Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <net/checksum.h>
27#include <linux/rcupdate.h>
28#include <linux/dma-mapping.h>
29#include <linux/netdev_features.h>
30#include <net/flow_dissector.h>
31#include <linux/in6.h>
32#include <linux/if_packet.h>
33#include <linux/llist.h>
34#include <linux/page_frag_cache.h>
35#include <net/flow.h>
36#if IS_ENABLED(CONFIG_NF_CONNTRACK)
37#include <linux/netfilter/nf_conntrack_common.h>
38#endif
39#include <net/net_debug.h>
40#include <net/dropreason-core.h>
41#include <net/netmem.h>
42
43/**
44 * DOC: skb checksums
45 *
46 * The interface for checksum offload between the stack and networking drivers
47 * is as follows...
48 *
49 * IP checksum related features
50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51 *
52 * Drivers advertise checksum offload capabilities in the features of a device.
53 * From the stack's point of view these are capabilities offered by the driver.
54 * A driver typically only advertises features that it is capable of offloading
55 * to its device.
56 *
57 * .. flat-table:: Checksum related device features
58 * :widths: 1 10
59 *
60 * * - %NETIF_F_HW_CSUM
61 * - The driver (or its device) is able to compute one
62 * IP (one's complement) checksum for any combination
63 * of protocols or protocol layering. The checksum is
64 * computed and set in a packet per the CHECKSUM_PARTIAL
65 * interface (see below).
66 *
67 * * - %NETIF_F_IP_CSUM
68 * - Driver (device) is only able to checksum plain
69 * TCP or UDP packets over IPv4. These are specifically
70 * unencapsulated packets of the form IPv4|TCP or
71 * IPv4|UDP where the Protocol field in the IPv4 header
72 * is TCP or UDP. The IPv4 header may contain IP options.
73 * This feature cannot be set in features for a device
74 * with NETIF_F_HW_CSUM also set. This feature is being
75 * DEPRECATED (see below).
76 *
77 * * - %NETIF_F_IPV6_CSUM
78 * - Driver (device) is only able to checksum plain
79 * TCP or UDP packets over IPv6. These are specifically
80 * unencapsulated packets of the form IPv6|TCP or
81 * IPv6|UDP where the Next Header field in the IPv6
82 * header is either TCP or UDP. IPv6 extension headers
83 * are not supported with this feature. This feature
84 * cannot be set in features for a device with
85 * NETIF_F_HW_CSUM also set. This feature is being
86 * DEPRECATED (see below).
87 *
88 * * - %NETIF_F_RXCSUM
89 * - Driver (device) performs receive checksum offload.
90 * This flag is only used to disable the RX checksum
91 * feature for a device. The stack will accept receive
92 * checksum indication in packets received on a device
93 * regardless of whether NETIF_F_RXCSUM is set.
94 *
95 * Checksumming of received packets by device
96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97 *
98 * Indication of checksum verification is set in &sk_buff.ip_summed.
99 * Possible values are:
100 *
101 * - %CHECKSUM_NONE
102 *
103 * Device did not checksum this packet e.g. due to lack of capabilities.
104 * The packet contains full (though not verified) checksum in packet but
105 * not in skb->csum. Thus, skb->csum is undefined in this case.
106 *
107 * - %CHECKSUM_UNNECESSARY
108 *
109 * The hardware you're dealing with doesn't calculate the full checksum
110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112 * if their checksums are okay. &sk_buff.csum is still undefined in this case
113 * though. A driver or device must never modify the checksum field in the
114 * packet even if checksum is verified.
115 *
116 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
117 *
118 * - TCP: IPv6 and IPv4.
119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120 * zero UDP checksum for either IPv4 or IPv6, the networking stack
121 * may perform further validation in this case.
122 * - GRE: only if the checksum is present in the header.
123 * - SCTP: indicates the CRC in SCTP header has been validated.
124 * - FCOE: indicates the CRC in FC frame has been validated.
125 *
126 * &sk_buff.csum_level indicates the number of consecutive checksums found in
127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129 * and a device is able to verify the checksums for UDP (possibly zero),
130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131 * two. If the device were only able to verify the UDP checksum and not
132 * GRE, either because it doesn't support GRE checksum or because GRE
133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134 * not considered in this case).
135 *
136 * - %CHECKSUM_COMPLETE
137 *
138 * This is the most generic way. The device supplied checksum of the _whole_
139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140 * hardware doesn't need to parse L3/L4 headers to implement this.
141 *
142 * Notes:
143 *
144 * - Even if device supports only some protocols, but is able to produce
145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147 *
148 * - %CHECKSUM_PARTIAL
149 *
150 * A checksum is set up to be offloaded to a device as described in the
151 * output description for CHECKSUM_PARTIAL. This may occur on a packet
152 * received directly from another Linux OS, e.g., a virtualized Linux kernel
153 * on the same host, or it may be set in the input path in GRO or remote
154 * checksum offload. For the purposes of checksum verification, the checksum
155 * referred to by skb->csum_start + skb->csum_offset and any preceding
156 * checksums in the packet are considered verified. Any checksums in the
157 * packet that are after the checksum being offloaded are not considered to
158 * be verified.
159 *
160 * Checksumming on transmit for non-GSO
161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162 *
163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164 * Values are:
165 *
166 * - %CHECKSUM_PARTIAL
167 *
168 * The driver is required to checksum the packet as seen by hard_start_xmit()
169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
170 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
171 * A driver may verify that the
172 * csum_start and csum_offset values are valid values given the length and
173 * offset of the packet, but it should not attempt to validate that the
174 * checksum refers to a legitimate transport layer checksum -- it is the
175 * purview of the stack to validate that csum_start and csum_offset are set
176 * correctly.
177 *
178 * When the stack requests checksum offload for a packet, the driver MUST
179 * ensure that the checksum is set correctly. A driver can either offload the
180 * checksum calculation to the device, or call skb_checksum_help (in the case
181 * that the device does not support offload for a particular checksum).
182 *
183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185 * checksum offload capability.
186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187 * on network device checksumming capabilities: if a packet does not match
188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189 * &sk_buff.csum_not_inet, see :ref:`crc`)
190 * is called to resolve the checksum.
191 *
192 * - %CHECKSUM_NONE
193 *
194 * The skb was already checksummed by the protocol, or a checksum is not
195 * required.
196 *
197 * - %CHECKSUM_UNNECESSARY
198 *
199 * This has the same meaning as CHECKSUM_NONE for checksum offload on
200 * output.
201 *
202 * - %CHECKSUM_COMPLETE
203 *
204 * Not used in checksum output. If a driver observes a packet with this value
205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206 *
207 * .. _crc:
208 *
209 * Non-IP checksum (CRC) offloads
210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211 *
212 * .. flat-table::
213 * :widths: 1 10
214 *
215 * * - %NETIF_F_SCTP_CRC
216 * - This feature indicates that a device is capable of
217 * offloading the SCTP CRC in a packet. To perform this offload the stack
218 * will set csum_start and csum_offset accordingly, set ip_summed to
219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221 * A driver that supports both IP checksum offload and SCTP CRC32c offload
222 * must verify which offload is configured for a packet by testing the
223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225 *
226 * * - %NETIF_F_FCOE_CRC
227 * - This feature indicates that a device is capable of offloading the FCOE
228 * CRC in a packet. To perform this offload the stack will set ip_summed
229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230 * accordingly. Note that there is no indication in the skbuff that the
231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232 * both IP checksum offload and FCOE CRC offload must verify which offload
233 * is configured for a packet, presumably by inspecting packet headers.
234 *
235 * Checksumming on output with GSO
236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237 *
238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241 * part of the GSO operation is implied. If a checksum is being offloaded
242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243 * csum_offset are set to refer to the outermost checksum being offloaded
244 * (two offloaded checksums are possible with UDP encapsulation).
245 */
246
247/* Don't change this without changing skb_csum_unnecessary! */
248#define CHECKSUM_NONE 0
249#define CHECKSUM_UNNECESSARY 1
250#define CHECKSUM_COMPLETE 2
251#define CHECKSUM_PARTIAL 3
252
253/* Maximum value in skb->csum_level */
254#define SKB_MAX_CSUM_LEVEL 3
255
256#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
257#define SKB_WITH_OVERHEAD(X) \
258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259
260/* For X bytes available in skb->head, what is the minimal
261 * allocation needed, knowing struct skb_shared_info needs
262 * to be aligned.
263 */
264#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266
267#define SKB_MAX_ORDER(X, ORDER) \
268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
270#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
271
272/* return minimum truesize of one skb containing X bytes of data */
273#define SKB_TRUESIZE(X) ((X) + \
274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276
277struct ahash_request;
278struct net_device;
279struct scatterlist;
280struct pipe_inode_info;
281struct iov_iter;
282struct napi_struct;
283struct bpf_prog;
284union bpf_attr;
285struct skb_ext;
286struct ts_config;
287
288#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289struct nf_bridge_info {
290 enum {
291 BRNF_PROTO_UNCHANGED,
292 BRNF_PROTO_8021Q,
293 BRNF_PROTO_PPPOE
294 } orig_proto:8;
295 u8 pkt_otherhost:1;
296 u8 in_prerouting:1;
297 u8 bridged_dnat:1;
298 u8 sabotage_in_done:1;
299 __u16 frag_max_size;
300 int physinif;
301
302 /* always valid & non-NULL from FORWARD on, for physdev match */
303 struct net_device *physoutdev;
304 union {
305 /* prerouting: detect dnat in orig/reply direction */
306 __be32 ipv4_daddr;
307 struct in6_addr ipv6_daddr;
308
309 /* after prerouting + nat detected: store original source
310 * mac since neigh resolution overwrites it, only used while
311 * skb is out in neigh layer.
312 */
313 char neigh_header[8];
314 };
315};
316#endif
317
318#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319/* Chain in tc_skb_ext will be used to share the tc chain with
320 * ovs recirc_id. It will be set to the current chain by tc
321 * and read by ovs to recirc_id.
322 */
323struct tc_skb_ext {
324 union {
325 u64 act_miss_cookie;
326 __u32 chain;
327 };
328 __u16 mru;
329 __u16 zone;
330 u8 post_ct:1;
331 u8 post_ct_snat:1;
332 u8 post_ct_dnat:1;
333 u8 act_miss:1; /* Set if act_miss_cookie is used */
334 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335};
336#endif
337
338struct sk_buff_head {
339 /* These two members must be first to match sk_buff. */
340 struct_group_tagged(sk_buff_list, list,
341 struct sk_buff *next;
342 struct sk_buff *prev;
343 );
344
345 __u32 qlen;
346 spinlock_t lock;
347};
348
349struct sk_buff;
350
351#ifndef CONFIG_MAX_SKB_FRAGS
352# define CONFIG_MAX_SKB_FRAGS 17
353#endif
354
355#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356
357/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358 * segment using its current segmentation instead.
359 */
360#define GSO_BY_FRAGS 0xFFFF
361
362typedef struct skb_frag {
363 netmem_ref netmem;
364 unsigned int len;
365 unsigned int offset;
366} skb_frag_t;
367
368/**
369 * skb_frag_size() - Returns the size of a skb fragment
370 * @frag: skb fragment
371 */
372static inline unsigned int skb_frag_size(const skb_frag_t *frag)
373{
374 return frag->len;
375}
376
377/**
378 * skb_frag_size_set() - Sets the size of a skb fragment
379 * @frag: skb fragment
380 * @size: size of fragment
381 */
382static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
383{
384 frag->len = size;
385}
386
387/**
388 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
389 * @frag: skb fragment
390 * @delta: value to add
391 */
392static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
393{
394 frag->len += delta;
395}
396
397/**
398 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
399 * @frag: skb fragment
400 * @delta: value to subtract
401 */
402static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
403{
404 frag->len -= delta;
405}
406
407/**
408 * skb_frag_must_loop - Test if %p is a high memory page
409 * @p: fragment's page
410 */
411static inline bool skb_frag_must_loop(struct page *p)
412{
413#if defined(CONFIG_HIGHMEM)
414 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 return true;
416#endif
417 return false;
418}
419
420/**
421 * skb_frag_foreach_page - loop over pages in a fragment
422 *
423 * @f: skb frag to operate on
424 * @f_off: offset from start of f->netmem
425 * @f_len: length from f_off to loop over
426 * @p: (temp var) current page
427 * @p_off: (temp var) offset from start of current page,
428 * non-zero only on first page.
429 * @p_len: (temp var) length in current page,
430 * < PAGE_SIZE only on first and last page.
431 * @copied: (temp var) length so far, excluding current p_len.
432 *
433 * A fragment can hold a compound page, in which case per-page
434 * operations, notably kmap_atomic, must be called for each
435 * regular page.
436 */
437#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
438 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
439 p_off = (f_off) & (PAGE_SIZE - 1), \
440 p_len = skb_frag_must_loop(p) ? \
441 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
442 copied = 0; \
443 copied < f_len; \
444 copied += p_len, p++, p_off = 0, \
445 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
446
447/**
448 * struct skb_shared_hwtstamps - hardware time stamps
449 * @hwtstamp: hardware time stamp transformed into duration
450 * since arbitrary point in time
451 * @netdev_data: address/cookie of network device driver used as
452 * reference to actual hardware time stamp
453 *
454 * Software time stamps generated by ktime_get_real() are stored in
455 * skb->tstamp.
456 *
457 * hwtstamps can only be compared against other hwtstamps from
458 * the same device.
459 *
460 * This structure is attached to packets as part of the
461 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462 */
463struct skb_shared_hwtstamps {
464 union {
465 ktime_t hwtstamp;
466 void *netdev_data;
467 };
468};
469
470/* Definitions for tx_flags in struct skb_shared_info */
471enum {
472 /* generate hardware time stamp */
473 SKBTX_HW_TSTAMP = 1 << 0,
474
475 /* generate software time stamp when queueing packet to NIC */
476 SKBTX_SW_TSTAMP = 1 << 1,
477
478 /* device driver is going to provide hardware time stamp */
479 SKBTX_IN_PROGRESS = 1 << 2,
480
481 /* generate hardware time stamp based on cycles if supported */
482 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
483
484 /* generate wifi status information (where possible) */
485 SKBTX_WIFI_STATUS = 1 << 4,
486
487 /* determine hardware time stamp based on time or cycles */
488 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489
490 /* generate software time stamp when entering packet scheduling */
491 SKBTX_SCHED_TSTAMP = 1 << 6,
492};
493
494#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
495 SKBTX_SCHED_TSTAMP)
496#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
497 SKBTX_HW_TSTAMP_USE_CYCLES | \
498 SKBTX_ANY_SW_TSTAMP)
499
500/* Definitions for flags in struct skb_shared_info */
501enum {
502 /* use zcopy routines */
503 SKBFL_ZEROCOPY_ENABLE = BIT(0),
504
505 /* This indicates at least one fragment might be overwritten
506 * (as in vmsplice(), sendfile() ...)
507 * If we need to compute a TX checksum, we'll need to copy
508 * all frags to avoid possible bad checksum
509 */
510 SKBFL_SHARED_FRAG = BIT(1),
511
512 /* segment contains only zerocopy data and should not be
513 * charged to the kernel memory.
514 */
515 SKBFL_PURE_ZEROCOPY = BIT(2),
516
517 SKBFL_DONT_ORPHAN = BIT(3),
518
519 /* page references are managed by the ubuf_info, so it's safe to
520 * use frags only up until ubuf_info is released
521 */
522 SKBFL_MANAGED_FRAG_REFS = BIT(4),
523};
524
525#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
526#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
527 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
528
529struct ubuf_info_ops {
530 void (*complete)(struct sk_buff *, struct ubuf_info *,
531 bool zerocopy_success);
532 /* has to be compatible with skb_zcopy_set() */
533 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
534};
535
536/*
537 * The callback notifies userspace to release buffers when skb DMA is done in
538 * lower device, the skb last reference should be 0 when calling this.
539 * The zerocopy_success argument is true if zero copy transmit occurred,
540 * false on data copy or out of memory error caused by data copy attempt.
541 * The ctx field is used to track device context.
542 * The desc field is used to track userspace buffer index.
543 */
544struct ubuf_info {
545 const struct ubuf_info_ops *ops;
546 refcount_t refcnt;
547 u8 flags;
548};
549
550struct ubuf_info_msgzc {
551 struct ubuf_info ubuf;
552
553 union {
554 struct {
555 unsigned long desc;
556 void *ctx;
557 };
558 struct {
559 u32 id;
560 u16 len;
561 u16 zerocopy:1;
562 u32 bytelen;
563 };
564 };
565
566 struct mmpin {
567 struct user_struct *user;
568 unsigned int num_pg;
569 } mmp;
570};
571
572#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
573#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
574 ubuf)
575
576int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
577void mm_unaccount_pinned_pages(struct mmpin *mmp);
578
579/* Preserve some data across TX submission and completion.
580 *
581 * Note, this state is stored in the driver. Extending the layout
582 * might need some special care.
583 */
584struct xsk_tx_metadata_compl {
585 __u64 *tx_timestamp;
586};
587
588/* This data is invariant across clones and lives at
589 * the end of the header data, ie. at skb->end.
590 */
591struct skb_shared_info {
592 __u8 flags;
593 __u8 meta_len;
594 __u8 nr_frags;
595 __u8 tx_flags;
596 unsigned short gso_size;
597 /* Warning: this field is not always filled in (UFO)! */
598 unsigned short gso_segs;
599 struct sk_buff *frag_list;
600 union {
601 struct skb_shared_hwtstamps hwtstamps;
602 struct xsk_tx_metadata_compl xsk_meta;
603 };
604 unsigned int gso_type;
605 u32 tskey;
606
607 /*
608 * Warning : all fields before dataref are cleared in __alloc_skb()
609 */
610 atomic_t dataref;
611 unsigned int xdp_frags_size;
612
613 /* Intermediate layers must ensure that destructor_arg
614 * remains valid until skb destructor */
615 void * destructor_arg;
616
617 /* must be last field, see pskb_expand_head() */
618 skb_frag_t frags[MAX_SKB_FRAGS];
619};
620
621/**
622 * DOC: dataref and headerless skbs
623 *
624 * Transport layers send out clones of payload skbs they hold for
625 * retransmissions. To allow lower layers of the stack to prepend their headers
626 * we split &skb_shared_info.dataref into two halves.
