Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/rculist_nulls.h>
60#include <linux/poll.h>
61#include <linux/sockptr.h>
62#include <linux/indirect_call_wrapper.h>
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <linux/llist.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#include <uapi/linux/socket.h>
72
73/*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79/* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93#ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95#endif
96} socket_lock_t;
97
98struct sock;
99struct proto;
100struct net;
101
102typedef __u32 __bitwise __portpair;
103typedef __u64 __bitwise __addrpair;
104
105/**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185#if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188#endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216#endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232};
233
234struct bpf_local_storage;
235struct sk_filter;
236
237/**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307 * Sockets that can be used under memory reclaim should
308 * set this to false.
309 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310 * for timestamping
311 * @sk_tskey: counter to disambiguate concurrent tstamp requests
312 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
313 * @sk_socket: Identd and reporting IO signals
314 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315 * @sk_frag: cached page frag
316 * @sk_peek_off: current peek_offset value
317 * @sk_send_head: front of stuff to transmit
318 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319 * @sk_security: used by security modules
320 * @sk_mark: generic packet mark
321 * @sk_cgrp_data: cgroup data for this cgroup
322 * @sk_memcg: this socket's memory cgroup association
323 * @sk_write_pending: a write to stream socket waits to start
324 * @sk_disconnects: number of disconnect operations performed on this sock
325 * @sk_state_change: callback to indicate change in the state of the sock
326 * @sk_data_ready: callback to indicate there is data to be processed
327 * @sk_write_space: callback to indicate there is bf sending space available
328 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329 * @sk_backlog_rcv: callback to process the backlog
330 * @sk_validate_xmit_skb: ptr to an optional validate function
331 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332 * @sk_reuseport_cb: reuseport group container
333 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334 * @sk_rcu: used during RCU grace period
335 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338 * @sk_txtime_unused: unused txtime flags
339 * @ns_tracker: tracker for netns reference
340 * @sk_user_frags: xarray of pages the user is holding a reference on.
341 */
342struct sock {
343 /*
344 * Now struct inet_timewait_sock also uses sock_common, so please just
345 * don't add nothing before this first member (__sk_common) --acme
346 */
347 struct sock_common __sk_common;
348#define sk_node __sk_common.skc_node
349#define sk_nulls_node __sk_common.skc_nulls_node
350#define sk_refcnt __sk_common.skc_refcnt
351#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
352#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
353#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
354#endif
355
356#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
357#define sk_dontcopy_end __sk_common.skc_dontcopy_end
358#define sk_hash __sk_common.skc_hash
359#define sk_portpair __sk_common.skc_portpair
360#define sk_num __sk_common.skc_num
361#define sk_dport __sk_common.skc_dport
362#define sk_addrpair __sk_common.skc_addrpair
363#define sk_daddr __sk_common.skc_daddr
364#define sk_rcv_saddr __sk_common.skc_rcv_saddr
365#define sk_family __sk_common.skc_family
366#define sk_state __sk_common.skc_state
367#define sk_reuse __sk_common.skc_reuse
368#define sk_reuseport __sk_common.skc_reuseport
369#define sk_ipv6only __sk_common.skc_ipv6only
370#define sk_net_refcnt __sk_common.skc_net_refcnt
371#define sk_bound_dev_if __sk_common.skc_bound_dev_if
372#define sk_bind_node __sk_common.skc_bind_node
373#define sk_prot __sk_common.skc_prot
374#define sk_net __sk_common.skc_net
375#define sk_v6_daddr __sk_common.skc_v6_daddr
376#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
377#define sk_cookie __sk_common.skc_cookie
378#define sk_incoming_cpu __sk_common.skc_incoming_cpu
379#define sk_flags __sk_common.skc_flags
380#define sk_rxhash __sk_common.skc_rxhash
381
382 __cacheline_group_begin(sock_write_rx);
383
384 atomic_t sk_drops;
385 __s32 sk_peek_off;
386 struct sk_buff_head sk_error_queue;
387 struct sk_buff_head sk_receive_queue;
388 /*
389 * The backlog queue is special, it is always used with
390 * the per-socket spinlock held and requires low latency
391 * access. Therefore we special case it's implementation.
392 * Note : rmem_alloc is in this structure to fill a hole
393 * on 64bit arches, not because its logically part of
394 * backlog.
395 */
396 struct {
397 atomic_t rmem_alloc;
398 int len;
399 struct sk_buff *head;
400 struct sk_buff *tail;
401 } sk_backlog;
402#define sk_rmem_alloc sk_backlog.rmem_alloc
403
404 __cacheline_group_end(sock_write_rx);
405
406 __cacheline_group_begin(sock_read_rx);
407 /* early demux fields */
408 struct dst_entry __rcu *sk_rx_dst;
409 int sk_rx_dst_ifindex;
410 u32 sk_rx_dst_cookie;
411
412#ifdef CONFIG_NET_RX_BUSY_POLL
413 unsigned int sk_ll_usec;
414 unsigned int sk_napi_id;
415 u16 sk_busy_poll_budget;
416 u8 sk_prefer_busy_poll;
417#endif
418 u8 sk_userlocks;
419 int sk_rcvbuf;
420
421 struct sk_filter __rcu *sk_filter;
422 union {
423 struct socket_wq __rcu *sk_wq;
424 /* private: */
425 struct socket_wq *sk_wq_raw;
426 /* public: */
427 };
428
429 void (*sk_data_ready)(struct sock *sk);
430 long sk_rcvtimeo;
431 int sk_rcvlowat;
432 __cacheline_group_end(sock_read_rx);
433
434 __cacheline_group_begin(sock_read_rxtx);
435 int sk_err;
436 struct socket *sk_socket;
437 struct mem_cgroup *sk_memcg;
438#ifdef CONFIG_XFRM
439 struct xfrm_policy __rcu *sk_policy[2];
440#endif
441 __cacheline_group_end(sock_read_rxtx);
442
443 __cacheline_group_begin(sock_write_rxtx);
444 socket_lock_t sk_lock;
445 u32 sk_reserved_mem;
446 int sk_forward_alloc;
447 u32 sk_tsflags;
448 __cacheline_group_end(sock_write_rxtx);
449
450 __cacheline_group_begin(sock_write_tx);
451 int sk_write_pending;
452 atomic_t sk_omem_alloc;
453 int sk_sndbuf;
454
455 int sk_wmem_queued;
456 refcount_t sk_wmem_alloc;
457 unsigned long sk_tsq_flags;
458 union {
459 struct sk_buff *sk_send_head;
460 struct rb_root tcp_rtx_queue;
461 };
462 struct sk_buff_head sk_write_queue;
463 u32 sk_dst_pending_confirm;
464 u32 sk_pacing_status; /* see enum sk_pacing */
465 struct page_frag sk_frag;
466 struct timer_list sk_timer;
467
468 unsigned long sk_pacing_rate; /* bytes per second */
469 atomic_t sk_zckey;
470 atomic_t sk_tskey;
471 __cacheline_group_end(sock_write_tx);
472
473 __cacheline_group_begin(sock_read_tx);
474 unsigned long sk_max_pacing_rate;
475 long sk_sndtimeo;
476 u32 sk_priority;
477 u32 sk_mark;
478 struct dst_entry __rcu *sk_dst_cache;
479 netdev_features_t sk_route_caps;
480#ifdef CONFIG_SOCK_VALIDATE_XMIT
481 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
482 struct net_device *dev,
483 struct sk_buff *skb);
484#endif
485 u16 sk_gso_type;
486 u16 sk_gso_max_segs;
487 unsigned int sk_gso_max_size;
488 gfp_t sk_allocation;
489 u32 sk_txhash;
490 u8 sk_pacing_shift;
491 bool sk_use_task_frag;
492 __cacheline_group_end(sock_read_tx);
493
494 /*
495 * Because of non atomicity rules, all
496 * changes are protected by socket lock.
497 */
498 u8 sk_gso_disabled : 1,
499 sk_kern_sock : 1,
500 sk_no_check_tx : 1,
501 sk_no_check_rx : 1;
502 u8 sk_shutdown;
503 u16 sk_type;
504 u16 sk_protocol;
505 unsigned long sk_lingertime;
506 struct proto *sk_prot_creator;
507 rwlock_t sk_callback_lock;
508 int sk_err_soft;
509 u32 sk_ack_backlog;
510 u32 sk_max_ack_backlog;
511 kuid_t sk_uid;
512 spinlock_t sk_peer_lock;
513 int sk_bind_phc;
514 struct pid *sk_peer_pid;
515 const struct cred *sk_peer_cred;
516
517 ktime_t sk_stamp;
518#if BITS_PER_LONG==32
519 seqlock_t sk_stamp_seq;
520#endif
521 int sk_disconnects;
522
523 u8 sk_txrehash;
524 u8 sk_clockid;
525 u8 sk_txtime_deadline_mode : 1,
526 sk_txtime_report_errors : 1,
527 sk_txtime_unused : 6;
528
529 void *sk_user_data;
530#ifdef CONFIG_SECURITY
531 void *sk_security;
532#endif
533 struct sock_cgroup_data sk_cgrp_data;
534 void (*sk_state_change)(struct sock *sk);
535 void (*sk_write_space)(struct sock *sk);
536 void (*sk_error_report)(struct sock *sk);
537 int (*sk_backlog_rcv)(struct sock *sk,
538 struct sk_buff *skb);
539 void (*sk_destruct)(struct sock *sk);
540 struct sock_reuseport __rcu *sk_reuseport_cb;
541#ifdef CONFIG_BPF_SYSCALL
542 struct bpf_local_storage __rcu *sk_bpf_storage;
543#endif
544 struct rcu_head sk_rcu;
545 netns_tracker ns_tracker;
546 struct xarray sk_user_frags;
547};
548
549struct sock_bh_locked {
550 struct sock *sock;
551 local_lock_t bh_lock;
552};
553
554enum sk_pacing {
555 SK_PACING_NONE = 0,
556 SK_PACING_NEEDED = 1,
557 SK_PACING_FQ = 2,
558};
559
560/* flag bits in sk_user_data
561 *
562 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
563 * not be suitable for copying when cloning the socket. For instance,
564 * it can point to a reference counted object. sk_user_data bottom
565 * bit is set if pointer must not be copied.
