at for-next 150 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <net/checksum.h> 27#include <linux/rcupdate.h> 28#include <linux/dma-mapping.h> 29#include <linux/netdev_features.h> 30#include <net/flow_dissector.h> 31#include <linux/in6.h> 32#include <linux/if_packet.h> 33#include <linux/llist.h> 34#include <linux/page_frag_cache.h> 35#include <net/flow.h> 36#if IS_ENABLED(CONFIG_NF_CONNTRACK) 37#include <linux/netfilter/nf_conntrack_common.h> 38#endif 39#include <net/net_debug.h> 40#include <net/dropreason-core.h> 41#include <net/netmem.h> 42 43/** 44 * DOC: skb checksums 45 * 46 * The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * IP checksum related features 50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 * 52 * Drivers advertise checksum offload capabilities in the features of a device. 53 * From the stack's point of view these are capabilities offered by the driver. 54 * A driver typically only advertises features that it is capable of offloading 55 * to its device. 56 * 57 * .. flat-table:: Checksum related device features 58 * :widths: 1 10 59 * 60 * * - %NETIF_F_HW_CSUM 61 * - The driver (or its device) is able to compute one 62 * IP (one's complement) checksum for any combination 63 * of protocols or protocol layering. The checksum is 64 * computed and set in a packet per the CHECKSUM_PARTIAL 65 * interface (see below). 66 * 67 * * - %NETIF_F_IP_CSUM 68 * - Driver (device) is only able to checksum plain 69 * TCP or UDP packets over IPv4. These are specifically 70 * unencapsulated packets of the form IPv4|TCP or 71 * IPv4|UDP where the Protocol field in the IPv4 header 72 * is TCP or UDP. The IPv4 header may contain IP options. 73 * This feature cannot be set in features for a device 74 * with NETIF_F_HW_CSUM also set. This feature is being 75 * DEPRECATED (see below). 76 * 77 * * - %NETIF_F_IPV6_CSUM 78 * - Driver (device) is only able to checksum plain 79 * TCP or UDP packets over IPv6. These are specifically 80 * unencapsulated packets of the form IPv6|TCP or 81 * IPv6|UDP where the Next Header field in the IPv6 82 * header is either TCP or UDP. IPv6 extension headers 83 * are not supported with this feature. This feature 84 * cannot be set in features for a device with 85 * NETIF_F_HW_CSUM also set. This feature is being 86 * DEPRECATED (see below). 87 * 88 * * - %NETIF_F_RXCSUM 89 * - Driver (device) performs receive checksum offload. 90 * This flag is only used to disable the RX checksum 91 * feature for a device. The stack will accept receive 92 * checksum indication in packets received on a device 93 * regardless of whether NETIF_F_RXCSUM is set. 94 * 95 * Checksumming of received packets by device 96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 97 * 98 * Indication of checksum verification is set in &sk_buff.ip_summed. 99 * Possible values are: 100 * 101 * - %CHECKSUM_NONE 102 * 103 * Device did not checksum this packet e.g. due to lack of capabilities. 104 * The packet contains full (though not verified) checksum in packet but 105 * not in skb->csum. Thus, skb->csum is undefined in this case. 106 * 107 * - %CHECKSUM_UNNECESSARY 108 * 109 * The hardware you're dealing with doesn't calculate the full checksum 110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 112 * if their checksums are okay. &sk_buff.csum is still undefined in this case 113 * though. A driver or device must never modify the checksum field in the 114 * packet even if checksum is verified. 115 * 116 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 117 * 118 * - TCP: IPv6 and IPv4. 119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 120 * zero UDP checksum for either IPv4 or IPv6, the networking stack 121 * may perform further validation in this case. 122 * - GRE: only if the checksum is present in the header. 123 * - SCTP: indicates the CRC in SCTP header has been validated. 124 * - FCOE: indicates the CRC in FC frame has been validated. 125 * 126 * &sk_buff.csum_level indicates the number of consecutive checksums found in 127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 129 * and a device is able to verify the checksums for UDP (possibly zero), 130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 131 * two. If the device were only able to verify the UDP checksum and not 132 * GRE, either because it doesn't support GRE checksum or because GRE 133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 134 * not considered in this case). 