = dev_new_index(net);
11209 else
11210 new_ifindex = dev->ifindex;
11211 }
11212
11213 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11214 new_ifindex);
11215
11216 /*
11217 * Flush the unicast and multicast chains
11218 */
11219 dev_uc_flush(dev);
11220 dev_mc_flush(dev);
11221
11222 /* Send a netdev-removed uevent to the old namespace */
11223 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11224 netdev_adjacent_del_links(dev);
11225
11226 /* Move per-net netdevice notifiers that are following the netdevice */
11227 move_netdevice_notifiers_dev_net(dev, net);
11228
11229 /* Actually switch the network namespace */
11230 dev_net_set(dev, net);
11231 dev->ifindex = new_ifindex;
11232
11233 /* Send a netdev-add uevent to the new namespace */
11234 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11235 netdev_adjacent_add_links(dev);
11236
11237 /* Fixup kobjects */
11238 err = device_rename(&dev->dev, dev->name);
11239 WARN_ON(err);
11240
11241 /* Adapt owner in case owning user namespace of target network
11242 * namespace is different from the original one.
11243 */
11244 err = netdev_change_owner(dev, net_old, net);
11245 WARN_ON(err);
11246
11247 /* Add the device back in the hashes */
11248 list_netdevice(dev);
11249
11250 /* Notify protocols, that a new device appeared. */
11251 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11252
11253 /*
11254 * Prevent userspace races by waiting until the network
11255 * device is fully setup before sending notifications.
11256 */
11257 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11258
11259 synchronize_net();
11260 err = 0;
11261out:
11262 return err;
11263}
11264EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11265
11266static int dev_cpu_dead(unsigned int oldcpu)
11267{
11268 struct sk_buff **list_skb;
11269 struct sk_buff *skb;
11270 unsigned int cpu;
11271 struct softnet_data *sd, *oldsd, *remsd = NULL;
11272
11273 local_irq_disable();
11274 cpu = smp_processor_id();
11275 sd = &per_cpu(softnet_data, cpu);
11276 oldsd = &per_cpu(softnet_data, oldcpu);
11277
11278 /* Find end of our completion_queue. */
11279 list_skb = &sd->completion_queue;
11280 while (*list_skb)
11281 list_skb = &(*list_skb)->next;
11282 /* Append completion queue from offline CPU. */
11283 *list_skb = oldsd->completion_queue;
11284 oldsd->completion_queue = NULL;
11285
11286 /* Append output queue from offline CPU. */
11287 if (oldsd->output_queue) {
11288 *sd->output_queue_tailp = oldsd->output_queue;
11289 sd->output_queue_tailp = oldsd->output_queue_tailp;
11290 oldsd->output_queue = NULL;
11291 oldsd->output_queue_tailp = &oldsd->output_queue;
11292 }
11293 /* Append NAPI poll list from offline CPU, with one exception :
11294 * process_backlog() must be called by cpu owning percpu backlog.
11295 * We properly handle process_queue & input_pkt_queue later.
11296 */
11297 while (!list_empty(&oldsd->poll_list)) {
11298 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11299 struct napi_struct,
11300 poll_list);
11301
11302 list_del_init(&napi->poll_list);
11303 if (napi->poll == process_backlog)
11304 napi->state = 0;
11305 else
11306 ____napi_schedule(sd, napi);
11307 }
11308
11309 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11310 local_irq_enable();
11311
11312#ifdef CONFIG_RPS
11313 remsd = oldsd->rps_ipi_list;
11314 oldsd->rps_ipi_list = NULL;
11315#endif
11316 /* send out pending IPI's on offline CPU */
11317 net_rps_send_ipi(remsd);
11318
11319 /* Process offline CPU's input_pkt_queue */
11320 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11321 netif_rx_ni(skb);
11322 input_queue_head_incr(oldsd);
11323 }
11324 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11325 netif_rx_ni(skb);
11326 input_queue_head_incr(oldsd);
11327 }
11328
11329 return 0;
11330}
11331
11332/**
11333 * netdev_increment_features - increment feature set by one
11334 * @all: current feature set
11335 * @one: new feature set
11336 * @mask: mask feature set
11337 *
11338 * Computes a new feature set after adding a device with feature set
11339 * @one to the master device with current feature set @all. Will not
11340 * enable anything that is off in @mask. Returns the new feature set.
