at v4.13-rc7 59 kB view raw
1#ifndef _LINUX_BLKDEV_H 2#define _LINUX_BLKDEV_H 3 4#include <linux/sched.h> 5#include <linux/sched/clock.h> 6 7#ifdef CONFIG_BLOCK 8 9#include <linux/major.h> 10#include <linux/genhd.h> 11#include <linux/list.h> 12#include <linux/llist.h> 13#include <linux/timer.h> 14#include <linux/workqueue.h> 15#include <linux/pagemap.h> 16#include <linux/backing-dev-defs.h> 17#include <linux/wait.h> 18#include <linux/mempool.h> 19#include <linux/pfn.h> 20#include <linux/bio.h> 21#include <linux/stringify.h> 22#include <linux/gfp.h> 23#include <linux/bsg.h> 24#include <linux/smp.h> 25#include <linux/rcupdate.h> 26#include <linux/percpu-refcount.h> 27#include <linux/scatterlist.h> 28#include <linux/blkzoned.h> 29 30struct module; 31struct scsi_ioctl_command; 32 33struct request_queue; 34struct elevator_queue; 35struct blk_trace; 36struct request; 37struct sg_io_hdr; 38struct bsg_job; 39struct blkcg_gq; 40struct blk_flush_queue; 41struct pr_ops; 42struct rq_wb; 43struct blk_queue_stats; 44struct blk_stat_callback; 45 46#define BLKDEV_MIN_RQ 4 47#define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49/* Must be consisitent with blk_mq_poll_stats_bkt() */ 50#define BLK_MQ_POLL_STATS_BKTS 16 51 52/* 53 * Maximum number of blkcg policies allowed to be registered concurrently. 54 * Defined here to simplify include dependency. 55 */ 56#define BLKCG_MAX_POLS 3 57 58typedef void (rq_end_io_fn)(struct request *, blk_status_t); 59 60#define BLK_RL_SYNCFULL (1U << 0) 61#define BLK_RL_ASYNCFULL (1U << 1) 62 63struct request_list { 64 struct request_queue *q; /* the queue this rl belongs to */ 65#ifdef CONFIG_BLK_CGROUP 66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 67#endif 68 /* 69 * count[], starved[], and wait[] are indexed by 70 * BLK_RW_SYNC/BLK_RW_ASYNC 71 */ 72 int count[2]; 73 int starved[2]; 74 mempool_t *rq_pool; 75 wait_queue_head_t wait[2]; 76 unsigned int flags; 77}; 78 79/* 80 * request flags */ 81typedef __u32 __bitwise req_flags_t; 82 83/* elevator knows about this request */ 84#define RQF_SORTED ((__force req_flags_t)(1 << 0)) 85/* drive already may have started this one */ 86#define RQF_STARTED ((__force req_flags_t)(1 << 1)) 87/* uses tagged queueing */ 88#define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 89/* may not be passed by ioscheduler */ 90#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 91/* request for flush sequence */ 92#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 93/* merge of different types, fail separately */ 94#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 95/* track inflight for MQ */ 96#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 97/* don't call prep for this one */ 98#define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 99/* set for "ide_preempt" requests and also for requests for which the SCSI 100 "quiesce" state must be ignored. */ 101#define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 102/* contains copies of user pages */ 103#define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 104/* vaguely specified driver internal error. Ignored by the block layer */ 105#define RQF_FAILED ((__force req_flags_t)(1 << 10)) 106/* don't warn about errors */ 107#define RQF_QUIET ((__force req_flags_t)(1 << 11)) 108/* elevator private data attached */ 109#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 110/* account I/O stat */ 111#define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 112/* request came from our alloc pool */ 113#define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 114/* runtime pm request */ 115#define RQF_PM ((__force req_flags_t)(1 << 15)) 116/* on IO scheduler merge hash */ 117#define RQF_HASHED ((__force req_flags_t)(1 << 16)) 118/* IO stats tracking on */ 119#define RQF_STATS ((__force req_flags_t)(1 << 17)) 120/* Look at ->special_vec for the actual data payload instead of the 121 bio chain. */ 122#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 123 124/* flags that prevent us from merging requests: */ 125#define RQF_NOMERGE_FLAGS \ 126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 127 128/* 129 * Try to put the fields that are referenced together in the same cacheline. 130 * 131 * If you modify this structure, make sure to update blk_rq_init() and 132 * especially blk_mq_rq_ctx_init() to take care of the added fields. 133 */ 134struct request { 135 struct list_head queuelist; 136 union { 137 struct call_single_data csd; 138 u64 fifo_time; 139 }; 140 141 struct request_queue *q; 142 struct blk_mq_ctx *mq_ctx; 143 144 int cpu; 145 unsigned int cmd_flags; /* op and common flags */ 146 req_flags_t rq_flags; 147 148 int internal_tag; 149 150 unsigned long atomic_flags; 151 152 /* the following two fields are internal, NEVER access directly */ 153 unsigned int __data_len; /* total data len */ 154 int tag; 155 sector_t __sector; /* sector cursor */ 156 157 struct bio *bio; 158 struct bio *biotail; 159 160 /* 161 * The hash is used inside the scheduler, and killed once the 162 * request reaches the dispatch list. The ipi_list is only used 163 * to queue the request for softirq completion, which is long 164 * after the request has been unhashed (and even removed from 165 * the dispatch list). 166 */ 167 union { 168 struct hlist_node hash; /* merge hash */ 169 struct list_head ipi_list; 170 }; 171 172 /* 173 * The rb_node is only used inside the io scheduler, requests 174 * are pruned when moved to the dispatch queue. So let the 175 * completion_data share space with the rb_node. 176 */ 177 union { 178 struct rb_node rb_node; /* sort/lookup */ 179 struct bio_vec special_vec; 180 void *completion_data; 181 int error_count; /* for legacy drivers, don't use */ 182 }; 183 184 /* 185 * Three pointers are available for the IO schedulers, if they need 186 * more they have to dynamically allocate it. Flush requests are 187 * never put on the IO scheduler. So let the flush fields share 188 * space with the elevator data. 189 */ 190 union { 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 struct list_head list; 199 rq_end_io_fn *saved_end_io; 200 } flush; 201 }; 202 203 struct gendisk *rq_disk; 204 struct hd_struct *part; 205 unsigned long start_time; 206 struct blk_issue_stat issue_stat; 207#ifdef CONFIG_BLK_CGROUP 208 struct request_list *rl; /* rl this rq is alloced from */ 209 unsigned long long start_time_ns; 210 unsigned long long io_start_time_ns; /* when passed to hardware */ 211#endif 212 /* Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216#if defined(CONFIG_BLK_DEV_INTEGRITY) 217 unsigned short nr_integrity_segments; 218#endif 219 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 unsigned short write_hint; 229 230 unsigned long deadline; 231 struct list_head timeout_list; 232 233 /* 234 * completion callback. 