627 * The lower 16 bits count the overall number of references.
628 * The higher 16 bits indicate how many of the references are payload-only.
629 * skb_header_cloned() checks if skb is allowed to add / write the headers.
630 *
631 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
632 * (via __skb_header_release()). Any clone created from marked skb will get
633 * &sk_buff.hdr_len populated with the available headroom.
634 * If there's the only clone in existence it's able to modify the headroom
635 * at will. The sequence of calls inside the transport layer is::
636 *
637 * <alloc skb>
638 * skb_reserve()
639 * __skb_header_release()
640 * skb_clone()
641 * // send the clone down the stack
642 *
643 * This is not a very generic construct and it depends on the transport layers
644 * doing the right thing. In practice there's usually only one payload-only skb.
645 * Having multiple payload-only skbs with different lengths of hdr_len is not
646 * possible. The payload-only skbs should never leave their owner.
647 */
648#define SKB_DATAREF_SHIFT 16
649#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
650
651
652enum {
653 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
654 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
655 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
656};
657
658enum {
659 SKB_GSO_TCPV4 = 1 << 0,
660
661 /* This indicates the skb is from an untrusted source. */
662 SKB_GSO_DODGY = 1 << 1,
663
664 /* This indicates the tcp segment has CWR set. */
665 SKB_GSO_TCP_ECN = 1 << 2,
666
667 SKB_GSO_TCP_FIXEDID = 1 << 3,
668
669 SKB_GSO_TCPV6 = 1 << 4,
670
671 SKB_GSO_FCOE = 1 << 5,
672
673 SKB_GSO_GRE = 1 << 6,
674
675 SKB_GSO_GRE_CSUM = 1 << 7,
676
677 SKB_GSO_IPXIP4 = 1 << 8,
678
679 SKB_GSO_IPXIP6 = 1 << 9,
680
681 SKB_GSO_UDP_TUNNEL = 1 << 10,
682
683 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
684
685 SKB_GSO_PARTIAL = 1 << 12,
686
687 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
688
689 SKB_GSO_SCTP = 1 << 14,
690
691 SKB_GSO_ESP = 1 << 15,
692
693 SKB_GSO_UDP = 1 << 16,
694
695 SKB_GSO_UDP_L4 = 1 << 17,
696
697 SKB_GSO_FRAGLIST = 1 << 18,
698};
699
700#if BITS_PER_LONG > 32
701#define NET_SKBUFF_DATA_USES_OFFSET 1
702#endif
703
704#ifdef NET_SKBUFF_DATA_USES_OFFSET
705typedef unsigned int sk_buff_data_t;
706#else
707typedef unsigned char *sk_buff_data_t;
708#endif
709
710enum skb_tstamp_type {
711 SKB_CLOCK_REALTIME,
712 SKB_CLOCK_MONOTONIC,
713 SKB_CLOCK_TAI,
714 __SKB_CLOCK_MAX = SKB_CLOCK_TAI,
715};
716
717/**
718 * DOC: Basic sk_buff geometry
719 *
720 * struct sk_buff itself is a metadata structure and does not hold any packet
721 * data. All the data is held in associated buffers.
722 *
723 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
724 * into two parts:
725 *
726 * - data buffer, containing headers and sometimes payload;
727 * this is the part of the skb operated on by the common helpers
728 * such as skb_put() or skb_pull();
729 * - shared info (struct skb_shared_info) which holds an array of pointers
730 * to read-only data in the (page, offset, length) format.
731 *
732 * Optionally &skb_shared_info.frag_list may point to another skb.
733 *
734 * Basic diagram may look like this::
735 *
736 * ---------------
737 * | sk_buff |
738 * ---------------
739 * ,--------------------------- + head
740 * / ,----------------- + data
741 * / / ,----------- + tail
742 * | | | , + end
743 * | | | |
744 * v v v v
745 * -----------------------------------------------
746 * | headroom | data | tailroom | skb_shared_info |
747 * -----------------------------------------------
748 * + [page frag]
749 * + [page frag]
750 * + [page frag]
751 * + [page frag] ---------
752 * + frag_list --> | sk_buff |
753 * ---------
754 *
755 */
756
757/**
758 * struct sk_buff - socket buffer
759 * @next: Next buffer in list
760 * @prev: Previous buffer in list
761 * @tstamp: Time we arrived/left
762 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
763 * for retransmit timer
764 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
765 * @list: queue head
766 * @ll_node: anchor in an llist (eg socket defer_list)
767 * @sk: Socket we are owned by
768 * @dev: Device we arrived on/are leaving by
769 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
770 * @cb: Control buffer. Free for use by every layer. Put private vars here
771 * @_skb_refdst: destination entry (with norefcount bit)
772 * @len: Length of actual data
773 * @data_len: Data length
774 * @mac_len: Length of link layer header
775 * @hdr_len: writable header length of cloned skb
776 * @csum: Checksum (must include start/offset pair)
777 * @csum_start: Offset from skb->head where checksumming should start
778 * @csum_offset: Offset from csum_start where checksum should be stored
779 * @priority: Packet queueing priority
780 * @ignore_df: allow local fragmentation
781 * @cloned: Head may be cloned (check refcnt to be sure)
782 * @ip_summed: Driver fed us an IP checksum
783 * @nohdr: Payload reference only, must not modify header
784 * @pkt_type: Packet class
785 * @fclone: skbuff clone status
786 * @ipvs_property: skbuff is owned by ipvs
787 * @inner_protocol_type: whether the inner protocol is
788 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
789 * @remcsum_offload: remote checksum offload is enabled
790 * @offload_fwd_mark: Packet was L2-forwarded in hardware
791 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
792 * @tc_skip_classify: do not classify packet. set by IFB device
793 * @tc_at_ingress: used within tc_classify to distinguish in/egress
794 * @redirected: packet was redirected by packet classifier
795 * @from_ingress: packet was redirected from the ingress path
796 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
797 * @peeked: this packet has been seen already, so stats have been
798 * done for it, don't do them again
799 * @nf_trace: netfilter packet trace flag
800 * @protocol: Packet protocol from driver
801 * @destructor: Destruct function
802 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
803 * @_sk_redir: socket redirection information for skmsg
804 * @_nfct: Associated connection, if any (with nfctinfo bits)
805 * @skb_iif: ifindex of device we arrived on
806 * @tc_index: Traffic control index
807 * @hash: the packet hash
808 * @queue_mapping: Queue mapping for multiqueue devices
809 * @head_frag: skb was allocated from page fragments,
810 * not allocated by kmalloc() or vmalloc().
811 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
812 * @pp_recycle: mark the packet for recycling instead of freeing (implies
813 * page_pool support on driver)
814 * @active_extensions: active extensions (skb_ext_id types)
815 * @ndisc_nodetype: router type (from link layer)
816 * @ooo_okay: allow the mapping of a socket to a queue to be changed
817 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
818 * ports.
819 * @sw_hash: indicates hash was computed in software stack
820 * @wifi_acked_valid: wifi_acked was set
821 * @wifi_acked: whether frame was acked on wifi or not
822 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
823 * @encapsulation: indicates the inner headers in the skbuff are valid
824 * @encap_hdr_csum: software checksum is needed
825 * @csum_valid: checksum is already valid
826 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
827 * @csum_complete_sw: checksum was completed by software
828 * @csum_level: indicates the number of consecutive checksums found in
829 * the packet minus one that have been verified as
830 * CHECKSUM_UNNECESSARY (max 3)
831 * @unreadable: indicates that at least 1 of the fragments in this skb is
832 * unreadable.
833 * @dst_pending_confirm: need to confirm neighbour
834 * @decrypted: Decrypted SKB
835 * @slow_gro: state present at GRO time, slower prepare step required
836 * @tstamp_type: When set, skb->tstamp has the
837 * delivery_time clock base of skb->tstamp.
838 * @napi_id: id of the NAPI struct this skb came from
839 * @sender_cpu: (aka @napi_id) source CPU in XPS
840 * @alloc_cpu: CPU which did the skb allocation.
841 * @secmark: security marking
842 * @mark: Generic packet mark
843 * @reserved_tailroom: (aka @mark) number of bytes of free space available
844 * at the tail of an sk_buff
845 * @vlan_all: vlan fields (proto & tci)
846 * @vlan_proto: vlan encapsulation protocol
847 * @vlan_tci: vlan tag control information
848 * @inner_protocol: Protocol (encapsulation)
849 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
850 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
851 * @inner_transport_header: Inner transport layer header (encapsulation)
852 * @inner_network_header: Network layer header (encapsulation)
853 * @inner_mac_header: Link layer header (encapsulation)
854 * @transport_header: Transport layer header
855 * @network_header: Network layer header
856 * @mac_header: Link layer header
857 * @kcov_handle: KCOV remote handle for remote coverage collection
858 * @tail: Tail pointer
859 * @end: End pointer
860 * @head: Head of buffer
861 * @data: Data head pointer
862 * @truesize: Buffer size
863 * @users: User count - see {datagram,tcp}.c
864 * @extensions: allocated extensions, valid if active_extensions is nonzero
865 */
866
867struct sk_buff {
868 union {
869 struct {
870 /* These two members must be first to match sk_buff_head. */
871 struct sk_buff *next;
872 struct sk_buff *prev;
873
874 union {
875 struct net_device *dev;
876 /* Some protocols might use this space to store information,
877 * while device pointer would be NULL.
878 * UDP receive path is one user.
879 */
880 unsigned long dev_scratch;
881 };
882 };
883 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
884 struct list_head list;
885 struct llist_node ll_node;
886 };
887
888 struct sock *sk;
889
890 union {
891 ktime_t tstamp;
892 u64 skb_mstamp_ns; /* earliest departure time */
893 };
894 /*
895 * This is the control buffer. It is free to use for every
896 * layer. Please put your private variables there. If you
897 * want to keep them across layers you have to do a skb_clone()
898 * first. This is owned by whoever has the skb queued ATM.
899 */
900 char cb[48] __aligned(8);
901
902 union {
903 struct {
904 unsigned long _skb_refdst;
905 void (*destructor)(struct sk_buff *skb);
906 };
907 struct list_head tcp_tsorted_anchor;
908#ifdef CONFIG_NET_SOCK_MSG
909 unsigned long _sk_redir;
910#endif
911 };
912
913#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
914 unsigned long _nfct;
915#endif
916 unsigned int len,
917 data_len;
918 __u16 mac_len,
919 hdr_len;
920
921 /* Following fields are _not_ copied in __copy_skb_header()
922 * Note that queue_mapping is here mostly to fill a hole.
923 */
924 __u16 queue_mapping;
925
926/* if you move cloned around you also must adapt those constants */
927#ifdef __BIG_ENDIAN_BITFIELD
928#define CLONED_MASK (1 << 7)
929#else
930#define CLONED_MASK 1
931#endif
932#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
933
934 /* private: */
935 __u8 __cloned_offset[0];
936 /* public: */
937 __u8 cloned:1,
938 nohdr:1,
939 fclone:2,
940 peeked:1,
941 head_frag:1,
942 pfmemalloc:1,
943 pp_recycle:1; /* page_pool recycle indicator */
944#ifdef CONFIG_SKB_EXTENSIONS
945 __u8 active_extensions;
946#endif
947
948 /* Fields enclosed in headers group are copied
949 * using a single memcpy() in __copy_skb_header()
950 */
951 struct_group(headers,
952
953 /* private: */
954 __u8 __pkt_type_offset[0];
955 /* public: */
956 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
957 __u8 ignore_df:1;
958 __u8 dst_pending_confirm:1;
959 __u8 ip_summed:2;
960 __u8 ooo_okay:1;
961
962 /* private: */
963 __u8 __mono_tc_offset[0];
964 /* public: */
965 __u8 tstamp_type:2; /* See skb_tstamp_type */
966#ifdef CONFIG_NET_XGRESS
967 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
968 __u8 tc_skip_classify:1;
969#endif
970 __u8 remcsum_offload:1;
971 __u8 csum_complete_sw:1;
972 __u8 csum_level:2;
973 __u8 inner_protocol_type:1;
974
975 __u8 l4_hash:1;
976 __u8 sw_hash:1;
977#ifdef CONFIG_WIRELESS
978 __u8 wifi_acked_valid:1;
979 __u8 wifi_acked:1;
980#endif
981 __u8 no_fcs:1;
982 /* Indicates the inner headers are valid in the skbuff. */
983 __u8 encapsulation:1;
984 __u8 encap_hdr_csum:1;
985 __u8 csum_valid:1;
986#ifdef CONFIG_IPV6_NDISC_NODETYPE
987 __u8 ndisc_nodetype:2;
988#endif
989
990#if IS_ENABLED(CONFIG_IP_VS)
991 __u8 ipvs_property:1;
992#endif
993#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
994 __u8 nf_trace:1;
995#endif
996#ifdef CONFIG_NET_SWITCHDEV
997 __u8 offload_fwd_mark:1;
998 __u8 offload_l3_fwd_mark:1;
999#endif
1000 __u8 redirected:1;
1001#ifdef CONFIG_NET_REDIRECT
1002 __u8 from_ingress:1;
1003#endif
1004#ifdef CONFIG_NETFILTER_SKIP_EGRESS
1005 __u8 nf_skip_egress:1;
1006#endif
1007#ifdef CONFIG_SKB_DECRYPTED
1008 __u8 decrypted:1;
1009#endif
1010 __u8 slow_gro:1;
1011#if IS_ENABLED(CONFIG_IP_SCTP)
1012 __u8 csum_not_inet:1;
1013#endif
1014 __u8 unreadable:1;
1015#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1016 __u16 tc_index; /* traffic control index */
1017#endif
1018
1019 u16 alloc_cpu;
1020
1021 union {
1022 __wsum csum;
1023 struct {
1024 __u16 csum_start;
1025 __u16 csum_offset;
1026 };
1027 };
1028 __u32 priority;
1029 int skb_iif;
1030 __u32 hash;
1031 union {
1032 u32 vlan_all;
1033 struct {
1034 __be16 vlan_proto;
1035 __u16 vlan_tci;
1036 };
1037 };
1038#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1039 union {
1040 unsigned int napi_id;
1041 unsigned int sender_cpu;
1042 };
1043#endif
1044#ifdef CONFIG_NETWORK_SECMARK
1045 __u32 secmark;
1046#endif
1047
1048 union {
1049 __u32 mark;
1050 __u32 reserved_tailroom;
1051 };
1052
1053 union {
1054 __be16 inner_protocol;
1055 __u8 inner_ipproto;
1056 };
1057
1058 __u16 inner_transport_header;
1059 __u16 inner_network_header;
1060 __u16 inner_mac_header;
1061
1062 __be16 protocol;
1063 __u16 transport_header;
1064 __u16 network_header;
1065 __u16 mac_header;
1066
1067#ifdef CONFIG_KCOV
1068 u64 kcov_handle;
1069#endif
1070
1071 ); /* end headers group */
1072
1073 /* These elements must be at the end, see alloc_skb() for details. */
1074 sk_buff_data_t tail;
1075 sk_buff_data_t end;
1076 unsigned char *head,
1077 *data;
1078 unsigned int truesize;
1079 refcount_t users;
1080
1081#ifdef CONFIG_SKB_EXTENSIONS
1082 /* only usable after checking ->active_extensions != 0 */
1083 struct skb_ext *extensions;
1084#endif
1085};
1086
1087/* if you move pkt_type around you also must adapt those constants */
1088#ifdef __BIG_ENDIAN_BITFIELD
1089#define PKT_TYPE_MAX (7 << 5)
1090#else
1091#define PKT_TYPE_MAX 7
1092#endif
1093#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1094
1095/* if you move tc_at_ingress or tstamp_type
1096 * around, you also must adapt these constants.
1097 */
1098#ifdef __BIG_ENDIAN_BITFIELD
1099#define SKB_TSTAMP_TYPE_MASK (3 << 6)
1100#define SKB_TSTAMP_TYPE_RSHIFT (6)
1101#define TC_AT_INGRESS_MASK (1 << 5)
1102#else
1103#define SKB_TSTAMP_TYPE_MASK (3)
1104#define TC_AT_INGRESS_MASK (1 << 2)
1105#endif
1106#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1107
1108#ifdef __KERNEL__
1109/*
1110 * Handling routines are only of interest to the kernel
1111 */
1112
1113#define SKB_ALLOC_FCLONE 0x01
1114#define SKB_ALLOC_RX 0x02
1115#define SKB_ALLOC_NAPI 0x04
1116
1117/**
1118 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1119 * @skb: buffer
1120 */
1121static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1122{
1123 return unlikely(skb->pfmemalloc);
1124}
1125
1126/*
1127 * skb might have a dst pointer attached, refcounted or not.
1128 * _skb_refdst low order bit is set if refcount was _not_ taken
1129 */
1130#define SKB_DST_NOREF 1UL
1131#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1132
1133/**
1134 * skb_dst - returns skb dst_entry
1135 * @skb: buffer
1136 *
1137 * Returns skb dst_entry, regardless of reference taken or not.
1138 */
1139static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1140{
1141 /* If refdst was not refcounted, check we still are in a
1142 * rcu_read_lock section
1143 */
1144 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1145 !rcu_read_lock_held() &&
1146 !rcu_read_lock_bh_held());
1147 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1148}
1149
1150/**
1151 * skb_dst_set - sets skb dst
1152 * @skb: buffer
1153 * @dst: dst entry
1154 *
1155 * Sets skb dst, assuming a reference was taken on dst and should
1156 * be released by skb_dst_drop()
1157 */
1158static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1159{
1160 skb->slow_gro |= !!dst;
1161 skb->_skb_refdst = (unsigned long)dst;
1162}
1163
1164/**
1165 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1166 * @skb: buffer
1167 * @dst: dst entry
1168 *
1169 * Sets skb dst, assuming a reference was not taken on dst.
