at v5.1-rc2 56 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107static void set_init_blocksize(struct block_device *bdev) 108{ 109 unsigned bsize = bdev_logical_block_size(bdev); 110 loff_t size = i_size_read(bdev->bd_inode); 111 112 while (bsize < PAGE_SIZE) { 113 if (size & bsize) 114 break; 115 bsize <<= 1; 116 } 117 bdev->bd_block_size = bsize; 118 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 119} 120 121int set_blocksize(struct block_device *bdev, int size) 122{ 123 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 125 return -EINVAL; 126 127 /* Size cannot be smaller than the size supported by the device */ 128 if (size < bdev_logical_block_size(bdev)) 129 return -EINVAL; 130 131 /* Don't change the size if it is same as current */ 132 if (bdev->bd_block_size != size) { 133 sync_blockdev(bdev); 134 bdev->bd_block_size = size; 135 bdev->bd_inode->i_blkbits = blksize_bits(size); 136 kill_bdev(bdev); 137 } 138 return 0; 139} 140 141EXPORT_SYMBOL(set_blocksize); 142 143int sb_set_blocksize(struct super_block *sb, int size) 144{ 145 if (set_blocksize(sb->s_bdev, size)) 146 return 0; 147 /* If we get here, we know size is power of two 148 * and it's value is between 512 and PAGE_SIZE */ 149 sb->s_blocksize = size; 150 sb->s_blocksize_bits = blksize_bits(size); 151 return sb->s_blocksize; 152} 153 154EXPORT_SYMBOL(sb_set_blocksize); 155 156int sb_min_blocksize(struct super_block *sb, int size) 157{ 158 int minsize = bdev_logical_block_size(sb->s_bdev); 159 if (size < minsize) 160 size = minsize; 161 return sb_set_blocksize(sb, size); 162} 163 164EXPORT_SYMBOL(sb_min_blocksize); 165 166static int 167blkdev_get_block(struct inode *inode, sector_t iblock, 168 struct buffer_head *bh, int create) 169{ 170 bh->b_bdev = I_BDEV(inode); 171 bh->b_blocknr = iblock; 172 set_buffer_mapped(bh); 173 return 0; 174} 175 176static struct inode *bdev_file_inode(struct file *file) 177{ 178 return file->f_mapping->host; 179} 180 181static unsigned int dio_bio_write_op(struct kiocb *iocb) 182{ 183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 184 185 /* avoid the need for a I/O completion work item */ 186 if (iocb->ki_flags & IOCB_DSYNC) 187 op |= REQ_FUA; 188 return op; 189} 190 191#define DIO_INLINE_BIO_VECS 4 192 193static void blkdev_bio_end_io_simple(struct bio *bio) 194{ 195 struct task_struct *waiter = bio->bi_private; 196 197 WRITE_ONCE(bio->bi_private, NULL); 198 blk_wake_io_task(waiter); 199} 200 201static ssize_t 202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 203 int nr_pages) 204{ 205 struct file *file = iocb->ki_filp; 206 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 208 loff_t pos = iocb->ki_pos; 209 bool should_dirty = false; 210 struct bio bio; 211 ssize_t ret; 212 blk_qc_t qc; 213 int i; 214 struct bvec_iter_all iter_all; 215 216 if ((pos | iov_iter_alignment(iter)) & 217 (bdev_logical_block_size(bdev) - 1)) 218 return -EINVAL; 219 220 if (nr_pages <= DIO_INLINE_BIO_VECS) 221 vecs = inline_vecs; 222 else { 223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 224 GFP_KERNEL); 225 if (!vecs) 226 return -ENOMEM; 227 } 228 229 bio_init(&bio, vecs, nr_pages); 230 bio_set_dev(&bio, bdev); 231 bio.bi_iter.bi_sector = pos >> 9; 232 bio.bi_write_hint = iocb->ki_hint; 233 bio.bi_private = current; 234 bio.bi_end_io = blkdev_bio_end_io_simple; 235 bio.bi_ioprio = iocb->ki_ioprio; 236 237 ret = bio_iov_iter_get_pages(&bio, iter); 238 if (unlikely(ret)) 239 goto out; 240 ret = bio.bi_iter.bi_size; 241 242 if (iov_iter_rw(iter) == READ) { 243 bio.bi_opf = REQ_OP_READ; 244 if (iter_is_iovec(iter)) 245 should_dirty = true; 246 } else { 247 bio.bi_opf = dio_bio_write_op(iocb); 248 task_io_account_write(ret); 249 } 250 if (iocb->ki_flags & IOCB_HIPRI) 251 bio_set_polled(&bio, iocb); 252 253 qc = submit_bio(&bio); 254 for (;;) { 255 set_current_state(TASK_UNINTERRUPTIBLE); 256 if (!READ_ONCE(bio.bi_private)) 257 break; 258 if (!(iocb->ki_flags & IOCB_HIPRI) || 259 !blk_poll(bdev_get_queue(bdev), qc, true)) 260 io_schedule(); 261 } 262 __set_current_state(TASK_RUNNING); 263 264 bio_for_each_segment_all(bvec, &bio, i, iter_all) { 265 if (should_dirty && !PageCompound(bvec->bv_page)) 266 set_page_dirty_lock(bvec->bv_page); 267 put_page(bvec->bv_page); 268 } 269 270 if (unlikely(bio.bi_status)) 271 ret = blk_status_to_errno(bio.bi_status); 272 273out: 274 if (vecs != inline_vecs) 275 kfree(vecs); 276 277 bio_uninit(&bio); 278 279 return ret; 280} 281 282struct blkdev_dio { 283 union { 284 struct kiocb *iocb; 285 struct task_struct *waiter; 286 }; 287 size_t size; 288 atomic_t ref; 289 bool multi_bio : 1; 290 bool should_dirty : 1; 291 bool is_sync : 1; 292 struct bio bio; 293}; 294 295static struct bio_set blkdev_dio_pool; 296 297static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 298{ 299 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 300 struct request_queue *q = bdev_get_queue(bdev); 301 302 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 303} 304 305static void blkdev_bio_end_io(struct bio *bio) 306{ 307 struct blkdev_dio *dio = bio->bi_private; 308 bool should_dirty = dio->should_dirty; 309 310 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 311 if (bio->bi_status && !dio->bio.bi_status) 312 dio->bio.bi_status = bio->bi_status; 313 } else { 314 if (!dio->is_sync) { 315 struct kiocb *iocb = dio->iocb; 316 ssize_t ret; 317 318 if (likely(!dio->bio.bi_status)) { 319 ret = dio->size; 320 iocb->ki_pos += ret; 321 } else { 322 ret = blk_status_to_errno(dio->bio.bi_status); 323 } 324 325 dio->iocb->ki_complete(iocb, ret, 0); 326 if (dio->multi_bio) 327 bio_put(&dio->bio); 328 } else { 329 struct task_struct *waiter = dio->waiter; 330 331 WRITE_ONCE(dio->waiter, NULL); 332 blk_wake_io_task(waiter); 333 } 334 } 335 336 if (should_dirty) { 337 bio_check_pages_dirty(bio); 338 } else { 339 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) { 340 struct bvec_iter_all iter_all; 341 struct bio_vec *bvec; 342 int i; 343 344 bio_for_each_segment_all(bvec, bio, i, iter_all) 345 put_page(bvec->bv_page); 346 } 347 bio_put(bio); 348 } 349} 350 351static ssize_t 352__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 353{ 354 struct file *file = iocb->ki_filp; 355 struct inode *inode = bdev_file_inode(file); 356 struct block_device *bdev = I_BDEV(inode); 357 struct blk_plug plug; 358 struct blkdev_dio *dio; 359 struct bio *bio; 360 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 361 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 362 loff_t pos = iocb->ki_pos; 363 blk_qc_t qc = BLK_QC_T_NONE; 364 int ret = 0; 365 366 if ((pos | iov_iter_alignment(iter)) & 367 (bdev_logical_block_size(bdev) - 1)) 368 return -EINVAL; 369 370 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 371 372 dio = container_of(bio, struct blkdev_dio, bio); 373 dio->is_sync = is_sync = is_sync_kiocb(iocb); 374 if (dio->is_sync) { 375 dio->waiter = current; 376 bio_get(bio); 377 } else { 378 dio->iocb = iocb; 379 } 380 381 dio->size = 0; 382 dio->multi_bio = false; 383 dio->should_dirty = is_read && iter_is_iovec(iter); 384 385 /* 386 * Don't plug for HIPRI/polled IO, as those should go straight 387 * to issue 388 */ 389 if (!is_poll) 390 blk_start_plug(&plug); 391 392 for (;;) { 393 bio_set_dev(bio, bdev); 394 bio->bi_iter.bi_sector = pos >> 9; 395 bio->bi_write_hint = iocb->ki_hint; 396 bio->bi_private = dio; 397 bio->bi_end_io = blkdev_bio_end_io; 398 bio->bi_ioprio = iocb->ki_ioprio; 399 400 ret = bio_iov_iter_get_pages(bio, iter); 401 if (unlikely(ret)) { 402 bio->bi_status = BLK_STS_IOERR; 403 bio_endio(bio); 404 break; 405 } 406 407 if (is_read) { 408 bio->bi_opf = REQ_OP_READ; 409 if (dio->should_dirty) 410 bio_set_pages_dirty(bio); 411 } else { 412 bio->bi_opf = dio_bio_write_op(iocb); 413 task_io_account_write(bio->bi_iter.bi_size); 414 } 415 416 dio->size += bio->bi_iter.bi_size; 417 pos += bio->bi_iter.bi_size; 418 419 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 420 if (!nr_pages) { 421 bool polled = false; 422 423 if (iocb->ki_flags & IOCB_HIPRI) { 424 bio_set_polled(bio, iocb); 425 polled = true; 426 } 427 428 qc = submit_bio(bio); 429 430 if (polled) 431 WRITE_ONCE(iocb->ki_cookie, qc); 432 break; 433 } 434 435 if (!dio->multi_bio) { 436 /* 437 * AIO needs an extra reference to ensure the dio 438 * structure which is embedded into the first bio 439 * stays around. 