135 * 136 * - %CHECKSUM_COMPLETE 137 * 138 * This is the most generic way. The device supplied checksum of the _whole_ 139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 140 * hardware doesn't need to parse L3/L4 headers to implement this. 141 * 142 * Notes: 143 * 144 * - Even if device supports only some protocols, but is able to produce 145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 147 * 148 * - %CHECKSUM_PARTIAL 149 * 150 * A checksum is set up to be offloaded to a device as described in the 151 * output description for CHECKSUM_PARTIAL. This may occur on a packet 152 * received directly from another Linux OS, e.g., a virtualized Linux kernel 153 * on the same host, or it may be set in the input path in GRO or remote 154 * checksum offload. For the purposes of checksum verification, the checksum 155 * referred to by skb->csum_start + skb->csum_offset and any preceding 156 * checksums in the packet are considered verified. Any checksums in the 157 * packet that are after the checksum being offloaded are not considered to 158 * be verified. 159 * 160 * Checksumming on transmit for non-GSO 161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 162 * 163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 164 * Values are: 165 * 166 * - %CHECKSUM_PARTIAL 167 * 168 * The driver is required to checksum the packet as seen by hard_start_xmit() 169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 170 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 171 * A driver may verify that the 172 * csum_start and csum_offset values are valid values given the length and 173 * offset of the packet, but it should not attempt to validate that the 174 * checksum refers to a legitimate transport layer checksum -- it is the 175 * purview of the stack to validate that csum_start and csum_offset are set 176 * correctly. 177 * 178 * When the stack requests checksum offload for a packet, the driver MUST 179 * ensure that the checksum is set correctly. A driver can either offload the 180 * checksum calculation to the device, or call skb_checksum_help (in the case 181 * that the device does not support offload for a particular checksum). 182 * 183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 185 * checksum offload capability. 186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 187 * on network device checksumming capabilities: if a packet does not match 188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 189 * &sk_buff.csum_not_inet, see :ref:`crc`) 190 * is called to resolve the checksum. 191 * 192 * - %CHECKSUM_NONE 193 * 194 * The skb was already checksummed by the protocol, or a checksum is not 195 * required. 196 * 197 * - %CHECKSUM_UNNECESSARY 198 * 199 * This has the same meaning as CHECKSUM_NONE for checksum offload on 200 * output. 201 * 202 * - %CHECKSUM_COMPLETE 203 * 204 * Not used in checksum output. If a driver observes a packet with this value 205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 206 * 207 * .. _crc: 208 * 209 * Non-IP checksum (CRC) offloads 210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 211 * 212 * .. flat-table:: 213 * :widths: 1 10 214 * 215 * * - %NETIF_F_SCTP_CRC 216 * - This feature indicates that a device is capable of 217 * offloading the SCTP CRC in a packet. To perform this offload the stack 218 * will set csum_start and csum_offset accordingly, set ip_summed to 219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 221 * A driver that supports both IP checksum offload and SCTP CRC32c offload 222 * must verify which offload is configured for a packet by testing the 223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 225 * 226 * * - %NETIF_F_FCOE_CRC 227 * - This feature indicates that a device is capable of offloading the FCOE 228 * CRC in a packet. To perform this offload the stack will set ip_summed 229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 230 * accordingly. Note that there is no indication in the skbuff that the 231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 232 * both IP checksum offload and FCOE CRC offload must verify which offload 233 * is configured for a packet, presumably by inspecting packet headers. 234 * 235 * Checksumming on output with GSO 236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 237 * 238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 241 * part of the GSO operation is implied. If a checksum is being offloaded 242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 243 * csum_offset are set to refer to the outermost checksum being offloaded 244 * (two offloaded checksums are possible with UDP encapsulation). 