1170 * If dst entry is cached, we do not take reference and dst_release
1171 * will be avoided by refdst_drop. If dst entry is not cached, we take
1172 * reference, so that last dst_release can destroy the dst immediately.
1173 */
1174static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1175{
1176 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1177 skb->slow_gro |= !!dst;
1178 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1179}
1180
1181/**
1182 * skb_dst_is_noref - Test if skb dst isn't refcounted
1183 * @skb: buffer
1184 */
1185static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1186{
1187 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1188}
1189
1190/* For mangling skb->pkt_type from user space side from applications
1191 * such as nft, tc, etc, we only allow a conservative subset of
1192 * possible pkt_types to be set.
1193*/
1194static inline bool skb_pkt_type_ok(u32 ptype)
1195{
1196 return ptype <= PACKET_OTHERHOST;
1197}
1198
1199/**
1200 * skb_napi_id - Returns the skb's NAPI id
1201 * @skb: buffer
1202 */
1203static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1204{
1205#ifdef CONFIG_NET_RX_BUSY_POLL
1206 return skb->napi_id;
1207#else
1208 return 0;
1209#endif
1210}
1211
1212static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1213{
1214#ifdef CONFIG_WIRELESS
1215 return skb->wifi_acked_valid;
1216#else
1217 return 0;
1218#endif
1219}
1220
1221/**
1222 * skb_unref - decrement the skb's reference count
1223 * @skb: buffer
1224 *
1225 * Returns true if we can free the skb.
1226 */
1227static inline bool skb_unref(struct sk_buff *skb)
1228{
1229 if (unlikely(!skb))
1230 return false;
1231 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1232 smp_rmb();
1233 else if (likely(!refcount_dec_and_test(&skb->users)))
1234 return false;
1235
1236 return true;
1237}
1238
1239static inline bool skb_data_unref(const struct sk_buff *skb,
1240 struct skb_shared_info *shinfo)
1241{
1242 int bias;
1243
1244 if (!skb->cloned)
1245 return true;
1246
1247 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1248
1249 if (atomic_read(&shinfo->dataref) == bias)
1250 smp_rmb();
1251 else if (atomic_sub_return(bias, &shinfo->dataref))
1252 return false;
1253
1254 return true;
1255}
1256
1257void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1258 enum skb_drop_reason reason);
1259
1260static inline void
1261kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1262{
1263 sk_skb_reason_drop(NULL, skb, reason);
1264}
1265
1266/**
1267 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1268 * @skb: buffer to free
1269 */
1270static inline void kfree_skb(struct sk_buff *skb)
1271{
1272 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1273}
1274
1275void skb_release_head_state(struct sk_buff *skb);
1276void kfree_skb_list_reason(struct sk_buff *segs,
1277 enum skb_drop_reason reason);
1278void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1279void skb_tx_error(struct sk_buff *skb);
1280
1281static inline void kfree_skb_list(struct sk_buff *segs)
1282{
1283 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1284}
1285
1286#ifdef CONFIG_TRACEPOINTS
1287void consume_skb(struct sk_buff *skb);
1288#else
1289static inline void consume_skb(struct sk_buff *skb)
1290{
1291 return kfree_skb(skb);
1292}
1293#endif
1294
1295void __consume_stateless_skb(struct sk_buff *skb);
1296void __kfree_skb(struct sk_buff *skb);
1297
1298void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1299bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1300 bool *fragstolen, int *delta_truesize);
1301
1302struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1303 int node);
1304struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1305struct sk_buff *build_skb(void *data, unsigned int frag_size);
1306struct sk_buff *build_skb_around(struct sk_buff *skb,
1307 void *data, unsigned int frag_size);
1308void skb_attempt_defer_free(struct sk_buff *skb);
1309
1310struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1311struct sk_buff *slab_build_skb(void *data);
1312
1313/**
1314 * alloc_skb - allocate a network buffer
1315 * @size: size to allocate
1316 * @priority: allocation mask
1317 *
1318 * This function is a convenient wrapper around __alloc_skb().
1319 */
1320static inline struct sk_buff *alloc_skb(unsigned int size,
1321 gfp_t priority)
1322{
1323 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1324}
1325
1326struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1327 unsigned long data_len,
1328 int max_page_order,
1329 int *errcode,
1330 gfp_t gfp_mask);
1331struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1332
1333/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1334struct sk_buff_fclones {
1335 struct sk_buff skb1;
1336
1337 struct sk_buff skb2;
1338
1339 refcount_t fclone_ref;
1340};
1341
1342/**
1343 * skb_fclone_busy - check if fclone is busy
1344 * @sk: socket
1345 * @skb: buffer
1346 *
1347 * Returns true if skb is a fast clone, and its clone is not freed.
1348 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1349 * so we also check that didn't happen.
1350 */
1351static inline bool skb_fclone_busy(const struct sock *sk,
1352 const struct sk_buff *skb)
1353{
1354 const struct sk_buff_fclones *fclones;
1355
1356 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1357
1358 return skb->fclone == SKB_FCLONE_ORIG &&
1359 refcount_read(&fclones->fclone_ref) > 1 &&
1360 READ_ONCE(fclones->skb2.sk) == sk;
1361}
1362
1363/**
1364 * alloc_skb_fclone - allocate a network buffer from fclone cache
1365 * @size: size to allocate
1366 * @priority: allocation mask
1367 *
1368 * This function is a convenient wrapper around __alloc_skb().
1369 */
1370static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1371 gfp_t priority)
1372{
1373 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1374}
1375
1376struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1377void skb_headers_offset_update(struct sk_buff *skb, int off);
1378int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1379struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1380void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1381struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1382struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1383 gfp_t gfp_mask, bool fclone);
1384static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1385 gfp_t gfp_mask)
1386{
1387 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1388}
1389
1390int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1391struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1392 unsigned int headroom);
1393struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1394struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1395 int newtailroom, gfp_t priority);
1396int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1397 int offset, int len);
1398int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1399 int offset, int len);
1400int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1401int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1402
1403/**
1404 * skb_pad - zero pad the tail of an skb
1405 * @skb: buffer to pad
1406 * @pad: space to pad
1407 *
1408 * Ensure that a buffer is followed by a padding area that is zero
1409 * filled. Used by network drivers which may DMA or transfer data
1410 * beyond the buffer end onto the wire.
1411 *
1412 * May return error in out of memory cases. The skb is freed on error.
1413 */
1414static inline int skb_pad(struct sk_buff *skb, int pad)
1415{
1416 return __skb_pad(skb, pad, true);
1417}
1418#define dev_kfree_skb(a) consume_skb(a)
1419
1420int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1421 int offset, size_t size, size_t max_frags);
1422
1423struct skb_seq_state {
1424 __u32 lower_offset;
1425 __u32 upper_offset;
1426 __u32 frag_idx;
1427 __u32 stepped_offset;
1428 struct sk_buff *root_skb;
1429 struct sk_buff *cur_skb;
1430 __u8 *frag_data;
1431 __u32 frag_off;
1432};
1433
1434void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1435 unsigned int to, struct skb_seq_state *st);
1436unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1437 struct skb_seq_state *st);
1438void skb_abort_seq_read(struct skb_seq_state *st);
1439int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1440
1441unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1442 unsigned int to, struct ts_config *config);
1443
1444/*
1445 * Packet hash types specify the type of hash in skb_set_hash.
1446 *
1447 * Hash types refer to the protocol layer addresses which are used to
1448 * construct a packet's hash. The hashes are used to differentiate or identify
1449 * flows of the protocol layer for the hash type. Hash types are either
1450 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1451 *
1452 * Properties of hashes:
1453 *
1454 * 1) Two packets in different flows have different hash values
1455 * 2) Two packets in the same flow should have the same hash value
1456 *
1457 * A hash at a higher layer is considered to be more specific. A driver should
1458 * set the most specific hash possible.
1459 *
1460 * A driver cannot indicate a more specific hash than the layer at which a hash
1461 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1462 *
1463 * A driver may indicate a hash level which is less specific than the
1464 * actual layer the hash was computed on. For instance, a hash computed
1465 * at L4 may be considered an L3 hash. This should only be done if the
1466 * driver can't unambiguously determine that the HW computed the hash at
1467 * the higher layer. Note that the "should" in the second property above
1468 * permits this.
1469 */
1470enum pkt_hash_types {
1471 PKT_HASH_TYPE_NONE, /* Undefined type */
1472 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1473 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1474 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1475};
1476
1477static inline void skb_clear_hash(struct sk_buff *skb)
1478{
1479 skb->hash = 0;
1480 skb->sw_hash = 0;
1481 skb->l4_hash = 0;
1482}
1483
1484static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1485{
1486 if (!skb->l4_hash)
1487 skb_clear_hash(skb);
1488}
1489
1490static inline void
1491__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1492{
1493 skb->l4_hash = is_l4;
1494 skb->sw_hash = is_sw;
1495 skb->hash = hash;
1496}
1497
1498static inline void
1499skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1500{
1501 /* Used by drivers to set hash from HW */
1502 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1503}
1504
1505static inline void
1506__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1507{
1508 __skb_set_hash(skb, hash, true, is_l4);
1509}
1510
1511u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1512
1513static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1514{
1515 return __skb_get_hash_symmetric_net(NULL, skb);
1516}
1517
1518void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1519u32 skb_get_poff(const struct sk_buff *skb);
1520u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1521 const struct flow_keys_basic *keys, int hlen);
1522__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1523 const void *data, int hlen_proto);
1524
1525static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1526 int thoff, u8 ip_proto)
1527{
1528 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1529}
1530
1531void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1532 const struct flow_dissector_key *key,
1533 unsigned int key_count);
1534
1535struct bpf_flow_dissector;
1536u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1537 __be16 proto, int nhoff, int hlen, unsigned int flags);
1538
1539bool __skb_flow_dissect(const struct net *net,
1540 const struct sk_buff *skb,
1541 struct flow_dissector *flow_dissector,
1542 void *target_container, const void *data,
1543 __be16 proto, int nhoff, int hlen, unsigned int flags);
1544
1545static inline bool skb_flow_dissect(const struct sk_buff *skb,
1546 struct flow_dissector *flow_dissector,
1547 void *target_container, unsigned int flags)
1548{
1549 return __skb_flow_dissect(NULL, skb, flow_dissector,
1550 target_container, NULL, 0, 0, 0, flags);
1551}
1552
1553static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1554 struct flow_keys *flow,
1555 unsigned int flags)
1556{
1557 memset(flow, 0, sizeof(*flow));
1558 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1559 flow, NULL, 0, 0, 0, flags);
1560}
1561
1562static inline bool
1563skb_flow_dissect_flow_keys_basic(const struct net *net,
1564 const struct sk_buff *skb,
1565 struct flow_keys_basic *flow,
1566 const void *data, __be16 proto,
1567 int nhoff, int hlen, unsigned int flags)
1568{
1569 memset(flow, 0, sizeof(*flow));
1570 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1571 data, proto, nhoff, hlen, flags);
1572}
1573
1574void skb_flow_dissect_meta(const struct sk_buff *skb,
1575 struct flow_dissector *flow_dissector,
1576 void *target_container);
1577
1578/* Gets a skb connection tracking info, ctinfo map should be a
1579 * map of mapsize to translate enum ip_conntrack_info states
1580 * to user states.
1581 */
1582void
1583skb_flow_dissect_ct(const struct sk_buff *skb,
1584 struct flow_dissector *flow_dissector,
1585 void *target_container,
1586 u16 *ctinfo_map, size_t mapsize,
1587 bool post_ct, u16 zone);
1588void
1589skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1590 struct flow_dissector *flow_dissector,
1591 void *target_container);
1592
1593void skb_flow_dissect_hash(const struct sk_buff *skb,
1594 struct flow_dissector *flow_dissector,
1595 void *target_container);
1596
1597static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1598{
1599 if (!skb->l4_hash && !skb->sw_hash)
1600 __skb_get_hash_net(net, skb);
1601
1602 return skb->hash;
1603}
1604
1605static inline __u32 skb_get_hash(struct sk_buff *skb)
1606{
1607 if (!skb->l4_hash && !skb->sw_hash)
1608 __skb_get_hash_net(NULL, skb);
1609
1610 return skb->hash;
1611}
1612
1613static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1614{
1615 if (!skb->l4_hash && !skb->sw_hash) {
1616 struct flow_keys keys;
1617 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1618
1619 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1620 }
1621
1622 return skb->hash;
1623}
1624
1625__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1626 const siphash_key_t *perturb);
1627
1628static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1629{
1630 return skb->hash;
1631}
1632
1633static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1634{
1635 to->hash = from->hash;
1636 to->sw_hash = from->sw_hash;
1637 to->l4_hash = from->l4_hash;
1638};
1639
1640static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1641 const struct sk_buff *skb2)
1642{
1643#ifdef CONFIG_SKB_DECRYPTED
1644 return skb2->decrypted - skb1->decrypted;
1645#else
1646 return 0;
1647#endif
1648}
1649
1650static inline bool skb_is_decrypted(const struct sk_buff *skb)
1651{
1652#ifdef CONFIG_SKB_DECRYPTED
1653 return skb->decrypted;
1654#else
1655 return false;
1656#endif
1657}
1658
1659static inline void skb_copy_decrypted(struct sk_buff *to,
1660 const struct sk_buff *from)
1661{
1662#ifdef CONFIG_SKB_DECRYPTED
1663 to->decrypted = from->decrypted;
1664#endif
1665}
1666
1667#ifdef NET_SKBUFF_DATA_USES_OFFSET
1668static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1669{
1670 return skb->head + skb->end;
1671}
1672
1673static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1674{
1675 return skb->end;
1676}
1677
1678static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1679{
1680 skb->end = offset;
1681}
1682#else
1683static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1684{
1685 return skb->end;
1686}
1687
1688static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1689{
1690 return skb->end - skb->head;
1691}
1692
1693static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1694{
1695 skb->end = skb->head + offset;
1696}
1697#endif
1698
1699extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1700
1701struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1702 struct ubuf_info *uarg);
1703
1704void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1705
1706int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1707 struct sk_buff *skb, struct iov_iter *from,
1708 size_t length);
1709
1710int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1711 struct iov_iter *from, size_t length);
1712
1713static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1714 struct msghdr *msg, int len)
1715{
1716 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1717}
1718
1719int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1720 struct msghdr *msg, int len,
1721 struct ubuf_info *uarg);
1722
1723/* Internal */
1724#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1725
1726static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1727{
1728 return &skb_shinfo(skb)->hwtstamps;
1729}
1730
1731static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1732{
1733 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1734
1735 return is_zcopy ? skb_uarg(skb) : NULL;
1736}
1737
1738static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1739{
1740 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1741}
1742
1743static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1744{
1745 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1746}
1747
1748static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1749 const struct sk_buff *skb2)
1750{
1751 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1752}
1753
1754static inline void net_zcopy_get(struct ubuf_info *uarg)
1755{
1756 refcount_inc(&uarg->refcnt);
1757}
1758
1759static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1760{
1761 skb_shinfo(skb)->destructor_arg = uarg;
1762 skb_shinfo(skb)->flags |= uarg->flags;
1763}
1764
1765static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1766 bool *have_ref)
1767{
1768 if (skb && uarg && !skb_zcopy(skb)) {
1769 if (unlikely(have_ref && *have_ref))
1770 *have_ref = false;
1771 else
1772 net_zcopy_get(uarg);
1773 skb_zcopy_init(skb, uarg);
1774 }
1775}
1776
1777static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1778{
1779 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1780 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1781}
1782
1783static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1784{
1785 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1786}
1787
1788static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1789{
1790 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1791}
1792
1793static inline void net_zcopy_put(struct ubuf_info *uarg)
1794{
1795 if (uarg)
1796 uarg->ops->complete(NULL, uarg, true);
1797}
1798
1799static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1800{
1801 if (uarg) {
1802 if (uarg->ops == &msg_zerocopy_ubuf_ops)
1803 msg_zerocopy_put_abort(uarg, have_uref);
1804 else if (have_uref)
1805 net_zcopy_put(uarg);
1806 }
1807}
1808
1809/* Release a reference on a zerocopy structure */
1810static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1811{
1812 struct ubuf_info *uarg = skb_zcopy(skb);
1813
1814 if (uarg) {
1815 if (!skb_zcopy_is_nouarg(skb))
1816 uarg->ops->complete(skb, uarg, zerocopy_success);
1817
1818 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1819 }
1820}
1821
1822void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1823
1824static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1825{
1826 if (unlikely(skb_zcopy_managed(skb)))
1827 __skb_zcopy_downgrade_managed(skb);
1828}
1829
1830/* Return true if frags in this skb are readable by the host. */
1831static inline bool skb_frags_readable(const struct sk_buff *skb)
1832{
1833 return !skb->unreadable;
1834}
1835
1836static inline void skb_mark_not_on_list(struct sk_buff *skb)
1837{
1838 skb->next = NULL;
1839}
1840
1841static inline void skb_poison_list(struct sk_buff *skb)
1842{
1843#ifdef CONFIG_DEBUG_NET
1844 skb->next = SKB_LIST_POISON_NEXT;
1845#endif
1846}
1847
1848/* Iterate through singly-linked GSO fragments of an skb. */
1849#define skb_list_walk_safe(first, skb, next_skb) \
1850 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1851 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1852
1853static inline void skb_list_del_init(struct sk_buff *skb)
1854{
1855 __list_del_entry(&skb->list);
1856 skb_mark_not_on_list(skb);
1857}
1858
1859/**
1860 * skb_queue_empty - check if a queue is empty
1861 * @list: queue head
1862 *
1863 * Returns true if the queue is empty, false otherwise.
1864 */
1865static inline int skb_queue_empty(const struct sk_buff_head *list)
1866{
1867 return list->next == (const struct sk_buff *) list;
1868}
1869
1870/**
1871 * skb_queue_empty_lockless - check if a queue is empty
1872 * @list: queue head
1873 *
1874 * Returns true if the queue is empty, false otherwise.
1875 * This variant can be used in lockless contexts.