440 */ 441 if (!is_sync) 442 bio_get(bio); 443 dio->multi_bio = true; 444 atomic_set(&dio->ref, 2); 445 } else { 446 atomic_inc(&dio->ref); 447 } 448 449 submit_bio(bio); 450 bio = bio_alloc(GFP_KERNEL, nr_pages); 451 } 452 453 if (!is_poll) 454 blk_finish_plug(&plug); 455 456 if (!is_sync) 457 return -EIOCBQUEUED; 458 459 for (;;) { 460 set_current_state(TASK_UNINTERRUPTIBLE); 461 if (!READ_ONCE(dio->waiter)) 462 break; 463 464 if (!(iocb->ki_flags & IOCB_HIPRI) || 465 !blk_poll(bdev_get_queue(bdev), qc, true)) 466 io_schedule(); 467 } 468 __set_current_state(TASK_RUNNING); 469 470 if (!ret) 471 ret = blk_status_to_errno(dio->bio.bi_status); 472 if (likely(!ret)) 473 ret = dio->size; 474 475 bio_put(&dio->bio); 476 return ret; 477} 478 479static ssize_t 480blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 481{ 482 int nr_pages; 483 484 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 485 if (!nr_pages) 486 return 0; 487 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 488 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 489 490 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 491} 492 493static __init int blkdev_init(void) 494{ 495 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 496} 497module_init(blkdev_init); 498 499int __sync_blockdev(struct block_device *bdev, int wait) 500{ 501 if (!bdev) 502 return 0; 503 if (!wait) 504 return filemap_flush(bdev->bd_inode->i_mapping); 505 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 506} 507 508/* 509 * Write out and wait upon all the dirty data associated with a block 510 * device via its mapping. Does not take the superblock lock. 511 */ 512int sync_blockdev(struct block_device *bdev) 513{ 514 return __sync_blockdev(bdev, 1); 515} 516EXPORT_SYMBOL(sync_blockdev); 517 518/* 519 * Write out and wait upon all dirty data associated with this 520 * device. Filesystem data as well as the underlying block 521 * device. Takes the superblock lock. 522 */ 523int fsync_bdev(struct block_device *bdev) 524{ 525 struct super_block *sb = get_super(bdev); 526 if (sb) { 527 int res = sync_filesystem(sb); 528 drop_super(sb); 529 return res; 530 } 531 return sync_blockdev(bdev); 532} 533EXPORT_SYMBOL(fsync_bdev); 534 535/** 536 * freeze_bdev -- lock a filesystem and force it into a consistent state 537 * @bdev: blockdevice to lock 538 * 539 * If a superblock is found on this device, we take the s_umount semaphore 540 * on it to make sure nobody unmounts until the snapshot creation is done. 541 * The reference counter (bd_fsfreeze_count) guarantees that only the last 542 * unfreeze process can unfreeze the frozen filesystem actually when multiple 543 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 544 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 545 * actually. 546 */ 547struct super_block *freeze_bdev(struct block_device *bdev) 548{ 549 struct super_block *sb; 550 int error = 0; 551 552 mutex_lock(&bdev->bd_fsfreeze_mutex); 553 if (++bdev->bd_fsfreeze_count > 1) { 554 /* 555 * We don't even need to grab a reference - the first call 556 * to freeze_bdev grab an active reference and only the last 557 * thaw_bdev drops it. 558 */ 559 sb = get_super(bdev); 560 if (sb) 561 drop_super(sb); 562 mutex_unlock(&bdev->bd_fsfreeze_mutex); 563 return sb; 564 } 565 566 sb = get_active_super(bdev); 567 if (!sb) 568 goto out; 569 if (sb->s_op->freeze_super) 570 error = sb->s_op->freeze_super(sb); 571 else 572 error = freeze_super(sb); 573 if (error) { 574 deactivate_super(sb); 575 bdev->bd_fsfreeze_count--; 576 mutex_unlock(&bdev->bd_fsfreeze_mutex); 577 return ERR_PTR(error); 578 } 579 deactivate_super(sb); 580 out: 581 sync_blockdev(bdev); 582 mutex_unlock(&bdev->bd_fsfreeze_mutex); 583 return sb; /* thaw_bdev releases s->s_umount */ 584} 585EXPORT_SYMBOL(freeze_bdev); 586 587/** 588 * thaw_bdev -- unlock filesystem 589 * @bdev: blockdevice to unlock 590 * @sb: associated superblock 591 * 592 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 593 */ 594int thaw_bdev(struct block_device *bdev, struct super_block *sb) 595{ 596 int error = -EINVAL; 597 598 mutex_lock(&bdev->bd_fsfreeze_mutex); 599 if (!bdev->bd_fsfreeze_count) 600 goto out; 601 602 error = 0; 603 if (--bdev->bd_fsfreeze_count > 0) 604 goto out; 605 606 if (!sb) 607 goto out; 608 609 if (sb->s_op->thaw_super) 610 error = sb->s_op->thaw_super(sb); 611 else 612 error = thaw_super(sb); 613 if (error) 614 bdev->bd_fsfreeze_count++; 615out: 616 mutex_unlock(&bdev->bd_fsfreeze_mutex); 617 return error; 618} 619EXPORT_SYMBOL(thaw_bdev); 620 621static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 622{ 623 return block_write_full_page(page, blkdev_get_block, wbc); 624} 625 626static int blkdev_readpage(struct file * file, struct page * page) 627{ 628 return block_read_full_page(page, blkdev_get_block); 629} 630 631static int blkdev_readpages(struct file *file, struct address_space *mapping, 632 struct list_head *pages, unsigned nr_pages) 633{ 634 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 635} 636 637static int blkdev_write_begin(struct file *file, struct address_space *mapping, 638 loff_t pos, unsigned len, unsigned flags, 639 struct page **pagep, void **fsdata) 640{ 641 return block_write_begin(mapping, pos, len, flags, pagep, 642 blkdev_get_block); 643} 644 645static int blkdev_write_end(struct file *file, struct address_space *mapping, 646 loff_t pos, unsigned len, unsigned copied, 647 struct page *page, void *fsdata) 648{ 649 int ret; 650 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 651 652 unlock_page(page); 653 put_page(page); 654 655 return ret; 656} 657 658/* 659 * private llseek: 660 * for a block special file file_inode(file)->i_size is zero 661 * so we compute the size by hand (just as in block_read/write above) 662 */ 663static loff_t block_llseek(struct file *file, loff_t offset, int whence) 664{ 665 struct inode *bd_inode = bdev_file_inode(file); 666 loff_t retval; 667 668 inode_lock(bd_inode); 669 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 670 inode_unlock(bd_inode); 671 return retval; 672} 673 674int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 675{ 676 struct inode *bd_inode = bdev_file_inode(filp); 677 struct block_device *bdev = I_BDEV(bd_inode); 678 int error; 679 680 error = file_write_and_wait_range(filp, start, end); 681 if (error) 682 return error; 683 684 /* 685 * There is no need to serialise calls to blkdev_issue_flush with 686 * i_mutex and doing so causes performance issues with concurrent 687 * O_SYNC writers to a block device. 