Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/backing-dev.h>
15#include <linux/mm.h>
16#include <linux/mm_inline.h>
17#include <linux/shm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/syscalls.h>
22#include <linux/capability.h>
23#include <linux/init.h>
24#include <linux/file.h>
25#include <linux/fs.h>
26#include <linux/personality.h>
27#include <linux/security.h>
28#include <linux/hugetlb.h>
29#include <linux/shmem_fs.h>
30#include <linux/profile.h>
31#include <linux/export.h>
32#include <linux/mount.h>
33#include <linux/mempolicy.h>
34#include <linux/rmap.h>
35#include <linux/mmu_notifier.h>
36#include <linux/mmdebug.h>
37#include <linux/perf_event.h>
38#include <linux/audit.h>
39#include <linux/khugepaged.h>
40#include <linux/uprobes.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47#include <linux/oom.h>
48#include <linux/sched/mm.h>
49#include <linux/ksm.h>
50#include <linux/memfd.h>
51
52#include <linux/uaccess.h>
53#include <asm/cacheflush.h>
54#include <asm/tlb.h>
55#include <asm/mmu_context.h>
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/mmap.h>
59
60#include "internal.h"
61
62#ifndef arch_mmap_check
63#define arch_mmap_check(addr, len, flags) (0)
64#endif
65
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70#endif
71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75#endif
76
77static bool ignore_rlimit_data;
78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80/* Update vma->vm_page_prot to reflect vma->vm_flags. */
81void vma_set_page_prot(struct vm_area_struct *vma)
82{
83 unsigned long vm_flags = vma->vm_flags;
84 pgprot_t vm_page_prot;
85
86 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
87 if (vma_wants_writenotify(vma, vm_page_prot)) {
88 vm_flags &= ~VM_SHARED;
89 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
90 }
91 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
92 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
93}
94
95/*
96 * check_brk_limits() - Use platform specific check of range & verify mlock
97 * limits.
98 * @addr: The address to check
99 * @len: The size of increase.
100 *
101 * Return: 0 on success.
102 */
103static int check_brk_limits(unsigned long addr, unsigned long len)
104{
105 unsigned long mapped_addr;
106
107 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
108 if (IS_ERR_VALUE(mapped_addr))
109 return mapped_addr;
110
111 return mlock_future_ok(current->mm, current->mm->def_flags, len)
112 ? 0 : -EAGAIN;
113}
114static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
115 unsigned long addr, unsigned long request, unsigned long flags);
116SYSCALL_DEFINE1(brk, unsigned long, brk)
117{
118 unsigned long newbrk, oldbrk, origbrk;
119 struct mm_struct *mm = current->mm;
120 struct vm_area_struct *brkvma, *next = NULL;
121 unsigned long min_brk;
122 bool populate = false;
123 LIST_HEAD(uf);
124 struct vma_iterator vmi;
125
126 if (mmap_write_lock_killable(mm))
127 return -EINTR;
128
129 origbrk = mm->brk;
130
131#ifdef CONFIG_COMPAT_BRK
132 /*
133 * CONFIG_COMPAT_BRK can still be overridden by setting
134 * randomize_va_space to 2, which will still cause mm->start_brk
135 * to be arbitrarily shifted
136 */
137 if (current->brk_randomized)
138 min_brk = mm->start_brk;
139 else
140 min_brk = mm->end_data;
141#else
142 min_brk = mm->start_brk;
143#endif
144 if (brk < min_brk)
145 goto out;
146
147 /*
148 * Check against rlimit here. If this check is done later after the test
149 * of oldbrk with newbrk then it can escape the test and let the data
150 * segment grow beyond its set limit the in case where the limit is
151 * not page aligned -Ram Gupta
152 */
153 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
154 mm->end_data, mm->start_data))
155 goto out;
156
157 newbrk = PAGE_ALIGN(brk);
158 oldbrk = PAGE_ALIGN(mm->brk);
159 if (oldbrk == newbrk) {
160 mm->brk = brk;
161 goto success;
162 }
163
164 /* Always allow shrinking brk. */
165 if (brk <= mm->brk) {
166 /* Search one past newbrk */
167 vma_iter_init(&vmi, mm, newbrk);
168 brkvma = vma_find(&vmi, oldbrk);
169 if (!brkvma || brkvma->vm_start >= oldbrk)
170 goto out; /* mapping intersects with an existing non-brk vma. */
171 /*
172 * mm->brk must be protected by write mmap_lock.
173 * do_vmi_align_munmap() will drop the lock on success, so
174 * update it before calling do_vma_munmap().
175 */
176 mm->brk = brk;
177 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
178 /* unlock = */ true))
179 goto out;
180
181 goto success_unlocked;
182 }
183
184 if (check_brk_limits(oldbrk, newbrk - oldbrk))
185 goto out;
186
187 /*
188 * Only check if the next VMA is within the stack_guard_gap of the
189 * expansion area
190 */
191 vma_iter_init(&vmi, mm, oldbrk);
192 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
193 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
194 goto out;
195
196 brkvma = vma_prev_limit(&vmi, mm->start_brk);
197 /* Ok, looks good - let it rip. */
198 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
199 goto out;
200
201 mm->brk = brk;
202 if (mm->def_flags & VM_LOCKED)
203 populate = true;
204
205success:
206 mmap_write_unlock(mm);
207success_unlocked:
208 userfaultfd_unmap_complete(mm, &uf);
209 if (populate)
210 mm_populate(oldbrk, newbrk - oldbrk);
211 return brk;
212
213out:
214 mm->brk = origbrk;
215 mmap_write_unlock(mm);
216 return origbrk;
217}
218
219/*
220 * If a hint addr is less than mmap_min_addr change hint to be as
221 * low as possible but still greater than mmap_min_addr
222 */
223static inline unsigned long round_hint_to_min(unsigned long hint)
224{
225 hint &= PAGE_MASK;
226 if (((void *)hint != NULL) &&
227 (hint < mmap_min_addr))
228 return PAGE_ALIGN(mmap_min_addr);
229 return hint;
230}
231
232bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
233 unsigned long bytes)
234{
235 unsigned long locked_pages, limit_pages;
236
237 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
238 return true;
239
240 locked_pages = bytes >> PAGE_SHIFT;
241 locked_pages += mm->locked_vm;
242
243 limit_pages = rlimit(RLIMIT_MEMLOCK);
244 limit_pages >>= PAGE_SHIFT;
245
246 return locked_pages <= limit_pages;
247}
248
249static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
250{
251 if (S_ISREG(inode->i_mode))
252 return MAX_LFS_FILESIZE;
253
254 if (S_ISBLK(inode->i_mode))
255 return MAX_LFS_FILESIZE;
256
257 if (S_ISSOCK(inode->i_mode))
258 return MAX_LFS_FILESIZE;
259
260 /* Special "we do even unsigned file positions" case */
261 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
262 return 0;
263
264 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
265 return ULONG_MAX;
266}
267
268static inline bool file_mmap_ok(struct file *file, struct inode *inode,
269 unsigned long pgoff, unsigned long len)
270{
271 u64 maxsize = file_mmap_size_max(file, inode);
272
273 if (maxsize && len > maxsize)
274 return false;
275 maxsize -= len;
276 if (pgoff > maxsize >> PAGE_SHIFT)
277 return false;
278 return true;
279}
280
281/*
282 * The caller must write-lock current->mm->mmap_lock.
283 */
284unsigned long do_mmap(struct file *file, unsigned long addr,
285 unsigned long len, unsigned long prot,
286 unsigned long flags, vm_flags_t vm_flags,
287 unsigned long pgoff, unsigned long *populate,
288 struct list_head *uf)
289{
290 struct mm_struct *mm = current->mm;
291 int pkey = 0;
292
293 *populate = 0;
294
295 if (!len)
296 return -EINVAL;
297
298 /*
299 * Does the application expect PROT_READ to imply PROT_EXEC?
300 *
301 * (the exception is when the underlying filesystem is noexec
302 * mounted, in which case we don't add PROT_EXEC.)