566 *
567 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
568 * managed/owned by a BPF reuseport array. This bit should be set
569 * when sk_user_data's sk is added to the bpf's reuseport_array.
570 *
571 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
572 * sk_user_data points to psock type. This bit should be set
573 * when sk_user_data is assigned to a psock object.
574 */
575#define SK_USER_DATA_NOCOPY 1UL
576#define SK_USER_DATA_BPF 2UL
577#define SK_USER_DATA_PSOCK 4UL
578#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
579 SK_USER_DATA_PSOCK)
580
581/**
582 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
583 * @sk: socket
584 */
585static inline bool sk_user_data_is_nocopy(const struct sock *sk)
586{
587 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
588}
589
590#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
591
592/**
593 * __locked_read_sk_user_data_with_flags - return the pointer
594 * only if argument flags all has been set in sk_user_data. Otherwise
595 * return NULL
596 *
597 * @sk: socket
598 * @flags: flag bits
599 *
600 * The caller must be holding sk->sk_callback_lock.
601 */
602static inline void *
603__locked_read_sk_user_data_with_flags(const struct sock *sk,
604 uintptr_t flags)
605{
606 uintptr_t sk_user_data =
607 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
608 lockdep_is_held(&sk->sk_callback_lock));
609
610 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
611
612 if ((sk_user_data & flags) == flags)
613 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
614 return NULL;
615}
616
617/**
618 * __rcu_dereference_sk_user_data_with_flags - return the pointer
619 * only if argument flags all has been set in sk_user_data. Otherwise
620 * return NULL
621 *
622 * @sk: socket
623 * @flags: flag bits
624 */
625static inline void *
626__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
627 uintptr_t flags)
628{
629 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
630
631 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
632
633 if ((sk_user_data & flags) == flags)
634 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
635 return NULL;
636}
637
638#define rcu_dereference_sk_user_data(sk) \
639 __rcu_dereference_sk_user_data_with_flags(sk, 0)
640#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
641({ \
642 uintptr_t __tmp1 = (uintptr_t)(ptr), \
643 __tmp2 = (uintptr_t)(flags); \
644 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
645 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
646 rcu_assign_pointer(__sk_user_data((sk)), \
647 __tmp1 | __tmp2); \
648})
649#define rcu_assign_sk_user_data(sk, ptr) \
650 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
651
652static inline
653struct net *sock_net(const struct sock *sk)
654{
655 return read_pnet(&sk->sk_net);
656}
657
658static inline
659void sock_net_set(struct sock *sk, struct net *net)
660{
661 write_pnet(&sk->sk_net, net);
662}
663
664/*
665 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
666 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
667 * on a socket means that the socket will reuse everybody else's port
668 * without looking at the other's sk_reuse value.
669 */
670
671#define SK_NO_REUSE 0
672#define SK_CAN_REUSE 1
673#define SK_FORCE_REUSE 2
674
675int sk_set_peek_off(struct sock *sk, int val);
676
677static inline int sk_peek_offset(const struct sock *sk, int flags)
678{
679 if (unlikely(flags & MSG_PEEK)) {
680 return READ_ONCE(sk->sk_peek_off);
681 }
682
683 return 0;
684}
685
686static inline void sk_peek_offset_bwd(struct sock *sk, int val)
687{
688 s32 off = READ_ONCE(sk->sk_peek_off);
689
690 if (unlikely(off >= 0)) {
691 off = max_t(s32, off - val, 0);
692 WRITE_ONCE(sk->sk_peek_off, off);
693 }
694}
695
696static inline void sk_peek_offset_fwd(struct sock *sk, int val)
697{
698 sk_peek_offset_bwd(sk, -val);
699}
700
701/*
702 * Hashed lists helper routines
703 */
704static inline struct sock *sk_entry(const struct hlist_node *node)
705{
706 return hlist_entry(node, struct sock, sk_node);
707}
708
709static inline struct sock *__sk_head(const struct hlist_head *head)
710{
711 return hlist_entry(head->first, struct sock, sk_node);
712}
713
714static inline struct sock *sk_head(const struct hlist_head *head)
715{
716 return hlist_empty(head) ? NULL : __sk_head(head);
717}
718
719static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
720{
721 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
722}
723
724static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
725{
726 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
727}
728
729static inline struct sock *sk_next(const struct sock *sk)
730{
731 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
732}
733
734static inline struct sock *sk_nulls_next(const struct sock *sk)
735{
736 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
737 hlist_nulls_entry(sk->sk_nulls_node.next,
738 struct sock, sk_nulls_node) :
739 NULL;
740}
741
742static inline bool sk_unhashed(const struct sock *sk)
743{
744 return hlist_unhashed(&sk->sk_node);
745}
746
747static inline bool sk_hashed(const struct sock *sk)
748{
749 return !sk_unhashed(sk);
750}
751
752static inline void sk_node_init(struct hlist_node *node)
753{
754 node->pprev = NULL;
755}
756
757static inline void __sk_del_node(struct sock *sk)
758{
759 __hlist_del(&sk->sk_node);
760}
761
762/* NB: equivalent to hlist_del_init_rcu */
763static inline bool __sk_del_node_init(struct sock *sk)
764{
765 if (sk_hashed(sk)) {
766 __sk_del_node(sk);
767 sk_node_init(&sk->sk_node);
768 return true;
769 }
770 return false;
771}
772
773/* Grab socket reference count. This operation is valid only
774 when sk is ALREADY grabbed f.e. it is found in hash table
775 or a list and the lookup is made under lock preventing hash table
776 modifications.
777 */
778
779static __always_inline void sock_hold(struct sock *sk)
780{
781 refcount_inc(&sk->sk_refcnt);
782}
783
784/* Ungrab socket in the context, which assumes that socket refcnt
785 cannot hit zero, f.e. it is true in context of any socketcall.
786 */
787static __always_inline void __sock_put(struct sock *sk)
788{
789 refcount_dec(&sk->sk_refcnt);
790}
791
792static inline bool sk_del_node_init(struct sock *sk)
793{
794 bool rc = __sk_del_node_init(sk);
795
796 if (rc) {
797 /* paranoid for a while -acme */
798 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
799 __sock_put(sk);
800 }
801 return rc;
802}
803#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
804
805static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
806{
807 if (sk_hashed(sk)) {
808 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
809 return true;
810 }
811 return false;
812}
813
814static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
815{
816 bool rc = __sk_nulls_del_node_init_rcu(sk);
817
818 if (rc) {
819 /* paranoid for a while -acme */
820 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
821 __sock_put(sk);
822 }
823 return rc;
824}
825
826static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
827{
828 hlist_add_head(&sk->sk_node, list);
829}
830
831static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
832{
833 sock_hold(sk);
834 __sk_add_node(sk, list);
835}
836
837static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
838{
839 sock_hold(sk);
840 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
841 sk->sk_family == AF_INET6)
842 hlist_add_tail_rcu(&sk->sk_node, list);
843 else
844 hlist_add_head_rcu(&sk->sk_node, list);
845}
846
847static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
848{
849 sock_hold(sk);
850 hlist_add_tail_rcu(&sk->sk_node, list);
851}
852
853static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
854{
855 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
856}
857
858static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
859{
860 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
861}
862
863static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
864{
865 sock_hold(sk);
866 __sk_nulls_add_node_rcu(sk, list);
867}
868
869static inline void __sk_del_bind_node(struct sock *sk)
870{
871 __hlist_del(&sk->sk_bind_node);
872}
873
874static inline void sk_add_bind_node(struct sock *sk,
875 struct hlist_head *list)
876{
877 hlist_add_head(&sk->sk_bind_node, list);
878}
879
880#define sk_for_each(__sk, list) \
881 hlist_for_each_entry(__sk, list, sk_node)
882#define sk_for_each_rcu(__sk, list) \
883 hlist_for_each_entry_rcu(__sk, list, sk_node)
884#define sk_nulls_for_each(__sk, node, list) \
885 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
886#define sk_nulls_for_each_rcu(__sk, node, list) \
887 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
888#define sk_for_each_from(__sk) \
889 hlist_for_each_entry_from(__sk, sk_node)
890#define sk_nulls_for_each_from(__sk, node) \
891 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
892 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
893#define sk_for_each_safe(__sk, tmp, list) \
894 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
895#define sk_for_each_bound(__sk, list) \
896 hlist_for_each_entry(__sk, list, sk_bind_node)
897#define sk_for_each_bound_safe(__sk, tmp, list) \
898 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
899
900/**
901 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
902 * @tpos: the type * to use as a loop cursor.