688 */ 689 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 690 if (error == -EOPNOTSUPP) 691 error = 0; 692 693 return error; 694} 695EXPORT_SYMBOL(blkdev_fsync); 696 697/** 698 * bdev_read_page() - Start reading a page from a block device 699 * @bdev: The device to read the page from 700 * @sector: The offset on the device to read the page to (need not be aligned) 701 * @page: The page to read 702 * 703 * On entry, the page should be locked. It will be unlocked when the page 704 * has been read. If the block driver implements rw_page synchronously, 705 * that will be true on exit from this function, but it need not be. 706 * 707 * Errors returned by this function are usually "soft", eg out of memory, or 708 * queue full; callers should try a different route to read this page rather 709 * than propagate an error back up the stack. 710 * 711 * Return: negative errno if an error occurs, 0 if submission was successful. 712 */ 713int bdev_read_page(struct block_device *bdev, sector_t sector, 714 struct page *page) 715{ 716 const struct block_device_operations *ops = bdev->bd_disk->fops; 717 int result = -EOPNOTSUPP; 718 719 if (!ops->rw_page || bdev_get_integrity(bdev)) 720 return result; 721 722 result = blk_queue_enter(bdev->bd_queue, 0); 723 if (result) 724 return result; 725 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 726 REQ_OP_READ); 727 blk_queue_exit(bdev->bd_queue); 728 return result; 729} 730EXPORT_SYMBOL_GPL(bdev_read_page); 731 732/** 733 * bdev_write_page() - Start writing a page to a block device 734 * @bdev: The device to write the page to 735 * @sector: The offset on the device to write the page to (need not be aligned) 736 * @page: The page to write 737 * @wbc: The writeback_control for the write 738 * 739 * On entry, the page should be locked and not currently under writeback. 740 * On exit, if the write started successfully, the page will be unlocked and 741 * under writeback. If the write failed already (eg the driver failed to 742 * queue the page to the device), the page will still be locked. If the 743 * caller is a ->writepage implementation, it will need to unlock the page. 744 * 745 * Errors returned by this function are usually "soft", eg out of memory, or 746 * queue full; callers should try a different route to write this page rather 747 * than propagate an error back up the stack. 748 * 749 * Return: negative errno if an error occurs, 0 if submission was successful. 750 */ 751int bdev_write_page(struct block_device *bdev, sector_t sector, 752 struct page *page, struct writeback_control *wbc) 753{ 754 int result; 755 const struct block_device_operations *ops = bdev->bd_disk->fops; 756 757 if (!ops->rw_page || bdev_get_integrity(bdev)) 758 return -EOPNOTSUPP; 759 result = blk_queue_enter(bdev->bd_queue, 0); 760 if (result) 761 return result; 762 763 set_page_writeback(page); 764 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 765 REQ_OP_WRITE); 766 if (result) { 767 end_page_writeback(page); 768 } else { 769 clean_page_buffers(page); 770 unlock_page(page); 771 } 772 blk_queue_exit(bdev->bd_queue); 773 return result; 774} 775EXPORT_SYMBOL_GPL(bdev_write_page); 776 777/* 778 * pseudo-fs 779 */ 780 781static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 782static struct kmem_cache * bdev_cachep __read_mostly; 783 784static struct inode *bdev_alloc_inode(struct super_block *sb) 785{ 786 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 787 if (!ei) 788 return NULL; 789 return &ei->vfs_inode; 790} 791 792static void bdev_i_callback(struct rcu_head *head) 793{ 794 struct inode *inode = container_of(head, struct inode, i_rcu); 795 struct bdev_inode *bdi = BDEV_I(inode); 796 797 kmem_cache_free(bdev_cachep, bdi); 798} 799 800static void bdev_destroy_inode(struct inode *inode) 801{ 802 call_rcu(&inode->i_rcu, bdev_i_callback); 803} 804 805static void init_once(void *foo) 806{ 807 struct bdev_inode *ei = (struct bdev_inode *) foo; 808 struct block_device *bdev = &ei->bdev; 809 810 memset(bdev, 0, sizeof(*bdev)); 811 mutex_init(&bdev->bd_mutex); 812 INIT_LIST_HEAD(&bdev->bd_list); 813#ifdef CONFIG_SYSFS 814 INIT_LIST_HEAD(&bdev->bd_holder_disks); 815#endif 816 bdev->bd_bdi = &noop_backing_dev_info; 817 inode_init_once(&ei->vfs_inode); 818 /* Initialize mutex for freeze. */ 819 mutex_init(&bdev->bd_fsfreeze_mutex); 820} 821 822static void bdev_evict_inode(struct inode *inode) 823{ 824 struct block_device *bdev = &BDEV_I(inode)->bdev; 825 truncate_inode_pages_final(&inode->i_data); 826 invalidate_inode_buffers(inode); /* is it needed here? */ 827 clear_inode(inode); 828 spin_lock(&bdev_lock); 829 list_del_init(&bdev->bd_list); 830 spin_unlock(&bdev_lock); 831 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 832 inode_detach_wb(inode); 833 if (bdev->bd_bdi != &noop_backing_dev_info) { 834 bdi_put(bdev->bd_bdi); 835 bdev->bd_bdi = &noop_backing_dev_info; 836 } 837} 838 839static const struct super_operations bdev_sops = { 840 .statfs = simple_statfs, 841 .alloc_inode = bdev_alloc_inode, 842 .destroy_inode = bdev_destroy_inode, 843 .drop_inode = generic_delete_inode, 844 .evict_inode = bdev_evict_inode, 845}; 846 847static struct dentry *bd_mount(struct file_system_type *fs_type, 848 int flags, const char *dev_name, void *data) 849{ 850 struct dentry *dent; 851 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 852 if (!IS_ERR(dent)) 853 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 854 return dent; 855} 856 857static struct file_system_type bd_type = { 858 .name = "bdev", 859 .mount = bd_mount, 860 .kill_sb = kill_anon_super, 861}; 862 863struct super_block *blockdev_superblock __read_mostly; 864EXPORT_SYMBOL_GPL(blockdev_superblock); 865 866void __init bdev_cache_init(void) 867{ 868 int err; 869 static struct vfsmount *bd_mnt; 870 871 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 872 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 873 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 874 init_once); 875 err = register_filesystem(&bd_type); 876 if (err) 877 panic("Cannot register bdev pseudo-fs"); 878 bd_mnt = kern_mount(&bd_type); 879 if (IS_ERR(bd_mnt)) 880 panic("Cannot create bdev pseudo-fs"); 881 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 882} 883 884/* 885 * Most likely _very_ bad one - but then it's hardly critical for small 886 * /dev and can be fixed when somebody will need really large one. 887 * Keep in mind that it will be fed through icache hash function too. 888 */ 889static inline unsigned long hash(dev_t dev) 890{ 891 return MAJOR(dev)+MINOR(dev); 892} 893 894static int bdev_test(struct inode *inode, void *data) 895{ 896 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 897} 898 899static int bdev_set(struct inode *inode, void *data) 900{ 901 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 902 return 0; 903} 904 905static LIST_HEAD(all_bdevs); 906 907/* 908 * If there is a bdev inode for this device, unhash it so that it gets evicted 909 * as soon as last inode reference is dropped. 