303 */
304 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
305 if (!(file && path_noexec(&file->f_path)))
306 prot |= PROT_EXEC;
307
308 /* force arch specific MAP_FIXED handling in get_unmapped_area */
309 if (flags & MAP_FIXED_NOREPLACE)
310 flags |= MAP_FIXED;
311
312 if (!(flags & MAP_FIXED))
313 addr = round_hint_to_min(addr);
314
315 /* Careful about overflows.. */
316 len = PAGE_ALIGN(len);
317 if (!len)
318 return -ENOMEM;
319
320 /* offset overflow? */
321 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
322 return -EOVERFLOW;
323
324 /* Too many mappings? */
325 if (mm->map_count > sysctl_max_map_count)
326 return -ENOMEM;
327
328 /*
329 * addr is returned from get_unmapped_area,
330 * There are two cases:
331 * 1> MAP_FIXED == false
332 * unallocated memory, no need to check sealing.
333 * 1> MAP_FIXED == true
334 * sealing is checked inside mmap_region when
335 * do_vmi_munmap is called.
336 */
337
338 if (prot == PROT_EXEC) {
339 pkey = execute_only_pkey(mm);
340 if (pkey < 0)
341 pkey = 0;
342 }
343
344 /* Do simple checking here so the lower-level routines won't have
345 * to. we assume access permissions have been handled by the open
346 * of the memory object, so we don't do any here.
347 */
348 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
349 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
350
351 /* Obtain the address to map to. we verify (or select) it and ensure
352 * that it represents a valid section of the address space.
353 */
354 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
355 if (IS_ERR_VALUE(addr))
356 return addr;
357
358 if (flags & MAP_FIXED_NOREPLACE) {
359 if (find_vma_intersection(mm, addr, addr + len))
360 return -EEXIST;
361 }
362
363 if (flags & MAP_LOCKED)
364 if (!can_do_mlock())
365 return -EPERM;
366
367 if (!mlock_future_ok(mm, vm_flags, len))
368 return -EAGAIN;
369
370 if (file) {
371 struct inode *inode = file_inode(file);
372 unsigned int seals = memfd_file_seals(file);
373 unsigned long flags_mask;
374
375 if (!file_mmap_ok(file, inode, pgoff, len))
376 return -EOVERFLOW;
377
378 flags_mask = LEGACY_MAP_MASK;
379 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
380 flags_mask |= MAP_SYNC;
381
382 switch (flags & MAP_TYPE) {
383 case MAP_SHARED:
384 /*
385 * Force use of MAP_SHARED_VALIDATE with non-legacy
386 * flags. E.g. MAP_SYNC is dangerous to use with
387 * MAP_SHARED as you don't know which consistency model
388 * you will get. We silently ignore unsupported flags
389 * with MAP_SHARED to preserve backward compatibility.
390 */
391 flags &= LEGACY_MAP_MASK;
392 fallthrough;
393 case MAP_SHARED_VALIDATE:
394 if (flags & ~flags_mask)
395 return -EOPNOTSUPP;
396 if (prot & PROT_WRITE) {
397 if (!(file->f_mode & FMODE_WRITE))
398 return -EACCES;
399 if (IS_SWAPFILE(file->f_mapping->host))
400 return -ETXTBSY;
401 }
402
403 /*
404 * Make sure we don't allow writing to an append-only
405 * file..
406 */
407 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
408 return -EACCES;
409
410 vm_flags |= VM_SHARED | VM_MAYSHARE;
411 if (!(file->f_mode & FMODE_WRITE))
412 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
413 else if (is_readonly_sealed(seals, vm_flags))
414 vm_flags &= ~VM_MAYWRITE;
415 fallthrough;
416 case MAP_PRIVATE:
417 if (!(file->f_mode & FMODE_READ))
418 return -EACCES;
419 if (path_noexec(&file->f_path)) {
420 if (vm_flags & VM_EXEC)
421 return -EPERM;
422 vm_flags &= ~VM_MAYEXEC;
423 }
424
425 if (!file->f_op->mmap)
426 return -ENODEV;
427 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
428 return -EINVAL;
429 break;
430
431 default:
432 return -EINVAL;
433 }
434 } else {
435 switch (flags & MAP_TYPE) {
436 case MAP_SHARED:
437 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
438 return -EINVAL;
439 /*
440 * Ignore pgoff.
441 */
442 pgoff = 0;
443 vm_flags |= VM_SHARED | VM_MAYSHARE;
444 break;
445 case MAP_DROPPABLE:
446 if (VM_DROPPABLE == VM_NONE)
447 return -ENOTSUPP;
448 /*
449 * A locked or stack area makes no sense to be droppable.
450 *
451 * Also, since droppable pages can just go away at any time
452 * it makes no sense to copy them on fork or dump them.
453 *
454 * And don't attempt to combine with hugetlb for now.
455 */
456 if (flags & (MAP_LOCKED | MAP_HUGETLB))
457 return -EINVAL;
458 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
459 return -EINVAL;
460
461 vm_flags |= VM_DROPPABLE;
462
463 /*
464 * If the pages can be dropped, then it doesn't make
465 * sense to reserve them.
466 */
467 vm_flags |= VM_NORESERVE;
468
469 /*
470 * Likewise, they're volatile enough that they
471 * shouldn't survive forks or coredumps.
472 */
473 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
474 fallthrough;
475 case MAP_PRIVATE:
476 /*
477 * Set pgoff according to addr for anon_vma.
478 */
479 pgoff = addr >> PAGE_SHIFT;
480 break;
481 default:
482 return -EINVAL;
483 }
484 }
485
486 /*
487 * Set 'VM_NORESERVE' if we should not account for the
488 * memory use of this mapping.
489 */
490 if (flags & MAP_NORESERVE) {
491 /* We honor MAP_NORESERVE if allowed to overcommit */
492 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
493 vm_flags |= VM_NORESERVE;
494
495 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
496 if (file && is_file_hugepages(file))
497 vm_flags |= VM_NORESERVE;
498 }
499
500 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
501 if (!IS_ERR_VALUE(addr) &&
502 ((vm_flags & VM_LOCKED) ||
503 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
504 *populate = len;
505 return addr;
506}
507
508unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
509 unsigned long prot, unsigned long flags,
510 unsigned long fd, unsigned long pgoff)
511{
512 struct file *file = NULL;
513 unsigned long retval;
514
515 if (!(flags & MAP_ANONYMOUS)) {
516 audit_mmap_fd(fd, flags);
517 file = fget(fd);
518 if (!file)
519 return -EBADF;
520 if (is_file_hugepages(file)) {
521 len = ALIGN(len, huge_page_size(hstate_file(file)));
522 } else if (unlikely(flags & MAP_HUGETLB)) {
523 retval = -EINVAL;
524 goto out_fput;
525 }
526 } else if (flags & MAP_HUGETLB) {
527 struct hstate *hs;
528
529 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
530 if (!hs)
531 return -EINVAL;
532
533 len = ALIGN(len, huge_page_size(hs));
534 /*
535 * VM_NORESERVE is used because the reservations will be
536 * taken when vm_ops->mmap() is called
537 */
538 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
539 VM_NORESERVE,
540 HUGETLB_ANONHUGE_INODE,
541 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
542 if (IS_ERR(file))
543 return PTR_ERR(file);
544 }
545
546 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
547out_fput:
548 if (file)
549 fput(file);
550 return retval;
551}
552
553SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
554 unsigned long, prot, unsigned long, flags,
555 unsigned long, fd, unsigned long, pgoff)
556{
557 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
558}
559
560#ifdef __ARCH_WANT_SYS_OLD_MMAP
561struct mmap_arg_struct {
562 unsigned long addr;
563 unsigned long len;
564 unsigned long prot;
565 unsigned long flags;
566 unsigned long fd;
567 unsigned long offset;
568};
569
570SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
571{
572 struct mmap_arg_struct a;
573
574 if (copy_from_user(&a, arg, sizeof(a)))
575 return -EFAULT;
576 if (offset_in_page(a.offset))
577 return -EINVAL;
578
579 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
580 a.offset >> PAGE_SHIFT);
581}
582#endif /* __ARCH_WANT_SYS_OLD_MMAP */
583
584/**
585 * unmapped_area() - Find an area between the low_limit and the high_limit with
586 * the correct alignment and offset, all from @info. Note: current->mm is used
587 * for the search.
