Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52#include "raid1-10.c"
53
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61{
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80}
81
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97{
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119}
120
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131{
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137}
138
139#define RESYNC_DEPTH 32
140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147{
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
178 */
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
181 else
182 need_pages = 1;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
186 bio = r1_bio->bios[j];
187
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
204out_free_pages:
205 while (--j >= 0)
206 resync_free_pages(&rps[j]);
207
208out_free_bio:
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
211 kfree(rps);
212
213out_free_r1bio:
214 rbio_pool_free(r1_bio, data);
215 return NULL;
216}
217
218static void r1buf_pool_free(void *__r1_bio, void *data)
219{
220 struct pool_info *pi = data;
221 int i;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
224
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r1bio, data);
235}
236
237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238{
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 }
247}
248
249static void free_r1bio(struct r1bio *r1_bio)
250{
251 struct r1conf *conf = r1_bio->mddev->private;
252
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
255}
256
257static void put_buf(struct r1bio *r1_bio)
258{
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
261 int i;
262
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
268
269 mempool_free(r1_bio, &conf->r1buf_pool);
270
271 lower_barrier(conf, sect);
272}
273
274static void reschedule_retry(struct r1bio *r1_bio)
275{
276 unsigned long flags;
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
279 int idx;
280
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296static void call_bio_endio(struct r1bio *r1_bio)
297{
298 struct bio *bio = r1_bio->master_bio;
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
302
303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 bio_end_io_acct(bio, r1_bio->start_time);
305 bio_endio(bio);
306}
307
308static void raid_end_bio_io(struct r1bio *r1_bio)
309{
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 /* if nobody has done the final endio yet, do it now */
314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 (unsigned long long) bio->bi_iter.bi_sector,
318 (unsigned long long) bio_end_sector(bio) - 1);
319
320 call_bio_endio(r1_bio);
321 }
322 /*
323 * Wake up any possible resync thread that waits for the device
324 * to go idle. All I/Os, even write-behind writes, are done.
325 */
326 allow_barrier(conf, r1_bio->sector);
327
328 free_r1bio(r1_bio);
329}
330
331/*
332 * Update disk head position estimator based on IRQ completion info.
333 */
334static inline void update_head_pos(int disk, struct r1bio *r1_bio)
335{
336 struct r1conf *conf = r1_bio->mddev->private;
337
338 conf->mirrors[disk].head_position =
339 r1_bio->sector + (r1_bio->sectors);
340}
341
342/*
343 * Find the disk number which triggered given bio
344 */
345static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
346{
347 int mirror;
348 struct r1conf *conf = r1_bio->mddev->private;
349 int raid_disks = conf->raid_disks;
350
351 for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 if (r1_bio->bios[mirror] == bio)
353 break;
354
355 BUG_ON(mirror == raid_disks * 2);
356 update_head_pos(mirror, r1_bio);
357
358 return mirror;
359}
360
361static void raid1_end_read_request(struct bio *bio)
362{
363 int uptodate = !bio->bi_status;
364 struct r1bio *r1_bio = bio->bi_private;
365 struct r1conf *conf = r1_bio->mddev->private;
366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
367
368 /*
369 * this branch is our 'one mirror IO has finished' event handler:
370 */
371 update_head_pos(r1_bio->read_disk, r1_bio);
372
373 if (uptodate)
374 set_bit(R1BIO_Uptodate, &r1_bio->state);
375 else if (test_bit(FailFast, &rdev->flags) &&
376 test_bit(R1BIO_FailFast, &r1_bio->state))
377 /* This was a fail-fast read so we definitely
378 * want to retry */
379 ;
380 else {
381 /* If all other devices have failed, we want to return
382 * the error upwards rather than fail the last device.
383 * Here we redefine "uptodate" to mean "Don't want to retry"
384 */
385 unsigned long flags;
386 spin_lock_irqsave(&conf->device_lock, flags);
387 if (r1_bio->mddev->degraded == conf->raid_disks ||
388 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 test_bit(In_sync, &rdev->flags)))
390 uptodate = 1;
391 spin_unlock_irqrestore(&conf->device_lock, flags);
392 }
393
394 if (uptodate) {
395 raid_end_bio_io(r1_bio);
396 rdev_dec_pending(rdev, conf->mddev);
397 } else {
398 /*
399 * oops, read error:
400 */
401 char b[BDEVNAME_SIZE];
402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 bdevname(rdev->bdev, b),
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
409 }
410}
411
412static void close_write(struct r1bio *r1_bio)
413{
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
419 }
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 r1_bio->sectors,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
426}
427
428static void r1_bio_write_done(struct r1bio *r1_bio)
429{
430 if (!atomic_dec_and_test(&r1_bio->remaining))
431 return;
432
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
435 else {
436 close_write(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
439 else
440 raid_end_bio_io(r1_bio);
441 }
442}
443
444static void raid1_end_write_request(struct bio *bio)
445{
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 bool discard_error;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
455
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457
458 /*
459 * 'one mirror IO has finished' event handler:
460 */
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
466
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
472 }
473
474 /*
475 * When the device is faulty, it is not necessary to
476 * handle write error.
477 * For failfast, this is the only remaining device,
478 * We need to retry the write without FailFast.
479 */
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
482 else {
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
489 } else {
490 /*
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
499 */
500 sector_t first_bad;
501 int bad_sectors;
502
503 r1_bio->bios[mirror] = NULL;
504 to_put = bio;
505 /*
506 * Do not set R1BIO_Uptodate if the current device is
507 * rebuilding or Faulty. This is because we cannot use
508 * such device for properly reading the data back (we could
509 * potentially use it, if the current write would have felt
510 * before rdev->recovery_offset, but for simplicity we don't
511 * check this here.
512 */
513 if (test_bit(In_sync, &rdev->flags) &&
514 !test_bit(Faulty, &rdev->flags))
515 set_bit(R1BIO_Uptodate, &r1_bio->state);
516
517 /* Maybe we can clear some bad blocks. */
518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519 &first_bad, &bad_sectors) && !discard_error) {
520 r1_bio->bios[mirror] = IO_MADE_GOOD;
521 set_bit(R1BIO_MadeGood, &r1_bio->state);
522 }
523 }
524
525 if (behind) {
526 if (test_bit(CollisionCheck, &rdev->flags))
527 remove_serial(rdev, lo, hi);
528 if (test_bit(WriteMostly, &rdev->flags))
529 atomic_dec(&r1_bio->behind_remaining);
530
531 /*
532 * In behind mode, we ACK the master bio once the I/O
533 * has safely reached all non-writemostly
534 * disks. Setting the Returned bit ensures that this
535 * gets done only once -- we don't ever want to return
536 * -EIO here, instead we'll wait
537 */
538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 /* Maybe we can return now */
541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 struct bio *mbio = r1_bio->master_bio;
543 pr_debug("raid1: behind end write sectors"
544 " %llu-%llu\n",
545 (unsigned long long) mbio->bi_iter.bi_sector,
546 (unsigned long long) bio_end_sector(mbio) - 1);
547 call_bio_endio(r1_bio);
548 }
549 }
550 } else if (rdev->mddev->serialize_policy)
551 remove_serial(rdev, lo, hi);
552 if (r1_bio->bios[mirror] == NULL)
553 rdev_dec_pending(rdev, conf->mddev);
554
555 /*
556 * Let's see if all mirrored write operations have finished
557 * already.
558 */
559 r1_bio_write_done(r1_bio);
560
561 if (to_put)
562 bio_put(to_put);
563}
564
565static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 sector_t sectors)
567{
568 sector_t len;
569
570 WARN_ON(sectors == 0);
571 /*
572 * len is the number of sectors from start_sector to end of the
573 * barrier unit which start_sector belongs to.
574 */
575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 start_sector;
577
578 if (len > sectors)
579 len = sectors;
580
581 return len;
582}
583
584/*
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
592 *
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
595 *
596 * The rdev for the device selected will have nr_pending incremented.
597 */
598static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599{
600 const sector_t this_sector = r1_bio->sector;
601 int sectors;
602 int best_good_sectors;
603 int best_disk, best_dist_disk, best_pending_disk;
604 int has_nonrot_disk;
605 int disk;
606 sector_t best_dist;
607 unsigned int min_pending;
608 struct md_rdev *rdev;
609 int choose_first;
610 int choose_next_idle;
611
612 rcu_read_lock();
613 /*
614 * Check if we can balance. We can balance on the whole
615 * device if no resync is going on, or below the resync window.
616 * We take the first readable disk when above the resync window.
617 */
618 retry:
619 sectors = r1_bio->sectors;
620 best_disk = -1;
621 best_dist_disk = -1;
622 best_dist = MaxSector;
623 best_pending_disk = -1;
624 min_pending = UINT_MAX;
625 best_good_sectors = 0;
626 has_nonrot_disk = 0;
627 choose_next_idle = 0;
628 clear_bit(R1BIO_FailFast, &r1_bio->state);
629
630 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 (mddev_is_clustered(conf->mddev) &&
632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 this_sector + sectors)))
634 choose_first = 1;
635 else
636 choose_first = 0;
637
638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639 sector_t dist;
640 sector_t first_bad;
641 int bad_sectors;
642 unsigned int pending;
643 bool nonrot;
644
645 rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 if (r1_bio->bios[disk] == IO_BLOCKED
647 || rdev == NULL
648 || test_bit(Faulty, &rdev->flags))
649 continue;
650 if (!test_bit(In_sync, &rdev->flags) &&
651 rdev->recovery_offset < this_sector + sectors)
652 continue;
653 if (test_bit(WriteMostly, &rdev->flags)) {
654 /* Don't balance among write-mostly, just
655 * use the first as a last resort */
656 if (best_dist_disk < 0) {
657 if (is_badblock(rdev, this_sector, sectors,
658 &first_bad, &bad_sectors)) {
659 if (first_bad <= this_sector)
660 /* Cannot use this */
661 continue;
662 best_good_sectors = first_bad - this_sector;
663 } else
664 best_good_sectors = sectors;
665 best_dist_disk = disk;
666 best_pending_disk = disk;
667 }
668 continue;
669 }
670 /* This is a reasonable device to use. It might
671 * even be best.
672 */
673 if (is_badblock(rdev, this_sector, sectors,
674 &first_bad, &bad_sectors)) {
675 if (best_dist < MaxSector)
676 /* already have a better device */
677 continue;
678 if (first_bad <= this_sector) {
679 /* cannot read here. If this is the 'primary'
680 * device, then we must not read beyond
681 * bad_sectors from another device..
682 */
683 bad_sectors -= (this_sector - first_bad);
684 if (choose_first && sectors > bad_sectors)
685 sectors = bad_sectors;
686 if (best_good_sectors > sectors)
687 best_good_sectors = sectors;
688
689 } else {
690 sector_t good_sectors = first_bad - this_sector;
691 if (good_sectors > best_good_sectors) {
692 best_good_sectors = good_sectors;
693 best_disk = disk;
694 }
695 if (choose_first)
696 break;
697 }
698 continue;
699 } else {
700 if ((sectors > best_good_sectors) && (best_disk >= 0))
701 best_disk = -1;
702 best_good_sectors = sectors;
703 }
704
705 if (best_disk >= 0)
706 /* At least two disks to choose from so failfast is OK */
707 set_bit(R1BIO_FailFast, &r1_bio->state);
708
709 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
710 has_nonrot_disk |= nonrot;
711 pending = atomic_read(&rdev->nr_pending);
712 dist = abs(this_sector - conf->mirrors[disk].head_position);
713 if (choose_first) {
714 best_disk = disk;
715 break;
716 }
717 /* Don't change to another disk for sequential reads */
718 if (conf->mirrors[disk].next_seq_sect == this_sector
719 || dist == 0) {
720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 struct raid1_info *mirror = &conf->mirrors[disk];
722
723 best_disk = disk;
724 /*
725 * If buffered sequential IO size exceeds optimal
726 * iosize, check if there is idle disk. If yes, choose
727 * the idle disk. read_balance could already choose an
728 * idle disk before noticing it's a sequential IO in
729 * this disk. This doesn't matter because this disk
730 * will idle, next time it will be utilized after the
731 * first disk has IO size exceeds optimal iosize. In
732 * this way, iosize of the first disk will be optimal
733 * iosize at least. iosize of the second disk might be
734 * small, but not a big deal since when the second disk
735 * starts IO, the first disk is likely still busy.