235 */ 236 rq_end_io_fn *end_io; 237 void *end_io_data; 238 239 /* for bidi */ 240 struct request *next_rq; 241}; 242 243static inline bool blk_rq_is_scsi(struct request *rq) 244{ 245 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 246} 247 248static inline bool blk_rq_is_private(struct request *rq) 249{ 250 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 251} 252 253static inline bool blk_rq_is_passthrough(struct request *rq) 254{ 255 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 256} 257 258static inline unsigned short req_get_ioprio(struct request *req) 259{ 260 return req->ioprio; 261} 262 263#include <linux/elevator.h> 264 265struct blk_queue_ctx; 266 267typedef void (request_fn_proc) (struct request_queue *q); 268typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 269typedef int (prep_rq_fn) (struct request_queue *, struct request *); 270typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 271 272struct bio_vec; 273typedef void (softirq_done_fn)(struct request *); 274typedef int (dma_drain_needed_fn)(struct request *); 275typedef int (lld_busy_fn) (struct request_queue *q); 276typedef int (bsg_job_fn) (struct bsg_job *); 277typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 278typedef void (exit_rq_fn)(struct request_queue *, struct request *); 279 280enum blk_eh_timer_return { 281 BLK_EH_NOT_HANDLED, 282 BLK_EH_HANDLED, 283 BLK_EH_RESET_TIMER, 284}; 285 286typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 287 288enum blk_queue_state { 289 Queue_down, 290 Queue_up, 291}; 292 293struct blk_queue_tag { 294 struct request **tag_index; /* map of busy tags */ 295 unsigned long *tag_map; /* bit map of free/busy tags */ 296 int max_depth; /* what we will send to device */ 297 int real_max_depth; /* what the array can hold */ 298 atomic_t refcnt; /* map can be shared */ 299 int alloc_policy; /* tag allocation policy */ 300 int next_tag; /* next tag */ 301}; 302#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305#define BLK_SCSI_MAX_CMDS (256) 306#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308/* 309 * Zoned block device models (zoned limit). 310 */ 311enum blk_zoned_model { 312 BLK_ZONED_NONE, /* Regular block device */ 313 BLK_ZONED_HA, /* Host-aware zoned block device */ 314 BLK_ZONED_HM, /* Host-managed zoned block device */ 315}; 316 317struct queue_limits { 318 unsigned long bounce_pfn; 319 unsigned long seg_boundary_mask; 320 unsigned long virt_boundary_mask; 321 322 unsigned int max_hw_sectors; 323 unsigned int max_dev_sectors; 324 unsigned int chunk_sectors; 325 unsigned int max_sectors; 326 unsigned int max_segment_size; 327 unsigned int physical_block_size; 328 unsigned int alignment_offset; 329 unsigned int io_min; 330 unsigned int io_opt; 331 unsigned int max_discard_sectors; 332 unsigned int max_hw_discard_sectors; 333 unsigned int max_write_same_sectors; 334 unsigned int max_write_zeroes_sectors; 335 unsigned int discard_granularity; 336 unsigned int discard_alignment; 337 338 unsigned short logical_block_size; 339 unsigned short max_segments; 340 unsigned short max_integrity_segments; 341 unsigned short max_discard_segments; 342 343 unsigned char misaligned; 344 unsigned char discard_misaligned; 345 unsigned char cluster; 346 unsigned char raid_partial_stripes_expensive; 347 enum blk_zoned_model zoned; 348}; 349 350#ifdef CONFIG_BLK_DEV_ZONED 351 352struct blk_zone_report_hdr { 353 unsigned int nr_zones; 354 u8 padding[60]; 355}; 356 357extern int blkdev_report_zones(struct block_device *bdev, 358 sector_t sector, struct blk_zone *zones, 359 unsigned int *nr_zones, gfp_t gfp_mask); 360extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 361 sector_t nr_sectors, gfp_t gfp_mask); 362 363extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 364 unsigned int cmd, unsigned long arg); 365extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 366 unsigned int cmd, unsigned long arg); 367 368#else /* CONFIG_BLK_DEV_ZONED */ 369 370static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 371 fmode_t mode, unsigned int cmd, 372 unsigned long arg) 373{ 374 return -ENOTTY; 375} 376 377static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 378 fmode_t mode, unsigned int cmd, 379 unsigned long arg) 380{ 381 return -ENOTTY; 382} 383 384#endif /* CONFIG_BLK_DEV_ZONED */ 385 386struct request_queue { 387 /* 388 * Together with queue_head for cacheline sharing 389 */ 390 struct list_head queue_head; 391 struct request *last_merge; 392 struct elevator_queue *elevator; 393 int nr_rqs[2]; /* # allocated [a]sync rqs */ 394 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 395 396 atomic_t shared_hctx_restart; 397 398 struct blk_queue_stats *stats; 399 struct rq_wb *rq_wb; 400 401 /* 402 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 403 * is used, root blkg allocates from @q->root_rl and all other 404 * blkgs from their own blkg->rl. Which one to use should be 405 * determined using bio_request_list(). 406 */ 407 struct request_list root_rl; 408 409 request_fn_proc *request_fn; 410 make_request_fn *make_request_fn; 411 prep_rq_fn *prep_rq_fn; 412 unprep_rq_fn *unprep_rq_fn; 413 softirq_done_fn *softirq_done_fn; 414 rq_timed_out_fn *rq_timed_out_fn; 415 dma_drain_needed_fn *dma_drain_needed; 416 lld_busy_fn *lld_busy_fn; 417 /* Called just after a request is allocated */ 418 init_rq_fn *init_rq_fn; 419 /* Called just before a request is freed */ 420 exit_rq_fn *exit_rq_fn; 421 /* Called from inside blk_get_request() */ 422 void (*initialize_rq_fn)(struct request *rq); 423 424 const struct blk_mq_ops *mq_ops; 425 426 unsigned int *mq_map; 427 428 /* sw queues */ 429 struct blk_mq_ctx __percpu *queue_ctx; 430 unsigned int nr_queues; 431 432 unsigned int queue_depth; 433 434 /* hw dispatch queues */ 435 struct blk_mq_hw_ctx **queue_hw_ctx; 436 unsigned int nr_hw_queues; 437 438 /* 439 * Dispatch queue sorting 440 */ 441 sector_t end_sector; 442 struct request *boundary_rq; 443 444 /* 445 * Delayed queue handling 446 */ 447 struct delayed_work delay_work; 448 449 struct backing_dev_info *backing_dev_info; 450 451 /* 452 * The queue owner gets to use this for whatever they like. 453 * ll_rw_blk doesn't touch it. 454 */ 455 void *queuedata; 456 457 /* 458 * various queue flags, see QUEUE_* below 459 */ 460 unsigned long queue_flags; 461 462 /* 463 * ida allocated id for this queue. Used to index queues from 464 * ioctx. 465 */ 466 int id; 467 468 /* 469 * queue needs bounce pages for pages above this limit 470 */ 471 gfp_t bounce_gfp; 472 473 /* 474 * protects queue structures from reentrancy. ->__queue_lock should 475 * _never_ be used directly, it is queue private. always use 476 * ->queue_lock. 477 */ 478 spinlock_t __queue_lock; 479 spinlock_t *queue_lock; 480 481 /* 482 * queue kobject 483 */ 484 struct kobject kobj; 485 486 /* 487 * mq queue kobject 488 */ 489 struct kobject mq_kobj; 490 491#ifdef CONFIG_BLK_DEV_INTEGRITY 492 struct blk_integrity integrity; 493#endif /* CONFIG_BLK_DEV_INTEGRITY */ 494 495#ifdef CONFIG_PM 496 struct device *dev; 497 int rpm_status; 498 unsigned int nr_pending; 499#endif 500 501 /* 502 * queue settings 503 */ 504 unsigned long nr_requests; /* Max # of requests */ 505 unsigned int nr_congestion_on; 506 unsigned int nr_congestion_off; 507 unsigned int nr_batching; 508 509 unsigned int dma_drain_size; 510 void *dma_drain_buffer; 511 unsigned int dma_pad_mask; 512 unsigned int dma_alignment; 513 514 struct blk_queue_tag *queue_tags; 515 struct list_head tag_busy_list; 516 517 unsigned int nr_sorted; 518 unsigned int in_flight[2]; 519 520 /* 521 * Number of active block driver functions for which blk_drain_queue() 522 * must wait. Must be incremented around functions that unlock the 523 * queue_lock internally, e.g. scsi_request_fn(). 