588 *
589 * @info: The unmapped area information including the range [low_limit -
590 * high_limit), the alignment offset and mask.
591 *
592 * Return: A memory address or -ENOMEM.
593 */
594static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
595{
596 unsigned long length, gap;
597 unsigned long low_limit, high_limit;
598 struct vm_area_struct *tmp;
599 VMA_ITERATOR(vmi, current->mm, 0);
600
601 /* Adjust search length to account for worst case alignment overhead */
602 length = info->length + info->align_mask + info->start_gap;
603 if (length < info->length)
604 return -ENOMEM;
605
606 low_limit = info->low_limit;
607 if (low_limit < mmap_min_addr)
608 low_limit = mmap_min_addr;
609 high_limit = info->high_limit;
610retry:
611 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
612 return -ENOMEM;
613
614 /*
615 * Adjust for the gap first so it doesn't interfere with the
616 * later alignment. The first step is the minimum needed to
617 * fulill the start gap, the next steps is the minimum to align
618 * that. It is the minimum needed to fulill both.
619 */
620 gap = vma_iter_addr(&vmi) + info->start_gap;
621 gap += (info->align_offset - gap) & info->align_mask;
622 tmp = vma_next(&vmi);
623 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
624 if (vm_start_gap(tmp) < gap + length - 1) {
625 low_limit = tmp->vm_end;
626 vma_iter_reset(&vmi);
627 goto retry;
628 }
629 } else {
630 tmp = vma_prev(&vmi);
631 if (tmp && vm_end_gap(tmp) > gap) {
632 low_limit = vm_end_gap(tmp);
633 vma_iter_reset(&vmi);
634 goto retry;
635 }
636 }
637
638 return gap;
639}
640
641/**
642 * unmapped_area_topdown() - Find an area between the low_limit and the
643 * high_limit with the correct alignment and offset at the highest available
644 * address, all from @info. Note: current->mm is used for the search.
645 *
646 * @info: The unmapped area information including the range [low_limit -
647 * high_limit), the alignment offset and mask.
648 *
649 * Return: A memory address or -ENOMEM.
650 */
651static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
652{
653 unsigned long length, gap, gap_end;
654 unsigned long low_limit, high_limit;
655 struct vm_area_struct *tmp;
656 VMA_ITERATOR(vmi, current->mm, 0);
657
658 /* Adjust search length to account for worst case alignment overhead */
659 length = info->length + info->align_mask + info->start_gap;
660 if (length < info->length)
661 return -ENOMEM;
662
663 low_limit = info->low_limit;
664 if (low_limit < mmap_min_addr)
665 low_limit = mmap_min_addr;
666 high_limit = info->high_limit;
667retry:
668 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
669 return -ENOMEM;
670
671 gap = vma_iter_end(&vmi) - info->length;
672 gap -= (gap - info->align_offset) & info->align_mask;
673 gap_end = vma_iter_end(&vmi);
674 tmp = vma_next(&vmi);
675 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
676 if (vm_start_gap(tmp) < gap_end) {
677 high_limit = vm_start_gap(tmp);
678 vma_iter_reset(&vmi);
679 goto retry;
680 }
681 } else {
682 tmp = vma_prev(&vmi);
683 if (tmp && vm_end_gap(tmp) > gap) {
684 high_limit = tmp->vm_start;
685 vma_iter_reset(&vmi);
686 goto retry;
687 }
688 }
689
690 return gap;
691}
692
693/*
694 * Determine if the allocation needs to ensure that there is no
695 * existing mapping within it's guard gaps, for use as start_gap.
696 */
697static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
698{
699 if (vm_flags & VM_SHADOW_STACK)
700 return PAGE_SIZE;
701
702 return 0;
703}
704
705/*
706 * Search for an unmapped address range.
707 *
708 * We are looking for a range that:
709 * - does not intersect with any VMA;
710 * - is contained within the [low_limit, high_limit) interval;
711 * - is at least the desired size.
712 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
713 */
714unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
715{
716 unsigned long addr;
717
718 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
719 addr = unmapped_area_topdown(info);
720 else
721 addr = unmapped_area(info);
722
723 trace_vm_unmapped_area(addr, info);
724 return addr;
725}
726
727/* Get an address range which is currently unmapped.
728 * For shmat() with addr=0.
729 *
730 * Ugly calling convention alert:
731 * Return value with the low bits set means error value,
732 * ie
733 * if (ret & ~PAGE_MASK)
734 * error = ret;
735 *
736 * This function "knows" that -ENOMEM has the bits set.
737 */
738unsigned long
739generic_get_unmapped_area(struct file *filp, unsigned long addr,
740 unsigned long len, unsigned long pgoff,
741 unsigned long flags, vm_flags_t vm_flags)
742{
743 struct mm_struct *mm = current->mm;
744 struct vm_area_struct *vma, *prev;
745 struct vm_unmapped_area_info info = {};
746 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
747
748 if (len > mmap_end - mmap_min_addr)
749 return -ENOMEM;
750
751 if (flags & MAP_FIXED)
752 return addr;
753
754 if (addr) {
755 addr = PAGE_ALIGN(addr);
756 vma = find_vma_prev(mm, addr, &prev);
757 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
758 (!vma || addr + len <= vm_start_gap(vma)) &&
759 (!prev || addr >= vm_end_gap(prev)))
760 return addr;
761 }
762
763 info.length = len;
764 info.low_limit = mm->mmap_base;
765 info.high_limit = mmap_end;
766 info.start_gap = stack_guard_placement(vm_flags);
767 if (filp && is_file_hugepages(filp))
768 info.align_mask = huge_page_mask_align(filp);
769 return vm_unmapped_area(&info);
770}
771
772#ifndef HAVE_ARCH_UNMAPPED_AREA
773unsigned long
774arch_get_unmapped_area(struct file *filp, unsigned long addr,
775 unsigned long len, unsigned long pgoff,
776 unsigned long flags, vm_flags_t vm_flags)
777{
778 return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
779 vm_flags);
780}
781#endif
782
783/*
784 * This mmap-allocator allocates new areas top-down from below the
785 * stack's low limit (the base):
786 */
787unsigned long
788generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
789 unsigned long len, unsigned long pgoff,
790 unsigned long flags, vm_flags_t vm_flags)
791{
792 struct vm_area_struct *vma, *prev;
793 struct mm_struct *mm = current->mm;
794 struct vm_unmapped_area_info info = {};
795 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
796
797 /* requested length too big for entire address space */
798 if (len > mmap_end - mmap_min_addr)
799 return -ENOMEM;
800
801 if (flags & MAP_FIXED)
802 return addr;
803
804 /* requesting a specific address */
805 if (addr) {
806 addr = PAGE_ALIGN(addr);
807 vma = find_vma_prev(mm, addr, &prev);
808 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
809 (!vma || addr + len <= vm_start_gap(vma)) &&
810 (!prev || addr >= vm_end_gap(prev)))
811 return addr;
812 }
813
814 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
815 info.length = len;
816 info.low_limit = PAGE_SIZE;
817 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
818 info.start_gap = stack_guard_placement(vm_flags);
819 if (filp && is_file_hugepages(filp))
820 info.align_mask = huge_page_mask_align(filp);
821 addr = vm_unmapped_area(&info);
822
823 /*
824 * A failed mmap() very likely causes application failure,
825 * so fall back to the bottom-up function here. This scenario
826 * can happen with large stack limits and large mmap()
827 * allocations.