903 * @pos: the &struct hlist_node to use as a loop cursor.
904 * @head: the head for your list.
905 * @offset: offset of hlist_node within the struct.
906 *
907 */
908#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
909 for (pos = rcu_dereference(hlist_first_rcu(head)); \
910 pos != NULL && \
911 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
912 pos = rcu_dereference(hlist_next_rcu(pos)))
913
914static inline struct user_namespace *sk_user_ns(const struct sock *sk)
915{
916 /* Careful only use this in a context where these parameters
917 * can not change and must all be valid, such as recvmsg from
918 * userspace.
919 */
920 return sk->sk_socket->file->f_cred->user_ns;
921}
922
923/* Sock flags */
924enum sock_flags {
925 SOCK_DEAD,
926 SOCK_DONE,
927 SOCK_URGINLINE,
928 SOCK_KEEPOPEN,
929 SOCK_LINGER,
930 SOCK_DESTROY,
931 SOCK_BROADCAST,
932 SOCK_TIMESTAMP,
933 SOCK_ZAPPED,
934 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
935 SOCK_DBG, /* %SO_DEBUG setting */
936 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
937 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
938 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
939 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
940 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
941 SOCK_FASYNC, /* fasync() active */
942 SOCK_RXQ_OVFL,
943 SOCK_ZEROCOPY, /* buffers from userspace */
944 SOCK_WIFI_STATUS, /* push wifi status to userspace */
945 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
946 * Will use last 4 bytes of packet sent from
947 * user-space instead.
948 */
949 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
950 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
951 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
952 SOCK_TXTIME,
953 SOCK_XDP, /* XDP is attached */
954 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
955 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
956};
957
958#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
959/*
960 * The highest bit of sk_tsflags is reserved for kernel-internal
961 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
962 * SOF_TIMESTAMPING* values do not reach this reserved area
963 */
964#define SOCKCM_FLAG_TS_OPT_ID BIT(31)
965
966static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
967{
968 nsk->sk_flags = osk->sk_flags;
969}
970
971static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
972{
973 __set_bit(flag, &sk->sk_flags);
974}
975
976static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
977{
978 __clear_bit(flag, &sk->sk_flags);
979}
980
981static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
982 int valbool)
983{
984 if (valbool)
985 sock_set_flag(sk, bit);
986 else
987 sock_reset_flag(sk, bit);
988}
989
990static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
991{
992 return test_bit(flag, &sk->sk_flags);
993}
994
995#ifdef CONFIG_NET
996DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
997static inline int sk_memalloc_socks(void)
998{
999 return static_branch_unlikely(&memalloc_socks_key);
1000}
1001
1002void __receive_sock(struct file *file);
1003#else
1004
1005static inline int sk_memalloc_socks(void)
1006{
1007 return 0;
1008}
1009
1010static inline void __receive_sock(struct file *file)
1011{ }
1012#endif
1013
1014static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1015{
1016 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1017}
1018
1019static inline void sk_acceptq_removed(struct sock *sk)
1020{
1021 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1022}
1023
1024static inline void sk_acceptq_added(struct sock *sk)
1025{
1026 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1027}
1028
1029/* Note: If you think the test should be:
1030 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1031 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1032 */
1033static inline bool sk_acceptq_is_full(const struct sock *sk)
1034{
1035 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1036}
1037
1038/*
1039 * Compute minimal free write space needed to queue new packets.
1040 */
1041static inline int sk_stream_min_wspace(const struct sock *sk)
1042{
1043 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1044}
1045
1046static inline int sk_stream_wspace(const struct sock *sk)
1047{
1048 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1049}
1050
1051static inline void sk_wmem_queued_add(struct sock *sk, int val)
1052{
1053 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1054}
1055
1056static inline void sk_forward_alloc_add(struct sock *sk, int val)
1057{
1058 /* Paired with lockless reads of sk->sk_forward_alloc */
1059 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1060}
1061
1062void sk_stream_write_space(struct sock *sk);
1063
1064/* OOB backlog add */
1065static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1066{
1067 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1068 skb_dst_force(skb);
1069
1070 if (!sk->sk_backlog.tail)
1071 WRITE_ONCE(sk->sk_backlog.head, skb);
1072 else
1073 sk->sk_backlog.tail->next = skb;
1074
1075 WRITE_ONCE(sk->sk_backlog.tail, skb);
1076 skb->next = NULL;
1077}
1078
1079/*
1080 * Take into account size of receive queue and backlog queue
1081 * Do not take into account this skb truesize,
1082 * to allow even a single big packet to come.
1083 */
1084static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1085{
1086 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1087
1088 return qsize > limit;
1089}
1090
1091/* The per-socket spinlock must be held here. */
1092static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1093 unsigned int limit)
1094{
1095 if (sk_rcvqueues_full(sk, limit))
1096 return -ENOBUFS;
1097
1098 /*
1099 * If the skb was allocated from pfmemalloc reserves, only
1100 * allow SOCK_MEMALLOC sockets to use it as this socket is
1101 * helping free memory
1102 */
1103 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1104 return -ENOMEM;
1105
1106 __sk_add_backlog(sk, skb);
1107 sk->sk_backlog.len += skb->truesize;
1108 return 0;
1109}
1110
1111int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1112
1113INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1114INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1115
1116static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1117{
1118 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1119 return __sk_backlog_rcv(sk, skb);
1120
1121 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1122 tcp_v6_do_rcv,
1123 tcp_v4_do_rcv,
1124 sk, skb);
1125}
1126
1127static inline void sk_incoming_cpu_update(struct sock *sk)
1128{
1129 int cpu = raw_smp_processor_id();
1130
1131 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1132 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1133}
1134
1135
1136static inline void sock_rps_save_rxhash(struct sock *sk,
1137 const struct sk_buff *skb)
1138{
1139#ifdef CONFIG_RPS
1140 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1141 * here, and another one in sock_rps_record_flow().
1142 */
1143 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1144 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1145#endif
1146}
1147
1148static inline void sock_rps_reset_rxhash(struct sock *sk)
1149{
1150#ifdef CONFIG_RPS
1151 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1152 WRITE_ONCE(sk->sk_rxhash, 0);
1153#endif
1154}
1155
1156#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1157 ({ int __rc, __dis = __sk->sk_disconnects; \
1158 release_sock(__sk); \
1159 __rc = __condition; \
1160 if (!__rc) { \
1161 *(__timeo) = wait_woken(__wait, \
1162 TASK_INTERRUPTIBLE, \
1163 *(__timeo)); \
1164 } \
1165 sched_annotate_sleep(); \
1166 lock_sock(__sk); \
1167 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1168 __rc; \
1169 })
1170
1171int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1172int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1173void sk_stream_wait_close(struct sock *sk, long timeo_p);
1174int sk_stream_error(struct sock *sk, int flags, int err);
1175void sk_stream_kill_queues(struct sock *sk);
1176void sk_set_memalloc(struct sock *sk);
1177void sk_clear_memalloc(struct sock *sk);
1178
1179void __sk_flush_backlog(struct sock *sk);
1180
1181static inline bool sk_flush_backlog(struct sock *sk)
1182{
1183 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1184 __sk_flush_backlog(sk);
1185 return true;
1186 }
1187 return false;
1188}
1189
1190int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1191
1192struct request_sock_ops;
1193struct timewait_sock_ops;
1194struct inet_hashinfo;
1195struct raw_hashinfo;
1196struct smc_hashinfo;
1197struct module;
1198struct sk_psock;
1199
1200/*
1201 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1202 * un-modified. Special care is taken when initializing object to zero.
1203 */
1204static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1205{
1206 if (offsetof(struct sock, sk_node.next) != 0)
1207 memset(sk, 0, offsetof(struct sock, sk_node.next));
1208 memset(&sk->sk_node.pprev, 0,
1209 size - offsetof(struct sock, sk_node.pprev));
1210}
1211
1212struct proto_accept_arg {
1213 int flags;
1214 int err;
1215 int is_empty;
1216 bool kern;
1217};
1218
1219/* Networking protocol blocks we attach to sockets.