910 */ 911void bdev_unhash_inode(dev_t dev) 912{ 913 struct inode *inode; 914 915 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 916 if (inode) { 917 remove_inode_hash(inode); 918 iput(inode); 919 } 920} 921 922struct block_device *bdget(dev_t dev) 923{ 924 struct block_device *bdev; 925 struct inode *inode; 926 927 inode = iget5_locked(blockdev_superblock, hash(dev), 928 bdev_test, bdev_set, &dev); 929 930 if (!inode) 931 return NULL; 932 933 bdev = &BDEV_I(inode)->bdev; 934 935 if (inode->i_state & I_NEW) { 936 bdev->bd_contains = NULL; 937 bdev->bd_super = NULL; 938 bdev->bd_inode = inode; 939 bdev->bd_block_size = i_blocksize(inode); 940 bdev->bd_part_count = 0; 941 bdev->bd_invalidated = 0; 942 inode->i_mode = S_IFBLK; 943 inode->i_rdev = dev; 944 inode->i_bdev = bdev; 945 inode->i_data.a_ops = &def_blk_aops; 946 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 947 spin_lock(&bdev_lock); 948 list_add(&bdev->bd_list, &all_bdevs); 949 spin_unlock(&bdev_lock); 950 unlock_new_inode(inode); 951 } 952 return bdev; 953} 954 955EXPORT_SYMBOL(bdget); 956 957/** 958 * bdgrab -- Grab a reference to an already referenced block device 959 * @bdev: Block device to grab a reference to. 960 */ 961struct block_device *bdgrab(struct block_device *bdev) 962{ 963 ihold(bdev->bd_inode); 964 return bdev; 965} 966EXPORT_SYMBOL(bdgrab); 967 968long nr_blockdev_pages(void) 969{ 970 struct block_device *bdev; 971 long ret = 0; 972 spin_lock(&bdev_lock); 973 list_for_each_entry(bdev, &all_bdevs, bd_list) { 974 ret += bdev->bd_inode->i_mapping->nrpages; 975 } 976 spin_unlock(&bdev_lock); 977 return ret; 978} 979 980void bdput(struct block_device *bdev) 981{ 982 iput(bdev->bd_inode); 983} 984 985EXPORT_SYMBOL(bdput); 986 987static struct block_device *bd_acquire(struct inode *inode) 988{ 989 struct block_device *bdev; 990 991 spin_lock(&bdev_lock); 992 bdev = inode->i_bdev; 993 if (bdev && !inode_unhashed(bdev->bd_inode)) { 994 bdgrab(bdev); 995 spin_unlock(&bdev_lock); 996 return bdev; 997 } 998 spin_unlock(&bdev_lock); 999 1000 /* 1001 * i_bdev references block device inode that was already shut down 1002 * (corresponding device got removed). Remove the reference and look 1003 * up block device inode again just in case new device got 1004 * reestablished under the same device number. 1005 */ 1006 if (bdev) 1007 bd_forget(inode); 1008 1009 bdev = bdget(inode->i_rdev); 1010 if (bdev) { 1011 spin_lock(&bdev_lock); 1012 if (!inode->i_bdev) { 1013 /* 1014 * We take an additional reference to bd_inode, 1015 * and it's released in clear_inode() of inode. 1016 * So, we can access it via ->i_mapping always 1017 * without igrab(). 1018 */ 1019 bdgrab(bdev); 1020 inode->i_bdev = bdev; 1021 inode->i_mapping = bdev->bd_inode->i_mapping; 1022 } 1023 spin_unlock(&bdev_lock); 1024 } 1025 return bdev; 1026} 1027 1028/* Call when you free inode */ 1029 1030void bd_forget(struct inode *inode) 1031{ 1032 struct block_device *bdev = NULL; 1033 1034 spin_lock(&bdev_lock); 1035 if (!sb_is_blkdev_sb(inode->i_sb)) 1036 bdev = inode->i_bdev; 1037 inode->i_bdev = NULL; 1038 inode->i_mapping = &inode->i_data; 1039 spin_unlock(&bdev_lock); 1040 1041 if (bdev) 1042 bdput(bdev); 1043} 1044 1045/** 1046 * bd_may_claim - test whether a block device can be claimed 1047 * @bdev: block device of interest 1048 * @whole: whole block device containing @bdev, may equal @bdev 1049 * @holder: holder trying to claim @bdev 1050 * 1051 * Test whether @bdev can be claimed by @holder. 1052 * 1053 * CONTEXT: 1054 * spin_lock(&bdev_lock). 1055 * 1056 * RETURNS: 1057 * %true if @bdev can be claimed, %false otherwise. 1058 */ 1059static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1060 void *holder) 1061{ 1062 if (bdev->bd_holder == holder) 1063 return true; /* already a holder */ 1064 else if (bdev->bd_holder != NULL) 1065 return false; /* held by someone else */ 1066 else if (whole == bdev) 1067 return true; /* is a whole device which isn't held */ 1068 1069 else if (whole->bd_holder == bd_may_claim) 1070 return true; /* is a partition of a device that is being partitioned */ 1071 else if (whole->bd_holder != NULL) 1072 return false; /* is a partition of a held device */ 1073 else 1074 return true; /* is a partition of an un-held device */ 1075} 1076 1077/** 1078 * bd_prepare_to_claim - prepare to claim a block device 1079 * @bdev: block device of interest 1080 * @whole: the whole device containing @bdev, may equal @bdev 1081 * @holder: holder trying to claim @bdev 1082 * 1083 * Prepare to claim @bdev. This function fails if @bdev is already 1084 * claimed by another holder and waits if another claiming is in 1085 * progress. This function doesn't actually claim. On successful 1086 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1087 * 1088 * CONTEXT: 1089 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1090 * it multiple times. 1091 * 1092 * RETURNS: 1093 * 0 if @bdev can be claimed, -EBUSY otherwise. 1094 */ 1095static int bd_prepare_to_claim(struct block_device *bdev, 1096 struct block_device *whole, void *holder) 1097{ 1098retry: 1099 /* if someone else claimed, fail */ 1100 if (!bd_may_claim(bdev, whole, holder)) 1101 return -EBUSY; 1102 1103 /* if claiming is already in progress, wait for it to finish */ 1104 if (whole->bd_claiming) { 1105 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1106 DEFINE_WAIT(wait); 1107 1108 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1109 spin_unlock(&bdev_lock); 1110 schedule(); 1111 finish_wait(wq, &wait); 1112 spin_lock(&bdev_lock); 1113 goto retry; 1114 } 1115 1116 /* yay, all mine */ 1117 return 0; 1118} 1119 1120static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1121{ 1122 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1123 1124 if (!disk) 1125 return NULL; 1126 /* 1127 * Now that we hold gendisk reference we make sure bdev we looked up is 1128 * not stale. If it is, it means device got removed and created before 1129 * we looked up gendisk and we fail open in such case. Associating 1130 * unhashed bdev with newly created gendisk could lead to two bdevs 1131 * (and thus two independent caches) being associated with one device 1132 * which is bad. 1133 */ 1134 if (inode_unhashed(bdev->bd_inode)) { 1135 put_disk_and_module(disk); 1136 return NULL; 1137 } 1138 return disk; 1139} 1140 1141/** 1142 * bd_start_claiming - start claiming a block device 1143 * @bdev: block device of interest 1144 * @holder: holder trying to claim @bdev 1145 * 1146 * @bdev is about to be opened exclusively. Check @bdev can be opened 1147 * exclusively and mark that an exclusive open is in progress. Each 1148 * successful call to this function must be matched with a call to 1149 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1150 * fail). 1151 * 1152 * This function is used to gain exclusive access to the block device 1153 * without actually causing other exclusive open attempts to fail. It 1154 * should be used when the open sequence itself requires exclusive 1155 * access but may subsequently fail. 1156 * 1157 * CONTEXT: 1158 * Might sleep. 1159 * 1160 * RETURNS: 1161 * Pointer to the block device containing @bdev on success, ERR_PTR() 1162 * value on failure. 