828 */
829 if (offset_in_page(addr)) {
830 VM_BUG_ON(addr != -ENOMEM);
831 info.flags = 0;
832 info.low_limit = TASK_UNMAPPED_BASE;
833 info.high_limit = mmap_end;
834 addr = vm_unmapped_area(&info);
835 }
836
837 return addr;
838}
839
840#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
841unsigned long
842arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
843 unsigned long len, unsigned long pgoff,
844 unsigned long flags, vm_flags_t vm_flags)
845{
846 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
847 vm_flags);
848}
849#endif
850
851unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
852 unsigned long addr, unsigned long len,
853 unsigned long pgoff, unsigned long flags,
854 vm_flags_t vm_flags)
855{
856 if (test_bit(MMF_TOPDOWN, &mm->flags))
857 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
858 flags, vm_flags);
859 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
860}
861
862unsigned long
863__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
864 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
865{
866 unsigned long (*get_area)(struct file *, unsigned long,
867 unsigned long, unsigned long, unsigned long)
868 = NULL;
869
870 unsigned long error = arch_mmap_check(addr, len, flags);
871 if (error)
872 return error;
873
874 /* Careful about overflows.. */
875 if (len > TASK_SIZE)
876 return -ENOMEM;
877
878 if (file) {
879 if (file->f_op->get_unmapped_area)
880 get_area = file->f_op->get_unmapped_area;
881 } else if (flags & MAP_SHARED) {
882 /*
883 * mmap_region() will call shmem_zero_setup() to create a file,
884 * so use shmem's get_unmapped_area in case it can be huge.
885 */
886 get_area = shmem_get_unmapped_area;
887 }
888
889 /* Always treat pgoff as zero for anonymous memory. */
890 if (!file)
891 pgoff = 0;
892
893 if (get_area) {
894 addr = get_area(file, addr, len, pgoff, flags);
895 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
896 && !addr /* no hint */
897 && IS_ALIGNED(len, PMD_SIZE)) {
898 /* Ensures that larger anonymous mappings are THP aligned. */
899 addr = thp_get_unmapped_area_vmflags(file, addr, len,
900 pgoff, flags, vm_flags);
901 } else {
902 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
903 pgoff, flags, vm_flags);
904 }
905 if (IS_ERR_VALUE(addr))
906 return addr;
907
908 if (addr > TASK_SIZE - len)
909 return -ENOMEM;
910 if (offset_in_page(addr))
911 return -EINVAL;
912
913 error = security_mmap_addr(addr);
914 return error ? error : addr;
915}
916
917unsigned long
918mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
919 unsigned long addr, unsigned long len,
920 unsigned long pgoff, unsigned long flags)
921{
922 if (test_bit(MMF_TOPDOWN, &mm->flags))
923 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
924 return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
925}
926EXPORT_SYMBOL(mm_get_unmapped_area);
927
928/**
929 * find_vma_intersection() - Look up the first VMA which intersects the interval
930 * @mm: The process address space.
931 * @start_addr: The inclusive start user address.
932 * @end_addr: The exclusive end user address.
933 *
934 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
935 * start_addr < end_addr.
936 */
937struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
938 unsigned long start_addr,
939 unsigned long end_addr)
940{
941 unsigned long index = start_addr;
942
943 mmap_assert_locked(mm);
944 return mt_find(&mm->mm_mt, &index, end_addr - 1);
945}
946EXPORT_SYMBOL(find_vma_intersection);
947
948/**
949 * find_vma() - Find the VMA for a given address, or the next VMA.
950 * @mm: The mm_struct to check
951 * @addr: The address
952 *
953 * Returns: The VMA associated with addr, or the next VMA.
954 * May return %NULL in the case of no VMA at addr or above.
955 */
956struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
957{
958 unsigned long index = addr;
959
960 mmap_assert_locked(mm);
961 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
962}
963EXPORT_SYMBOL(find_vma);
964
965/**
966 * find_vma_prev() - Find the VMA for a given address, or the next vma and
967 * set %pprev to the previous VMA, if any.
968 * @mm: The mm_struct to check
969 * @addr: The address
970 * @pprev: The pointer to set to the previous VMA
971 *
972 * Note that RCU lock is missing here since the external mmap_lock() is used
973 * instead.
974 *
975 * Returns: The VMA associated with @addr, or the next vma.
976 * May return %NULL in the case of no vma at addr or above.
977 */
978struct vm_area_struct *
979find_vma_prev(struct mm_struct *mm, unsigned long addr,
980 struct vm_area_struct **pprev)
981{
982 struct vm_area_struct *vma;
983 VMA_ITERATOR(vmi, mm, addr);
984
985 vma = vma_iter_load(&vmi);
986 *pprev = vma_prev(&vmi);
987 if (!vma)
988 vma = vma_next(&vmi);
989 return vma;
990}
991
992/*
993 * Verify that the stack growth is acceptable and
994 * update accounting. This is shared with both the
995 * grow-up and grow-down cases.
996 */
997static int acct_stack_growth(struct vm_area_struct *vma,
998 unsigned long size, unsigned long grow)
999{
1000 struct mm_struct *mm = vma->vm_mm;
1001 unsigned long new_start;
1002
1003 /* address space limit tests */
1004 if (!may_expand_vm(mm, vma->vm_flags, grow))
1005 return -ENOMEM;
1006
1007 /* Stack limit test */
1008 if (size > rlimit(RLIMIT_STACK))
1009 return -ENOMEM;
1010
1011 /* mlock limit tests */
1012 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1013 return -ENOMEM;
1014
1015 /* Check to ensure the stack will not grow into a hugetlb-only region */
1016 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1017 vma->vm_end - size;
1018 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1019 return -EFAULT;
1020
1021 /*
1022 * Overcommit.. This must be the final test, as it will
1023 * update security statistics.
1024 */
1025 if (security_vm_enough_memory_mm(mm, grow))
1026 return -ENOMEM;
1027
1028 return 0;
1029}
1030
1031#if defined(CONFIG_STACK_GROWSUP)
1032/*
1033 * PA-RISC uses this for its stack.
1034 * vma is the last one with address > vma->vm_end. Have to extend vma.
1035 */
1036static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1037{
1038 struct mm_struct *mm = vma->vm_mm;
1039 struct vm_area_struct *next;
1040 unsigned long gap_addr;
1041 int error = 0;
1042 VMA_ITERATOR(vmi, mm, vma->vm_start);
1043
1044 if (!(vma->vm_flags & VM_GROWSUP))
1045 return -EFAULT;
1046
1047 mmap_assert_write_locked(mm);
1048
1049 /* Guard against exceeding limits of the address space. */
1050 address &= PAGE_MASK;
1051 if (address >= (TASK_SIZE & PAGE_MASK))
1052 return -ENOMEM;
1053 address += PAGE_SIZE;
1054
1055 /* Enforce stack_guard_gap */
1056 gap_addr = address + stack_guard_gap;
1057
1058 /* Guard against overflow */
1059 if (gap_addr < address || gap_addr > TASK_SIZE)
1060 gap_addr = TASK_SIZE;
1061
1062 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1063 if (next && vma_is_accessible(next)) {
1064 if (!(next->vm_flags & VM_GROWSUP))
1065 return -ENOMEM;
1066 /* Check that both stack segments have the same anon_vma? */
1067 }
1068
1069 if (next)
1070 vma_iter_prev_range_limit(&vmi, address);
1071
1072 vma_iter_config(&vmi, vma->vm_start, address);
1073 if (vma_iter_prealloc(&vmi, vma))
1074 return -ENOMEM;
1075
1076 /* We must make sure the anon_vma is allocated. */
1077 if (unlikely(anon_vma_prepare(vma))) {
1078 vma_iter_free(&vmi);
1079 return -ENOMEM;
1080 }
1081
1082 /* Lock the VMA before expanding to prevent concurrent page faults */
1083 vma_start_write(vma);
1084 /* We update the anon VMA tree. */
1085 anon_vma_lock_write(vma->anon_vma);
1086
1087 /* Somebody else might have raced and expanded it already */
1088 if (address > vma->vm_end) {
1089 unsigned long size, grow;
1090
1091 size = address - vma->vm_start;
1092 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1093
1094 error = -ENOMEM;
1095 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1096 error = acct_stack_growth(vma, size, grow);
1097 if (!error) {
1098 if (vma->vm_flags & VM_LOCKED)
1099 mm->locked_vm += grow;
1100 vm_stat_account(mm, vma->vm_flags, grow);
1101 anon_vma_interval_tree_pre_update_vma(vma);
1102 vma->vm_end = address;
1103 /* Overwrite old entry in mtree. */
1104 vma_iter_store(&vmi, vma);
1105 anon_vma_interval_tree_post_update_vma(vma);
1106
1107 perf_event_mmap(vma);
1108 }
1109 }
1110 }
1111 anon_vma_unlock_write(vma->anon_vma);
1112 vma_iter_free(&vmi);
1113 validate_mm(mm);
1114 return error;
1115}
1116#endif /* CONFIG_STACK_GROWSUP */
1117
1118/*
1119 * vma is the first one with address < vma->vm_start. Have to extend vma.