1220 * socket layer -> transport layer interface
1221 */
1222struct proto {
1223 void (*close)(struct sock *sk,
1224 long timeout);
1225 int (*pre_connect)(struct sock *sk,
1226 struct sockaddr *uaddr,
1227 int addr_len);
1228 int (*connect)(struct sock *sk,
1229 struct sockaddr *uaddr,
1230 int addr_len);
1231 int (*disconnect)(struct sock *sk, int flags);
1232
1233 struct sock * (*accept)(struct sock *sk,
1234 struct proto_accept_arg *arg);
1235
1236 int (*ioctl)(struct sock *sk, int cmd,
1237 int *karg);
1238 int (*init)(struct sock *sk);
1239 void (*destroy)(struct sock *sk);
1240 void (*shutdown)(struct sock *sk, int how);
1241 int (*setsockopt)(struct sock *sk, int level,
1242 int optname, sockptr_t optval,
1243 unsigned int optlen);
1244 int (*getsockopt)(struct sock *sk, int level,
1245 int optname, char __user *optval,
1246 int __user *option);
1247 void (*keepalive)(struct sock *sk, int valbool);
1248#ifdef CONFIG_COMPAT
1249 int (*compat_ioctl)(struct sock *sk,
1250 unsigned int cmd, unsigned long arg);
1251#endif
1252 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1253 size_t len);
1254 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1255 size_t len, int flags, int *addr_len);
1256 void (*splice_eof)(struct socket *sock);
1257 int (*bind)(struct sock *sk,
1258 struct sockaddr *addr, int addr_len);
1259 int (*bind_add)(struct sock *sk,
1260 struct sockaddr *addr, int addr_len);
1261
1262 int (*backlog_rcv) (struct sock *sk,
1263 struct sk_buff *skb);
1264 bool (*bpf_bypass_getsockopt)(int level,
1265 int optname);
1266
1267 void (*release_cb)(struct sock *sk);
1268
1269 /* Keeping track of sk's, looking them up, and port selection methods. */
1270 int (*hash)(struct sock *sk);
1271 void (*unhash)(struct sock *sk);
1272 void (*rehash)(struct sock *sk);
1273 int (*get_port)(struct sock *sk, unsigned short snum);
1274 void (*put_port)(struct sock *sk);
1275#ifdef CONFIG_BPF_SYSCALL
1276 int (*psock_update_sk_prot)(struct sock *sk,
1277 struct sk_psock *psock,
1278 bool restore);
1279#endif
1280
1281 /* Keeping track of sockets in use */
1282#ifdef CONFIG_PROC_FS
1283 unsigned int inuse_idx;
1284#endif
1285
1286#if IS_ENABLED(CONFIG_MPTCP)
1287 int (*forward_alloc_get)(const struct sock *sk);
1288#endif
1289
1290 bool (*stream_memory_free)(const struct sock *sk, int wake);
1291 bool (*sock_is_readable)(struct sock *sk);
1292 /* Memory pressure */
1293 void (*enter_memory_pressure)(struct sock *sk);
1294 void (*leave_memory_pressure)(struct sock *sk);
1295 atomic_long_t *memory_allocated; /* Current allocated memory. */
1296 int __percpu *per_cpu_fw_alloc;
1297 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1298
1299 /*
1300 * Pressure flag: try to collapse.
1301 * Technical note: it is used by multiple contexts non atomically.
1302 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1303 * All the __sk_mem_schedule() is of this nature: accounting
1304 * is strict, actions are advisory and have some latency.
1305 */
1306 unsigned long *memory_pressure;
1307 long *sysctl_mem;
1308
1309 int *sysctl_wmem;
1310 int *sysctl_rmem;
1311 u32 sysctl_wmem_offset;
1312 u32 sysctl_rmem_offset;
1313
1314 int max_header;
1315 bool no_autobind;
1316
1317 struct kmem_cache *slab;
1318 unsigned int obj_size;
1319 unsigned int ipv6_pinfo_offset;
1320 slab_flags_t slab_flags;
1321 unsigned int useroffset; /* Usercopy region offset */
1322 unsigned int usersize; /* Usercopy region size */
1323
1324 unsigned int __percpu *orphan_count;
1325
1326 struct request_sock_ops *rsk_prot;
1327 struct timewait_sock_ops *twsk_prot;
1328
1329 union {
1330 struct inet_hashinfo *hashinfo;
1331 struct udp_table *udp_table;
1332 struct raw_hashinfo *raw_hash;
1333 struct smc_hashinfo *smc_hash;
1334 } h;
1335
1336 struct module *owner;
1337
1338 char name[32];
1339
1340 struct list_head node;
1341 int (*diag_destroy)(struct sock *sk, int err);
1342} __randomize_layout;
1343
1344int proto_register(struct proto *prot, int alloc_slab);
1345void proto_unregister(struct proto *prot);
1346int sock_load_diag_module(int family, int protocol);
1347
1348INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1349
1350static inline int sk_forward_alloc_get(const struct sock *sk)
1351{
1352#if IS_ENABLED(CONFIG_MPTCP)
1353 if (sk->sk_prot->forward_alloc_get)
1354 return sk->sk_prot->forward_alloc_get(sk);
1355#endif
1356 return READ_ONCE(sk->sk_forward_alloc);
1357}
1358
1359static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1360{
1361 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1362 return false;
1363
1364 return sk->sk_prot->stream_memory_free ?
1365 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1366 tcp_stream_memory_free, sk, wake) : true;
1367}
1368
1369static inline bool sk_stream_memory_free(const struct sock *sk)
1370{
1371 return __sk_stream_memory_free(sk, 0);
1372}
1373
1374static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1375{
1376 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1377 __sk_stream_memory_free(sk, wake);
1378}
1379
1380static inline bool sk_stream_is_writeable(const struct sock *sk)
1381{
1382 return __sk_stream_is_writeable(sk, 0);
1383}
1384
1385static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1386 struct cgroup *ancestor)
1387{
1388#ifdef CONFIG_SOCK_CGROUP_DATA
1389 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1390 ancestor);
1391#else
1392 return -ENOTSUPP;
1393#endif
1394}
1395
1396#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1397
1398static inline void sk_sockets_allocated_dec(struct sock *sk)
1399{
1400 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1401 SK_ALLOC_PERCPU_COUNTER_BATCH);
1402}
1403
1404static inline void sk_sockets_allocated_inc(struct sock *sk)
1405{
1406 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1407 SK_ALLOC_PERCPU_COUNTER_BATCH);
1408}
1409
1410static inline u64
1411sk_sockets_allocated_read_positive(struct sock *sk)
1412{
1413 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1414}
1415
1416static inline int
1417proto_sockets_allocated_sum_positive(struct proto *prot)
1418{
1419 return percpu_counter_sum_positive(prot->sockets_allocated);
1420}
1421
1422#ifdef CONFIG_PROC_FS
1423#define PROTO_INUSE_NR 64 /* should be enough for the first time */
1424struct prot_inuse {
1425 int all;
1426 int val[PROTO_INUSE_NR];
1427};
1428
1429static inline void sock_prot_inuse_add(const struct net *net,
1430 const struct proto *prot, int val)
1431{
1432 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1433}
1434
1435static inline void sock_inuse_add(const struct net *net, int val)
1436{
1437 this_cpu_add(net->core.prot_inuse->all, val);
1438}
1439
1440int sock_prot_inuse_get(struct net *net, struct proto *proto);
1441int sock_inuse_get(struct net *net);
1442#else
1443static inline void sock_prot_inuse_add(const struct net *net,
1444 const struct proto *prot, int val)
1445{
1446}
1447
1448static inline void sock_inuse_add(const struct net *net, int val)
1449{
1450}
1451#endif
1452
1453
1454/* With per-bucket locks this operation is not-atomic, so that
1455 * this version is not worse.
1456 */
1457static inline int __sk_prot_rehash(struct sock *sk)
1458{
1459 sk->sk_prot->unhash(sk);
1460 return sk->sk_prot->hash(sk);
1461}
1462
1463/* About 10 seconds */
1464#define SOCK_DESTROY_TIME (10*HZ)
1465
1466/* Sockets 0-1023 can't be bound to unless you are superuser */
1467#define PROT_SOCK 1024
1468
1469#define SHUTDOWN_MASK 3
1470#define RCV_SHUTDOWN 1
1471#define SEND_SHUTDOWN 2
1472
1473#define SOCK_BINDADDR_LOCK 4
1474#define SOCK_BINDPORT_LOCK 8
1475
1476struct socket_alloc {
1477 struct socket socket;
1478 struct inode vfs_inode;
1479};
1480
1481static inline struct socket *SOCKET_I(struct inode *inode)
1482{
1483 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1484}
1485
1486static inline struct inode *SOCK_INODE(struct socket *socket)
1487{
1488 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1489}
1490
1491/*
1492 * Functions for memory accounting
1493 */
1494int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1495int __sk_mem_schedule(struct sock *sk, int size, int kind);
1496void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1497void __sk_mem_reclaim(struct sock *sk, int amount);
1498
1499#define SK_MEM_SEND 0
1500#define SK_MEM_RECV 1
1501
1502/* sysctl_mem values are in pages */
1503static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1504{
1505 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1506}
1507
1508static inline int sk_mem_pages(int amt)
1509{
1510 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511}
1512
1513static inline bool sk_has_account(struct sock *sk)
1514{
1515 /* return true if protocol supports memory accounting */
1516 return !!sk->sk_prot->memory_allocated;
1517}
1518
1519static inline bool sk_wmem_schedule(struct sock *sk, int size)
1520{
1521 int delta;
1522
1523 if (!sk_has_account(sk))
1524 return true;
1525 delta = size - sk->sk_forward_alloc;
1526 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1527}
1528
1529static inline bool
1530__sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1531{
1532 int delta;
1533
1534 if (!sk_has_account(sk))
1535 return true;
1536 delta = size - sk->sk_forward_alloc;
1537 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1538 pfmemalloc;
1539}
1540
1541static inline bool
1542sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1543{
1544 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1545}
1546
1547static inline int sk_unused_reserved_mem(const struct sock *sk)
1548{
1549 int unused_mem;
1550
1551 if (likely(!sk->sk_reserved_mem))
1552 return 0;
1553
1554 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1555 atomic_read(&sk->sk_rmem_alloc);
1556
1557 return unused_mem > 0 ? unused_mem : 0;
1558}
1559
1560static inline void sk_mem_reclaim(struct sock *sk)
1561{
1562 int reclaimable;
1563
1564 if (!sk_has_account(sk))
1565 return;
1566
1567 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1568
1569 if (reclaimable >= (int)PAGE_SIZE)
1570 __sk_mem_reclaim(sk, reclaimable);
1571}
1572
1573static inline void sk_mem_reclaim_final(struct sock *sk)
1574{
1575 sk->sk_reserved_mem = 0;
1576 sk_mem_reclaim(sk);
1577}
1578
1579static inline void sk_mem_charge(struct sock *sk, int size)
1580{
1581 if (!sk_has_account(sk))
1582 return;
1583 sk_forward_alloc_add(sk, -size);
1584}
1585
1586static inline void sk_mem_uncharge(struct sock *sk, int size)
1587{
1588 if (!sk_has_account(sk))
1589 return;
1590 sk_forward_alloc_add(sk, size);
1591 sk_mem_reclaim(sk);
1592}
1593
1594/*
1595 * Macro so as to not evaluate some arguments when
1596 * lockdep is not enabled.