524 */ 525 unsigned int request_fn_active; 526 527 unsigned int rq_timeout; 528 int poll_nsec; 529 530 struct blk_stat_callback *poll_cb; 531 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 532 533 struct timer_list timeout; 534 struct work_struct timeout_work; 535 struct list_head timeout_list; 536 537 struct list_head icq_list; 538#ifdef CONFIG_BLK_CGROUP 539 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 540 struct blkcg_gq *root_blkg; 541 struct list_head blkg_list; 542#endif 543 544 struct queue_limits limits; 545 546 /* 547 * sg stuff 548 */ 549 unsigned int sg_timeout; 550 unsigned int sg_reserved_size; 551 int node; 552#ifdef CONFIG_BLK_DEV_IO_TRACE 553 struct blk_trace *blk_trace; 554#endif 555 /* 556 * for flush operations 557 */ 558 struct blk_flush_queue *fq; 559 560 struct list_head requeue_list; 561 spinlock_t requeue_lock; 562 struct delayed_work requeue_work; 563 564 struct mutex sysfs_lock; 565 566 int bypass_depth; 567 atomic_t mq_freeze_depth; 568 569#if defined(CONFIG_BLK_DEV_BSG) 570 bsg_job_fn *bsg_job_fn; 571 struct bsg_class_device bsg_dev; 572#endif 573 574#ifdef CONFIG_BLK_DEV_THROTTLING 575 /* Throttle data */ 576 struct throtl_data *td; 577#endif 578 struct rcu_head rcu_head; 579 wait_queue_head_t mq_freeze_wq; 580 struct percpu_ref q_usage_counter; 581 struct list_head all_q_node; 582 583 struct blk_mq_tag_set *tag_set; 584 struct list_head tag_set_list; 585 struct bio_set *bio_split; 586 587#ifdef CONFIG_BLK_DEBUG_FS 588 struct dentry *debugfs_dir; 589 struct dentry *sched_debugfs_dir; 590#endif 591 592 bool mq_sysfs_init_done; 593 594 size_t cmd_size; 595 void *rq_alloc_data; 596 597 struct work_struct release_work; 598 599#define BLK_MAX_WRITE_HINTS 5 600 u64 write_hints[BLK_MAX_WRITE_HINTS]; 601}; 602 603#define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */ 604#define QUEUE_FLAG_STOPPED 2 /* queue is stopped */ 605#define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */ 606#define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */ 607#define QUEUE_FLAG_DYING 5 /* queue being torn down */ 608#define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */ 609#define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */ 610#define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */ 611#define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */ 612#define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */ 613#define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */ 614#define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */ 615#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 616#define QUEUE_FLAG_IO_STAT 13 /* do IO stats */ 617#define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */ 618#define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */ 619#define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */ 620#define QUEUE_FLAG_SECERASE 17 /* supports secure erase */ 621#define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */ 622#define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */ 623#define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */ 624#define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/ 625#define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */ 626#define QUEUE_FLAG_WC 23 /* Write back caching */ 627#define QUEUE_FLAG_FUA 24 /* device supports FUA writes */ 628#define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */ 629#define QUEUE_FLAG_DAX 26 /* device supports DAX */ 630#define QUEUE_FLAG_STATS 27 /* track rq completion times */ 631#define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */ 632#define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */ 633#define QUEUE_FLAG_SCSI_PASSTHROUGH 30 /* queue supports SCSI commands */ 634#define QUEUE_FLAG_QUIESCED 31 /* queue has been quiesced */ 635 636#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 637 (1 << QUEUE_FLAG_STACKABLE) | \ 638 (1 << QUEUE_FLAG_SAME_COMP) | \ 639 (1 << QUEUE_FLAG_ADD_RANDOM)) 640 641#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 642 (1 << QUEUE_FLAG_STACKABLE) | \ 643 (1 << QUEUE_FLAG_SAME_COMP) | \ 644 (1 << QUEUE_FLAG_POLL)) 645 646/* 647 * @q->queue_lock is set while a queue is being initialized. Since we know 648 * that no other threads access the queue object before @q->queue_lock has 649 * been set, it is safe to manipulate queue flags without holding the 650 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and 651 * blk_init_allocated_queue(). 652 */ 653static inline void queue_lockdep_assert_held(struct request_queue *q) 654{ 655 if (q->queue_lock) 656 lockdep_assert_held(q->queue_lock); 657} 658 659static inline void queue_flag_set_unlocked(unsigned int flag, 660 struct request_queue *q) 661{ 662 __set_bit(flag, &q->queue_flags); 663} 664 665static inline int queue_flag_test_and_clear(unsigned int flag, 666 struct request_queue *q) 667{ 668 queue_lockdep_assert_held(q); 669 670 if (test_bit(flag, &q->queue_flags)) { 671 __clear_bit(flag, &q->queue_flags); 672 return 1; 673 } 674 675 return 0; 676} 677 678static inline int queue_flag_test_and_set(unsigned int flag, 679 struct request_queue *q) 680{ 681 queue_lockdep_assert_held(q); 682 683 if (!test_bit(flag, &q->queue_flags)) { 684 __set_bit(flag, &q->queue_flags); 685 return 0; 686 } 687 688 return 1; 689} 690 691static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 692{ 693 queue_lockdep_assert_held(q); 694 __set_bit(flag, &q->queue_flags); 695} 696 697static inline void queue_flag_clear_unlocked(unsigned int flag, 698 struct request_queue *q) 699{ 700 __clear_bit(flag, &q->queue_flags); 701} 702 703static inline int queue_in_flight(struct request_queue *q) 704{ 705 return q->in_flight[0] + q->in_flight[1]; 706} 707 708static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 709{ 710 queue_lockdep_assert_held(q); 711 __clear_bit(flag, &q->queue_flags); 712} 713 714#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 715#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 716#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 717#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 718#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 719#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 720#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 721#define blk_queue_noxmerges(q) \ 722 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 723#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 724#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 725#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 726#define blk_queue_stackable(q) \ 727 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags) 728#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 729#define blk_queue_secure_erase(q) \ 730 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 731#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 732#define blk_queue_scsi_passthrough(q) \ 733 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 734 735#define blk_noretry_request(rq) \ 736 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 737 REQ_FAILFAST_DRIVER)) 738#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 739 740static inline bool blk_account_rq(struct request *rq) 741{ 742 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 743} 744 745#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 746#define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 747/* rq->queuelist of dequeued request must be list_empty() */ 748#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 749 750#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 751 752#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 753 754/* 755 * Driver can handle struct request, if it either has an old style 756 * request_fn defined, or is blk-mq based. 