1120 * mmap_lock held for writing.
1121 */
1122int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1123{
1124 struct mm_struct *mm = vma->vm_mm;
1125 struct vm_area_struct *prev;
1126 int error = 0;
1127 VMA_ITERATOR(vmi, mm, vma->vm_start);
1128
1129 if (!(vma->vm_flags & VM_GROWSDOWN))
1130 return -EFAULT;
1131
1132 mmap_assert_write_locked(mm);
1133
1134 address &= PAGE_MASK;
1135 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1136 return -EPERM;
1137
1138 /* Enforce stack_guard_gap */
1139 prev = vma_prev(&vmi);
1140 /* Check that both stack segments have the same anon_vma? */
1141 if (prev) {
1142 if (!(prev->vm_flags & VM_GROWSDOWN) &&
1143 vma_is_accessible(prev) &&
1144 (address - prev->vm_end < stack_guard_gap))
1145 return -ENOMEM;
1146 }
1147
1148 if (prev)
1149 vma_iter_next_range_limit(&vmi, vma->vm_start);
1150
1151 vma_iter_config(&vmi, address, vma->vm_end);
1152 if (vma_iter_prealloc(&vmi, vma))
1153 return -ENOMEM;
1154
1155 /* We must make sure the anon_vma is allocated. */
1156 if (unlikely(anon_vma_prepare(vma))) {
1157 vma_iter_free(&vmi);
1158 return -ENOMEM;
1159 }
1160
1161 /* Lock the VMA before expanding to prevent concurrent page faults */
1162 vma_start_write(vma);
1163 /* We update the anon VMA tree. */
1164 anon_vma_lock_write(vma->anon_vma);
1165
1166 /* Somebody else might have raced and expanded it already */
1167 if (address < vma->vm_start) {
1168 unsigned long size, grow;
1169
1170 size = vma->vm_end - address;
1171 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1172
1173 error = -ENOMEM;
1174 if (grow <= vma->vm_pgoff) {
1175 error = acct_stack_growth(vma, size, grow);
1176 if (!error) {
1177 if (vma->vm_flags & VM_LOCKED)
1178 mm->locked_vm += grow;
1179 vm_stat_account(mm, vma->vm_flags, grow);
1180 anon_vma_interval_tree_pre_update_vma(vma);
1181 vma->vm_start = address;
1182 vma->vm_pgoff -= grow;
1183 /* Overwrite old entry in mtree. */
1184 vma_iter_store(&vmi, vma);
1185 anon_vma_interval_tree_post_update_vma(vma);
1186
1187 perf_event_mmap(vma);
1188 }
1189 }
1190 }
1191 anon_vma_unlock_write(vma->anon_vma);
1192 vma_iter_free(&vmi);
1193 validate_mm(mm);
1194 return error;
1195}
1196
1197/* enforced gap between the expanding stack and other mappings. */
1198unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1199
1200static int __init cmdline_parse_stack_guard_gap(char *p)
1201{
1202 unsigned long val;
1203 char *endptr;
1204
1205 val = simple_strtoul(p, &endptr, 10);
1206 if (!*endptr)
1207 stack_guard_gap = val << PAGE_SHIFT;
1208
1209 return 1;
1210}
1211__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1212
1213#ifdef CONFIG_STACK_GROWSUP
1214int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1215{
1216 return expand_upwards(vma, address);
1217}
1218
1219struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1220{
1221 struct vm_area_struct *vma, *prev;
1222
1223 addr &= PAGE_MASK;
1224 vma = find_vma_prev(mm, addr, &prev);
1225 if (vma && (vma->vm_start <= addr))
1226 return vma;
1227 if (!prev)
1228 return NULL;
1229 if (expand_stack_locked(prev, addr))
1230 return NULL;
1231 if (prev->vm_flags & VM_LOCKED)
1232 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1233 return prev;
1234}
1235#else
1236int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1237{
1238 return expand_downwards(vma, address);
1239}
1240
1241struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1242{
1243 struct vm_area_struct *vma;
1244 unsigned long start;
1245
1246 addr &= PAGE_MASK;
1247 vma = find_vma(mm, addr);
1248 if (!vma)
1249 return NULL;
1250 if (vma->vm_start <= addr)
1251 return vma;
1252 start = vma->vm_start;
1253 if (expand_stack_locked(vma, addr))
1254 return NULL;
1255 if (vma->vm_flags & VM_LOCKED)
1256 populate_vma_page_range(vma, addr, start, NULL);
1257 return vma;
1258}
1259#endif
1260
1261#if defined(CONFIG_STACK_GROWSUP)
1262
1263#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1264#define vma_expand_down(vma, addr) (-EFAULT)
1265
1266#else
1267
1268#define vma_expand_up(vma,addr) (-EFAULT)
1269#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1270
1271#endif
1272
1273/*
1274 * expand_stack(): legacy interface for page faulting. Don't use unless
1275 * you have to.
1276 *
1277 * This is called with the mm locked for reading, drops the lock, takes
1278 * the lock for writing, tries to look up a vma again, expands it if
1279 * necessary, and downgrades the lock to reading again.
1280 *
1281 * If no vma is found or it can't be expanded, it returns NULL and has
1282 * dropped the lock.
1283 */
1284struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1285{
1286 struct vm_area_struct *vma, *prev;
1287
1288 mmap_read_unlock(mm);
1289 if (mmap_write_lock_killable(mm))
1290 return NULL;
1291
1292 vma = find_vma_prev(mm, addr, &prev);
1293 if (vma && vma->vm_start <= addr)
1294 goto success;
1295
1296 if (prev && !vma_expand_up(prev, addr)) {
1297 vma = prev;
1298 goto success;
1299 }
1300
1301 if (vma && !vma_expand_down(vma, addr))
1302 goto success;
1303
1304 mmap_write_unlock(mm);
1305 return NULL;
1306
1307success:
1308 mmap_write_downgrade(mm);
1309 return vma;
1310}
1311
1312/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1313 * @mm: The mm_struct
1314 * @start: The start address to munmap
1315 * @len: The length to be munmapped.
1316 * @uf: The userfaultfd list_head
1317 *
1318 * Return: 0 on success, error otherwise.