11341 */
11342netdev_features_t netdev_increment_features(netdev_features_t all,
11343 netdev_features_t one, netdev_features_t mask)
11344{
11345 if (mask & NETIF_F_HW_CSUM)
11346 mask |= NETIF_F_CSUM_MASK;
11347 mask |= NETIF_F_VLAN_CHALLENGED;
11348
11349 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11350 all &= one | ~NETIF_F_ALL_FOR_ALL;
11351
11352 /* If one device supports hw checksumming, set for all. */
11353 if (all & NETIF_F_HW_CSUM)
11354 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11355
11356 return all;
11357}
11358EXPORT_SYMBOL(netdev_increment_features);
11359
11360static struct hlist_head * __net_init netdev_create_hash(void)
11361{
11362 int i;
11363 struct hlist_head *hash;
11364
11365 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11366 if (hash != NULL)
11367 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11368 INIT_HLIST_HEAD(&hash[i]);
11369
11370 return hash;
11371}
11372
11373/* Initialize per network namespace state */
11374static int __net_init netdev_init(struct net *net)
11375{
11376 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11377 8 * sizeof_field(struct napi_struct, gro_bitmask));
11378
11379 if (net != &init_net)
11380 INIT_LIST_HEAD(&net->dev_base_head);
11381
11382 net->dev_name_head = netdev_create_hash();
11383 if (net->dev_name_head == NULL)
11384 goto err_name;
11385
11386 net->dev_index_head = netdev_create_hash();
11387 if (net->dev_index_head == NULL)
11388 goto err_idx;
11389
11390 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11391
11392 return 0;
11393
11394err_idx:
11395 kfree(net->dev_name_head);
11396err_name:
11397 return -ENOMEM;
11398}
11399
11400/**
11401 * netdev_drivername - network driver for the device
11402 * @dev: network device
11403 *
11404 * Determine network driver for device.
11405 */
11406const char *netdev_drivername(const struct net_device *dev)
11407{
11408 const struct device_driver *driver;
11409 const struct device *parent;
11410 const char *empty = "";
11411
11412 parent = dev->dev.parent;
11413 if (!parent)
11414 return empty;
11415
11416 driver = parent->driver;
11417 if (driver && driver->name)
11418 return driver->name;
11419 return empty;
11420}
11421
11422static void __netdev_printk(const char *level, const struct net_device *dev,
11423 struct va_format *vaf)
11424{
11425 if (dev && dev->dev.parent) {
11426 dev_printk_emit(level[1] - '0',
11427 dev->dev.parent,
11428 "%s %s %s%s: %pV",
11429 dev_driver_string(dev->dev.parent),
11430 dev_name(dev->dev.parent),
11431 netdev_name(dev), netdev_reg_state(dev),
11432 vaf);
11433 } else if (dev) {
11434 printk("%s%s%s: %pV",
11435 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11436 } else {
11437 printk("%s(NULL net_device): %pV", level, vaf);
11438 }
11439}
11440
11441void netdev_printk(const char *level, const struct net_device *dev,
11442 const char *format, ...)
11443{
11444 struct va_format vaf;
11445 va_list args;
11446
11447 va_start(args, format);
11448
11449 vaf.fmt = format;
11450 vaf.va = &args;
11451
11452 __netdev_printk(level, dev, &vaf);
11453
11454 va_end(args);
11455}
11456EXPORT_SYMBOL(netdev_printk);
11457
11458#define define_netdev_printk_level(func, level) \
11459void func(const struct net_device *dev, const char *fmt, ...) \
11460{ \
11461 struct va_format vaf; \
11462 va_list args; \
11463 \
11464 va_start(args, fmt); \
11465 \
11466 vaf.fmt = fmt; \
11467 vaf.va = &args; \
11468 \
11469 __netdev_printk(level, dev, &vaf); \
11470 \
11471 va_end(args); \
11472} \
11473EXPORT_SYMBOL(func);
11474
11475define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11476define_netdev_printk_level(netdev_alert, KERN_ALERT);
11477define_netdev_printk_level(netdev_crit, KERN_CRIT);
11478define_netdev_printk_level(netdev_err, KERN_ERR);
11479define_netdev_printk_level(netdev_warn, KERN_WARNING);
11480define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11481define_netdev_printk_level(netdev_info, KERN_INFO);
11482
11483static void __net_exit netdev_exit(struct net *net)
11484{
11485 kfree(net->dev_name_head);
11486 kfree(net->dev_index_head);
11487 if (net != &init_net)
11488 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11489}
11490
11491static struct pernet_operations __net_initdata netdev_net_ops = {
11492 .init = netdev_init,
11493 .exit = netdev_exit,
11494};
11495
11496static void __net_exit default_device_exit(struct net *net)
11497{
11498 struct net_device *dev, *aux;
11499 /*
11500 * Push all migratable network devices back to the
11501 * initial network namespace
11502 */
11503 rtnl_lock();
11504 for_each_netdev_safe(net, dev, aux) {
11505 int err;
11506 char fb_name[IFNAMSIZ];
11507
11508 /* Ignore unmoveable devices (i.e. loopback) */
11509 if (dev->features & NETIF_F_NETNS_LOCAL)
11510 continue;
11511
11512 /* Leave virtual devices for the generic cleanup */
11513 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11514 continue;
11515
11516 /* Push remaining network devices to init_net */
11517 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11518 if (__dev_get_by_name(&init_net, fb_name))
11519 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11520 err = dev_change_net_namespace(dev, &init_net, fb_name);
11521 if (err) {
11522 pr_emerg("%s: failed to move %s to init_net: %d\n",
11523 __func__, dev->name, err);
11524 BUG();
11525 }
11526 }
11527 rtnl_unlock();
11528}
11529
11530static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11531{
11532 /* Return with the rtnl_lock held when there are no network
11533 * devices unregistering in any network namespace in net_list.