757 */ 758static inline bool queue_is_rq_based(struct request_queue *q) 759{ 760 return q->request_fn || q->mq_ops; 761} 762 763static inline unsigned int blk_queue_cluster(struct request_queue *q) 764{ 765 return q->limits.cluster; 766} 767 768static inline enum blk_zoned_model 769blk_queue_zoned_model(struct request_queue *q) 770{ 771 return q->limits.zoned; 772} 773 774static inline bool blk_queue_is_zoned(struct request_queue *q) 775{ 776 switch (blk_queue_zoned_model(q)) { 777 case BLK_ZONED_HA: 778 case BLK_ZONED_HM: 779 return true; 780 default: 781 return false; 782 } 783} 784 785static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 786{ 787 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 788} 789 790static inline bool rq_is_sync(struct request *rq) 791{ 792 return op_is_sync(rq->cmd_flags); 793} 794 795static inline bool blk_rl_full(struct request_list *rl, bool sync) 796{ 797 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 798 799 return rl->flags & flag; 800} 801 802static inline void blk_set_rl_full(struct request_list *rl, bool sync) 803{ 804 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 805 806 rl->flags |= flag; 807} 808 809static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 810{ 811 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 812 813 rl->flags &= ~flag; 814} 815 816static inline bool rq_mergeable(struct request *rq) 817{ 818 if (blk_rq_is_passthrough(rq)) 819 return false; 820 821 if (req_op(rq) == REQ_OP_FLUSH) 822 return false; 823 824 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 825 return false; 826 827 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 828 return false; 829 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 830 return false; 831 832 return true; 833} 834 835static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 836{ 837 if (bio_page(a) == bio_page(b) && 838 bio_offset(a) == bio_offset(b)) 839 return true; 840 841 return false; 842} 843 844static inline unsigned int blk_queue_depth(struct request_queue *q) 845{ 846 if (q->queue_depth) 847 return q->queue_depth; 848 849 return q->nr_requests; 850} 851 852/* 853 * q->prep_rq_fn return values 854 */ 855enum { 856 BLKPREP_OK, /* serve it */ 857 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 858 BLKPREP_DEFER, /* leave on queue */ 859 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 860}; 861 862extern unsigned long blk_max_low_pfn, blk_max_pfn; 863 864/* 865 * standard bounce addresses: 866 * 867 * BLK_BOUNCE_HIGH : bounce all highmem pages 868 * BLK_BOUNCE_ANY : don't bounce anything 869 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 870 */ 871 872#if BITS_PER_LONG == 32 873#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 874#else 875#define BLK_BOUNCE_HIGH -1ULL 876#endif 877#define BLK_BOUNCE_ANY (-1ULL) 878#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 879 880/* 881 * default timeout for SG_IO if none specified 882 */ 883#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 884#define BLK_MIN_SG_TIMEOUT (7 * HZ) 885 886struct rq_map_data { 887 struct page **pages; 888 int page_order; 889 int nr_entries; 890 unsigned long offset; 891 int null_mapped; 892 int from_user; 893}; 894 895struct req_iterator { 896 struct bvec_iter iter; 897 struct bio *bio; 898}; 899 900/* This should not be used directly - use rq_for_each_segment */ 901#define for_each_bio(_bio) \ 902 for (; _bio; _bio = _bio->bi_next) 903#define __rq_for_each_bio(_bio, rq) \ 904 if ((rq->bio)) \ 905 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 906 907#define rq_for_each_segment(bvl, _rq, _iter) \ 908 __rq_for_each_bio(_iter.bio, _rq) \ 909 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 910 911#define rq_iter_last(bvec, _iter) \ 912 (_iter.bio->bi_next == NULL && \ 913 bio_iter_last(bvec, _iter.iter)) 914 915#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 916# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 917#endif 918#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 919extern void rq_flush_dcache_pages(struct request *rq); 920#else 921static inline void rq_flush_dcache_pages(struct request *rq) 922{ 923} 924#endif 925 926#ifdef CONFIG_PRINTK 927#define vfs_msg(sb, level, fmt, ...) \ 928 __vfs_msg(sb, level, fmt, ##__VA_ARGS__) 929#else 930#define vfs_msg(sb, level, fmt, ...) \ 931do { \ 932 no_printk(fmt, ##__VA_ARGS__); \ 933 __vfs_msg(sb, "", " "); \ 934} while (0) 935#endif 936 937extern int blk_register_queue(struct gendisk *disk); 938extern void blk_unregister_queue(struct gendisk *disk); 939extern blk_qc_t generic_make_request(struct bio *bio); 940extern void blk_rq_init(struct request_queue *q, struct request *rq); 941extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 942extern void blk_put_request(struct request *); 943extern void __blk_put_request(struct request_queue *, struct request *); 944extern struct request *blk_get_request(struct request_queue *, unsigned int op, 945 gfp_t gfp_mask); 946extern void blk_requeue_request(struct request_queue *, struct request *); 947extern int blk_lld_busy(struct request_queue *q); 948extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 949 struct bio_set *bs, gfp_t gfp_mask, 950 int (*bio_ctr)(struct bio *, struct bio *, void *), 951 void *data); 952extern void blk_rq_unprep_clone(struct request *rq); 953extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 954 struct request *rq); 955extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 956extern void blk_delay_queue(struct request_queue *, unsigned long); 957extern void blk_queue_split(struct request_queue *, struct bio **); 958extern void blk_recount_segments(struct request_queue *, struct bio *); 959extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 960extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 961 unsigned int, void __user *); 962extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 963 unsigned int, void __user *); 964extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 965 struct scsi_ioctl_command __user *); 966 967extern int blk_queue_enter(struct request_queue *q, bool nowait); 968extern void blk_queue_exit(struct request_queue *q); 969extern void blk_start_queue(struct request_queue *q); 970extern void blk_start_queue_async(struct request_queue *q); 971extern void blk_stop_queue(struct request_queue *q); 972extern void blk_sync_queue(struct request_queue *q); 973extern void __blk_stop_queue(struct request_queue *q); 974extern void __blk_run_queue(struct request_queue *q); 975extern void __blk_run_queue_uncond(struct request_queue *q); 976extern void blk_run_queue(struct request_queue *); 977extern void blk_run_queue_async(struct request_queue *q); 978extern int blk_rq_map_user(struct request_queue *, struct request *, 979 struct rq_map_data *, void __user *, unsigned long, 980 gfp_t); 981extern int blk_rq_unmap_user(struct bio *); 982extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 983extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 984 struct rq_map_data *, const struct iov_iter *, 985 gfp_t); 986extern void blk_execute_rq(struct request_queue *, struct gendisk *, 987 struct request *, int); 988extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 989 struct request *, int, rq_end_io_fn *); 990 991int blk_status_to_errno(blk_status_t status); 992blk_status_t errno_to_blk_status(int errno); 993 994bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 995 996static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 997{ 998 return bdev->bd_disk->queue; /* this is never NULL */ 999} 1000 1001/* 1002 * blk_rq_pos() : the current sector 1003 * blk_rq_bytes() : bytes left in the entire request 1004 * blk_rq_cur_bytes() : bytes left in the current segment 1005 * blk_rq_err_bytes() : bytes left till the next error boundary 1006 * blk_rq_sectors() : sectors left in the entire request 1007 * blk_rq_cur_sectors() : sectors left in the current segment 1008 */ 1009static inline sector_t blk_rq_pos(const struct request *rq) 1010{ 1011 return rq->__sector; 1012} 1013 1014static inline unsigned int blk_rq_bytes(const struct request *rq) 1015{ 1016 return rq->__data_len; 1017} 1018 1019static inline int blk_rq_cur_bytes(const struct request *rq) 1020{ 1021 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1022} 1023 1024extern unsigned int blk_rq_err_bytes(const struct request *rq); 1025 1026static inline