245 */ 246 247/* Don't change this without changing skb_csum_unnecessary! */ 248#define CHECKSUM_NONE 0 249#define CHECKSUM_UNNECESSARY 1 250#define CHECKSUM_COMPLETE 2 251#define CHECKSUM_PARTIAL 3 252 253/* Maximum value in skb->csum_level */ 254#define SKB_MAX_CSUM_LEVEL 3 255 256#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 257#define SKB_WITH_OVERHEAD(X) \ 258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 259 260/* For X bytes available in skb->head, what is the minimal 261 * allocation needed, knowing struct skb_shared_info needs 262 * to be aligned. 263 */ 264#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 266 267#define SKB_MAX_ORDER(X, ORDER) \ 268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 269#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 270#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 271 272/* return minimum truesize of one skb containing X bytes of data */ 273#define SKB_TRUESIZE(X) ((X) + \ 274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 276 277struct ahash_request; 278struct net_device; 279struct scatterlist; 280struct pipe_inode_info; 281struct iov_iter; 282struct napi_struct; 283struct bpf_prog; 284union bpf_attr; 285struct skb_ext; 286struct ts_config; 287 288#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 289struct nf_bridge_info { 290 enum { 291 BRNF_PROTO_UNCHANGED, 292 BRNF_PROTO_8021Q, 293 BRNF_PROTO_PPPOE 294 } orig_proto:8; 295 u8 pkt_otherhost:1; 296 u8 in_prerouting:1; 297 u8 bridged_dnat:1; 298 u8 sabotage_in_done:1; 299 __u16 frag_max_size; 300 int physinif; 301 302 /* always valid & non-NULL from FORWARD on, for physdev match */ 303 struct net_device *physoutdev; 304 union { 305 /* prerouting: detect dnat in orig/reply direction */ 306 __be32 ipv4_daddr; 307 struct in6_addr ipv6_daddr; 308 309 /* after prerouting + nat detected: store original source 310 * mac since neigh resolution overwrites it, only used while 311 * skb is out in neigh layer. 312 */ 313 char neigh_header[8]; 314 }; 315}; 316#endif 317 318#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 319/* Chain in tc_skb_ext will be used to share the tc chain with 320 * ovs recirc_id. It will be set to the current chain by tc 321 * and read by ovs to recirc_id. 322 */ 323struct tc_skb_ext { 324 union { 325 u64 act_miss_cookie; 326 __u32 chain; 327 }; 328 __u16 mru; 329 __u16 zone; 330 u8 post_ct:1; 331 u8 post_ct_snat:1; 332 u8 post_ct_dnat:1; 333 u8 act_miss:1; /* Set if act_miss_cookie is used */ 334 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 335}; 336#endif 337 338struct sk_buff_head { 339 /* These two members must be first to match sk_buff. */ 340 struct_group_tagged(sk_buff_list, list, 341 struct sk_buff *next; 342 struct sk_buff *prev; 343 ); 344 345 __u32 qlen; 346 spinlock_t lock; 347}; 348 349struct sk_buff; 350 351#ifndef CONFIG_MAX_SKB_FRAGS 352# define CONFIG_MAX_SKB_FRAGS 17 353#endif 354 355#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 356 357/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 358 * segment using its current segmentation instead. 359 */ 360#define GSO_BY_FRAGS 0xFFFF 361 362typedef struct skb_frag { 363 netmem_ref netmem; 364 unsigned int len; 365 unsigned int offset; 366} skb_frag_t; 367 368/** 369 * skb_frag_size() - Returns the size of a skb fragment 370 * @frag: skb fragment 371 */ 372static inline unsigned int skb_frag_size(const skb_frag_t *frag) 373{ 374 return frag->len; 375} 376 377/** 378 * skb_frag_size_set() - Sets the size of a skb fragment 379 * @frag: skb fragment 380 * @size: size of fragment 381 */ 382static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 383{ 384 frag->len = size; 385} 386 387/** 388 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 389 * @frag: skb fragment 390 * @delta: value to add 391 */ 392static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 393{ 394 frag->len += delta; 395} 396 397/** 398 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 399 * @frag: skb fragment 400 * @delta: value to subtract 401 */ 402static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 403{ 404 frag->len -= delta; 405} 406 407/** 408 * skb_frag_must_loop - Test if %p is a high memory page 409 * @p: fragment's page 410 */ 411static inline bool skb_frag_must_loop(struct page *p) 412{ 413#if defined(CONFIG_HIGHMEM) 414 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 415 return true; 416#endif 417 return false; 418} 419 420/** 421 * skb_frag_foreach_page - loop over pages in a fragment 422 * 423 * @f: skb frag to operate on 424 * @f_off: offset from start of f->netmem 425 * @f_len: length from f_off to loop over 426 * @p: (temp var) current page 427 * @p_off: (temp var) offset from start of current page, 428 * non-zero only on first page. 429 * @p_len: (temp var) length in current page, 430 * < PAGE_SIZE only on first and last page. 431 * @copied: (temp var) length so far, excluding current p_len. 432 * 433 * A fragment can hold a compound page, in which case per-page 434 * operations, notably kmap_atomic, must be called for each 435 * regular page. 436 */ 437#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 438 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 439 p_off = (f_off) & (PAGE_SIZE - 1), \ 440 p_len = skb_frag_must_loop(p) ? \ 441 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 442 copied = 0; \ 443 copied < f_len; \ 444 copied += p_len, p++, p_off = 0, \ 445 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 446 447/** 448 * struct skb_shared_hwtstamps - hardware time stamps 449 * @hwtstamp: hardware time stamp transformed into duration 450 * since arbitrary point in time 451 * @netdev_data: address/cookie of network device driver used as 452 * reference to actual hardware time stamp 453 * 454 * Software time stamps generated by ktime_get_real() are stored in 455 * skb->tstamp. 456 * 457 * hwtstamps can only be compared against other hwtstamps from 458 * the same device. 459 * 460 * This structure is attached to packets as part of the 461 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 462 */ 463struct skb_shared_hwtstamps { 464 union { 465 ktime_t hwtstamp; 466 void *netdev_data; 467 }; 468}; 469 470/* Definitions for tx_flags in struct skb_shared_info */ 471enum { 472 /* generate hardware time stamp */ 473 SKBTX_HW_TSTAMP = 1 << 0, 474 475 /* generate software time stamp when queueing packet to NIC */ 476 SKBTX_SW_TSTAMP = 1 << 1, 477 478 /* device driver is going to provide hardware time stamp */ 479 SKBTX_IN_PROGRESS = 1 << 2, 480 481 /* generate hardware time stamp based on cycles if supported */ 482 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 483 484 /* generate wifi status information (where possible) */ 485 SKBTX_WIFI_STATUS = 1 << 4, 486 487 /* determine hardware time stamp based on time or cycles */ 488 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 489 490 /* generate software time stamp when entering packet scheduling */ 491 SKBTX_SCHED_TSTAMP = 1 << 6, 492}; 493 494#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 495 SKBTX_SCHED_TSTAMP) 496#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 497 SKBTX_HW_TSTAMP_USE_CYCLES | \ 498 SKBTX_ANY_SW_TSTAMP) 499 500/* Definitions for flags in struct skb_shared_info */ 501enum { 502 /* use zcopy routines */ 503 SKBFL_ZEROCOPY_ENABLE = BIT(0), 504 505 /* This indicates at least one fragment might be overwritten 506 * (as in vmsplice(), sendfile() ...) 507 * If we need to compute a TX checksum, we'll need to copy 508 * all frags to avoid possible bad checksum 509 */ 510 SKBFL_SHARED_FRAG = BIT(1), 511 512 /* segment contains only zerocopy data and should not be 513 * charged to the kernel memory. 514 */ 515 SKBFL_PURE_ZEROCOPY = BIT(2), 516 517 SKBFL_DONT_ORPHAN = BIT(3), 518 519 /* page references are managed by the ubuf_info, so it's safe to 520 * use frags only up until ubuf_info is released 521 */ 522 SKBFL_MANAGED_FRAG_REFS = BIT(4), 523}; 524 525#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 526#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 527 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 528 529struct ubuf_info_ops { 530 void (*complete)(struct sk_buff *, struct ubuf_info *, 531 bool zerocopy_success); 532 /* has to be compatible with skb_zcopy_set() */ 533 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 534}; 535 536/* 537 * The callback notifies userspace to release buffers when skb DMA is done in 538 * lower device, the skb last reference should be 0 when calling this. 539 * The zerocopy_success argument is true if zero copy transmit occurred, 540 * false on data copy or out of memory error caused by data copy attempt. 541 * The ctx field is used to track device context. 