at v5.1-rc2 1332 lines 39 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/vmalloc.h> 23#include <linux/rcupdate.h> 24#include <linux/ratelimit.h> 25#include <linux/err.h> 26#include <linux/irqflags.h> 27#include <linux/context_tracking.h> 28#include <linux/irqbypass.h> 29#include <linux/swait.h> 30#include <linux/refcount.h> 31#include <asm/signal.h> 32 33#include <linux/kvm.h> 34#include <linux/kvm_para.h> 35 36#include <linux/kvm_types.h> 37 38#include <asm/kvm_host.h> 39 40#ifndef KVM_MAX_VCPU_ID 41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42#endif 43 44/* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49#define KVM_MEMSLOT_INVALID (1UL << 16) 50 51/* 52 * Bit 63 of the memslot generation number is an "update in-progress flag", 53 * e.g. is temporarily set for the duration of install_new_memslots(). 54 * This flag effectively creates a unique generation number that is used to 55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 56 * i.e. may (or may not) have come from the previous memslots generation. 57 * 58 * This is necessary because the actual memslots update is not atomic with 59 * respect to the generation number update. Updating the generation number 60 * first would allow a vCPU to cache a spte from the old memslots using the 61 * new generation number, and updating the generation number after switching 62 * to the new memslots would allow cache hits using the old generation number 63 * to reference the defunct memslots. 64 * 65 * This mechanism is used to prevent getting hits in KVM's caches while a 66 * memslot update is in-progress, and to prevent cache hits *after* updating 67 * the actual generation number against accesses that were inserted into the 68 * cache *before* the memslots were updated. 69 */ 70#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 71 72/* Two fragments for cross MMIO pages. */ 73#define KVM_MAX_MMIO_FRAGMENTS 2 74 75#ifndef KVM_ADDRESS_SPACE_NUM 76#define KVM_ADDRESS_SPACE_NUM 1 77#endif 78 79/* 80 * For the normal pfn, the highest 12 bits should be zero, 81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 82 * mask bit 63 to indicate the noslot pfn. 83 */ 84#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 85#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 86#define KVM_PFN_NOSLOT (0x1ULL << 63) 87 88#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 89#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 90#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 91 92/* 93 * error pfns indicate that the gfn is in slot but faild to 94 * translate it to pfn on host. 95 */ 96static inline bool is_error_pfn(kvm_pfn_t pfn) 97{ 98 return !!(pfn & KVM_PFN_ERR_MASK); 99} 100 101/* 102 * error_noslot pfns indicate that the gfn can not be 103 * translated to pfn - it is not in slot or failed to 104 * translate it to pfn. 105 */ 106static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 107{ 108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 109} 110 111/* noslot pfn indicates that the gfn is not in slot. */ 112static inline bool is_noslot_pfn(kvm_pfn_t pfn) 113{ 114 return pfn == KVM_PFN_NOSLOT; 115} 116 117/* 118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 119 * provide own defines and kvm_is_error_hva 120 */ 121#ifndef KVM_HVA_ERR_BAD 122 123#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 124#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 125 126static inline bool kvm_is_error_hva(unsigned long addr) 127{ 128 return addr >= PAGE_OFFSET; 129} 130 131#endif 132 133#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 134 135static inline bool is_error_page(struct page *page) 136{ 137 return IS_ERR(page); 138} 139 140#define KVM_REQUEST_MASK GENMASK(7,0) 141#define KVM_REQUEST_NO_WAKEUP BIT(8) 142#define KVM_REQUEST_WAIT BIT(9) 143/* 144 * Architecture-independent vcpu->requests bit members 145 * Bits 4-7 are reserved for more arch-independent bits. 146 */ 147#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 148#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149#define KVM_REQ_PENDING_TIMER 2 150#define KVM_REQ_UNHALT 3 151#define KVM_REQUEST_ARCH_BASE 8 152 153#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 154 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 156}) 157#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 158 159#define KVM_USERSPACE_IRQ_SOURCE_ID 0 160#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 161 162extern struct kmem_cache *kvm_vcpu_cache; 163 164extern spinlock_t kvm_lock; 165extern struct list_head vm_list; 166 167struct kvm_io_range { 168 gpa_t addr; 169 int len; 170 struct kvm_io_device *dev; 171}; 172 173#define NR_IOBUS_DEVS 1000 174 175struct kvm_io_bus { 176 int dev_count; 177 int ioeventfd_count; 178 struct kvm_io_range range[]; 179}; 180 181enum kvm_bus { 182 KVM_MMIO_BUS, 183 KVM_PIO_BUS, 184 KVM_VIRTIO_CCW_NOTIFY_BUS, 185 KVM_FAST_MMIO_BUS, 186 KVM_NR_BUSES 187}; 188 189int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, const void *val); 