1597 *
1598 * Mark both the sk_lock and the sk_lock.slock as a
1599 * per-address-family lock class.
1600 */
1601#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1602do { \
1603 sk->sk_lock.owned = 0; \
1604 init_waitqueue_head(&sk->sk_lock.wq); \
1605 spin_lock_init(&(sk)->sk_lock.slock); \
1606 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1607 sizeof((sk)->sk_lock)); \
1608 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1609 (skey), (sname)); \
1610 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1611} while (0)
1612
1613static inline bool lockdep_sock_is_held(const struct sock *sk)
1614{
1615 return lockdep_is_held(&sk->sk_lock) ||
1616 lockdep_is_held(&sk->sk_lock.slock);
1617}
1618
1619void lock_sock_nested(struct sock *sk, int subclass);
1620
1621static inline void lock_sock(struct sock *sk)
1622{
1623 lock_sock_nested(sk, 0);
1624}
1625
1626void __lock_sock(struct sock *sk);
1627void __release_sock(struct sock *sk);
1628void release_sock(struct sock *sk);
1629
1630/* BH context may only use the following locking interface. */
1631#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1632#define bh_lock_sock_nested(__sk) \
1633 spin_lock_nested(&((__sk)->sk_lock.slock), \
1634 SINGLE_DEPTH_NESTING)
1635#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1636
1637bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1638
1639/**
1640 * lock_sock_fast - fast version of lock_sock
1641 * @sk: socket
1642 *
1643 * This version should be used for very small section, where process won't block
1644 * return false if fast path is taken:
1645 *
1646 * sk_lock.slock locked, owned = 0, BH disabled
1647 *
1648 * return true if slow path is taken:
1649 *
1650 * sk_lock.slock unlocked, owned = 1, BH enabled
1651 */
1652static inline bool lock_sock_fast(struct sock *sk)
1653{
1654 /* The sk_lock has mutex_lock() semantics here. */
1655 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1656
1657 return __lock_sock_fast(sk);
1658}
1659
1660/* fast socket lock variant for caller already holding a [different] socket lock */
1661static inline bool lock_sock_fast_nested(struct sock *sk)
1662{
1663 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1664
1665 return __lock_sock_fast(sk);
1666}
1667
1668/**
1669 * unlock_sock_fast - complement of lock_sock_fast
1670 * @sk: socket
1671 * @slow: slow mode
1672 *
1673 * fast unlock socket for user context.
1674 * If slow mode is on, we call regular release_sock()
1675 */
1676static inline void unlock_sock_fast(struct sock *sk, bool slow)
1677 __releases(&sk->sk_lock.slock)
1678{
1679 if (slow) {
1680 release_sock(sk);
1681 __release(&sk->sk_lock.slock);
1682 } else {
1683 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1684 spin_unlock_bh(&sk->sk_lock.slock);
1685 }
1686}
1687
1688void sockopt_lock_sock(struct sock *sk);
1689void sockopt_release_sock(struct sock *sk);
1690bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1691bool sockopt_capable(int cap);
1692
1693/* Used by processes to "lock" a socket state, so that
1694 * interrupts and bottom half handlers won't change it
1695 * from under us. It essentially blocks any incoming
1696 * packets, so that we won't get any new data or any
1697 * packets that change the state of the socket.
1698 *
1699 * While locked, BH processing will add new packets to
1700 * the backlog queue. This queue is processed by the
1701 * owner of the socket lock right before it is released.
1702 *
1703 * Since ~2.3.5 it is also exclusive sleep lock serializing
1704 * accesses from user process context.
1705 */
1706
1707static inline void sock_owned_by_me(const struct sock *sk)
1708{
1709#ifdef CONFIG_LOCKDEP
1710 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1711#endif
1712}
1713
1714static inline void sock_not_owned_by_me(const struct sock *sk)
1715{
1716#ifdef CONFIG_LOCKDEP
1717 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1718#endif
1719}
1720
1721static inline bool sock_owned_by_user(const struct sock *sk)
1722{
1723 sock_owned_by_me(sk);
1724 return sk->sk_lock.owned;
1725}
1726
1727static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1728{
1729 return sk->sk_lock.owned;
1730}
1731
1732static inline void sock_release_ownership(struct sock *sk)
1733{
1734 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1735 sk->sk_lock.owned = 0;
1736
1737 /* The sk_lock has mutex_unlock() semantics: */
1738 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1739}
1740
1741/* no reclassification while locks are held */
1742static inline bool sock_allow_reclassification(const struct sock *csk)
1743{
1744 struct sock *sk = (struct sock *)csk;
1745
1746 return !sock_owned_by_user_nocheck(sk) &&
1747 !spin_is_locked(&sk->sk_lock.slock);
1748}
1749
1750struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751 struct proto *prot, int kern);
1752void sk_free(struct sock *sk);
1753void sk_destruct(struct sock *sk);
1754struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1755void sk_free_unlock_clone(struct sock *sk);
1756
1757struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1758 gfp_t priority);
1759void __sock_wfree(struct sk_buff *skb);
1760void sock_wfree(struct sk_buff *skb);
1761struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1762 gfp_t priority);
1763void skb_orphan_partial(struct sk_buff *skb);
1764void sock_rfree(struct sk_buff *skb);
1765void sock_efree(struct sk_buff *skb);
1766#ifdef CONFIG_INET
1767void sock_edemux(struct sk_buff *skb);
1768void sock_pfree(struct sk_buff *skb);
1769
1770static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1771{
1772 skb_orphan(skb);
1773 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1774 skb->sk = sk;
1775 skb->destructor = sock_edemux;
1776 }
1777}
1778#else
1779#define sock_edemux sock_efree
1780#endif
1781
1782int sk_setsockopt(struct sock *sk, int level, int optname,
1783 sockptr_t optval, unsigned int optlen);
1784int sock_setsockopt(struct socket *sock, int level, int op,
1785 sockptr_t optval, unsigned int optlen);
1786int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1787 int optname, sockptr_t optval, int optlen);
1788int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1789 int optname, sockptr_t optval, sockptr_t optlen);
1790
1791int sk_getsockopt(struct sock *sk, int level, int optname,
1792 sockptr_t optval, sockptr_t optlen);
1793int sock_gettstamp(struct socket *sock, void __user *userstamp,
1794 bool timeval, bool time32);
1795struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1796 unsigned long data_len, int noblock,
1797 int *errcode, int max_page_order);
1798
1799static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1800 unsigned long size,
1801 int noblock, int *errcode)
1802{
1803 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1804}
1805
1806void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1807void sock_kfree_s(struct sock *sk, void *mem, int size);
1808void sock_kzfree_s(struct sock *sk, void *mem, int size);
1809void sk_send_sigurg(struct sock *sk);
1810
1811static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1812{
1813 if (sk->sk_socket)
1814 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1815 WRITE_ONCE(sk->sk_prot, proto);
1816}
1817
1818struct sockcm_cookie {
1819 u64 transmit_time;
1820 u32 mark;
1821 u32 tsflags;
1822 u32 ts_opt_id;
1823};
1824
1825static inline void sockcm_init(struct sockcm_cookie *sockc,
1826 const struct sock *sk)
1827{
1828 *sockc = (struct sockcm_cookie) {
1829 .tsflags = READ_ONCE(sk->sk_tsflags)
1830 };
1831}
1832
1833int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1834 struct sockcm_cookie *sockc);
1835int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1836 struct sockcm_cookie *sockc);
1837
1838/*
1839 * Functions to fill in entries in struct proto_ops when a protocol
1840 * does not implement a particular function.
1841 */
1842int sock_no_bind(struct socket *, struct sockaddr *, int);
1843int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1844int sock_no_socketpair(struct socket *, struct socket *);
1845int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1846int sock_no_getname(struct socket *, struct sockaddr *, int);
1847int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1848int sock_no_listen(struct socket *, int);
1849int sock_no_shutdown(struct socket *, int);
1850int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1851int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1852int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1853int sock_no_mmap(struct file *file, struct socket *sock,
1854 struct vm_area_struct *vma);
1855
1856/*
1857 * Functions to fill in entries in struct proto_ops when a protocol
1858 * uses the inet style.
1859 */
1860int sock_common_getsockopt(struct socket *sock, int level, int optname,
1861 char __user *optval, int __user *optlen);
1862int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1863 int flags);
1864int sock_common_setsockopt(struct socket *sock, int level, int optname,
1865 sockptr_t optval, unsigned int optlen);
1866
1867void sk_common_release(struct sock *sk);
1868
1869/*
1870 * Default socket callbacks and setup code
1871 */
1872
1873/* Initialise core socket variables using an explicit uid. */
1874void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1875
1876/* Initialise core socket variables.