736 */
737 if (nonrot && opt_iosize > 0 &&
738 mirror->seq_start != MaxSector &&
739 mirror->next_seq_sect > opt_iosize &&
740 mirror->next_seq_sect - opt_iosize >=
741 mirror->seq_start) {
742 choose_next_idle = 1;
743 continue;
744 }
745 break;
746 }
747
748 if (choose_next_idle)
749 continue;
750
751 if (min_pending > pending) {
752 min_pending = pending;
753 best_pending_disk = disk;
754 }
755
756 if (dist < best_dist) {
757 best_dist = dist;
758 best_dist_disk = disk;
759 }
760 }
761
762 /*
763 * If all disks are rotational, choose the closest disk. If any disk is
764 * non-rotational, choose the disk with less pending request even the
765 * disk is rotational, which might/might not be optimal for raids with
766 * mixed ratation/non-rotational disks depending on workload.
767 */
768 if (best_disk == -1) {
769 if (has_nonrot_disk || min_pending == 0)
770 best_disk = best_pending_disk;
771 else
772 best_disk = best_dist_disk;
773 }
774
775 if (best_disk >= 0) {
776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777 if (!rdev)
778 goto retry;
779 atomic_inc(&rdev->nr_pending);
780 sectors = best_good_sectors;
781
782 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 conf->mirrors[best_disk].seq_start = this_sector;
784
785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786 }
787 rcu_read_unlock();
788 *max_sectors = sectors;
789
790 return best_disk;
791}
792
793static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794{
795 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
796 md_bitmap_unplug(conf->mddev->bitmap);
797 wake_up(&conf->wait_barrier);
798
799 while (bio) { /* submit pending writes */
800 struct bio *next = bio->bi_next;
801 struct md_rdev *rdev = (void *)bio->bi_bdev;
802 bio->bi_next = NULL;
803 bio_set_dev(bio, rdev->bdev);
804 if (test_bit(Faulty, &rdev->flags)) {
805 bio_io_error(bio);
806 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
807 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
808 /* Just ignore it */
809 bio_endio(bio);
810 else
811 submit_bio_noacct(bio);
812 bio = next;
813 cond_resched();
814 }
815}
816
817static void flush_pending_writes(struct r1conf *conf)
818{
819 /* Any writes that have been queued but are awaiting
820 * bitmap updates get flushed here.
821 */
822 spin_lock_irq(&conf->device_lock);
823
824 if (conf->pending_bio_list.head) {
825 struct blk_plug plug;
826 struct bio *bio;
827
828 bio = bio_list_get(&conf->pending_bio_list);
829 conf->pending_count = 0;
830 spin_unlock_irq(&conf->device_lock);
831
832 /*
833 * As this is called in a wait_event() loop (see freeze_array),
834 * current->state might be TASK_UNINTERRUPTIBLE which will
835 * cause a warning when we prepare to wait again. As it is
836 * rare that this path is taken, it is perfectly safe to force
837 * us to go around the wait_event() loop again, so the warning
838 * is a false-positive. Silence the warning by resetting
839 * thread state
840 */
841 __set_current_state(TASK_RUNNING);
842 blk_start_plug(&plug);
843 flush_bio_list(conf, bio);
844 blk_finish_plug(&plug);
845 } else
846 spin_unlock_irq(&conf->device_lock);
847}
848
849/* Barriers....
850 * Sometimes we need to suspend IO while we do something else,
851 * either some resync/recovery, or reconfigure the array.
852 * To do this we raise a 'barrier'.
853 * The 'barrier' is a counter that can be raised multiple times
854 * to count how many activities are happening which preclude
855 * normal IO.
856 * We can only raise the barrier if there is no pending IO.
857 * i.e. if nr_pending == 0.
858 * We choose only to raise the barrier if no-one is waiting for the
859 * barrier to go down. This means that as soon as an IO request
860 * is ready, no other operations which require a barrier will start
861 * until the IO request has had a chance.
862 *
863 * So: regular IO calls 'wait_barrier'. When that returns there
864 * is no backgroup IO happening, It must arrange to call
865 * allow_barrier when it has finished its IO.
866 * backgroup IO calls must call raise_barrier. Once that returns
867 * there is no normal IO happeing. It must arrange to call
868 * lower_barrier when the particular background IO completes.
869 *
870 * If resync/recovery is interrupted, returns -EINTR;
871 * Otherwise, returns 0.
872 */
873static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
874{
875 int idx = sector_to_idx(sector_nr);
876
877 spin_lock_irq(&conf->resync_lock);
878
879 /* Wait until no block IO is waiting */
880 wait_event_lock_irq(conf->wait_barrier,
881 !atomic_read(&conf->nr_waiting[idx]),
882 conf->resync_lock);
883
884 /* block any new IO from starting */
885 atomic_inc(&conf->barrier[idx]);
886 /*
887 * In raise_barrier() we firstly increase conf->barrier[idx] then
888 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
889 * increase conf->nr_pending[idx] then check conf->barrier[idx].
890 * A memory barrier here to make sure conf->nr_pending[idx] won't
891 * be fetched before conf->barrier[idx] is increased. Otherwise
892 * there will be a race between raise_barrier() and _wait_barrier().
893 */
894 smp_mb__after_atomic();
895
896 /* For these conditions we must wait:
897 * A: while the array is in frozen state
898 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
899 * existing in corresponding I/O barrier bucket.
900 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
901 * max resync count which allowed on current I/O barrier bucket.
902 */
903 wait_event_lock_irq(conf->wait_barrier,
904 (!conf->array_frozen &&
905 !atomic_read(&conf->nr_pending[idx]) &&
906 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
907 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
908 conf->resync_lock);
909
910 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
911 atomic_dec(&conf->barrier[idx]);
912 spin_unlock_irq(&conf->resync_lock);
913 wake_up(&conf->wait_barrier);
914 return -EINTR;
915 }
916
917 atomic_inc(&conf->nr_sync_pending);
918 spin_unlock_irq(&conf->resync_lock);
919
920 return 0;
921}
922
923static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
924{
925 int idx = sector_to_idx(sector_nr);
926
927 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
928
929 atomic_dec(&conf->barrier[idx]);
930 atomic_dec(&conf->nr_sync_pending);
931 wake_up(&conf->wait_barrier);
932}
933
934static void _wait_barrier(struct r1conf *conf, int idx)
935{
936 /*
937 * We need to increase conf->nr_pending[idx] very early here,
938 * then raise_barrier() can be blocked when it waits for
939 * conf->nr_pending[idx] to be 0. Then we can avoid holding
940 * conf->resync_lock when there is no barrier raised in same
941 * barrier unit bucket. Also if the array is frozen, I/O
942 * should be blocked until array is unfrozen.
943 */
944 atomic_inc(&conf->nr_pending[idx]);
945 /*
946 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
947 * check conf->barrier[idx]. In raise_barrier() we firstly increase
948 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
949 * barrier is necessary here to make sure conf->barrier[idx] won't be
950 * fetched before conf->nr_pending[idx] is increased. Otherwise there
951 * will be a race between _wait_barrier() and raise_barrier().
952 */
953 smp_mb__after_atomic();
954
955 /*
956 * Don't worry about checking two atomic_t variables at same time
957 * here. If during we check conf->barrier[idx], the array is
958 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
959 * 0, it is safe to return and make the I/O continue. Because the
960 * array is frozen, all I/O returned here will eventually complete
961 * or be queued, no race will happen. See code comment in
962 * frozen_array().
963 */
964 if (!READ_ONCE(conf->array_frozen) &&
965 !atomic_read(&conf->barrier[idx]))
966 return;
967
968 /*
969 * After holding conf->resync_lock, conf->nr_pending[idx]
970 * should be decreased before waiting for barrier to drop.
971 * Otherwise, we may encounter a race condition because
972 * raise_barrer() might be waiting for conf->nr_pending[idx]
973 * to be 0 at same time.
974 */
975 spin_lock_irq(&conf->resync_lock);
976 atomic_inc(&conf->nr_waiting[idx]);
977 atomic_dec(&conf->nr_pending[idx]);
978 /*
979 * In case freeze_array() is waiting for
980 * get_unqueued_pending() == extra
981 */
982 wake_up(&conf->wait_barrier);
983 /* Wait for the barrier in same barrier unit bucket to drop. */
984 wait_event_lock_irq(conf->wait_barrier,
985 !conf->array_frozen &&
986 !atomic_read(&conf->barrier[idx]),
987 conf->resync_lock);
988 atomic_inc(&conf->nr_pending[idx]);
989 atomic_dec(&conf->nr_waiting[idx]);
990 spin_unlock_irq(&conf->resync_lock);
991}
992
993static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
994{
995 int idx = sector_to_idx(sector_nr);
996
997 /*
998 * Very similar to _wait_barrier(). The difference is, for read
999 * I/O we don't need wait for sync I/O, but if the whole array
1000 * is frozen, the read I/O still has to wait until the array is
1001 * unfrozen. Since there is no ordering requirement with
1002 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1003 */
1004 atomic_inc(&conf->nr_pending[idx]);
1005
1006 if (!READ_ONCE(conf->array_frozen))
1007 return;
1008
1009 spin_lock_irq(&conf->resync_lock);
1010 atomic_inc(&conf->nr_waiting[idx]);
1011 atomic_dec(&conf->nr_pending[idx]);
1012 /*
1013 * In case freeze_array() is waiting for
1014 * get_unqueued_pending() == extra
1015 */
1016 wake_up(&conf->wait_barrier);
1017 /* Wait for array to be unfrozen */
1018 wait_event_lock_irq(conf->wait_barrier,
1019 !conf->array_frozen,
1020 conf->resync_lock);
1021 atomic_inc(&conf->nr_pending[idx]);
1022 atomic_dec(&conf->nr_waiting[idx]);
1023 spin_unlock_irq(&conf->resync_lock);
1024}
1025
1026static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1027{
1028 int idx = sector_to_idx(sector_nr);
1029
1030 _wait_barrier(conf, idx);
1031}
1032
1033static void _allow_barrier(struct r1conf *conf, int idx)
1034{
1035 atomic_dec(&conf->nr_pending[idx]);
1036 wake_up(&conf->wait_barrier);
1037}
1038
1039static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1040{
1041 int idx = sector_to_idx(sector_nr);
1042
1043 _allow_barrier(conf, idx);
1044}
1045
1046/* conf->resync_lock should be held */
1047static int get_unqueued_pending(struct r1conf *conf)
1048{
1049 int idx, ret;
1050
1051 ret = atomic_read(&conf->nr_sync_pending);
1052 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1053 ret += atomic_read(&conf->nr_pending[idx]) -
1054 atomic_read(&conf->nr_queued[idx]);
1055
1056 return ret;
1057}
1058
1059static void freeze_array(struct r1conf *conf, int extra)
1060{
1061 /* Stop sync I/O and normal I/O and wait for everything to
1062 * go quiet.
1063 * This is called in two situations:
1064 * 1) management command handlers (reshape, remove disk, quiesce).
1065 * 2) one normal I/O request failed.
1066
1067 * After array_frozen is set to 1, new sync IO will be blocked at
1068 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1069 * or wait_read_barrier(). The flying I/Os will either complete or be
1070 * queued. When everything goes quite, there are only queued I/Os left.
1071
1072 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1073 * barrier bucket index which this I/O request hits. When all sync and
1074 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1075 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1076 * in handle_read_error(), we may call freeze_array() before trying to
1077 * fix the read error. In this case, the error read I/O is not queued,
1078 * so get_unqueued_pending() == 1.
1079 *
1080 * Therefore before this function returns, we need to wait until
1081 * get_unqueued_pendings(conf) gets equal to extra. For
1082 * normal I/O context, extra is 1, in rested situations extra is 0.