191int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 192 gpa_t addr, int len, const void *val, long cookie); 193int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 194 int len, void *val); 195int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 196 int len, struct kvm_io_device *dev); 197void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 struct kvm_io_device *dev); 199struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 200 gpa_t addr); 201 202#ifdef CONFIG_KVM_ASYNC_PF 203struct kvm_async_pf { 204 struct work_struct work; 205 struct list_head link; 206 struct list_head queue; 207 struct kvm_vcpu *vcpu; 208 struct mm_struct *mm; 209 gva_t gva; 210 unsigned long addr; 211 struct kvm_arch_async_pf arch; 212 bool wakeup_all; 213}; 214 215void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 216void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 217int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 218 struct kvm_arch_async_pf *arch); 219int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 220#endif 221 222enum { 223 OUTSIDE_GUEST_MODE, 224 IN_GUEST_MODE, 225 EXITING_GUEST_MODE, 226 READING_SHADOW_PAGE_TABLES, 227}; 228 229/* 230 * Sometimes a large or cross-page mmio needs to be broken up into separate 231 * exits for userspace servicing. 232 */ 233struct kvm_mmio_fragment { 234 gpa_t gpa; 235 void *data; 236 unsigned len; 237}; 238 239struct kvm_vcpu { 240 struct kvm *kvm; 241#ifdef CONFIG_PREEMPT_NOTIFIERS 242 struct preempt_notifier preempt_notifier; 243#endif 244 int cpu; 245 int vcpu_id; 246 int srcu_idx; 247 int mode; 248 u64 requests; 249 unsigned long guest_debug; 250 251 int pre_pcpu; 252 struct list_head blocked_vcpu_list; 253 254 struct mutex mutex; 255 struct kvm_run *run; 256 257 int guest_xcr0_loaded; 258 struct swait_queue_head wq; 259 struct pid __rcu *pid; 260 int sigset_active; 261 sigset_t sigset; 262 struct kvm_vcpu_stat stat; 263 unsigned int halt_poll_ns; 264 bool valid_wakeup; 265 266#ifdef CONFIG_HAS_IOMEM 267 int mmio_needed; 268 int mmio_read_completed; 269 int mmio_is_write; 270 int mmio_cur_fragment; 271 int mmio_nr_fragments; 272 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 273#endif 274 275#ifdef CONFIG_KVM_ASYNC_PF 276 struct { 277 u32 queued; 278 struct list_head queue; 279 struct list_head done; 280 spinlock_t lock; 281 } async_pf; 282#endif 283 284#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 285 /* 286 * Cpu relax intercept or pause loop exit optimization 287 * in_spin_loop: set when a vcpu does a pause loop exit 288 * or cpu relax intercepted. 289 * dy_eligible: indicates whether vcpu is eligible for directed yield. 290 */ 291 struct { 292 bool in_spin_loop; 293 bool dy_eligible; 294 } spin_loop; 295#endif 296 bool preempted; 297 struct kvm_vcpu_arch arch; 298 struct dentry *debugfs_dentry; 299}; 300 301static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 302{ 303 /* 304 * The memory barrier ensures a previous write to vcpu->requests cannot 305 * be reordered with the read of vcpu->mode. It pairs with the general 306 * memory barrier following the write of vcpu->mode in VCPU RUN. 307 */ 308 smp_mb__before_atomic(); 309 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 310} 311 312/* 313 * Some of the bitops functions do not support too long bitmaps. 314 * This number must be determined not to exceed such limits. 315 */ 316#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 317 318struct kvm_memory_slot { 319 gfn_t base_gfn; 320 unsigned long npages; 321 unsigned long *dirty_bitmap; 322 struct kvm_arch_memory_slot arch; 323 unsigned long userspace_addr; 324 u32 flags; 325 short id; 326}; 327 328static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 329{ 330 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 331} 332 333static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 334{ 335 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 336 337 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 338} 339 340struct kvm_s390_adapter_int { 341 u64 ind_addr; 342 u64 summary_addr; 343 u64 ind_offset; 344 u32 summary_offset; 345 u32 adapter_id; 346}; 347 348struct kvm_hv_sint { 349 u32 vcpu; 350 u32 sint; 351}; 352 353struct kvm_kernel_irq_routing_entry { 354 u32 gsi; 355 u32 type; 356 int (*set)(struct kvm_kernel_irq_routing_entry *e, 357 struct kvm *kvm, int irq_source_id, int level, 358 bool line_status); 359 union { 360 struct { 361 unsigned irqchip; 362 unsigned pin; 363 } irqchip; 364 struct { 365 u32 address_lo; 366 u32 address_hi; 367 u32 data; 368 u32 flags; 369 u32 devid; 370 } msi; 371 struct kvm_s390_adapter_int adapter; 372 struct kvm_hv_sint hv_sint; 373 }; 374 struct hlist_node link; 375}; 376 377#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 378struct kvm_irq_routing_table { 379 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 380 u32 nr_rt_entries; 381 /* 382 * Array indexed by gsi. Each entry contains list of irq chips 383 * the gsi is connected to. 384 */ 385 struct hlist_head map[0]; 386}; 387#endif 388 389#ifndef