1877 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1878 */
1879void sock_init_data(struct socket *sock, struct sock *sk);
1880
1881/*
1882 * Socket reference counting postulates.
1883 *
1884 * * Each user of socket SHOULD hold a reference count.
1885 * * Each access point to socket (an hash table bucket, reference from a list,
1886 * running timer, skb in flight MUST hold a reference count.
1887 * * When reference count hits 0, it means it will never increase back.
1888 * * When reference count hits 0, it means that no references from
1889 * outside exist to this socket and current process on current CPU
1890 * is last user and may/should destroy this socket.
1891 * * sk_free is called from any context: process, BH, IRQ. When
1892 * it is called, socket has no references from outside -> sk_free
1893 * may release descendant resources allocated by the socket, but
1894 * to the time when it is called, socket is NOT referenced by any
1895 * hash tables, lists etc.
1896 * * Packets, delivered from outside (from network or from another process)
1897 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1898 * when they sit in queue. Otherwise, packets will leak to hole, when
1899 * socket is looked up by one cpu and unhasing is made by another CPU.
1900 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1901 * (leak to backlog). Packet socket does all the processing inside
1902 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1903 * use separate SMP lock, so that they are prone too.
1904 */
1905
1906/* Ungrab socket and destroy it, if it was the last reference. */
1907static inline void sock_put(struct sock *sk)
1908{
1909 if (refcount_dec_and_test(&sk->sk_refcnt))
1910 sk_free(sk);
1911}
1912/* Generic version of sock_put(), dealing with all sockets
1913 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1914 */
1915void sock_gen_put(struct sock *sk);
1916
1917int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1918 unsigned int trim_cap, bool refcounted);
1919static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1920 const int nested)
1921{
1922 return __sk_receive_skb(sk, skb, nested, 1, true);
1923}
1924
1925static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1926{
1927 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1928 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1929 return;
1930 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1931 * other WRITE_ONCE() because socket lock might be not held.
1932 */
1933 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1934}
1935
1936#define NO_QUEUE_MAPPING USHRT_MAX
1937
1938static inline void sk_tx_queue_clear(struct sock *sk)
1939{
1940 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1941 * other WRITE_ONCE() because socket lock might be not held.
1942 */
1943 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1944}
1945
1946static inline int sk_tx_queue_get(const struct sock *sk)
1947{
1948 if (sk) {
1949 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1950 * and sk_tx_queue_set().
1951 */
1952 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1953
1954 if (val != NO_QUEUE_MAPPING)
1955 return val;
1956 }
1957 return -1;
1958}
1959
1960static inline void __sk_rx_queue_set(struct sock *sk,
1961 const struct sk_buff *skb,
1962 bool force_set)
1963{
1964#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1965 if (skb_rx_queue_recorded(skb)) {
1966 u16 rx_queue = skb_get_rx_queue(skb);
1967
1968 if (force_set ||
1969 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1970 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1971 }
1972#endif
1973}
1974
1975static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1976{
1977 __sk_rx_queue_set(sk, skb, true);
1978}
1979
1980static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1981{
1982 __sk_rx_queue_set(sk, skb, false);
1983}
1984
1985static inline void sk_rx_queue_clear(struct sock *sk)
1986{
1987#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1988 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1989#endif
1990}
1991
1992static inline int sk_rx_queue_get(const struct sock *sk)
1993{
1994#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1995 if (sk) {
1996 int res = READ_ONCE(sk->sk_rx_queue_mapping);
1997
1998 if (res != NO_QUEUE_MAPPING)
1999 return res;
2000 }
2001#endif
2002
2003 return -1;
2004}
2005
2006static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2007{
2008 sk->sk_socket = sock;
2009}
2010
2011static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2012{
2013 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2014 return &rcu_dereference_raw(sk->sk_wq)->wait;
2015}
2016/* Detach socket from process context.
2017 * Announce socket dead, detach it from wait queue and inode.
2018 * Note that parent inode held reference count on this struct sock,
2019 * we do not release it in this function, because protocol
2020 * probably wants some additional cleanups or even continuing
2021 * to work with this socket (TCP).
2022 */
2023static inline void sock_orphan(struct sock *sk)
2024{
2025 write_lock_bh(&sk->sk_callback_lock);
2026 sock_set_flag(sk, SOCK_DEAD);
2027 sk_set_socket(sk, NULL);
2028 sk->sk_wq = NULL;
2029 write_unlock_bh(&sk->sk_callback_lock);
2030}
2031
2032static inline void sock_graft(struct sock *sk, struct socket *parent)
2033{
2034 WARN_ON(parent->sk);
2035 write_lock_bh(&sk->sk_callback_lock);
2036 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2037 parent->sk = sk;
2038 sk_set_socket(sk, parent);
2039 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2040 security_sock_graft(sk, parent);
2041 write_unlock_bh(&sk->sk_callback_lock);
2042}
2043
2044kuid_t sock_i_uid(struct sock *sk);
2045unsigned long __sock_i_ino(struct sock *sk);
2046unsigned long sock_i_ino(struct sock *sk);
2047
2048static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2049{
2050 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2051}
2052
2053static inline u32 net_tx_rndhash(void)
2054{
2055 u32 v = get_random_u32();
2056
2057 return v ?: 1;
2058}
2059
2060static inline void sk_set_txhash(struct sock *sk)
2061{
2062 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2063 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2064}
2065
2066static inline bool sk_rethink_txhash(struct sock *sk)
2067{
2068 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2069 sk_set_txhash(sk);
2070 return true;
2071 }
2072 return false;
2073}
2074
2075static inline struct dst_entry *
2076__sk_dst_get(const struct sock *sk)
2077{
2078 return rcu_dereference_check(sk->sk_dst_cache,
2079 lockdep_sock_is_held(sk));
2080}
2081
2082static inline struct dst_entry *
2083sk_dst_get(const struct sock *sk)
2084{
2085 struct dst_entry *dst;
2086
2087 rcu_read_lock();
2088 dst = rcu_dereference(sk->sk_dst_cache);
2089 if (dst && !rcuref_get(&dst->__rcuref))
2090 dst = NULL;
2091 rcu_read_unlock();
2092 return dst;
2093}
2094
2095static inline void __dst_negative_advice(struct sock *sk)
2096{
2097 struct dst_entry *dst = __sk_dst_get(sk);
2098
2099 if (dst && dst->ops->negative_advice)
2100 dst->ops->negative_advice(sk, dst);
2101}
2102
2103static inline void dst_negative_advice(struct sock *sk)
2104{
2105 sk_rethink_txhash(sk);
2106 __dst_negative_advice(sk);
2107}
2108
2109static inline void
2110__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2111{
2112 struct dst_entry *old_dst;
2113
2114 sk_tx_queue_clear(sk);
2115 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2116 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2117 lockdep_sock_is_held(sk));
2118 rcu_assign_pointer(sk->sk_dst_cache, dst);
2119 dst_release(old_dst);
2120}
2121
2122static inline void
2123sk_dst_set(struct sock *sk, struct dst_entry *dst)
2124{
2125 struct dst_entry *old_dst;
2126
2127 sk_tx_queue_clear(sk);
2128 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2129 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2130 dst_release(old_dst);
2131}
2132
2133static inline void
2134__sk_dst_reset(struct sock *sk)
2135{
2136 __sk_dst_set(sk, NULL);
2137}
2138
2139static inline void
2140sk_dst_reset(struct sock *sk)
2141{
2142 sk_dst_set(sk, NULL);
2143}
2144
2145struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2146
2147struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2148
2149static inline void sk_dst_confirm(struct sock *sk)
2150{
2151 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2152 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2153}
2154
2155static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2156{
2157 if (skb_get_dst_pending_confirm(skb)) {
2158 struct sock *sk = skb->sk;
2159
2160 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2161 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2162 neigh_confirm(n);
2163 }
2164}
2165
2166bool sk_mc_loop(const struct sock *sk);
2167
2168static inline bool sk_can_gso(const struct sock *sk)
2169{
2170 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2171}
2172
2173void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2174
2175static inline void sk_gso_disable(struct sock *sk)
2176{
2177 sk->sk_gso_disabled = 1;
2178 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2179}
2180
2181static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2182 struct iov_iter *from, char *to,
2183 int copy, int offset)
2184{
2185 if (skb->ip_summed == CHECKSUM_NONE) {
2186 __wsum csum = 0;
2187 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2188 return -EFAULT;
2189 skb->csum = csum_block_add(skb->csum, csum, offset);
2190 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2191 if (!copy_from_iter_full_nocache(to, copy, from))
2192 return -EFAULT;
2193 } else if (!copy_from_iter_full(to, copy, from))
2194 return -EFAULT;
2195
2196 return 0;
2197}
2198
2199static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2200 struct iov_iter *from, int copy)
2201{
2202 int err, offset = skb->len;
2203
2204 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2205 copy, offset);
2206 if (err)
2207 __skb_trim(skb, offset);
2208
2209 return err;
2210}
2211
2212static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2213 struct sk_buff *skb,
2214 struct page *page,
2215 int off, int copy)
2216{
2217 int err;
2218
2219 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2220 copy, skb->len);
2221 if (err)
2222 return err;
2223
2224 skb_len_add(skb, copy);
2225 sk_wmem_queued_add(sk, copy);
2226 sk_mem_charge(sk, copy);
2227 return 0;
2228}
2229
2230/**
2231 * sk_wmem_alloc_get - returns write allocations
2232 * @sk: socket
2233 *
2234 * Return: sk_wmem_alloc minus initial offset of one
2235 */
2236static inline int sk_wmem_alloc_get(const struct sock *sk)
2237{
2238 return refcount_read(&sk->sk_wmem_alloc) - 1;
2239}
2240
2241/**
2242 * sk_rmem_alloc_get - returns read allocations
2243 * @sk: socket
2244 *
2245 * Return: sk_rmem_alloc
2246 */
2247static inline int sk_rmem_alloc_get(const struct sock *sk)
2248{
2249 return atomic_read(&sk->sk_rmem_alloc);
2250}
2251
2252/**
2253 * sk_has_allocations - check if allocations are outstanding
2254 * @sk: socket
2255 *
2256 * Return: true if socket has write or read allocations
2257 */
2258static inline bool sk_has_allocations(const struct sock *sk)
2259{
2260 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2261}
2262
2263/**
2264 * skwq_has_sleeper - check if there are any waiting processes
2265 * @wq: struct socket_wq
2266 *
2267 * Return: true if socket_wq has waiting processes
2268 *
2269 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2270 * barrier call. They were added due to the race found within the tcp code.