1083 */
1084 spin_lock_irq(&conf->resync_lock);
1085 conf->array_frozen = 1;
1086 raid1_log(conf->mddev, "wait freeze");
1087 wait_event_lock_irq_cmd(
1088 conf->wait_barrier,
1089 get_unqueued_pending(conf) == extra,
1090 conf->resync_lock,
1091 flush_pending_writes(conf));
1092 spin_unlock_irq(&conf->resync_lock);
1093}
1094static void unfreeze_array(struct r1conf *conf)
1095{
1096 /* reverse the effect of the freeze */
1097 spin_lock_irq(&conf->resync_lock);
1098 conf->array_frozen = 0;
1099 spin_unlock_irq(&conf->resync_lock);
1100 wake_up(&conf->wait_barrier);
1101}
1102
1103static void alloc_behind_master_bio(struct r1bio *r1_bio,
1104 struct bio *bio)
1105{
1106 int size = bio->bi_iter.bi_size;
1107 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1108 int i = 0;
1109 struct bio *behind_bio = NULL;
1110
1111 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1112 if (!behind_bio)
1113 return;
1114
1115 /* discard op, we don't support writezero/writesame yet */
1116 if (!bio_has_data(bio)) {
1117 behind_bio->bi_iter.bi_size = size;
1118 goto skip_copy;
1119 }
1120
1121 behind_bio->bi_write_hint = bio->bi_write_hint;
1122
1123 while (i < vcnt && size) {
1124 struct page *page;
1125 int len = min_t(int, PAGE_SIZE, size);
1126
1127 page = alloc_page(GFP_NOIO);
1128 if (unlikely(!page))
1129 goto free_pages;
1130
1131 bio_add_page(behind_bio, page, len, 0);
1132
1133 size -= len;
1134 i++;
1135 }
1136
1137 bio_copy_data(behind_bio, bio);
1138skip_copy:
1139 r1_bio->behind_master_bio = behind_bio;
1140 set_bit(R1BIO_BehindIO, &r1_bio->state);
1141
1142 return;
1143
1144free_pages:
1145 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1146 bio->bi_iter.bi_size);
1147 bio_free_pages(behind_bio);
1148 bio_put(behind_bio);
1149}
1150
1151struct raid1_plug_cb {
1152 struct blk_plug_cb cb;
1153 struct bio_list pending;
1154 int pending_cnt;
1155};
1156
1157static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1158{
1159 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1160 cb);
1161 struct mddev *mddev = plug->cb.data;
1162 struct r1conf *conf = mddev->private;
1163 struct bio *bio;
1164
1165 if (from_schedule || current->bio_list) {
1166 spin_lock_irq(&conf->device_lock);
1167 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1168 conf->pending_count += plug->pending_cnt;
1169 spin_unlock_irq(&conf->device_lock);
1170 wake_up(&conf->wait_barrier);
1171 md_wakeup_thread(mddev->thread);
1172 kfree(plug);
1173 return;
1174 }
1175
1176 /* we aren't scheduling, so we can do the write-out directly. */
1177 bio = bio_list_get(&plug->pending);
1178 flush_bio_list(conf, bio);
1179 kfree(plug);
1180}
1181
1182static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1183{
1184 r1_bio->master_bio = bio;
1185 r1_bio->sectors = bio_sectors(bio);
1186 r1_bio->state = 0;
1187 r1_bio->mddev = mddev;
1188 r1_bio->sector = bio->bi_iter.bi_sector;
1189}
1190
1191static inline struct r1bio *
1192alloc_r1bio(struct mddev *mddev, struct bio *bio)
1193{
1194 struct r1conf *conf = mddev->private;
1195 struct r1bio *r1_bio;
1196
1197 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1198 /* Ensure no bio records IO_BLOCKED */
1199 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1200 init_r1bio(r1_bio, mddev, bio);
1201 return r1_bio;
1202}
1203
1204static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1205 int max_read_sectors, struct r1bio *r1_bio)
1206{
1207 struct r1conf *conf = mddev->private;
1208 struct raid1_info *mirror;
1209 struct bio *read_bio;
1210 struct bitmap *bitmap = mddev->bitmap;
1211 const int op = bio_op(bio);
1212 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1213 int max_sectors;
1214 int rdisk;
1215 bool r1bio_existed = !!r1_bio;
1216 char b[BDEVNAME_SIZE];
1217
1218 /*
1219 * If r1_bio is set, we are blocking the raid1d thread
1220 * so there is a tiny risk of deadlock. So ask for
1221 * emergency memory if needed.
1222 */
1223 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1224
1225 if (r1bio_existed) {
1226 /* Need to get the block device name carefully */
1227 struct md_rdev *rdev;
1228 rcu_read_lock();
1229 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1230 if (rdev)
1231 bdevname(rdev->bdev, b);
1232 else
1233 strcpy(b, "???");
1234 rcu_read_unlock();
1235 }
1236
1237 /*
1238 * Still need barrier for READ in case that whole
1239 * array is frozen.
1240 */
1241 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1242
1243 if (!r1_bio)
1244 r1_bio = alloc_r1bio(mddev, bio);
1245 else
1246 init_r1bio(r1_bio, mddev, bio);
1247 r1_bio->sectors = max_read_sectors;
1248
1249 /*
1250 * make_request() can abort the operation when read-ahead is being
1251 * used and no empty request is available.
1252 */
1253 rdisk = read_balance(conf, r1_bio, &max_sectors);
1254
1255 if (rdisk < 0) {
1256 /* couldn't find anywhere to read from */
1257 if (r1bio_existed) {
1258 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1259 mdname(mddev),
1260 b,
1261 (unsigned long long)r1_bio->sector);
1262 }
1263 raid_end_bio_io(r1_bio);
1264 return;
1265 }
1266 mirror = conf->mirrors + rdisk;
1267
1268 if (r1bio_existed)
1269 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1270 mdname(mddev),
1271 (unsigned long long)r1_bio->sector,
1272 bdevname(mirror->rdev->bdev, b));
1273
1274 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1275 bitmap) {
1276 /*
1277 * Reading from a write-mostly device must take care not to
1278 * over-take any writes that are 'behind'
1279 */
1280 raid1_log(mddev, "wait behind writes");
1281 wait_event(bitmap->behind_wait,
1282 atomic_read(&bitmap->behind_writes) == 0);
1283 }
1284
1285 if (max_sectors < bio_sectors(bio)) {
1286 struct bio *split = bio_split(bio, max_sectors,
1287 gfp, &conf->bio_split);
1288 bio_chain(split, bio);
1289 submit_bio_noacct(bio);
1290 bio = split;
1291 r1_bio->master_bio = bio;
1292 r1_bio->sectors = max_sectors;
1293 }
1294
1295 r1_bio->read_disk = rdisk;
1296
1297 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1298 r1_bio->start_time = bio_start_io_acct(bio);
1299
1300 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1301
1302 r1_bio->bios[rdisk] = read_bio;
1303
1304 read_bio->bi_iter.bi_sector = r1_bio->sector +
1305 mirror->rdev->data_offset;
1306 bio_set_dev(read_bio, mirror->rdev->bdev);
1307 read_bio->bi_end_io = raid1_end_read_request;
1308 bio_set_op_attrs(read_bio, op, do_sync);
1309 if (test_bit(FailFast, &mirror->rdev->flags) &&
1310 test_bit(R1BIO_FailFast, &r1_bio->state))
1311 read_bio->bi_opf |= MD_FAILFAST;
1312 read_bio->bi_private = r1_bio;
1313
1314 if (mddev->gendisk)
1315 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1316 r1_bio->sector);
1317
1318 submit_bio_noacct(read_bio);
1319}
1320
1321static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1322 int max_write_sectors)
1323{
1324 struct r1conf *conf = mddev->private;
1325 struct r1bio *r1_bio;
1326 int i, disks;
1327 struct bitmap *bitmap = mddev->bitmap;
1328 unsigned long flags;
1329 struct md_rdev *blocked_rdev;
1330 struct blk_plug_cb *cb;
1331 struct raid1_plug_cb *plug = NULL;
1332 int first_clone;
1333 int max_sectors;
1334
1335 if (mddev_is_clustered(mddev) &&
1336 md_cluster_ops->area_resyncing(mddev, WRITE,
1337 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1338
1339 DEFINE_WAIT(w);
1340 for (;;) {
1341 prepare_to_wait(&conf->wait_barrier,
1342 &w, TASK_IDLE);
1343 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1344 bio->bi_iter.bi_sector,
1345 bio_end_sector(bio)))
1346 break;
1347 schedule();
1348 }
1349 finish_wait(&conf->wait_barrier, &w);
1350 }
1351
1352 /*
1353 * Register the new request and wait if the reconstruction
1354 * thread has put up a bar for new requests.
1355 * Continue immediately if no resync is active currently.
1356 */
1357 wait_barrier(conf, bio->bi_iter.bi_sector);
1358
1359 r1_bio = alloc_r1bio(mddev, bio);
1360 r1_bio->sectors = max_write_sectors;
1361
1362 if (conf->pending_count >= max_queued_requests) {
1363 md_wakeup_thread(mddev->thread);
1364 raid1_log(mddev, "wait queued");
1365 wait_event(conf->wait_barrier,
1366 conf->pending_count < max_queued_requests);
1367 }
1368 /* first select target devices under rcu_lock and
1369 * inc refcount on their rdev. Record them by setting
1370 * bios[x] to bio
1371 * If there are known/acknowledged bad blocks on any device on
1372 * which we have seen a write error, we want to avoid writing those
1373 * blocks.
1374 * This potentially requires several writes to write around
1375 * the bad blocks. Each set of writes gets it's own r1bio
1376 * with a set of bios attached.
1377 */
1378
1379 disks = conf->raid_disks * 2;
1380 retry_write:
1381 blocked_rdev = NULL;
1382 rcu_read_lock();
1383 max_sectors = r1_bio->sectors;
1384 for (i = 0; i < disks; i++) {
1385 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1386 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1387 atomic_inc(&rdev->nr_pending);
1388 blocked_rdev = rdev;
1389 break;
1390 }
1391 r1_bio->bios[i] = NULL;
1392 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1393 if (i < conf->raid_disks)
1394 set_bit(R1BIO_Degraded, &r1_bio->state);
1395 continue;
1396 }
1397
1398 atomic_inc(&rdev->nr_pending);
1399 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1400 sector_t first_bad;
1401 int bad_sectors;
1402 int is_bad;
1403
1404 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1405 &first_bad, &bad_sectors);
1406 if (is_bad < 0) {
1407 /* mustn't write here until the bad block is
1408 * acknowledged*/
1409 set_bit(BlockedBadBlocks, &rdev->flags);
1410 blocked_rdev = rdev;
1411 break;
1412 }
1413 if (is_bad && first_bad <= r1_bio->sector) {
1414 /* Cannot write here at all */
1415 bad_sectors -= (r1_bio->sector - first_bad);
1416 if (bad_sectors < max_sectors)
1417 /* mustn't write more than bad_sectors
1418 * to other devices yet
1419 */
1420 max_sectors = bad_sectors;
1421 rdev_dec_pending(rdev, mddev);
1422 /* We don't set R1BIO_Degraded as that
1423 * only applies if the disk is
1424 * missing, so it might be re-added,
1425 * and we want to know to recover this
1426 * chunk.
1427 * In this case the device is here,
1428 * and the fact that this chunk is not
1429 * in-sync is recorded in the bad
1430 * block log
1431 */
1432 continue;
1433 }
1434 if (is_bad) {
1435 int good_sectors = first_bad - r1_bio->sector;
1436 if (good_sectors < max_sectors)
1437 max_sectors = good_sectors;
1438 }
1439 }
1440 r1_bio->bios[i] = bio;
1441 }
1442 rcu_read_unlock();
1443
1444 if (unlikely(blocked_rdev)) {
1445 /* Wait for this device to become unblocked */
1446 int j;
1447
1448 for (j = 0; j < i; j++)
1449 if (r1_bio->bios[j])
1450 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1451 r1_bio->state = 0;
1452 allow_barrier(conf, bio->bi_iter.bi_sector);
1453 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1454 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1455 wait_barrier(conf, bio->bi_iter.bi_sector);
1456 goto retry_write;
1457 }
1458
1459 if (max_sectors < bio_sectors(bio)) {
1460 struct bio *split = bio_split(bio, max_sectors,
1461 GFP_NOIO, &conf->bio_split);
1462 bio_chain(split, bio);
1463 submit_bio_noacct(bio);
1464 bio = split;
1465 r1_bio->master_bio = bio;
1466 r1_bio->sectors = max_sectors;
1467 }
1468
1469 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1470 r1_bio->start_time = bio_start_io_acct(bio);
1471 atomic_set(&r1_bio->remaining, 1);
1472 atomic_set(&r1_bio->behind_remaining, 0);
1473
1474 first_clone = 1;
1475
1476 for (i = 0; i < disks; i++) {
1477 struct bio *mbio = NULL;
1478 struct md_rdev *rdev = conf->mirrors[i].rdev;
1479 if (!r1_bio->bios[i])
1480 continue;
1481
1482 if (first_clone) {
1483 /* do behind I/O ?