KVM_PRIVATE_MEM_SLOTS 390#define KVM_PRIVATE_MEM_SLOTS 0 391#endif 392 393#ifndef KVM_MEM_SLOTS_NUM 394#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 395#endif 396 397#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 398static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 399{ 400 return 0; 401} 402#endif 403 404/* 405 * Note: 406 * memslots are not sorted by id anymore, please use id_to_memslot() 407 * to get the memslot by its id. 408 */ 409struct kvm_memslots { 410 u64 generation; 411 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 412 /* The mapping table from slot id to the index in memslots[]. */ 413 short id_to_index[KVM_MEM_SLOTS_NUM]; 414 atomic_t lru_slot; 415 int used_slots; 416}; 417 418struct kvm { 419 spinlock_t mmu_lock; 420 struct mutex slots_lock; 421 struct mm_struct *mm; /* userspace tied to this vm */ 422 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 423 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 424 425 /* 426 * created_vcpus is protected by kvm->lock, and is incremented 427 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 428 * incremented after storing the kvm_vcpu pointer in vcpus, 429 * and is accessed atomically. 430 */ 431 atomic_t online_vcpus; 432 int created_vcpus; 433 int last_boosted_vcpu; 434 struct list_head vm_list; 435 struct mutex lock; 436 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 437#ifdef CONFIG_HAVE_KVM_EVENTFD 438 struct { 439 spinlock_t lock; 440 struct list_head items; 441 struct list_head resampler_list; 442 struct mutex resampler_lock; 443 } irqfds; 444 struct list_head ioeventfds; 445#endif 446 struct kvm_vm_stat stat; 447 struct kvm_arch arch; 448 refcount_t users_count; 449#ifdef CONFIG_KVM_MMIO 450 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 451 spinlock_t ring_lock; 452 struct list_head coalesced_zones; 453#endif 454 455 struct mutex irq_lock; 456#ifdef CONFIG_HAVE_KVM_IRQCHIP 457 /* 458 * Update side is protected by irq_lock. 459 */ 460 struct kvm_irq_routing_table __rcu *irq_routing; 461#endif 462#ifdef CONFIG_HAVE_KVM_IRQFD 463 struct hlist_head irq_ack_notifier_list; 464#endif 465 466#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 467 struct mmu_notifier mmu_notifier; 468 unsigned long mmu_notifier_seq; 469 long mmu_notifier_count; 470#endif 471 long tlbs_dirty; 472 struct list_head devices; 473 bool manual_dirty_log_protect; 474 struct dentry *debugfs_dentry; 475 struct kvm_stat_data **debugfs_stat_data; 476 struct srcu_struct srcu; 477 struct srcu_struct irq_srcu; 478 pid_t userspace_pid; 479}; 480 481#define kvm_err(fmt, ...) \ 482 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 483#define kvm_info(fmt, ...) \ 484 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 485#define kvm_debug(fmt, ...) \ 486 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 487#define kvm_debug_ratelimited(fmt, ...) \ 488 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 489 ## __VA_ARGS__) 490#define kvm_pr_unimpl(fmt, ...) \ 491 pr_err_ratelimited("kvm [%i]: " fmt, \ 492 task_tgid_nr(current), ## __VA_ARGS__) 493 494/* The guest did something we don't support. */ 495#define vcpu_unimpl(vcpu, fmt, ...) \ 496 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 497 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 498 499#define vcpu_debug(vcpu, fmt, ...) \ 500 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 501#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 502 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 503 ## __VA_ARGS__) 504#define vcpu_err(vcpu, fmt, ...) \ 505 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 506 507static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 508{ 509 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 510 lockdep_is_held(&kvm->slots_lock) || 511 !refcount_read(&kvm->users_count)); 512} 513 514static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 515{ 516 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 517 * the caller has read kvm->online_vcpus before (as is the case 518 * for kvm_for_each_vcpu, for example). 519 */ 520 smp_rmb(); 521 return kvm->vcpus[i]; 522} 523 524#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 525 for (idx = 0; \ 526 idx < atomic_read(&kvm->online_vcpus) && \ 527 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 528 idx++) 529 530static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 531{ 532 struct kvm_vcpu *vcpu = NULL; 533 int i; 534 535 if (id < 0) 536 return NULL; 537 if (id < KVM_MAX_VCPUS) 538 vcpu = kvm_get_vcpu(kvm, id); 539 if (vcpu && vcpu->vcpu_id == id) 540 return vcpu; 541 kvm_for_each_vcpu(i, vcpu, kvm) 542 if (vcpu->vcpu_id == id) 543 return vcpu; 544 return NULL; 545} 546 547static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 548{ 549 struct kvm_vcpu *tmp; 550 int idx; 551 552 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 553 if (tmp == vcpu) 554 return idx; 555 BUG(); 556} 557 558#define kvm_for_each_memslot(memslot, slots) \ 559 for (memslot = &slots->memslots[0]; \ 560 