1163 */ 1164static struct block_device *bd_start_claiming(struct block_device *bdev, 1165 void *holder) 1166{ 1167 struct gendisk *disk; 1168 struct block_device *whole; 1169 int partno, err; 1170 1171 might_sleep(); 1172 1173 /* 1174 * @bdev might not have been initialized properly yet, look up 1175 * and grab the outer block device the hard way. 1176 */ 1177 disk = bdev_get_gendisk(bdev, &partno); 1178 if (!disk) 1179 return ERR_PTR(-ENXIO); 1180 1181 /* 1182 * Normally, @bdev should equal what's returned from bdget_disk() 1183 * if partno is 0; however, some drivers (floppy) use multiple 1184 * bdev's for the same physical device and @bdev may be one of the 1185 * aliases. Keep @bdev if partno is 0. This means claimer 1186 * tracking is broken for those devices but it has always been that 1187 * way. 1188 */ 1189 if (partno) 1190 whole = bdget_disk(disk, 0); 1191 else 1192 whole = bdgrab(bdev); 1193 1194 put_disk_and_module(disk); 1195 if (!whole) 1196 return ERR_PTR(-ENOMEM); 1197 1198 /* prepare to claim, if successful, mark claiming in progress */ 1199 spin_lock(&bdev_lock); 1200 1201 err = bd_prepare_to_claim(bdev, whole, holder); 1202 if (err == 0) { 1203 whole->bd_claiming = holder; 1204 spin_unlock(&bdev_lock); 1205 return whole; 1206 } else { 1207 spin_unlock(&bdev_lock); 1208 bdput(whole); 1209 return ERR_PTR(err); 1210 } 1211} 1212 1213#ifdef CONFIG_SYSFS 1214struct bd_holder_disk { 1215 struct list_head list; 1216 struct gendisk *disk; 1217 int refcnt; 1218}; 1219 1220static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1221 struct gendisk *disk) 1222{ 1223 struct bd_holder_disk *holder; 1224 1225 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1226 if (holder->disk == disk) 1227 return holder; 1228 return NULL; 1229} 1230 1231static int add_symlink(struct kobject *from, struct kobject *to) 1232{ 1233 return sysfs_create_link(from, to, kobject_name(to)); 1234} 1235 1236static void del_symlink(struct kobject *from, struct kobject *to) 1237{ 1238 sysfs_remove_link(from, kobject_name(to)); 1239} 1240 1241/** 1242 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1243 * @bdev: the claimed slave bdev 1244 * @disk: the holding disk 1245 * 1246 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1247 * 1248 * This functions creates the following sysfs symlinks. 1249 * 1250 * - from "slaves" directory of the holder @disk to the claimed @bdev 1251 * - from "holders" directory of the @bdev to the holder @disk 1252 * 1253 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1254 * passed to bd_link_disk_holder(), then: 1255 * 1256 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1257 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1258 * 1259 * The caller must have claimed @bdev before calling this function and 1260 * ensure that both @bdev and @disk are valid during the creation and 1261 * lifetime of these symlinks. 1262 * 1263 * CONTEXT: 1264 * Might sleep. 1265 * 1266 * RETURNS: 1267 * 0 on success, -errno on failure. 1268 */ 1269int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1270{ 1271 struct bd_holder_disk *holder; 1272 int ret = 0; 1273 1274 mutex_lock(&bdev->bd_mutex); 1275 1276 WARN_ON_ONCE(!bdev->bd_holder); 1277 1278 /* FIXME: remove the following once add_disk() handles errors */ 1279 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1280 goto out_unlock; 1281 1282 holder = bd_find_holder_disk(bdev, disk); 1283 if (holder) { 1284 holder->refcnt++; 1285 goto out_unlock; 1286 } 1287 1288 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1289 if (!holder) { 1290 ret = -ENOMEM; 1291 goto out_unlock; 1292 } 1293 1294 INIT_LIST_HEAD(&holder->list); 1295 holder->disk = disk; 1296 holder->refcnt = 1; 1297 1298 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1299 if (ret) 1300 goto out_free; 1301 1302 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1303 if (ret) 1304 goto out_del; 1305 /* 1306 * bdev could be deleted beneath us which would implicitly destroy 1307 * the holder directory. Hold on to it. 1308 */ 1309 kobject_get(bdev->bd_part->holder_dir); 1310 1311 list_add(&holder->list, &bdev->bd_holder_disks); 1312 goto out_unlock; 1313 1314out_del: 1315 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1316out_free: 1317 kfree(holder); 1318out_unlock: 1319 mutex_unlock(&bdev->bd_mutex); 1320 return ret; 1321} 1322EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1323 1324/** 1325 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1326 * @bdev: the calimed slave bdev 1327 * @disk: the holding disk 1328 * 1329 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1330 * 1331 * CONTEXT: 1332 * Might sleep. 1333 */ 1334void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1335{ 1336 struct bd_holder_disk *holder; 1337 1338 mutex_lock(&bdev->bd_mutex); 1339 1340 holder = bd_find_holder_disk(bdev, disk); 1341 1342 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1343 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1344 del_symlink(bdev->bd_part->holder_dir, 1345 &disk_to_dev(disk)->kobj); 1346 kobject_put(bdev->bd_part->holder_dir); 1347 list_del_init(&holder->list); 1348 kfree(holder); 1349 } 1350 1351 mutex_unlock(&bdev->bd_mutex); 1352} 1353EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1354#endif 1355 1356/** 1357 * flush_disk - invalidates all buffer-cache entries on a disk 1358 * 1359 * @bdev: struct block device to be flushed 1360 * @kill_dirty: flag to guide handling of dirty inodes 1361 * 1362 * Invalidates all buffer-cache entries on a disk. It should be called 1363 * when a disk has been changed -- either by a media change or online 1364 * resize. 1365 */ 1366static void flush_disk(struct block_device *bdev, bool kill_dirty) 1367{ 1368 if (__invalidate_device(bdev, kill_dirty)) { 1369 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1370 "resized disk %s\n", 1371 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1372 } 1373 1374 if (!bdev->bd_disk) 1375 return; 1376 if (disk_part_scan_enabled(bdev->bd_disk)) 1377 bdev->bd_invalidated = 1; 1378} 1379 1380/** 1381 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1382 * @disk: struct gendisk to check 1383 * @bdev: struct bdev to adjust. 1384 * @verbose: if %true log a message about a size change if there is any 1385 * 1386 * This routine checks to see if the bdev size does not match the disk size 1387 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1388 * are freed. 1389 */ 1390void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1391 bool verbose) 1392{ 1393 loff_t disk_size, bdev_size; 1394 1395 disk_size = (loff_t)get_capacity(disk) << 9; 1396 bdev_size = i_size_read(bdev->bd_inode); 1397 if (disk_size != bdev_size) { 1398 if (verbose) { 1399 printk(KERN_INFO 1400 "%s: detected capacity change from %lld to %lld\n", 1401 disk->disk_name, bdev_size, disk_size); 1402 } 1403 i_size_write(bdev->bd_inode, disk_size); 1404 if (bdev_size > disk_size) 1405 flush_disk(bdev, false); 1406 } 1407} 1408 1409/** 1410 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1411 * @disk: struct gendisk to be revalidated 1412 * 1413 * This routine is a wrapper for lower-level driver's revalidate_disk 1414 * call-backs. It is used to do common pre and post operations needed 1415 * for all revalidate_disk operations. 