1484 * Not if there are too many, or cannot
1485 * allocate memory, or a reader on WriteMostly
1486 * is waiting for behind writes to flush */
1487 if (bitmap &&
1488 (atomic_read(&bitmap->behind_writes)
1489 < mddev->bitmap_info.max_write_behind) &&
1490 !waitqueue_active(&bitmap->behind_wait)) {
1491 alloc_behind_master_bio(r1_bio, bio);
1492 }
1493
1494 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1495 test_bit(R1BIO_BehindIO, &r1_bio->state));
1496 first_clone = 0;
1497 }
1498
1499 if (r1_bio->behind_master_bio)
1500 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1501 GFP_NOIO, &mddev->bio_set);
1502 else
1503 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1504
1505 if (r1_bio->behind_master_bio) {
1506 if (test_bit(CollisionCheck, &rdev->flags))
1507 wait_for_serialization(rdev, r1_bio);
1508 if (test_bit(WriteMostly, &rdev->flags))
1509 atomic_inc(&r1_bio->behind_remaining);
1510 } else if (mddev->serialize_policy)
1511 wait_for_serialization(rdev, r1_bio);
1512
1513 r1_bio->bios[i] = mbio;
1514
1515 mbio->bi_iter.bi_sector = (r1_bio->sector +
1516 conf->mirrors[i].rdev->data_offset);
1517 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1518 mbio->bi_end_io = raid1_end_write_request;
1519 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1520 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1521 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1522 conf->raid_disks - mddev->degraded > 1)
1523 mbio->bi_opf |= MD_FAILFAST;
1524 mbio->bi_private = r1_bio;
1525
1526 atomic_inc(&r1_bio->remaining);
1527
1528 if (mddev->gendisk)
1529 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1530 r1_bio->sector);
1531 /* flush_pending_writes() needs access to the rdev so...*/
1532 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1533
1534 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535 if (cb)
1536 plug = container_of(cb, struct raid1_plug_cb, cb);
1537 else
1538 plug = NULL;
1539 if (plug) {
1540 bio_list_add(&plug->pending, mbio);
1541 plug->pending_cnt++;
1542 } else {
1543 spin_lock_irqsave(&conf->device_lock, flags);
1544 bio_list_add(&conf->pending_bio_list, mbio);
1545 conf->pending_count++;
1546 spin_unlock_irqrestore(&conf->device_lock, flags);
1547 md_wakeup_thread(mddev->thread);
1548 }
1549 }
1550
1551 r1_bio_write_done(r1_bio);
1552
1553 /* In case raid1d snuck in to freeze_array */
1554 wake_up(&conf->wait_barrier);
1555}
1556
1557static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1558{
1559 sector_t sectors;
1560
1561 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1562 && md_flush_request(mddev, bio))
1563 return true;
1564
1565 /*
1566 * There is a limit to the maximum size, but
1567 * the read/write handler might find a lower limit
1568 * due to bad blocks. To avoid multiple splits,
1569 * we pass the maximum number of sectors down
1570 * and let the lower level perform the split.
1571 */
1572 sectors = align_to_barrier_unit_end(
1573 bio->bi_iter.bi_sector, bio_sectors(bio));
1574
1575 if (bio_data_dir(bio) == READ)
1576 raid1_read_request(mddev, bio, sectors, NULL);
1577 else {
1578 if (!md_write_start(mddev,bio))
1579 return false;
1580 raid1_write_request(mddev, bio, sectors);
1581 }
1582 return true;
1583}
1584
1585static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1586{
1587 struct r1conf *conf = mddev->private;
1588 int i;
1589
1590 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1591 conf->raid_disks - mddev->degraded);
1592 rcu_read_lock();
1593 for (i = 0; i < conf->raid_disks; i++) {
1594 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1595 seq_printf(seq, "%s",
1596 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1597 }
1598 rcu_read_unlock();
1599 seq_printf(seq, "]");
1600}
1601
1602static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1603{
1604 char b[BDEVNAME_SIZE];
1605 struct r1conf *conf = mddev->private;
1606 unsigned long flags;
1607
1608 /*
1609 * If it is not operational, then we have already marked it as dead
1610 * else if it is the last working disks with "fail_last_dev == false",
1611 * ignore the error, let the next level up know.
1612 * else mark the drive as failed
1613 */
1614 spin_lock_irqsave(&conf->device_lock, flags);
1615 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1616 && (conf->raid_disks - mddev->degraded) == 1) {
1617 /*
1618 * Don't fail the drive, act as though we were just a
1619 * normal single drive.
1620 * However don't try a recovery from this drive as
1621 * it is very likely to fail.
1622 */
1623 conf->recovery_disabled = mddev->recovery_disabled;
1624 spin_unlock_irqrestore(&conf->device_lock, flags);
1625 return;
1626 }
1627 set_bit(Blocked, &rdev->flags);
1628 if (test_and_clear_bit(In_sync, &rdev->flags))
1629 mddev->degraded++;
1630 set_bit(Faulty, &rdev->flags);
1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 /*
1633 * if recovery is running, make sure it aborts.
1634 */
1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 set_mask_bits(&mddev->sb_flags, 0,
1637 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1638 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1639 "md/raid1:%s: Operation continuing on %d devices.\n",
1640 mdname(mddev), bdevname(rdev->bdev, b),
1641 mdname(mddev), conf->raid_disks - mddev->degraded);
1642}
1643
1644static void print_conf(struct r1conf *conf)
1645{
1646 int i;
1647
1648 pr_debug("RAID1 conf printout:\n");
1649 if (!conf) {
1650 pr_debug("(!conf)\n");
1651 return;
1652 }
1653 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1654 conf->raid_disks);
1655
1656 rcu_read_lock();
1657 for (i = 0; i < conf->raid_disks; i++) {
1658 char b[BDEVNAME_SIZE];
1659 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1660 if (rdev)
1661 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1662 i, !test_bit(In_sync, &rdev->flags),
1663 !test_bit(Faulty, &rdev->flags),
1664 bdevname(rdev->bdev,b));
1665 }
1666 rcu_read_unlock();
1667}
1668
1669static void close_sync(struct r1conf *conf)
1670{
1671 int idx;
1672
1673 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1674 _wait_barrier(conf, idx);
1675 _allow_barrier(conf, idx);
1676 }
1677
1678 mempool_exit(&conf->r1buf_pool);
1679}
1680
1681static int raid1_spare_active(struct mddev *mddev)
1682{
1683 int i;
1684 struct r1conf *conf = mddev->private;
1685 int count = 0;
1686 unsigned long flags;
1687
1688 /*
1689 * Find all failed disks within the RAID1 configuration
1690 * and mark them readable.
1691 * Called under mddev lock, so rcu protection not needed.
1692 * device_lock used to avoid races with raid1_end_read_request
1693 * which expects 'In_sync' flags and ->degraded to be consistent.
1694 */
1695 spin_lock_irqsave(&conf->device_lock, flags);
1696 for (i = 0; i < conf->raid_disks; i++) {
1697 struct md_rdev *rdev = conf->mirrors[i].rdev;
1698 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1699 if (repl
1700 && !test_bit(Candidate, &repl->flags)
1701 && repl->recovery_offset == MaxSector
1702 && !test_bit(Faulty, &repl->flags)
1703 && !test_and_set_bit(In_sync, &repl->flags)) {
1704 /* replacement has just become active */
1705 if (!rdev ||
1706 !test_and_clear_bit(In_sync, &rdev->flags))
1707 count++;
1708 if (rdev) {
1709 /* Replaced device not technically
1710 * faulty, but we need to be sure
1711 * it gets removed and never re-added
1712 */
1713 set_bit(Faulty, &rdev->flags);
1714 sysfs_notify_dirent_safe(
1715 rdev->sysfs_state);
1716 }
1717 }
1718 if (rdev
1719 && rdev->recovery_offset == MaxSector
1720 && !test_bit(Faulty, &rdev->flags)
1721 && !test_and_set_bit(In_sync, &rdev->flags)) {
1722 count++;
1723 sysfs_notify_dirent_safe(rdev->sysfs_state);
1724 }
1725 }
1726 mddev->degraded -= count;
1727 spin_unlock_irqrestore(&conf->device_lock, flags);
1728
1729 print_conf(conf);
1730 return count;
1731}
1732
1733static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1734{
1735 struct r1conf *conf = mddev->private;
1736 int err = -EEXIST;
1737 int mirror = 0;
1738 struct raid1_info *p;
1739 int first = 0;
1740 int last = conf->raid_disks - 1;
1741
1742 if (mddev->recovery_disabled == conf->recovery_disabled)
1743 return -EBUSY;
1744
1745 if (md_integrity_add_rdev(rdev, mddev))
1746 return -ENXIO;
1747
1748 if (rdev->raid_disk >= 0)
1749 first = last = rdev->raid_disk;
1750
1751 /*
1752 * find the disk ... but prefer rdev->saved_raid_disk
1753 * if possible.
1754 */
1755 if (rdev->saved_raid_disk >= 0 &&
1756 rdev->saved_raid_disk >= first &&
1757 rdev->saved_raid_disk < conf->raid_disks &&
1758 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1759 first = last = rdev->saved_raid_disk;
1760
1761 for (mirror = first; mirror <= last; mirror++) {
1762 p = conf->mirrors + mirror;
1763 if (!p->rdev) {
1764 if (mddev->gendisk)
1765 disk_stack_limits(mddev->gendisk, rdev->bdev,
1766 rdev->data_offset << 9);
1767
1768 p->head_position = 0;
1769 rdev->raid_disk = mirror;
1770 err = 0;
1771 /* As all devices are equivalent, we don't need a full recovery
1772 * if this was recently any drive of the array
1773 */
1774 if (rdev->saved_raid_disk < 0)
1775 conf->fullsync = 1;
1776 rcu_assign_pointer(p->rdev, rdev);
1777 break;
1778 }
1779 if (test_bit(WantReplacement, &p->rdev->flags) &&
1780 p[conf->raid_disks].rdev == NULL) {
1781 /* Add this device as a replacement */
1782 clear_bit(In_sync, &rdev->flags);
1783 set_bit(Replacement, &rdev->flags);
1784 rdev->raid_disk = mirror;
1785 err = 0;
1786 conf->fullsync = 1;
1787 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1788 break;
1789 }
1790 }
1791 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1792 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1793 print_conf(conf);
1794 return err;
1795}
1796
1797static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1798{
1799 struct r1conf *conf = mddev->private;
1800 int err = 0;
1801 int number = rdev->raid_disk;
1802 struct raid1_info *p = conf->mirrors + number;
1803
1804 if (rdev != p->rdev)
1805 p = conf->mirrors + conf->raid_disks + number;
1806
1807 print_conf(conf);
1808 if (rdev == p->rdev) {
1809 if (test_bit(In_sync, &rdev->flags) ||
1810 atomic_read(&rdev->nr_pending)) {
1811 err = -EBUSY;
1812 goto abort;
1813 }
1814 /* Only remove non-faulty devices if recovery
1815 * is not possible.
1816 */
1817 if (!test_bit(Faulty, &rdev->flags) &&
1818 mddev->recovery_disabled != conf->recovery_disabled &&
1819 mddev->degraded < conf->raid_disks) {
1820 err = -EBUSY;
1821 goto abort;
1822 }
1823 p->rdev = NULL;
1824 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1825 synchronize_rcu();
1826 if (atomic_read(&rdev->nr_pending)) {
1827 /* lost the race, try later */
1828 err = -EBUSY;
1829 p->rdev = rdev;
1830 goto abort;
1831 }
1832 }
1833 if (conf->mirrors[conf->raid_disks + number].rdev) {
1834 /* We just removed a device that is being replaced.
1835 * Move down the replacement. We drain all IO before
1836 * doing this to avoid confusion.
1837 */
1838 struct md_rdev *repl =
1839 conf->mirrors[conf->raid_disks + number].rdev;
1840 freeze_array(conf, 0);
1841 if (atomic_read(&repl->nr_pending)) {
1842 /* It means that some queued IO of retry_list
1843 * hold repl. Thus, we cannot set replacement
1844 * as NULL, avoiding rdev NULL pointer
1845 * dereference in sync_request_write and
1846 * handle_write_finished.
1847 */
1848 err = -EBUSY;
1849 unfreeze_array(conf);
1850 goto abort;
1851 }
1852 clear_bit(Replacement, &repl->flags);
1853 p->rdev = repl;
1854 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1855 unfreeze_array(conf);
1856 }
1857
1858 clear_bit(WantReplacement, &rdev->flags);
1859 err = md_integrity_register(mddev);
1860 }
1861abort:
1862
1863 print_conf(conf);
1864 return err;
1865}
1866
1867static void end_sync_read(struct bio *bio)
1868{
1869 struct r1bio *r1_bio = get_resync_r1bio(bio);
1870
1871 update_head_pos(r1_bio->read_disk, r1_bio);
1872
1873 /*
1874 * we have read a block, now it needs to be re-written,
1875 * or re-read if the read failed.