unsigned int blk_rq_sectors(const struct request *rq) 1027{ 1028 return blk_rq_bytes(rq) >> 9; 1029} 1030 1031static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1032{ 1033 return blk_rq_cur_bytes(rq) >> 9; 1034} 1035 1036/* 1037 * Some commands like WRITE SAME have a payload or data transfer size which 1038 * is different from the size of the request. Any driver that supports such 1039 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1040 * calculate the data transfer size. 1041 */ 1042static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1043{ 1044 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1045 return rq->special_vec.bv_len; 1046 return blk_rq_bytes(rq); 1047} 1048 1049static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1050 int op) 1051{ 1052 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1053 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1054 1055 if (unlikely(op == REQ_OP_WRITE_SAME)) 1056 return q->limits.max_write_same_sectors; 1057 1058 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1059 return q->limits.max_write_zeroes_sectors; 1060 1061 return q->limits.max_sectors; 1062} 1063 1064/* 1065 * Return maximum size of a request at given offset. Only valid for 1066 * file system requests. 1067 */ 1068static inline unsigned int blk_max_size_offset(struct request_queue *q, 1069 sector_t offset) 1070{ 1071 if (!q->limits.chunk_sectors) 1072 return q->limits.max_sectors; 1073 1074 return q->limits.chunk_sectors - 1075 (offset & (q->limits.chunk_sectors - 1)); 1076} 1077 1078static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1079 sector_t offset) 1080{ 1081 struct request_queue *q = rq->q; 1082 1083 if (blk_rq_is_passthrough(rq)) 1084 return q->limits.max_hw_sectors; 1085 1086 if (!q->limits.chunk_sectors || 1087 req_op(rq) == REQ_OP_DISCARD || 1088 req_op(rq) == REQ_OP_SECURE_ERASE) 1089 return blk_queue_get_max_sectors(q, req_op(rq)); 1090 1091 return min(blk_max_size_offset(q, offset), 1092 blk_queue_get_max_sectors(q, req_op(rq))); 1093} 1094 1095static inline unsigned int blk_rq_count_bios(struct request *rq) 1096{ 1097 unsigned int nr_bios = 0; 1098 struct bio *bio; 1099 1100 __rq_for_each_bio(bio, rq) 1101 nr_bios++; 1102 1103 return nr_bios; 1104} 1105 1106/* 1107 * Request issue related functions. 1108 */ 1109extern struct request *blk_peek_request(struct request_queue *q); 1110extern void blk_start_request(struct request *rq); 1111extern struct request *blk_fetch_request(struct request_queue *q); 1112 1113/* 1114 * Request completion related functions. 1115 * 1116 * blk_update_request() completes given number of bytes and updates 1117 * the request without completing it. 1118 * 1119 * blk_end_request() and friends. __blk_end_request() must be called 1120 * with the request queue spinlock acquired. 1121 * 1122 * Several drivers define their own end_request and call 1123 * blk_end_request() for parts of the original function. 1124 * This prevents code duplication in drivers. 1125 */ 1126extern bool blk_update_request(struct request *rq, blk_status_t error, 1127 unsigned int nr_bytes); 1128extern void blk_finish_request(struct request *rq, blk_status_t error); 1129extern bool blk_end_request(struct request *rq, blk_status_t error, 1130 unsigned int nr_bytes); 1131extern void blk_end_request_all(struct request *rq, blk_status_t error); 1132extern bool __blk_end_request(struct request *rq, blk_status_t error, 1133 unsigned int nr_bytes); 1134extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1135extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1136 1137extern void blk_complete_request(struct request *); 1138extern void __blk_complete_request(struct request *); 1139extern void blk_abort_request(struct request *); 1140extern void blk_unprep_request(struct request *); 1141 1142/* 1143 * Access functions for manipulating queue properties 1144 */ 1145extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1146 spinlock_t *lock, int node_id); 1147extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1148extern int blk_init_allocated_queue(struct request_queue *); 1149extern void blk_cleanup_queue(struct request_queue *); 1150extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1151extern void blk_queue_bounce_limit(struct request_queue *, u64); 1152extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1153extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1154extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1155extern void blk_queue_max_discard_segments(struct request_queue *, 1156 unsigned short); 1157extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1158extern void blk_queue_max_discard_sectors(struct request_queue *q, 1159 unsigned int max_discard_sectors); 1160extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1161 unsigned int max_write_same_sectors); 1162extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1163 unsigned int max_write_same_sectors); 1164extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1165extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1166extern void blk_queue_alignment_offset(struct request_queue *q, 1167 unsigned int alignment); 1168extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1169extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1170extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1171extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1172extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1173extern void blk_set_default_limits(struct queue_limits *lim); 1174extern void blk_set_stacking_limits(struct queue_limits *lim); 1175extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1176 sector_t offset); 1177extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1178 sector_t offset); 1179extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1180 sector_t offset); 1181extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1182extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1183extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1184extern int blk_queue_dma_drain(struct request_queue *q, 1185 dma_drain_needed_fn *dma_drain_needed, 1186 void *buf, unsigned int size); 1187extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1188extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1189extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1190extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1191extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1192extern void blk_queue_dma_alignment(struct request_queue *, int); 1193extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1194extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1195extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1196extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1197extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1198extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1199 1200/* 1201 * Number of physical segments as sent to the device. 1202 * 1203 * Normally this is the number of discontiguous data segments sent by the 1204 * submitter. But for data-less command like discard we might have no 1205 * actual data segments submitted, but the driver might have to add it's 1206 * own special payload. In that case we still return 1 here so that this 1207 * special payload will be mapped. 1208 */ 1209static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1210{ 1211 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1212 return 1; 1213 return rq->nr_phys_segments; 1214} 1215 1216/* 1217 * Number of discard segments (or ranges) the driver needs to fill in. 1218 * Each discard bio merged into a request is counted as one segment. 