1876 */
1877static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1878{
1879 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1880}
1881
1882
1883/**
1884 * skb_queue_is_last - check if skb is the last entry in the queue
1885 * @list: queue head
1886 * @skb: buffer
1887 *
1888 * Returns true if @skb is the last buffer on the list.
1889 */
1890static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1891 const struct sk_buff *skb)
1892{
1893 return skb->next == (const struct sk_buff *) list;
1894}
1895
1896/**
1897 * skb_queue_is_first - check if skb is the first entry in the queue
1898 * @list: queue head
1899 * @skb: buffer
1900 *
1901 * Returns true if @skb is the first buffer on the list.
1902 */
1903static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1904 const struct sk_buff *skb)
1905{
1906 return skb->prev == (const struct sk_buff *) list;
1907}
1908
1909/**
1910 * skb_queue_next - return the next packet in the queue
1911 * @list: queue head
1912 * @skb: current buffer
1913 *
1914 * Return the next packet in @list after @skb. It is only valid to
1915 * call this if skb_queue_is_last() evaluates to false.
1916 */
1917static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1918 const struct sk_buff *skb)
1919{
1920 /* This BUG_ON may seem severe, but if we just return then we
1921 * are going to dereference garbage.
1922 */
1923 BUG_ON(skb_queue_is_last(list, skb));
1924 return skb->next;
1925}
1926
1927/**
1928 * skb_queue_prev - return the prev packet in the queue
1929 * @list: queue head
1930 * @skb: current buffer
1931 *
1932 * Return the prev packet in @list before @skb. It is only valid to
1933 * call this if skb_queue_is_first() evaluates to false.
1934 */
1935static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1936 const struct sk_buff *skb)
1937{
1938 /* This BUG_ON may seem severe, but if we just return then we
1939 * are going to dereference garbage.
1940 */
1941 BUG_ON(skb_queue_is_first(list, skb));
1942 return skb->prev;
1943}
1944
1945/**
1946 * skb_get - reference buffer
1947 * @skb: buffer to reference
1948 *
1949 * Makes another reference to a socket buffer and returns a pointer
1950 * to the buffer.
1951 */
1952static inline struct sk_buff *skb_get(struct sk_buff *skb)
1953{
1954 refcount_inc(&skb->users);
1955 return skb;
1956}
1957
1958/*
1959 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1960 */
1961
1962/**
1963 * skb_cloned - is the buffer a clone
1964 * @skb: buffer to check
1965 *
1966 * Returns true if the buffer was generated with skb_clone() and is
1967 * one of multiple shared copies of the buffer. Cloned buffers are
1968 * shared data so must not be written to under normal circumstances.
1969 */
1970static inline int skb_cloned(const struct sk_buff *skb)
1971{
1972 return skb->cloned &&
1973 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1974}
1975
1976static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1977{
1978 might_sleep_if(gfpflags_allow_blocking(pri));
1979
1980 if (skb_cloned(skb))
1981 return pskb_expand_head(skb, 0, 0, pri);
1982
1983 return 0;
1984}
1985
1986/* This variant of skb_unclone() makes sure skb->truesize
1987 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1988 *
1989 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1990 * when various debugging features are in place.
1991 */
1992int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1993static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1994{
1995 might_sleep_if(gfpflags_allow_blocking(pri));
1996
1997 if (skb_cloned(skb))
1998 return __skb_unclone_keeptruesize(skb, pri);
1999 return 0;
2000}
2001
2002/**
2003 * skb_header_cloned - is the header a clone
2004 * @skb: buffer to check
2005 *
2006 * Returns true if modifying the header part of the buffer requires
2007 * the data to be copied.
2008 */
2009static inline int skb_header_cloned(const struct sk_buff *skb)
2010{
2011 int dataref;
2012
2013 if (!skb->cloned)
2014 return 0;
2015
2016 dataref = atomic_read(&skb_shinfo(skb)->dataref);
2017 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2018 return dataref != 1;
2019}
2020
2021static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2022{
2023 might_sleep_if(gfpflags_allow_blocking(pri));
2024
2025 if (skb_header_cloned(skb))
2026 return pskb_expand_head(skb, 0, 0, pri);
2027
2028 return 0;
2029}
2030
2031/**
2032 * __skb_header_release() - allow clones to use the headroom
2033 * @skb: buffer to operate on
2034 *
2035 * See "DOC: dataref and headerless skbs".
2036 */
2037static inline void __skb_header_release(struct sk_buff *skb)
2038{
2039 skb->nohdr = 1;
2040 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2041}
2042
2043
2044/**
2045 * skb_shared - is the buffer shared
2046 * @skb: buffer to check
2047 *
2048 * Returns true if more than one person has a reference to this
2049 * buffer.
2050 */
2051static inline int skb_shared(const struct sk_buff *skb)
2052{
2053 return refcount_read(&skb->users) != 1;
2054}
2055
2056/**
2057 * skb_share_check - check if buffer is shared and if so clone it
2058 * @skb: buffer to check
2059 * @pri: priority for memory allocation
2060 *
2061 * If the buffer is shared the buffer is cloned and the old copy
2062 * drops a reference. A new clone with a single reference is returned.
2063 * If the buffer is not shared the original buffer is returned. When
2064 * being called from interrupt status or with spinlocks held pri must
2065 * be GFP_ATOMIC.
2066 *
2067 * NULL is returned on a memory allocation failure.
2068 */
2069static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2070{
2071 might_sleep_if(gfpflags_allow_blocking(pri));
2072 if (skb_shared(skb)) {
2073 struct sk_buff *nskb = skb_clone(skb, pri);
2074
2075 if (likely(nskb))
2076 consume_skb(skb);
2077 else
2078 kfree_skb(skb);
2079 skb = nskb;
2080 }
2081 return skb;
2082}
2083
2084/*
2085 * Copy shared buffers into a new sk_buff. We effectively do COW on
2086 * packets to handle cases where we have a local reader and forward
2087 * and a couple of other messy ones. The normal one is tcpdumping
2088 * a packet that's being forwarded.
2089 */
2090
2091/**
2092 * skb_unshare - make a copy of a shared buffer
2093 * @skb: buffer to check
2094 * @pri: priority for memory allocation
2095 *
2096 * If the socket buffer is a clone then this function creates a new
2097 * copy of the data, drops a reference count on the old copy and returns
2098 * the new copy with the reference count at 1. If the buffer is not a clone
2099 * the original buffer is returned. When called with a spinlock held or
2100 * from interrupt state @pri must be %GFP_ATOMIC
2101 *
2102 * %NULL is returned on a memory allocation failure.
2103 */
2104static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2105 gfp_t pri)
2106{
2107 might_sleep_if(gfpflags_allow_blocking(pri));
2108 if (skb_cloned(skb)) {
2109 struct sk_buff *nskb = skb_copy(skb, pri);
2110
2111 /* Free our shared copy */
2112 if (likely(nskb))
2113 consume_skb(skb);
2114 else
2115 kfree_skb(skb);
2116 skb = nskb;
2117 }
2118 return skb;
2119}
2120
2121/**
2122 * skb_peek - peek at the head of an &sk_buff_head
2123 * @list_: list to peek at
2124 *
2125 * Peek an &sk_buff. Unlike most other operations you _MUST_
2126 * be careful with this one. A peek leaves the buffer on the
2127 * list and someone else may run off with it. You must hold
2128 * the appropriate locks or have a private queue to do this.
2129 *
2130 * Returns %NULL for an empty list or a pointer to the head element.
2131 * The reference count is not incremented and the reference is therefore
2132 * volatile. Use with caution.
2133 */
2134static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2135{
2136 struct sk_buff *skb = list_->next;
2137
2138 if (skb == (struct sk_buff *)list_)
2139 skb = NULL;
2140 return skb;
2141}
2142
2143/**
2144 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2145 * @list_: list to peek at
2146 *
2147 * Like skb_peek(), but the caller knows that the list is not empty.
2148 */
2149static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2150{
2151 return list_->next;
2152}
2153
2154/**
2155 * skb_peek_next - peek skb following the given one from a queue
2156 * @skb: skb to start from
2157 * @list_: list to peek at
2158 *
2159 * Returns %NULL when the end of the list is met or a pointer to the
2160 * next element. The reference count is not incremented and the
2161 * reference is therefore volatile. Use with caution.
2162 */
2163static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2164 const struct sk_buff_head *list_)
2165{
2166 struct sk_buff *next = skb->next;
2167
2168 if (next == (struct sk_buff *)list_)
2169 next = NULL;
2170 return next;
2171}
2172
2173/**
2174 * skb_peek_tail - peek at the tail of an &sk_buff_head
2175 * @list_: list to peek at
2176 *
2177 * Peek an &sk_buff. Unlike most other operations you _MUST_
2178 * be careful with this one. A peek leaves the buffer on the
2179 * list and someone else may run off with it. You must hold
2180 * the appropriate locks or have a private queue to do this.
2181 *
2182 * Returns %NULL for an empty list or a pointer to the tail element.
2183 * The reference count is not incremented and the reference is therefore
2184 * volatile. Use with caution.
2185 */
2186static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2187{
2188 struct sk_buff *skb = READ_ONCE(list_->prev);
2189
2190 if (skb == (struct sk_buff *)list_)
2191 skb = NULL;
2192 return skb;
2193
2194}
2195
2196/**
2197 * skb_queue_len - get queue length
2198 * @list_: list to measure
2199 *
2200 * Return the length of an &sk_buff queue.
2201 */
2202static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2203{
2204 return list_->qlen;
2205}
2206
2207/**
2208 * skb_queue_len_lockless - get queue length
2209 * @list_: list to measure
2210 *
2211 * Return the length of an &sk_buff queue.
2212 * This variant can be used in lockless contexts.
2213 */
2214static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2215{
2216 return READ_ONCE(list_->qlen);
2217}
2218
2219/**
2220 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2221 * @list: queue to initialize
2222 *
2223 * This initializes only the list and queue length aspects of
2224 * an sk_buff_head object. This allows to initialize the list
2225 * aspects of an sk_buff_head without reinitializing things like
2226 * the spinlock. It can also be used for on-stack sk_buff_head
2227 * objects where the spinlock is known to not be used.
2228 */
2229static inline void __skb_queue_head_init(struct sk_buff_head *list)
2230{
2231 list->prev = list->next = (struct sk_buff *)list;
2232 list->qlen = 0;
2233}
2234
2235/*
2236 * This function creates a split out lock class for each invocation;
2237 * this is needed for now since a whole lot of users of the skb-queue
2238 * infrastructure in drivers have different locking usage (in hardirq)
2239 * than the networking core (in softirq only). In the long run either the
2240 * network layer or drivers should need annotation to consolidate the
2241 * main types of usage into 3 classes.
2242 */
2243static inline void skb_queue_head_init(struct sk_buff_head *list)
2244{
2245 spin_lock_init(&list->lock);
2246 __skb_queue_head_init(list);
2247}
2248
2249static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2250 struct lock_class_key *class)
2251{
2252 skb_queue_head_init(list);
2253 lockdep_set_class(&list->lock, class);
2254}
2255
2256/*
2257 * Insert an sk_buff on a list.
2258 *
2259 * The "__skb_xxxx()" functions are the non-atomic ones that
2260 * can only be called with interrupts disabled.
2261 */
2262static inline void __skb_insert(struct sk_buff *newsk,
2263 struct sk_buff *prev, struct sk_buff *next,
2264 struct sk_buff_head *list)
2265{
2266 /* See skb_queue_empty_lockless() and skb_peek_tail()
2267 * for the opposite READ_ONCE()
2268 */
2269 WRITE_ONCE(newsk->next, next);
2270 WRITE_ONCE(newsk->prev, prev);
2271 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2272 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2273 WRITE_ONCE(list->qlen, list->qlen + 1);
2274}
2275
2276static inline void __skb_queue_splice(const struct sk_buff_head *list,
2277 struct sk_buff *prev,
2278 struct sk_buff *next)
2279{
2280 struct sk_buff *first = list->next;
2281 struct sk_buff *last = list->prev;
2282
2283 WRITE_ONCE(first->prev, prev);
2284 WRITE_ONCE(prev->next, first);
2285
2286 WRITE_ONCE(last->next, next);
2287 WRITE_ONCE(next->prev, last);
2288}
2289
2290/**
2291 * skb_queue_splice - join two skb lists, this is designed for stacks
2292 * @list: the new list to add
2293 * @head: the place to add it in the first list
2294 */
2295static inline void skb_queue_splice(const struct sk_buff_head *list,
2296 struct sk_buff_head *head)
2297{
2298 if (!skb_queue_empty(list)) {
2299 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2300 head->qlen += list->qlen;
2301 }
2302}
2303
2304/**
2305 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2306 * @list: the new list to add
2307 * @head: the place to add it in the first list
2308 *
2309 * The list at @list is reinitialised
2310 */
2311static inline void skb_queue_splice_init(struct sk_buff_head *list,
2312 struct sk_buff_head *head)
2313{
2314 if (!skb_queue_empty(list)) {
2315 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2316 head->qlen += list->qlen;
2317 __skb_queue_head_init(list);
2318 }
2319}
2320
2321/**
2322 * skb_queue_splice_tail - join two skb lists, each list being a queue
2323 * @list: the new list to add
2324 * @head: the place to add it in the first list
2325 */
2326static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2327 struct sk_buff_head *head)
2328{
2329 if (!skb_queue_empty(list)) {
2330 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2331 head->qlen += list->qlen;
2332 }
2333}
2334
2335/**
2336 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2337 * @list: the new list to add
2338 * @head: the place to add it in the first list
2339 *
2340 * Each of the lists is a queue.
2341 * The list at @list is reinitialised
2342 */
2343static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2344 struct sk_buff_head *head)
2345{
2346 if (!skb_queue_empty(list)) {
2347 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2348 head->qlen += list->qlen;
2349 __skb_queue_head_init(list);
2350 }
2351}
2352
2353/**
2354 * __skb_queue_after - queue a buffer at the list head
2355 * @list: list to use
2356 * @prev: place after this buffer
2357 * @newsk: buffer to queue
2358 *
2359 * Queue a buffer int the middle of a list. This function takes no locks
2360 * and you must therefore hold required locks before calling it.
2361 *
2362 * A buffer cannot be placed on two lists at the same time.
2363 */
2364static inline void __skb_queue_after(struct sk_buff_head *list,
2365 struct sk_buff *prev,
2366 struct sk_buff *newsk)
2367{
2368 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2369}
2370
2371void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2372 struct sk_buff_head *list);
2373
2374static inline void __skb_queue_before(struct sk_buff_head *list,
2375 struct sk_buff *next,
2376 struct sk_buff *newsk)
2377{
2378 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2379}
2380
2381/**
2382 * __skb_queue_head - queue a buffer at the list head
2383 * @list: list to use
2384 * @newsk: buffer to queue
2385 *
2386 * Queue a buffer at the start of a list. This function takes no locks
2387 * and you must therefore hold required locks before calling it.
2388 *
2389 * A buffer cannot be placed on two lists at the same time.
2390 */
2391static inline void __skb_queue_head(struct sk_buff_head *list,
2392 struct sk_buff *newsk)
2393{
2394 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2395}
2396void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2397
2398/**
2399 * __skb_queue_tail - queue a buffer at the list tail
2400 * @list: list to use
2401 * @newsk: buffer to queue
2402 *
2403 * Queue a buffer at the end of a list. This function takes no locks
2404 * and you must therefore hold required locks before calling it.
2405 *
2406 * A buffer cannot be placed on two lists at the same time.
2407 */
2408static inline void __skb_queue_tail(struct sk_buff_head *list,
2409 struct sk_buff *newsk)
2410{
2411 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2412}
2413void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2414
2415/*
2416 * remove sk_buff from list. _Must_ be called atomically, and with
2417 * the list known..
2418 */
2419void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2420static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2421{
2422 struct sk_buff *next, *prev;
2423
2424 WRITE_ONCE(list->qlen, list->qlen - 1);
2425 next = skb->next;
2426 prev = skb->prev;
2427 skb->next = skb->prev = NULL;
2428 WRITE_ONCE(next->prev, prev);
2429 WRITE_ONCE(prev->next, next);
2430}
2431
2432/**
2433 * __skb_dequeue - remove from the head of the queue
2434 * @list: list to dequeue from
2435 *
2436 * Remove the head of the list. This function does not take any locks
2437 * so must be used with appropriate locks held only. The head item is
2438 * returned or %NULL if the list is empty.
2439 */
2440static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2441{
2442 struct sk_buff *skb = skb_peek(list);
2443 if (skb)
2444 __skb_unlink(skb, list);
2445 return skb;
2446}
2447struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2448
2449/**
2450 * __skb_dequeue_tail - remove from the tail of the queue
2451 * @list: list to dequeue from
2452 *
2453 * Remove the tail of the list. This function does not take any locks
2454 * so must be used with appropriate locks held only. The tail item is
2455 * returned or %NULL if the list is empty.
2456 */
2457static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2458{
2459 struct sk_buff *skb = skb_peek_tail(list);
2460 if (skb)
2461 __skb_unlink(skb, list);
2462 return skb;
2463}
2464struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2465
2466
2467static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2468{
2469 return skb->data_len;
2470}
2471
2472static inline unsigned int skb_headlen(const struct sk_buff *skb)
2473{
2474 return skb->len - skb->data_len;
2475}
2476
2477static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2478{
2479 unsigned int i, len = 0;
2480
2481 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2482 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2483 return len;
2484}
2485
2486static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2487{
2488 return skb_headlen(skb) + __skb_pagelen(skb);
2489}
2490
2491static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2492 netmem_ref netmem, int off,
2493 int size)
2494{
2495 frag->netmem = netmem;
2496 frag->offset = off;
2497 skb_frag_size_set(frag, size);
2498}
2499
2500static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2501 struct page *page,
2502 int off, int size)
2503{
2504 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2505}
2506
2507static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2508 int i, netmem_ref netmem,
2509 int off, int size)
2510{
2511 skb_frag_t *frag = &shinfo->frags[i];
2512
2513 skb_frag_fill_netmem_desc(frag, netmem, off, size);
2514}
2515
2516static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2517 int i, struct page *page,
2518 int off, int size)
2519{
2520 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2521 size);
2522}
2523
2524/**
2525 * skb_len_add - adds a number to len fields of skb
2526 * @skb: buffer to add len to
2527 * @delta: number of bytes to add
2528 */
2529static inline void skb_len_add(struct sk_buff *skb, int delta)
2530{
2531 skb->len += delta;
2532 skb->data_len += delta;
2533 skb->truesize += delta;
2534}
2535
2536/**
2537 * __skb_fill_netmem_desc - initialise a fragment in an skb
2538 * @skb: buffer containing fragment to be initialised
2539 * @i: fragment index to initialise
2540 * @netmem: the netmem to use for this fragment
2541 * @off: the offset to the data with @page
2542 * @size: the length of the data
2543 *
2544 * Initialises the @i'th fragment of @skb to point to &size bytes at
2545 * offset @off within @page.