542 * The desc field is used to track userspace buffer index. 543 */ 544struct ubuf_info { 545 const struct ubuf_info_ops *ops; 546 refcount_t refcnt; 547 u8 flags; 548}; 549 550struct ubuf_info_msgzc { 551 struct ubuf_info ubuf; 552 553 union { 554 struct { 555 unsigned long desc; 556 void *ctx; 557 }; 558 struct { 559 u32 id; 560 u16 len; 561 u16 zerocopy:1; 562 u32 bytelen; 563 }; 564 }; 565 566 struct mmpin { 567 struct user_struct *user; 568 unsigned int num_pg; 569 } mmp; 570}; 571 572#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 573#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 574 ubuf) 575 576int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 577void mm_unaccount_pinned_pages(struct mmpin *mmp); 578 579/* Preserve some data across TX submission and completion. 580 * 581 * Note, this state is stored in the driver. Extending the layout 582 * might need some special care. 583 */ 584struct xsk_tx_metadata_compl { 585 __u64 *tx_timestamp; 586}; 587 588/* This data is invariant across clones and lives at 589 * the end of the header data, ie. at skb->end. 590 */ 591struct skb_shared_info { 592 __u8 flags; 593 __u8 meta_len; 594 __u8 nr_frags; 595 __u8 tx_flags; 596 unsigned short gso_size; 597 /* Warning: this field is not always filled in (UFO)! */ 598 unsigned short gso_segs; 599 struct sk_buff *frag_list; 600 union { 601 struct skb_shared_hwtstamps hwtstamps; 602 struct xsk_tx_metadata_compl xsk_meta; 603 }; 604 unsigned int gso_type; 605 u32 tskey; 606 607 /* 608 * Warning : all fields before dataref are cleared in __alloc_skb() 609 */ 610 atomic_t dataref; 611 unsigned int xdp_frags_size; 612 613 /* Intermediate layers must ensure that destructor_arg 614 * remains valid until skb destructor */ 615 void * destructor_arg; 616 617 /* must be last field, see pskb_expand_head() */ 618 skb_frag_t frags[MAX_SKB_FRAGS]; 619}; 620 621/** 622 * DOC: dataref and headerless skbs 623 * 624 * Transport layers send out clones of payload skbs they hold for 625 * retransmissions. To allow lower layers of the stack to prepend their headers 626 * we split &skb_shared_info.dataref into two halves. 627 * The lower 16 bits count the overall number of references. 628 * The higher 16 bits indicate how many of the references are payload-only. 629 * skb_header_cloned() checks if skb is allowed to add / write the headers. 630 * 631 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 632 * (via __skb_header_release()). Any clone created from marked skb will get 633 * &sk_buff.hdr_len populated with the available headroom. 634 * If there's the only clone in existence it's able to modify the headroom 635 * at will. The sequence of calls inside the transport layer is:: 636 * 637 * <alloc skb> 638 * skb_reserve() 639 * __skb_header_release() 640 * skb_clone() 641 * // send the clone down the stack 642 * 643 * This is not a very generic construct and it depends on the transport layers 644 * doing the right thing. In practice there's usually only one payload-only skb. 645 * Having multiple payload-only skbs with different lengths of hdr_len is not 646 * possible. The payload-only skbs should never leave their owner. 647 */ 648#define SKB_DATAREF_SHIFT 16 649#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 650 651 652enum { 653 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 654 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 655 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 656}; 657 658enum { 659 SKB_GSO_TCPV4 = 1 << 0, 660 661 /* This indicates the skb is from an untrusted source. */ 662 SKB_GSO_DODGY = 1 << 1, 663 664 /* This indicates the tcp segment has CWR set. */ 665 SKB_GSO_TCP_ECN = 1 << 2, 666 667 SKB_GSO_TCP_FIXEDID = 1 << 3, 668 669 SKB_GSO_TCPV6 = 1 << 4, 670 671 SKB_GSO_FCOE = 1 << 5, 672 673 SKB_GSO_GRE = 1 << 6, 674 675 SKB_GSO_GRE_CSUM = 1 << 7, 676 677 SKB_GSO_IPXIP4 = 1 << 8, 678 679 SKB_GSO_IPXIP6 = 1 << 9, 680 681 SKB_GSO_UDP_TUNNEL = 1 << 10, 682 683 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 684 685 SKB_GSO_PARTIAL = 1 << 12, 686 687 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 688 689 SKB_GSO_SCTP = 1 << 14, 690 691 SKB_GSO_ESP = 1 << 15, 692 693 SKB_GSO_UDP = 1 << 16, 694 695 SKB_GSO_UDP_L4 = 1 << 17, 696 697 SKB_GSO_FRAGLIST = 1 << 18, 698}; 699 700#if BITS_PER_LONG > 32 701#define NET_SKBUFF_DATA_USES_OFFSET 1 702#endif 703 704#ifdef NET_SKBUFF_DATA_USES_OFFSET 705typedef unsigned int sk_buff_data_t; 706#else 707typedef unsigned char *sk_buff_data_t; 708#endif 709 710enum skb_tstamp_type { 711 SKB_CLOCK_REALTIME, 712 SKB_CLOCK_MONOTONIC, 713 SKB_CLOCK_TAI, 714 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 715}; 716 717/** 718 * DOC: Basic sk_buff geometry 719 * 720 * struct sk_buff itself is a metadata structure and does not hold any packet 721 * data. All the data is held in associated buffers. 