Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/cgroup-defs.h>
29#include <linux/page_counter.h>
30#include <linux/memcontrol.h>
31#include <linux/cgroup.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/pagevec.h>
37#include <linux/vm_event_item.h>
38#include <linux/smp.h>
39#include <linux/page-flags.h>
40#include <linux/backing-dev.h>
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
43#include <linux/limits.h>
44#include <linux/export.h>
45#include <linux/list.h>
46#include <linux/mutex.h>
47#include <linux/rbtree.h>
48#include <linux/slab.h>
49#include <linux/swapops.h>
50#include <linux/spinlock.h>
51#include <linux/fs.h>
52#include <linux/seq_file.h>
53#include <linux/parser.h>
54#include <linux/vmpressure.h>
55#include <linux/memremap.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/resume_user_mode.h>
62#include <linux/psi.h>
63#include <linux/seq_buf.h>
64#include <linux/sched/isolation.h>
65#include <linux/kmemleak.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "memcontrol-v1.h"
71
72#include <linux/uaccess.h>
73
74#define CREATE_TRACE_POINTS
75#include <trace/events/memcg.h>
76#undef CREATE_TRACE_POINTS
77
78#include <trace/events/vmscan.h>
79
80struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81EXPORT_SYMBOL(memory_cgrp_subsys);
82
83struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85/* Active memory cgroup to use from an interrupt context */
86DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89/* Socket memory accounting disabled? */
90static bool cgroup_memory_nosocket __ro_after_init;
91
92/* Kernel memory accounting disabled? */
93static bool cgroup_memory_nokmem __ro_after_init;
94
95/* BPF memory accounting disabled? */
96static bool cgroup_memory_nobpf __ro_after_init;
97
98#ifdef CONFIG_CGROUP_WRITEBACK
99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100#endif
101
102static inline bool task_is_dying(void)
103{
104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
105 (current->flags & PF_EXITING);
106}
107
108/* Some nice accessors for the vmpressure. */
109struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
110{
111 if (!memcg)
112 memcg = root_mem_cgroup;
113 return &memcg->vmpressure;
114}
115
116struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
117{
118 return container_of(vmpr, struct mem_cgroup, vmpressure);
119}
120
121#define SEQ_BUF_SIZE SZ_4K
122#define CURRENT_OBJCG_UPDATE_BIT 0
123#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
124
125static DEFINE_SPINLOCK(objcg_lock);
126
127bool mem_cgroup_kmem_disabled(void)
128{
129 return cgroup_memory_nokmem;
130}
131
132static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
133 unsigned int nr_pages);
134
135static void obj_cgroup_release(struct percpu_ref *ref)
136{
137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
138 unsigned int nr_bytes;
139 unsigned int nr_pages;
140 unsigned long flags;
141
142 /*
143 * At this point all allocated objects are freed, and
144 * objcg->nr_charged_bytes can't have an arbitrary byte value.
145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
146 *
147 * The following sequence can lead to it:
148 * 1) CPU0: objcg == stock->cached_objcg
149 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
150 * PAGE_SIZE bytes are charged
151 * 3) CPU1: a process from another memcg is allocating something,
152 * the stock if flushed,
153 * objcg->nr_charged_bytes = PAGE_SIZE - 92
154 * 5) CPU0: we do release this object,
155 * 92 bytes are added to stock->nr_bytes
156 * 6) CPU0: stock is flushed,
157 * 92 bytes are added to objcg->nr_charged_bytes
158 *
159 * In the result, nr_charged_bytes == PAGE_SIZE.
160 * This page will be uncharged in obj_cgroup_release().
161 */
162 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
164 nr_pages = nr_bytes >> PAGE_SHIFT;
165
166 if (nr_pages)
167 obj_cgroup_uncharge_pages(objcg, nr_pages);
168
169 spin_lock_irqsave(&objcg_lock, flags);
170 list_del(&objcg->list);
171 spin_unlock_irqrestore(&objcg_lock, flags);
172
173 percpu_ref_exit(ref);
174 kfree_rcu(objcg, rcu);
175}
176
177static struct obj_cgroup *obj_cgroup_alloc(void)
178{
179 struct obj_cgroup *objcg;
180 int ret;
181
182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
183 if (!objcg)
184 return NULL;
185
186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
187 GFP_KERNEL);
188 if (ret) {
189 kfree(objcg);
190 return NULL;
191 }
192 INIT_LIST_HEAD(&objcg->list);
193 return objcg;
194}
195
196static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
197 struct mem_cgroup *parent)
198{
199 struct obj_cgroup *objcg, *iter;
200
201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
202
203 spin_lock_irq(&objcg_lock);
204
205 /* 1) Ready to reparent active objcg. */
206 list_add(&objcg->list, &memcg->objcg_list);
207 /* 2) Reparent active objcg and already reparented objcgs to parent. */
208 list_for_each_entry(iter, &memcg->objcg_list, list)
209 WRITE_ONCE(iter->memcg, parent);
210 /* 3) Move already reparented objcgs to the parent's list */
211 list_splice(&memcg->objcg_list, &parent->objcg_list);
212
213 spin_unlock_irq(&objcg_lock);
214
215 percpu_ref_kill(&objcg->refcnt);
216}
217
218/*
219 * A lot of the calls to the cache allocation functions are expected to be
220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
221 * conditional to this static branch, we'll have to allow modules that does
222 * kmem_cache_alloc and the such to see this symbol as well
223 */
224DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
225EXPORT_SYMBOL(memcg_kmem_online_key);
226
227DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
228EXPORT_SYMBOL(memcg_bpf_enabled_key);
229
230/**
231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
232 * @folio: folio of interest
233 *
234 * If memcg is bound to the default hierarchy, css of the memcg associated
235 * with @folio is returned. The returned css remains associated with @folio
236 * until it is released.
237 *
238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
239 * is returned.
240 */
241struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
242{
243 struct mem_cgroup *memcg = folio_memcg(folio);
244
245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
246 memcg = root_mem_cgroup;
247
248 return &memcg->css;
249}
250
251/**
252 * page_cgroup_ino - return inode number of the memcg a page is charged to
253 * @page: the page
254 *
255 * Look up the closest online ancestor of the memory cgroup @page is charged to
256 * and return its inode number or 0 if @page is not charged to any cgroup. It
257 * is safe to call this function without holding a reference to @page.
258 *
259 * Note, this function is inherently racy, because there is nothing to prevent
260 * the cgroup inode from getting torn down and potentially reallocated a moment
261 * after page_cgroup_ino() returns, so it only should be used by callers that
262 * do not care (such as procfs interfaces).
263 */
264ino_t page_cgroup_ino(struct page *page)
265{
266 struct mem_cgroup *memcg;
267 unsigned long ino = 0;
268
269 rcu_read_lock();
270 /* page_folio() is racy here, but the entire function is racy anyway */
271 memcg = folio_memcg_check(page_folio(page));
272
273 while (memcg && !(memcg->css.flags & CSS_ONLINE))
274 memcg = parent_mem_cgroup(memcg);
275 if (memcg)
276 ino = cgroup_ino(memcg->css.cgroup);
277 rcu_read_unlock();
278 return ino;
279}
280
281/* Subset of node_stat_item for memcg stats */
282static const unsigned int memcg_node_stat_items[] = {
283 NR_INACTIVE_ANON,
284 NR_ACTIVE_ANON,
285 NR_INACTIVE_FILE,
286 NR_ACTIVE_FILE,
287 NR_UNEVICTABLE,
288 NR_SLAB_RECLAIMABLE_B,
289 NR_SLAB_UNRECLAIMABLE_B,
290 WORKINGSET_REFAULT_ANON,
291 WORKINGSET_REFAULT_FILE,
292 WORKINGSET_ACTIVATE_ANON,
293 WORKINGSET_ACTIVATE_FILE,
294 WORKINGSET_RESTORE_ANON,
295 WORKINGSET_RESTORE_FILE,
296 WORKINGSET_NODERECLAIM,
297 NR_ANON_MAPPED,
298 NR_FILE_MAPPED,
299 NR_FILE_PAGES,
300 NR_FILE_DIRTY,
301 NR_WRITEBACK,
302 NR_SHMEM,
303 NR_SHMEM_THPS,
304 NR_FILE_THPS,
305 NR_ANON_THPS,
306 NR_KERNEL_STACK_KB,
307 NR_PAGETABLE,
308 NR_SECONDARY_PAGETABLE,
309#ifdef CONFIG_SWAP
310 NR_SWAPCACHE,
311#endif
312#ifdef CONFIG_NUMA_BALANCING
313 PGPROMOTE_SUCCESS,
314#endif
315 PGDEMOTE_KSWAPD,
316 PGDEMOTE_DIRECT,
317 PGDEMOTE_KHUGEPAGED,
318#ifdef CONFIG_HUGETLB_PAGE
319 NR_HUGETLB,
320#endif
321};
322
323static const unsigned int memcg_stat_items[] = {
324 MEMCG_SWAP,
325 MEMCG_SOCK,
326 MEMCG_PERCPU_B,
327 MEMCG_VMALLOC,
328 MEMCG_KMEM,
329 MEMCG_ZSWAP_B,
330 MEMCG_ZSWAPPED,
331};
332
333#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
334#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
335 ARRAY_SIZE(memcg_stat_items))
336#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
337static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
338
339static void init_memcg_stats(void)
340{
341 u8 i, j = 0;
342
343 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
344
345 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
346
347 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
348 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
349
350 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
351 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
352}
353
354static inline int memcg_stats_index(int idx)
355{
356 return mem_cgroup_stats_index[idx];
357}
358
359struct lruvec_stats_percpu {
360 /* Local (CPU and cgroup) state */
361 long state[NR_MEMCG_NODE_STAT_ITEMS];
362
363 /* Delta calculation for lockless upward propagation */
364 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
365};
366
367struct lruvec_stats {
368 /* Aggregated (CPU and subtree) state */
369 long state[NR_MEMCG_NODE_STAT_ITEMS];
370
371 /* Non-hierarchical (CPU aggregated) state */
372 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
373
374 /* Pending child counts during tree propagation */
375 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
376};
377
378unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
379{
380 struct mem_cgroup_per_node *pn;
381 long x;
382 int i;
383
384 if (mem_cgroup_disabled())
385 return node_page_state(lruvec_pgdat(lruvec), idx);
386
387 i = memcg_stats_index(idx);
388 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
389 return 0;
390
391 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
392 x = READ_ONCE(pn->lruvec_stats->state[i]);
393#ifdef CONFIG_SMP
394 if (x < 0)
395 x = 0;
396#endif
397 return x;
398}
399
400unsigned long lruvec_page_state_local(struct lruvec *lruvec,
401 enum node_stat_item idx)
402{
403 struct mem_cgroup_per_node *pn;
404 long x;
405 int i;
406
407 if (mem_cgroup_disabled())
408 return node_page_state(lruvec_pgdat(lruvec), idx);
409
410 i = memcg_stats_index(idx);
411 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
412 return 0;
413
414 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
415 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
416#ifdef CONFIG_SMP
417 if (x < 0)
418 x = 0;
419#endif
420 return x;
421}
422
423/* Subset of vm_event_item to report for memcg event stats */
424static const unsigned int memcg_vm_event_stat[] = {
425#ifdef CONFIG_MEMCG_V1
426 PGPGIN,
427 PGPGOUT,
428#endif
429 PSWPIN,
430 PSWPOUT,
431 PGSCAN_KSWAPD,
432 PGSCAN_DIRECT,
433 PGSCAN_KHUGEPAGED,
434 PGSTEAL_KSWAPD,
435 PGSTEAL_DIRECT,
436 PGSTEAL_KHUGEPAGED,
437 PGFAULT,
438 PGMAJFAULT,
439 PGREFILL,
440 PGACTIVATE,
441 PGDEACTIVATE,
442 PGLAZYFREE,
443 PGLAZYFREED,
444#ifdef CONFIG_SWAP
445 SWPIN_ZERO,
446 SWPOUT_ZERO,
447#endif
448#ifdef CONFIG_ZSWAP
449 ZSWPIN,
450 ZSWPOUT,
451 ZSWPWB,
452#endif
453#ifdef CONFIG_TRANSPARENT_HUGEPAGE
454 THP_FAULT_ALLOC,
455 THP_COLLAPSE_ALLOC,
456 THP_SWPOUT,
457 THP_SWPOUT_FALLBACK,
458#endif
459#ifdef CONFIG_NUMA_BALANCING
460 NUMA_PAGE_MIGRATE,
461 NUMA_PTE_UPDATES,
462 NUMA_HINT_FAULTS,
463#endif
464};
465
466#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
467static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
468
469static void init_memcg_events(void)
470{
471 u8 i;
472
473 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
474
475 memset(mem_cgroup_events_index, U8_MAX,
476 sizeof(mem_cgroup_events_index));
477
478 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
479 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
480}
481
482static inline int memcg_events_index(enum vm_event_item idx)
483{
484 return mem_cgroup_events_index[idx];
485}
486
487struct memcg_vmstats_percpu {
488 /* Stats updates since the last flush */
489 unsigned int stats_updates;
490
491 /* Cached pointers for fast iteration in memcg_rstat_updated() */
492 struct memcg_vmstats_percpu *parent;
493 struct memcg_vmstats *vmstats;
494
495 /* The above should fit a single cacheline for memcg_rstat_updated() */
496
497 /* Local (CPU and cgroup) page state & events */
498 long state[MEMCG_VMSTAT_SIZE];
499 unsigned long events[NR_MEMCG_EVENTS];
500
501 /* Delta calculation for lockless upward propagation */
502 long state_prev[MEMCG_VMSTAT_SIZE];
503 unsigned long events_prev[NR_MEMCG_EVENTS];
504} ____cacheline_aligned;
505
506struct memcg_vmstats {
507 /* Aggregated (CPU and subtree) page state & events */
508 long state[MEMCG_VMSTAT_SIZE];
509 unsigned long events[NR_MEMCG_EVENTS];
510
511 /* Non-hierarchical (CPU aggregated) page state & events */
512 long state_local[MEMCG_VMSTAT_SIZE];
513 unsigned long events_local[NR_MEMCG_EVENTS];
514
515 /* Pending child counts during tree propagation */
516 long state_pending[MEMCG_VMSTAT_SIZE];
517 unsigned long events_pending[NR_MEMCG_EVENTS];
518
519 /* Stats updates since the last flush */
520 atomic64_t stats_updates;
521};
522
523/*
524 * memcg and lruvec stats flushing
525 *
526 * Many codepaths leading to stats update or read are performance sensitive and
527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
528 * flushing the kernel does:
529 *
530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
531 * rstat update tree grow unbounded.
532 *
533 * 2) Flush the stats synchronously on reader side only when there are more than
534 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
535 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
536 * only for 2 seconds due to (1).
537 */
538static void flush_memcg_stats_dwork(struct work_struct *w);
539static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
540static u64 flush_last_time;
541
542#define FLUSH_TIME (2UL*HZ)
543
544/*
545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
546 * not rely on this as part of an acquired spinlock_t lock. These functions are
547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
548 * is sufficient.
549 */
550static void memcg_stats_lock(void)
551{
552 preempt_disable_nested();
553 VM_WARN_ON_IRQS_ENABLED();
554}
555
556static void __memcg_stats_lock(void)
557{
558 preempt_disable_nested();
559}
560
561static void memcg_stats_unlock(void)
562{
563 preempt_enable_nested();
564}
565
566
567static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
568{
569 return atomic64_read(&vmstats->stats_updates) >
570 MEMCG_CHARGE_BATCH * num_online_cpus();
571}
572
573static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
574{
575 struct memcg_vmstats_percpu *statc;
576 int cpu = smp_processor_id();
577 unsigned int stats_updates;
578
579 if (!val)
580 return;
581
582 cgroup_rstat_updated(memcg->css.cgroup, cpu);
583 statc = this_cpu_ptr(memcg->vmstats_percpu);
584 for (; statc; statc = statc->parent) {
585 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
586 WRITE_ONCE(statc->stats_updates, stats_updates);
587 if (stats_updates < MEMCG_CHARGE_BATCH)
588 continue;
589
590 /*
591 * If @memcg is already flush-able, increasing stats_updates is
592 * redundant. Avoid the overhead of the atomic update.
593 */
594 if (!memcg_vmstats_needs_flush(statc->vmstats))
595 atomic64_add(stats_updates,
596 &statc->vmstats->stats_updates);
597 WRITE_ONCE(statc->stats_updates, 0);
598 }
599}
600
601static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
602{
603 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
604
605 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
606 force, needs_flush);
607
608 if (!force && !needs_flush)
609 return;
610
611 if (mem_cgroup_is_root(memcg))
612 WRITE_ONCE(flush_last_time, jiffies_64);
613
614 cgroup_rstat_flush(memcg->css.cgroup);
615}
616
617/*
618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
619 * @memcg: root of the subtree to flush
620 *
621 * Flushing is serialized by the underlying global rstat lock. There is also a
622 * minimum amount of work to be done even if there are no stat updates to flush.
623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
624 * avoids unnecessary work and contention on the underlying lock.
625 */
626void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
627{
628 if (mem_cgroup_disabled())
629 return;
630
631 if (!memcg)
632 memcg = root_mem_cgroup;
633
634 __mem_cgroup_flush_stats(memcg, false);
635}
636
637void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638{
639 /* Only flush if the periodic flusher is one full cycle late */
640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 mem_cgroup_flush_stats(memcg);
642}
643
644static void flush_memcg_stats_dwork(struct work_struct *w)
645{
646 /*
647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 * in latency-sensitive paths is as cheap as possible.
649 */
650 __mem_cgroup_flush_stats(root_mem_cgroup, true);
651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652}
653
654unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655{
656 long x;
657 int i = memcg_stats_index(idx);
658
659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 return 0;
661
662 x = READ_ONCE(memcg->vmstats->state[i]);
663#ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666#endif
667 return x;
668}
669
670static int memcg_page_state_unit(int item);
671
672/*
673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
675 */
676static int memcg_state_val_in_pages(int idx, int val)
677{
678 int unit = memcg_page_state_unit(idx);
679
680 if (!val || unit == PAGE_SIZE)
681 return val;
682 else
683 return max(val * unit / PAGE_SIZE, 1UL);
684}
685
686/**
687 * __mod_memcg_state - update cgroup memory statistics
688 * @memcg: the memory cgroup
689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
690 * @val: delta to add to the counter, can be negative
691 */
692void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
693 int val)
694{
695 int i = memcg_stats_index(idx);
696
697 if (mem_cgroup_disabled())
698 return;
699
700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 return;
702
703 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 val = memcg_state_val_in_pages(idx, val);
705 memcg_rstat_updated(memcg, val);
706 trace_mod_memcg_state(memcg, idx, val);
707}
708
709/* idx can be of type enum memcg_stat_item or node_stat_item. */
710unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711{
712 long x;
713 int i = memcg_stats_index(idx);
714
715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 return 0;
717
718 x = READ_ONCE(memcg->vmstats->state_local[i]);
719#ifdef CONFIG_SMP
720 if (x < 0)
721 x = 0;
722#endif
723 return x;
724}
725
726static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
727 enum node_stat_item idx,
728 int val)
729{
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 int i = memcg_stats_index(idx);
733
734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
735 return;
736
737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 memcg = pn->memcg;
739
740 /*
741 * The caller from rmap relies on disabled preemption because they never
742 * update their counter from in-interrupt context. For these two
743 * counters we check that the update is never performed from an
744 * interrupt context while other caller need to have disabled interrupt.