2546 *
2547 * Does not take any additional reference on the fragment.
2548 */
2549static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2550 netmem_ref netmem, int off, int size)
2551{
2552 struct page *page;
2553
2554 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2555
2556 if (netmem_is_net_iov(netmem)) {
2557 skb->unreadable = true;
2558 return;
2559 }
2560
2561 page = netmem_to_page(netmem);
2562
2563 /* Propagate page pfmemalloc to the skb if we can. The problem is
2564 * that not all callers have unique ownership of the page but rely
2565 * on page_is_pfmemalloc doing the right thing(tm).
2566 */
2567 page = compound_head(page);
2568 if (page_is_pfmemalloc(page))
2569 skb->pfmemalloc = true;
2570}
2571
2572static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2573 struct page *page, int off, int size)
2574{
2575 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2576}
2577
2578static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2579 netmem_ref netmem, int off, int size)
2580{
2581 __skb_fill_netmem_desc(skb, i, netmem, off, size);
2582 skb_shinfo(skb)->nr_frags = i + 1;
2583}
2584
2585/**
2586 * skb_fill_page_desc - initialise a paged fragment in an skb
2587 * @skb: buffer containing fragment to be initialised
2588 * @i: paged fragment index to initialise
2589 * @page: the page to use for this fragment
2590 * @off: the offset to the data with @page
2591 * @size: the length of the data
2592 *
2593 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2594 * @skb to point to @size bytes at offset @off within @page. In
2595 * addition updates @skb such that @i is the last fragment.
2596 *
2597 * Does not take any additional reference on the fragment.
2598 */
2599static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2600 struct page *page, int off, int size)
2601{
2602 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2603}
2604
2605/**
2606 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2607 * @skb: buffer containing fragment to be initialised
2608 * @i: paged fragment index to initialise
2609 * @page: the page to use for this fragment
2610 * @off: the offset to the data with @page
2611 * @size: the length of the data
2612 *
2613 * Variant of skb_fill_page_desc() which does not deal with
2614 * pfmemalloc, if page is not owned by us.
2615 */
2616static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2617 struct page *page, int off,
2618 int size)
2619{
2620 struct skb_shared_info *shinfo = skb_shinfo(skb);
2621
2622 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2623 shinfo->nr_frags = i + 1;
2624}
2625
2626void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2627 int off, int size, unsigned int truesize);
2628
2629static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2630 struct page *page, int off, int size,
2631 unsigned int truesize)
2632{
2633 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2634 truesize);
2635}
2636
2637void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2638 unsigned int truesize);
2639
2640#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2641
2642#ifdef NET_SKBUFF_DATA_USES_OFFSET
2643static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2644{
2645 return skb->head + skb->tail;
2646}
2647
2648static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2649{
2650 skb->tail = skb->data - skb->head;
2651}
2652
2653static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2654{
2655 skb_reset_tail_pointer(skb);
2656 skb->tail += offset;
2657}
2658
2659#else /* NET_SKBUFF_DATA_USES_OFFSET */
2660static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2661{
2662 return skb->tail;
2663}
2664
2665static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2666{
2667 skb->tail = skb->data;
2668}
2669
2670static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2671{
2672 skb->tail = skb->data + offset;
2673}
2674
2675#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2676
2677static inline void skb_assert_len(struct sk_buff *skb)
2678{
2679#ifdef CONFIG_DEBUG_NET
2680 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2681 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2682#endif /* CONFIG_DEBUG_NET */
2683}
2684
2685#if defined(CONFIG_FAIL_SKB_REALLOC)
2686void skb_might_realloc(struct sk_buff *skb);
2687#else
2688static inline void skb_might_realloc(struct sk_buff *skb) {}
2689#endif
2690
2691/*
2692 * Add data to an sk_buff
2693 */
2694void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2695void *skb_put(struct sk_buff *skb, unsigned int len);
2696static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2697{
2698 void *tmp = skb_tail_pointer(skb);
2699 SKB_LINEAR_ASSERT(skb);
2700 skb->tail += len;
2701 skb->len += len;
2702 return tmp;
2703}
2704
2705static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2706{
2707 void *tmp = __skb_put(skb, len);
2708
2709 memset(tmp, 0, len);
2710 return tmp;
2711}
2712
2713static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2714 unsigned int len)
2715{
2716 void *tmp = __skb_put(skb, len);
2717
2718 memcpy(tmp, data, len);
2719 return tmp;
2720}
2721
2722static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2723{
2724 *(u8 *)__skb_put(skb, 1) = val;
2725}
2726
2727static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2728{
2729 void *tmp = skb_put(skb, len);
2730
2731 memset(tmp, 0, len);
2732
2733 return tmp;
2734}
2735
2736static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2737 unsigned int len)
2738{
2739 void *tmp = skb_put(skb, len);
2740
2741 memcpy(tmp, data, len);
2742
2743 return tmp;
2744}
2745
2746static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2747{
2748 *(u8 *)skb_put(skb, 1) = val;
2749}
2750
2751void *skb_push(struct sk_buff *skb, unsigned int len);
2752static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2753{
2754 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2755
2756 skb->data -= len;
2757 skb->len += len;
2758 return skb->data;
2759}
2760
2761void *skb_pull(struct sk_buff *skb, unsigned int len);
2762static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2763{
2764 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2765
2766 skb->len -= len;
2767 if (unlikely(skb->len < skb->data_len)) {
2768#if defined(CONFIG_DEBUG_NET)
2769 skb->len += len;
2770 pr_err("__skb_pull(len=%u)\n", len);
2771 skb_dump(KERN_ERR, skb, false);
2772#endif
2773 BUG();
2774 }
2775 return skb->data += len;
2776}
2777
2778static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2779{
2780 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2781}
2782
2783void *skb_pull_data(struct sk_buff *skb, size_t len);
2784
2785void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2786
2787static inline enum skb_drop_reason
2788pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2789{
2790 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2791 skb_might_realloc(skb);
2792
2793 if (likely(len <= skb_headlen(skb)))
2794 return SKB_NOT_DROPPED_YET;
2795
2796 if (unlikely(len > skb->len))
2797 return SKB_DROP_REASON_PKT_TOO_SMALL;
2798
2799 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2800 return SKB_DROP_REASON_NOMEM;
2801
2802 return SKB_NOT_DROPPED_YET;
2803}
2804
2805static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2806{
2807 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2808}
2809
2810static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2811{
2812 if (!pskb_may_pull(skb, len))
2813 return NULL;
2814
2815 skb->len -= len;
2816 return skb->data += len;
2817}
2818
2819void skb_condense(struct sk_buff *skb);
2820
2821/**
2822 * skb_headroom - bytes at buffer head
2823 * @skb: buffer to check
2824 *
2825 * Return the number of bytes of free space at the head of an &sk_buff.
2826 */
2827static inline unsigned int skb_headroom(const struct sk_buff *skb)
2828{
2829 return skb->data - skb->head;
2830}
2831
2832/**
2833 * skb_tailroom - bytes at buffer end
2834 * @skb: buffer to check
2835 *
2836 * Return the number of bytes of free space at the tail of an sk_buff
2837 */
2838static inline int skb_tailroom(const struct sk_buff *skb)
2839{
2840 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2841}
2842
2843/**
2844 * skb_availroom - bytes at buffer end
2845 * @skb: buffer to check
2846 *
2847 * Return the number of bytes of free space at the tail of an sk_buff
2848 * allocated by sk_stream_alloc()
2849 */
2850static inline int skb_availroom(const struct sk_buff *skb)
2851{
2852 if (skb_is_nonlinear(skb))
2853 return 0;
2854
2855 return skb->end - skb->tail - skb->reserved_tailroom;
2856}
2857
2858/**
2859 * skb_reserve - adjust headroom
2860 * @skb: buffer to alter
2861 * @len: bytes to move
2862 *
2863 * Increase the headroom of an empty &sk_buff by reducing the tail
2864 * room. This is only allowed for an empty buffer.
2865 */
2866static inline void skb_reserve(struct sk_buff *skb, int len)
2867{
2868 skb->data += len;
2869 skb->tail += len;
2870}
2871
2872/**
2873 * skb_tailroom_reserve - adjust reserved_tailroom
2874 * @skb: buffer to alter
2875 * @mtu: maximum amount of headlen permitted
2876 * @needed_tailroom: minimum amount of reserved_tailroom
2877 *
2878 * Set reserved_tailroom so that headlen can be as large as possible but
2879 * not larger than mtu and tailroom cannot be smaller than
2880 * needed_tailroom.
2881 * The required headroom should already have been reserved before using
2882 * this function.
2883 */
2884static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2885 unsigned int needed_tailroom)
2886{
2887 SKB_LINEAR_ASSERT(skb);
2888 if (mtu < skb_tailroom(skb) - needed_tailroom)
2889 /* use at most mtu */
2890 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2891 else
2892 /* use up to all available space */
2893 skb->reserved_tailroom = needed_tailroom;
2894}
2895
2896#define ENCAP_TYPE_ETHER 0
2897#define ENCAP_TYPE_IPPROTO 1
2898
2899static inline void skb_set_inner_protocol(struct sk_buff *skb,
2900 __be16 protocol)
2901{
2902 skb->inner_protocol = protocol;
2903 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2904}
2905
2906static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2907 __u8 ipproto)
2908{
2909 skb->inner_ipproto = ipproto;
2910 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2911}
2912
2913static inline void skb_reset_inner_headers(struct sk_buff *skb)
2914{
2915 skb->inner_mac_header = skb->mac_header;
2916 skb->inner_network_header = skb->network_header;
2917 skb->inner_transport_header = skb->transport_header;
2918}
2919
2920static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2921{
2922 return skb->mac_header != (typeof(skb->mac_header))~0U;
2923}
2924
2925static inline void skb_reset_mac_len(struct sk_buff *skb)
2926{
2927 if (!skb_mac_header_was_set(skb)) {
2928 DEBUG_NET_WARN_ON_ONCE(1);
2929 skb->mac_len = 0;
2930 } else {
2931 skb->mac_len = skb->network_header - skb->mac_header;
2932 }
2933}
2934
2935static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2936 *skb)
2937{
2938 return skb->head + skb->inner_transport_header;
2939}
2940
2941static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2942{
2943 return skb_inner_transport_header(skb) - skb->data;
2944}
2945
2946static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2947{
2948 long offset = skb->data - skb->head;
2949
2950 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2951 skb->inner_transport_header = offset;
2952}
2953
2954static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2955 const int offset)
2956{
2957 skb_reset_inner_transport_header(skb);
2958 skb->inner_transport_header += offset;
2959}
2960
2961static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2962{
2963 return skb->head + skb->inner_network_header;
2964}
2965
2966static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2967{
2968 long offset = skb->data - skb->head;
2969
2970 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2971 skb->inner_network_header = offset;
2972}
2973
2974static inline void skb_set_inner_network_header(struct sk_buff *skb,
2975 const int offset)
2976{
2977 skb_reset_inner_network_header(skb);
2978 skb->inner_network_header += offset;
2979}
2980
2981static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2982{
2983 return skb->inner_network_header > 0;
2984}
2985
2986static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2987{
2988 return skb->head + skb->inner_mac_header;
2989}
2990
2991static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2992{
2993 long offset = skb->data - skb->head;
2994
2995 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
2996 skb->inner_mac_header = offset;
2997}
2998
2999static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3000 const int offset)
3001{
3002 skb_reset_inner_mac_header(skb);
3003 skb->inner_mac_header += offset;
3004}
3005static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3006{
3007 return skb->transport_header != (typeof(skb->transport_header))~0U;
3008}
3009
3010static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3011{
3012 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3013 return skb->head + skb->transport_header;
3014}
3015
3016static inline void skb_reset_transport_header(struct sk_buff *skb)
3017{
3018 long offset = skb->data - skb->head;
3019
3020 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3021 skb->transport_header = offset;
3022}
3023
3024static inline void skb_set_transport_header(struct sk_buff *skb,
3025 const int offset)
3026{
3027 skb_reset_transport_header(skb);
3028 skb->transport_header += offset;
3029}
3030
3031static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3032{
3033 return skb->head + skb->network_header;
3034}
3035
3036static inline void skb_reset_network_header(struct sk_buff *skb)
3037{
3038 long offset = skb->data - skb->head;
3039
3040 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3041 skb->network_header = offset;
3042}
3043
3044static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3045{
3046 skb_reset_network_header(skb);
3047 skb->network_header += offset;
3048}
3049
3050static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3051{
3052 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3053 return skb->head + skb->mac_header;
3054}
3055
3056static inline int skb_mac_offset(const struct sk_buff *skb)
3057{
3058 return skb_mac_header(skb) - skb->data;
3059}
3060
3061static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3062{
3063 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3064 return skb->network_header - skb->mac_header;
3065}
3066
3067static inline void skb_unset_mac_header(struct sk_buff *skb)
3068{
3069 skb->mac_header = (typeof(skb->mac_header))~0U;
3070}
3071
3072static inline void skb_reset_mac_header(struct sk_buff *skb)
3073{
3074 long offset = skb->data - skb->head;
3075
3076 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3077 skb->mac_header = offset;
3078}
3079
3080static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3081{
3082 skb_reset_mac_header(skb);
3083 skb->mac_header += offset;
3084}
3085
3086static inline void skb_pop_mac_header(struct sk_buff *skb)
3087{
3088 skb->mac_header = skb->network_header;
3089}
3090
3091static inline void skb_probe_transport_header(struct sk_buff *skb)
3092{
3093 struct flow_keys_basic keys;
3094
3095 if (skb_transport_header_was_set(skb))
3096 return;
3097
3098 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3099 NULL, 0, 0, 0, 0))
3100 skb_set_transport_header(skb, keys.control.thoff);
3101}
3102
3103static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3104{
3105 if (skb_mac_header_was_set(skb)) {
3106 const unsigned char *old_mac = skb_mac_header(skb);
3107
3108 skb_set_mac_header(skb, -skb->mac_len);
3109 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3110 }
3111}
3112
3113/* Move the full mac header up to current network_header.
3114 * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3115 * Must be provided the complete mac header length.
3116 */
3117static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3118{
3119 if (skb_mac_header_was_set(skb)) {
3120 const unsigned char *old_mac = skb_mac_header(skb);
3121
3122 skb_set_mac_header(skb, -full_mac_len);
3123 memmove(skb_mac_header(skb), old_mac, full_mac_len);
3124 __skb_push(skb, full_mac_len - skb->mac_len);
3125 }
3126}
3127
3128static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3129{
3130 return skb->csum_start - skb_headroom(skb);
3131}
3132
3133static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3134{
3135 return skb->head + skb->csum_start;
3136}
3137
3138static inline int skb_transport_offset(const struct sk_buff *skb)
3139{
3140 return skb_transport_header(skb) - skb->data;
3141}
3142
3143static inline u32 skb_network_header_len(const struct sk_buff *skb)
3144{
3145 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3146 return skb->transport_header - skb->network_header;
3147}
3148
3149static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3150{
3151 return skb->inner_transport_header - skb->inner_network_header;
3152}
3153
3154static inline int skb_network_offset(const struct sk_buff *skb)
3155{
3156 return skb_network_header(skb) - skb->data;
3157}
3158
3159static inline int skb_inner_network_offset(const struct sk_buff *skb)
3160{
3161 return skb_inner_network_header(skb) - skb->data;
3162}
3163
3164static inline enum skb_drop_reason
3165pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3166{
3167 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3168}
3169
3170static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3171{
3172 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3173}
3174
3175/*
3176 * CPUs often take a performance hit when accessing unaligned memory
3177 * locations. The actual performance hit varies, it can be small if the
3178 * hardware handles it or large if we have to take an exception and fix it
3179 * in software.
3180 *
3181 * Since an ethernet header is 14 bytes network drivers often end up with
3182 * the IP header at an unaligned offset. The IP header can be aligned by
3183 * shifting the start of the packet by 2 bytes. Drivers should do this
3184 * with:
3185 *
3186 * skb_reserve(skb, NET_IP_ALIGN);
3187 *
3188 * The downside to this alignment of the IP header is that the DMA is now
3189 * unaligned. On some architectures the cost of an unaligned DMA is high
3190 * and this cost outweighs the gains made by aligning the IP header.
3191 *
3192 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3193 * to be overridden.
3194 */
3195#ifndef NET_IP_ALIGN
3196#define NET_IP_ALIGN 2
3197#endif
3198
3199/*
3200 * The networking layer reserves some headroom in skb data (via
3201 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3202 * the header has to grow. In the default case, if the header has to grow
3203 * 32 bytes or less we avoid the reallocation.
3204 *
3205 * Unfortunately this headroom changes the DMA alignment of the resulting
3206 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3207 * on some architectures. An architecture can override this value,
3208 * perhaps setting it to a cacheline in size (since that will maintain
3209 * cacheline alignment of the DMA). It must be a power of 2.
3210 *
3211 * Various parts of the networking layer expect at least 32 bytes of
3212 * headroom, you should not reduce this.
3213 *
3214 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3215 * to reduce average number of cache lines per packet.