1876 * We don't do much here, just schedule handling by raid1d
1877 */
1878 if (!bio->bi_status)
1879 set_bit(R1BIO_Uptodate, &r1_bio->state);
1880
1881 if (atomic_dec_and_test(&r1_bio->remaining))
1882 reschedule_retry(r1_bio);
1883}
1884
1885static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1886{
1887 sector_t sync_blocks = 0;
1888 sector_t s = r1_bio->sector;
1889 long sectors_to_go = r1_bio->sectors;
1890
1891 /* make sure these bits don't get cleared. */
1892 do {
1893 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1894 s += sync_blocks;
1895 sectors_to_go -= sync_blocks;
1896 } while (sectors_to_go > 0);
1897}
1898
1899static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1900{
1901 if (atomic_dec_and_test(&r1_bio->remaining)) {
1902 struct mddev *mddev = r1_bio->mddev;
1903 int s = r1_bio->sectors;
1904
1905 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1906 test_bit(R1BIO_WriteError, &r1_bio->state))
1907 reschedule_retry(r1_bio);
1908 else {
1909 put_buf(r1_bio);
1910 md_done_sync(mddev, s, uptodate);
1911 }
1912 }
1913}
1914
1915static void end_sync_write(struct bio *bio)
1916{
1917 int uptodate = !bio->bi_status;
1918 struct r1bio *r1_bio = get_resync_r1bio(bio);
1919 struct mddev *mddev = r1_bio->mddev;
1920 struct r1conf *conf = mddev->private;
1921 sector_t first_bad;
1922 int bad_sectors;
1923 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1924
1925 if (!uptodate) {
1926 abort_sync_write(mddev, r1_bio);
1927 set_bit(WriteErrorSeen, &rdev->flags);
1928 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1929 set_bit(MD_RECOVERY_NEEDED, &
1930 mddev->recovery);
1931 set_bit(R1BIO_WriteError, &r1_bio->state);
1932 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1933 &first_bad, &bad_sectors) &&
1934 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1935 r1_bio->sector,
1936 r1_bio->sectors,
1937 &first_bad, &bad_sectors)
1938 )
1939 set_bit(R1BIO_MadeGood, &r1_bio->state);
1940
1941 put_sync_write_buf(r1_bio, uptodate);
1942}
1943
1944static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1945 int sectors, struct page *page, int rw)
1946{
1947 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1948 /* success */
1949 return 1;
1950 if (rw == WRITE) {
1951 set_bit(WriteErrorSeen, &rdev->flags);
1952 if (!test_and_set_bit(WantReplacement,
1953 &rdev->flags))
1954 set_bit(MD_RECOVERY_NEEDED, &
1955 rdev->mddev->recovery);
1956 }
1957 /* need to record an error - either for the block or the device */
1958 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1959 md_error(rdev->mddev, rdev);
1960 return 0;
1961}
1962
1963static int fix_sync_read_error(struct r1bio *r1_bio)
1964{
1965 /* Try some synchronous reads of other devices to get
1966 * good data, much like with normal read errors. Only
1967 * read into the pages we already have so we don't
1968 * need to re-issue the read request.
1969 * We don't need to freeze the array, because being in an
1970 * active sync request, there is no normal IO, and
1971 * no overlapping syncs.
1972 * We don't need to check is_badblock() again as we
1973 * made sure that anything with a bad block in range
1974 * will have bi_end_io clear.
1975 */
1976 struct mddev *mddev = r1_bio->mddev;
1977 struct r1conf *conf = mddev->private;
1978 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1979 struct page **pages = get_resync_pages(bio)->pages;
1980 sector_t sect = r1_bio->sector;
1981 int sectors = r1_bio->sectors;
1982 int idx = 0;
1983 struct md_rdev *rdev;
1984
1985 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1986 if (test_bit(FailFast, &rdev->flags)) {
1987 /* Don't try recovering from here - just fail it
1988 * ... unless it is the last working device of course */
1989 md_error(mddev, rdev);
1990 if (test_bit(Faulty, &rdev->flags))
1991 /* Don't try to read from here, but make sure
1992 * put_buf does it's thing
1993 */
1994 bio->bi_end_io = end_sync_write;
1995 }
1996
1997 while(sectors) {
1998 int s = sectors;
1999 int d = r1_bio->read_disk;
2000 int success = 0;
2001 int start;
2002
2003 if (s > (PAGE_SIZE>>9))
2004 s = PAGE_SIZE >> 9;
2005 do {
2006 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2007 /* No rcu protection needed here devices
2008 * can only be removed when no resync is
2009 * active, and resync is currently active
2010 */
2011 rdev = conf->mirrors[d].rdev;
2012 if (sync_page_io(rdev, sect, s<<9,
2013 pages[idx],
2014 REQ_OP_READ, 0, false)) {
2015 success = 1;
2016 break;
2017 }
2018 }
2019 d++;
2020 if (d == conf->raid_disks * 2)
2021 d = 0;
2022 } while (!success && d != r1_bio->read_disk);
2023
2024 if (!success) {
2025 char b[BDEVNAME_SIZE];
2026 int abort = 0;
2027 /* Cannot read from anywhere, this block is lost.
2028 * Record a bad block on each device. If that doesn't
2029 * work just disable and interrupt the recovery.
2030 * Don't fail devices as that won't really help.
2031 */
2032 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2033 mdname(mddev), bio_devname(bio, b),
2034 (unsigned long long)r1_bio->sector);
2035 for (d = 0; d < conf->raid_disks * 2; d++) {
2036 rdev = conf->mirrors[d].rdev;
2037 if (!rdev || test_bit(Faulty, &rdev->flags))
2038 continue;
2039 if (!rdev_set_badblocks(rdev, sect, s, 0))
2040 abort = 1;
2041 }
2042 if (abort) {
2043 conf->recovery_disabled =
2044 mddev->recovery_disabled;
2045 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2046 md_done_sync(mddev, r1_bio->sectors, 0);
2047 put_buf(r1_bio);
2048 return 0;
2049 }
2050 /* Try next page */
2051 sectors -= s;
2052 sect += s;
2053 idx++;
2054 continue;
2055 }
2056
2057 start = d;
2058 /* write it back and re-read */
2059 while (d != r1_bio->read_disk) {
2060 if (d == 0)
2061 d = conf->raid_disks * 2;
2062 d--;
2063 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2064 continue;
2065 rdev = conf->mirrors[d].rdev;
2066 if (r1_sync_page_io(rdev, sect, s,
2067 pages[idx],
2068 WRITE) == 0) {
2069 r1_bio->bios[d]->bi_end_io = NULL;
2070 rdev_dec_pending(rdev, mddev);
2071 }
2072 }
2073 d = start;
2074 while (d != r1_bio->read_disk) {
2075 if (d == 0)
2076 d = conf->raid_disks * 2;
2077 d--;
2078 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2079 continue;
2080 rdev = conf->mirrors[d].rdev;
2081 if (r1_sync_page_io(rdev, sect, s,
2082 pages[idx],
2083 READ) != 0)
2084 atomic_add(s, &rdev->corrected_errors);
2085 }
2086 sectors -= s;
2087 sect += s;
2088 idx ++;
2089 }
2090 set_bit(R1BIO_Uptodate, &r1_bio->state);
2091 bio->bi_status = 0;
2092 return 1;
2093}
2094
2095static void process_checks(struct r1bio *r1_bio)
2096{
2097 /* We have read all readable devices. If we haven't
2098 * got the block, then there is no hope left.
2099 * If we have, then we want to do a comparison
2100 * and skip the write if everything is the same.
2101 * If any blocks failed to read, then we need to
2102 * attempt an over-write
2103 */
2104 struct mddev *mddev = r1_bio->mddev;
2105 struct r1conf *conf = mddev->private;
2106 int primary;
2107 int i;
2108 int vcnt;
2109
2110 /* Fix variable parts of all bios */
2111 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2112 for (i = 0; i < conf->raid_disks * 2; i++) {
2113 blk_status_t status;
2114 struct bio *b = r1_bio->bios[i];
2115 struct resync_pages *rp = get_resync_pages(b);
2116 if (b->bi_end_io != end_sync_read)
2117 continue;
2118 /* fixup the bio for reuse, but preserve errno */
2119 status = b->bi_status;
2120 bio_reset(b);
2121 b->bi_status = status;
2122 b->bi_iter.bi_sector = r1_bio->sector +
2123 conf->mirrors[i].rdev->data_offset;
2124 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2125 b->bi_end_io = end_sync_read;
2126 rp->raid_bio = r1_bio;
2127 b->bi_private = rp;
2128
2129 /* initialize bvec table again */
2130 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2131 }
2132 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2133 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2134 !r1_bio->bios[primary]->bi_status) {
2135 r1_bio->bios[primary]->bi_end_io = NULL;
2136 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2137 break;
2138 }
2139 r1_bio->read_disk = primary;
2140 for (i = 0; i < conf->raid_disks * 2; i++) {
2141 int j = 0;
2142 struct bio *pbio = r1_bio->bios[primary];
2143 struct bio *sbio = r1_bio->bios[i];
2144 blk_status_t status = sbio->bi_status;
2145 struct page **ppages = get_resync_pages(pbio)->pages;
2146 struct page **spages = get_resync_pages(sbio)->pages;
2147 struct bio_vec *bi;
2148 int page_len[RESYNC_PAGES] = { 0 };
2149 struct bvec_iter_all iter_all;
2150
2151 if (sbio->bi_end_io != end_sync_read)
2152 continue;
2153 /* Now we can 'fixup' the error value */
2154 sbio->bi_status = 0;
2155
2156 bio_for_each_segment_all(bi, sbio, iter_all)
2157 page_len[j++] = bi->bv_len;
2158
2159 if (!status) {
2160 for (j = vcnt; j-- ; ) {
2161 if (memcmp(page_address(ppages[j]),
2162 page_address(spages[j]),
2163 page_len[j]))
2164 break;
2165 }
2166 } else
2167 j = 0;
2168 if (j >= 0)
2169 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2170 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2171 && !status)) {
2172 /* No need to write to this device. */
2173 sbio->bi_end_io = NULL;
2174 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2175 continue;
2176 }
2177
2178 bio_copy_data(sbio, pbio);
2179 }
2180}
2181
2182static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2183{
2184 struct r1conf *conf = mddev->private;
2185 int i;
2186 int disks = conf->raid_disks * 2;
2187 struct bio *wbio;
2188
2189 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2190 /* ouch - failed to read all of that. */
2191 if (!fix_sync_read_error(r1_bio))
2192 return;
2193
2194 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2195 process_checks(r1_bio);
2196
2197 /*
2198 * schedule writes
2199 */
2200 atomic_set(&r1_bio->remaining, 1);
2201 for (i = 0; i < disks ; i++) {
2202 wbio = r1_bio->bios[i];
2203 if (wbio->bi_end_io == NULL ||
2204 (wbio->bi_end_io == end_sync_read &&
2205 (i == r1_bio->read_disk ||
2206 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2207 continue;
2208 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2209 abort_sync_write(mddev, r1_bio);
2210 continue;
2211 }
2212
2213 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2214 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2215 wbio->bi_opf |= MD_FAILFAST;
2216
2217 wbio->bi_end_io = end_sync_write;
2218 atomic_inc(&r1_bio->remaining);
2219 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2220
2221 submit_bio_noacct(wbio);
2222 }
2223
2224 put_sync_write_buf(r1_bio, 1);
2225}
2226
2227/*
2228 * This is a kernel thread which:
2229 *
2230 * 1. Retries failed read operations on working mirrors.
2231 * 2. Updates the raid superblock when problems encounter.
2232 * 3. Performs writes following reads for array synchronising.