1416 */ 1417int revalidate_disk(struct gendisk *disk) 1418{ 1419 struct block_device *bdev; 1420 int ret = 0; 1421 1422 if (disk->fops->revalidate_disk) 1423 ret = disk->fops->revalidate_disk(disk); 1424 bdev = bdget_disk(disk, 0); 1425 if (!bdev) 1426 return ret; 1427 1428 mutex_lock(&bdev->bd_mutex); 1429 check_disk_size_change(disk, bdev, ret == 0); 1430 bdev->bd_invalidated = 0; 1431 mutex_unlock(&bdev->bd_mutex); 1432 bdput(bdev); 1433 return ret; 1434} 1435EXPORT_SYMBOL(revalidate_disk); 1436 1437/* 1438 * This routine checks whether a removable media has been changed, 1439 * and invalidates all buffer-cache-entries in that case. This 1440 * is a relatively slow routine, so we have to try to minimize using 1441 * it. Thus it is called only upon a 'mount' or 'open'. This 1442 * is the best way of combining speed and utility, I think. 1443 * People changing diskettes in the middle of an operation deserve 1444 * to lose :-) 1445 */ 1446int check_disk_change(struct block_device *bdev) 1447{ 1448 struct gendisk *disk = bdev->bd_disk; 1449 const struct block_device_operations *bdops = disk->fops; 1450 unsigned int events; 1451 1452 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1453 DISK_EVENT_EJECT_REQUEST); 1454 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1455 return 0; 1456 1457 flush_disk(bdev, true); 1458 if (bdops->revalidate_disk) 1459 bdops->revalidate_disk(bdev->bd_disk); 1460 return 1; 1461} 1462 1463EXPORT_SYMBOL(check_disk_change); 1464 1465void bd_set_size(struct block_device *bdev, loff_t size) 1466{ 1467 inode_lock(bdev->bd_inode); 1468 i_size_write(bdev->bd_inode, size); 1469 inode_unlock(bdev->bd_inode); 1470} 1471EXPORT_SYMBOL(bd_set_size); 1472 1473static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1474 1475/* 1476 * bd_mutex locking: 1477 * 1478 * mutex_lock(part->bd_mutex) 1479 * mutex_lock_nested(whole->bd_mutex, 1) 1480 */ 1481 1482static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1483{ 1484 struct gendisk *disk; 1485 int ret; 1486 int partno; 1487 int perm = 0; 1488 bool first_open = false; 1489 1490 if (mode & FMODE_READ) 1491 perm |= MAY_READ; 1492 if (mode & FMODE_WRITE) 1493 perm |= MAY_WRITE; 1494 /* 1495 * hooks: /n/, see "layering violations". 1496 */ 1497 if (!for_part) { 1498 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1499 if (ret != 0) { 1500 bdput(bdev); 1501 return ret; 1502 } 1503 } 1504 1505 restart: 1506 1507 ret = -ENXIO; 1508 disk = bdev_get_gendisk(bdev, &partno); 1509 if (!disk) 1510 goto out; 1511 1512 disk_block_events(disk); 1513 mutex_lock_nested(&bdev->bd_mutex, for_part); 1514 if (!bdev->bd_openers) { 1515 first_open = true; 1516 bdev->bd_disk = disk; 1517 bdev->bd_queue = disk->queue; 1518 bdev->bd_contains = bdev; 1519 bdev->bd_partno = partno; 1520 1521 if (!partno) { 1522 ret = -ENXIO; 1523 bdev->bd_part = disk_get_part(disk, partno); 1524 if (!bdev->bd_part) 1525 goto out_clear; 1526 1527 ret = 0; 1528 if (disk->fops->open) { 1529 ret = disk->fops->open(bdev, mode); 1530 if (ret == -ERESTARTSYS) { 1531 /* Lost a race with 'disk' being 1532 * deleted, try again. 1533 * See md.c 1534 */ 1535 disk_put_part(bdev->bd_part); 1536 bdev->bd_part = NULL; 1537 bdev->bd_disk = NULL; 1538 bdev->bd_queue = NULL; 1539 mutex_unlock(&bdev->bd_mutex); 1540 disk_unblock_events(disk); 1541 put_disk_and_module(disk); 1542 goto restart; 1543 } 1544 } 1545 1546 if (!ret) { 1547 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1548 set_init_blocksize(bdev); 1549 } 1550 1551 /* 1552 * If the device is invalidated, rescan partition 1553 * if open succeeded or failed with -ENOMEDIUM. 1554 * The latter is necessary to prevent ghost 1555 * partitions on a removed medium. 1556 */ 1557 if (bdev->bd_invalidated) { 1558 if (!ret) 1559 rescan_partitions(disk, bdev); 1560 else if (ret == -ENOMEDIUM) 1561 invalidate_partitions(disk, bdev); 1562 } 1563 1564 if (ret) 1565 goto out_clear; 1566 } else { 1567 struct block_device *whole; 1568 whole = bdget_disk(disk, 0); 1569 ret = -ENOMEM; 1570 if (!whole) 1571 goto out_clear; 1572 BUG_ON(for_part); 1573 ret = __blkdev_get(whole, mode, 1); 1574 if (ret) 1575 goto out_clear; 1576 bdev->bd_contains = whole; 1577 bdev->bd_part = disk_get_part(disk, partno); 1578 if (!(disk->flags & GENHD_FL_UP) || 1579 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1580 ret = -ENXIO; 1581 goto out_clear; 1582 } 1583 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1584 set_init_blocksize(bdev); 1585 } 1586 1587 if (bdev->bd_bdi == &noop_backing_dev_info) 1588 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1589 } else { 1590 if (bdev->bd_contains == bdev) { 1591 ret = 0; 1592 if (bdev->bd_disk->fops->open) 1593 ret = bdev->bd_disk->fops->open(bdev, mode); 1594 /* the same as first opener case, read comment there */ 1595 if (bdev->bd_invalidated) { 1596 if (!ret) 1597 rescan_partitions(bdev->bd_disk, bdev); 1598 else if (ret == -ENOMEDIUM) 1599 invalidate_partitions(bdev->bd_disk, bdev); 1600 } 1601 if (ret) 1602 goto out_unlock_bdev; 1603 } 1604 } 1605 bdev->bd_openers++; 1606 if (for_part) 1607 bdev->bd_part_count++; 1608 mutex_unlock(&bdev->bd_mutex); 1609 disk_unblock_events(disk); 1610 /* only one opener holds refs to the module and disk */ 1611 if (!first_open) 1612 put_disk_and_module(disk); 1613 return 0; 1614 1615 out_clear: 1616 disk_put_part(bdev->bd_part); 1617 bdev->bd_disk = NULL; 1618 bdev->bd_part = NULL; 1619 bdev->bd_queue = NULL; 1620 if (bdev != bdev->bd_contains) 1621 __blkdev_put(bdev->bd_contains, mode, 1); 1622 bdev->bd_contains = NULL; 1623 out_unlock_bdev: 1624 mutex_unlock(&bdev->bd_mutex); 1625 disk_unblock_events(disk); 1626 put_disk_and_module(disk); 1627 out: 1628 bdput(bdev); 1629 1630 return ret; 1631} 1632 1633/** 1634 * blkdev_get - open a block device 1635 * @bdev: block_device to open 1636 * @mode: FMODE_* mask 1637 * @holder: exclusive holder identifier 1638 * 1639 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1640 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1641 * @holder is invalid. Exclusive opens may nest for the same @holder. 1642 * 1643 * On success, the reference count of @bdev is unchanged. On failure, 1644 * @bdev is put. 1645 * 1646 * CONTEXT: 1647 * Might sleep. 1648 * 1649 * RETURNS: 1650 * 0 on success, -errno on failure. 1651 */ 1652int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1653{ 1654 struct block_device *whole = NULL; 1655 int res; 1656 1657 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1658 1659 if ((mode & FMODE_EXCL) && holder) { 1660 whole = bd_start_claiming(bdev, holder); 1661 if (IS_ERR(whole)) { 1662 bdput(bdev); 1663 return PTR_ERR(whole); 1664 } 1665 } 1666 1667 res = __blkdev_get(bdev, mode, 0); 1668 1669 if (whole) { 1670 struct gendisk *disk = whole->bd_disk; 1671 1672 /* finish claiming */ 1673 mutex_lock(&bdev->bd_mutex); 1674 spin_lock(&bdev_lock); 1675 1676 if (!res) { 1677 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1678 /* 1679 * Note that for a whole device bd_holders 1680 * will be incremented twice, and bd_holder 1681 * will be set to bd_may_claim before being 1682 * set to holder 1683 */ 1684 whole->bd_holders++; 1685 whole->bd_holder = bd_may_claim; 1686 bdev->bd_holders++; 1687 bdev->bd_holder = holder; 1688 } 1689 1690 /* tell others that we're done */ 1691 BUG_ON(whole->bd_claiming != holder); 1692 whole->bd_claiming = NULL; 1693 wake_up_bit(&whole->bd_claiming, 0); 1694 1695 spin_unlock(&bdev_lock); 1696 1697 /* 1698 * Block event polling for write claims if requested. Any 1699 * write holder makes the write_holder state stick until 1700 * all are released. This is good enough and tracking 1701 * individual writeable reference is too fragile given the 1702 * way @mode is used in blkdev_get/put(). 