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 561 memslot++) 562 563int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 564void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 565 566void vcpu_load(struct kvm_vcpu *vcpu); 567void vcpu_put(struct kvm_vcpu *vcpu); 568 569#ifdef __KVM_HAVE_IOAPIC 570void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 571void kvm_arch_post_irq_routing_update(struct kvm *kvm); 572#else 573static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 574{ 575} 576static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 577{ 578} 579#endif 580 581#ifdef CONFIG_HAVE_KVM_IRQFD 582int kvm_irqfd_init(void); 583void kvm_irqfd_exit(void); 584#else 585static inline int kvm_irqfd_init(void) 586{ 587 return 0; 588} 589 590static inline void kvm_irqfd_exit(void) 591{ 592} 593#endif 594int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 595 struct module *module); 596void kvm_exit(void); 597 598void kvm_get_kvm(struct kvm *kvm); 599void kvm_put_kvm(struct kvm *kvm); 600 601static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 602{ 603 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 604 lockdep_is_held(&kvm->slots_lock) || 605 !refcount_read(&kvm->users_count)); 606} 607 608static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 609{ 610 return __kvm_memslots(kvm, 0); 611} 612 613static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 614{ 615 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 616 617 return __kvm_memslots(vcpu->kvm, as_id); 618} 619 620static inline struct kvm_memory_slot * 621id_to_memslot(struct kvm_memslots *slots, int id) 622{ 623 int index = slots->id_to_index[id]; 624 struct kvm_memory_slot *slot; 625 626 slot = &slots->memslots[index]; 627 628 WARN_ON(slot->id != id); 629 return slot; 630} 631 632/* 633 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 634 * - create a new memory slot 635 * - delete an existing memory slot 636 * - modify an existing memory slot 637 * -- move it in the guest physical memory space 638 * -- just change its flags 639 * 640 * Since flags can be changed by some of these operations, the following 641 * differentiation is the best we can do for __kvm_set_memory_region(): 642 */ 643enum kvm_mr_change { 644 KVM_MR_CREATE, 645 KVM_MR_DELETE, 646 KVM_MR_MOVE, 647 KVM_MR_FLAGS_ONLY, 648}; 649 650int kvm_set_memory_region(struct kvm *kvm, 651 const struct kvm_userspace_memory_region *mem); 652int __kvm_set_memory_region(struct kvm *kvm, 653 const struct kvm_userspace_memory_region *mem); 654void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 655 struct kvm_memory_slot *dont); 656int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 657 unsigned long npages); 658void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 659int kvm_arch_prepare_memory_region(struct kvm *kvm, 660 struct kvm_memory_slot *memslot, 661 const struct kvm_userspace_memory_region *mem, 662 enum kvm_mr_change change); 663void kvm_arch_commit_memory_region(struct kvm *kvm, 664 const struct kvm_userspace_memory_region *mem, 665 const struct kvm_memory_slot *old, 666 const struct kvm_memory_slot *new, 667 enum kvm_mr_change change); 668bool kvm_largepages_enabled(void); 669void kvm_disable_largepages(void); 670/* flush all memory translations */ 671void kvm_arch_flush_shadow_all(struct kvm *kvm); 672/* flush memory translations pointing to 'slot' */ 673void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 674 struct kvm_memory_slot *slot); 675 676int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 677 struct page **pages, int nr_pages); 678 679struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 680unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 681unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 682unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 683unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 684 bool *writable); 685void kvm_release_page_clean(struct page *page); 686void kvm_release_page_dirty(struct page *page); 687void kvm_set_page_accessed(struct page *page); 688 689kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 690kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 691kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 692 bool *writable); 693kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 694kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 695kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 696 bool atomic, bool *async, bool write_fault, 697 bool *writable); 698 699void kvm_release_pfn_clean(kvm_pfn_t pfn); 700void kvm_release_pfn_dirty(kvm_pfn_t pfn); 701void kvm_set_pfn_dirty(kvm_pfn_t pfn); 702void kvm_set_pfn_accessed(kvm_pfn_t pfn); 703void kvm_get_pfn(kvm_pfn_t pfn); 704 705int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 706 int len); 707int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 708 unsigned long len); 709int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 710int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 711 void *data, unsigned