745 */
746 __memcg_stats_lock();
747 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
748 switch (idx) {
749 case NR_ANON_MAPPED:
750 case NR_FILE_MAPPED:
751 case NR_ANON_THPS:
752 WARN_ON_ONCE(!in_task());
753 break;
754 default:
755 VM_WARN_ON_IRQS_ENABLED();
756 }
757 }
758
759 /* Update memcg */
760 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
761
762 /* Update lruvec */
763 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
764
765 val = memcg_state_val_in_pages(idx, val);
766 memcg_rstat_updated(memcg, val);
767 trace_mod_memcg_lruvec_state(memcg, idx, val);
768 memcg_stats_unlock();
769}
770
771/**
772 * __mod_lruvec_state - update lruvec memory statistics
773 * @lruvec: the lruvec
774 * @idx: the stat item
775 * @val: delta to add to the counter, can be negative
776 *
777 * The lruvec is the intersection of the NUMA node and a cgroup. This
778 * function updates the all three counters that are affected by a
779 * change of state at this level: per-node, per-cgroup, per-lruvec.
780 */
781void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
782 int val)
783{
784 /* Update node */
785 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
786
787 /* Update memcg and lruvec */
788 if (!mem_cgroup_disabled())
789 __mod_memcg_lruvec_state(lruvec, idx, val);
790}
791
792void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
793 int val)
794{
795 struct mem_cgroup *memcg;
796 pg_data_t *pgdat = folio_pgdat(folio);
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = folio_memcg(folio);
801 /* Untracked pages have no memcg, no lruvec. Update only the node */
802 if (!memcg) {
803 rcu_read_unlock();
804 __mod_node_page_state(pgdat, idx, val);
805 return;
806 }
807
808 lruvec = mem_cgroup_lruvec(memcg, pgdat);
809 __mod_lruvec_state(lruvec, idx, val);
810 rcu_read_unlock();
811}
812EXPORT_SYMBOL(__lruvec_stat_mod_folio);
813
814void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
815{
816 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
817 struct mem_cgroup *memcg;
818 struct lruvec *lruvec;
819
820 rcu_read_lock();
821 memcg = mem_cgroup_from_slab_obj(p);
822
823 /*
824 * Untracked pages have no memcg, no lruvec. Update only the
825 * node. If we reparent the slab objects to the root memcg,
826 * when we free the slab object, we need to update the per-memcg
827 * vmstats to keep it correct for the root memcg.
828 */
829 if (!memcg) {
830 __mod_node_page_state(pgdat, idx, val);
831 } else {
832 lruvec = mem_cgroup_lruvec(memcg, pgdat);
833 __mod_lruvec_state(lruvec, idx, val);
834 }
835 rcu_read_unlock();
836}
837
838/**
839 * __count_memcg_events - account VM events in a cgroup
840 * @memcg: the memory cgroup
841 * @idx: the event item
842 * @count: the number of events that occurred
843 */
844void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
845 unsigned long count)
846{
847 int i = memcg_events_index(idx);
848
849 if (mem_cgroup_disabled())
850 return;
851
852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
853 return;
854
855 memcg_stats_lock();
856 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 memcg_rstat_updated(memcg, count);
858 trace_count_memcg_events(memcg, idx, count);
859 memcg_stats_unlock();
860}
861
862unsigned long memcg_events(struct mem_cgroup *memcg, int event)
863{
864 int i = memcg_events_index(event);
865
866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 return 0;
868
869 return READ_ONCE(memcg->vmstats->events[i]);
870}
871
872unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
873{
874 int i = memcg_events_index(event);
875
876 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
877 return 0;
878
879 return READ_ONCE(memcg->vmstats->events_local[i]);
880}
881
882struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
883{
884 /*
885 * mm_update_next_owner() may clear mm->owner to NULL
886 * if it races with swapoff, page migration, etc.
887 * So this can be called with p == NULL.
888 */
889 if (unlikely(!p))
890 return NULL;
891
892 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
893}
894EXPORT_SYMBOL(mem_cgroup_from_task);
895
896static __always_inline struct mem_cgroup *active_memcg(void)
897{
898 if (!in_task())
899 return this_cpu_read(int_active_memcg);
900 else
901 return current->active_memcg;
902}
903
904/**
905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
906 * @mm: mm from which memcg should be extracted. It can be NULL.
907 *
908 * Obtain a reference on mm->memcg and returns it if successful. If mm
909 * is NULL, then the memcg is chosen as follows:
910 * 1) The active memcg, if set.
911 * 2) current->mm->memcg, if available
912 * 3) root memcg
913 * If mem_cgroup is disabled, NULL is returned.
914 */
915struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
916{
917 struct mem_cgroup *memcg;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 /*
923 * Page cache insertions can happen without an
924 * actual mm context, e.g. during disk probing
925 * on boot, loopback IO, acct() writes etc.
926 *
927 * No need to css_get on root memcg as the reference
928 * counting is disabled on the root level in the
929 * cgroup core. See CSS_NO_REF.
930 */
931 if (unlikely(!mm)) {
932 memcg = active_memcg();
933 if (unlikely(memcg)) {
934 /* remote memcg must hold a ref */
935 css_get(&memcg->css);
936 return memcg;
937 }
938 mm = current->mm;
939 if (unlikely(!mm))
940 return root_mem_cgroup;
941 }
942
943 rcu_read_lock();
944 do {
945 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
946 if (unlikely(!memcg))
947 memcg = root_mem_cgroup;
948 } while (!css_tryget(&memcg->css));
949 rcu_read_unlock();
950 return memcg;
951}
952EXPORT_SYMBOL(get_mem_cgroup_from_mm);
953
954/**
955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
956 */
957struct mem_cgroup *get_mem_cgroup_from_current(void)
958{
959 struct mem_cgroup *memcg;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964again:
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(current);
967 if (!css_tryget(&memcg->css)) {
968 rcu_read_unlock();
969 goto again;
970 }
971 rcu_read_unlock();
972 return memcg;
973}
974
975/**
976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
977 * @folio: folio from which memcg should be extracted.
978 */
979struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
980{
981 struct mem_cgroup *memcg = folio_memcg(folio);
982
983 if (mem_cgroup_disabled())
984 return NULL;
985
986 rcu_read_lock();
987 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
988 memcg = root_mem_cgroup;
989 rcu_read_unlock();
990 return memcg;
991}
992
993/**
994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
995 * @root: hierarchy root
996 * @prev: previously returned memcg, NULL on first invocation
997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
998 *
999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
1010struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011 struct mem_cgroup *prev,
1012 struct mem_cgroup_reclaim_cookie *reclaim)
1013{
1014 struct mem_cgroup_reclaim_iter *iter;
1015 struct cgroup_subsys_state *css;
1016 struct mem_cgroup *pos;
1017 struct mem_cgroup *next;
1018
1019 if (mem_cgroup_disabled())
1020 return NULL;
1021
1022 if (!root)
1023 root = root_mem_cgroup;
1024
1025 rcu_read_lock();
1026restart:
1027 next = NULL;
1028
1029 if (reclaim) {
1030 int gen;
1031 int nid = reclaim->pgdat->node_id;
1032
1033 iter = &root->nodeinfo[nid]->iter;
1034 gen = atomic_read(&iter->generation);
1035
1036 /*
1037 * On start, join the current reclaim iteration cycle.
1038 * Exit when a concurrent walker completes it.
1039 */
1040 if (!prev)
1041 reclaim->generation = gen;
1042 else if (reclaim->generation != gen)
1043 goto out_unlock;
1044
1045 pos = READ_ONCE(iter->position);
1046 } else
1047 pos = prev;
1048
1049 css = pos ? &pos->css : NULL;
1050
1051 while ((css = css_next_descendant_pre(css, &root->css))) {
1052 /*
1053 * Verify the css and acquire a reference. The root
1054 * is provided by the caller, so we know it's alive
1055 * and kicking, and don't take an extra reference.
1056 */
1057 if (css == &root->css || css_tryget(css))
1058 break;
1059 }
1060
1061 next = mem_cgroup_from_css(css);
1062
1063 if (reclaim) {
1064 /*
1065 * The position could have already been updated by a competing
1066 * thread, so check that the value hasn't changed since we read
1067 * it to avoid reclaiming from the same cgroup twice.
1068 */
1069 if (cmpxchg(&iter->position, pos, next) != pos) {
1070 if (css && css != &root->css)
1071 css_put(css);
1072 goto restart;
1073 }
1074
1075 if (!next) {
1076 atomic_inc(&iter->generation);
1077
1078 /*
1079 * Reclaimers share the hierarchy walk, and a
1080 * new one might jump in right at the end of
1081 * the hierarchy - make sure they see at least
1082 * one group and restart from the beginning.
1083 */
1084 if (!prev)
1085 goto restart;
1086 }
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return next;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgroup1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (!mem_cgroup_is_root(last))
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(mem_cgroup_is_root(memcg));
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180}
1181
1182#ifdef CONFIG_DEBUG_VM
1183void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1184{
1185 struct mem_cgroup *memcg;
1186
1187 if (mem_cgroup_disabled())
1188 return;
1189
1190 memcg = folio_memcg(folio);
1191
1192 if (!memcg)
1193 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1194 else
1195 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1196}
1197#endif
1198
1199/**
1200 * folio_lruvec_lock - Lock the lruvec for a folio.
1201 * @folio: Pointer to the folio.
1202 *
1203 * These functions are safe to use under any of the following conditions:
1204 * - folio locked
1205 * - folio_test_lru false
1206 * - folio frozen (refcount of 0)
1207 *
1208 * Return: The lruvec this folio is on with its lock held.
1209 */
1210struct lruvec *folio_lruvec_lock(struct folio *folio)
1211{
1212 struct lruvec *lruvec = folio_lruvec(folio);
1213
1214 spin_lock(&lruvec->lru_lock);
1215 lruvec_memcg_debug(lruvec, folio);
1216
1217 return lruvec;
1218}
1219
1220/**
1221 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1222 * @folio: Pointer to the folio.
1223 *
1224 * These functions are safe to use under any of the following conditions:
1225 * - folio locked
1226 * - folio_test_lru false
1227 * - folio frozen (refcount of 0)
1228 *
1229 * Return: The lruvec this folio is on with its lock held and interrupts
1230 * disabled.
1231 */
1232struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1233{
1234 struct lruvec *lruvec = folio_lruvec(folio);
1235
1236 spin_lock_irq(&lruvec->lru_lock);
1237 lruvec_memcg_debug(lruvec, folio);
1238
1239 return lruvec;
1240}
1241
1242/**
1243 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1244 * @folio: Pointer to the folio.
1245 * @flags: Pointer to irqsave flags.
1246 *
1247 * These functions are safe to use under any of the following conditions:
1248 * - folio locked
1249 * - folio_test_lru false
1250 * - folio frozen (refcount of 0)
1251 *
1252 * Return: The lruvec this folio is on with its lock held and interrupts
1253 * disabled.
1254 */
1255struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1256 unsigned long *flags)
1257{
1258 struct lruvec *lruvec = folio_lruvec(folio);
1259
1260 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1261 lruvec_memcg_debug(lruvec, folio);
1262
1263 return lruvec;
1264}
1265
1266/**
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
1270 * @zid: zone id of the accounted pages
1271 * @nr_pages: positive when adding or negative when removing
1272 *
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list.
1275 */
1276void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1277 int zid, int nr_pages)
1278{
1279 struct mem_cgroup_per_node *mz;
1280 unsigned long *lru_size;
1281 long size;
1282
1283 if (mem_cgroup_disabled())
1284 return;
1285
1286 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1287 lru_size = &mz->lru_zone_size[zid][lru];
1288
1289 if (nr_pages < 0)
1290 *lru_size += nr_pages;
1291
1292 size = *lru_size;
1293 if (WARN_ONCE(size < 0,
1294 "%s(%p, %d, %d): lru_size %ld\n",
1295 __func__, lruvec, lru, nr_pages, size)) {
1296 VM_BUG_ON(1);
1297 *lru_size = 0;
1298 }
1299
1300 if (nr_pages > 0)
1301 *lru_size += nr_pages;
1302}
1303
1304/**
1305 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1306 * @memcg: the memory cgroup
1307 *
1308 * Returns the maximum amount of memory @mem can be charged with, in
1309 * pages.
1310 */
1311static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1312{
1313 unsigned long margin = 0;
1314 unsigned long count;
1315 unsigned long limit;
1316
1317 count = page_counter_read(&memcg->memory);
1318 limit = READ_ONCE(memcg->memory.max);
1319 if (count < limit)
1320 margin = limit - count;
1321
1322 if (do_memsw_account()) {
1323 count = page_counter_read(&memcg->memsw);
1324 limit = READ_ONCE(memcg->memsw.max);
1325 if (count < limit)
1326 margin = min(margin, limit - count);
1327 else
1328 margin = 0;
1329 }
1330
1331 return margin;
1332}
1333
1334struct memory_stat {
1335 const char *name;
1336 unsigned int idx;
1337};
1338
1339static const struct memory_stat memory_stats[] = {
1340 { "anon", NR_ANON_MAPPED },
1341 { "file", NR_FILE_PAGES },
1342 { "kernel", MEMCG_KMEM },
1343 { "kernel_stack", NR_KERNEL_STACK_KB },
1344 { "pagetables", NR_PAGETABLE },
1345 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1346 { "percpu", MEMCG_PERCPU_B },
1347 { "sock", MEMCG_SOCK },
1348 { "vmalloc", MEMCG_VMALLOC },
1349 { "shmem", NR_SHMEM },
1350#ifdef CONFIG_ZSWAP
1351 { "zswap", MEMCG_ZSWAP_B },
1352 { "zswapped", MEMCG_ZSWAPPED },
1353#endif
1354 { "file_mapped", NR_FILE_MAPPED },
1355 { "file_dirty", NR_FILE_DIRTY },
1356 { "file_writeback", NR_WRITEBACK },
1357#ifdef CONFIG_SWAP
1358 { "swapcached", NR_SWAPCACHE },
1359#endif
1360#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1361 { "anon_thp", NR_ANON_THPS },
1362 { "file_thp", NR_FILE_THPS },
1363 { "shmem_thp", NR_SHMEM_THPS },
1364#endif
1365 { "inactive_anon", NR_INACTIVE_ANON },
1366 { "active_anon", NR_ACTIVE_ANON },
1367 { "inactive_file", NR_INACTIVE_FILE },
1368 { "active_file", NR_ACTIVE_FILE },
1369 { "unevictable", NR_UNEVICTABLE },
1370 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1371 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1372#ifdef CONFIG_HUGETLB_PAGE
1373 { "hugetlb", NR_HUGETLB },
1374#endif
1375
1376 /* The memory events */
1377 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1378 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1379 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1380 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1381 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1382 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1383 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1384
1385 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1386 { "pgdemote_direct", PGDEMOTE_DIRECT },
1387 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1388#ifdef CONFIG_NUMA_BALANCING
1389 { "pgpromote_success", PGPROMOTE_SUCCESS },
1390#endif
1391};
1392
1393/* The actual unit of the state item, not the same as the output unit */
1394static int memcg_page_state_unit(int item)
1395{
1396 switch (item) {
1397 case MEMCG_PERCPU_B:
1398 case MEMCG_ZSWAP_B:
1399 case NR_SLAB_RECLAIMABLE_B:
1400 case NR_SLAB_UNRECLAIMABLE_B:
1401 return 1;
1402 case NR_KERNEL_STACK_KB:
1403 return SZ_1K;
1404 default:
1405 return PAGE_SIZE;
1406 }
1407}
1408
1409/* Translate stat items to the correct unit for memory.stat output */
1410static int memcg_page_state_output_unit(int item)
1411{
1412 /*
1413 * Workingset state is actually in pages, but we export it to userspace
1414 * as a scalar count of events, so special case it here.
1415 *
1416 * Demotion and promotion activities are exported in pages, consistent
1417 * with their global counterparts.
1418 */
1419 switch (item) {
1420 case WORKINGSET_REFAULT_ANON:
1421 case WORKINGSET_REFAULT_FILE:
1422 case WORKINGSET_ACTIVATE_ANON:
1423 case WORKINGSET_ACTIVATE_FILE:
1424 case WORKINGSET_RESTORE_ANON:
1425 case WORKINGSET_RESTORE_FILE:
1426 case WORKINGSET_NODERECLAIM:
1427 case PGDEMOTE_KSWAPD:
1428 case PGDEMOTE_DIRECT:
1429 case PGDEMOTE_KHUGEPAGED:
1430#ifdef CONFIG_NUMA_BALANCING
1431 case PGPROMOTE_SUCCESS:
1432#endif
1433 return 1;
1434 default:
1435 return memcg_page_state_unit(item);
1436 }
1437}
1438
1439unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1440{
1441 return memcg_page_state(memcg, item) *
1442 memcg_page_state_output_unit(item);
1443}
1444
1445unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1446{
1447 return memcg_page_state_local(memcg, item) *
1448 memcg_page_state_output_unit(item);
1449}
1450
1451static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1452{
1453 int i;
1454
1455 /*
1456 * Provide statistics on the state of the memory subsystem as
1457 * well as cumulative event counters that show past behavior.
1458 *
1459 * This list is ordered following a combination of these gradients:
1460 * 1) generic big picture -> specifics and details
1461 * 2) reflecting userspace activity -> reflecting kernel heuristics
1462 *
1463 * Current memory state:
1464 */
1465 mem_cgroup_flush_stats(memcg);
1466
1467 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1468 u64 size;
1469
1470#ifdef CONFIG_HUGETLB_PAGE
1471 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1472 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
1473 continue;
1474#endif
1475 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1476 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1477
1478 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1479 size += memcg_page_state_output(memcg,
1480 NR_SLAB_RECLAIMABLE_B);
1481 seq_buf_printf(s, "slab %llu\n", size);
1482 }
1483 }
1484
1485 /* Accumulated memory events */
1486 seq_buf_printf(s, "pgscan %lu\n",
1487 memcg_events(memcg, PGSCAN_KSWAPD) +
1488 memcg_events(memcg, PGSCAN_DIRECT) +
1489 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1490 seq_buf_printf(s, "pgsteal %lu\n",
1491 memcg_events(memcg, PGSTEAL_KSWAPD) +
1492 memcg_events(memcg, PGSTEAL_DIRECT) +
1493 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1494
1495 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1496#ifdef CONFIG_MEMCG_V1
1497 if (memcg_vm_event_stat[i] == PGPGIN ||
1498 memcg_vm_event_stat[i] == PGPGOUT)
1499 continue;
1500#endif
1501 seq_buf_printf(s, "%s %lu\n",
1502 vm_event_name(memcg_vm_event_stat[i]),
1503 memcg_events(memcg, memcg_vm_event_stat[i]));
1504 }
1505}
1506
1507static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1508{
1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 memcg_stat_format(memcg, s);
1511 else
1512 memcg1_stat_format(memcg, s);
1513 if (seq_buf_has_overflowed(s))
1514 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1515}
1516
1517/**
1518 * mem_cgroup_print_oom_context: Print OOM information relevant to
1519 * memory controller.