722 * 723 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 724 * into two parts: 725 * 726 * - data buffer, containing headers and sometimes payload; 727 * this is the part of the skb operated on by the common helpers 728 * such as skb_put() or skb_pull(); 729 * - shared info (struct skb_shared_info) which holds an array of pointers 730 * to read-only data in the (page, offset, length) format. 731 * 732 * Optionally &skb_shared_info.frag_list may point to another skb. 733 * 734 * Basic diagram may look like this:: 735 * 736 * --------------- 737 * | sk_buff | 738 * --------------- 739 * ,--------------------------- + head 740 * / ,----------------- + data 741 * / / ,----------- + tail 742 * | | | , + end 743 * | | | | 744 * v v v v 745 * ----------------------------------------------- 746 * | headroom | data | tailroom | skb_shared_info | 747 * ----------------------------------------------- 748 * + [page frag] 749 * + [page frag] 750 * + [page frag] 751 * + [page frag] --------- 752 * + frag_list --> | sk_buff | 753 * --------- 754 * 755 */ 756 757/** 758 * struct sk_buff - socket buffer 759 * @next: Next buffer in list 760 * @prev: Previous buffer in list 761 * @tstamp: Time we arrived/left 762 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 763 * for retransmit timer 764 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 765 * @list: queue head 766 * @ll_node: anchor in an llist (eg socket defer_list) 767 * @sk: Socket we are owned by 768 * @dev: Device we arrived on/are leaving by 769 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 770 * @cb: Control buffer. Free for use by every layer. Put private vars here 771 * @_skb_refdst: destination entry (with norefcount bit) 772 * @len: Length of actual data 773 * @data_len: Data length 774 * @mac_len: Length of link layer header 775 * @hdr_len: writable header length of cloned skb 776 * @csum: Checksum (must include start/offset pair) 777 * @csum_start: Offset from skb->head where checksumming should start 778 * @csum_offset: Offset from csum_start where checksum should be stored 779 * @priority: Packet queueing priority 780 * @ignore_df: allow local fragmentation 781 * @cloned: Head may be cloned (check refcnt to be sure) 782 * @ip_summed: Driver fed us an IP checksum 783 * @nohdr: Payload reference only, must not modify header 784 * @pkt_type: Packet class 785 * @fclone: skbuff clone status 786 * @ipvs_property: skbuff is owned by ipvs 787 * @inner_protocol_type: whether the inner protocol is 788 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 789 * @remcsum_offload: remote checksum offload is enabled 790 * @offload_fwd_mark: Packet was L2-forwarded in hardware 791 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 792 * @tc_skip_classify: do not classify packet. set by IFB device 793 * @tc_at_ingress: used within tc_classify to distinguish in/egress 794 * @redirected: packet was redirected by packet classifier 795 * @from_ingress: packet was redirected from the ingress path 796 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 797 * @peeked: this packet has been seen already, so stats have been 798 * done for it, don't do them again 799 * @nf_trace: netfilter packet trace flag 800 * @protocol: Packet protocol from driver 801 * @destructor: Destruct function 802 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 803 * @_sk_redir: socket redirection information for skmsg 804 * @_nfct: Associated connection, if any (with nfctinfo bits) 805 * @skb_iif: ifindex of device we arrived on 806 * @tc_index: Traffic control index 807 * @hash: the packet hash 808 * @queue_mapping: Queue mapping for multiqueue devices 809 * @head_frag: skb was allocated from page fragments, 810 * not allocated by kmalloc() or vmalloc(). 811 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 812 * @pp_recycle: mark the packet for recycling instead of freeing (implies 813 * page_pool support on driver) 814 * @active_extensions: active extensions (skb_ext_id types) 815 * @ndisc_nodetype: router type (from link layer) 816 * @ooo_okay: allow the mapping of a socket to a queue to be changed 817 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 818 * ports. 