2271 *
2272 * Consider following tcp code paths::
2273 *
2274 * CPU1 CPU2
2275 * sys_select receive packet
2276 * ... ...
2277 * __add_wait_queue update tp->rcv_nxt
2278 * ... ...
2279 * tp->rcv_nxt check sock_def_readable
2280 * ... {
2281 * schedule rcu_read_lock();
2282 * wq = rcu_dereference(sk->sk_wq);
2283 * if (wq && waitqueue_active(&wq->wait))
2284 * wake_up_interruptible(&wq->wait)
2285 * ...
2286 * }
2287 *
2288 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2289 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2290 * could then endup calling schedule and sleep forever if there are no more
2291 * data on the socket.
2292 *
2293 */
2294static inline bool skwq_has_sleeper(struct socket_wq *wq)
2295{
2296 return wq && wq_has_sleeper(&wq->wait);
2297}
2298
2299/**
2300 * sock_poll_wait - wrapper for the poll_wait call.
2301 * @filp: file
2302 * @sock: socket to wait on
2303 * @p: poll_table
2304 *
2305 * See the comments in the wq_has_sleeper function.
2306 */
2307static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2308 poll_table *p)
2309{
2310 /* Provides a barrier we need to be sure we are in sync
2311 * with the socket flags modification.
2312 *
2313 * This memory barrier is paired in the wq_has_sleeper.
2314 */
2315 poll_wait(filp, &sock->wq.wait, p);
2316}
2317
2318static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2319{
2320 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2321 u32 txhash = READ_ONCE(sk->sk_txhash);
2322
2323 if (txhash) {
2324 skb->l4_hash = 1;
2325 skb->hash = txhash;
2326 }
2327}
2328
2329void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2330
2331/*
2332 * Queue a received datagram if it will fit. Stream and sequenced
2333 * protocols can't normally use this as they need to fit buffers in
2334 * and play with them.
2335 *
2336 * Inlined as it's very short and called for pretty much every
2337 * packet ever received.
2338 */
2339static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2340{
2341 skb_orphan(skb);
2342 skb->sk = sk;
2343 skb->destructor = sock_rfree;
2344 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2345 sk_mem_charge(sk, skb->truesize);
2346}
2347
2348static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2349{
2350 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2351 skb_orphan(skb);
2352 skb->destructor = sock_efree;
2353 skb->sk = sk;
2354 return true;
2355 }
2356 return false;
2357}
2358
2359static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2360{
2361 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2362 if (skb) {
2363 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2364 skb_set_owner_r(skb, sk);
2365 return skb;
2366 }
2367 __kfree_skb(skb);
2368 }
2369 return NULL;
2370}
2371
2372static inline void skb_prepare_for_gro(struct sk_buff *skb)
2373{
2374 if (skb->destructor != sock_wfree) {
2375 skb_orphan(skb);
2376 return;
2377 }
2378 skb->slow_gro = 1;
2379}
2380
2381void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2382 unsigned long expires);
2383
2384void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2385
2386void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2387
2388int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2389 struct sk_buff *skb, unsigned int flags,
2390 void (*destructor)(struct sock *sk,
2391 struct sk_buff *skb));
2392int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2393
2394int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2395 enum skb_drop_reason *reason);
2396
2397static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2398{
2399 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2400}
2401
2402int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2403struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2404
2405/*
2406 * Recover an error report and clear atomically
2407 */
2408
2409static inline int sock_error(struct sock *sk)
2410{
2411 int err;
2412
2413 /* Avoid an atomic operation for the common case.
2414 * This is racy since another cpu/thread can change sk_err under us.
2415 */
2416 if (likely(data_race(!sk->sk_err)))
2417 return 0;
2418
2419 err = xchg(&sk->sk_err, 0);
2420 return -err;
2421}
2422
2423void sk_error_report(struct sock *sk);
2424
2425static inline unsigned long sock_wspace(struct sock *sk)
2426{
2427 int amt = 0;
2428
2429 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2430 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2431 if (amt < 0)
2432 amt = 0;
2433 }
2434 return amt;
2435}
2436
2437/* Note:
2438 * We use sk->sk_wq_raw, from contexts knowing this
2439 * pointer is not NULL and cannot disappear/change.
2440 */
2441static inline void sk_set_bit(int nr, struct sock *sk)
2442{
2443 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2444 !sock_flag(sk, SOCK_FASYNC))
2445 return;
2446
2447 set_bit(nr, &sk->sk_wq_raw->flags);
2448}
2449
2450static inline void sk_clear_bit(int nr, struct sock *sk)
2451{
2452 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2453 !sock_flag(sk, SOCK_FASYNC))
2454 return;
2455
2456 clear_bit(nr, &sk->sk_wq_raw->flags);
2457}
2458
2459static inline void sk_wake_async(const struct sock *sk, int how, int band)
2460{
2461 if (sock_flag(sk, SOCK_FASYNC)) {
2462 rcu_read_lock();
2463 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2464 rcu_read_unlock();
2465 }
2466}
2467
2468static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2469{
2470 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2471 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2472}
2473
2474/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2475 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2476 * Note: for send buffers, TCP works better if we can build two skbs at
2477 * minimum.
2478 */
2479#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2480
2481#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2482#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2483
2484static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2485{
2486 u32 val;
2487
2488 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2489 return;
2490
2491 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2492 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2493
2494 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2495}
2496
2497/**
2498 * sk_page_frag - return an appropriate page_frag
2499 * @sk: socket
2500 *
2501 * Use the per task page_frag instead of the per socket one for
2502 * optimization when we know that we're in process context and own
2503 * everything that's associated with %current.
2504 *
2505 * Both direct reclaim and page faults can nest inside other
2506 * socket operations and end up recursing into sk_page_frag()
2507 * while it's already in use: explicitly avoid task page_frag
2508 * when users disable sk_use_task_frag.
2509 *
2510 * Return: a per task page_frag if context allows that,
2511 * otherwise a per socket one.
2512 */
2513static inline struct page_frag *sk_page_frag(struct sock *sk)
2514{
2515 if (sk->sk_use_task_frag)
2516 return ¤t->task_frag;
2517
2518 return &sk->sk_frag;
2519}
2520
2521bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2522
2523/*
2524 * Default write policy as shown to user space via poll/select/SIGIO
2525 */
2526static inline bool sock_writeable(const struct sock *sk)
2527{
2528 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2529}
2530
2531static inline gfp_t gfp_any(void)
2532{
2533 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2534}
2535
2536static inline gfp_t gfp_memcg_charge(void)
2537{
2538 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2539}
2540
2541static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2542{
2543 return noblock ? 0 : sk->sk_rcvtimeo;
2544}
2545
2546static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2547{
2548 return noblock ? 0 : sk->sk_sndtimeo;
2549}
2550
2551static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2552{
2553 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2554
2555 return v ?: 1;
2556}
2557
2558/* Alas, with timeout socket operations are not restartable.
2559 * Compare this to poll().
2560 */
2561static inline int sock_intr_errno(long timeo)
2562{
2563 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2564}
2565
2566struct sock_skb_cb {
2567 u32 dropcount;
2568};
2569
2570/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2571 * using skb->cb[] would keep using it directly and utilize its
2572 * alignment guarantee.