1703 */ 1704 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1705 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1706 bdev->bd_write_holder = true; 1707 disk_block_events(disk); 1708 } 1709 1710 mutex_unlock(&bdev->bd_mutex); 1711 bdput(whole); 1712 } 1713 1714 return res; 1715} 1716EXPORT_SYMBOL(blkdev_get); 1717 1718/** 1719 * blkdev_get_by_path - open a block device by name 1720 * @path: path to the block device to open 1721 * @mode: FMODE_* mask 1722 * @holder: exclusive holder identifier 1723 * 1724 * Open the blockdevice described by the device file at @path. @mode 1725 * and @holder are identical to blkdev_get(). 1726 * 1727 * On success, the returned block_device has reference count of one. 1728 * 1729 * CONTEXT: 1730 * Might sleep. 1731 * 1732 * RETURNS: 1733 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1734 */ 1735struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1736 void *holder) 1737{ 1738 struct block_device *bdev; 1739 int err; 1740 1741 bdev = lookup_bdev(path); 1742 if (IS_ERR(bdev)) 1743 return bdev; 1744 1745 err = blkdev_get(bdev, mode, holder); 1746 if (err) 1747 return ERR_PTR(err); 1748 1749 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1750 blkdev_put(bdev, mode); 1751 return ERR_PTR(-EACCES); 1752 } 1753 1754 return bdev; 1755} 1756EXPORT_SYMBOL(blkdev_get_by_path); 1757 1758/** 1759 * blkdev_get_by_dev - open a block device by device number 1760 * @dev: device number of block device to open 1761 * @mode: FMODE_* mask 1762 * @holder: exclusive holder identifier 1763 * 1764 * Open the blockdevice described by device number @dev. @mode and 1765 * @holder are identical to blkdev_get(). 1766 * 1767 * Use it ONLY if you really do not have anything better - i.e. when 1768 * you are behind a truly sucky interface and all you are given is a 1769 * device number. _Never_ to be used for internal purposes. If you 1770 * ever need it - reconsider your API. 1771 * 1772 * On success, the returned block_device has reference count of one. 1773 * 1774 * CONTEXT: 1775 * Might sleep. 1776 * 1777 * RETURNS: 1778 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1779 */ 1780struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1781{ 1782 struct block_device *bdev; 1783 int err; 1784 1785 bdev = bdget(dev); 1786 if (!bdev) 1787 return ERR_PTR(-ENOMEM); 1788 1789 err = blkdev_get(bdev, mode, holder); 1790 if (err) 1791 return ERR_PTR(err); 1792 1793 return bdev; 1794} 1795EXPORT_SYMBOL(blkdev_get_by_dev); 1796 1797static int blkdev_open(struct inode * inode, struct file * filp) 1798{ 1799 struct block_device *bdev; 1800 1801 /* 1802 * Preserve backwards compatibility and allow large file access 1803 * even if userspace doesn't ask for it explicitly. Some mkfs 1804 * binary needs it. We might want to drop this workaround 1805 * during an unstable branch. 1806 */ 1807 filp->f_flags |= O_LARGEFILE; 1808 1809 filp->f_mode |= FMODE_NOWAIT; 1810 1811 if (filp->f_flags & O_NDELAY) 1812 filp->f_mode |= FMODE_NDELAY; 1813 if (filp->f_flags & O_EXCL) 1814 filp->f_mode |= FMODE_EXCL; 1815 if ((filp->f_flags & O_ACCMODE) == 3) 1816 filp->f_mode |= FMODE_WRITE_IOCTL; 1817 1818 bdev = bd_acquire(inode); 1819 if (bdev == NULL) 1820 return -ENOMEM; 1821 1822 filp->f_mapping = bdev->bd_inode->i_mapping; 1823 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1824 1825 return blkdev_get(bdev, filp->f_mode, filp); 1826} 1827 1828static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1829{ 1830 struct gendisk *disk = bdev->bd_disk; 1831 struct block_device *victim = NULL; 1832 1833 mutex_lock_nested(&bdev->bd_mutex, for_part); 1834 if (for_part) 1835 bdev->bd_part_count--; 1836 1837 if (!--bdev->bd_openers) { 1838 WARN_ON_ONCE(bdev->bd_holders); 1839 sync_blockdev(bdev); 1840 kill_bdev(bdev); 1841 1842 bdev_write_inode(bdev); 1843 } 1844 if (bdev->bd_contains == bdev) { 1845 if (disk->fops->release) 1846 disk->fops->release(disk, mode); 1847 } 1848 if (!bdev->bd_openers) { 1849 disk_put_part(bdev->bd_part); 1850 bdev->bd_part = NULL; 1851 bdev->bd_disk = NULL; 1852 if (bdev != bdev->bd_contains) 1853 victim = bdev->bd_contains; 1854 bdev->bd_contains = NULL; 1855 1856 put_disk_and_module(disk); 1857 } 1858 mutex_unlock(&bdev->bd_mutex); 1859 bdput(bdev); 1860 if (victim) 1861 __blkdev_put(victim, mode, 1); 1862} 1863 1864void blkdev_put(struct block_device *bdev, fmode_t mode) 1865{ 1866 mutex_lock(&bdev->bd_mutex); 1867 1868 if (mode & FMODE_EXCL) { 1869 bool bdev_free; 1870 1871 /* 1872 * Release a claim on the device. The holder fields 1873 * are protected with bdev_lock. bd_mutex is to 1874 * synchronize disk_holder unlinking. 1875 */ 1876 spin_lock(&bdev_lock); 1877 1878 WARN_ON_ONCE(--bdev->bd_holders < 0); 1879 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1880 1881 /* bd_contains might point to self, check in a separate step */ 1882 if ((bdev_free = !bdev->bd_holders)) 1883 bdev->bd_holder = NULL; 1884 if (!bdev->bd_contains->bd_holders) 1885 bdev->bd_contains->bd_holder = NULL; 1886 1887 spin_unlock(&bdev_lock); 1888 1889 /* 1890 * If this was the last claim, remove holder link and 1891 * unblock evpoll if it was a write holder. 1892 */ 1893 if (bdev_free && bdev->bd_write_holder) { 1894 disk_unblock_events(bdev->bd_disk); 1895 bdev->bd_write_holder = false; 1896 } 1897 } 1898 1899 /* 1900 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1901 * event. This is to ensure detection of media removal commanded 1902 * from userland - e.g. eject(1). 1903 */ 1904 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1905 1906 mutex_unlock(&bdev->bd_mutex); 1907 1908 __blkdev_put(bdev, mode, 0); 1909} 1910EXPORT_SYMBOL(blkdev_put); 1911 1912static int blkdev_close(struct inode * inode, struct file * filp) 1913{ 1914 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1915 blkdev_put(bdev, filp->f_mode); 1916 return 0; 1917} 1918 1919static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1920{ 1921 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1922 fmode_t mode = file->f_mode; 1923 1924 /* 1925 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1926 * to updated it before every ioctl. 1927 */ 1928 if (file->f_flags & O_NDELAY) 1929 mode |= FMODE_NDELAY; 1930 else 1931 mode &= ~FMODE_NDELAY; 1932 1933 return blkdev_ioctl(bdev, mode, cmd, arg); 1934} 1935 1936/* 1937 * Write data to the block device. Only intended for the block device itself 1938 * and the raw driver which basically is a fake block device. 1939 * 1940 * Does not take i_mutex for the write and thus is not for general purpose 1941 * use. 1942 */ 1943ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1944{ 1945 struct file *file = iocb->ki_filp; 1946 struct inode *bd_inode = bdev_file_inode(file); 1947 loff_t size = i_size_read(bd_inode); 1948 struct blk_plug plug; 1949 ssize_t ret; 1950 1951 if (bdev_read_only(I_BDEV(bd_inode))) 1952 return -EPERM; 1953 1954 if (!iov_iter_count(from)) 1955 return 0; 1956 1957 if (iocb->ki_pos >= size) 1958 return -ENOSPC; 1959 1960 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1961 return -EOPNOTSUPP; 1962 1963 iov_iter_truncate(from, size - iocb->ki_pos); 1964 1965 blk_start_plug(&plug); 1966 ret = __generic_file_write_iter(iocb, from); 1967 if (ret > 0) 1968 ret = generic_write_sync(iocb, ret); 1969 blk_finish_plug(&plug); 1970 return ret; 1971} 1972EXPORT_SYMBOL_GPL(blkdev_write_iter); 1973 1974ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1975{ 1976 struct file *file = iocb->ki_filp; 1977 struct inode *bd_inode = bdev_file_inode(file); 1978 loff_t size = i_size_read(bd_inode); 1979 loff_t pos = iocb->ki_pos; 1980 1981 if (pos >= size) 1982 return 0; 1983 1984 size -= pos; 1985 iov_iter_truncate(to, size); 1986 return generic_file_read_iter(iocb, to); 1987} 1988EXPORT_SYMBOL_GPL(blkdev_read_iter); 1989 1990/* 1991 * Try to release a page associated with block device when the system 1992 * is under memory pressure. 