long len); 712int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 713 int offset, int len); 714int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 715 unsigned long len); 716int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 717 void *data, unsigned long len); 718int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 719 void *data, unsigned int offset, 720 unsigned long len); 721int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 722 gpa_t gpa, unsigned long len); 723int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 724int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 725struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 726bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 727unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 728void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 729 730struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 731struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 732kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 733kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 734struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 735unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 736unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 737int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 738 int len); 739int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 740 unsigned long len); 741int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 742 unsigned long len); 743int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 744 int offset, int len); 745int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 746 unsigned long len); 747void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 748 749void kvm_sigset_activate(struct kvm_vcpu *vcpu); 750void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 751 752void kvm_vcpu_block(struct kvm_vcpu *vcpu); 753void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 754void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 755bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 756void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 757int kvm_vcpu_yield_to(struct kvm_vcpu *target); 758void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 759 760void kvm_flush_remote_tlbs(struct kvm *kvm); 761void kvm_reload_remote_mmus(struct kvm *kvm); 762 763bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 764 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 765bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 766 767long kvm_arch_dev_ioctl(struct file *filp, 768 unsigned int ioctl, unsigned long arg); 769long kvm_arch_vcpu_ioctl(struct file *filp, 770 unsigned int ioctl, unsigned long arg); 771vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 772 773int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 774 775int kvm_get_dirty_log(struct kvm *kvm, 776 struct kvm_dirty_log *log, int *is_dirty); 777 778int kvm_get_dirty_log_protect(struct kvm *kvm, 779 struct kvm_dirty_log *log, bool *flush); 780int kvm_clear_dirty_log_protect(struct kvm *kvm, 781 struct kvm_clear_dirty_log *log, bool *flush); 782 783void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 784 struct kvm_memory_slot *slot, 785 gfn_t gfn_offset, 786 unsigned long mask); 787 788int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 789 struct kvm_dirty_log *log); 790int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 791 struct kvm_clear_dirty_log *log); 792 793int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 794 bool line_status); 795int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 796 struct kvm_enable_cap *cap); 797long kvm_arch_vm_ioctl(struct file *filp, 798 unsigned int ioctl, unsigned long arg); 799 800int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 801int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 802 803int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 804 struct kvm_translation *tr); 805 806int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 807int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 808int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 809 struct kvm_sregs *sregs); 810int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 811 struct kvm_sregs *sregs); 812int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 813 struct kvm_mp_state *mp_state); 814int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 815 struct kvm_mp_state *mp_state); 816int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 817 struct kvm_guest_debug *dbg); 818int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 819 820int kvm_arch_init(void *opaque); 821void kvm_arch_exit(void); 822 823int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 824void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 825 826void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 827 828void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 829void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 