1219 */ 1220static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1221{ 1222 return max_t(unsigned short, rq->nr_phys_segments, 1); 1223} 1224 1225extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1226extern void blk_dump_rq_flags(struct request *, char *); 1227extern long nr_blockdev_pages(void); 1228 1229bool __must_check blk_get_queue(struct request_queue *); 1230struct request_queue *blk_alloc_queue(gfp_t); 1231struct request_queue *blk_alloc_queue_node(gfp_t, int); 1232extern void blk_put_queue(struct request_queue *); 1233extern void blk_set_queue_dying(struct request_queue *); 1234 1235/* 1236 * block layer runtime pm functions 1237 */ 1238#ifdef CONFIG_PM 1239extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1240extern int blk_pre_runtime_suspend(struct request_queue *q); 1241extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1242extern void blk_pre_runtime_resume(struct request_queue *q); 1243extern void blk_post_runtime_resume(struct request_queue *q, int err); 1244extern void blk_set_runtime_active(struct request_queue *q); 1245#else 1246static inline void blk_pm_runtime_init(struct request_queue *q, 1247 struct device *dev) {} 1248static inline int blk_pre_runtime_suspend(struct request_queue *q) 1249{ 1250 return -ENOSYS; 1251} 1252static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1253static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1254static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1255static inline void blk_set_runtime_active(struct request_queue *q) {} 1256#endif 1257 1258/* 1259 * blk_plug permits building a queue of related requests by holding the I/O 1260 * fragments for a short period. This allows merging of sequential requests 1261 * into single larger request. As the requests are moved from a per-task list to 1262 * the device's request_queue in a batch, this results in improved scalability 1263 * as the lock contention for request_queue lock is reduced. 1264 * 1265 * It is ok not to disable preemption when adding the request to the plug list 1266 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1267 * the plug list when the task sleeps by itself. For details, please see 1268 * schedule() where blk_schedule_flush_plug() is called. 1269 */ 1270struct blk_plug { 1271 struct list_head list; /* requests */ 1272 struct list_head mq_list; /* blk-mq requests */ 1273 struct list_head cb_list; /* md requires an unplug callback */ 1274}; 1275#define BLK_MAX_REQUEST_COUNT 16 1276#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1277 1278struct blk_plug_cb; 1279typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1280struct blk_plug_cb { 1281 struct list_head list; 1282 blk_plug_cb_fn callback; 1283 void *data; 1284}; 1285extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1286 void *data, int size); 1287extern void blk_start_plug(struct blk_plug *); 1288extern void blk_finish_plug(struct blk_plug *); 1289extern void blk_flush_plug_list(struct blk_plug *, bool); 1290 1291static inline void blk_flush_plug(struct task_struct *tsk) 1292{ 1293 struct blk_plug *plug = tsk->plug; 1294 1295 if (plug) 1296 blk_flush_plug_list(plug, false); 1297} 1298 1299static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1300{ 1301 struct blk_plug *plug = tsk->plug; 1302 1303 if (plug) 1304 blk_flush_plug_list(plug, true); 1305} 1306 1307static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1308{ 1309 struct blk_plug *plug = tsk->plug; 1310 1311 return plug && 1312 (!list_empty(&plug->list) || 1313 !list_empty(&plug->mq_list) || 1314 !list_empty(&plug->cb_list)); 1315} 1316 1317/* 1318 * tag stuff 1319 */ 1320extern int blk_queue_start_tag(struct request_queue *, struct request *); 1321extern struct request *blk_queue_find_tag(struct request_queue *, int); 1322extern void blk_queue_end_tag(struct request_queue *, struct request *); 1323extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1324extern void blk_queue_free_tags(struct request_queue *); 1325extern int blk_queue_resize_tags(struct request_queue *, int); 1326extern void blk_queue_invalidate_tags(struct request_queue *); 1327extern struct blk_queue_tag *blk_init_tags(int, int); 1328extern void blk_free_tags(struct blk_queue_tag *); 1329 1330static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1331 int tag) 1332{ 1333 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1334 return NULL; 1335 return bqt->tag_index[tag]; 1336} 1337 1338extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1339extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1341 1342#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1343 1344extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1345 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1346extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1347 sector_t nr_sects, gfp_t gfp_mask, int flags, 1348 struct bio **biop); 1349 1350#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1351#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1352 1353extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1354 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1355 unsigned flags); 1356extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1357 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1358 1359static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1360 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1361{ 1362 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1363 nr_blocks << (sb->s_blocksize_bits - 9), 1364 gfp_mask, flags); 1365} 1366static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1367 sector_t nr_blocks, gfp_t gfp_mask) 1368{ 1369 return blkdev_issue_zeroout(sb->s_bdev, 1370 block << (sb->s_blocksize_bits - 9), 1371 nr_blocks << (sb->s_blocksize_bits - 9), 1372 gfp_mask, 0); 1373} 1374 1375extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm); 1376 1377enum blk_default_limits { 1378 BLK_MAX_SEGMENTS = 128, 1379 BLK_SAFE_MAX_SECTORS = 255, 1380 BLK_DEF_MAX_SECTORS = 2560, 1381 BLK_MAX_SEGMENT_SIZE = 65536, 1382 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1383}; 1384 1385#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1386 1387static inline unsigned long queue_segment_boundary(struct request_queue *q) 1388{ 1389 return q->limits.seg_boundary_mask; 1390} 1391 1392static inline unsigned long queue_virt_boundary(struct request_queue *q) 1393{ 1394 return q->limits.virt_boundary_mask; 1395} 1396 1397static inline unsigned int queue_max_sectors(struct request_queue *q) 1398{ 1399 return q->limits.max_sectors; 1400} 1401 1402static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1403{ 1404 return q->limits.max_hw_sectors; 1405} 1406 1407static inline unsigned short queue_max_segments(struct request_queue *q) 1408{ 1409 return q->limits.max_segments; 1410} 1411 1412static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1413{ 1414 return q->limits.max_discard_segments; 1415} 1416 1417static inline unsigned int queue_max_segment_size(struct request_queue *q) 1418{ 1419 return q->limits.max_segment_size; 1420} 1421 1422static inline unsigned short queue_logical_block_size(struct request_queue *q) 1423{ 1424 int retval = 512; 1425 1426 if (q && q->limits.logical_block_size) 1427 retval = q->limits.logical_block_size; 1428 1429 return retval; 1430} 1431 1432static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1433{ 1434 return queue_logical_block_size(bdev_get_queue(bdev)); 1435} 1436 1437static inline unsigned int queue_physical_block_size(struct request_queue *q) 1438{ 1439 return q->limits.physical_block_size; 1440} 1441 1442static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1443{ 1444 return queue_physical_block_size(bdev_get_queue(bdev)); 