1520 * @memcg: The memory cgroup that went over limit
1521 * @p: Task that is going to be killed
1522 *
1523 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1524 * enabled
1525 */
1526void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1527{
1528 rcu_read_lock();
1529
1530 if (memcg) {
1531 pr_cont(",oom_memcg=");
1532 pr_cont_cgroup_path(memcg->css.cgroup);
1533 } else
1534 pr_cont(",global_oom");
1535 if (p) {
1536 pr_cont(",task_memcg=");
1537 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1538 }
1539 rcu_read_unlock();
1540}
1541
1542/**
1543 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1544 * memory controller.
1545 * @memcg: The memory cgroup that went over limit
1546 */
1547void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1548{
1549 /* Use static buffer, for the caller is holding oom_lock. */
1550 static char buf[SEQ_BUF_SIZE];
1551 struct seq_buf s;
1552
1553 lockdep_assert_held(&oom_lock);
1554
1555 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1556 K((u64)page_counter_read(&memcg->memory)),
1557 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1558 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1559 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1560 K((u64)page_counter_read(&memcg->swap)),
1561 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1562#ifdef CONFIG_MEMCG_V1
1563 else {
1564 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1565 K((u64)page_counter_read(&memcg->memsw)),
1566 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1567 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1568 K((u64)page_counter_read(&memcg->kmem)),
1569 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1570 }
1571#endif
1572
1573 pr_info("Memory cgroup stats for ");
1574 pr_cont_cgroup_path(memcg->css.cgroup);
1575 pr_cont(":");
1576 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1577 memory_stat_format(memcg, &s);
1578 seq_buf_do_printk(&s, KERN_INFO);
1579}
1580
1581/*
1582 * Return the memory (and swap, if configured) limit for a memcg.
1583 */
1584unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1585{
1586 unsigned long max = READ_ONCE(memcg->memory.max);
1587
1588 if (do_memsw_account()) {
1589 if (mem_cgroup_swappiness(memcg)) {
1590 /* Calculate swap excess capacity from memsw limit */
1591 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1592
1593 max += min(swap, (unsigned long)total_swap_pages);
1594 }
1595 } else {
1596 if (mem_cgroup_swappiness(memcg))
1597 max += min(READ_ONCE(memcg->swap.max),
1598 (unsigned long)total_swap_pages);
1599 }
1600 return max;
1601}
1602
1603unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1604{
1605 return page_counter_read(&memcg->memory);
1606}
1607
1608static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1609 int order)
1610{
1611 struct oom_control oc = {
1612 .zonelist = NULL,
1613 .nodemask = NULL,
1614 .memcg = memcg,
1615 .gfp_mask = gfp_mask,
1616 .order = order,
1617 };
1618 bool ret = true;
1619
1620 if (mutex_lock_killable(&oom_lock))
1621 return true;
1622
1623 if (mem_cgroup_margin(memcg) >= (1 << order))
1624 goto unlock;
1625
1626 /*
1627 * A few threads which were not waiting at mutex_lock_killable() can
1628 * fail to bail out. Therefore, check again after holding oom_lock.
1629 */
1630 ret = task_is_dying() || out_of_memory(&oc);
1631
1632unlock:
1633 mutex_unlock(&oom_lock);
1634 return ret;
1635}
1636
1637/*
1638 * Returns true if successfully killed one or more processes. Though in some
1639 * corner cases it can return true even without killing any process.
1640 */
1641static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1642{
1643 bool locked, ret;
1644
1645 if (order > PAGE_ALLOC_COSTLY_ORDER)
1646 return false;
1647
1648 memcg_memory_event(memcg, MEMCG_OOM);
1649
1650 if (!memcg1_oom_prepare(memcg, &locked))
1651 return false;
1652
1653 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1654
1655 memcg1_oom_finish(memcg, locked);
1656
1657 return ret;
1658}
1659
1660/**
1661 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1662 * @victim: task to be killed by the OOM killer
1663 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1664 *
1665 * Returns a pointer to a memory cgroup, which has to be cleaned up
1666 * by killing all belonging OOM-killable tasks.
1667 *
1668 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1669 */
1670struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1671 struct mem_cgroup *oom_domain)
1672{
1673 struct mem_cgroup *oom_group = NULL;
1674 struct mem_cgroup *memcg;
1675
1676 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1677 return NULL;
1678
1679 if (!oom_domain)
1680 oom_domain = root_mem_cgroup;
1681
1682 rcu_read_lock();
1683
1684 memcg = mem_cgroup_from_task(victim);
1685 if (mem_cgroup_is_root(memcg))
1686 goto out;
1687
1688 /*
1689 * If the victim task has been asynchronously moved to a different
1690 * memory cgroup, we might end up killing tasks outside oom_domain.
1691 * In this case it's better to ignore memory.group.oom.
1692 */
1693 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1694 goto out;
1695
1696 /*
1697 * Traverse the memory cgroup hierarchy from the victim task's
1698 * cgroup up to the OOMing cgroup (or root) to find the
1699 * highest-level memory cgroup with oom.group set.
1700 */
1701 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1702 if (READ_ONCE(memcg->oom_group))
1703 oom_group = memcg;
1704
1705 if (memcg == oom_domain)
1706 break;
1707 }
1708
1709 if (oom_group)
1710 css_get(&oom_group->css);
1711out:
1712 rcu_read_unlock();
1713
1714 return oom_group;
1715}
1716
1717void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1718{
1719 pr_info("Tasks in ");
1720 pr_cont_cgroup_path(memcg->css.cgroup);
1721 pr_cont(" are going to be killed due to memory.oom.group set\n");
1722}
1723
1724struct memcg_stock_pcp {
1725 local_lock_t stock_lock;
1726 struct mem_cgroup *cached; /* this never be root cgroup */
1727 unsigned int nr_pages;
1728
1729 struct obj_cgroup *cached_objcg;
1730 struct pglist_data *cached_pgdat;
1731 unsigned int nr_bytes;
1732 int nr_slab_reclaimable_b;
1733 int nr_slab_unreclaimable_b;
1734
1735 struct work_struct work;
1736 unsigned long flags;
1737#define FLUSHING_CACHED_CHARGE 0
1738};
1739static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1740 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1741};
1742static DEFINE_MUTEX(percpu_charge_mutex);
1743
1744static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1745static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1746 struct mem_cgroup *root_memcg);
1747
1748/**
1749 * consume_stock: Try to consume stocked charge on this cpu.
1750 * @memcg: memcg to consume from.
1751 * @nr_pages: how many pages to charge.
1752 *
1753 * The charges will only happen if @memcg matches the current cpu's memcg
1754 * stock, and at least @nr_pages are available in that stock. Failure to
1755 * service an allocation will refill the stock.
1756 *
1757 * returns true if successful, false otherwise.
1758 */
1759static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1760{
1761 struct memcg_stock_pcp *stock;
1762 unsigned int stock_pages;
1763 unsigned long flags;
1764 bool ret = false;
1765
1766 if (nr_pages > MEMCG_CHARGE_BATCH)
1767 return ret;
1768
1769 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1770
1771 stock = this_cpu_ptr(&memcg_stock);
1772 stock_pages = READ_ONCE(stock->nr_pages);
1773 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1774 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1775 ret = true;
1776 }
1777
1778 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1779
1780 return ret;
1781}
1782
1783/*
1784 * Returns stocks cached in percpu and reset cached information.
1785 */
1786static void drain_stock(struct memcg_stock_pcp *stock)
1787{
1788 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1789 struct mem_cgroup *old = READ_ONCE(stock->cached);
1790
1791 if (!old)
1792 return;
1793
1794 if (stock_pages) {
1795 page_counter_uncharge(&old->memory, stock_pages);
1796 if (do_memsw_account())
1797 page_counter_uncharge(&old->memsw, stock_pages);
1798
1799 WRITE_ONCE(stock->nr_pages, 0);
1800 }
1801
1802 css_put(&old->css);
1803 WRITE_ONCE(stock->cached, NULL);
1804}
1805
1806static void drain_local_stock(struct work_struct *dummy)
1807{
1808 struct memcg_stock_pcp *stock;
1809 struct obj_cgroup *old = NULL;
1810 unsigned long flags;
1811
1812 /*
1813 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1814 * drain_stock races is that we always operate on local CPU stock
1815 * here with IRQ disabled
1816 */
1817 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1818
1819 stock = this_cpu_ptr(&memcg_stock);
1820 old = drain_obj_stock(stock);
1821 drain_stock(stock);
1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823
1824 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1825 obj_cgroup_put(old);
1826}
1827
1828/*
1829 * Cache charges(val) to local per_cpu area.
1830 * This will be consumed by consume_stock() function, later.
1831 */
1832static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1833{
1834 struct memcg_stock_pcp *stock;
1835 unsigned int stock_pages;
1836
1837 stock = this_cpu_ptr(&memcg_stock);
1838 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1839 drain_stock(stock);
1840 css_get(&memcg->css);
1841 WRITE_ONCE(stock->cached, memcg);
1842 }
1843 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1844 WRITE_ONCE(stock->nr_pages, stock_pages);
1845
1846 if (stock_pages > MEMCG_CHARGE_BATCH)
1847 drain_stock(stock);
1848}
1849
1850static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1851{
1852 unsigned long flags;
1853
1854 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1855 __refill_stock(memcg, nr_pages);
1856 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1857}
1858
1859/*
1860 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1861 * of the hierarchy under it.
1862 */
1863void drain_all_stock(struct mem_cgroup *root_memcg)
1864{
1865 int cpu, curcpu;
1866
1867 /* If someone's already draining, avoid adding running more workers. */
1868 if (!mutex_trylock(&percpu_charge_mutex))
1869 return;
1870 /*
1871 * Notify other cpus that system-wide "drain" is running
1872 * We do not care about races with the cpu hotplug because cpu down
1873 * as well as workers from this path always operate on the local
1874 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1875 */
1876 migrate_disable();
1877 curcpu = smp_processor_id();
1878 for_each_online_cpu(cpu) {
1879 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1880 struct mem_cgroup *memcg;
1881 bool flush = false;
1882
1883 rcu_read_lock();
1884 memcg = READ_ONCE(stock->cached);
1885 if (memcg && READ_ONCE(stock->nr_pages) &&
1886 mem_cgroup_is_descendant(memcg, root_memcg))
1887 flush = true;
1888 else if (obj_stock_flush_required(stock, root_memcg))
1889 flush = true;
1890 rcu_read_unlock();
1891
1892 if (flush &&
1893 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1894 if (cpu == curcpu)
1895 drain_local_stock(&stock->work);
1896 else if (!cpu_is_isolated(cpu))
1897 schedule_work_on(cpu, &stock->work);
1898 }
1899 }
1900 migrate_enable();
1901 mutex_unlock(&percpu_charge_mutex);
1902}
1903
1904static int memcg_hotplug_cpu_dead(unsigned int cpu)
1905{
1906 struct memcg_stock_pcp *stock;
1907
1908 stock = &per_cpu(memcg_stock, cpu);
1909 drain_stock(stock);
1910
1911 return 0;
1912}
1913
1914static unsigned long reclaim_high(struct mem_cgroup *memcg,
1915 unsigned int nr_pages,
1916 gfp_t gfp_mask)
1917{
1918 unsigned long nr_reclaimed = 0;
1919
1920 do {
1921 unsigned long pflags;
1922
1923 if (page_counter_read(&memcg->memory) <=
1924 READ_ONCE(memcg->memory.high))
1925 continue;
1926
1927 memcg_memory_event(memcg, MEMCG_HIGH);
1928
1929 psi_memstall_enter(&pflags);
1930 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1931 gfp_mask,
1932 MEMCG_RECLAIM_MAY_SWAP,
1933 NULL);
1934 psi_memstall_leave(&pflags);
1935 } while ((memcg = parent_mem_cgroup(memcg)) &&
1936 !mem_cgroup_is_root(memcg));
1937
1938 return nr_reclaimed;
1939}
1940
1941static void high_work_func(struct work_struct *work)
1942{
1943 struct mem_cgroup *memcg;
1944
1945 memcg = container_of(work, struct mem_cgroup, high_work);
1946 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1947}
1948
1949/*
1950 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1951 * enough to still cause a significant slowdown in most cases, while still
1952 * allowing diagnostics and tracing to proceed without becoming stuck.
1953 */
1954#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1955
1956/*
1957 * When calculating the delay, we use these either side of the exponentiation to
1958 * maintain precision and scale to a reasonable number of jiffies (see the table
1959 * below.
1960 *
1961 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1962 * overage ratio to a delay.
1963 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1964 * proposed penalty in order to reduce to a reasonable number of jiffies, and
1965 * to produce a reasonable delay curve.
1966 *
1967 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1968 * reasonable delay curve compared to precision-adjusted overage, not
1969 * penalising heavily at first, but still making sure that growth beyond the
1970 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1971 * example, with a high of 100 megabytes:
1972 *
1973 * +-------+------------------------+
1974 * | usage | time to allocate in ms |
1975 * +-------+------------------------+
1976 * | 100M | 0 |
1977 * | 101M | 6 |
1978 * | 102M | 25 |
1979 * | 103M | 57 |
1980 * | 104M | 102 |
1981 * | 105M | 159 |
1982 * | 106M | 230 |
1983 * | 107M | 313 |
1984 * | 108M | 409 |
1985 * | 109M | 518 |
1986 * | 110M | 639 |
1987 * | 111M | 774 |
1988 * | 112M | 921 |
1989 * | 113M | 1081 |
1990 * | 114M | 1254 |
1991 * | 115M | 1439 |
1992 * | 116M | 1638 |
1993 * | 117M | 1849 |
1994 * | 118M | 2000 |
1995 * | 119M | 2000 |
1996 * | 120M | 2000 |
1997 * +-------+------------------------+
1998 */
1999 #define MEMCG_DELAY_PRECISION_SHIFT 20
2000 #define MEMCG_DELAY_SCALING_SHIFT 14
2001
2002static u64 calculate_overage(unsigned long usage, unsigned long high)
2003{
2004 u64 overage;
2005
2006 if (usage <= high)
2007 return 0;
2008
2009 /*
2010 * Prevent division by 0 in overage calculation by acting as if
2011 * it was a threshold of 1 page
2012 */
2013 high = max(high, 1UL);
2014
2015 overage = usage - high;
2016 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2017 return div64_u64(overage, high);
2018}
2019
2020static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2021{
2022 u64 overage, max_overage = 0;
2023
2024 do {
2025 overage = calculate_overage(page_counter_read(&memcg->memory),
2026 READ_ONCE(memcg->memory.high));
2027 max_overage = max(overage, max_overage);
2028 } while ((memcg = parent_mem_cgroup(memcg)) &&
2029 !mem_cgroup_is_root(memcg));
2030
2031 return max_overage;
2032}
2033
2034static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2035{
2036 u64 overage, max_overage = 0;
2037
2038 do {
2039 overage = calculate_overage(page_counter_read(&memcg->swap),
2040 READ_ONCE(memcg->swap.high));
2041 if (overage)
2042 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2043 max_overage = max(overage, max_overage);
2044 } while ((memcg = parent_mem_cgroup(memcg)) &&
2045 !mem_cgroup_is_root(memcg));
2046
2047 return max_overage;
2048}
2049
2050/*
2051 * Get the number of jiffies that we should penalise a mischievous cgroup which
2052 * is exceeding its memory.high by checking both it and its ancestors.
2053 */
2054static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2055 unsigned int nr_pages,
2056 u64 max_overage)
2057{
2058 unsigned long penalty_jiffies;
2059
2060 if (!max_overage)
2061 return 0;
2062
2063 /*
2064 * We use overage compared to memory.high to calculate the number of
2065 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2066 * fairly lenient on small overages, and increasingly harsh when the
2067 * memcg in question makes it clear that it has no intention of stopping
2068 * its crazy behaviour, so we exponentially increase the delay based on
2069 * overage amount.
2070 */
2071 penalty_jiffies = max_overage * max_overage * HZ;
2072 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2073 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2074
2075 /*
2076 * Factor in the task's own contribution to the overage, such that four
2077 * N-sized allocations are throttled approximately the same as one
2078 * 4N-sized allocation.
2079 *
2080 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2081 * larger the current charge patch is than that.
2082 */
2083 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2084}
2085
2086/*
2087 * Reclaims memory over the high limit. Called directly from
2088 * try_charge() (context permitting), as well as from the userland
2089 * return path where reclaim is always able to block.
2090 */
2091void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2092{
2093 unsigned long penalty_jiffies;
2094 unsigned long pflags;
2095 unsigned long nr_reclaimed;
2096 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2097 int nr_retries = MAX_RECLAIM_RETRIES;
2098 struct mem_cgroup *memcg;
2099 bool in_retry = false;
2100
2101 if (likely(!nr_pages))
2102 return;
2103
2104 memcg = get_mem_cgroup_from_mm(current->mm);
2105 current->memcg_nr_pages_over_high = 0;
2106
2107retry_reclaim:
2108 /*
2109 * Bail if the task is already exiting. Unlike memory.max,
2110 * memory.high enforcement isn't as strict, and there is no
2111 * OOM killer involved, which means the excess could already
2112 * be much bigger (and still growing) than it could for
2113 * memory.max; the dying task could get stuck in fruitless
2114 * reclaim for a long time, which isn't desirable.
2115 */
2116 if (task_is_dying())
2117 goto out;
2118
2119 /*
2120 * The allocating task should reclaim at least the batch size, but for
2121 * subsequent retries we only want to do what's necessary to prevent oom
2122 * or breaching resource isolation.
2123 *
2124 * This is distinct from memory.max or page allocator behaviour because
2125 * memory.high is currently batched, whereas memory.max and the page
2126 * allocator run every time an allocation is made.
2127 */
2128 nr_reclaimed = reclaim_high(memcg,
2129 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2130 gfp_mask);
2131
2132 /*
2133 * memory.high is breached and reclaim is unable to keep up. Throttle
2134 * allocators proactively to slow down excessive growth.
2135 */
2136 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2137 mem_find_max_overage(memcg));
2138
2139 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2140 swap_find_max_overage(memcg));
2141
2142 /*
2143 * Clamp the max delay per usermode return so as to still keep the
2144 * application moving forwards and also permit diagnostics, albeit
2145 * extremely slowly.