830void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 831struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 832int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 833void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 834void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 835 836bool kvm_arch_has_vcpu_debugfs(void); 837int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 838 839int kvm_arch_hardware_enable(void); 840void kvm_arch_hardware_disable(void); 841int kvm_arch_hardware_setup(void); 842void kvm_arch_hardware_unsetup(void); 843void kvm_arch_check_processor_compat(void *rtn); 844int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 845bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 846int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 847 848#ifndef __KVM_HAVE_ARCH_VM_ALLOC 849/* 850 * All architectures that want to use vzalloc currently also 851 * need their own kvm_arch_alloc_vm implementation. 852 */ 853static inline struct kvm *kvm_arch_alloc_vm(void) 854{ 855 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 856} 857 858static inline void kvm_arch_free_vm(struct kvm *kvm) 859{ 860 kfree(kvm); 861} 862#endif 863 864#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 865static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 866{ 867 return -ENOTSUPP; 868} 869#endif 870 871#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 872void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 873void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 874bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 875#else 876static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 877{ 878} 879 880static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 881{ 882} 883 884static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 885{ 886 return false; 887} 888#endif 889#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 890void kvm_arch_start_assignment(struct kvm *kvm); 891void kvm_arch_end_assignment(struct kvm *kvm); 892bool kvm_arch_has_assigned_device(struct kvm *kvm); 893#else 894static inline void kvm_arch_start_assignment(struct kvm *kvm) 895{ 896} 897 898static inline void kvm_arch_end_assignment(struct kvm *kvm) 899{ 900} 901 902static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 903{ 904 return false; 905} 906#endif 907 908static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 909{ 910#ifdef __KVM_HAVE_ARCH_WQP 911 return vcpu->arch.wqp; 912#else 913 return &vcpu->wq; 914#endif 915} 916 917#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 918/* 919 * returns true if the virtual interrupt controller is initialized and 920 * ready to accept virtual IRQ. On some architectures the virtual interrupt 921 * controller is dynamically instantiated and this is not always true. 922 */ 923bool kvm_arch_intc_initialized(struct kvm *kvm); 924#else 925static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 926{ 927 return true; 928} 929#endif 930 931int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 932void kvm_arch_destroy_vm(struct kvm *kvm); 933void kvm_arch_sync_events(struct kvm *kvm); 934 935int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 936void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 937 938bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 939 940struct kvm_irq_ack_notifier { 941 struct hlist_node link; 942 unsigned gsi; 943 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 944}; 945 946int kvm_irq_map_gsi(struct kvm *kvm, 947 struct kvm_kernel_irq_routing_entry *entries, int gsi); 948int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 949 950int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 951 bool line_status); 952int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 953 int irq_source_id, int level, bool line_status); 954int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 955 struct kvm *kvm, int irq_source_id, 956 int level, bool line_status); 957bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 958void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 959void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 960void kvm_register_irq_ack_notifier(struct kvm *kvm, 961 struct kvm_irq_ack_notifier *kian); 962void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 963 struct kvm_irq_ack_notifier *kian); 964int kvm_request_irq_source_id(struct kvm *kvm); 965void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 966 967/* 968 * search_memslots() and __gfn_to_memslot() are here because they are 969 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 970 * gfn_to_memslot() itself isn't here as an inline because that would 971 * bloat other code too much. 972 */ 973static inline struct kvm_memory_slot * 974search_memslots(struct kvm_memslots *slots, gfn_t gfn) 975{ 976 int start = 0, end = slots->used_slots; 977 int slot = atomic_read(&slots->lru_slot); 978 struct kvm_memory_slot *memslots = slots->memslots; 979 980 if (gfn >= memslots[slot].base_gfn && 981 gfn < memslots[slot].base_gfn + memslots[slot].npages) 