2573 */
2574#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2575 sizeof(struct sock_skb_cb)))
2576
2577#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2578 SOCK_SKB_CB_OFFSET))
2579
2580#define sock_skb_cb_check_size(size) \
2581 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2582
2583static inline void
2584sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2585{
2586 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2587 atomic_read(&sk->sk_drops) : 0;
2588}
2589
2590static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2591{
2592 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2593
2594 atomic_add(segs, &sk->sk_drops);
2595}
2596
2597static inline ktime_t sock_read_timestamp(struct sock *sk)
2598{
2599#if BITS_PER_LONG==32
2600 unsigned int seq;
2601 ktime_t kt;
2602
2603 do {
2604 seq = read_seqbegin(&sk->sk_stamp_seq);
2605 kt = sk->sk_stamp;
2606 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2607
2608 return kt;
2609#else
2610 return READ_ONCE(sk->sk_stamp);
2611#endif
2612}
2613
2614static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2615{
2616#if BITS_PER_LONG==32
2617 write_seqlock(&sk->sk_stamp_seq);
2618 sk->sk_stamp = kt;
2619 write_sequnlock(&sk->sk_stamp_seq);
2620#else
2621 WRITE_ONCE(sk->sk_stamp, kt);
2622#endif
2623}
2624
2625void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2626 struct sk_buff *skb);
2627void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2628 struct sk_buff *skb);
2629
2630static inline void
2631sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2632{
2633 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2634 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2635 ktime_t kt = skb->tstamp;
2636 /*
2637 * generate control messages if
2638 * - receive time stamping in software requested
2639 * - software time stamp available and wanted
2640 * - hardware time stamps available and wanted
2641 */
2642 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2643 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2644 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2645 (hwtstamps->hwtstamp &&
2646 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2647 __sock_recv_timestamp(msg, sk, skb);
2648 else
2649 sock_write_timestamp(sk, kt);
2650
2651 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2652 __sock_recv_wifi_status(msg, sk, skb);
2653}
2654
2655void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2656 struct sk_buff *skb);
2657
2658#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2659static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2660 struct sk_buff *skb)
2661{
2662#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2663 (1UL << SOCK_RCVTSTAMP) | \
2664 (1UL << SOCK_RCVMARK))
2665#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2666 SOF_TIMESTAMPING_RAW_HARDWARE)
2667
2668 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2669 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2670 __sock_recv_cmsgs(msg, sk, skb);
2671 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2672 sock_write_timestamp(sk, skb->tstamp);
2673 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2674 sock_write_timestamp(sk, 0);
2675}
2676
2677void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2678
2679/**
2680 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2681 * @sk: socket sending this packet
2682 * @sockc: pointer to socket cmsg cookie to get timestamping info
2683 * @tx_flags: completed with instructions for time stamping
2684 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2685 *
2686 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2687 */
2688static inline void _sock_tx_timestamp(struct sock *sk,
2689 const struct sockcm_cookie *sockc,
2690 __u8 *tx_flags, __u32 *tskey)
2691{
2692 __u32 tsflags = sockc->tsflags;
2693
2694 if (unlikely(tsflags)) {
2695 __sock_tx_timestamp(tsflags, tx_flags);
2696 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2697 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2698 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2699 *tskey = sockc->ts_opt_id;
2700 else
2701 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2702 }
2703 }
2704 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2705 *tx_flags |= SKBTX_WIFI_STATUS;
2706}
2707
2708static inline void sock_tx_timestamp(struct sock *sk,
2709 const struct sockcm_cookie *sockc,
2710 __u8 *tx_flags)
2711{
2712 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2713}
2714
2715static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2716 const struct sockcm_cookie *sockc)
2717{
2718 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2719 &skb_shinfo(skb)->tskey);
2720}
2721
2722static inline bool sk_is_inet(const struct sock *sk)
2723{
2724 int family = READ_ONCE(sk->sk_family);
2725
2726 return family == AF_INET || family == AF_INET6;
2727}
2728
2729static inline bool sk_is_tcp(const struct sock *sk)
2730{
2731 return sk_is_inet(sk) &&
2732 sk->sk_type == SOCK_STREAM &&
2733 sk->sk_protocol == IPPROTO_TCP;
2734}
2735
2736static inline bool sk_is_udp(const struct sock *sk)
2737{
2738 return sk_is_inet(sk) &&
2739 sk->sk_type == SOCK_DGRAM &&
2740 sk->sk_protocol == IPPROTO_UDP;
2741}
2742
2743static inline bool sk_is_stream_unix(const struct sock *sk)
2744{
2745 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2746}
2747
2748static inline bool sk_is_vsock(const struct sock *sk)
2749{
2750 return sk->sk_family == AF_VSOCK;
2751}
2752
2753/**
2754 * sk_eat_skb - Release a skb if it is no longer needed
2755 * @sk: socket to eat this skb from
2756 * @skb: socket buffer to eat
2757 *
2758 * This routine must be called with interrupts disabled or with the socket
2759 * locked so that the sk_buff queue operation is ok.
2760*/
2761static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2762{
2763 __skb_unlink(skb, &sk->sk_receive_queue);
2764 __kfree_skb(skb);
2765}
2766
2767static inline bool
2768skb_sk_is_prefetched(struct sk_buff *skb)
2769{
2770#ifdef CONFIG_INET
2771 return skb->destructor == sock_pfree;
2772#else
2773 return false;
2774#endif /* CONFIG_INET */
2775}
2776
2777/* This helper checks if a socket is a full socket,
2778 * ie _not_ a timewait or request socket.
2779 */
2780static inline bool sk_fullsock(const struct sock *sk)
2781{
2782 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2783}
2784
2785static inline bool
2786sk_is_refcounted(struct sock *sk)
2787{
2788 /* Only full sockets have sk->sk_flags. */
2789 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2790}
2791
2792/* Checks if this SKB belongs to an HW offloaded socket
2793 * and whether any SW fallbacks are required based on dev.
2794 * Check decrypted mark in case skb_orphan() cleared socket.
2795 */
2796static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2797 struct net_device *dev)
2798{
2799#ifdef CONFIG_SOCK_VALIDATE_XMIT
2800 struct sock *sk = skb->sk;
2801
2802 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2803 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2804 } else if (unlikely(skb_is_decrypted(skb))) {
2805 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2806 kfree_skb(skb);
2807 skb = NULL;
2808 }
2809#endif
2810
2811 return skb;
2812}
2813
2814/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2815 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2816 */
2817static inline bool sk_listener(const struct sock *sk)
2818{
2819 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2820}
2821
2822/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2823 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2824 * TCP RST and ACK can be attached to TIME_WAIT.
2825 */
2826static inline bool sk_listener_or_tw(const struct sock *sk)
2827{
2828 return (1 << READ_ONCE(sk->sk_state)) &
2829 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2830}
2831
2832void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2833int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2834 int type);
2835
2836bool sk_ns_capable(const struct sock *sk,
2837 struct user_namespace *user_ns, int cap);
2838bool sk_capable(const struct sock *sk, int cap);
2839bool sk_net_capable(const struct sock *sk, int cap);
2840
2841void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2842
2843/* Take into consideration the size of the struct sk_buff overhead in the
2844 * determination of these values, since that is non-constant across
2845 * platforms. This makes socket queueing behavior and performance
2846 * not depend upon such differences.
2847 */
2848#define _SK_MEM_PACKETS 256
2849#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2850#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2851#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2852
2853extern __u32 sysctl_wmem_max;
2854extern __u32 sysctl_rmem_max;
2855
2856extern __u32 sysctl_wmem_default;
2857extern __u32 sysctl_rmem_default;
2858
2859#define SKB_FRAG_PAGE_ORDER get_order(32768)
2860DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2861
2862static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2863{
2864 /* Does this proto have per netns sysctl_wmem ? */
2865 if (proto->sysctl_wmem_offset)
2866 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2867
2868 return READ_ONCE(*proto->sysctl_wmem);
2869}
2870
2871static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2872{
2873 /* Does this proto have per netns sysctl_rmem ? */
2874 if (proto->sysctl_rmem_offset)
2875 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2876
2877 return READ_ONCE(*proto->sysctl_rmem);
2878}
2879
2880/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2881 * Some wifi drivers need to tweak it to get more chunks.
2882 * They can use this helper from their ndo_start_xmit()
2883 */
2884static inline void sk_pacing_shift_update(struct sock *sk, int val)
2885{
2886 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2887 return;
2888 WRITE_ONCE(sk->sk_pacing_shift, val);
2889}
2890
2891/* if a socket is bound to a device, check that the given device
2892 * index is either the same or that the socket is bound to an L3
2893 * master device and the given device index is also enslaved to
2894 * that L3 master
2895 */
2896static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2897{
2898 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2899 int mdif;
2900
2901 if (!bound_dev_if || bound_dev_if == dif)
2902 return true;
2903
2904 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2905 if (mdif && mdif == bound_dev_if)
2906 return true;
2907
2908 return false;
2909}
2910
2911void sock_def_readable(struct sock *sk);
2912
2913int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2914void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2915int sock_set_timestamping(struct sock *sk, int optname,
2916 struct so_timestamping timestamping);
2917
2918void sock_enable_timestamps(struct sock *sk);
2919void sock_no_linger(struct sock *sk);
2920void sock_set_keepalive(struct sock *sk);
2921void sock_set_priority(struct sock *sk, u32 priority);
2922void sock_set_rcvbuf(struct sock *sk, int val);
2923void sock_set_mark(struct sock *sk, u32 val);
2924void sock_set_reuseaddr(struct sock *sk);
2925void sock_set_reuseport(struct sock *sk);
2926void sock_set_sndtimeo(struct sock *sk, s64 secs);
2927
2928int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2929
2930int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2931int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2932 sockptr_t optval, int optlen, bool old_timeval);
2933
2934int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2935 void __user *arg, void *karg, size_t size);
2936int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2937static inline bool sk_is_readable(struct sock *sk)
2938{
2939 if (sk->sk_prot->sock_is_readable)
2940 return sk->sk_prot->sock_is_readable(sk);
2941 return false;
2942}
2943#endif /* _SOCK_H */