2146 */
2147 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2148
2149 /*
2150 * Don't sleep if the amount of jiffies this memcg owes us is so low
2151 * that it's not even worth doing, in an attempt to be nice to those who
2152 * go only a small amount over their memory.high value and maybe haven't
2153 * been aggressively reclaimed enough yet.
2154 */
2155 if (penalty_jiffies <= HZ / 100)
2156 goto out;
2157
2158 /*
2159 * If reclaim is making forward progress but we're still over
2160 * memory.high, we want to encourage that rather than doing allocator
2161 * throttling.
2162 */
2163 if (nr_reclaimed || nr_retries--) {
2164 in_retry = true;
2165 goto retry_reclaim;
2166 }
2167
2168 /*
2169 * Reclaim didn't manage to push usage below the limit, slow
2170 * this allocating task down.
2171 *
2172 * If we exit early, we're guaranteed to die (since
2173 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2174 * need to account for any ill-begotten jiffies to pay them off later.
2175 */
2176 psi_memstall_enter(&pflags);
2177 schedule_timeout_killable(penalty_jiffies);
2178 psi_memstall_leave(&pflags);
2179
2180out:
2181 css_put(&memcg->css);
2182}
2183
2184int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2185 unsigned int nr_pages)
2186{
2187 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2188 int nr_retries = MAX_RECLAIM_RETRIES;
2189 struct mem_cgroup *mem_over_limit;
2190 struct page_counter *counter;
2191 unsigned long nr_reclaimed;
2192 bool passed_oom = false;
2193 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2194 bool drained = false;
2195 bool raised_max_event = false;
2196 unsigned long pflags;
2197
2198retry:
2199 if (consume_stock(memcg, nr_pages))
2200 return 0;
2201
2202 if (!do_memsw_account() ||
2203 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2204 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2205 goto done_restock;
2206 if (do_memsw_account())
2207 page_counter_uncharge(&memcg->memsw, batch);
2208 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2209 } else {
2210 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2211 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2212 }
2213
2214 if (batch > nr_pages) {
2215 batch = nr_pages;
2216 goto retry;
2217 }
2218
2219 /*
2220 * Prevent unbounded recursion when reclaim operations need to
2221 * allocate memory. This might exceed the limits temporarily,
2222 * but we prefer facilitating memory reclaim and getting back
2223 * under the limit over triggering OOM kills in these cases.
2224 */
2225 if (unlikely(current->flags & PF_MEMALLOC))
2226 goto force;
2227
2228 if (unlikely(task_in_memcg_oom(current)))
2229 goto nomem;
2230
2231 if (!gfpflags_allow_blocking(gfp_mask))
2232 goto nomem;
2233
2234 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2235 raised_max_event = true;
2236
2237 psi_memstall_enter(&pflags);
2238 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2239 gfp_mask, reclaim_options, NULL);
2240 psi_memstall_leave(&pflags);
2241
2242 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2243 goto retry;
2244
2245 if (!drained) {
2246 drain_all_stock(mem_over_limit);
2247 drained = true;
2248 goto retry;
2249 }
2250
2251 if (gfp_mask & __GFP_NORETRY)
2252 goto nomem;
2253 /*
2254 * Even though the limit is exceeded at this point, reclaim
2255 * may have been able to free some pages. Retry the charge
2256 * before killing the task.
2257 *
2258 * Only for regular pages, though: huge pages are rather
2259 * unlikely to succeed so close to the limit, and we fall back
2260 * to regular pages anyway in case of failure.
2261 */
2262 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2263 goto retry;
2264
2265 if (nr_retries--)
2266 goto retry;
2267
2268 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2269 goto nomem;
2270
2271 /* Avoid endless loop for tasks bypassed by the oom killer */
2272 if (passed_oom && task_is_dying())
2273 goto nomem;
2274
2275 /*
2276 * keep retrying as long as the memcg oom killer is able to make
2277 * a forward progress or bypass the charge if the oom killer
2278 * couldn't make any progress.
2279 */
2280 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2281 get_order(nr_pages * PAGE_SIZE))) {
2282 passed_oom = true;
2283 nr_retries = MAX_RECLAIM_RETRIES;
2284 goto retry;
2285 }
2286nomem:
2287 /*
2288 * Memcg doesn't have a dedicated reserve for atomic
2289 * allocations. But like the global atomic pool, we need to
2290 * put the burden of reclaim on regular allocation requests
2291 * and let these go through as privileged allocations.
2292 */
2293 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2294 return -ENOMEM;
2295force:
2296 /*
2297 * If the allocation has to be enforced, don't forget to raise
2298 * a MEMCG_MAX event.
2299 */
2300 if (!raised_max_event)
2301 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2302
2303 /*
2304 * The allocation either can't fail or will lead to more memory
2305 * being freed very soon. Allow memory usage go over the limit
2306 * temporarily by force charging it.
2307 */
2308 page_counter_charge(&memcg->memory, nr_pages);
2309 if (do_memsw_account())
2310 page_counter_charge(&memcg->memsw, nr_pages);
2311
2312 return 0;
2313
2314done_restock:
2315 if (batch > nr_pages)
2316 refill_stock(memcg, batch - nr_pages);
2317
2318 /*
2319 * If the hierarchy is above the normal consumption range, schedule
2320 * reclaim on returning to userland. We can perform reclaim here
2321 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2322 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2323 * not recorded as it most likely matches current's and won't
2324 * change in the meantime. As high limit is checked again before
2325 * reclaim, the cost of mismatch is negligible.
2326 */
2327 do {
2328 bool mem_high, swap_high;
2329
2330 mem_high = page_counter_read(&memcg->memory) >
2331 READ_ONCE(memcg->memory.high);
2332 swap_high = page_counter_read(&memcg->swap) >
2333 READ_ONCE(memcg->swap.high);
2334
2335 /* Don't bother a random interrupted task */
2336 if (!in_task()) {
2337 if (mem_high) {
2338 schedule_work(&memcg->high_work);
2339 break;
2340 }
2341 continue;
2342 }
2343
2344 if (mem_high || swap_high) {
2345 /*
2346 * The allocating tasks in this cgroup will need to do
2347 * reclaim or be throttled to prevent further growth
2348 * of the memory or swap footprints.
2349 *
2350 * Target some best-effort fairness between the tasks,
2351 * and distribute reclaim work and delay penalties
2352 * based on how much each task is actually allocating.
2353 */
2354 current->memcg_nr_pages_over_high += batch;
2355 set_notify_resume(current);
2356 break;
2357 }
2358 } while ((memcg = parent_mem_cgroup(memcg)));
2359
2360 /*
2361 * Reclaim is set up above to be called from the userland
2362 * return path. But also attempt synchronous reclaim to avoid
2363 * excessive overrun while the task is still inside the
2364 * kernel. If this is successful, the return path will see it
2365 * when it rechecks the overage and simply bail out.
2366 */
2367 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2368 !(current->flags & PF_MEMALLOC) &&
2369 gfpflags_allow_blocking(gfp_mask))
2370 mem_cgroup_handle_over_high(gfp_mask);
2371 return 0;
2372}
2373
2374/**
2375 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2376 * @memcg: memcg previously charged.
2377 * @nr_pages: number of pages previously charged.
2378 */
2379void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2380{
2381 if (mem_cgroup_is_root(memcg))
2382 return;
2383
2384 page_counter_uncharge(&memcg->memory, nr_pages);
2385 if (do_memsw_account())
2386 page_counter_uncharge(&memcg->memsw, nr_pages);
2387}
2388
2389static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2390{
2391 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2392 /*
2393 * Any of the following ensures page's memcg stability:
2394 *
2395 * - the page lock
2396 * - LRU isolation
2397 * - exclusive reference
2398 */
2399 folio->memcg_data = (unsigned long)memcg;
2400}
2401
2402/**
2403 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2404 * @folio: folio to commit the charge to.
2405 * @memcg: memcg previously charged.
2406 */
2407void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2408{
2409 css_get(&memcg->css);
2410 commit_charge(folio, memcg);
2411 memcg1_commit_charge(folio, memcg);
2412}
2413
2414static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2415 struct pglist_data *pgdat,
2416 enum node_stat_item idx, int nr)
2417{
2418 struct mem_cgroup *memcg;
2419 struct lruvec *lruvec;
2420
2421 rcu_read_lock();
2422 memcg = obj_cgroup_memcg(objcg);
2423 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2424 __mod_memcg_lruvec_state(lruvec, idx, nr);
2425 rcu_read_unlock();
2426}
2427
2428static __always_inline
2429struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2430{
2431 /*
2432 * Slab objects are accounted individually, not per-page.
2433 * Memcg membership data for each individual object is saved in
2434 * slab->obj_exts.
2435 */
2436 if (folio_test_slab(folio)) {
2437 struct slabobj_ext *obj_exts;
2438 struct slab *slab;
2439 unsigned int off;
2440
2441 slab = folio_slab(folio);
2442 obj_exts = slab_obj_exts(slab);
2443 if (!obj_exts)
2444 return NULL;
2445
2446 off = obj_to_index(slab->slab_cache, slab, p);
2447 if (obj_exts[off].objcg)
2448 return obj_cgroup_memcg(obj_exts[off].objcg);
2449
2450 return NULL;
2451 }
2452
2453 /*
2454 * folio_memcg_check() is used here, because in theory we can encounter
2455 * a folio where the slab flag has been cleared already, but
2456 * slab->obj_exts has not been freed yet
2457 * folio_memcg_check() will guarantee that a proper memory
2458 * cgroup pointer or NULL will be returned.
2459 */
2460 return folio_memcg_check(folio);
2461}
2462
2463/*
2464 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2465 * It is not suitable for objects allocated using vmalloc().
2466 *
2467 * A passed kernel object must be a slab object or a generic kernel page.
2468 *
2469 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2470 * cgroup_mutex, etc.
2471 */
2472struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2473{
2474 if (mem_cgroup_disabled())
2475 return NULL;
2476
2477 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2478}
2479
2480static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2481{
2482 struct obj_cgroup *objcg = NULL;
2483
2484 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2485 objcg = rcu_dereference(memcg->objcg);
2486 if (likely(objcg && obj_cgroup_tryget(objcg)))
2487 break;
2488 objcg = NULL;
2489 }
2490 return objcg;
2491}
2492
2493static struct obj_cgroup *current_objcg_update(void)
2494{
2495 struct mem_cgroup *memcg;
2496 struct obj_cgroup *old, *objcg = NULL;
2497
2498 do {
2499 /* Atomically drop the update bit. */
2500 old = xchg(¤t->objcg, NULL);
2501 if (old) {
2502 old = (struct obj_cgroup *)
2503 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2504 obj_cgroup_put(old);
2505
2506 old = NULL;
2507 }
2508
2509 /* If new objcg is NULL, no reason for the second atomic update. */
2510 if (!current->mm || (current->flags & PF_KTHREAD))
2511 return NULL;
2512
2513 /*
2514 * Release the objcg pointer from the previous iteration,
2515 * if try_cmpxcg() below fails.
2516 */
2517 if (unlikely(objcg)) {
2518 obj_cgroup_put(objcg);
2519 objcg = NULL;
2520 }
2521
2522 /*
2523 * Obtain the new objcg pointer. The current task can be
2524 * asynchronously moved to another memcg and the previous
2525 * memcg can be offlined. So let's get the memcg pointer
2526 * and try get a reference to objcg under a rcu read lock.
2527 */
2528
2529 rcu_read_lock();
2530 memcg = mem_cgroup_from_task(current);
2531 objcg = __get_obj_cgroup_from_memcg(memcg);
2532 rcu_read_unlock();
2533
2534 /*
2535 * Try set up a new objcg pointer atomically. If it
2536 * fails, it means the update flag was set concurrently, so
2537 * the whole procedure should be repeated.
2538 */
2539 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2540
2541 return objcg;
2542}
2543
2544__always_inline struct obj_cgroup *current_obj_cgroup(void)
2545{
2546 struct mem_cgroup *memcg;
2547 struct obj_cgroup *objcg;
2548
2549 if (in_task()) {
2550 memcg = current->active_memcg;
2551 if (unlikely(memcg))
2552 goto from_memcg;
2553
2554 objcg = READ_ONCE(current->objcg);
2555 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2556 objcg = current_objcg_update();
2557 /*
2558 * Objcg reference is kept by the task, so it's safe
2559 * to use the objcg by the current task.
2560 */
2561 return objcg;
2562 }
2563
2564 memcg = this_cpu_read(int_active_memcg);
2565 if (unlikely(memcg))
2566 goto from_memcg;
2567
2568 return NULL;
2569
2570from_memcg:
2571 objcg = NULL;
2572 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2573 /*
2574 * Memcg pointer is protected by scope (see set_active_memcg())
2575 * and is pinning the corresponding objcg, so objcg can't go
2576 * away and can be used within the scope without any additional
2577 * protection.
2578 */
2579 objcg = rcu_dereference_check(memcg->objcg, 1);
2580 if (likely(objcg))
2581 break;
2582 }
2583
2584 return objcg;
2585}
2586
2587struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2588{
2589 struct obj_cgroup *objcg;
2590
2591 if (!memcg_kmem_online())
2592 return NULL;
2593
2594 if (folio_memcg_kmem(folio)) {
2595 objcg = __folio_objcg(folio);
2596 obj_cgroup_get(objcg);
2597 } else {
2598 struct mem_cgroup *memcg;
2599
2600 rcu_read_lock();
2601 memcg = __folio_memcg(folio);
2602 if (memcg)
2603 objcg = __get_obj_cgroup_from_memcg(memcg);
2604 else
2605 objcg = NULL;
2606 rcu_read_unlock();
2607 }
2608 return objcg;
2609}
2610
2611/*
2612 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2613 * @objcg: object cgroup to uncharge
2614 * @nr_pages: number of pages to uncharge
2615 */
2616static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2617 unsigned int nr_pages)
2618{
2619 struct mem_cgroup *memcg;
2620
2621 memcg = get_mem_cgroup_from_objcg(objcg);
2622
2623 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2624 memcg1_account_kmem(memcg, -nr_pages);
2625 refill_stock(memcg, nr_pages);
2626
2627 css_put(&memcg->css);
2628}
2629
2630/*
2631 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2632 * @objcg: object cgroup to charge
2633 * @gfp: reclaim mode
2634 * @nr_pages: number of pages to charge
2635 *
2636 * Returns 0 on success, an error code on failure.
2637 */
2638static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2639 unsigned int nr_pages)
2640{
2641 struct mem_cgroup *memcg;
2642 int ret;
2643
2644 memcg = get_mem_cgroup_from_objcg(objcg);
2645
2646 ret = try_charge_memcg(memcg, gfp, nr_pages);
2647 if (ret)
2648 goto out;
2649
2650 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2651 memcg1_account_kmem(memcg, nr_pages);
2652out:
2653 css_put(&memcg->css);
2654
2655 return ret;
2656}
2657
2658/**
2659 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2660 * @page: page to charge
2661 * @gfp: reclaim mode
2662 * @order: allocation order
2663 *
2664 * Returns 0 on success, an error code on failure.
2665 */
2666int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2667{
2668 struct obj_cgroup *objcg;
2669 int ret = 0;
2670
2671 objcg = current_obj_cgroup();
2672 if (objcg) {
2673 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2674 if (!ret) {
2675 obj_cgroup_get(objcg);
2676 page->memcg_data = (unsigned long)objcg |
2677 MEMCG_DATA_KMEM;
2678 return 0;
2679 }
2680 }
2681 return ret;
2682}
2683
2684/**
2685 * __memcg_kmem_uncharge_page: uncharge a kmem page
2686 * @page: page to uncharge
2687 * @order: allocation order
2688 */
2689void __memcg_kmem_uncharge_page(struct page *page, int order)
2690{
2691 struct folio *folio = page_folio(page);
2692 struct obj_cgroup *objcg;
2693 unsigned int nr_pages = 1 << order;
2694
2695 if (!folio_memcg_kmem(folio))
2696 return;
2697
2698 objcg = __folio_objcg(folio);
2699 obj_cgroup_uncharge_pages(objcg, nr_pages);
2700 folio->memcg_data = 0;
2701 obj_cgroup_put(objcg);
2702}
2703
2704static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2705 enum node_stat_item idx, int nr)
2706{
2707 struct memcg_stock_pcp *stock;
2708 struct obj_cgroup *old = NULL;
2709 unsigned long flags;
2710 int *bytes;
2711
2712 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2713 stock = this_cpu_ptr(&memcg_stock);
2714
2715 /*
2716 * Save vmstat data in stock and skip vmstat array update unless
2717 * accumulating over a page of vmstat data or when pgdat or idx
2718 * changes.
2719 */
2720 if (READ_ONCE(stock->cached_objcg) != objcg) {
2721 old = drain_obj_stock(stock);
2722 obj_cgroup_get(objcg);
2723 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2724 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2725 WRITE_ONCE(stock->cached_objcg, objcg);
2726 stock->cached_pgdat = pgdat;
2727 } else if (stock->cached_pgdat != pgdat) {
2728 /* Flush the existing cached vmstat data */
2729 struct pglist_data *oldpg = stock->cached_pgdat;
2730
2731 if (stock->nr_slab_reclaimable_b) {
2732 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2733 stock->nr_slab_reclaimable_b);
2734 stock->nr_slab_reclaimable_b = 0;
2735 }
2736 if (stock->nr_slab_unreclaimable_b) {
2737 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2738 stock->nr_slab_unreclaimable_b);
2739 stock->nr_slab_unreclaimable_b = 0;
2740 }
2741 stock->cached_pgdat = pgdat;
2742 }
2743
2744 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2745 : &stock->nr_slab_unreclaimable_b;
2746 /*
2747 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2748 * cached locally at least once before pushing it out.
2749 */
2750 if (!*bytes) {
2751 *bytes = nr;
2752 nr = 0;
2753 } else {
2754 *bytes += nr;
2755 if (abs(*bytes) > PAGE_SIZE) {
2756 nr = *bytes;
2757 *bytes = 0;
2758 } else {
2759 nr = 0;
2760 }
2761 }
2762 if (nr)
2763 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2764
2765 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2766 obj_cgroup_put(old);
2767}
2768
2769static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2770{
2771 struct memcg_stock_pcp *stock;
2772 unsigned long flags;
2773 bool ret = false;
2774
2775 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2776
2777 stock = this_cpu_ptr(&memcg_stock);
2778 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2779 stock->nr_bytes -= nr_bytes;
2780 ret = true;
2781 }
2782
2783 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2784
2785 return ret;
2786}
2787
2788static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2789{
2790 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2791
2792 if (!old)
2793 return NULL;
2794
2795 if (stock->nr_bytes) {
2796 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2797 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2798
2799 if (nr_pages) {
2800 struct mem_cgroup *memcg;
2801
2802 memcg = get_mem_cgroup_from_objcg(old);
2803
2804 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2805 memcg1_account_kmem(memcg, -nr_pages);
2806 __refill_stock(memcg, nr_pages);
2807
2808 css_put(&memcg->css);
2809 }
2810
2811 /*
2812 * The leftover is flushed to the centralized per-memcg value.