982 return &memslots[slot]; 983 984 while (start < end) { 985 slot = start + (end - start) / 2; 986 987 if (gfn >= memslots[slot].base_gfn) 988 end = slot; 989 else 990 start = slot + 1; 991 } 992 993 if (gfn >= memslots[start].base_gfn && 994 gfn < memslots[start].base_gfn + memslots[start].npages) { 995 atomic_set(&slots->lru_slot, start); 996 return &memslots[start]; 997 } 998 999 return NULL; 1000} 1001 1002static inline struct kvm_memory_slot * 1003__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1004{ 1005 return search_memslots(slots, gfn); 1006} 1007 1008static inline unsigned long 1009__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1010{ 1011 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1012} 1013 1014static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1015{ 1016 return gfn_to_memslot(kvm, gfn)->id; 1017} 1018 1019static inline gfn_t 1020hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1021{ 1022 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1023 1024 return slot->base_gfn + gfn_offset; 1025} 1026 1027static inline gpa_t gfn_to_gpa(gfn_t gfn) 1028{ 1029 return (gpa_t)gfn << PAGE_SHIFT; 1030} 1031 1032static inline gfn_t gpa_to_gfn(gpa_t gpa) 1033{ 1034 return (gfn_t)(gpa >> PAGE_SHIFT); 1035} 1036 1037static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1038{ 1039 return (hpa_t)pfn << PAGE_SHIFT; 1040} 1041 1042static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1043 gpa_t gpa) 1044{ 1045 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1046} 1047 1048static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1049{ 1050 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1051 1052 return kvm_is_error_hva(hva); 1053} 1054 1055enum kvm_stat_kind { 1056 KVM_STAT_VM, 1057 KVM_STAT_VCPU, 1058}; 1059 1060struct kvm_stat_data { 1061 int offset; 1062 struct kvm *kvm; 1063}; 1064 1065struct kvm_stats_debugfs_item { 1066 const char *name; 1067 int offset; 1068 enum kvm_stat_kind kind; 1069}; 1070extern struct kvm_stats_debugfs_item debugfs_entries[]; 1071extern struct dentry *kvm_debugfs_dir; 1072 1073#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1074static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1075{ 1076 if (unlikely(kvm->mmu_notifier_count)) 1077 return 1; 1078 /* 1079 * Ensure the read of mmu_notifier_count happens before the read 1080 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1081 * mmu_notifier_invalidate_range_end to make sure that the caller 1082 * either sees the old (non-zero) value of mmu_notifier_count or 1083 * the new (incremented) value of mmu_notifier_seq. 1084 * PowerPC Book3s HV KVM calls this under a per-page lock 1085 * rather than under kvm->mmu_lock, for scalability, so 1086 * can't rely on kvm->mmu_lock to keep things ordered. 1087 */ 1088 smp_rmb(); 1089 if (kvm->mmu_notifier_seq != mmu_seq) 1090 return 1; 1091 return 0; 1092} 1093#endif 1094 1095#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1096 1097#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1098 1099bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1100int kvm_set_irq_routing(struct kvm *kvm, 1101 const struct kvm_irq_routing_entry *entries, 1102 unsigned nr, 1103 unsigned flags); 1104int kvm_set_routing_entry(struct kvm *kvm, 1105 struct kvm_kernel_irq_routing_entry *e, 1106 const struct kvm_irq_routing_entry *ue); 1107void kvm_free_irq_routing(struct kvm *kvm); 1108 1109#else 1110 1111static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1112 1113#endif 1114 1115int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1116 1117#ifdef CONFIG_HAVE_KVM_EVENTFD 1118 1119void kvm_eventfd_init(struct kvm *kvm); 1120int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1121 1122#ifdef CONFIG_HAVE_KVM_IRQFD 1123int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1124void kvm_irqfd_release(struct kvm *kvm); 1125void kvm_irq_routing_update(struct kvm *); 1126#else 1127static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1128{ 1129 return -EINVAL; 1130} 1131 1132static inline void kvm_irqfd_release(struct kvm *kvm) {} 1133#endif 1134 1135#else 1136 1137static inline void kvm_eventfd_init(struct kvm *kvm) {} 1138 1139static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1140{ 1141 return -EINVAL; 1142} 1143 1144static inline void kvm_irqfd_release(struct kvm *kvm) {} 1145 1146#ifdef CONFIG_HAVE_KVM_IRQCHIP 1147static inline void kvm_irq_routing_update(struct kvm *kvm) 1148{ 1149} 1150#endif 1151 1152static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1153{ 1154 return -ENOSYS; 1155} 1156 1157#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1158 1159void kvm_arch_irq_routing_update(struct kvm *kvm); 1160 1161static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1162{ 1163 /* 1164 * Ensure the rest of the request is published to kvm_check_request's 1165 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1166 */ 1167 smp_wmb(); 1168 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1169} 1170 1171static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1172{ 1173 return READ_ONCE(vcpu->requests); 1174} 1175 1176static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1177{ 1178 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1179} 1180 1181static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1182{ 1183 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1184} 1185 1186static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1187{ 1188 if (kvm_test_request(req, vcpu)) { 1189 kvm_clear_request(req, vcpu); 1190 1191 /* 1192 * Ensure the rest of the request is visible to kvm_check_request's 1193 * caller. Paired with the smp_wmb in kvm_make_request. 