2233 */
2234
2235static void fix_read_error(struct r1conf *conf, int read_disk,
2236 sector_t sect, int sectors)
2237{
2238 struct mddev *mddev = conf->mddev;
2239 while(sectors) {
2240 int s = sectors;
2241 int d = read_disk;
2242 int success = 0;
2243 int start;
2244 struct md_rdev *rdev;
2245
2246 if (s > (PAGE_SIZE>>9))
2247 s = PAGE_SIZE >> 9;
2248
2249 do {
2250 sector_t first_bad;
2251 int bad_sectors;
2252
2253 rcu_read_lock();
2254 rdev = rcu_dereference(conf->mirrors[d].rdev);
2255 if (rdev &&
2256 (test_bit(In_sync, &rdev->flags) ||
2257 (!test_bit(Faulty, &rdev->flags) &&
2258 rdev->recovery_offset >= sect + s)) &&
2259 is_badblock(rdev, sect, s,
2260 &first_bad, &bad_sectors) == 0) {
2261 atomic_inc(&rdev->nr_pending);
2262 rcu_read_unlock();
2263 if (sync_page_io(rdev, sect, s<<9,
2264 conf->tmppage, REQ_OP_READ, 0, false))
2265 success = 1;
2266 rdev_dec_pending(rdev, mddev);
2267 if (success)
2268 break;
2269 } else
2270 rcu_read_unlock();
2271 d++;
2272 if (d == conf->raid_disks * 2)
2273 d = 0;
2274 } while (!success && d != read_disk);
2275
2276 if (!success) {
2277 /* Cannot read from anywhere - mark it bad */
2278 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2279 if (!rdev_set_badblocks(rdev, sect, s, 0))
2280 md_error(mddev, rdev);
2281 break;
2282 }
2283 /* write it back and re-read */
2284 start = d;
2285 while (d != read_disk) {
2286 if (d==0)
2287 d = conf->raid_disks * 2;
2288 d--;
2289 rcu_read_lock();
2290 rdev = rcu_dereference(conf->mirrors[d].rdev);
2291 if (rdev &&
2292 !test_bit(Faulty, &rdev->flags)) {
2293 atomic_inc(&rdev->nr_pending);
2294 rcu_read_unlock();
2295 r1_sync_page_io(rdev, sect, s,
2296 conf->tmppage, WRITE);
2297 rdev_dec_pending(rdev, mddev);
2298 } else
2299 rcu_read_unlock();
2300 }
2301 d = start;
2302 while (d != read_disk) {
2303 char b[BDEVNAME_SIZE];
2304 if (d==0)
2305 d = conf->raid_disks * 2;
2306 d--;
2307 rcu_read_lock();
2308 rdev = rcu_dereference(conf->mirrors[d].rdev);
2309 if (rdev &&
2310 !test_bit(Faulty, &rdev->flags)) {
2311 atomic_inc(&rdev->nr_pending);
2312 rcu_read_unlock();
2313 if (r1_sync_page_io(rdev, sect, s,
2314 conf->tmppage, READ)) {
2315 atomic_add(s, &rdev->corrected_errors);
2316 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2317 mdname(mddev), s,
2318 (unsigned long long)(sect +
2319 rdev->data_offset),
2320 bdevname(rdev->bdev, b));
2321 }
2322 rdev_dec_pending(rdev, mddev);
2323 } else
2324 rcu_read_unlock();
2325 }
2326 sectors -= s;
2327 sect += s;
2328 }
2329}
2330
2331static int narrow_write_error(struct r1bio *r1_bio, int i)
2332{
2333 struct mddev *mddev = r1_bio->mddev;
2334 struct r1conf *conf = mddev->private;
2335 struct md_rdev *rdev = conf->mirrors[i].rdev;
2336
2337 /* bio has the data to be written to device 'i' where
2338 * we just recently had a write error.
2339 * We repeatedly clone the bio and trim down to one block,
2340 * then try the write. Where the write fails we record
2341 * a bad block.
2342 * It is conceivable that the bio doesn't exactly align with
2343 * blocks. We must handle this somehow.
2344 *
2345 * We currently own a reference on the rdev.
2346 */
2347
2348 int block_sectors;
2349 sector_t sector;
2350 int sectors;
2351 int sect_to_write = r1_bio->sectors;
2352 int ok = 1;
2353
2354 if (rdev->badblocks.shift < 0)
2355 return 0;
2356
2357 block_sectors = roundup(1 << rdev->badblocks.shift,
2358 bdev_logical_block_size(rdev->bdev) >> 9);
2359 sector = r1_bio->sector;
2360 sectors = ((sector + block_sectors)
2361 & ~(sector_t)(block_sectors - 1))
2362 - sector;
2363
2364 while (sect_to_write) {
2365 struct bio *wbio;
2366 if (sectors > sect_to_write)
2367 sectors = sect_to_write;
2368 /* Write at 'sector' for 'sectors'*/
2369
2370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2371 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2372 GFP_NOIO,
2373 &mddev->bio_set);
2374 } else {
2375 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2376 &mddev->bio_set);
2377 }
2378
2379 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2380 wbio->bi_iter.bi_sector = r1_bio->sector;
2381 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2382
2383 bio_trim(wbio, sector - r1_bio->sector, sectors);
2384 wbio->bi_iter.bi_sector += rdev->data_offset;
2385 bio_set_dev(wbio, rdev->bdev);
2386
2387 if (submit_bio_wait(wbio) < 0)
2388 /* failure! */
2389 ok = rdev_set_badblocks(rdev, sector,
2390 sectors, 0)
2391 && ok;
2392
2393 bio_put(wbio);
2394 sect_to_write -= sectors;
2395 sector += sectors;
2396 sectors = block_sectors;
2397 }
2398 return ok;
2399}
2400
2401static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2402{
2403 int m;
2404 int s = r1_bio->sectors;
2405 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2406 struct md_rdev *rdev = conf->mirrors[m].rdev;
2407 struct bio *bio = r1_bio->bios[m];
2408 if (bio->bi_end_io == NULL)
2409 continue;
2410 if (!bio->bi_status &&
2411 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2412 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2413 }
2414 if (bio->bi_status &&
2415 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2416 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2417 md_error(conf->mddev, rdev);
2418 }
2419 }
2420 put_buf(r1_bio);
2421 md_done_sync(conf->mddev, s, 1);
2422}
2423
2424static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2425{
2426 int m, idx;
2427 bool fail = false;
2428
2429 for (m = 0; m < conf->raid_disks * 2 ; m++)
2430 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2431 struct md_rdev *rdev = conf->mirrors[m].rdev;
2432 rdev_clear_badblocks(rdev,
2433 r1_bio->sector,
2434 r1_bio->sectors, 0);
2435 rdev_dec_pending(rdev, conf->mddev);
2436 } else if (r1_bio->bios[m] != NULL) {
2437 /* This drive got a write error. We need to
2438 * narrow down and record precise write
2439 * errors.
2440 */
2441 fail = true;
2442 if (!narrow_write_error(r1_bio, m)) {
2443 md_error(conf->mddev,
2444 conf->mirrors[m].rdev);
2445 /* an I/O failed, we can't clear the bitmap */
2446 set_bit(R1BIO_Degraded, &r1_bio->state);
2447 }
2448 rdev_dec_pending(conf->mirrors[m].rdev,
2449 conf->mddev);
2450 }
2451 if (fail) {
2452 spin_lock_irq(&conf->device_lock);
2453 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2454 idx = sector_to_idx(r1_bio->sector);
2455 atomic_inc(&conf->nr_queued[idx]);
2456 spin_unlock_irq(&conf->device_lock);
2457 /*
2458 * In case freeze_array() is waiting for condition
2459 * get_unqueued_pending() == extra to be true.
2460 */
2461 wake_up(&conf->wait_barrier);
2462 md_wakeup_thread(conf->mddev->thread);
2463 } else {
2464 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2465 close_write(r1_bio);
2466 raid_end_bio_io(r1_bio);
2467 }
2468}
2469
2470static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2471{
2472 struct mddev *mddev = conf->mddev;
2473 struct bio *bio;
2474 struct md_rdev *rdev;
2475
2476 clear_bit(R1BIO_ReadError, &r1_bio->state);
2477 /* we got a read error. Maybe the drive is bad. Maybe just
2478 * the block and we can fix it.
2479 * We freeze all other IO, and try reading the block from
2480 * other devices. When we find one, we re-write
2481 * and check it that fixes the read error.
2482 * This is all done synchronously while the array is
2483 * frozen
2484 */
2485
2486 bio = r1_bio->bios[r1_bio->read_disk];
2487 bio_put(bio);
2488 r1_bio->bios[r1_bio->read_disk] = NULL;
2489
2490 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2491 if (mddev->ro == 0
2492 && !test_bit(FailFast, &rdev->flags)) {
2493 freeze_array(conf, 1);
2494 fix_read_error(conf, r1_bio->read_disk,
2495 r1_bio->sector, r1_bio->sectors);
2496 unfreeze_array(conf);
2497 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2498 md_error(mddev, rdev);
2499 } else {
2500 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2501 }
2502
2503 rdev_dec_pending(rdev, conf->mddev);
2504 allow_barrier(conf, r1_bio->sector);
2505 bio = r1_bio->master_bio;
2506
2507 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2508 r1_bio->state = 0;
2509 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2510}
2511
2512static void raid1d(struct md_thread *thread)
2513{
2514 struct mddev *mddev = thread->mddev;
2515 struct r1bio *r1_bio;
2516 unsigned long flags;
2517 struct r1conf *conf = mddev->private;
2518 struct list_head *head = &conf->retry_list;
2519 struct blk_plug plug;
2520 int idx;
2521
2522 md_check_recovery(mddev);
2523
2524 if (!list_empty_careful(&conf->bio_end_io_list) &&
2525 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2526 LIST_HEAD(tmp);
2527 spin_lock_irqsave(&conf->device_lock, flags);
2528 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2529 list_splice_init(&conf->bio_end_io_list, &tmp);
2530 spin_unlock_irqrestore(&conf->device_lock, flags);
2531 while (!list_empty(&tmp)) {
2532 r1_bio = list_first_entry(&tmp, struct r1bio,
2533 retry_list);
2534 list_del(&r1_bio->retry_list);
2535 idx = sector_to_idx(r1_bio->sector);
2536 atomic_dec(&conf->nr_queued[idx]);
2537 if (mddev->degraded)
2538 set_bit(R1BIO_Degraded, &r1_bio->state);
2539 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2540 close_write(r1_bio);
2541 raid_end_bio_io(r1_bio);
2542 }
2543 }
2544
2545 blk_start_plug(&plug);
2546 for (;;) {
2547
2548 flush_pending_writes(conf);
2549
2550 spin_lock_irqsave(&conf->device_lock, flags);
2551 if (list_empty(head)) {
2552 spin_unlock_irqrestore(&conf->device_lock, flags);
2553 break;
2554 }
2555 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2556 list_del(head->prev);
2557 idx = sector_to_idx(r1_bio->sector);
2558 atomic_dec(&conf->nr_queued[idx]);
2559 spin_unlock_irqrestore(&conf->device_lock, flags);
2560
2561 mddev = r1_bio->mddev;
2562 conf = mddev->private;
2563 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2564 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2565 test_bit(R1BIO_WriteError, &r1_bio->state))
2566 handle_sync_write_finished(conf, r1_bio);
2567 else
2568 sync_request_write(mddev, r1_bio);
2569 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2570 test_bit(R1BIO_WriteError, &r1_bio->state))
2571 handle_write_finished(conf, r1_bio);
2572 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2573 handle_read_error(conf, r1_bio);
2574 else
2575 WARN_ON_ONCE(1);
2576
2577 cond_resched();
2578 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2579 md_check_recovery(mddev);
2580 }
2581 blk_finish_plug(&plug);
2582}
2583
2584static int init_resync(struct r1conf *conf)
2585{
2586 int buffs;
2587
2588 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2589 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2590
2591 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2592 r1buf_pool_free, conf->poolinfo);
2593}
2594
2595static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2596{
2597 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2598 struct resync_pages *rps;
2599 struct bio *bio;
2600 int i;
2601
2602 for (i = conf->poolinfo->raid_disks; i--; ) {
2603 bio = r1bio->bios[i];
2604 rps = bio->bi_private;
2605 bio_reset(bio);
2606 bio->bi_private = rps;
2607 }
2608 r1bio->master_bio = NULL;
2609 return r1bio;
2610}
2611
2612/*
2613 * perform a "sync" on one "block"
2614 *
2615 * We need to make sure that no normal I/O request - particularly write
2616 * requests - conflict with active sync requests.
2617 *
2618 * This is achieved by tracking pending requests and a 'barrier' concept
2619 * that can be installed to exclude normal IO requests.