2813 * On the next attempt to refill obj stock it will be moved
2814 * to a per-cpu stock (probably, on an other CPU), see
2815 * refill_obj_stock().
2816 *
2817 * How often it's flushed is a trade-off between the memory
2818 * limit enforcement accuracy and potential CPU contention,
2819 * so it might be changed in the future.
2820 */
2821 atomic_add(nr_bytes, &old->nr_charged_bytes);
2822 stock->nr_bytes = 0;
2823 }
2824
2825 /*
2826 * Flush the vmstat data in current stock
2827 */
2828 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2829 if (stock->nr_slab_reclaimable_b) {
2830 __mod_objcg_mlstate(old, stock->cached_pgdat,
2831 NR_SLAB_RECLAIMABLE_B,
2832 stock->nr_slab_reclaimable_b);
2833 stock->nr_slab_reclaimable_b = 0;
2834 }
2835 if (stock->nr_slab_unreclaimable_b) {
2836 __mod_objcg_mlstate(old, stock->cached_pgdat,
2837 NR_SLAB_UNRECLAIMABLE_B,
2838 stock->nr_slab_unreclaimable_b);
2839 stock->nr_slab_unreclaimable_b = 0;
2840 }
2841 stock->cached_pgdat = NULL;
2842 }
2843
2844 WRITE_ONCE(stock->cached_objcg, NULL);
2845 /*
2846 * The `old' objects needs to be released by the caller via
2847 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2848 */
2849 return old;
2850}
2851
2852static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2853 struct mem_cgroup *root_memcg)
2854{
2855 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2856 struct mem_cgroup *memcg;
2857
2858 if (objcg) {
2859 memcg = obj_cgroup_memcg(objcg);
2860 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2861 return true;
2862 }
2863
2864 return false;
2865}
2866
2867static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2868 bool allow_uncharge)
2869{
2870 struct memcg_stock_pcp *stock;
2871 struct obj_cgroup *old = NULL;
2872 unsigned long flags;
2873 unsigned int nr_pages = 0;
2874
2875 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2876
2877 stock = this_cpu_ptr(&memcg_stock);
2878 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2879 old = drain_obj_stock(stock);
2880 obj_cgroup_get(objcg);
2881 WRITE_ONCE(stock->cached_objcg, objcg);
2882 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2883 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2884 allow_uncharge = true; /* Allow uncharge when objcg changes */
2885 }
2886 stock->nr_bytes += nr_bytes;
2887
2888 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2889 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2890 stock->nr_bytes &= (PAGE_SIZE - 1);
2891 }
2892
2893 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2894 obj_cgroup_put(old);
2895
2896 if (nr_pages)
2897 obj_cgroup_uncharge_pages(objcg, nr_pages);
2898}
2899
2900int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2901{
2902 unsigned int nr_pages, nr_bytes;
2903 int ret;
2904
2905 if (consume_obj_stock(objcg, size))
2906 return 0;
2907
2908 /*
2909 * In theory, objcg->nr_charged_bytes can have enough
2910 * pre-charged bytes to satisfy the allocation. However,
2911 * flushing objcg->nr_charged_bytes requires two atomic
2912 * operations, and objcg->nr_charged_bytes can't be big.
2913 * The shared objcg->nr_charged_bytes can also become a
2914 * performance bottleneck if all tasks of the same memcg are
2915 * trying to update it. So it's better to ignore it and try
2916 * grab some new pages. The stock's nr_bytes will be flushed to
2917 * objcg->nr_charged_bytes later on when objcg changes.
2918 *
2919 * The stock's nr_bytes may contain enough pre-charged bytes
2920 * to allow one less page from being charged, but we can't rely
2921 * on the pre-charged bytes not being changed outside of
2922 * consume_obj_stock() or refill_obj_stock(). So ignore those
2923 * pre-charged bytes as well when charging pages. To avoid a
2924 * page uncharge right after a page charge, we set the
2925 * allow_uncharge flag to false when calling refill_obj_stock()
2926 * to temporarily allow the pre-charged bytes to exceed the page
2927 * size limit. The maximum reachable value of the pre-charged
2928 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2929 * race.
2930 */
2931 nr_pages = size >> PAGE_SHIFT;
2932 nr_bytes = size & (PAGE_SIZE - 1);
2933
2934 if (nr_bytes)
2935 nr_pages += 1;
2936
2937 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2938 if (!ret && nr_bytes)
2939 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2940
2941 return ret;
2942}
2943
2944void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2945{
2946 refill_obj_stock(objcg, size, true);
2947}
2948
2949static inline size_t obj_full_size(struct kmem_cache *s)
2950{
2951 /*
2952 * For each accounted object there is an extra space which is used
2953 * to store obj_cgroup membership. Charge it too.
2954 */
2955 return s->size + sizeof(struct obj_cgroup *);
2956}
2957
2958bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2959 gfp_t flags, size_t size, void **p)
2960{
2961 struct obj_cgroup *objcg;
2962 struct slab *slab;
2963 unsigned long off;
2964 size_t i;
2965
2966 /*
2967 * The obtained objcg pointer is safe to use within the current scope,
2968 * defined by current task or set_active_memcg() pair.
2969 * obj_cgroup_get() is used to get a permanent reference.
2970 */
2971 objcg = current_obj_cgroup();
2972 if (!objcg)
2973 return true;
2974
2975 /*
2976 * slab_alloc_node() avoids the NULL check, so we might be called with a
2977 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2978 * the whole requested size.
2979 * return success as there's nothing to free back
2980 */
2981 if (unlikely(*p == NULL))
2982 return true;
2983
2984 flags &= gfp_allowed_mask;
2985
2986 if (lru) {
2987 int ret;
2988 struct mem_cgroup *memcg;
2989
2990 memcg = get_mem_cgroup_from_objcg(objcg);
2991 ret = memcg_list_lru_alloc(memcg, lru, flags);
2992 css_put(&memcg->css);
2993
2994 if (ret)
2995 return false;
2996 }
2997
2998 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2999 return false;
3000
3001 for (i = 0; i < size; i++) {
3002 slab = virt_to_slab(p[i]);
3003
3004 if (!slab_obj_exts(slab) &&
3005 alloc_slab_obj_exts(slab, s, flags, false)) {
3006 obj_cgroup_uncharge(objcg, obj_full_size(s));
3007 continue;
3008 }
3009
3010 off = obj_to_index(s, slab, p[i]);
3011 obj_cgroup_get(objcg);
3012 slab_obj_exts(slab)[off].objcg = objcg;
3013 mod_objcg_state(objcg, slab_pgdat(slab),
3014 cache_vmstat_idx(s), obj_full_size(s));
3015 }
3016
3017 return true;
3018}
3019
3020void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3021 void **p, int objects, struct slabobj_ext *obj_exts)
3022{
3023 for (int i = 0; i < objects; i++) {
3024 struct obj_cgroup *objcg;
3025 unsigned int off;
3026
3027 off = obj_to_index(s, slab, p[i]);
3028 objcg = obj_exts[off].objcg;
3029 if (!objcg)
3030 continue;
3031
3032 obj_exts[off].objcg = NULL;
3033 obj_cgroup_uncharge(objcg, obj_full_size(s));
3034 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3035 -obj_full_size(s));
3036 obj_cgroup_put(objcg);
3037 }
3038}
3039
3040/*
3041 * Because folio_memcg(head) is not set on tails, set it now.
3042 */
3043void split_page_memcg(struct page *head, int old_order, int new_order)
3044{
3045 struct folio *folio = page_folio(head);
3046 int i;
3047 unsigned int old_nr = 1 << old_order;
3048 unsigned int new_nr = 1 << new_order;
3049
3050 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3051 return;
3052
3053 for (i = new_nr; i < old_nr; i += new_nr)
3054 folio_page(folio, i)->memcg_data = folio->memcg_data;
3055
3056 if (folio_memcg_kmem(folio))
3057 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3058 else
3059 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3060}
3061
3062unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3063{
3064 unsigned long val;
3065
3066 if (mem_cgroup_is_root(memcg)) {
3067 /*
3068 * Approximate root's usage from global state. This isn't
3069 * perfect, but the root usage was always an approximation.
3070 */
3071 val = global_node_page_state(NR_FILE_PAGES) +
3072 global_node_page_state(NR_ANON_MAPPED);
3073 if (swap)
3074 val += total_swap_pages - get_nr_swap_pages();
3075 } else {
3076 if (!swap)
3077 val = page_counter_read(&memcg->memory);
3078 else
3079 val = page_counter_read(&memcg->memsw);
3080 }
3081 return val;
3082}
3083
3084static int memcg_online_kmem(struct mem_cgroup *memcg)
3085{
3086 struct obj_cgroup *objcg;
3087
3088 if (mem_cgroup_kmem_disabled())
3089 return 0;
3090
3091 if (unlikely(mem_cgroup_is_root(memcg)))
3092 return 0;
3093
3094 objcg = obj_cgroup_alloc();
3095 if (!objcg)
3096 return -ENOMEM;
3097
3098 objcg->memcg = memcg;
3099 rcu_assign_pointer(memcg->objcg, objcg);
3100 obj_cgroup_get(objcg);
3101 memcg->orig_objcg = objcg;
3102
3103 static_branch_enable(&memcg_kmem_online_key);
3104
3105 memcg->kmemcg_id = memcg->id.id;
3106
3107 return 0;
3108}
3109
3110static void memcg_offline_kmem(struct mem_cgroup *memcg)
3111{
3112 struct mem_cgroup *parent;
3113
3114 if (mem_cgroup_kmem_disabled())
3115 return;
3116
3117 if (unlikely(mem_cgroup_is_root(memcg)))
3118 return;
3119
3120 parent = parent_mem_cgroup(memcg);
3121 if (!parent)
3122 parent = root_mem_cgroup;
3123
3124 memcg_reparent_list_lrus(memcg, parent);
3125
3126 /*
3127 * Objcg's reparenting must be after list_lru's, make sure list_lru
3128 * helpers won't use parent's list_lru until child is drained.
3129 */
3130 memcg_reparent_objcgs(memcg, parent);
3131}
3132
3133#ifdef CONFIG_CGROUP_WRITEBACK
3134
3135#include <trace/events/writeback.h>
3136
3137static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3138{
3139 return wb_domain_init(&memcg->cgwb_domain, gfp);
3140}
3141
3142static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3143{
3144 wb_domain_exit(&memcg->cgwb_domain);
3145}
3146
3147static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3148{
3149 wb_domain_size_changed(&memcg->cgwb_domain);
3150}
3151
3152struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3153{
3154 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3155
3156 if (!memcg->css.parent)
3157 return NULL;
3158
3159 return &memcg->cgwb_domain;
3160}
3161
3162/**
3163 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3164 * @wb: bdi_writeback in question
3165 * @pfilepages: out parameter for number of file pages
3166 * @pheadroom: out parameter for number of allocatable pages according to memcg
3167 * @pdirty: out parameter for number of dirty pages
3168 * @pwriteback: out parameter for number of pages under writeback
3169 *
3170 * Determine the numbers of file, headroom, dirty, and writeback pages in
3171 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3172 * is a bit more involved.
3173 *
3174 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3175 * headroom is calculated as the lowest headroom of itself and the
3176 * ancestors. Note that this doesn't consider the actual amount of
3177 * available memory in the system. The caller should further cap
3178 * *@pheadroom accordingly.
3179 */
3180void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3181 unsigned long *pheadroom, unsigned long *pdirty,
3182 unsigned long *pwriteback)
3183{
3184 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3185 struct mem_cgroup *parent;
3186
3187 mem_cgroup_flush_stats_ratelimited(memcg);
3188
3189 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3190 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3191 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3192 memcg_page_state(memcg, NR_ACTIVE_FILE);
3193
3194 *pheadroom = PAGE_COUNTER_MAX;
3195 while ((parent = parent_mem_cgroup(memcg))) {
3196 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3197 READ_ONCE(memcg->memory.high));
3198 unsigned long used = page_counter_read(&memcg->memory);
3199
3200 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3201 memcg = parent;
3202 }
3203}
3204
3205/*
3206 * Foreign dirty flushing
3207 *
3208 * There's an inherent mismatch between memcg and writeback. The former
3209 * tracks ownership per-page while the latter per-inode. This was a
3210 * deliberate design decision because honoring per-page ownership in the
3211 * writeback path is complicated, may lead to higher CPU and IO overheads
3212 * and deemed unnecessary given that write-sharing an inode across
3213 * different cgroups isn't a common use-case.
3214 *
3215 * Combined with inode majority-writer ownership switching, this works well
3216 * enough in most cases but there are some pathological cases. For
3217 * example, let's say there are two cgroups A and B which keep writing to
3218 * different but confined parts of the same inode. B owns the inode and
3219 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3220 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3221 * triggering background writeback. A will be slowed down without a way to
3222 * make writeback of the dirty pages happen.
3223 *
3224 * Conditions like the above can lead to a cgroup getting repeatedly and
3225 * severely throttled after making some progress after each
3226 * dirty_expire_interval while the underlying IO device is almost
3227 * completely idle.
3228 *
3229 * Solving this problem completely requires matching the ownership tracking
3230 * granularities between memcg and writeback in either direction. However,
3231 * the more egregious behaviors can be avoided by simply remembering the
3232 * most recent foreign dirtying events and initiating remote flushes on
3233 * them when local writeback isn't enough to keep the memory clean enough.
3234 *
3235 * The following two functions implement such mechanism. When a foreign
3236 * page - a page whose memcg and writeback ownerships don't match - is
3237 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3238 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3239 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3240 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3241 * foreign bdi_writebacks which haven't expired. Both the numbers of
3242 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3243 * limited to MEMCG_CGWB_FRN_CNT.
3244 *
3245 * The mechanism only remembers IDs and doesn't hold any object references.
3246 * As being wrong occasionally doesn't matter, updates and accesses to the
3247 * records are lockless and racy.
3248 */
3249void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3250 struct bdi_writeback *wb)
3251{
3252 struct mem_cgroup *memcg = folio_memcg(folio);
3253 struct memcg_cgwb_frn *frn;
3254 u64 now = get_jiffies_64();
3255 u64 oldest_at = now;
3256 int oldest = -1;
3257 int i;
3258
3259 trace_track_foreign_dirty(folio, wb);
3260
3261 /*
3262 * Pick the slot to use. If there is already a slot for @wb, keep
3263 * using it. If not replace the oldest one which isn't being
3264 * written out.
3265 */
3266 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3267 frn = &memcg->cgwb_frn[i];
3268 if (frn->bdi_id == wb->bdi->id &&
3269 frn->memcg_id == wb->memcg_css->id)
3270 break;
3271 if (time_before64(frn->at, oldest_at) &&
3272 atomic_read(&frn->done.cnt) == 1) {
3273 oldest = i;
3274 oldest_at = frn->at;
3275 }
3276 }
3277
3278 if (i < MEMCG_CGWB_FRN_CNT) {
3279 /*
3280 * Re-using an existing one. Update timestamp lazily to
3281 * avoid making the cacheline hot. We want them to be
3282 * reasonably up-to-date and significantly shorter than
3283 * dirty_expire_interval as that's what expires the record.
3284 * Use the shorter of 1s and dirty_expire_interval / 8.
3285 */
3286 unsigned long update_intv =
3287 min_t(unsigned long, HZ,
3288 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3289
3290 if (time_before64(frn->at, now - update_intv))
3291 frn->at = now;
3292 } else if (oldest >= 0) {
3293 /* replace the oldest free one */
3294 frn = &memcg->cgwb_frn[oldest];
3295 frn->bdi_id = wb->bdi->id;
3296 frn->memcg_id = wb->memcg_css->id;
3297 frn->at = now;
3298 }
3299}
3300
3301/* issue foreign writeback flushes for recorded foreign dirtying events */
3302void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3303{
3304 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3305 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3306 u64 now = jiffies_64;
3307 int i;
3308
3309 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3310 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3311
3312 /*
3313 * If the record is older than dirty_expire_interval,
3314 * writeback on it has already started. No need to kick it
3315 * off again. Also, don't start a new one if there's
3316 * already one in flight.
3317 */
3318 if (time_after64(frn->at, now - intv) &&
3319 atomic_read(&frn->done.cnt) == 1) {
3320 frn->at = 0;
3321 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3322 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3323 WB_REASON_FOREIGN_FLUSH,
3324 &frn->done);
3325 }
3326 }
3327}
3328
3329#else /* CONFIG_CGROUP_WRITEBACK */
3330
3331static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3332{
3333 return 0;
3334}
3335
3336static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3337{
3338}
3339
3340static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3341{
3342}
3343
3344#endif /* CONFIG_CGROUP_WRITEBACK */
3345
3346/*
3347 * Private memory cgroup IDR
3348 *
3349 * Swap-out records and page cache shadow entries need to store memcg
3350 * references in constrained space, so we maintain an ID space that is
3351 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3352 * memory-controlled cgroups to 64k.
3353 *
3354 * However, there usually are many references to the offline CSS after
3355 * the cgroup has been destroyed, such as page cache or reclaimable
3356 * slab objects, that don't need to hang on to the ID. We want to keep
3357 * those dead CSS from occupying IDs, or we might quickly exhaust the
3358 * relatively small ID space and prevent the creation of new cgroups
3359 * even when there are much fewer than 64k cgroups - possibly none.
3360 *
3361 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3362 * be freed and recycled when it's no longer needed, which is usually
3363 * when the CSS is offlined.
3364 *
3365 * The only exception to that are records of swapped out tmpfs/shmem
3366 * pages that need to be attributed to live ancestors on swapin. But
3367 * those references are manageable from userspace.
3368 */
3369
3370#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3371static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3372
3373static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3374{
3375 if (memcg->id.id > 0) {
3376 xa_erase(&mem_cgroup_ids, memcg->id.id);
3377 memcg->id.id = 0;
3378 }
3379}
3380
3381void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3382 unsigned int n)
3383{
3384 refcount_add(n, &memcg->id.ref);
3385}
3386
3387void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3388{
3389 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3390 mem_cgroup_id_remove(memcg);
3391
3392 /* Memcg ID pins CSS */
3393 css_put(&memcg->css);
3394 }
3395}
3396
3397static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3398{
3399 mem_cgroup_id_put_many(memcg, 1);
3400}
3401
3402/**
3403 * mem_cgroup_from_id - look up a memcg from a memcg id
3404 * @id: the memcg id to look up
3405 *
3406 * Caller must hold rcu_read_lock().