1319 */
1320int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1321 struct list_head *uf)
1322{
1323 VMA_ITERATOR(vmi, mm, start);
1324
1325 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1326}
1327
1328unsigned long mmap_region(struct file *file, unsigned long addr,
1329 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1330 struct list_head *uf)
1331{
1332 unsigned long ret;
1333 bool writable_file_mapping = false;
1334
1335 /* Check to see if MDWE is applicable. */
1336 if (map_deny_write_exec(vm_flags, vm_flags))
1337 return -EACCES;
1338
1339 /* Allow architectures to sanity-check the vm_flags. */
1340 if (!arch_validate_flags(vm_flags))
1341 return -EINVAL;
1342
1343 /* Map writable and ensure this isn't a sealed memfd. */
1344 if (file && is_shared_maywrite(vm_flags)) {
1345 int error = mapping_map_writable(file->f_mapping);
1346
1347 if (error)
1348 return error;
1349 writable_file_mapping = true;
1350 }
1351
1352 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
1353
1354 /* Clear our write mapping regardless of error. */
1355 if (writable_file_mapping)
1356 mapping_unmap_writable(file->f_mapping);
1357
1358 validate_mm(current->mm);
1359 return ret;
1360}
1361
1362static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1363{
1364 int ret;
1365 struct mm_struct *mm = current->mm;
1366 LIST_HEAD(uf);
1367 VMA_ITERATOR(vmi, mm, start);
1368
1369 if (mmap_write_lock_killable(mm))
1370 return -EINTR;
1371
1372 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1373 if (ret || !unlock)
1374 mmap_write_unlock(mm);
1375
1376 userfaultfd_unmap_complete(mm, &uf);
1377 return ret;
1378}
1379
1380int vm_munmap(unsigned long start, size_t len)
1381{
1382 return __vm_munmap(start, len, false);
1383}
1384EXPORT_SYMBOL(vm_munmap);
1385
1386SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1387{
1388 addr = untagged_addr(addr);
1389 return __vm_munmap(addr, len, true);
1390}
1391
1392
1393/*
1394 * Emulation of deprecated remap_file_pages() syscall.
1395 */
1396SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1397 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1398{
1399
1400 struct mm_struct *mm = current->mm;
1401 struct vm_area_struct *vma;
1402 unsigned long populate = 0;
1403 unsigned long ret = -EINVAL;
1404 struct file *file;
1405 vm_flags_t vm_flags;
1406
1407 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1408 current->comm, current->pid);
1409
1410 if (prot)
1411 return ret;
1412 start = start & PAGE_MASK;
1413 size = size & PAGE_MASK;
1414
1415 if (start + size <= start)
1416 return ret;
1417
1418 /* Does pgoff wrap? */
1419 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1420 return ret;
1421
1422 if (mmap_read_lock_killable(mm))
1423 return -EINTR;
1424
1425 /*
1426 * Look up VMA under read lock first so we can perform the security
1427 * without holding locks (which can be problematic). We reacquire a
1428 * write lock later and check nothing changed underneath us.
1429 */
1430 vma = vma_lookup(mm, start);
1431
1432 if (!vma || !(vma->vm_flags & VM_SHARED)) {
1433 mmap_read_unlock(mm);
1434 return -EINVAL;
1435 }
1436
1437 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1438 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1439 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1440
1441 flags &= MAP_NONBLOCK;
1442 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1443 if (vma->vm_flags & VM_LOCKED)
1444 flags |= MAP_LOCKED;
1445
1446 /* Save vm_flags used to calculate prot and flags, and recheck later. */
1447 vm_flags = vma->vm_flags;
1448 file = get_file(vma->vm_file);
1449
1450 mmap_read_unlock(mm);
1451
1452 /* Call outside mmap_lock to be consistent with other callers. */
1453 ret = security_mmap_file(file, prot, flags);
1454 if (ret) {
1455 fput(file);
1456 return ret;
1457 }
1458
1459 ret = -EINVAL;
1460
1461 /* OK security check passed, take write lock + let it rip. */
1462 if (mmap_write_lock_killable(mm)) {
1463 fput(file);
1464 return -EINTR;
1465 }
1466
1467 vma = vma_lookup(mm, start);
1468
1469 if (!vma)
1470 goto out;
1471
1472 /* Make sure things didn't change under us. */
1473 if (vma->vm_flags != vm_flags)
1474 goto out;
1475 if (vma->vm_file != file)
1476 goto out;
1477
1478 if (start + size > vma->vm_end) {
1479 VMA_ITERATOR(vmi, mm, vma->vm_end);
1480 struct vm_area_struct *next, *prev = vma;
1481
1482 for_each_vma_range(vmi, next, start + size) {
1483 /* hole between vmas ? */
1484 if (next->vm_start != prev->vm_end)
1485 goto out;
1486
1487 if (next->vm_file != vma->vm_file)
1488 goto out;
1489
1490 if (next->vm_flags != vma->vm_flags)
1491 goto out;
1492
1493 if (start + size <= next->vm_end)
1494 break;
1495
1496 prev = next;
1497 }
1498
1499 if (!next)
1500 goto out;
1501 }
1502
1503 ret = do_mmap(vma->vm_file, start, size,
1504 prot, flags, 0, pgoff, &populate, NULL);
1505out:
1506 mmap_write_unlock(mm);
1507 fput(file);
1508 if (populate)
1509 mm_populate(ret, populate);
1510 if (!IS_ERR_VALUE(ret))
1511 ret = 0;
1512 return ret;
1513}
1514
1515/*
1516 * do_brk_flags() - Increase the brk vma if the flags match.
1517 * @vmi: The vma iterator
1518 * @addr: The start address
1519 * @len: The length of the increase
1520 * @vma: The vma,
1521 * @flags: The VMA Flags
1522 *
1523 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
1524 * do not match then create a new anonymous VMA. Eventually we may be able to
1525 * do some brk-specific accounting here.
1526 */
1527static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1528 unsigned long addr, unsigned long len, unsigned long flags)
1529{
1530 struct mm_struct *mm = current->mm;
1531
1532 /*
1533 * Check against address space limits by the changed size
1534 * Note: This happens *after* clearing old mappings in some code paths.
1535 */
1536 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1537 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1538 return -ENOMEM;
1539
1540 if (mm->map_count > sysctl_max_map_count)
1541 return -ENOMEM;
1542
1543 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1544 return -ENOMEM;
1545
1546 /*
1547 * Expand the existing vma if possible; Note that singular lists do not
1548 * occur after forking, so the expand will only happen on new VMAs.
1549 */
1550 if (vma && vma->vm_end == addr) {
1551 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1552
1553 vmg.prev = vma;
1554 /* vmi is positioned at prev, which this mode expects. */
1555 vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1556
1557 if (vma_merge_new_range(&vmg))
1558 goto out;
1559 else if (vmg_nomem(&vmg))
1560 goto unacct_fail;
1561 }
1562
1563 if (vma)
1564 vma_iter_next_range(vmi);
1565 /* create a vma struct for an anonymous mapping */
1566 vma = vm_area_alloc(mm);
1567 if (!vma)
1568 goto unacct_fail;
1569
1570 vma_set_anonymous(vma);
1571 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1572 vm_flags_init(vma, flags);
1573 vma->vm_page_prot = vm_get_page_prot(flags);
1574 vma_start_write(vma);
1575 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1576 goto mas_store_fail;
1577
1578 mm->map_count++;
1579 validate_mm(mm);
1580 ksm_add_vma(vma);
1581out:
1582 perf_event_mmap(vma);
1583 mm->total_vm += len >> PAGE_SHIFT;
1584 mm->data_vm += len >> PAGE_SHIFT;
1585 if (flags & VM_LOCKED)
1586 mm->locked_vm += (len >> PAGE_SHIFT);
1587 vm_flags_set(vma, VM_SOFTDIRTY);
1588 return 0;
1589
1590mas_store_fail:
1591 vm_area_free(vma);
1592unacct_fail:
1593 vm_unacct_memory(len >> PAGE_SHIFT);
1594 return -ENOMEM;
1595}
1596
1597int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1598{
1599 struct mm_struct *mm = current->mm;
1600 struct vm_area_struct *vma = NULL;
1601 unsigned long len;
1602 int ret;
1603 bool populate;
1604 LIST_HEAD(uf);
1605 VMA_ITERATOR(vmi, mm, addr);
1606
1607 len = PAGE_ALIGN(request);
1608 if (len < request)
1609 return -ENOMEM;
1610 if (!len)
1611 return 0;
1612
1613 /* Until we need other flags, refuse anything except VM_EXEC. */
1614 if ((flags & (~VM_EXEC)) != 0)
1615 return -EINVAL;
1616
1617 if (mmap_write_lock_killable(mm))
1618 return -EINTR;
1619
1620 ret = check_brk_limits(addr, len);
1621 if (ret)
1622 goto limits_failed;
1623
1624 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1625 if (ret)
1626 goto munmap_failed;
1627
1628 vma = vma_prev(&vmi);
1629 ret = do_brk_flags(&vmi, vma, addr, len, flags);
1630 populate = ((mm->def_flags & VM_LOCKED) != 0);
1631 mmap_write_unlock(mm);
1632 userfaultfd_unmap_complete(mm, &uf);
1633 if (populate && !ret)
1634 mm_populate(addr, len);
1635 return ret;
1636
1637munmap_failed:
1638limits_failed:
1639 mmap_write_unlock(mm);
1640 return ret;
1641}
1642EXPORT_SYMBOL(vm_brk_flags);
1643
1644/* Release all mmaps. */
1645void exit_mmap(struct mm_struct *mm)
1646{
1647 struct mmu_gather tlb;
1648 struct vm_area_struct *vma;
1649 unsigned long nr_accounted = 0;
1650 VMA_ITERATOR(vmi, mm, 0);
1651 int count = 0;
1652
1653 /* mm's last user has gone, and its about to be pulled down */
1654 mmu_notifier_release(mm);
1655
1656 mmap_read_lock(mm);
1657 arch_exit_mmap(mm);
1658
1659 vma = vma_next(&vmi);
1660 if (!vma || unlikely(xa_is_zero(vma))) {
1661 /* Can happen if dup_mmap() received an OOM */
1662 mmap_read_unlock(mm);
1663 mmap_write_lock(mm);
1664 goto destroy;
1665 }
1666
1667 lru_add_drain();
1668 flush_cache_mm(mm);
1669 tlb_gather_mmu_fullmm(&tlb, mm);
1670 /* update_hiwater_rss(mm) here? but nobody should be looking */
1671 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1672 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1673 mmap_read_unlock(mm);
1674
1675 /*
1676 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1677 * because the memory has been already freed.