3216 * get_rps_cpu() for example only access one 64 bytes aligned block :
3217 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3218 */
3219#ifndef NET_SKB_PAD
3220#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3221#endif
3222
3223int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3224
3225static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3226{
3227 if (WARN_ON(skb_is_nonlinear(skb)))
3228 return;
3229 skb->len = len;
3230 skb_set_tail_pointer(skb, len);
3231}
3232
3233static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3234{
3235 __skb_set_length(skb, len);
3236}
3237
3238void skb_trim(struct sk_buff *skb, unsigned int len);
3239
3240static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3241{
3242 if (skb->data_len)
3243 return ___pskb_trim(skb, len);
3244 __skb_trim(skb, len);
3245 return 0;
3246}
3247
3248static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3249{
3250 skb_might_realloc(skb);
3251 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3252}
3253
3254/**
3255 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3256 * @skb: buffer to alter
3257 * @len: new length
3258 *
3259 * This is identical to pskb_trim except that the caller knows that
3260 * the skb is not cloned so we should never get an error due to out-
3261 * of-memory.
3262 */
3263static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3264{
3265 int err = pskb_trim(skb, len);
3266 BUG_ON(err);
3267}
3268
3269static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3270{
3271 unsigned int diff = len - skb->len;
3272
3273 if (skb_tailroom(skb) < diff) {
3274 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3275 GFP_ATOMIC);
3276 if (ret)
3277 return ret;
3278 }
3279 __skb_set_length(skb, len);
3280 return 0;
3281}
3282
3283/**
3284 * skb_orphan - orphan a buffer
3285 * @skb: buffer to orphan
3286 *
3287 * If a buffer currently has an owner then we call the owner's
3288 * destructor function and make the @skb unowned. The buffer continues
3289 * to exist but is no longer charged to its former owner.
3290 */
3291static inline void skb_orphan(struct sk_buff *skb)
3292{
3293 if (skb->destructor) {
3294 skb->destructor(skb);
3295 skb->destructor = NULL;
3296 skb->sk = NULL;
3297 } else {
3298 BUG_ON(skb->sk);
3299 }
3300}
3301
3302/**
3303 * skb_orphan_frags - orphan the frags contained in a buffer
3304 * @skb: buffer to orphan frags from
3305 * @gfp_mask: allocation mask for replacement pages
3306 *
3307 * For each frag in the SKB which needs a destructor (i.e. has an
3308 * owner) create a copy of that frag and release the original
3309 * page by calling the destructor.
3310 */
3311static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3312{
3313 if (likely(!skb_zcopy(skb)))
3314 return 0;
3315 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3316 return 0;
3317 return skb_copy_ubufs(skb, gfp_mask);
3318}
3319
3320/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3321static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3322{
3323 if (likely(!skb_zcopy(skb)))
3324 return 0;
3325 return skb_copy_ubufs(skb, gfp_mask);
3326}
3327
3328/**
3329 * __skb_queue_purge_reason - empty a list
3330 * @list: list to empty
3331 * @reason: drop reason
3332 *
3333 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3334 * the list and one reference dropped. This function does not take the
3335 * list lock and the caller must hold the relevant locks to use it.
3336 */
3337static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3338 enum skb_drop_reason reason)
3339{
3340 struct sk_buff *skb;
3341
3342 while ((skb = __skb_dequeue(list)) != NULL)
3343 kfree_skb_reason(skb, reason);
3344}
3345
3346static inline void __skb_queue_purge(struct sk_buff_head *list)
3347{
3348 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3349}
3350
3351void skb_queue_purge_reason(struct sk_buff_head *list,
3352 enum skb_drop_reason reason);
3353
3354static inline void skb_queue_purge(struct sk_buff_head *list)
3355{
3356 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3357}
3358
3359unsigned int skb_rbtree_purge(struct rb_root *root);
3360void skb_errqueue_purge(struct sk_buff_head *list);
3361
3362void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3363
3364/**
3365 * netdev_alloc_frag - allocate a page fragment
3366 * @fragsz: fragment size
3367 *
3368 * Allocates a frag from a page for receive buffer.
3369 * Uses GFP_ATOMIC allocations.
3370 */
3371static inline void *netdev_alloc_frag(unsigned int fragsz)
3372{
3373 return __netdev_alloc_frag_align(fragsz, ~0u);
3374}
3375
3376static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3377 unsigned int align)
3378{
3379 WARN_ON_ONCE(!is_power_of_2(align));
3380 return __netdev_alloc_frag_align(fragsz, -align);
3381}
3382
3383struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3384 gfp_t gfp_mask);
3385
3386/**
3387 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3388 * @dev: network device to receive on
3389 * @length: length to allocate
3390 *
3391 * Allocate a new &sk_buff and assign it a usage count of one. The
3392 * buffer has unspecified headroom built in. Users should allocate
3393 * the headroom they think they need without accounting for the
3394 * built in space. The built in space is used for optimisations.
3395 *
3396 * %NULL is returned if there is no free memory. Although this function
3397 * allocates memory it can be called from an interrupt.
3398 */
3399static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3400 unsigned int length)
3401{
3402 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3403}
3404
3405/* legacy helper around __netdev_alloc_skb() */
3406static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3407 gfp_t gfp_mask)
3408{
3409 return __netdev_alloc_skb(NULL, length, gfp_mask);
3410}
3411
3412/* legacy helper around netdev_alloc_skb() */
3413static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3414{
3415 return netdev_alloc_skb(NULL, length);
3416}
3417
3418
3419static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3420 unsigned int length, gfp_t gfp)
3421{
3422 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3423
3424 if (NET_IP_ALIGN && skb)
3425 skb_reserve(skb, NET_IP_ALIGN);
3426 return skb;
3427}
3428
3429static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3430 unsigned int length)
3431{
3432 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3433}
3434
3435static inline void skb_free_frag(void *addr)
3436{
3437 page_frag_free(addr);
3438}
3439
3440void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3441
3442static inline void *napi_alloc_frag(unsigned int fragsz)
3443{
3444 return __napi_alloc_frag_align(fragsz, ~0u);
3445}
3446
3447static inline void *napi_alloc_frag_align(unsigned int fragsz,
3448 unsigned int align)
3449{
3450 WARN_ON_ONCE(!is_power_of_2(align));
3451 return __napi_alloc_frag_align(fragsz, -align);
3452}
3453
3454struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3455void napi_consume_skb(struct sk_buff *skb, int budget);
3456
3457void napi_skb_free_stolen_head(struct sk_buff *skb);
3458void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3459
3460/**
3461 * __dev_alloc_pages - allocate page for network Rx
3462 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3463 * @order: size of the allocation
3464 *
3465 * Allocate a new page.
3466 *
3467 * %NULL is returned if there is no free memory.
3468*/
3469static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3470 unsigned int order)
3471{
3472 /* This piece of code contains several assumptions.
3473 * 1. This is for device Rx, therefore a cold page is preferred.
3474 * 2. The expectation is the user wants a compound page.
3475 * 3. If requesting a order 0 page it will not be compound
3476 * due to the check to see if order has a value in prep_new_page
3477 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3478 * code in gfp_to_alloc_flags that should be enforcing this.
3479 */
3480 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3481
3482 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3483}
3484#define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3485
3486/*
3487 * This specialized allocator has to be a macro for its allocations to be
3488 * accounted separately (to have a separate alloc_tag).
3489 */
3490#define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3491
3492/**
3493 * __dev_alloc_page - allocate a page for network Rx
3494 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3495 *
3496 * Allocate a new page.
3497 *
3498 * %NULL is returned if there is no free memory.
3499 */
3500static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3501{
3502 return __dev_alloc_pages_noprof(gfp_mask, 0);
3503}
3504#define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3505
3506/*
3507 * This specialized allocator has to be a macro for its allocations to be
3508 * accounted separately (to have a separate alloc_tag).
3509 */
3510#define dev_alloc_page() dev_alloc_pages(0)
3511
3512/**
3513 * dev_page_is_reusable - check whether a page can be reused for network Rx
3514 * @page: the page to test
3515 *
3516 * A page shouldn't be considered for reusing/recycling if it was allocated
3517 * under memory pressure or at a distant memory node.
3518 *
3519 * Returns false if this page should be returned to page allocator, true
3520 * otherwise.
3521 */
3522static inline bool dev_page_is_reusable(const struct page *page)
3523{
3524 return likely(page_to_nid(page) == numa_mem_id() &&
3525 !page_is_pfmemalloc(page));
3526}
3527
3528/**
3529 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3530 * @page: The page that was allocated from skb_alloc_page
3531 * @skb: The skb that may need pfmemalloc set
3532 */
3533static inline void skb_propagate_pfmemalloc(const struct page *page,
3534 struct sk_buff *skb)
3535{
3536 if (page_is_pfmemalloc(page))
3537 skb->pfmemalloc = true;
3538}
3539
3540/**
3541 * skb_frag_off() - Returns the offset of a skb fragment
3542 * @frag: the paged fragment
3543 */
3544static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3545{
3546 return frag->offset;
3547}
3548
3549/**
3550 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3551 * @frag: skb fragment
3552 * @delta: value to add
3553 */
3554static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3555{
3556 frag->offset += delta;
3557}
3558
3559/**
3560 * skb_frag_off_set() - Sets the offset of a skb fragment
3561 * @frag: skb fragment
3562 * @offset: offset of fragment
3563 */
3564static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3565{
3566 frag->offset = offset;
3567}
3568
3569/**
3570 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3571 * @fragto: skb fragment where offset is set
3572 * @fragfrom: skb fragment offset is copied from
3573 */
3574static inline void skb_frag_off_copy(skb_frag_t *fragto,
3575 const skb_frag_t *fragfrom)
3576{
3577 fragto->offset = fragfrom->offset;
3578}
3579
3580/* Return: true if the skb_frag contains a net_iov. */
3581static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3582{
3583 return netmem_is_net_iov(frag->netmem);
3584}
3585
3586/**
3587 * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3588 * @frag: the fragment
3589 *
3590 * Return: the &struct net_iov associated with @frag. Returns NULL if this
3591 * frag has no associated net_iov.
3592 */
3593static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3594{
3595 if (!skb_frag_is_net_iov(frag))
3596 return NULL;
3597
3598 return netmem_to_net_iov(frag->netmem);
3599}
3600
3601/**
3602 * skb_frag_page - retrieve the page referred to by a paged fragment
3603 * @frag: the paged fragment
3604 *
3605 * Return: the &struct page associated with @frag. Returns NULL if this frag
3606 * has no associated page.
3607 */
3608static inline struct page *skb_frag_page(const skb_frag_t *frag)
3609{
3610 if (skb_frag_is_net_iov(frag))
3611 return NULL;
3612
3613 return netmem_to_page(frag->netmem);
3614}
3615
3616/**
3617 * skb_frag_netmem - retrieve the netmem referred to by a fragment
3618 * @frag: the fragment
3619 *
3620 * Return: the &netmem_ref associated with @frag.
3621 */
3622static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3623{
3624 return frag->netmem;
3625}
3626
3627int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3628 unsigned int headroom);
3629int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3630 struct bpf_prog *prog);
3631
3632/**
3633 * skb_frag_address - gets the address of the data contained in a paged fragment
3634 * @frag: the paged fragment buffer
3635 *
3636 * Returns the address of the data within @frag. The page must already
3637 * be mapped.
3638 */
3639static inline void *skb_frag_address(const skb_frag_t *frag)
3640{
3641 if (!skb_frag_page(frag))
3642 return NULL;
3643
3644 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3645}
3646
3647/**
3648 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3649 * @frag: the paged fragment buffer
3650 *
3651 * Returns the address of the data within @frag. Checks that the page
3652 * is mapped and returns %NULL otherwise.
3653 */
3654static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3655{
3656 void *ptr = page_address(skb_frag_page(frag));
3657 if (unlikely(!ptr))
3658 return NULL;
3659
3660 return ptr + skb_frag_off(frag);
3661}
3662
3663/**
3664 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3665 * @fragto: skb fragment where page is set
3666 * @fragfrom: skb fragment page is copied from
3667 */
3668static inline void skb_frag_page_copy(skb_frag_t *fragto,
3669 const skb_frag_t *fragfrom)
3670{
3671 fragto->netmem = fragfrom->netmem;
3672}
3673
3674bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3675
3676/**
3677 * skb_frag_dma_map - maps a paged fragment via the DMA API
3678 * @dev: the device to map the fragment to
3679 * @frag: the paged fragment to map
3680 * @offset: the offset within the fragment (starting at the
3681 * fragment's own offset)
3682 * @size: the number of bytes to map
3683 * @dir: the direction of the mapping (``PCI_DMA_*``)
3684 *
3685 * Maps the page associated with @frag to @device.
3686 */
3687static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3688 const skb_frag_t *frag,
3689 size_t offset, size_t size,
3690 enum dma_data_direction dir)
3691{
3692 return dma_map_page(dev, skb_frag_page(frag),
3693 skb_frag_off(frag) + offset, size, dir);
3694}
3695
3696static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3697 gfp_t gfp_mask)
3698{
3699 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3700}
3701
3702
3703static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3704 gfp_t gfp_mask)
3705{
3706 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3707}
3708
3709
3710/**
3711 * skb_clone_writable - is the header of a clone writable
3712 * @skb: buffer to check
3713 * @len: length up to which to write
3714 *
3715 * Returns true if modifying the header part of the cloned buffer
3716 * does not requires the data to be copied.
3717 */
3718static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3719{
3720 return !skb_header_cloned(skb) &&
3721 skb_headroom(skb) + len <= skb->hdr_len;
3722}
3723
3724static inline int skb_try_make_writable(struct sk_buff *skb,
3725 unsigned int write_len)
3726{
3727 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3728 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3729}
3730
3731static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3732 int cloned)
3733{
3734 int delta = 0;
3735
3736 if (headroom > skb_headroom(skb))
3737 delta = headroom - skb_headroom(skb);
3738
3739 if (delta || cloned)
3740 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3741 GFP_ATOMIC);
3742 return 0;
3743}
3744
3745/**
3746 * skb_cow - copy header of skb when it is required
3747 * @skb: buffer to cow
3748 * @headroom: needed headroom
3749 *
3750 * If the skb passed lacks sufficient headroom or its data part
3751 * is shared, data is reallocated. If reallocation fails, an error
3752 * is returned and original skb is not changed.
3753 *
3754 * The result is skb with writable area skb->head...skb->tail
3755 * and at least @headroom of space at head.
3756 */
3757static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3758{
3759 return __skb_cow(skb, headroom, skb_cloned(skb));
3760}
3761
3762/**
3763 * skb_cow_head - skb_cow but only making the head writable
3764 * @skb: buffer to cow
3765 * @headroom: needed headroom
3766 *
3767 * This function is identical to skb_cow except that we replace the
3768 * skb_cloned check by skb_header_cloned. It should be used when
3769 * you only need to push on some header and do not need to modify
3770 * the data.
3771 */
3772static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3773{
3774 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3775}
3776
3777/**
3778 * skb_padto - pad an skbuff up to a minimal size
3779 * @skb: buffer to pad
3780 * @len: minimal length
3781 *
3782 * Pads up a buffer to ensure the trailing bytes exist and are
3783 * blanked. If the buffer already contains sufficient data it
3784 * is untouched. Otherwise it is extended. Returns zero on
3785 * success. The skb is freed on error.
3786 */
3787static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3788{
3789 unsigned int size = skb->len;
3790 if (likely(size >= len))
3791 return 0;
3792 return skb_pad(skb, len - size);
3793}
3794
3795/**
3796 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3797 * @skb: buffer to pad
3798 * @len: minimal length
3799 * @free_on_error: free buffer on error
3800 *
3801 * Pads up a buffer to ensure the trailing bytes exist and are
3802 * blanked. If the buffer already contains sufficient data it
3803 * is untouched. Otherwise it is extended. Returns zero on
3804 * success. The skb is freed on error if @free_on_error is true.
3805 */
3806static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3807 unsigned int len,
3808 bool free_on_error)
3809{
3810 unsigned int size = skb->len;
3811
3812 if (unlikely(size < len)) {
3813 len -= size;
3814 if (__skb_pad(skb, len, free_on_error))
3815 return -ENOMEM;
3816 __skb_put(skb, len);
3817 }
3818 return 0;
3819}
3820
3821/**
3822 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3823 * @skb: buffer to pad
3824 * @len: minimal length
3825 *
3826 * Pads up a buffer to ensure the trailing bytes exist and are
3827 * blanked. If the buffer already contains sufficient data it
3828 * is untouched. Otherwise it is extended. Returns zero on
3829 * success. The skb is freed on error.
3830 */
3831static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3832{
3833 return __skb_put_padto(skb, len, true);
3834}
3835
3836bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3837 __must_check;
3838
3839static inline int skb_add_data(struct sk_buff *skb,
3840 struct iov_iter *from, int copy)
3841{
3842 const int off = skb->len;
3843
3844 if (skb->ip_summed == CHECKSUM_NONE) {
3845 __wsum csum = 0;
3846 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3847 &csum, from)) {
3848 skb->csum = csum_block_add(skb->csum, csum, off);
3849 return 0;
3850 }
3851 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3852 return 0;
3853
3854 __skb_trim(skb, off);
3855 return -EFAULT;
3856}
3857
3858static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3859 const struct page *page, int off)
3860{
3861 if (skb_zcopy(skb))
3862 return false;
3863 if (i) {
3864 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3865
3866 return page == skb_frag_page(frag) &&
3867 off == skb_frag_off(frag) + skb_frag_size(frag);
3868 }
3869 return false;
3870}
3871
3872static inline int __skb_linearize(struct sk_buff *skb)
3873{
3874 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3875}
3876
3877/**
3878 * skb_linearize - convert paged skb to linear one
3879 * @skb: buffer to linarize
3880 *
3881 * If there is no free memory -ENOMEM is returned, otherwise zero
3882 * is returned and the old skb data released.
3883 */
3884static inline int skb_linearize(struct sk_buff *skb)
3885{
3886 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3887}
3888
3889/**
3890 * skb_has_shared_frag - can any frag be overwritten
3891 * @skb: buffer to test
3892 *
3893 * Return true if the skb has at least one frag that might be modified
3894 * by an external entity (as in vmsplice()/sendfile())
3895 */
3896static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3897{
3898 return skb_is_nonlinear(skb) &&
3899 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3900}
3901
3902/**
3903 * skb_linearize_cow - make sure skb is linear and writable
3904 * @skb: buffer to process
3905 *
3906 * If there is no free memory -ENOMEM is returned, otherwise zero
3907 * is returned and the old skb data released.