1194 */ 1195 smp_mb__after_atomic(); 1196 return true; 1197 } else { 1198 return false; 1199 } 1200} 1201 1202extern bool kvm_rebooting; 1203 1204extern unsigned int halt_poll_ns; 1205extern unsigned int halt_poll_ns_grow; 1206extern unsigned int halt_poll_ns_grow_start; 1207extern unsigned int halt_poll_ns_shrink; 1208 1209struct kvm_device { 1210 struct kvm_device_ops *ops; 1211 struct kvm *kvm; 1212 void *private; 1213 struct list_head vm_node; 1214}; 1215 1216/* create, destroy, and name are mandatory */ 1217struct kvm_device_ops { 1218 const char *name; 1219 1220 /* 1221 * create is called holding kvm->lock and any operations not suitable 1222 * to do while holding the lock should be deferred to init (see 1223 * below). 1224 */ 1225 int (*create)(struct kvm_device *dev, u32 type); 1226 1227 /* 1228 * init is called after create if create is successful and is called 1229 * outside of holding kvm->lock. 1230 */ 1231 void (*init)(struct kvm_device *dev); 1232 1233 /* 1234 * Destroy is responsible for freeing dev. 1235 * 1236 * Destroy may be called before or after destructors are called 1237 * on emulated I/O regions, depending on whether a reference is 1238 * held by a vcpu or other kvm component that gets destroyed 1239 * after the emulated I/O. 1240 */ 1241 void (*destroy)(struct kvm_device *dev); 1242 1243 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1244 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1245 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1246 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1247 unsigned long arg); 1248}; 1249 1250void kvm_device_get(struct kvm_device *dev); 1251void kvm_device_put(struct kvm_device *dev); 1252struct kvm_device *kvm_device_from_filp(struct file *filp); 1253int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1254void kvm_unregister_device_ops(u32 type); 1255 1256extern struct kvm_device_ops kvm_mpic_ops; 1257extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1258extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1259 1260#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1261 1262static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1263{ 1264 vcpu->spin_loop.in_spin_loop = val; 1265} 1266static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1267{ 1268 vcpu->spin_loop.dy_eligible = val; 1269} 1270 1271#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1272 1273static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1274{ 1275} 1276 1277static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1278{ 1279} 1280#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1281 1282#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1283bool kvm_arch_has_irq_bypass(void); 1284int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1285 struct irq_bypass_producer *); 1286void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1287 struct irq_bypass_producer *); 1288void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1289void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1290int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1291 uint32_t guest_irq, bool set); 1292#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1293 1294#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1295/* If we wakeup during the poll time, was it a sucessful poll? */ 1296static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1297{ 1298 return vcpu->valid_wakeup; 1299} 1300 1301#else 1302static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1303{ 1304 return true; 1305} 1306#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1307 1308#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1309long kvm_arch_vcpu_async_ioctl(struct file *filp, 1310 unsigned int ioctl, unsigned long arg); 1311#else 1312static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1313 unsigned int ioctl, 1314 unsigned long arg) 1315{ 1316 return -ENOIOCTLCMD; 1317} 1318#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1319 1320int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1321 unsigned long start, unsigned long end, bool blockable); 1322 1323#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1324int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1325#else 1326static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1327{ 1328 return 0; 1329} 1330#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1331 1332#endif