1678 */
1679 set_bit(MMF_OOM_SKIP, &mm->flags);
1680 mmap_write_lock(mm);
1681 mt_clear_in_rcu(&mm->mm_mt);
1682 vma_iter_set(&vmi, vma->vm_end);
1683 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1684 USER_PGTABLES_CEILING, true);
1685 tlb_finish_mmu(&tlb);
1686
1687 /*
1688 * Walk the list again, actually closing and freeing it, with preemption
1689 * enabled, without holding any MM locks besides the unreachable
1690 * mmap_write_lock.
1691 */
1692 vma_iter_set(&vmi, vma->vm_end);
1693 do {
1694 if (vma->vm_flags & VM_ACCOUNT)
1695 nr_accounted += vma_pages(vma);
1696 remove_vma(vma, /* unreachable = */ true);
1697 count++;
1698 cond_resched();
1699 vma = vma_next(&vmi);
1700 } while (vma && likely(!xa_is_zero(vma)));
1701
1702 BUG_ON(count != mm->map_count);
1703
1704 trace_exit_mmap(mm);
1705destroy:
1706 __mt_destroy(&mm->mm_mt);
1707 mmap_write_unlock(mm);
1708 vm_unacct_memory(nr_accounted);
1709}
1710
1711/* Insert vm structure into process list sorted by address
1712 * and into the inode's i_mmap tree. If vm_file is non-NULL
1713 * then i_mmap_rwsem is taken here.
1714 */
1715int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1716{
1717 unsigned long charged = vma_pages(vma);
1718
1719
1720 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1721 return -ENOMEM;
1722
1723 if ((vma->vm_flags & VM_ACCOUNT) &&
1724 security_vm_enough_memory_mm(mm, charged))
1725 return -ENOMEM;
1726
1727 /*
1728 * The vm_pgoff of a purely anonymous vma should be irrelevant
1729 * until its first write fault, when page's anon_vma and index
1730 * are set. But now set the vm_pgoff it will almost certainly
1731 * end up with (unless mremap moves it elsewhere before that
1732 * first wfault), so /proc/pid/maps tells a consistent story.
1733 *
1734 * By setting it to reflect the virtual start address of the
1735 * vma, merges and splits can happen in a seamless way, just
1736 * using the existing file pgoff checks and manipulations.
1737 * Similarly in do_mmap and in do_brk_flags.
1738 */
1739 if (vma_is_anonymous(vma)) {
1740 BUG_ON(vma->anon_vma);
1741 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1742 }
1743
1744 if (vma_link(mm, vma)) {
1745 if (vma->vm_flags & VM_ACCOUNT)
1746 vm_unacct_memory(charged);
1747 return -ENOMEM;
1748 }
1749
1750 return 0;
1751}
1752
1753/*
1754 * Return true if the calling process may expand its vm space by the passed
1755 * number of pages
1756 */
1757bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1758{
1759 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1760 return false;
1761
1762 if (is_data_mapping(flags) &&
1763 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1764 /* Workaround for Valgrind */
1765 if (rlimit(RLIMIT_DATA) == 0 &&
1766 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1767 return true;
1768
1769 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1770 current->comm, current->pid,
1771 (mm->data_vm + npages) << PAGE_SHIFT,
1772 rlimit(RLIMIT_DATA),
1773 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1774
1775 if (!ignore_rlimit_data)
1776 return false;
1777 }
1778
1779 return true;
1780}
1781
1782void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1783{
1784 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1785
1786 if (is_exec_mapping(flags))
1787 mm->exec_vm += npages;
1788 else if (is_stack_mapping(flags))
1789 mm->stack_vm += npages;
1790 else if (is_data_mapping(flags))
1791 mm->data_vm += npages;
1792}
1793
1794static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1795
1796/*
1797 * Close hook, called for unmap() and on the old vma for mremap().
1798 *
1799 * Having a close hook prevents vma merging regardless of flags.
1800 */
1801static void special_mapping_close(struct vm_area_struct *vma)
1802{
1803 const struct vm_special_mapping *sm = vma->vm_private_data;
1804
1805 if (sm->close)
1806 sm->close(sm, vma);
1807}
1808
1809static const char *special_mapping_name(struct vm_area_struct *vma)
1810{
1811 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1812}
1813
1814static int special_mapping_mremap(struct vm_area_struct *new_vma)
1815{
1816 struct vm_special_mapping *sm = new_vma->vm_private_data;
1817
1818 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1819 return -EFAULT;
1820
1821 if (sm->mremap)
1822 return sm->mremap(sm, new_vma);
1823
1824 return 0;
1825}
1826
1827static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1828{
1829 /*
1830 * Forbid splitting special mappings - kernel has expectations over
1831 * the number of pages in mapping. Together with VM_DONTEXPAND
1832 * the size of vma should stay the same over the special mapping's
1833 * lifetime.
1834 */
1835 return -EINVAL;
1836}
1837
1838static const struct vm_operations_struct special_mapping_vmops = {
1839 .close = special_mapping_close,
1840 .fault = special_mapping_fault,
1841 .mremap = special_mapping_mremap,
1842 .name = special_mapping_name,
1843 /* vDSO code relies that VVAR can't be accessed remotely */
1844 .access = NULL,
1845 .may_split = special_mapping_split,
1846};
1847
1848static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1849{
1850 struct vm_area_struct *vma = vmf->vma;
1851 pgoff_t pgoff;
1852 struct page **pages;
1853 struct vm_special_mapping *sm = vma->vm_private_data;
1854
1855 if (sm->fault)
1856 return sm->fault(sm, vmf->vma, vmf);
1857
1858 pages = sm->pages;
1859
1860 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1861 pgoff--;
1862
1863 if (*pages) {
1864 struct page *page = *pages;
1865 get_page(page);
1866 vmf->page = page;
1867 return 0;
1868 }
1869
1870 return VM_FAULT_SIGBUS;
1871}
1872
1873static struct vm_area_struct *__install_special_mapping(
1874 struct mm_struct *mm,
1875 unsigned long addr, unsigned long len,
1876 unsigned long vm_flags, void *priv,
1877 const struct vm_operations_struct *ops)
1878{
1879 int ret;
1880 struct vm_area_struct *vma;
1881
1882 vma = vm_area_alloc(mm);
1883 if (unlikely(vma == NULL))
1884 return ERR_PTR(-ENOMEM);
1885
1886 vma_set_range(vma, addr, addr + len, 0);
1887 vm_flags_init(vma, (vm_flags | mm->def_flags |
1888 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
1889 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1890
1891 vma->vm_ops = ops;
1892 vma->vm_private_data = priv;
1893
1894 ret = insert_vm_struct(mm, vma);
1895 if (ret)
1896 goto out;
1897
1898 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1899
1900 perf_event_mmap(vma);
1901
1902 return vma;
1903
1904out:
1905 vm_area_free(vma);
1906 return ERR_PTR(ret);
1907}
1908
1909bool vma_is_special_mapping(const struct vm_area_struct *vma,
1910 const struct vm_special_mapping *sm)
1911{
1912 return vma->vm_private_data == sm &&
1913 vma->vm_ops == &special_mapping_vmops;
1914}
1915
1916/*
1917 * Called with mm->mmap_lock held for writing.