11534 */
11535 struct net *net;
11536 bool unregistering;
11537 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11538
11539 add_wait_queue(&netdev_unregistering_wq, &wait);
11540 for (;;) {
11541 unregistering = false;
11542 rtnl_lock();
11543 list_for_each_entry(net, net_list, exit_list) {
11544 if (net->dev_unreg_count > 0) {
11545 unregistering = true;
11546 break;
11547 }
11548 }
11549 if (!unregistering)
11550 break;
11551 __rtnl_unlock();
11552
11553 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11554 }
11555 remove_wait_queue(&netdev_unregistering_wq, &wait);
11556}
11557
11558static void __net_exit default_device_exit_batch(struct list_head *net_list)
11559{
11560 /* At exit all network devices most be removed from a network
11561 * namespace. Do this in the reverse order of registration.
11562 * Do this across as many network namespaces as possible to
11563 * improve batching efficiency.
11564 */
11565 struct net_device *dev;
11566 struct net *net;
11567 LIST_HEAD(dev_kill_list);
11568
11569 /* To prevent network device cleanup code from dereferencing
11570 * loopback devices or network devices that have been freed
11571 * wait here for all pending unregistrations to complete,
11572 * before unregistring the loopback device and allowing the
11573 * network namespace be freed.
11574 *
11575 * The netdev todo list containing all network devices
11576 * unregistrations that happen in default_device_exit_batch
11577 * will run in the rtnl_unlock() at the end of
11578 * default_device_exit_batch.
11579 */
11580 rtnl_lock_unregistering(net_list);
11581 list_for_each_entry(net, net_list, exit_list) {
11582 for_each_netdev_reverse(net, dev) {
11583 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11584 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11585 else
11586 unregister_netdevice_queue(dev, &dev_kill_list);
11587 }
11588 }
11589 unregister_netdevice_many(&dev_kill_list);
11590 rtnl_unlock();
11591}
11592
11593static struct pernet_operations __net_initdata default_device_ops = {
11594 .exit = default_device_exit,
11595 .exit_batch = default_device_exit_batch,
11596};
11597
11598/*
11599 * Initialize the DEV module. At boot time this walks the device list and
11600 * unhooks any devices that fail to initialise (normally hardware not
11601 * present) and leaves us with a valid list of present and active devices.
11602 *
11603 */
11604
11605/*
11606 * This is called single threaded during boot, so no need
11607 * to take the rtnl semaphore.
11608 */
11609static int __init net_dev_init(void)
11610{
11611 int i, rc = -ENOMEM;
11612
11613 BUG_ON(!dev_boot_phase);
11614
11615 if (dev_proc_init())
11616 goto out;
11617
11618 if (netdev_kobject_init())
11619 goto out;
11620
11621 INIT_LIST_HEAD(&ptype_all);
11622 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11623 INIT_LIST_HEAD(&ptype_base[i]);
11624
11625 INIT_LIST_HEAD(&offload_base);
11626
11627 if (register_pernet_subsys(&netdev_net_ops))
11628 goto out;
11629
11630 /*
11631 * Initialise the packet receive queues.
11632 */
11633
11634 for_each_possible_cpu(i) {
11635 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11636 struct softnet_data *sd = &per_cpu(softnet_data, i);
11637
11638 INIT_WORK(flush, flush_backlog);
11639
11640 skb_queue_head_init(&sd->input_pkt_queue);
11641 skb_queue_head_init(&sd->process_queue);
11642#ifdef CONFIG_XFRM_OFFLOAD
11643 skb_queue_head_init(&sd->xfrm_backlog);
11644#endif
11645 INIT_LIST_HEAD(&sd->poll_list);
11646 sd->output_queue_tailp = &sd->output_queue;
11647#ifdef CONFIG_RPS
11648 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11649 sd->cpu = i;
11650#endif
11651
11652 init_gro_hash(&sd->backlog);
11653 sd->backlog.poll = process_backlog;
11654 sd->backlog.weight = weight_p;
11655 }
11656
11657 dev_boot_phase = 0;
11658
11659 /* The loopback device is special if any other network devices
11660 * is present in a network namespace the loopback device must
11661 * be present. Since we now dynamically allocate and free the
11662 * loopback device ensure this invariant is maintained by
11663 * keeping the loopback device as the first device on the
11664 * list of network devices. Ensuring the loopback devices
11665 * is the first device that appears and the last network device
11666 * that disappears.
11667 */
11668 if (register_pernet_device(&loopback_net_ops))
11669 goto out;
11670
11671 if (register_pernet_device(&default_device_ops))
11672 goto out;
11673
11674 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11675 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11676
11677 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11678 NULL, dev_cpu_dead);
11679 WARN_ON(rc < 0);
11680 rc = 0;
11681out:
11682 return rc;
11683}
11684
11685subsys_initcall(net_dev_init);