1445} 1446 1447static inline unsigned int queue_io_min(struct request_queue *q) 1448{ 1449 return q->limits.io_min; 1450} 1451 1452static inline int bdev_io_min(struct block_device *bdev) 1453{ 1454 return queue_io_min(bdev_get_queue(bdev)); 1455} 1456 1457static inline unsigned int queue_io_opt(struct request_queue *q) 1458{ 1459 return q->limits.io_opt; 1460} 1461 1462static inline int bdev_io_opt(struct block_device *bdev) 1463{ 1464 return queue_io_opt(bdev_get_queue(bdev)); 1465} 1466 1467static inline int queue_alignment_offset(struct request_queue *q) 1468{ 1469 if (q->limits.misaligned) 1470 return -1; 1471 1472 return q->limits.alignment_offset; 1473} 1474 1475static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1476{ 1477 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1478 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1479 1480 return (granularity + lim->alignment_offset - alignment) % granularity; 1481} 1482 1483static inline int bdev_alignment_offset(struct block_device *bdev) 1484{ 1485 struct request_queue *q = bdev_get_queue(bdev); 1486 1487 if (q->limits.misaligned) 1488 return -1; 1489 1490 if (bdev != bdev->bd_contains) 1491 return bdev->bd_part->alignment_offset; 1492 1493 return q->limits.alignment_offset; 1494} 1495 1496static inline int queue_discard_alignment(struct request_queue *q) 1497{ 1498 if (q->limits.discard_misaligned) 1499 return -1; 1500 1501 return q->limits.discard_alignment; 1502} 1503 1504static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1505{ 1506 unsigned int alignment, granularity, offset; 1507 1508 if (!lim->max_discard_sectors) 1509 return 0; 1510 1511 /* Why are these in bytes, not sectors? */ 1512 alignment = lim->discard_alignment >> 9; 1513 granularity = lim->discard_granularity >> 9; 1514 if (!granularity) 1515 return 0; 1516 1517 /* Offset of the partition start in 'granularity' sectors */ 1518 offset = sector_div(sector, granularity); 1519 1520 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1521 offset = (granularity + alignment - offset) % granularity; 1522 1523 /* Turn it back into bytes, gaah */ 1524 return offset << 9; 1525} 1526 1527static inline int bdev_discard_alignment(struct block_device *bdev) 1528{ 1529 struct request_queue *q = bdev_get_queue(bdev); 1530 1531 if (bdev != bdev->bd_contains) 1532 return bdev->bd_part->discard_alignment; 1533 1534 return q->limits.discard_alignment; 1535} 1536 1537static inline unsigned int bdev_write_same(struct block_device *bdev) 1538{ 1539 struct request_queue *q = bdev_get_queue(bdev); 1540 1541 if (q) 1542 return q->limits.max_write_same_sectors; 1543 1544 return 0; 1545} 1546 1547static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1548{ 1549 struct request_queue *q = bdev_get_queue(bdev); 1550 1551 if (q) 1552 return q->limits.max_write_zeroes_sectors; 1553 1554 return 0; 1555} 1556 1557static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1558{ 1559 struct request_queue *q = bdev_get_queue(bdev); 1560 1561 if (q) 1562 return blk_queue_zoned_model(q); 1563 1564 return BLK_ZONED_NONE; 1565} 1566 1567static inline bool bdev_is_zoned(struct block_device *bdev) 1568{ 1569 struct request_queue *q = bdev_get_queue(bdev); 1570 1571 if (q) 1572 return blk_queue_is_zoned(q); 1573 1574 return false; 1575} 1576 1577static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1578{ 1579 struct request_queue *q = bdev_get_queue(bdev); 1580 1581 if (q) 1582 return blk_queue_zone_sectors(q); 1583 1584 return 0; 1585} 1586 1587static inline int queue_dma_alignment(struct request_queue *q) 1588{ 1589 return q ? q->dma_alignment : 511; 1590} 1591 1592static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1593 unsigned int len) 1594{ 1595 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1596 return !(addr & alignment) && !(len & alignment); 1597} 1598 1599/* assumes size > 256 */ 1600static inline unsigned int blksize_bits(unsigned int size) 1601{ 1602 unsigned int bits = 8; 1603 do { 1604 bits++; 1605 size >>= 1; 1606 } while (size > 256); 1607 return bits; 1608} 1609 1610static inline unsigned int block_size(struct block_device *bdev) 1611{ 1612 return bdev->bd_block_size; 1613} 1614 1615static inline bool queue_flush_queueable(struct request_queue *q) 1616{ 1617 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1618} 1619 1620typedef struct {struct page *v;} Sector; 1621 1622unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1623 1624static inline void put_dev_sector(Sector p) 1625{ 1626 put_page(p.v); 1627} 1628 1629static inline bool __bvec_gap_to_prev(struct request_queue *q, 1630 struct bio_vec *bprv, unsigned int offset) 1631{ 1632 return offset || 1633 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1634} 1635 1636/* 1637 * Check if adding a bio_vec after bprv with offset would create a gap in 1638 * the SG list. Most drivers don't care about this, but some do. 1639 */ 1640static inline bool bvec_gap_to_prev(struct request_queue *q, 1641 struct bio_vec *bprv, unsigned int offset) 1642{ 1643 if (!queue_virt_boundary(q)) 1644 return false; 1645 return __bvec_gap_to_prev(q, bprv, offset); 1646} 1647 1648/* 1649 * Check if the two bvecs from two bios can be merged to one segment. 1650 * If yes, no need to check gap between the two bios since the 1st bio 1651 * and the 1st bvec in the 2nd bio can be handled in one segment. 1652 */ 1653static inline bool bios_segs_mergeable(struct request_queue *q, 1654 struct bio *prev, struct bio_vec *prev_last_bv, 1655 struct bio_vec *next_first_bv) 1656{ 1657 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1658 return false; 1659 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1660 return false; 1661 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1662 queue_max_segment_size(q)) 1663 return false; 1664 return true; 1665} 1666 1667static inline bool bio_will_gap(struct request_queue *q, 1668 struct request *prev_rq, 1669 struct bio *prev, 1670 struct bio *next) 1671{ 1672 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1673 struct bio_vec pb, nb; 1674 1675 /* 1676 * don't merge if the 1st bio starts with non-zero 1677 * offset, otherwise it is quite difficult to respect 1678 * sg gap limit. We work hard to merge a huge number of small 1679 * single bios in case of mkfs. 1680 */ 1681 if (prev_rq) 1682 bio_get_first_bvec(prev_rq->bio, &pb); 1683 else 1684 bio_get_first_bvec(prev, &pb); 1685 if (pb.bv_offset) 1686 return true; 1687 1688 /* 1689 * We don't need to worry about the situation that the 1690 * merged segment ends in unaligned virt boundary: 1691 * 1692 * - if 'pb' ends aligned, the merged segment ends aligned 1693 * - if 'pb' ends unaligned, the next bio must include 1694 * one single bvec of 'nb', otherwise the 'nb' can't 1695 * merge with 'pb' 1696 */ 1697 bio_get_last_bvec(prev, &pb); 1698 bio_get_first_bvec(next, &nb); 1699 1700 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1701 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1702 } 1703 1704 return false; 1705} 1706 1707static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1708{ 1709 return bio_will_gap(req->q, req, req->biotail, bio); 1710} 1711 1712static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1713{ 1714 return bio_will_gap(req->q, NULL, bio, req->bio); 1715} 1716 1717int kblockd_schedule_work(struct work_struct *work); 1718int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1719int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1720int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1721int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1722 1723#ifdef CONFIG_BLK_CGROUP 1724/* 1725 * This should not be using sched_clock(). A real patch is in progress 1726 * to fix this up, until that is in place we need to disable preemption 1727 * around sched_clock() in this function and set_io_start_time_ns(). 