2620 */
2621
2622static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2623 int *skipped)
2624{
2625 struct r1conf *conf = mddev->private;
2626 struct r1bio *r1_bio;
2627 struct bio *bio;
2628 sector_t max_sector, nr_sectors;
2629 int disk = -1;
2630 int i;
2631 int wonly = -1;
2632 int write_targets = 0, read_targets = 0;
2633 sector_t sync_blocks;
2634 int still_degraded = 0;
2635 int good_sectors = RESYNC_SECTORS;
2636 int min_bad = 0; /* number of sectors that are bad in all devices */
2637 int idx = sector_to_idx(sector_nr);
2638 int page_idx = 0;
2639
2640 if (!mempool_initialized(&conf->r1buf_pool))
2641 if (init_resync(conf))
2642 return 0;
2643
2644 max_sector = mddev->dev_sectors;
2645 if (sector_nr >= max_sector) {
2646 /* If we aborted, we need to abort the
2647 * sync on the 'current' bitmap chunk (there will
2648 * only be one in raid1 resync.
2649 * We can find the current addess in mddev->curr_resync
2650 */
2651 if (mddev->curr_resync < max_sector) /* aborted */
2652 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2653 &sync_blocks, 1);
2654 else /* completed sync */
2655 conf->fullsync = 0;
2656
2657 md_bitmap_close_sync(mddev->bitmap);
2658 close_sync(conf);
2659
2660 if (mddev_is_clustered(mddev)) {
2661 conf->cluster_sync_low = 0;
2662 conf->cluster_sync_high = 0;
2663 }
2664 return 0;
2665 }
2666
2667 if (mddev->bitmap == NULL &&
2668 mddev->recovery_cp == MaxSector &&
2669 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2670 conf->fullsync == 0) {
2671 *skipped = 1;
2672 return max_sector - sector_nr;
2673 }
2674 /* before building a request, check if we can skip these blocks..
2675 * This call the bitmap_start_sync doesn't actually record anything
2676 */
2677 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2678 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2679 /* We can skip this block, and probably several more */
2680 *skipped = 1;
2681 return sync_blocks;
2682 }
2683
2684 /*
2685 * If there is non-resync activity waiting for a turn, then let it
2686 * though before starting on this new sync request.
2687 */
2688 if (atomic_read(&conf->nr_waiting[idx]))
2689 schedule_timeout_uninterruptible(1);
2690
2691 /* we are incrementing sector_nr below. To be safe, we check against
2692 * sector_nr + two times RESYNC_SECTORS
2693 */
2694
2695 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2696 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2697
2698
2699 if (raise_barrier(conf, sector_nr))
2700 return 0;
2701
2702 r1_bio = raid1_alloc_init_r1buf(conf);
2703
2704 rcu_read_lock();
2705 /*
2706 * If we get a correctably read error during resync or recovery,
2707 * we might want to read from a different device. So we
2708 * flag all drives that could conceivably be read from for READ,
2709 * and any others (which will be non-In_sync devices) for WRITE.
2710 * If a read fails, we try reading from something else for which READ
2711 * is OK.
2712 */
2713
2714 r1_bio->mddev = mddev;
2715 r1_bio->sector = sector_nr;
2716 r1_bio->state = 0;
2717 set_bit(R1BIO_IsSync, &r1_bio->state);
2718 /* make sure good_sectors won't go across barrier unit boundary */
2719 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2720
2721 for (i = 0; i < conf->raid_disks * 2; i++) {
2722 struct md_rdev *rdev;
2723 bio = r1_bio->bios[i];
2724
2725 rdev = rcu_dereference(conf->mirrors[i].rdev);
2726 if (rdev == NULL ||
2727 test_bit(Faulty, &rdev->flags)) {
2728 if (i < conf->raid_disks)
2729 still_degraded = 1;
2730 } else if (!test_bit(In_sync, &rdev->flags)) {
2731 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2732 bio->bi_end_io = end_sync_write;
2733 write_targets ++;
2734 } else {
2735 /* may need to read from here */
2736 sector_t first_bad = MaxSector;
2737 int bad_sectors;
2738
2739 if (is_badblock(rdev, sector_nr, good_sectors,
2740 &first_bad, &bad_sectors)) {
2741 if (first_bad > sector_nr)
2742 good_sectors = first_bad - sector_nr;
2743 else {
2744 bad_sectors -= (sector_nr - first_bad);
2745 if (min_bad == 0 ||
2746 min_bad > bad_sectors)
2747 min_bad = bad_sectors;
2748 }
2749 }
2750 if (sector_nr < first_bad) {
2751 if (test_bit(WriteMostly, &rdev->flags)) {
2752 if (wonly < 0)
2753 wonly = i;
2754 } else {
2755 if (disk < 0)
2756 disk = i;
2757 }
2758 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2759 bio->bi_end_io = end_sync_read;
2760 read_targets++;
2761 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2762 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2763 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2764 /*
2765 * The device is suitable for reading (InSync),
2766 * but has bad block(s) here. Let's try to correct them,
2767 * if we are doing resync or repair. Otherwise, leave
2768 * this device alone for this sync request.
2769 */
2770 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2771 bio->bi_end_io = end_sync_write;
2772 write_targets++;
2773 }
2774 }
2775 if (rdev && bio->bi_end_io) {
2776 atomic_inc(&rdev->nr_pending);
2777 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2778 bio_set_dev(bio, rdev->bdev);
2779 if (test_bit(FailFast, &rdev->flags))
2780 bio->bi_opf |= MD_FAILFAST;
2781 }
2782 }
2783 rcu_read_unlock();
2784 if (disk < 0)
2785 disk = wonly;
2786 r1_bio->read_disk = disk;
2787
2788 if (read_targets == 0 && min_bad > 0) {
2789 /* These sectors are bad on all InSync devices, so we
2790 * need to mark them bad on all write targets
2791 */
2792 int ok = 1;
2793 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2794 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2795 struct md_rdev *rdev = conf->mirrors[i].rdev;
2796 ok = rdev_set_badblocks(rdev, sector_nr,
2797 min_bad, 0
2798 ) && ok;
2799 }
2800 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2801 *skipped = 1;
2802 put_buf(r1_bio);
2803
2804 if (!ok) {
2805 /* Cannot record the badblocks, so need to
2806 * abort the resync.
2807 * If there are multiple read targets, could just
2808 * fail the really bad ones ???
2809 */
2810 conf->recovery_disabled = mddev->recovery_disabled;
2811 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2812 return 0;
2813 } else
2814 return min_bad;
2815
2816 }
2817 if (min_bad > 0 && min_bad < good_sectors) {
2818 /* only resync enough to reach the next bad->good
2819 * transition */
2820 good_sectors = min_bad;
2821 }
2822
2823 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2824 /* extra read targets are also write targets */
2825 write_targets += read_targets-1;
2826
2827 if (write_targets == 0 || read_targets == 0) {
2828 /* There is nowhere to write, so all non-sync
2829 * drives must be failed - so we are finished
2830 */
2831 sector_t rv;
2832 if (min_bad > 0)
2833 max_sector = sector_nr + min_bad;
2834 rv = max_sector - sector_nr;
2835 *skipped = 1;
2836 put_buf(r1_bio);
2837 return rv;
2838 }
2839
2840 if (max_sector > mddev->resync_max)
2841 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2842 if (max_sector > sector_nr + good_sectors)
2843 max_sector = sector_nr + good_sectors;
2844 nr_sectors = 0;
2845 sync_blocks = 0;
2846 do {
2847 struct page *page;
2848 int len = PAGE_SIZE;
2849 if (sector_nr + (len>>9) > max_sector)
2850 len = (max_sector - sector_nr) << 9;
2851 if (len == 0)
2852 break;
2853 if (sync_blocks == 0) {
2854 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2855 &sync_blocks, still_degraded) &&
2856 !conf->fullsync &&
2857 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2858 break;
2859 if ((len >> 9) > sync_blocks)
2860 len = sync_blocks<<9;
2861 }
2862
2863 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2864 struct resync_pages *rp;
2865
2866 bio = r1_bio->bios[i];
2867 rp = get_resync_pages(bio);
2868 if (bio->bi_end_io) {
2869 page = resync_fetch_page(rp, page_idx);
2870
2871 /*
2872 * won't fail because the vec table is big
2873 * enough to hold all these pages
2874 */
2875 bio_add_page(bio, page, len, 0);
2876 }
2877 }
2878 nr_sectors += len>>9;
2879 sector_nr += len>>9;
2880 sync_blocks -= (len>>9);
2881 } while (++page_idx < RESYNC_PAGES);
2882
2883 r1_bio->sectors = nr_sectors;
2884
2885 if (mddev_is_clustered(mddev) &&
2886 conf->cluster_sync_high < sector_nr + nr_sectors) {
2887 conf->cluster_sync_low = mddev->curr_resync_completed;
2888 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2889 /* Send resync message */
2890 md_cluster_ops->resync_info_update(mddev,
2891 conf->cluster_sync_low,
2892 conf->cluster_sync_high);
2893 }
2894
2895 /* For a user-requested sync, we read all readable devices and do a
2896 * compare
2897 */
2898 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2899 atomic_set(&r1_bio->remaining, read_targets);
2900 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2901 bio = r1_bio->bios[i];
2902 if (bio->bi_end_io == end_sync_read) {
2903 read_targets--;
2904 md_sync_acct_bio(bio, nr_sectors);
2905 if (read_targets == 1)
2906 bio->bi_opf &= ~MD_FAILFAST;
2907 submit_bio_noacct(bio);
2908 }
2909 }
2910 } else {
2911 atomic_set(&r1_bio->remaining, 1);
2912 bio = r1_bio->bios[r1_bio->read_disk];
2913 md_sync_acct_bio(bio, nr_sectors);
2914 if (read_targets == 1)
2915 bio->bi_opf &= ~MD_FAILFAST;
2916 submit_bio_noacct(bio);
2917 }
2918 return nr_sectors;
2919}
2920
2921static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2922{
2923 if (sectors)
2924 return sectors;
2925
2926 return mddev->dev_sectors;
2927}
2928
2929static struct r1conf *setup_conf(struct mddev *mddev)
2930{
2931 struct r1conf *conf;
2932 int i;
2933 struct raid1_info *disk;
2934 struct md_rdev *rdev;
2935 int err = -ENOMEM;
2936
2937 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2938 if (!conf)
2939 goto abort;
2940
2941 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2942 sizeof(atomic_t), GFP_KERNEL);
2943 if (!conf->nr_pending)
2944 goto abort;
2945
2946 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2947 sizeof(atomic_t), GFP_KERNEL);
2948 if (!conf->nr_waiting)
2949 goto abort;
2950
2951 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2952 sizeof(atomic_t), GFP_KERNEL);
2953 if (!conf->nr_queued)
2954 goto abort;
2955
2956 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2957 sizeof(atomic_t), GFP_KERNEL);
2958 if (!conf->barrier)
2959 goto abort;
2960
2961 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2962 mddev->raid_disks, 2),
2963 GFP_KERNEL);
2964 if (!conf->mirrors)
2965 goto abort;
2966
2967 conf->tmppage = alloc_page(GFP_KERNEL);
2968 if (!conf->tmppage)
2969 goto abort;
2970
2971 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2972 if (!conf->poolinfo)
2973 goto abort;
2974 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2975 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2976 rbio_pool_free, conf->poolinfo);
2977 if (err)
2978 goto abort;
2979
2980 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2981 if (err)
2982 goto abort;
2983
2984 conf->poolinfo->mddev = mddev;
2985
2986 err = -EINVAL;
2987 spin_lock_init(&conf->device_lock);
2988 rdev_for_each(rdev, mddev) {
2989 int disk_idx = rdev->raid_disk;
2990 if (disk_idx >= mddev->raid_disks
2991 || disk_idx < 0)
2992 continue;
2993 if (test_bit(Replacement, &rdev->flags))
2994 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2995 else