1918 * Insert a new vma covering the given region, with the given flags.
1919 * Its pages are supplied by the given array of struct page *.
1920 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1921 * The region past the last page supplied will always produce SIGBUS.
1922 * The array pointer and the pages it points to are assumed to stay alive
1923 * for as long as this mapping might exist.
1924 */
1925struct vm_area_struct *_install_special_mapping(
1926 struct mm_struct *mm,
1927 unsigned long addr, unsigned long len,
1928 unsigned long vm_flags, const struct vm_special_mapping *spec)
1929{
1930 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1931 &special_mapping_vmops);
1932}
1933
1934/*
1935 * initialise the percpu counter for VM
1936 */
1937void __init mmap_init(void)
1938{
1939 int ret;
1940
1941 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1942 VM_BUG_ON(ret);
1943}
1944
1945/*
1946 * Initialise sysctl_user_reserve_kbytes.
1947 *
1948 * This is intended to prevent a user from starting a single memory hogging
1949 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1950 * mode.
1951 *
1952 * The default value is min(3% of free memory, 128MB)
1953 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1954 */
1955static int init_user_reserve(void)
1956{
1957 unsigned long free_kbytes;
1958
1959 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1960
1961 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1962 return 0;
1963}
1964subsys_initcall(init_user_reserve);
1965
1966/*
1967 * Initialise sysctl_admin_reserve_kbytes.
1968 *
1969 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1970 * to log in and kill a memory hogging process.
1971 *
1972 * Systems with more than 256MB will reserve 8MB, enough to recover
1973 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1974 * only reserve 3% of free pages by default.
1975 */
1976static int init_admin_reserve(void)
1977{
1978 unsigned long free_kbytes;
1979
1980 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1981
1982 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1983 return 0;
1984}
1985subsys_initcall(init_admin_reserve);
1986
1987/*
1988 * Reinititalise user and admin reserves if memory is added or removed.
1989 *
1990 * The default user reserve max is 128MB, and the default max for the
1991 * admin reserve is 8MB. These are usually, but not always, enough to
1992 * enable recovery from a memory hogging process using login/sshd, a shell,
1993 * and tools like top. It may make sense to increase or even disable the
1994 * reserve depending on the existence of swap or variations in the recovery
1995 * tools. So, the admin may have changed them.
1996 *
1997 * If memory is added and the reserves have been eliminated or increased above
1998 * the default max, then we'll trust the admin.
1999 *
2000 * If memory is removed and there isn't enough free memory, then we
2001 * need to reset the reserves.
2002 *
2003 * Otherwise keep the reserve set by the admin.
2004 */
2005static int reserve_mem_notifier(struct notifier_block *nb,
2006 unsigned long action, void *data)
2007{
2008 unsigned long tmp, free_kbytes;
2009
2010 switch (action) {
2011 case MEM_ONLINE:
2012 /* Default max is 128MB. Leave alone if modified by operator. */
2013 tmp = sysctl_user_reserve_kbytes;
2014 if (tmp > 0 && tmp < SZ_128K)
2015 init_user_reserve();
2016
2017 /* Default max is 8MB. Leave alone if modified by operator. */
2018 tmp = sysctl_admin_reserve_kbytes;
2019 if (tmp > 0 && tmp < SZ_8K)
2020 init_admin_reserve();
2021
2022 break;
2023 case MEM_OFFLINE:
2024 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2025
2026 if (sysctl_user_reserve_kbytes > free_kbytes) {
2027 init_user_reserve();
2028 pr_info("vm.user_reserve_kbytes reset to %lu\n",
2029 sysctl_user_reserve_kbytes);
2030 }
2031
2032 if (sysctl_admin_reserve_kbytes > free_kbytes) {
2033 init_admin_reserve();
2034 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2035 sysctl_admin_reserve_kbytes);
2036 }
2037 break;
2038 default:
2039 break;
2040 }
2041 return NOTIFY_OK;
2042}
2043
2044static int __meminit init_reserve_notifier(void)
2045{
2046 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2047 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2048
2049 return 0;
2050}
2051subsys_initcall(init_reserve_notifier);
2052
2053/*
2054 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2055 * this VMA and its relocated range, which will now reside at [vma->vm_start -
2056 * shift, vma->vm_end - shift).
2057 *
2058 * This function is almost certainly NOT what you want for anything other than
2059 * early executable temporary stack relocation.
2060 */
2061int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2062{
2063 /*
2064 * The process proceeds as follows:
2065 *
2066 * 1) Use shift to calculate the new vma endpoints.
2067 * 2) Extend vma to cover both the old and new ranges. This ensures the
2068 * arguments passed to subsequent functions are consistent.
2069 * 3) Move vma's page tables to the new range.
2070 * 4) Free up any cleared pgd range.
2071 * 5) Shrink the vma to cover only the new range.
2072 */
2073
2074 struct mm_struct *mm = vma->vm_mm;
2075 unsigned long old_start = vma->vm_start;
2076 unsigned long old_end = vma->vm_end;
2077 unsigned long length = old_end - old_start;
2078 unsigned long new_start = old_start - shift;
2079 unsigned long new_end = old_end - shift;
2080 VMA_ITERATOR(vmi, mm, new_start);
2081 VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2082 struct vm_area_struct *next;
2083 struct mmu_gather tlb;
2084
2085 BUG_ON(new_start > new_end);
2086
2087 /*
2088 * ensure there are no vmas between where we want to go
2089 * and where we are
2090 */
2091 if (vma != vma_next(&vmi))
2092 return -EFAULT;
2093
2094 vma_iter_prev_range(&vmi);
2095 /*
2096 * cover the whole range: [new_start, old_end)
2097 */
2098 vmg.vma = vma;
2099 if (vma_expand(&vmg))
2100 return -ENOMEM;
2101
2102 /*
2103 * move the page tables downwards, on failure we rely on
2104 * process cleanup to remove whatever mess we made.
2105 */
2106 if (length != move_page_tables(vma, old_start,
2107 vma, new_start, length, false, true))
2108 return -ENOMEM;
2109
2110 lru_add_drain();
2111 tlb_gather_mmu(&tlb, mm);
2112 next = vma_next(&vmi);
2113 if (new_end > old_start) {
2114 /*
2115 * when the old and new regions overlap clear from new_end.
2116 */
2117 free_pgd_range(&tlb, new_end, old_end, new_end,
2118 next ? next->vm_start : USER_PGTABLES_CEILING);
2119 } else {
2120 /*
2121 * otherwise, clean from old_start; this is done to not touch
2122 * the address space in [new_end, old_start) some architectures
2123 * have constraints on va-space that make this illegal (IA64) -
2124 * for the others its just a little faster.
2125 */
2126 free_pgd_range(&tlb, old_start, old_end, new_end,
2127 next ? next->vm_start : USER_PGTABLES_CEILING);
2128 }
2129 tlb_finish_mmu(&tlb);
2130
2131 vma_prev(&vmi);
2132 /* Shrink the vma to just the new range */
2133 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2134}