3407 */
3408struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3409{
3410 WARN_ON_ONCE(!rcu_read_lock_held());
3411 return xa_load(&mem_cgroup_ids, id);
3412}
3413
3414#ifdef CONFIG_SHRINKER_DEBUG
3415struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3416{
3417 struct cgroup *cgrp;
3418 struct cgroup_subsys_state *css;
3419 struct mem_cgroup *memcg;
3420
3421 cgrp = cgroup_get_from_id(ino);
3422 if (IS_ERR(cgrp))
3423 return ERR_CAST(cgrp);
3424
3425 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3426 if (css)
3427 memcg = container_of(css, struct mem_cgroup, css);
3428 else
3429 memcg = ERR_PTR(-ENOENT);
3430
3431 cgroup_put(cgrp);
3432
3433 return memcg;
3434}
3435#endif
3436
3437static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3438{
3439 struct mem_cgroup_per_node *pn;
3440
3441 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3442 if (!pn)
3443 return false;
3444
3445 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3446 GFP_KERNEL_ACCOUNT, node);
3447 if (!pn->lruvec_stats)
3448 goto fail;
3449
3450 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3451 GFP_KERNEL_ACCOUNT);
3452 if (!pn->lruvec_stats_percpu)
3453 goto fail;
3454
3455 lruvec_init(&pn->lruvec);
3456 pn->memcg = memcg;
3457
3458 memcg->nodeinfo[node] = pn;
3459 return true;
3460fail:
3461 kfree(pn->lruvec_stats);
3462 kfree(pn);
3463 return false;
3464}
3465
3466static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3467{
3468 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3469
3470 if (!pn)
3471 return;
3472
3473 free_percpu(pn->lruvec_stats_percpu);
3474 kfree(pn->lruvec_stats);
3475 kfree(pn);
3476}
3477
3478static void __mem_cgroup_free(struct mem_cgroup *memcg)
3479{
3480 int node;
3481
3482 obj_cgroup_put(memcg->orig_objcg);
3483
3484 for_each_node(node)
3485 free_mem_cgroup_per_node_info(memcg, node);
3486 memcg1_free_events(memcg);
3487 kfree(memcg->vmstats);
3488 free_percpu(memcg->vmstats_percpu);
3489 kfree(memcg);
3490}
3491
3492static void mem_cgroup_free(struct mem_cgroup *memcg)
3493{
3494 lru_gen_exit_memcg(memcg);
3495 memcg_wb_domain_exit(memcg);
3496 __mem_cgroup_free(memcg);
3497}
3498
3499static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3500{
3501 struct memcg_vmstats_percpu *statc, *pstatc;
3502 struct mem_cgroup *memcg;
3503 int node, cpu;
3504 int __maybe_unused i;
3505 long error;
3506
3507 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3508 if (!memcg)
3509 return ERR_PTR(-ENOMEM);
3510
3511 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3512 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3513 if (error)
3514 goto fail;
3515 error = -ENOMEM;
3516
3517 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3518 GFP_KERNEL_ACCOUNT);
3519 if (!memcg->vmstats)
3520 goto fail;
3521
3522 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3523 GFP_KERNEL_ACCOUNT);
3524 if (!memcg->vmstats_percpu)
3525 goto fail;
3526
3527 if (!memcg1_alloc_events(memcg))
3528 goto fail;
3529
3530 for_each_possible_cpu(cpu) {
3531 if (parent)
3532 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3533 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3534 statc->parent = parent ? pstatc : NULL;
3535 statc->vmstats = memcg->vmstats;
3536 }
3537
3538 for_each_node(node)
3539 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3540 goto fail;
3541
3542 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3543 goto fail;
3544
3545 INIT_WORK(&memcg->high_work, high_work_func);
3546 vmpressure_init(&memcg->vmpressure);
3547 INIT_LIST_HEAD(&memcg->memory_peaks);
3548 INIT_LIST_HEAD(&memcg->swap_peaks);
3549 spin_lock_init(&memcg->peaks_lock);
3550 memcg->socket_pressure = jiffies;
3551 memcg1_memcg_init(memcg);
3552 memcg->kmemcg_id = -1;
3553 INIT_LIST_HEAD(&memcg->objcg_list);
3554#ifdef CONFIG_CGROUP_WRITEBACK
3555 INIT_LIST_HEAD(&memcg->cgwb_list);
3556 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3557 memcg->cgwb_frn[i].done =
3558 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3559#endif
3560#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3561 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3562 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3563 memcg->deferred_split_queue.split_queue_len = 0;
3564#endif
3565 lru_gen_init_memcg(memcg);
3566 return memcg;
3567fail:
3568 mem_cgroup_id_remove(memcg);
3569 __mem_cgroup_free(memcg);
3570 return ERR_PTR(error);
3571}
3572
3573static struct cgroup_subsys_state * __ref
3574mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3575{
3576 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3577 struct mem_cgroup *memcg, *old_memcg;
3578
3579 old_memcg = set_active_memcg(parent);
3580 memcg = mem_cgroup_alloc(parent);
3581 set_active_memcg(old_memcg);
3582 if (IS_ERR(memcg))
3583 return ERR_CAST(memcg);
3584
3585 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3586 memcg1_soft_limit_reset(memcg);
3587#ifdef CONFIG_ZSWAP
3588 memcg->zswap_max = PAGE_COUNTER_MAX;
3589 WRITE_ONCE(memcg->zswap_writeback, true);
3590#endif
3591 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3592 if (parent) {
3593 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3594
3595 page_counter_init(&memcg->memory, &parent->memory, true);
3596 page_counter_init(&memcg->swap, &parent->swap, false);
3597#ifdef CONFIG_MEMCG_V1
3598 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3599 page_counter_init(&memcg->kmem, &parent->kmem, false);
3600 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3601#endif
3602 } else {
3603 init_memcg_stats();
3604 init_memcg_events();
3605 page_counter_init(&memcg->memory, NULL, true);
3606 page_counter_init(&memcg->swap, NULL, false);
3607#ifdef CONFIG_MEMCG_V1
3608 page_counter_init(&memcg->kmem, NULL, false);
3609 page_counter_init(&memcg->tcpmem, NULL, false);
3610#endif
3611 root_mem_cgroup = memcg;
3612 return &memcg->css;
3613 }
3614
3615 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3616 static_branch_inc(&memcg_sockets_enabled_key);
3617
3618 if (!cgroup_memory_nobpf)
3619 static_branch_inc(&memcg_bpf_enabled_key);
3620
3621 return &memcg->css;
3622}
3623
3624static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3625{
3626 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3627
3628 if (memcg_online_kmem(memcg))
3629 goto remove_id;
3630
3631 /*
3632 * A memcg must be visible for expand_shrinker_info()
3633 * by the time the maps are allocated. So, we allocate maps
3634 * here, when for_each_mem_cgroup() can't skip it.
3635 */
3636 if (alloc_shrinker_info(memcg))
3637 goto offline_kmem;
3638
3639 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3640 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3641 FLUSH_TIME);
3642 lru_gen_online_memcg(memcg);
3643
3644 /* Online state pins memcg ID, memcg ID pins CSS */
3645 refcount_set(&memcg->id.ref, 1);
3646 css_get(css);
3647
3648 /*
3649 * Ensure mem_cgroup_from_id() works once we're fully online.
3650 *
3651 * We could do this earlier and require callers to filter with
3652 * css_tryget_online(). But right now there are no users that
3653 * need earlier access, and the workingset code relies on the
3654 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3655 * publish it here at the end of onlining. This matches the
3656 * regular ID destruction during offlining.
3657 */
3658 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3659
3660 return 0;
3661offline_kmem:
3662 memcg_offline_kmem(memcg);
3663remove_id:
3664 mem_cgroup_id_remove(memcg);
3665 return -ENOMEM;
3666}
3667
3668static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3669{
3670 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3671
3672 memcg1_css_offline(memcg);
3673
3674 page_counter_set_min(&memcg->memory, 0);
3675 page_counter_set_low(&memcg->memory, 0);
3676
3677 zswap_memcg_offline_cleanup(memcg);
3678
3679 memcg_offline_kmem(memcg);
3680 reparent_shrinker_deferred(memcg);
3681 wb_memcg_offline(memcg);
3682 lru_gen_offline_memcg(memcg);
3683
3684 drain_all_stock(memcg);
3685
3686 mem_cgroup_id_put(memcg);
3687}
3688
3689static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3690{
3691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3692
3693 invalidate_reclaim_iterators(memcg);
3694 lru_gen_release_memcg(memcg);
3695}
3696
3697static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3698{
3699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3700 int __maybe_unused i;
3701
3702#ifdef CONFIG_CGROUP_WRITEBACK
3703 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3704 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3705#endif
3706 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3707 static_branch_dec(&memcg_sockets_enabled_key);
3708
3709 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3710 static_branch_dec(&memcg_sockets_enabled_key);
3711
3712 if (!cgroup_memory_nobpf)
3713 static_branch_dec(&memcg_bpf_enabled_key);
3714
3715 vmpressure_cleanup(&memcg->vmpressure);
3716 cancel_work_sync(&memcg->high_work);
3717 memcg1_remove_from_trees(memcg);
3718 free_shrinker_info(memcg);
3719 mem_cgroup_free(memcg);
3720}
3721
3722/**
3723 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3724 * @css: the target css
3725 *
3726 * Reset the states of the mem_cgroup associated with @css. This is
3727 * invoked when the userland requests disabling on the default hierarchy
3728 * but the memcg is pinned through dependency. The memcg should stop
3729 * applying policies and should revert to the vanilla state as it may be
3730 * made visible again.
3731 *
3732 * The current implementation only resets the essential configurations.
3733 * This needs to be expanded to cover all the visible parts.
3734 */
3735static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3736{
3737 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3738
3739 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3740 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3741#ifdef CONFIG_MEMCG_V1
3742 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3743 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3744#endif
3745 page_counter_set_min(&memcg->memory, 0);
3746 page_counter_set_low(&memcg->memory, 0);
3747 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3748 memcg1_soft_limit_reset(memcg);
3749 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3750 memcg_wb_domain_size_changed(memcg);
3751}
3752
3753struct aggregate_control {
3754 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3755 long *aggregate;
3756 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3757 long *local;
3758 /* pointer to the pending child counters during tree propagation */
3759 long *pending;
3760 /* pointer to the parent's pending counters, could be NULL */
3761 long *ppending;
3762 /* pointer to the percpu counters to be aggregated */
3763 long *cstat;
3764 /* pointer to the percpu counters of the last aggregation*/
3765 long *cstat_prev;
3766 /* size of the above counters */
3767 int size;
3768};
3769
3770static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3771{
3772 int i;
3773 long delta, delta_cpu, v;
3774
3775 for (i = 0; i < ac->size; i++) {
3776 /*
3777 * Collect the aggregated propagation counts of groups
3778 * below us. We're in a per-cpu loop here and this is
3779 * a global counter, so the first cycle will get them.
3780 */
3781 delta = ac->pending[i];
3782 if (delta)
3783 ac->pending[i] = 0;
3784
3785 /* Add CPU changes on this level since the last flush */
3786 delta_cpu = 0;
3787 v = READ_ONCE(ac->cstat[i]);
3788 if (v != ac->cstat_prev[i]) {
3789 delta_cpu = v - ac->cstat_prev[i];
3790 delta += delta_cpu;
3791 ac->cstat_prev[i] = v;
3792 }
3793
3794 /* Aggregate counts on this level and propagate upwards */
3795 if (delta_cpu)
3796 ac->local[i] += delta_cpu;
3797
3798 if (delta) {
3799 ac->aggregate[i] += delta;
3800 if (ac->ppending)
3801 ac->ppending[i] += delta;
3802 }
3803 }
3804}
3805
3806static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3807{
3808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3809 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3810 struct memcg_vmstats_percpu *statc;
3811 struct aggregate_control ac;
3812 int nid;
3813
3814 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3815
3816 ac = (struct aggregate_control) {
3817 .aggregate = memcg->vmstats->state,
3818 .local = memcg->vmstats->state_local,
3819 .pending = memcg->vmstats->state_pending,
3820 .ppending = parent ? parent->vmstats->state_pending : NULL,
3821 .cstat = statc->state,
3822 .cstat_prev = statc->state_prev,
3823 .size = MEMCG_VMSTAT_SIZE,
3824 };
3825 mem_cgroup_stat_aggregate(&ac);
3826
3827 ac = (struct aggregate_control) {
3828 .aggregate = memcg->vmstats->events,
3829 .local = memcg->vmstats->events_local,
3830 .pending = memcg->vmstats->events_pending,
3831 .ppending = parent ? parent->vmstats->events_pending : NULL,
3832 .cstat = statc->events,
3833 .cstat_prev = statc->events_prev,
3834 .size = NR_MEMCG_EVENTS,
3835 };
3836 mem_cgroup_stat_aggregate(&ac);
3837
3838 for_each_node_state(nid, N_MEMORY) {
3839 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3840 struct lruvec_stats *lstats = pn->lruvec_stats;
3841 struct lruvec_stats *plstats = NULL;
3842 struct lruvec_stats_percpu *lstatc;
3843
3844 if (parent)
3845 plstats = parent->nodeinfo[nid]->lruvec_stats;
3846
3847 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3848
3849 ac = (struct aggregate_control) {
3850 .aggregate = lstats->state,
3851 .local = lstats->state_local,
3852 .pending = lstats->state_pending,
3853 .ppending = plstats ? plstats->state_pending : NULL,
3854 .cstat = lstatc->state,
3855 .cstat_prev = lstatc->state_prev,
3856 .size = NR_MEMCG_NODE_STAT_ITEMS,
3857 };
3858 mem_cgroup_stat_aggregate(&ac);
3859
3860 }
3861 WRITE_ONCE(statc->stats_updates, 0);
3862 /* We are in a per-cpu loop here, only do the atomic write once */
3863 if (atomic64_read(&memcg->vmstats->stats_updates))
3864 atomic64_set(&memcg->vmstats->stats_updates, 0);
3865}
3866
3867static void mem_cgroup_fork(struct task_struct *task)
3868{
3869 /*
3870 * Set the update flag to cause task->objcg to be initialized lazily
3871 * on the first allocation. It can be done without any synchronization
3872 * because it's always performed on the current task, so does
3873 * current_objcg_update().
3874 */
3875 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3876}
3877
3878static void mem_cgroup_exit(struct task_struct *task)
3879{
3880 struct obj_cgroup *objcg = task->objcg;
3881
3882 objcg = (struct obj_cgroup *)
3883 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3884 obj_cgroup_put(objcg);
3885
3886 /*
3887 * Some kernel allocations can happen after this point,
3888 * but let's ignore them. It can be done without any synchronization
3889 * because it's always performed on the current task, so does
3890 * current_objcg_update().
3891 */
3892 task->objcg = NULL;
3893}
3894
3895#ifdef CONFIG_LRU_GEN
3896static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3897{
3898 struct task_struct *task;
3899 struct cgroup_subsys_state *css;
3900
3901 /* find the first leader if there is any */
3902 cgroup_taskset_for_each_leader(task, css, tset)
3903 break;
3904
3905 if (!task)
3906 return;
3907
3908 task_lock(task);
3909 if (task->mm && READ_ONCE(task->mm->owner) == task)
3910 lru_gen_migrate_mm(task->mm);
3911 task_unlock(task);
3912}
3913#else
3914static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3915#endif /* CONFIG_LRU_GEN */
3916
3917static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3918{
3919 struct task_struct *task;
3920 struct cgroup_subsys_state *css;
3921
3922 cgroup_taskset_for_each(task, css, tset) {
3923 /* atomically set the update bit */
3924 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3925 }
3926}
3927
3928static void mem_cgroup_attach(struct cgroup_taskset *tset)
3929{
3930 mem_cgroup_lru_gen_attach(tset);
3931 mem_cgroup_kmem_attach(tset);
3932}
3933
3934static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3935{
3936 if (value == PAGE_COUNTER_MAX)
3937 seq_puts(m, "max\n");
3938 else
3939 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3940
3941 return 0;
3942}
3943
3944static u64 memory_current_read(struct cgroup_subsys_state *css,
3945 struct cftype *cft)
3946{
3947 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3948
3949 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3950}
3951
3952#define OFP_PEAK_UNSET (((-1UL)))
3953
3954static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3955{
3956 struct cgroup_of_peak *ofp = of_peak(sf->private);
3957 u64 fd_peak = READ_ONCE(ofp->value), peak;
3958
3959 /* User wants global or local peak? */
3960 if (fd_peak == OFP_PEAK_UNSET)
3961 peak = pc->watermark;
3962 else
3963 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3964
3965 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3966 return 0;
3967}
3968
3969static int memory_peak_show(struct seq_file *sf, void *v)
3970{
3971 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3972
3973 return peak_show(sf, v, &memcg->memory);
3974}
3975
3976static int peak_open(struct kernfs_open_file *of)
3977{
3978 struct cgroup_of_peak *ofp = of_peak(of);
3979
3980 ofp->value = OFP_PEAK_UNSET;
3981 return 0;
3982}
3983
3984static void peak_release(struct kernfs_open_file *of)
3985{
3986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3987 struct cgroup_of_peak *ofp = of_peak(of);
3988
3989 if (ofp->value == OFP_PEAK_UNSET) {
3990 /* fast path (no writes on this fd) */
3991 return;
3992 }
3993 spin_lock(&memcg->peaks_lock);
3994 list_del(&ofp->list);
3995 spin_unlock(&memcg->peaks_lock);
3996}
3997
3998static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3999 loff_t off, struct page_counter *pc,
4000 struct list_head *watchers)
4001{
4002 unsigned long usage;
4003 struct cgroup_of_peak *peer_ctx;
4004 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4005 struct cgroup_of_peak *ofp = of_peak(of);
4006
4007 spin_lock(&memcg->peaks_lock);
4008
4009 usage = page_counter_read(pc);
4010 WRITE_ONCE(pc->local_watermark, usage);
4011
4012 list_for_each_entry(peer_ctx, watchers, list)
4013 if (usage > peer_ctx->value)
4014 WRITE_ONCE(peer_ctx->value, usage);
4015
4016 /* initial write, register watcher */
4017 if (ofp->value == -1)
4018 list_add(&ofp->list, watchers);
4019
4020 WRITE_ONCE(ofp->value, usage);
4021 spin_unlock(&memcg->peaks_lock);
4022
4023 return nbytes;
4024}
4025
4026static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4027 size_t nbytes, loff_t off)
4028{
4029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4030
4031 return peak_write(of, buf, nbytes, off, &memcg->memory,
4032 &memcg->memory_peaks);
4033}
4034
4035#undef OFP_PEAK_UNSET
4036
4037static int memory_min_show(struct seq_file *m, void *v)
4038{
4039 return seq_puts_memcg_tunable(m,
4040 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4041}
4042
4043static ssize_t memory_min_write(struct kernfs_open_file *of,
4044 char *buf, size_t nbytes, loff_t off)
4045{
4046 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4047 unsigned long min;
4048 int err;
4049
4050 buf = strstrip(buf);
4051 err = page_counter_memparse(buf, "max", &min);
4052 if (err)
4053 return err;
4054
4055 page_counter_set_min(&memcg->memory, min);
4056
4057 return nbytes;
4058}
4059
4060static int memory_low_show(struct seq_file *m, void *v)
4061{
4062 return seq_puts_memcg_tunable(m,
4063 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4064}
4065
4066static ssize_t memory_low_write(struct kernfs_open_file *of,
4067 char *buf, size_t nbytes, loff_t off)
4068{
4069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4070 unsigned long low;
4071 int err;
4072
4073 buf = strstrip(buf);
4074 err = page_counter_memparse(buf, "max", &low);
4075 if (err)
4076 return err;
4077
4078 page_counter_set_low(&memcg->memory, low);
4079
4080 return nbytes;
4081}
4082
4083static int memory_high_show(struct seq_file *m, void *v)
4084{
4085 return seq_puts_memcg_tunable(m,
4086 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4087}
4088
4089static ssize_t memory_high_write(struct kernfs_open_file *of,
4090 char *buf, size_t nbytes, loff_t off)
4091{
4092 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4093 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4094 bool drained = false;
4095 unsigned long high;
4096 int err;
4097
4098 buf = strstrip(buf);
4099 err = page_counter_memparse(buf, "max", &high);
4100 if (err)
4101 return err;
4102
4103 page_counter_set_high(&memcg->memory, high);
4104
4105 for (;;) {
4106 unsigned long nr_pages = page_counter_read(&memcg->memory);
4107 unsigned long reclaimed;
4108
4109 if (nr_pages <= high)
4110 break;
4111
4112 if (signal_pending(current))
4113 break;
4114
4115 if (!drained) {
4116 drain_all_stock(memcg);
4117 drained = true;
4118 continue;
4119 }
4120
4121 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4122 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4123
4124 if (!reclaimed && !nr_retries--)
4125 break;
4126 }
4127
4128 memcg_wb_domain_size_changed(memcg);
4129 return nbytes;
4130}
4131
4132static int memory_max_show(struct seq_file *m, void *v)
4133{
4134 return seq_puts_memcg_tunable(m,
4135 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4136}
4137
4138static ssize_t memory_max_write(struct kernfs_open_file *of,
4139 char *buf, size_t nbytes, loff_t off)
4140{
4141 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4142 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4143 bool drained = false;
4144 unsigned long max;
4145 int err;
4146
4147 buf = strstrip(buf);
4148 err = page_counter_memparse(buf, "max", &max);
4149 if (err)
4150 return err;
4151
4152 xchg(&memcg->memory.max, max);
4153
4154 for (;;) {
4155 unsigned long nr_pages = page_counter_read(&memcg->memory);
4156
4157 if (nr_pages <= max)
4158 break;
4159
4160 if (signal_pending(current))
4161 break;
4162
4163 if (!drained) {
4164 drain_all_stock(memcg);
4165 drained = true;
4166 continue;
4167 }
4168
4169 if (nr_reclaims) {
4170 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4171 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4172 nr_reclaims--;
4173 continue;
4174 }
4175
4176 memcg_memory_event(memcg, MEMCG_OOM);
4177 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4178 break;
4179 }
4180
4181 memcg_wb_domain_size_changed(memcg);
4182 return nbytes;
4183}
4184
4185/*
4186 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4187 * if any new events become available.