1993 */ 1994static int blkdev_releasepage(struct page *page, gfp_t wait) 1995{ 1996 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1997 1998 if (super && super->s_op->bdev_try_to_free_page) 1999 return super->s_op->bdev_try_to_free_page(super, page, wait); 2000 2001 return try_to_free_buffers(page); 2002} 2003 2004static int blkdev_writepages(struct address_space *mapping, 2005 struct writeback_control *wbc) 2006{ 2007 return generic_writepages(mapping, wbc); 2008} 2009 2010static const struct address_space_operations def_blk_aops = { 2011 .readpage = blkdev_readpage, 2012 .readpages = blkdev_readpages, 2013 .writepage = blkdev_writepage, 2014 .write_begin = blkdev_write_begin, 2015 .write_end = blkdev_write_end, 2016 .writepages = blkdev_writepages, 2017 .releasepage = blkdev_releasepage, 2018 .direct_IO = blkdev_direct_IO, 2019 .migratepage = buffer_migrate_page_norefs, 2020 .is_dirty_writeback = buffer_check_dirty_writeback, 2021}; 2022 2023#define BLKDEV_FALLOC_FL_SUPPORTED \ 2024 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2025 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2026 2027static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2028 loff_t len) 2029{ 2030 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2031 struct address_space *mapping; 2032 loff_t end = start + len - 1; 2033 loff_t isize; 2034 int error; 2035 2036 /* Fail if we don't recognize the flags. */ 2037 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2038 return -EOPNOTSUPP; 2039 2040 /* Don't go off the end of the device. */ 2041 isize = i_size_read(bdev->bd_inode); 2042 if (start >= isize) 2043 return -EINVAL; 2044 if (end >= isize) { 2045 if (mode & FALLOC_FL_KEEP_SIZE) { 2046 len = isize - start; 2047 end = start + len - 1; 2048 } else 2049 return -EINVAL; 2050 } 2051 2052 /* 2053 * Don't allow IO that isn't aligned to logical block size. 2054 */ 2055 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2056 return -EINVAL; 2057 2058 /* Invalidate the page cache, including dirty pages. */ 2059 mapping = bdev->bd_inode->i_mapping; 2060 truncate_inode_pages_range(mapping, start, end); 2061 2062 switch (mode) { 2063 case FALLOC_FL_ZERO_RANGE: 2064 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2065 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2066 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2067 break; 2068 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2069 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2070 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2071 break; 2072 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2073 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2074 GFP_KERNEL, 0); 2075 break; 2076 default: 2077 return -EOPNOTSUPP; 2078 } 2079 if (error) 2080 return error; 2081 2082 /* 2083 * Invalidate again; if someone wandered in and dirtied a page, 2084 * the caller will be given -EBUSY. The third argument is 2085 * inclusive, so the rounding here is safe. 2086 */ 2087 return invalidate_inode_pages2_range(mapping, 2088 start >> PAGE_SHIFT, 2089 end >> PAGE_SHIFT); 2090} 2091 2092const struct file_operations def_blk_fops = { 2093 .open = blkdev_open, 2094 .release = blkdev_close, 2095 .llseek = block_llseek, 2096 .read_iter = blkdev_read_iter, 2097 .write_iter = blkdev_write_iter, 2098 .iopoll = blkdev_iopoll, 2099 .mmap = generic_file_mmap, 2100 .fsync = blkdev_fsync, 2101 .unlocked_ioctl = block_ioctl, 2102#ifdef CONFIG_COMPAT 2103 .compat_ioctl = compat_blkdev_ioctl, 2104#endif 2105 .splice_read = generic_file_splice_read, 2106 .splice_write = iter_file_splice_write, 2107 .fallocate = blkdev_fallocate, 2108}; 2109 2110int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2111{ 2112 int res; 2113 mm_segment_t old_fs = get_fs(); 2114 set_fs(KERNEL_DS); 2115 res = blkdev_ioctl(bdev, 0, cmd, arg); 2116 set_fs(old_fs); 2117 return res; 2118} 2119 2120EXPORT_SYMBOL(ioctl_by_bdev); 2121 2122/** 2123 * lookup_bdev - lookup a struct block_device by name 2124 * @pathname: special file representing the block device 2125 * 2126 * Get a reference to the blockdevice at @pathname in the current 2127 * namespace if possible and return it. Return ERR_PTR(error) 2128 * otherwise. 2129 */ 2130struct block_device *lookup_bdev(const char *pathname) 2131{ 2132 struct block_device *bdev; 2133 struct inode *inode; 2134 struct path path; 2135 int error; 2136 2137 if (!pathname || !*pathname) 2138 return ERR_PTR(-EINVAL); 2139 2140 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2141 if (error) 2142 return ERR_PTR(error); 2143 2144 inode = d_backing_inode(path.dentry); 2145 error = -ENOTBLK; 2146 if (!S_ISBLK(inode->i_mode)) 2147 goto fail; 2148 error = -EACCES; 2149 if (!may_open_dev(&path)) 2150 goto fail; 2151 error = -ENOMEM; 2152 bdev = bd_acquire(inode); 2153 if (!bdev) 2154 goto fail; 2155out: 2156 path_put(&path); 2157 return bdev; 2158fail: 2159 bdev = ERR_PTR(error); 2160 goto out; 2161} 2162EXPORT_SYMBOL(lookup_bdev); 2163 2164int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2165{ 2166 struct super_block *sb = get_super(bdev); 2167 int res = 0; 2168 2169 if (sb) { 2170 /* 2171 * no need to lock the super, get_super holds the 2172 * read mutex so the filesystem cannot go away 2173 * under us (->put_super runs with the write lock 2174 * hold). 2175 */ 2176 shrink_dcache_sb(sb); 2177 res = invalidate_inodes(sb, kill_dirty); 2178 drop_super(sb); 2179 } 2180 invalidate_bdev(bdev); 2181 return res; 2182} 2183EXPORT_SYMBOL(__invalidate_device); 2184 2185void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2186{ 2187 struct inode *inode, *old_inode = NULL; 2188 2189 spin_lock(&blockdev_superblock->s_inode_list_lock); 2190 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2191 struct address_space *mapping = inode->i_mapping; 2192 struct block_device *bdev; 2193 2194 spin_lock(&inode->i_lock); 2195 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2196 mapping->nrpages == 0) { 2197 spin_unlock(&inode->i_lock); 2198 continue; 2199 } 2200 __iget(inode); 2201 spin_unlock(&inode->i_lock); 2202 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2203 /* 2204 * We hold a reference to 'inode' so it couldn't have been 2205 * removed from s_inodes list while we dropped the 2206 * s_inode_list_lock We cannot iput the inode now as we can 2207 * be holding the last reference and we cannot iput it under 2208 * s_inode_list_lock. So we keep the reference and iput it 2209 * later. 2210 */ 2211 iput(old_inode); 2212 old_inode = inode; 2213 bdev = I_BDEV(inode); 2214 2215 mutex_lock(&bdev->bd_mutex); 2216 if (bdev->bd_openers) 2217 func(bdev, arg); 2218 mutex_unlock(&bdev->bd_mutex); 2219 2220 spin_lock(&blockdev_superblock->s_inode_list_lock); 2221 } 2222 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2223 iput(old_inode); 2224}