3908 */
3909static inline int skb_linearize_cow(struct sk_buff *skb)
3910{
3911 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3912 __skb_linearize(skb) : 0;
3913}
3914
3915static __always_inline void
3916__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3917 unsigned int off)
3918{
3919 if (skb->ip_summed == CHECKSUM_COMPLETE)
3920 skb->csum = csum_block_sub(skb->csum,
3921 csum_partial(start, len, 0), off);
3922 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3923 skb_checksum_start_offset(skb) < 0)
3924 skb->ip_summed = CHECKSUM_NONE;
3925}
3926
3927/**
3928 * skb_postpull_rcsum - update checksum for received skb after pull
3929 * @skb: buffer to update
3930 * @start: start of data before pull
3931 * @len: length of data pulled
3932 *
3933 * After doing a pull on a received packet, you need to call this to
3934 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3935 * CHECKSUM_NONE so that it can be recomputed from scratch.
3936 */
3937static inline void skb_postpull_rcsum(struct sk_buff *skb,
3938 const void *start, unsigned int len)
3939{
3940 if (skb->ip_summed == CHECKSUM_COMPLETE)
3941 skb->csum = wsum_negate(csum_partial(start, len,
3942 wsum_negate(skb->csum)));
3943 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3944 skb_checksum_start_offset(skb) < 0)
3945 skb->ip_summed = CHECKSUM_NONE;
3946}
3947
3948static __always_inline void
3949__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3950 unsigned int off)
3951{
3952 if (skb->ip_summed == CHECKSUM_COMPLETE)
3953 skb->csum = csum_block_add(skb->csum,
3954 csum_partial(start, len, 0), off);
3955}
3956
3957/**
3958 * skb_postpush_rcsum - update checksum for received skb after push
3959 * @skb: buffer to update
3960 * @start: start of data after push
3961 * @len: length of data pushed
3962 *
3963 * After doing a push on a received packet, you need to call this to
3964 * update the CHECKSUM_COMPLETE checksum.
3965 */
3966static inline void skb_postpush_rcsum(struct sk_buff *skb,
3967 const void *start, unsigned int len)
3968{
3969 __skb_postpush_rcsum(skb, start, len, 0);
3970}
3971
3972void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3973
3974/**
3975 * skb_push_rcsum - push skb and update receive checksum
3976 * @skb: buffer to update
3977 * @len: length of data pulled
3978 *
3979 * This function performs an skb_push on the packet and updates
3980 * the CHECKSUM_COMPLETE checksum. It should be used on
3981 * receive path processing instead of skb_push unless you know
3982 * that the checksum difference is zero (e.g., a valid IP header)
3983 * or you are setting ip_summed to CHECKSUM_NONE.
3984 */
3985static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3986{
3987 skb_push(skb, len);
3988 skb_postpush_rcsum(skb, skb->data, len);
3989 return skb->data;
3990}
3991
3992int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3993/**
3994 * pskb_trim_rcsum - trim received skb and update checksum
3995 * @skb: buffer to trim
3996 * @len: new length
3997 *
3998 * This is exactly the same as pskb_trim except that it ensures the
3999 * checksum of received packets are still valid after the operation.
4000 * It can change skb pointers.
4001 */
4002
4003static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4004{
4005 skb_might_realloc(skb);
4006 if (likely(len >= skb->len))
4007 return 0;
4008 return pskb_trim_rcsum_slow(skb, len);
4009}
4010
4011static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4012{
4013 if (skb->ip_summed == CHECKSUM_COMPLETE)
4014 skb->ip_summed = CHECKSUM_NONE;
4015 __skb_trim(skb, len);
4016 return 0;
4017}
4018
4019static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4020{
4021 if (skb->ip_summed == CHECKSUM_COMPLETE)
4022 skb->ip_summed = CHECKSUM_NONE;
4023 return __skb_grow(skb, len);
4024}
4025
4026#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4027#define skb_rb_first(root) rb_to_skb(rb_first(root))
4028#define skb_rb_last(root) rb_to_skb(rb_last(root))
4029#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
4030#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
4031
4032#define skb_queue_walk(queue, skb) \
4033 for (skb = (queue)->next; \
4034 skb != (struct sk_buff *)(queue); \
4035 skb = skb->next)
4036
4037#define skb_queue_walk_safe(queue, skb, tmp) \
4038 for (skb = (queue)->next, tmp = skb->next; \
4039 skb != (struct sk_buff *)(queue); \
4040 skb = tmp, tmp = skb->next)
4041
4042#define skb_queue_walk_from(queue, skb) \
4043 for (; skb != (struct sk_buff *)(queue); \
4044 skb = skb->next)
4045
4046#define skb_rbtree_walk(skb, root) \
4047 for (skb = skb_rb_first(root); skb != NULL; \
4048 skb = skb_rb_next(skb))
4049
4050#define skb_rbtree_walk_from(skb) \
4051 for (; skb != NULL; \
4052 skb = skb_rb_next(skb))
4053
4054#define skb_rbtree_walk_from_safe(skb, tmp) \
4055 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
4056 skb = tmp)
4057
4058#define skb_queue_walk_from_safe(queue, skb, tmp) \
4059 for (tmp = skb->next; \
4060 skb != (struct sk_buff *)(queue); \
4061 skb = tmp, tmp = skb->next)
4062
4063#define skb_queue_reverse_walk(queue, skb) \
4064 for (skb = (queue)->prev; \
4065 skb != (struct sk_buff *)(queue); \
4066 skb = skb->prev)
4067
4068#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
4069 for (skb = (queue)->prev, tmp = skb->prev; \
4070 skb != (struct sk_buff *)(queue); \
4071 skb = tmp, tmp = skb->prev)
4072
4073#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
4074 for (tmp = skb->prev; \
4075 skb != (struct sk_buff *)(queue); \
4076 skb = tmp, tmp = skb->prev)
4077
4078static inline bool skb_has_frag_list(const struct sk_buff *skb)
4079{
4080 return skb_shinfo(skb)->frag_list != NULL;
4081}
4082
4083static inline void skb_frag_list_init(struct sk_buff *skb)
4084{
4085 skb_shinfo(skb)->frag_list = NULL;
4086}
4087
4088#define skb_walk_frags(skb, iter) \
4089 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4090
4091
4092int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4093 int *err, long *timeo_p,
4094 const struct sk_buff *skb);
4095struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4096 struct sk_buff_head *queue,
4097 unsigned int flags,
4098 int *off, int *err,
4099 struct sk_buff **last);
4100struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4101 struct sk_buff_head *queue,
4102 unsigned int flags, int *off, int *err,
4103 struct sk_buff **last);
4104struct sk_buff *__skb_recv_datagram(struct sock *sk,
4105 struct sk_buff_head *sk_queue,
4106 unsigned int flags, int *off, int *err);
4107struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4108__poll_t datagram_poll(struct file *file, struct socket *sock,
4109 struct poll_table_struct *wait);
4110int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4111 struct iov_iter *to, int size);
4112static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4113 struct msghdr *msg, int size)
4114{
4115 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4116}
4117int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4118 struct msghdr *msg);
4119int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4120 struct iov_iter *to, int len,
4121 struct ahash_request *hash);
4122int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4123 struct iov_iter *from, int len);
4124int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4125void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4126int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4127int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4128int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4129__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4130 int len);
4131int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4132 struct pipe_inode_info *pipe, unsigned int len,
4133 unsigned int flags);
4134int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4135 int len);
4136int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4137void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4138unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4139int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4140 int len, int hlen);
4141void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4142int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4143void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4144struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4145struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4146 unsigned int offset);
4147struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4148int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4149int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4150int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4151int skb_vlan_pop(struct sk_buff *skb);
4152int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4153int skb_eth_pop(struct sk_buff *skb);
4154int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4155 const unsigned char *src);
4156int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4157 int mac_len, bool ethernet);
4158int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4159 bool ethernet);
4160int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4161int skb_mpls_dec_ttl(struct sk_buff *skb);
4162struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4163 gfp_t gfp);
4164
4165static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4166{
4167 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4168}
4169
4170static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4171{
4172 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4173}
4174
4175struct skb_checksum_ops {
4176 __wsum (*update)(const void *mem, int len, __wsum wsum);
4177 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4178};
4179
4180extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4181
4182__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4183 __wsum csum, const struct skb_checksum_ops *ops);
4184__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4185 __wsum csum);
4186
4187static inline void * __must_check
4188__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4189 const void *data, int hlen, void *buffer)
4190{
4191 if (likely(hlen - offset >= len))
4192 return (void *)data + offset;
4193
4194 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4195 return NULL;
4196
4197 return buffer;
4198}
4199
4200static inline void * __must_check
4201skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4202{
4203 return __skb_header_pointer(skb, offset, len, skb->data,
4204 skb_headlen(skb), buffer);
4205}
4206
4207static inline void * __must_check
4208skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4209{
4210 if (likely(skb_headlen(skb) - offset >= len))
4211 return skb->data + offset;
4212 return NULL;
4213}
4214
4215/**
4216 * skb_needs_linearize - check if we need to linearize a given skb
4217 * depending on the given device features.
4218 * @skb: socket buffer to check
4219 * @features: net device features
4220 *
4221 * Returns true if either:
4222 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4223 * 2. skb is fragmented and the device does not support SG.
4224 */
4225static inline bool skb_needs_linearize(struct sk_buff *skb,
4226 netdev_features_t features)
4227{
4228 return skb_is_nonlinear(skb) &&
4229 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4230 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4231}
4232
4233static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4234 void *to,
4235 const unsigned int len)
4236{
4237 memcpy(to, skb->data, len);
4238}
4239
4240static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4241 const int offset, void *to,
4242 const unsigned int len)
4243{
4244 memcpy(to, skb->data + offset, len);
4245}
4246
4247static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4248 const void *from,
4249 const unsigned int len)
4250{
4251 memcpy(skb->data, from, len);
4252}
4253
4254static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4255 const int offset,
4256 const void *from,
4257 const unsigned int len)
4258{
4259 memcpy(skb->data + offset, from, len);
4260}
4261
4262void skb_init(void);
4263
4264static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4265{
4266 return skb->tstamp;
4267}
4268
4269/**
4270 * skb_get_timestamp - get timestamp from a skb
4271 * @skb: skb to get stamp from
4272 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4273 *
4274 * Timestamps are stored in the skb as offsets to a base timestamp.
4275 * This function converts the offset back to a struct timeval and stores
4276 * it in stamp.
4277 */
4278static inline void skb_get_timestamp(const struct sk_buff *skb,
4279 struct __kernel_old_timeval *stamp)
4280{
4281 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4282}
4283
4284static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4285 struct __kernel_sock_timeval *stamp)
4286{
4287 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4288
4289 stamp->tv_sec = ts.tv_sec;
4290 stamp->tv_usec = ts.tv_nsec / 1000;
4291}
4292
4293static inline void skb_get_timestampns(const struct sk_buff *skb,
4294 struct __kernel_old_timespec *stamp)
4295{
4296 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4297
4298 stamp->tv_sec = ts.tv_sec;
4299 stamp->tv_nsec = ts.tv_nsec;
4300}
4301
4302static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4303 struct __kernel_timespec *stamp)
4304{
4305 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4306
4307 stamp->tv_sec = ts.tv_sec;
4308 stamp->tv_nsec = ts.tv_nsec;
4309}
4310
4311static inline void __net_timestamp(struct sk_buff *skb)
4312{
4313 skb->tstamp = ktime_get_real();
4314 skb->tstamp_type = SKB_CLOCK_REALTIME;
4315}
4316
4317static inline ktime_t net_timedelta(ktime_t t)
4318{
4319 return ktime_sub(ktime_get_real(), t);
4320}
4321
4322static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4323 u8 tstamp_type)
4324{
4325 skb->tstamp = kt;
4326
4327 if (kt)
4328 skb->tstamp_type = tstamp_type;
4329 else
4330 skb->tstamp_type = SKB_CLOCK_REALTIME;
4331}
4332
4333static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4334 ktime_t kt, clockid_t clockid)
4335{
4336 u8 tstamp_type = SKB_CLOCK_REALTIME;
4337
4338 switch (clockid) {
4339 case CLOCK_REALTIME:
4340 break;
4341 case CLOCK_MONOTONIC:
4342 tstamp_type = SKB_CLOCK_MONOTONIC;
4343 break;
4344 case CLOCK_TAI:
4345 tstamp_type = SKB_CLOCK_TAI;
4346 break;
4347 default:
4348 WARN_ON_ONCE(1);
4349 kt = 0;
4350 }
4351
4352 skb_set_delivery_time(skb, kt, tstamp_type);
4353}
4354
4355DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4356
4357/* It is used in the ingress path to clear the delivery_time.
4358 * If needed, set the skb->tstamp to the (rcv) timestamp.
4359 */
4360static inline void skb_clear_delivery_time(struct sk_buff *skb)
4361{
4362 if (skb->tstamp_type) {
4363 skb->tstamp_type = SKB_CLOCK_REALTIME;
4364 if (static_branch_unlikely(&netstamp_needed_key))
4365 skb->tstamp = ktime_get_real();
4366 else
4367 skb->tstamp = 0;
4368 }
4369}
4370
4371static inline void skb_clear_tstamp(struct sk_buff *skb)
4372{
4373 if (skb->tstamp_type)
4374 return;
4375
4376 skb->tstamp = 0;
4377}
4378
4379static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4380{
4381 if (skb->tstamp_type)
4382 return 0;
4383
4384 return skb->tstamp;
4385}
4386
4387static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4388{
4389 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4390 return skb->tstamp;
4391
4392 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4393 return ktime_get_real();
4394
4395 return 0;
4396}
4397
4398static inline u8 skb_metadata_len(const struct sk_buff *skb)
4399{
4400 return skb_shinfo(skb)->meta_len;
4401}
4402
4403static inline void *skb_metadata_end(const struct sk_buff *skb)
4404{
4405 return skb_mac_header(skb);
4406}
4407
4408static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4409 const struct sk_buff *skb_b,
4410 u8 meta_len)
4411{
4412 const void *a = skb_metadata_end(skb_a);
4413 const void *b = skb_metadata_end(skb_b);
4414 u64 diffs = 0;
4415
4416 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4417 BITS_PER_LONG != 64)
4418 goto slow;
4419
4420 /* Using more efficient variant than plain call to memcmp(). */
4421 switch (meta_len) {
4422#define __it(x, op) (x -= sizeof(u##op))
4423#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4424 case 32: diffs |= __it_diff(a, b, 64);
4425 fallthrough;
4426 case 24: diffs |= __it_diff(a, b, 64);
4427 fallthrough;
4428 case 16: diffs |= __it_diff(a, b, 64);
4429 fallthrough;
4430 case 8: diffs |= __it_diff(a, b, 64);
4431 break;
4432 case 28: diffs |= __it_diff(a, b, 64);
4433 fallthrough;
4434 case 20: diffs |= __it_diff(a, b, 64);
4435 fallthrough;
4436 case 12: diffs |= __it_diff(a, b, 64);
4437 fallthrough;
4438 case 4: diffs |= __it_diff(a, b, 32);
4439 break;
4440 default:
4441slow:
4442 return memcmp(a - meta_len, b - meta_len, meta_len);
4443 }
4444 return diffs;
4445}
4446
4447static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4448 const struct sk_buff *skb_b)
4449{
4450 u8 len_a = skb_metadata_len(skb_a);
4451 u8 len_b = skb_metadata_len(skb_b);
4452
4453 if (!(len_a | len_b))
4454 return false;
4455
4456 return len_a != len_b ?
4457 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4458}
4459
4460static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4461{
4462 skb_shinfo(skb)->meta_len = meta_len;
4463}
4464
4465static inline void skb_metadata_clear(struct sk_buff *skb)
4466{
4467 skb_metadata_set(skb, 0);
4468}
4469
4470struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4471
4472#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4473
4474void skb_clone_tx_timestamp(struct sk_buff *skb);
4475bool skb_defer_rx_timestamp(struct sk_buff *skb);
4476
4477#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4478
4479static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4480{
4481}
4482
4483static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4484{
4485 return false;
4486}
4487
4488#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4489
4490/**
4491 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4492 *
4493 * PHY drivers may accept clones of transmitted packets for
4494 * timestamping via their phy_driver.txtstamp method. These drivers
4495 * must call this function to return the skb back to the stack with a
4496 * timestamp.
4497 *
4498 * @skb: clone of the original outgoing packet
4499 * @hwtstamps: hardware time stamps
4500 *
4501 */
4502void skb_complete_tx_timestamp(struct sk_buff *skb,
4503 struct skb_shared_hwtstamps *hwtstamps);
4504
4505void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4506 struct skb_shared_hwtstamps *hwtstamps,
4507 struct sock *sk, int tstype);
4508
4509/**
4510 * skb_tstamp_tx - queue clone of skb with send time stamps
4511 * @orig_skb: the original outgoing packet
4512 * @hwtstamps: hardware time stamps, may be NULL if not available
4513 *
4514 * If the skb has a socket associated, then this function clones the
4515 * skb (thus sharing the actual data and optional structures), stores
4516 * the optional hardware time stamping information (if non NULL) or
4517 * generates a software time stamp (otherwise), then queues the clone
4518 * to the error queue of the socket. Errors are silently ignored.
4519 */
4520void skb_tstamp_tx(struct sk_buff *orig_skb,
4521 struct skb_shared_hwtstamps *hwtstamps);
4522
4523/**
4524 * skb_tx_timestamp() - Driver hook for transmit timestamping
4525 *
4526 * Ethernet MAC Drivers should call this function in their hard_xmit()
4527 * function immediately before giving the sk_buff to the MAC hardware.
4528 *
4529 * Specifically, one should make absolutely sure that this function is
4530 * called before TX completion of this packet can trigger. Otherwise
4531 * the packet could potentially already be freed.