1728 */ 1729static inline void set_start_time_ns(struct request *req) 1730{ 1731 preempt_disable(); 1732 req->start_time_ns = sched_clock(); 1733 preempt_enable(); 1734} 1735 1736static inline void set_io_start_time_ns(struct request *req) 1737{ 1738 preempt_disable(); 1739 req->io_start_time_ns = sched_clock(); 1740 preempt_enable(); 1741} 1742 1743static inline uint64_t rq_start_time_ns(struct request *req) 1744{ 1745 return req->start_time_ns; 1746} 1747 1748static inline uint64_t rq_io_start_time_ns(struct request *req) 1749{ 1750 return req->io_start_time_ns; 1751} 1752#else 1753static inline void set_start_time_ns(struct request *req) {} 1754static inline void set_io_start_time_ns(struct request *req) {} 1755static inline uint64_t rq_start_time_ns(struct request *req) 1756{ 1757 return 0; 1758} 1759static inline uint64_t rq_io_start_time_ns(struct request *req) 1760{ 1761 return 0; 1762} 1763#endif 1764 1765#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1766 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1767#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1768 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1769 1770#if defined(CONFIG_BLK_DEV_INTEGRITY) 1771 1772enum blk_integrity_flags { 1773 BLK_INTEGRITY_VERIFY = 1 << 0, 1774 BLK_INTEGRITY_GENERATE = 1 << 1, 1775 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1776 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1777}; 1778 1779struct blk_integrity_iter { 1780 void *prot_buf; 1781 void *data_buf; 1782 sector_t seed; 1783 unsigned int data_size; 1784 unsigned short interval; 1785 const char *disk_name; 1786}; 1787 1788typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1789 1790struct blk_integrity_profile { 1791 integrity_processing_fn *generate_fn; 1792 integrity_processing_fn *verify_fn; 1793 const char *name; 1794}; 1795 1796extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1797extern void blk_integrity_unregister(struct gendisk *); 1798extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1799extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1800 struct scatterlist *); 1801extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1802extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1803 struct request *); 1804extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1805 struct bio *); 1806 1807static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1808{ 1809 struct blk_integrity *bi = &disk->queue->integrity; 1810 1811 if (!bi->profile) 1812 return NULL; 1813 1814 return bi; 1815} 1816 1817static inline 1818struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1819{ 1820 return blk_get_integrity(bdev->bd_disk); 1821} 1822 1823static inline bool blk_integrity_rq(struct request *rq) 1824{ 1825 return rq->cmd_flags & REQ_INTEGRITY; 1826} 1827 1828static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1829 unsigned int segs) 1830{ 1831 q->limits.max_integrity_segments = segs; 1832} 1833 1834static inline unsigned short 1835queue_max_integrity_segments(struct request_queue *q) 1836{ 1837 return q->limits.max_integrity_segments; 1838} 1839 1840static inline bool integrity_req_gap_back_merge(struct request *req, 1841 struct bio *next) 1842{ 1843 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1844 struct bio_integrity_payload *bip_next = bio_integrity(next); 1845 1846 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1847 bip_next->bip_vec[0].bv_offset); 1848} 1849 1850static inline bool integrity_req_gap_front_merge(struct request *req, 1851 struct bio *bio) 1852{ 1853 struct bio_integrity_payload *bip = bio_integrity(bio); 1854 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1855 1856 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1857 bip_next->bip_vec[0].bv_offset); 1858} 1859 1860#else /* CONFIG_BLK_DEV_INTEGRITY */ 1861 1862struct bio; 1863struct block_device; 1864struct gendisk; 1865struct blk_integrity; 1866 1867static inline int blk_integrity_rq(struct request *rq) 1868{ 1869 return 0; 1870} 1871static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1872 struct bio *b) 1873{ 1874 return 0; 1875} 1876static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1877 struct bio *b, 1878 struct scatterlist *s) 1879{ 1880 return 0; 1881} 1882static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1883{ 1884 return NULL; 1885} 1886static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1887{ 1888 return NULL; 1889} 1890static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1891{ 1892 return 0; 1893} 1894static inline void blk_integrity_register(struct gendisk *d, 1895 struct blk_integrity *b) 1896{ 1897} 1898static inline void blk_integrity_unregister(struct gendisk *d) 1899{ 1900} 1901static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1902 unsigned int segs) 1903{ 1904} 1905static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1906{ 1907 return 0; 1908} 1909static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1910 struct request *r1, 1911 struct request *r2) 1912{ 1913 return true; 1914} 1915static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1916 struct request *r, 1917 struct bio *b) 1918{ 1919 return true; 1920} 1921 1922static inline bool integrity_req_gap_back_merge(struct request *req, 1923 struct bio *next) 1924{ 1925 return false; 1926} 1927static inline bool integrity_req_gap_front_merge(struct request *req, 1928 struct bio *bio) 1929{ 1930 return false; 1931} 1932 1933#endif /* CONFIG_BLK_DEV_INTEGRITY */ 1934 1935struct block_device_operations { 1936 int (*open) (struct block_device *, fmode_t); 1937 void (*release) (struct gendisk *, fmode_t); 1938 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1939 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1940 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1941 unsigned int (*check_events) (struct gendisk *disk, 1942 unsigned int clearing); 1943 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1944 int (*media_changed) (struct gendisk *); 1945 void (*unlock_native_capacity) (struct gendisk *); 1946 int (*revalidate_disk) (struct gendisk *); 1947 int (*getgeo)(struct block_device *, struct hd_geometry *); 1948 /* this callback is with swap_lock and sometimes page table lock held */ 1949 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1950 struct module *owner; 1951 const struct pr_ops *pr_ops; 1952}; 1953 1954extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1955 unsigned long); 1956extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1957extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1958 struct writeback_control *); 1959#else /* CONFIG_BLOCK */ 1960 1961struct block_device; 1962 1963/* 1964 * stubs for when the block layer is configured out 1965 */ 1966#define buffer_heads_over_limit 0 1967 1968static inline long nr_blockdev_pages(void) 1969{ 1970 return 0; 1971} 1972 1973struct blk_plug { 1974}; 1975 1976static inline void blk_start_plug(struct blk_plug *plug) 1977{ 1978} 1979 1980static inline void blk_finish_plug(struct blk_plug *plug) 1981{ 1982} 1983 1984static inline void blk_flush_plug(struct task_struct *task) 1985{ 1986} 1987 1988static inline void blk_schedule_flush_plug(struct task_struct *task) 1989{ 1990} 1991 1992 1993static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1994{ 1995 return false; 1996} 1997 1998static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1999 sector_t *error_sector) 2000{ 2001 return 0; 2002} 2003 2004#endif /* CONFIG_BLOCK */ 2005 2006#endif