4188 */
4189static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4190{
4191 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4192 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4193 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4194 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4195 seq_printf(m, "oom_kill %lu\n",
4196 atomic_long_read(&events[MEMCG_OOM_KILL]));
4197 seq_printf(m, "oom_group_kill %lu\n",
4198 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4199}
4200
4201static int memory_events_show(struct seq_file *m, void *v)
4202{
4203 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4204
4205 __memory_events_show(m, memcg->memory_events);
4206 return 0;
4207}
4208
4209static int memory_events_local_show(struct seq_file *m, void *v)
4210{
4211 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4212
4213 __memory_events_show(m, memcg->memory_events_local);
4214 return 0;
4215}
4216
4217int memory_stat_show(struct seq_file *m, void *v)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4220 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4221 struct seq_buf s;
4222
4223 if (!buf)
4224 return -ENOMEM;
4225 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4226 memory_stat_format(memcg, &s);
4227 seq_puts(m, buf);
4228 kfree(buf);
4229 return 0;
4230}
4231
4232#ifdef CONFIG_NUMA
4233static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4234 int item)
4235{
4236 return lruvec_page_state(lruvec, item) *
4237 memcg_page_state_output_unit(item);
4238}
4239
4240static int memory_numa_stat_show(struct seq_file *m, void *v)
4241{
4242 int i;
4243 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4244
4245 mem_cgroup_flush_stats(memcg);
4246
4247 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4248 int nid;
4249
4250 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4251 continue;
4252
4253 seq_printf(m, "%s", memory_stats[i].name);
4254 for_each_node_state(nid, N_MEMORY) {
4255 u64 size;
4256 struct lruvec *lruvec;
4257
4258 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4259 size = lruvec_page_state_output(lruvec,
4260 memory_stats[i].idx);
4261 seq_printf(m, " N%d=%llu", nid, size);
4262 }
4263 seq_putc(m, '\n');
4264 }
4265
4266 return 0;
4267}
4268#endif
4269
4270static int memory_oom_group_show(struct seq_file *m, void *v)
4271{
4272 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4273
4274 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4275
4276 return 0;
4277}
4278
4279static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4280 char *buf, size_t nbytes, loff_t off)
4281{
4282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4283 int ret, oom_group;
4284
4285 buf = strstrip(buf);
4286 if (!buf)
4287 return -EINVAL;
4288
4289 ret = kstrtoint(buf, 0, &oom_group);
4290 if (ret)
4291 return ret;
4292
4293 if (oom_group != 0 && oom_group != 1)
4294 return -EINVAL;
4295
4296 WRITE_ONCE(memcg->oom_group, oom_group);
4297
4298 return nbytes;
4299}
4300
4301enum {
4302 MEMORY_RECLAIM_SWAPPINESS = 0,
4303 MEMORY_RECLAIM_NULL,
4304};
4305
4306static const match_table_t tokens = {
4307 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4308 { MEMORY_RECLAIM_NULL, NULL },
4309};
4310
4311static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4312 size_t nbytes, loff_t off)
4313{
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4315 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4316 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4317 int swappiness = -1;
4318 unsigned int reclaim_options;
4319 char *old_buf, *start;
4320 substring_t args[MAX_OPT_ARGS];
4321
4322 buf = strstrip(buf);
4323
4324 old_buf = buf;
4325 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4326 if (buf == old_buf)
4327 return -EINVAL;
4328
4329 buf = strstrip(buf);
4330
4331 while ((start = strsep(&buf, " ")) != NULL) {
4332 if (!strlen(start))
4333 continue;
4334 switch (match_token(start, tokens, args)) {
4335 case MEMORY_RECLAIM_SWAPPINESS:
4336 if (match_int(&args[0], &swappiness))
4337 return -EINVAL;
4338 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4339 return -EINVAL;
4340 break;
4341 default:
4342 return -EINVAL;
4343 }
4344 }
4345
4346 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4347 while (nr_reclaimed < nr_to_reclaim) {
4348 /* Will converge on zero, but reclaim enforces a minimum */
4349 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4350 unsigned long reclaimed;
4351
4352 if (signal_pending(current))
4353 return -EINTR;
4354
4355 /*
4356 * This is the final attempt, drain percpu lru caches in the
4357 * hope of introducing more evictable pages for
4358 * try_to_free_mem_cgroup_pages().
4359 */
4360 if (!nr_retries)
4361 lru_add_drain_all();
4362
4363 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4364 batch_size, GFP_KERNEL,
4365 reclaim_options,
4366 swappiness == -1 ? NULL : &swappiness);
4367
4368 if (!reclaimed && !nr_retries--)
4369 return -EAGAIN;
4370
4371 nr_reclaimed += reclaimed;
4372 }
4373
4374 return nbytes;
4375}
4376
4377static struct cftype memory_files[] = {
4378 {
4379 .name = "current",
4380 .flags = CFTYPE_NOT_ON_ROOT,
4381 .read_u64 = memory_current_read,
4382 },
4383 {
4384 .name = "peak",
4385 .flags = CFTYPE_NOT_ON_ROOT,
4386 .open = peak_open,
4387 .release = peak_release,
4388 .seq_show = memory_peak_show,
4389 .write = memory_peak_write,
4390 },
4391 {
4392 .name = "min",
4393 .flags = CFTYPE_NOT_ON_ROOT,
4394 .seq_show = memory_min_show,
4395 .write = memory_min_write,
4396 },
4397 {
4398 .name = "low",
4399 .flags = CFTYPE_NOT_ON_ROOT,
4400 .seq_show = memory_low_show,
4401 .write = memory_low_write,
4402 },
4403 {
4404 .name = "high",
4405 .flags = CFTYPE_NOT_ON_ROOT,
4406 .seq_show = memory_high_show,
4407 .write = memory_high_write,
4408 },
4409 {
4410 .name = "max",
4411 .flags = CFTYPE_NOT_ON_ROOT,
4412 .seq_show = memory_max_show,
4413 .write = memory_max_write,
4414 },
4415 {
4416 .name = "events",
4417 .flags = CFTYPE_NOT_ON_ROOT,
4418 .file_offset = offsetof(struct mem_cgroup, events_file),
4419 .seq_show = memory_events_show,
4420 },
4421 {
4422 .name = "events.local",
4423 .flags = CFTYPE_NOT_ON_ROOT,
4424 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4425 .seq_show = memory_events_local_show,
4426 },
4427 {
4428 .name = "stat",
4429 .seq_show = memory_stat_show,
4430 },
4431#ifdef CONFIG_NUMA
4432 {
4433 .name = "numa_stat",
4434 .seq_show = memory_numa_stat_show,
4435 },
4436#endif
4437 {
4438 .name = "oom.group",
4439 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4440 .seq_show = memory_oom_group_show,
4441 .write = memory_oom_group_write,
4442 },
4443 {
4444 .name = "reclaim",
4445 .flags = CFTYPE_NS_DELEGATABLE,
4446 .write = memory_reclaim,
4447 },
4448 { } /* terminate */
4449};
4450
4451struct cgroup_subsys memory_cgrp_subsys = {
4452 .css_alloc = mem_cgroup_css_alloc,
4453 .css_online = mem_cgroup_css_online,
4454 .css_offline = mem_cgroup_css_offline,
4455 .css_released = mem_cgroup_css_released,
4456 .css_free = mem_cgroup_css_free,
4457 .css_reset = mem_cgroup_css_reset,
4458 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4459 .attach = mem_cgroup_attach,
4460 .fork = mem_cgroup_fork,
4461 .exit = mem_cgroup_exit,
4462 .dfl_cftypes = memory_files,
4463#ifdef CONFIG_MEMCG_V1
4464 .legacy_cftypes = mem_cgroup_legacy_files,
4465#endif
4466 .early_init = 0,
4467};
4468
4469/**
4470 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4471 * @root: the top ancestor of the sub-tree being checked
4472 * @memcg: the memory cgroup to check
4473 *
4474 * WARNING: This function is not stateless! It can only be used as part
4475 * of a top-down tree iteration, not for isolated queries.
4476 */
4477void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4478 struct mem_cgroup *memcg)
4479{
4480 bool recursive_protection =
4481 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4482
4483 if (mem_cgroup_disabled())
4484 return;
4485
4486 if (!root)
4487 root = root_mem_cgroup;
4488
4489 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4490}
4491
4492static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4493 gfp_t gfp)
4494{
4495 int ret;
4496
4497 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4498 if (ret)
4499 goto out;
4500
4501 mem_cgroup_commit_charge(folio, memcg);
4502out:
4503 return ret;
4504}
4505
4506int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4507{
4508 struct mem_cgroup *memcg;
4509 int ret;
4510
4511 memcg = get_mem_cgroup_from_mm(mm);
4512 ret = charge_memcg(folio, memcg, gfp);
4513 css_put(&memcg->css);
4514
4515 return ret;
4516}
4517
4518/**
4519 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4520 * @memcg: memcg to charge.
4521 * @gfp: reclaim mode.
4522 * @nr_pages: number of pages to charge.
4523 *
4524 * This function is called when allocating a huge page folio to determine if
4525 * the memcg has the capacity for it. It does not commit the charge yet,
4526 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4527 *
4528 * Once we have obtained the hugetlb folio, we can call
4529 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4530 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4531 * of try_charge().
4532 *
4533 * Returns 0 on success. Otherwise, an error code is returned.
4534 */
4535int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4536 long nr_pages)
4537{
4538 /*
4539 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4540 * but do not attempt to commit charge later (or cancel on error) either.
4541 */
4542 if (mem_cgroup_disabled() || !memcg ||
4543 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4544 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4545 return -EOPNOTSUPP;
4546
4547 if (try_charge(memcg, gfp, nr_pages))
4548 return -ENOMEM;
4549
4550 return 0;
4551}
4552
4553/**
4554 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4555 * @folio: folio to charge.
4556 * @mm: mm context of the victim
4557 * @gfp: reclaim mode
4558 * @entry: swap entry for which the folio is allocated
4559 *
4560 * This function charges a folio allocated for swapin. Please call this before
4561 * adding the folio to the swapcache.
4562 *
4563 * Returns 0 on success. Otherwise, an error code is returned.
4564 */
4565int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4566 gfp_t gfp, swp_entry_t entry)
4567{
4568 struct mem_cgroup *memcg;
4569 unsigned short id;
4570 int ret;
4571
4572 if (mem_cgroup_disabled())
4573 return 0;
4574
4575 id = lookup_swap_cgroup_id(entry);
4576 rcu_read_lock();
4577 memcg = mem_cgroup_from_id(id);
4578 if (!memcg || !css_tryget_online(&memcg->css))
4579 memcg = get_mem_cgroup_from_mm(mm);
4580 rcu_read_unlock();
4581
4582 ret = charge_memcg(folio, memcg, gfp);
4583
4584 css_put(&memcg->css);
4585 return ret;
4586}
4587
4588/*
4589 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4590 * @entry: the first swap entry for which the pages are charged
4591 * @nr_pages: number of pages which will be uncharged
4592 *
4593 * Call this function after successfully adding the charged page to swapcache.
4594 *
4595 * Note: This function assumes the page for which swap slot is being uncharged
4596 * is order 0 page.
4597 */
4598void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4599{
4600 /*
4601 * Cgroup1's unified memory+swap counter has been charged with the
4602 * new swapcache page, finish the transfer by uncharging the swap
4603 * slot. The swap slot would also get uncharged when it dies, but
4604 * it can stick around indefinitely and we'd count the page twice
4605 * the entire time.
4606 *
4607 * Cgroup2 has separate resource counters for memory and swap,
4608 * so this is a non-issue here. Memory and swap charge lifetimes
4609 * correspond 1:1 to page and swap slot lifetimes: we charge the
4610 * page to memory here, and uncharge swap when the slot is freed.
4611 */
4612 if (!mem_cgroup_disabled() && do_memsw_account()) {
4613 /*
4614 * The swap entry might not get freed for a long time,
4615 * let's not wait for it. The page already received a
4616 * memory+swap charge, drop the swap entry duplicate.
4617 */
4618 mem_cgroup_uncharge_swap(entry, nr_pages);
4619 }
4620}
4621
4622struct uncharge_gather {
4623 struct mem_cgroup *memcg;
4624 unsigned long nr_memory;
4625 unsigned long pgpgout;
4626 unsigned long nr_kmem;
4627 int nid;
4628};
4629
4630static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4631{
4632 memset(ug, 0, sizeof(*ug));
4633}
4634
4635static void uncharge_batch(const struct uncharge_gather *ug)
4636{
4637 if (ug->nr_memory) {
4638 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4639 if (do_memsw_account())
4640 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4641 if (ug->nr_kmem) {
4642 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4643 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4644 }
4645 memcg1_oom_recover(ug->memcg);
4646 }
4647
4648 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4649
4650 /* drop reference from uncharge_folio */
4651 css_put(&ug->memcg->css);
4652}
4653
4654static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4655{
4656 long nr_pages;
4657 struct mem_cgroup *memcg;
4658 struct obj_cgroup *objcg;
4659
4660 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4661
4662 /*
4663 * Nobody should be changing or seriously looking at
4664 * folio memcg or objcg at this point, we have fully
4665 * exclusive access to the folio.
4666 */
4667 if (folio_memcg_kmem(folio)) {
4668 objcg = __folio_objcg(folio);
4669 /*
4670 * This get matches the put at the end of the function and
4671 * kmem pages do not hold memcg references anymore.
4672 */
4673 memcg = get_mem_cgroup_from_objcg(objcg);
4674 } else {
4675 memcg = __folio_memcg(folio);
4676 }
4677
4678 if (!memcg)
4679 return;
4680
4681 if (ug->memcg != memcg) {
4682 if (ug->memcg) {
4683 uncharge_batch(ug);
4684 uncharge_gather_clear(ug);
4685 }
4686 ug->memcg = memcg;
4687 ug->nid = folio_nid(folio);
4688
4689 /* pairs with css_put in uncharge_batch */
4690 css_get(&memcg->css);
4691 }
4692
4693 nr_pages = folio_nr_pages(folio);
4694
4695 if (folio_memcg_kmem(folio)) {
4696 ug->nr_memory += nr_pages;
4697 ug->nr_kmem += nr_pages;
4698
4699 folio->memcg_data = 0;
4700 obj_cgroup_put(objcg);
4701 } else {
4702 /* LRU pages aren't accounted at the root level */
4703 if (!mem_cgroup_is_root(memcg))
4704 ug->nr_memory += nr_pages;
4705 ug->pgpgout++;
4706
4707 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4708 folio->memcg_data = 0;
4709 }
4710
4711 css_put(&memcg->css);
4712}
4713
4714void __mem_cgroup_uncharge(struct folio *folio)
4715{
4716 struct uncharge_gather ug;
4717
4718 /* Don't touch folio->lru of any random page, pre-check: */
4719 if (!folio_memcg_charged(folio))
4720 return;
4721
4722 uncharge_gather_clear(&ug);
4723 uncharge_folio(folio, &ug);
4724 uncharge_batch(&ug);
4725}
4726
4727void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4728{
4729 struct uncharge_gather ug;
4730 unsigned int i;
4731
4732 uncharge_gather_clear(&ug);
4733 for (i = 0; i < folios->nr; i++)
4734 uncharge_folio(folios->folios[i], &ug);
4735 if (ug.memcg)
4736 uncharge_batch(&ug);
4737}
4738
4739/**
4740 * mem_cgroup_replace_folio - Charge a folio's replacement.
4741 * @old: Currently circulating folio.
4742 * @new: Replacement folio.
4743 *
4744 * Charge @new as a replacement folio for @old. @old will
4745 * be uncharged upon free.
4746 *
4747 * Both folios must be locked, @new->mapping must be set up.