4532 *
4533 * @skb: A socket buffer.
4534 */
4535static inline void skb_tx_timestamp(struct sk_buff *skb)
4536{
4537 skb_clone_tx_timestamp(skb);
4538 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4539 skb_tstamp_tx(skb, NULL);
4540}
4541
4542/**
4543 * skb_complete_wifi_ack - deliver skb with wifi status
4544 *
4545 * @skb: the original outgoing packet
4546 * @acked: ack status
4547 *
4548 */
4549void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4550
4551__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4552__sum16 __skb_checksum_complete(struct sk_buff *skb);
4553
4554static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4555{
4556 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4557 skb->csum_valid ||
4558 (skb->ip_summed == CHECKSUM_PARTIAL &&
4559 skb_checksum_start_offset(skb) >= 0));
4560}
4561
4562/**
4563 * skb_checksum_complete - Calculate checksum of an entire packet
4564 * @skb: packet to process
4565 *
4566 * This function calculates the checksum over the entire packet plus
4567 * the value of skb->csum. The latter can be used to supply the
4568 * checksum of a pseudo header as used by TCP/UDP. It returns the
4569 * checksum.
4570 *
4571 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4572 * this function can be used to verify that checksum on received
4573 * packets. In that case the function should return zero if the
4574 * checksum is correct. In particular, this function will return zero
4575 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4576 * hardware has already verified the correctness of the checksum.
4577 */
4578static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4579{
4580 return skb_csum_unnecessary(skb) ?
4581 0 : __skb_checksum_complete(skb);
4582}
4583
4584static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4585{
4586 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4587 if (skb->csum_level == 0)
4588 skb->ip_summed = CHECKSUM_NONE;
4589 else
4590 skb->csum_level--;
4591 }
4592}
4593
4594static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4595{
4596 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4597 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4598 skb->csum_level++;
4599 } else if (skb->ip_summed == CHECKSUM_NONE) {
4600 skb->ip_summed = CHECKSUM_UNNECESSARY;
4601 skb->csum_level = 0;
4602 }
4603}
4604
4605static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4606{
4607 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4608 skb->ip_summed = CHECKSUM_NONE;
4609 skb->csum_level = 0;
4610 }
4611}
4612
4613/* Check if we need to perform checksum complete validation.
4614 *
4615 * Returns true if checksum complete is needed, false otherwise
4616 * (either checksum is unnecessary or zero checksum is allowed).
4617 */
4618static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4619 bool zero_okay,
4620 __sum16 check)
4621{
4622 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4623 skb->csum_valid = 1;
4624 __skb_decr_checksum_unnecessary(skb);
4625 return false;
4626 }
4627
4628 return true;
4629}
4630
4631/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4632 * in checksum_init.
4633 */
4634#define CHECKSUM_BREAK 76
4635
4636/* Unset checksum-complete
4637 *
4638 * Unset checksum complete can be done when packet is being modified
4639 * (uncompressed for instance) and checksum-complete value is
4640 * invalidated.
4641 */
4642static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4643{
4644 if (skb->ip_summed == CHECKSUM_COMPLETE)
4645 skb->ip_summed = CHECKSUM_NONE;
4646}
4647
4648/* Validate (init) checksum based on checksum complete.
4649 *
4650 * Return values:
4651 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4652 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4653 * checksum is stored in skb->csum for use in __skb_checksum_complete
4654 * non-zero: value of invalid checksum
4655 *
4656 */
4657static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4658 bool complete,
4659 __wsum psum)
4660{
4661 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4662 if (!csum_fold(csum_add(psum, skb->csum))) {
4663 skb->csum_valid = 1;
4664 return 0;
4665 }
4666 }
4667
4668 skb->csum = psum;
4669
4670 if (complete || skb->len <= CHECKSUM_BREAK) {
4671 __sum16 csum;
4672
4673 csum = __skb_checksum_complete(skb);
4674 skb->csum_valid = !csum;
4675 return csum;
4676 }
4677
4678 return 0;
4679}
4680
4681static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4682{
4683 return 0;
4684}
4685
4686/* Perform checksum validate (init). Note that this is a macro since we only
4687 * want to calculate the pseudo header which is an input function if necessary.
4688 * First we try to validate without any computation (checksum unnecessary) and
4689 * then calculate based on checksum complete calling the function to compute
4690 * pseudo header.
4691 *
4692 * Return values:
4693 * 0: checksum is validated or try to in skb_checksum_complete
4694 * non-zero: value of invalid checksum
4695 */
4696#define __skb_checksum_validate(skb, proto, complete, \
4697 zero_okay, check, compute_pseudo) \
4698({ \
4699 __sum16 __ret = 0; \
4700 skb->csum_valid = 0; \
4701 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4702 __ret = __skb_checksum_validate_complete(skb, \
4703 complete, compute_pseudo(skb, proto)); \
4704 __ret; \
4705})
4706
4707#define skb_checksum_init(skb, proto, compute_pseudo) \
4708 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4709
4710#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4711 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4712
4713#define skb_checksum_validate(skb, proto, compute_pseudo) \
4714 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4715
4716#define skb_checksum_validate_zero_check(skb, proto, check, \
4717 compute_pseudo) \
4718 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4719
4720#define skb_checksum_simple_validate(skb) \
4721 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4722
4723static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4724{
4725 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4726}
4727
4728static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4729{
4730 skb->csum = ~pseudo;
4731 skb->ip_summed = CHECKSUM_COMPLETE;
4732}
4733
4734#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4735do { \
4736 if (__skb_checksum_convert_check(skb)) \
4737 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4738} while (0)
4739
4740static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4741 u16 start, u16 offset)
4742{
4743 skb->ip_summed = CHECKSUM_PARTIAL;
4744 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4745 skb->csum_offset = offset - start;
4746}
4747
4748/* Update skbuf and packet to reflect the remote checksum offload operation.
4749 * When called, ptr indicates the starting point for skb->csum when
4750 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4751 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4752 */
4753static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4754 int start, int offset, bool nopartial)
4755{
4756 __wsum delta;
4757
4758 if (!nopartial) {
4759 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4760 return;
4761 }
4762
4763 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4764 __skb_checksum_complete(skb);
4765 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4766 }
4767
4768 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4769
4770 /* Adjust skb->csum since we changed the packet */
4771 skb->csum = csum_add(skb->csum, delta);
4772}
4773
4774static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4775{
4776#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4777 return (void *)(skb->_nfct & NFCT_PTRMASK);
4778#else
4779 return NULL;
4780#endif
4781}
4782
4783static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4784{
4785#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4786 return skb->_nfct;
4787#else
4788 return 0UL;
4789#endif
4790}
4791
4792static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4793{
4794#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4795 skb->slow_gro |= !!nfct;
4796 skb->_nfct = nfct;
4797#endif
4798}
4799
4800#ifdef CONFIG_SKB_EXTENSIONS
4801enum skb_ext_id {
4802#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4803 SKB_EXT_BRIDGE_NF,
4804#endif
4805#ifdef CONFIG_XFRM
4806 SKB_EXT_SEC_PATH,
4807#endif
4808#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4809 TC_SKB_EXT,
4810#endif
4811#if IS_ENABLED(CONFIG_MPTCP)
4812 SKB_EXT_MPTCP,
4813#endif
4814#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4815 SKB_EXT_MCTP,
4816#endif
4817 SKB_EXT_NUM, /* must be last */
4818};
4819
4820/**
4821 * struct skb_ext - sk_buff extensions
4822 * @refcnt: 1 on allocation, deallocated on 0
4823 * @offset: offset to add to @data to obtain extension address
4824 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4825 * @data: start of extension data, variable sized
4826 *
4827 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4828 * to use 'u8' types while allowing up to 2kb worth of extension data.
4829 */
4830struct skb_ext {
4831 refcount_t refcnt;
4832 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4833 u8 chunks; /* same */
4834 char data[] __aligned(8);
4835};
4836
4837struct skb_ext *__skb_ext_alloc(gfp_t flags);
4838void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4839 struct skb_ext *ext);
4840void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4841void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4842void __skb_ext_put(struct skb_ext *ext);
4843
4844static inline void skb_ext_put(struct sk_buff *skb)
4845{
4846 if (skb->active_extensions)
4847 __skb_ext_put(skb->extensions);
4848}
4849
4850static inline void __skb_ext_copy(struct sk_buff *dst,
4851 const struct sk_buff *src)
4852{
4853 dst->active_extensions = src->active_extensions;
4854
4855 if (src->active_extensions) {
4856 struct skb_ext *ext = src->extensions;
4857
4858 refcount_inc(&ext->refcnt);
4859 dst->extensions = ext;
4860 }
4861}
4862
4863static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4864{
4865 skb_ext_put(dst);
4866 __skb_ext_copy(dst, src);
4867}
4868
4869static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4870{
4871 return !!ext->offset[i];
4872}
4873
4874static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4875{
4876 return skb->active_extensions & (1 << id);
4877}
4878
4879static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4880{
4881 if (skb_ext_exist(skb, id))
4882 __skb_ext_del(skb, id);
4883}
4884
4885static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4886{
4887 if (skb_ext_exist(skb, id)) {
4888 struct skb_ext *ext = skb->extensions;
4889
4890 return (void *)ext + (ext->offset[id] << 3);
4891 }
4892
4893 return NULL;
4894}
4895
4896static inline void skb_ext_reset(struct sk_buff *skb)
4897{
4898 if (unlikely(skb->active_extensions)) {
4899 __skb_ext_put(skb->extensions);
4900 skb->active_extensions = 0;
4901 }
4902}
4903
4904static inline bool skb_has_extensions(struct sk_buff *skb)
4905{
4906 return unlikely(skb->active_extensions);
4907}
4908#else
4909static inline void skb_ext_put(struct sk_buff *skb) {}
4910static inline void skb_ext_reset(struct sk_buff *skb) {}
4911static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4912static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4913static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4914static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4915#endif /* CONFIG_SKB_EXTENSIONS */
4916
4917static inline void nf_reset_ct(struct sk_buff *skb)
4918{
4919#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4920 nf_conntrack_put(skb_nfct(skb));
4921 skb->_nfct = 0;
4922#endif
4923}
4924
4925static inline void nf_reset_trace(struct sk_buff *skb)
4926{
4927#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4928 skb->nf_trace = 0;
4929#endif
4930}
4931
4932static inline void ipvs_reset(struct sk_buff *skb)
4933{
4934#if IS_ENABLED(CONFIG_IP_VS)
4935 skb->ipvs_property = 0;
4936#endif
4937}
4938
4939/* Note: This doesn't put any conntrack info in dst. */
4940static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4941 bool copy)
4942{
4943#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4944 dst->_nfct = src->_nfct;
4945 nf_conntrack_get(skb_nfct(src));
4946#endif
4947#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4948 if (copy)
4949 dst->nf_trace = src->nf_trace;
4950#endif
4951}
4952
4953static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4954{
4955#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4956 nf_conntrack_put(skb_nfct(dst));
4957#endif
4958 dst->slow_gro = src->slow_gro;
4959 __nf_copy(dst, src, true);
4960}
4961
4962#ifdef CONFIG_NETWORK_SECMARK
4963static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4964{
4965 to->secmark = from->secmark;
4966}
4967
4968static inline void skb_init_secmark(struct sk_buff *skb)
4969{
4970 skb->secmark = 0;
4971}
4972#else
4973static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4974{ }
4975
4976static inline void skb_init_secmark(struct sk_buff *skb)
4977{ }
4978#endif
4979
4980static inline int secpath_exists(const struct sk_buff *skb)
4981{
4982#ifdef CONFIG_XFRM
4983 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4984#else
4985 return 0;
4986#endif
4987}
4988
4989static inline bool skb_irq_freeable(const struct sk_buff *skb)
4990{
4991 return !skb->destructor &&
4992 !secpath_exists(skb) &&
4993 !skb_nfct(skb) &&
4994 !skb->_skb_refdst &&
4995 !skb_has_frag_list(skb);
4996}
4997
4998static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4999{
5000 skb->queue_mapping = queue_mapping;
5001}
5002
5003static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5004{
5005 return skb->queue_mapping;
5006}
5007
5008static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5009{
5010 to->queue_mapping = from->queue_mapping;
5011}
5012
5013static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5014{
5015 skb->queue_mapping = rx_queue + 1;
5016}
5017
5018static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5019{
5020 return skb->queue_mapping - 1;
5021}
5022
5023static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5024{
5025 return skb->queue_mapping != 0;
5026}
5027
5028static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5029{
5030 skb->dst_pending_confirm = val;
5031}
5032
5033static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5034{
5035 return skb->dst_pending_confirm != 0;
5036}
5037
5038static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5039{
5040#ifdef CONFIG_XFRM
5041 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5042#else
5043 return NULL;
5044#endif
5045}
5046
5047static inline bool skb_is_gso(const struct sk_buff *skb)
5048{
5049 return skb_shinfo(skb)->gso_size;
5050}
5051
5052/* Note: Should be called only if skb_is_gso(skb) is true */
5053static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5054{
5055 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5056}
5057
5058/* Note: Should be called only if skb_is_gso(skb) is true */
5059static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5060{
5061 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5062}
5063
5064/* Note: Should be called only if skb_is_gso(skb) is true */
5065static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5066{
5067 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5068}
5069
5070static inline void skb_gso_reset(struct sk_buff *skb)
5071{
5072 skb_shinfo(skb)->gso_size = 0;
5073 skb_shinfo(skb)->gso_segs = 0;
5074 skb_shinfo(skb)->gso_type = 0;
5075}
5076
5077static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5078 u16 increment)
5079{
5080 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5081 return;
5082 shinfo->gso_size += increment;
5083}
5084
5085static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5086 u16 decrement)
5087{
5088 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5089 return;
5090 shinfo->gso_size -= decrement;
5091}
5092
5093void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5094
5095static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5096{
5097 /* LRO sets gso_size but not gso_type, whereas if GSO is really
5098 * wanted then gso_type will be set. */
5099 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5100
5101 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5102 unlikely(shinfo->gso_type == 0)) {
5103 __skb_warn_lro_forwarding(skb);
5104 return true;
5105 }
5106 return false;
5107}
5108
5109static inline void skb_forward_csum(struct sk_buff *skb)
5110{
5111 /* Unfortunately we don't support this one. Any brave souls? */
5112 if (skb->ip_summed == CHECKSUM_COMPLETE)
5113 skb->ip_summed = CHECKSUM_NONE;
5114}
5115
5116/**
5117 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5118 * @skb: skb to check
5119 *
5120 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5121 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5122 * use this helper, to document places where we make this assertion.
5123 */
5124static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5125{
5126 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5127}
5128
5129bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5130
5131int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5132struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5133 unsigned int transport_len,
5134 __sum16(*skb_chkf)(struct sk_buff *skb));
5135
5136/**
5137 * skb_head_is_locked - Determine if the skb->head is locked down
5138 * @skb: skb to check
5139 *
5140 * The head on skbs build around a head frag can be removed if they are
5141 * not cloned. This function returns true if the skb head is locked down
5142 * due to either being allocated via kmalloc, or by being a clone with
5143 * multiple references to the head.
5144 */
5145static inline bool skb_head_is_locked(const struct sk_buff *skb)
5146{
5147 return !skb->head_frag || skb_cloned(skb);
5148}
5149
5150/* Local Checksum Offload.
5151 * Compute outer checksum based on the assumption that the
5152 * inner checksum will be offloaded later.
5153 * See Documentation/networking/checksum-offloads.rst for
5154 * explanation of how this works.
5155 * Fill in outer checksum adjustment (e.g. with sum of outer
5156 * pseudo-header) before calling.
5157 * Also ensure that inner checksum is in linear data area.
5158 */
5159static inline __wsum lco_csum(struct sk_buff *skb)
5160{
5161 unsigned char *csum_start = skb_checksum_start(skb);
5162 unsigned char *l4_hdr = skb_transport_header(skb);
5163 __wsum partial;
5164
5165 /* Start with complement of inner checksum adjustment */
5166 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5167 skb->csum_offset));
5168
5169 /* Add in checksum of our headers (incl. outer checksum
5170 * adjustment filled in by caller) and return result.
5171 */
5172 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5173}
5174
5175static inline bool skb_is_redirected(const struct sk_buff *skb)
5176{
5177 return skb->redirected;
5178}
5179
5180static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5181{
5182 skb->redirected = 1;
5183#ifdef CONFIG_NET_REDIRECT
5184 skb->from_ingress = from_ingress;
5185 if (skb->from_ingress)
5186 skb_clear_tstamp(skb);
5187#endif
5188}
5189
5190static inline void skb_reset_redirect(struct sk_buff *skb)
5191{
5192 skb->redirected = 0;
5193}
5194
5195static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5196 bool from_ingress)
5197{
5198 skb->redirected = 1;
5199#ifdef CONFIG_NET_REDIRECT
5200 skb->from_ingress = from_ingress;
5201#endif
5202}
5203
5204static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5205{
5206#if IS_ENABLED(CONFIG_IP_SCTP)
5207 return skb->csum_not_inet;
5208#else
5209 return 0;
5210#endif
5211}
5212
5213static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5214{
5215 skb->ip_summed = CHECKSUM_NONE;
5216#if IS_ENABLED(CONFIG_IP_SCTP)
5217 skb->csum_not_inet = 0;
5218#endif
5219}
5220
5221static inline void skb_set_kcov_handle(struct sk_buff *skb,
5222 const u64 kcov_handle)
5223{
5224#ifdef CONFIG_KCOV
5225 skb->kcov_handle = kcov_handle;
5226#endif
5227}
5228
5229static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5230{
5231#ifdef CONFIG_KCOV
5232 return skb->kcov_handle;
5233#else
5234 return 0;
5235#endif
5236}
5237
5238static inline void skb_mark_for_recycle(struct sk_buff *skb)
5239{
5240#ifdef CONFIG_PAGE_POOL
5241 skb->pp_recycle = 1;
5242#endif
5243}
5244
5245ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5246 ssize_t maxsize, gfp_t gfp);
5247
5248#endif /* __KERNEL__ */
5249#endif /* _LINUX_SKBUFF_H */