2996 disk = conf->mirrors + disk_idx;
2997
2998 if (disk->rdev)
2999 goto abort;
3000 disk->rdev = rdev;
3001 disk->head_position = 0;
3002 disk->seq_start = MaxSector;
3003 }
3004 conf->raid_disks = mddev->raid_disks;
3005 conf->mddev = mddev;
3006 INIT_LIST_HEAD(&conf->retry_list);
3007 INIT_LIST_HEAD(&conf->bio_end_io_list);
3008
3009 spin_lock_init(&conf->resync_lock);
3010 init_waitqueue_head(&conf->wait_barrier);
3011
3012 bio_list_init(&conf->pending_bio_list);
3013 conf->pending_count = 0;
3014 conf->recovery_disabled = mddev->recovery_disabled - 1;
3015
3016 err = -EIO;
3017 for (i = 0; i < conf->raid_disks * 2; i++) {
3018
3019 disk = conf->mirrors + i;
3020
3021 if (i < conf->raid_disks &&
3022 disk[conf->raid_disks].rdev) {
3023 /* This slot has a replacement. */
3024 if (!disk->rdev) {
3025 /* No original, just make the replacement
3026 * a recovering spare
3027 */
3028 disk->rdev =
3029 disk[conf->raid_disks].rdev;
3030 disk[conf->raid_disks].rdev = NULL;
3031 } else if (!test_bit(In_sync, &disk->rdev->flags))
3032 /* Original is not in_sync - bad */
3033 goto abort;
3034 }
3035
3036 if (!disk->rdev ||
3037 !test_bit(In_sync, &disk->rdev->flags)) {
3038 disk->head_position = 0;
3039 if (disk->rdev &&
3040 (disk->rdev->saved_raid_disk < 0))
3041 conf->fullsync = 1;
3042 }
3043 }
3044
3045 err = -ENOMEM;
3046 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3047 if (!conf->thread)
3048 goto abort;
3049
3050 return conf;
3051
3052 abort:
3053 if (conf) {
3054 mempool_exit(&conf->r1bio_pool);
3055 kfree(conf->mirrors);
3056 safe_put_page(conf->tmppage);
3057 kfree(conf->poolinfo);
3058 kfree(conf->nr_pending);
3059 kfree(conf->nr_waiting);
3060 kfree(conf->nr_queued);
3061 kfree(conf->barrier);
3062 bioset_exit(&conf->bio_split);
3063 kfree(conf);
3064 }
3065 return ERR_PTR(err);
3066}
3067
3068static void raid1_free(struct mddev *mddev, void *priv);
3069static int raid1_run(struct mddev *mddev)
3070{
3071 struct r1conf *conf;
3072 int i;
3073 struct md_rdev *rdev;
3074 int ret;
3075 bool discard_supported = false;
3076
3077 if (mddev->level != 1) {
3078 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3079 mdname(mddev), mddev->level);
3080 return -EIO;
3081 }
3082 if (mddev->reshape_position != MaxSector) {
3083 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3084 mdname(mddev));
3085 return -EIO;
3086 }
3087 if (mddev_init_writes_pending(mddev) < 0)
3088 return -ENOMEM;
3089 /*
3090 * copy the already verified devices into our private RAID1
3091 * bookkeeping area. [whatever we allocate in run(),
3092 * should be freed in raid1_free()]
3093 */
3094 if (mddev->private == NULL)
3095 conf = setup_conf(mddev);
3096 else
3097 conf = mddev->private;
3098
3099 if (IS_ERR(conf))
3100 return PTR_ERR(conf);
3101
3102 if (mddev->queue) {
3103 blk_queue_max_write_same_sectors(mddev->queue, 0);
3104 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3105 }
3106
3107 rdev_for_each(rdev, mddev) {
3108 if (!mddev->gendisk)
3109 continue;
3110 disk_stack_limits(mddev->gendisk, rdev->bdev,
3111 rdev->data_offset << 9);
3112 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3113 discard_supported = true;
3114 }
3115
3116 mddev->degraded = 0;
3117 for (i = 0; i < conf->raid_disks; i++)
3118 if (conf->mirrors[i].rdev == NULL ||
3119 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3120 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3121 mddev->degraded++;
3122 /*
3123 * RAID1 needs at least one disk in active
3124 */
3125 if (conf->raid_disks - mddev->degraded < 1) {
3126 ret = -EINVAL;
3127 goto abort;
3128 }
3129
3130 if (conf->raid_disks - mddev->degraded == 1)
3131 mddev->recovery_cp = MaxSector;
3132
3133 if (mddev->recovery_cp != MaxSector)
3134 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3135 mdname(mddev));
3136 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3137 mdname(mddev), mddev->raid_disks - mddev->degraded,
3138 mddev->raid_disks);
3139
3140 /*
3141 * Ok, everything is just fine now
3142 */
3143 mddev->thread = conf->thread;
3144 conf->thread = NULL;
3145 mddev->private = conf;
3146 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3147
3148 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3149
3150 if (mddev->queue) {
3151 if (discard_supported)
3152 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3153 mddev->queue);
3154 else
3155 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3156 mddev->queue);
3157 }
3158
3159 ret = md_integrity_register(mddev);
3160 if (ret) {
3161 md_unregister_thread(&mddev->thread);
3162 goto abort;
3163 }
3164 return 0;
3165
3166abort:
3167 raid1_free(mddev, conf);
3168 return ret;
3169}
3170
3171static void raid1_free(struct mddev *mddev, void *priv)
3172{
3173 struct r1conf *conf = priv;
3174
3175 mempool_exit(&conf->r1bio_pool);
3176 kfree(conf->mirrors);
3177 safe_put_page(conf->tmppage);
3178 kfree(conf->poolinfo);
3179 kfree(conf->nr_pending);
3180 kfree(conf->nr_waiting);
3181 kfree(conf->nr_queued);
3182 kfree(conf->barrier);
3183 bioset_exit(&conf->bio_split);
3184 kfree(conf);
3185}
3186
3187static int raid1_resize(struct mddev *mddev, sector_t sectors)
3188{
3189 /* no resync is happening, and there is enough space
3190 * on all devices, so we can resize.
3191 * We need to make sure resync covers any new space.
3192 * If the array is shrinking we should possibly wait until
3193 * any io in the removed space completes, but it hardly seems
3194 * worth it.
3195 */
3196 sector_t newsize = raid1_size(mddev, sectors, 0);
3197 if (mddev->external_size &&
3198 mddev->array_sectors > newsize)
3199 return -EINVAL;
3200 if (mddev->bitmap) {
3201 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3202 if (ret)
3203 return ret;
3204 }
3205 md_set_array_sectors(mddev, newsize);
3206 if (sectors > mddev->dev_sectors &&
3207 mddev->recovery_cp > mddev->dev_sectors) {
3208 mddev->recovery_cp = mddev->dev_sectors;
3209 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3210 }
3211 mddev->dev_sectors = sectors;
3212 mddev->resync_max_sectors = sectors;
3213 return 0;
3214}
3215
3216static int raid1_reshape(struct mddev *mddev)
3217{
3218 /* We need to:
3219 * 1/ resize the r1bio_pool
3220 * 2/ resize conf->mirrors
3221 *
3222 * We allocate a new r1bio_pool if we can.
3223 * Then raise a device barrier and wait until all IO stops.
3224 * Then resize conf->mirrors and swap in the new r1bio pool.
3225 *
3226 * At the same time, we "pack" the devices so that all the missing
3227 * devices have the higher raid_disk numbers.
3228 */
3229 mempool_t newpool, oldpool;
3230 struct pool_info *newpoolinfo;
3231 struct raid1_info *newmirrors;
3232 struct r1conf *conf = mddev->private;
3233 int cnt, raid_disks;
3234 unsigned long flags;
3235 int d, d2;
3236 int ret;
3237
3238 memset(&newpool, 0, sizeof(newpool));
3239 memset(&oldpool, 0, sizeof(oldpool));
3240
3241 /* Cannot change chunk_size, layout, or level */
3242 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3243 mddev->layout != mddev->new_layout ||
3244 mddev->level != mddev->new_level) {
3245 mddev->new_chunk_sectors = mddev->chunk_sectors;
3246 mddev->new_layout = mddev->layout;
3247 mddev->new_level = mddev->level;
3248 return -EINVAL;
3249 }
3250
3251 if (!mddev_is_clustered(mddev))
3252 md_allow_write(mddev);
3253
3254 raid_disks = mddev->raid_disks + mddev->delta_disks;
3255
3256 if (raid_disks < conf->raid_disks) {
3257 cnt=0;
3258 for (d= 0; d < conf->raid_disks; d++)
3259 if (conf->mirrors[d].rdev)
3260 cnt++;
3261 if (cnt > raid_disks)
3262 return -EBUSY;
3263 }
3264
3265 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3266 if (!newpoolinfo)
3267 return -ENOMEM;
3268 newpoolinfo->mddev = mddev;
3269 newpoolinfo->raid_disks = raid_disks * 2;
3270
3271 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3272 rbio_pool_free, newpoolinfo);
3273 if (ret) {
3274 kfree(newpoolinfo);
3275 return ret;
3276 }
3277 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3278 raid_disks, 2),
3279 GFP_KERNEL);
3280 if (!newmirrors) {
3281 kfree(newpoolinfo);
3282 mempool_exit(&newpool);
3283 return -ENOMEM;
3284 }
3285
3286 freeze_array(conf, 0);
3287
3288 /* ok, everything is stopped */
3289 oldpool = conf->r1bio_pool;
3290 conf->r1bio_pool = newpool;
3291
3292 for (d = d2 = 0; d < conf->raid_disks; d++) {
3293 struct md_rdev *rdev = conf->mirrors[d].rdev;
3294 if (rdev && rdev->raid_disk != d2) {
3295 sysfs_unlink_rdev(mddev, rdev);
3296 rdev->raid_disk = d2;
3297 sysfs_unlink_rdev(mddev, rdev);
3298 if (sysfs_link_rdev(mddev, rdev))
3299 pr_warn("md/raid1:%s: cannot register rd%d\n",
3300 mdname(mddev), rdev->raid_disk);
3301 }
3302 if (rdev)
3303 newmirrors[d2++].rdev = rdev;
3304 }
3305 kfree(conf->mirrors);
3306 conf->mirrors = newmirrors;
3307 kfree(conf->poolinfo);
3308 conf->poolinfo = newpoolinfo;
3309
3310 spin_lock_irqsave(&conf->device_lock, flags);
3311 mddev->degraded += (raid_disks - conf->raid_disks);
3312 spin_unlock_irqrestore(&conf->device_lock, flags);
3313 conf->raid_disks = mddev->raid_disks = raid_disks;
3314 mddev->delta_disks = 0;
3315
3316 unfreeze_array(conf);
3317
3318 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3320 md_wakeup_thread(mddev->thread);
3321
3322 mempool_exit(&oldpool);
3323 return 0;
3324}
3325
3326static void raid1_quiesce(struct mddev *mddev, int quiesce)
3327{
3328 struct r1conf *conf = mddev->private;
3329
3330 if (quiesce)
3331 freeze_array(conf, 0);
3332 else
3333 unfreeze_array(conf);
3334}
3335
3336static void *raid1_takeover(struct mddev *mddev)
3337{
3338 /* raid1 can take over:
3339 * raid5 with 2 devices, any layout or chunk size
3340 */
3341 if (mddev->level == 5 && mddev->raid_disks == 2) {
3342 struct r1conf *conf;
3343 mddev->new_level = 1;
3344 mddev->new_layout = 0;
3345 mddev->new_chunk_sectors = 0;
3346 conf = setup_conf(mddev);
3347 if (!IS_ERR(conf)) {
3348 /* Array must appear to be quiesced */
3349 conf->array_frozen = 1;
3350 mddev_clear_unsupported_flags(mddev,
3351 UNSUPPORTED_MDDEV_FLAGS);
3352 }
3353 return conf;
3354 }
3355 return ERR_PTR(-EINVAL);
3356}
3357
3358static struct md_personality raid1_personality =
3359{
3360 .name = "raid1",
3361 .level = 1,
3362 .owner = THIS_MODULE,
3363 .make_request = raid1_make_request,
3364 .run = raid1_run,
3365 .free = raid1_free,
3366 .status = raid1_status,
3367 .error_handler = raid1_error,
3368 .hot_add_disk = raid1_add_disk,
3369 .hot_remove_disk= raid1_remove_disk,
3370 .spare_active = raid1_spare_active,
3371 .sync_request = raid1_sync_request,
3372 .resize = raid1_resize,
3373 .size = raid1_size,
3374 .check_reshape = raid1_reshape,
3375 .quiesce = raid1_quiesce,
3376 .takeover = raid1_takeover,
3377};
3378
3379static int __init raid_init(void)
3380{
3381 return register_md_personality(&raid1_personality);
3382}
3383
3384static void raid_exit(void)
3385{
3386 unregister_md_personality(&raid1_personality);
3387}
3388
3389module_init(raid_init);
3390module_exit(raid_exit);
3391MODULE_LICENSE("GPL");
3392MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3393MODULE_ALIAS("md-personality-3"); /* RAID1 */
3394MODULE_ALIAS("md-raid1");
3395MODULE_ALIAS("md-level-1");
3396
3397module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);