4748 */
4749void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4750{
4751 struct mem_cgroup *memcg;
4752 long nr_pages = folio_nr_pages(new);
4753
4754 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4755 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4756 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4757 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4758
4759 if (mem_cgroup_disabled())
4760 return;
4761
4762 /* Page cache replacement: new folio already charged? */
4763 if (folio_memcg_charged(new))
4764 return;
4765
4766 memcg = folio_memcg(old);
4767 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4768 if (!memcg)
4769 return;
4770
4771 /* Force-charge the new page. The old one will be freed soon */
4772 if (!mem_cgroup_is_root(memcg)) {
4773 page_counter_charge(&memcg->memory, nr_pages);
4774 if (do_memsw_account())
4775 page_counter_charge(&memcg->memsw, nr_pages);
4776 }
4777
4778 css_get(&memcg->css);
4779 commit_charge(new, memcg);
4780 memcg1_commit_charge(new, memcg);
4781}
4782
4783/**
4784 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4785 * @old: Currently circulating folio.
4786 * @new: Replacement folio.
4787 *
4788 * Transfer the memcg data from the old folio to the new folio for migration.
4789 * The old folio's data info will be cleared. Note that the memory counters
4790 * will remain unchanged throughout the process.
4791 *
4792 * Both folios must be locked, @new->mapping must be set up.
4793 */
4794void mem_cgroup_migrate(struct folio *old, struct folio *new)
4795{
4796 struct mem_cgroup *memcg;
4797
4798 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4799 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4800 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4801 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4802 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4803
4804 if (mem_cgroup_disabled())
4805 return;
4806
4807 memcg = folio_memcg(old);
4808 /*
4809 * Note that it is normal to see !memcg for a hugetlb folio.
4810 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4811 * was not selected.
4812 */
4813 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4814 if (!memcg)
4815 return;
4816
4817 /* Transfer the charge and the css ref */
4818 commit_charge(new, memcg);
4819
4820 /* Warning should never happen, so don't worry about refcount non-0 */
4821 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4822 old->memcg_data = 0;
4823}
4824
4825DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4826EXPORT_SYMBOL(memcg_sockets_enabled_key);
4827
4828void mem_cgroup_sk_alloc(struct sock *sk)
4829{
4830 struct mem_cgroup *memcg;
4831
4832 if (!mem_cgroup_sockets_enabled)
4833 return;
4834
4835 /* Do not associate the sock with unrelated interrupted task's memcg. */
4836 if (!in_task())
4837 return;
4838
4839 rcu_read_lock();
4840 memcg = mem_cgroup_from_task(current);
4841 if (mem_cgroup_is_root(memcg))
4842 goto out;
4843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4844 goto out;
4845 if (css_tryget(&memcg->css))
4846 sk->sk_memcg = memcg;
4847out:
4848 rcu_read_unlock();
4849}
4850
4851void mem_cgroup_sk_free(struct sock *sk)
4852{
4853 if (sk->sk_memcg)
4854 css_put(&sk->sk_memcg->css);
4855}
4856
4857/**
4858 * mem_cgroup_charge_skmem - charge socket memory
4859 * @memcg: memcg to charge
4860 * @nr_pages: number of pages to charge
4861 * @gfp_mask: reclaim mode
4862 *
4863 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4864 * @memcg's configured limit, %false if it doesn't.
4865 */
4866bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4867 gfp_t gfp_mask)
4868{
4869 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4870 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4871
4872 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4873 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4874 return true;
4875 }
4876
4877 return false;
4878}
4879
4880/**
4881 * mem_cgroup_uncharge_skmem - uncharge socket memory
4882 * @memcg: memcg to uncharge
4883 * @nr_pages: number of pages to uncharge
4884 */
4885void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4886{
4887 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4888 memcg1_uncharge_skmem(memcg, nr_pages);
4889 return;
4890 }
4891
4892 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4893
4894 refill_stock(memcg, nr_pages);
4895}
4896
4897static int __init cgroup_memory(char *s)
4898{
4899 char *token;
4900
4901 while ((token = strsep(&s, ",")) != NULL) {
4902 if (!*token)
4903 continue;
4904 if (!strcmp(token, "nosocket"))
4905 cgroup_memory_nosocket = true;
4906 if (!strcmp(token, "nokmem"))
4907 cgroup_memory_nokmem = true;
4908 if (!strcmp(token, "nobpf"))
4909 cgroup_memory_nobpf = true;
4910 }
4911 return 1;
4912}
4913__setup("cgroup.memory=", cgroup_memory);
4914
4915/*
4916 * subsys_initcall() for memory controller.
4917 *
4918 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4919 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4920 * basically everything that doesn't depend on a specific mem_cgroup structure
4921 * should be initialized from here.
4922 */
4923static int __init mem_cgroup_init(void)
4924{
4925 int cpu;
4926
4927 /*
4928 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4929 * used for per-memcg-per-cpu caching of per-node statistics. In order
4930 * to work fine, we should make sure that the overfill threshold can't
4931 * exceed S32_MAX / PAGE_SIZE.
4932 */
4933 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4934
4935 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4936 memcg_hotplug_cpu_dead);
4937
4938 for_each_possible_cpu(cpu)
4939 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4940 drain_local_stock);
4941
4942 return 0;
4943}
4944subsys_initcall(mem_cgroup_init);
4945
4946#ifdef CONFIG_SWAP
4947static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4948{
4949 while (!refcount_inc_not_zero(&memcg->id.ref)) {
4950 /*
4951 * The root cgroup cannot be destroyed, so it's refcount must
4952 * always be >= 1.
4953 */
4954 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4955 VM_BUG_ON(1);
4956 break;
4957 }
4958 memcg = parent_mem_cgroup(memcg);
4959 if (!memcg)
4960 memcg = root_mem_cgroup;
4961 }
4962 return memcg;
4963}
4964
4965/**
4966 * mem_cgroup_swapout - transfer a memsw charge to swap
4967 * @folio: folio whose memsw charge to transfer
4968 * @entry: swap entry to move the charge to
4969 *
4970 * Transfer the memsw charge of @folio to @entry.
4971 */
4972void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4973{
4974 struct mem_cgroup *memcg, *swap_memcg;
4975 unsigned int nr_entries;
4976 unsigned short oldid;
4977
4978 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4979 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4980
4981 if (mem_cgroup_disabled())
4982 return;
4983
4984 if (!do_memsw_account())
4985 return;
4986
4987 memcg = folio_memcg(folio);
4988
4989 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4990 if (!memcg)
4991 return;
4992
4993 /*
4994 * In case the memcg owning these pages has been offlined and doesn't
4995 * have an ID allocated to it anymore, charge the closest online
4996 * ancestor for the swap instead and transfer the memory+swap charge.
4997 */
4998 swap_memcg = mem_cgroup_id_get_online(memcg);
4999 nr_entries = folio_nr_pages(folio);
5000 /* Get references for the tail pages, too */
5001 if (nr_entries > 1)
5002 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5003 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5004 nr_entries);
5005 VM_BUG_ON_FOLIO(oldid, folio);
5006 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5007
5008 folio_unqueue_deferred_split(folio);
5009 folio->memcg_data = 0;
5010
5011 if (!mem_cgroup_is_root(memcg))
5012 page_counter_uncharge(&memcg->memory, nr_entries);
5013
5014 if (memcg != swap_memcg) {
5015 if (!mem_cgroup_is_root(swap_memcg))
5016 page_counter_charge(&swap_memcg->memsw, nr_entries);
5017 page_counter_uncharge(&memcg->memsw, nr_entries);
5018 }
5019
5020 memcg1_swapout(folio, memcg);
5021 css_put(&memcg->css);
5022}
5023
5024/**
5025 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5026 * @folio: folio being added to swap
5027 * @entry: swap entry to charge
5028 *
5029 * Try to charge @folio's memcg for the swap space at @entry.
5030 *
5031 * Returns 0 on success, -ENOMEM on failure.
5032 */
5033int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5034{
5035 unsigned int nr_pages = folio_nr_pages(folio);
5036 struct page_counter *counter;
5037 struct mem_cgroup *memcg;
5038 unsigned short oldid;
5039
5040 if (do_memsw_account())
5041 return 0;
5042
5043 memcg = folio_memcg(folio);
5044
5045 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5046 if (!memcg)
5047 return 0;
5048
5049 if (!entry.val) {
5050 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5051 return 0;
5052 }
5053
5054 memcg = mem_cgroup_id_get_online(memcg);
5055
5056 if (!mem_cgroup_is_root(memcg) &&
5057 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5058 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5059 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5060 mem_cgroup_id_put(memcg);
5061 return -ENOMEM;
5062 }
5063
5064 /* Get references for the tail pages, too */
5065 if (nr_pages > 1)
5066 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5067 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5068 VM_BUG_ON_FOLIO(oldid, folio);
5069 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5070
5071 return 0;
5072}
5073
5074/**
5075 * __mem_cgroup_uncharge_swap - uncharge swap space
5076 * @entry: swap entry to uncharge
5077 * @nr_pages: the amount of swap space to uncharge
5078 */
5079void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5080{
5081 struct mem_cgroup *memcg;
5082 unsigned short id;
5083
5084 id = swap_cgroup_record(entry, 0, nr_pages);
5085 rcu_read_lock();
5086 memcg = mem_cgroup_from_id(id);
5087 if (memcg) {
5088 if (!mem_cgroup_is_root(memcg)) {
5089 if (do_memsw_account())
5090 page_counter_uncharge(&memcg->memsw, nr_pages);
5091 else
5092 page_counter_uncharge(&memcg->swap, nr_pages);
5093 }
5094 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5095 mem_cgroup_id_put_many(memcg, nr_pages);
5096 }
5097 rcu_read_unlock();
5098}
5099
5100long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5101{
5102 long nr_swap_pages = get_nr_swap_pages();
5103
5104 if (mem_cgroup_disabled() || do_memsw_account())
5105 return nr_swap_pages;
5106 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5107 nr_swap_pages = min_t(long, nr_swap_pages,
5108 READ_ONCE(memcg->swap.max) -
5109 page_counter_read(&memcg->swap));
5110 return nr_swap_pages;
5111}
5112
5113bool mem_cgroup_swap_full(struct folio *folio)
5114{
5115 struct mem_cgroup *memcg;
5116
5117 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5118
5119 if (vm_swap_full())
5120 return true;
5121 if (do_memsw_account())
5122 return false;
5123
5124 memcg = folio_memcg(folio);
5125 if (!memcg)
5126 return false;
5127
5128 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5129 unsigned long usage = page_counter_read(&memcg->swap);
5130
5131 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5132 usage * 2 >= READ_ONCE(memcg->swap.max))
5133 return true;
5134 }
5135
5136 return false;
5137}
5138
5139static int __init setup_swap_account(char *s)
5140{
5141 bool res;
5142
5143 if (!kstrtobool(s, &res) && !res)
5144 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5145 "in favor of configuring swap control via cgroupfs. "
5146 "Please report your usecase to linux-mm@kvack.org if you "
5147 "depend on this functionality.\n");
5148 return 1;
5149}
5150__setup("swapaccount=", setup_swap_account);
5151
5152static u64 swap_current_read(struct cgroup_subsys_state *css,
5153 struct cftype *cft)
5154{
5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5156
5157 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5158}
5159
5160static int swap_peak_show(struct seq_file *sf, void *v)
5161{
5162 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5163
5164 return peak_show(sf, v, &memcg->swap);
5165}
5166
5167static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5168 size_t nbytes, loff_t off)
5169{
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5171
5172 return peak_write(of, buf, nbytes, off, &memcg->swap,
5173 &memcg->swap_peaks);
5174}
5175
5176static int swap_high_show(struct seq_file *m, void *v)
5177{
5178 return seq_puts_memcg_tunable(m,
5179 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5180}
5181
5182static ssize_t swap_high_write(struct kernfs_open_file *of,
5183 char *buf, size_t nbytes, loff_t off)
5184{
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5186 unsigned long high;
5187 int err;
5188
5189 buf = strstrip(buf);
5190 err = page_counter_memparse(buf, "max", &high);
5191 if (err)
5192 return err;
5193
5194 page_counter_set_high(&memcg->swap, high);
5195
5196 return nbytes;
5197}
5198
5199static int swap_max_show(struct seq_file *m, void *v)
5200{
5201 return seq_puts_memcg_tunable(m,
5202 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5203}
5204
5205static ssize_t swap_max_write(struct kernfs_open_file *of,
5206 char *buf, size_t nbytes, loff_t off)
5207{
5208 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5209 unsigned long max;
5210 int err;
5211
5212 buf = strstrip(buf);
5213 err = page_counter_memparse(buf, "max", &max);
5214 if (err)
5215 return err;
5216
5217 xchg(&memcg->swap.max, max);
5218
5219 return nbytes;
5220}
5221
5222static int swap_events_show(struct seq_file *m, void *v)
5223{
5224 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5225
5226 seq_printf(m, "high %lu\n",
5227 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5228 seq_printf(m, "max %lu\n",
5229 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5230 seq_printf(m, "fail %lu\n",
5231 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5232
5233 return 0;
5234}
5235
5236static struct cftype swap_files[] = {
5237 {
5238 .name = "swap.current",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .read_u64 = swap_current_read,
5241 },
5242 {
5243 .name = "swap.high",
5244 .flags = CFTYPE_NOT_ON_ROOT,
5245 .seq_show = swap_high_show,
5246 .write = swap_high_write,
5247 },
5248 {
5249 .name = "swap.max",
5250 .flags = CFTYPE_NOT_ON_ROOT,
5251 .seq_show = swap_max_show,
5252 .write = swap_max_write,
5253 },
5254 {
5255 .name = "swap.peak",
5256 .flags = CFTYPE_NOT_ON_ROOT,
5257 .open = peak_open,
5258 .release = peak_release,
5259 .seq_show = swap_peak_show,
5260 .write = swap_peak_write,
5261 },
5262 {
5263 .name = "swap.events",
5264 .flags = CFTYPE_NOT_ON_ROOT,
5265 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5266 .seq_show = swap_events_show,
5267 },
5268 { } /* terminate */
5269};
5270
5271#ifdef CONFIG_ZSWAP
5272/**
5273 * obj_cgroup_may_zswap - check if this cgroup can zswap
5274 * @objcg: the object cgroup
5275 *
5276 * Check if the hierarchical zswap limit has been reached.
5277 *
5278 * This doesn't check for specific headroom, and it is not atomic
5279 * either. But with zswap, the size of the allocation is only known
5280 * once compression has occurred, and this optimistic pre-check avoids
5281 * spending cycles on compression when there is already no room left
5282 * or zswap is disabled altogether somewhere in the hierarchy.
5283 */
5284bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5285{
5286 struct mem_cgroup *memcg, *original_memcg;
5287 bool ret = true;
5288
5289 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5290 return true;
5291
5292 original_memcg = get_mem_cgroup_from_objcg(objcg);
5293 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5294 memcg = parent_mem_cgroup(memcg)) {
5295 unsigned long max = READ_ONCE(memcg->zswap_max);
5296 unsigned long pages;
5297
5298 if (max == PAGE_COUNTER_MAX)
5299 continue;
5300 if (max == 0) {
5301 ret = false;
5302 break;
5303 }
5304
5305 /* Force flush to get accurate stats for charging */
5306 __mem_cgroup_flush_stats(memcg, true);
5307 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5308 if (pages < max)
5309 continue;
5310 ret = false;
5311 break;
5312 }
5313 mem_cgroup_put(original_memcg);
5314 return ret;
5315}
5316
5317/**
5318 * obj_cgroup_charge_zswap - charge compression backend memory
5319 * @objcg: the object cgroup
5320 * @size: size of compressed object
5321 *
5322 * This forces the charge after obj_cgroup_may_zswap() allowed
5323 * compression and storage in zwap for this cgroup to go ahead.
5324 */
5325void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5326{
5327 struct mem_cgroup *memcg;
5328
5329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5330 return;
5331
5332 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5333
5334 /* PF_MEMALLOC context, charging must succeed */
5335 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5336 VM_WARN_ON_ONCE(1);
5337
5338 rcu_read_lock();
5339 memcg = obj_cgroup_memcg(objcg);
5340 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5341 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5342 rcu_read_unlock();
5343}
5344
5345/**
5346 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5347 * @objcg: the object cgroup
5348 * @size: size of compressed object
5349 *
5350 * Uncharges zswap memory on page in.
5351 */
5352void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5353{
5354 struct mem_cgroup *memcg;
5355
5356 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5357 return;
5358
5359 obj_cgroup_uncharge(objcg, size);
5360
5361 rcu_read_lock();
5362 memcg = obj_cgroup_memcg(objcg);
5363 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5364 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5365 rcu_read_unlock();
5366}
5367
5368bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5369{
5370 /* if zswap is disabled, do not block pages going to the swapping device */
5371 if (!zswap_is_enabled())
5372 return true;
5373
5374 for (; memcg; memcg = parent_mem_cgroup(memcg))
5375 if (!READ_ONCE(memcg->zswap_writeback))
5376 return false;
5377
5378 return true;
5379}
5380
5381static u64 zswap_current_read(struct cgroup_subsys_state *css,
5382 struct cftype *cft)
5383{
5384 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5385
5386 mem_cgroup_flush_stats(memcg);
5387 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5388}
5389
5390static int zswap_max_show(struct seq_file *m, void *v)
5391{
5392 return seq_puts_memcg_tunable(m,
5393 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5394}
5395
5396static ssize_t zswap_max_write(struct kernfs_open_file *of,
5397 char *buf, size_t nbytes, loff_t off)
5398{
5399 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5400 unsigned long max;
5401 int err;
5402
5403 buf = strstrip(buf);
5404 err = page_counter_memparse(buf, "max", &max);
5405 if (err)
5406 return err;
5407
5408 xchg(&memcg->zswap_max, max);
5409
5410 return nbytes;
5411}
5412
5413static int zswap_writeback_show(struct seq_file *m, void *v)
5414{
5415 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5416
5417 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5418 return 0;
5419}
5420
5421static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5422 char *buf, size_t nbytes, loff_t off)
5423{
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5425 int zswap_writeback;
5426 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5427
5428 if (parse_ret)
5429 return parse_ret;
5430
5431 if (zswap_writeback != 0 && zswap_writeback != 1)
5432 return -EINVAL;
5433
5434 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5435 return nbytes;
5436}
5437
5438static struct cftype zswap_files[] = {
5439 {
5440 .name = "zswap.current",
5441 .flags = CFTYPE_NOT_ON_ROOT,
5442 .read_u64 = zswap_current_read,
5443 },
5444 {
5445 .name = "zswap.max",
5446 .flags = CFTYPE_NOT_ON_ROOT,
5447 .seq_show = zswap_max_show,
5448 .write = zswap_max_write,
5449 },
5450 {
5451 .name = "zswap.writeback",
5452 .seq_show = zswap_writeback_show,
5453 .write = zswap_writeback_write,
5454 },
5455 { } /* terminate */
5456};
5457#endif /* CONFIG_ZSWAP */
5458
5459static int __init mem_cgroup_swap_init(void)
5460{
5461 if (mem_cgroup_disabled())
5462 return 0;
5463
5464 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5465#ifdef CONFIG_MEMCG_V1
5466 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5467#endif
5468#ifdef CONFIG_ZSWAP
5469 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5470#endif
5471 return 0;
5472}
5473subsys_initcall(mem_cgroup_swap_init);
5474
5475#endif /* CONFIG_SWAP */