819 * @sw_hash: indicates hash was computed in software stack 820 * @wifi_acked_valid: wifi_acked was set 821 * @wifi_acked: whether frame was acked on wifi or not 822 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 823 * @encapsulation: indicates the inner headers in the skbuff are valid 824 * @encap_hdr_csum: software checksum is needed 825 * @csum_valid: checksum is already valid 826 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 827 * @csum_complete_sw: checksum was completed by software 828 * @csum_level: indicates the number of consecutive checksums found in 829 * the packet minus one that have been verified as 830 * CHECKSUM_UNNECESSARY (max 3) 831 * @unreadable: indicates that at least 1 of the fragments in this skb is 832 * unreadable. 833 * @dst_pending_confirm: need to confirm neighbour 834 * @decrypted: Decrypted SKB 835 * @slow_gro: state present at GRO time, slower prepare step required 836 * @tstamp_type: When set, skb->tstamp has the 837 * delivery_time clock base of skb->tstamp. 838 * @napi_id: id of the NAPI struct this skb came from 839 * @sender_cpu: (aka @napi_id) source CPU in XPS 840 * @alloc_cpu: CPU which did the skb allocation. 841 * @secmark: security marking 842 * @mark: Generic packet mark 843 * @reserved_tailroom: (aka @mark) number of bytes of free space available 844 * at the tail of an sk_buff 845 * @vlan_all: vlan fields (proto & tci) 846 * @vlan_proto: vlan encapsulation protocol 847 * @vlan_tci: vlan tag control information 848 * @inner_protocol: Protocol (encapsulation) 849 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 850 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 851 * @inner_transport_header: Inner transport layer header (encapsulation) 852 * @inner_network_header: Network layer header (encapsulation) 853 * @inner_mac_header: Link layer header (encapsulation) 854 * @transport_header: Transport layer header 855 * @network_header: Network layer header 856 * @mac_header: Link layer header 857 * @kcov_handle: KCOV remote handle for remote coverage collection 858 * @tail: Tail pointer 859 * @end: End pointer 860 * @head: Head of buffer 861 * @data: Data head pointer 862 * @truesize: Buffer size 863 * @users: User count - see {datagram,tcp}.c 864 * @extensions: allocated extensions, valid if active_extensions is nonzero 865 */ 866 867struct sk_buff { 868 union { 869 struct { 870 /* These two members must be first to match sk_buff_head. */ 871 struct sk_buff *next; 872 struct sk_buff *prev; 873 874 union { 875 struct net_device *dev; 876 /* Some protocols might use this space to store information, 877 * while device pointer would be NULL. 878 * UDP receive path is one user. 879 */ 880 unsigned long dev_scratch; 881 }; 882 }; 883 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 884 struct list_head list; 885 struct llist_node ll_node; 886 }; 887 888 struct sock *sk; 889 890 union { 891 ktime_t tstamp; 892 u64 skb_mstamp_ns; /* earliest departure time */ 893 }; 894 /* 895 * This is the control buffer. It is free to use for every 896 * layer. Please put your private variables there. If you 897 * want to keep them across layers you have to do a skb_clone() 898 * first. This is owned by whoever has the skb queued ATM. 899 */ 900 char cb[48] __aligned(8); 901 902 union { 903 struct { 904 unsigned long _skb_refdst; 905 void (*destructor)(struct sk_buff *skb); 906 }; 907 struct list_head tcp_tsorted_anchor; 908#ifdef CONFIG_NET_SOCK_MSG 909 unsigned long _sk_redir; 910#endif 911 }; 912 913#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 914 unsigned long _nfct; 915#endif 916 unsigned int len, 917 data_len; 918 __u16 mac_len, 919 hdr_len; 920 921 /* Following fields are _not_ copied in __copy_skb_header() 922 * Note that queue_mapping is here mostly to fill a hole. 923 */ 924 __u16 queue_mapping; 925 926/* if you move cloned around you also must adapt those constants */ 927#ifdef __BIG_ENDIAN_BITFIELD 928#define CLONED_MASK (1 << 7) 929#else 930#define CLONED_MASK 1 931#endif 932#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 933 934 /* private: */ 935 __u8 __cloned_offset[0]; 936 /* public: */ 937 __u8 cloned:1, 938 nohdr:1, 939 fclone:2, 940 peeked:1, 941 head_frag:1, 942 pfmemalloc:1, 943 pp_recycle:1; /* page_pool recycle indicator */ 944#ifdef CONFIG_SKB_EXTENSIONS 945 __u8 active_extensions; 946#endif 947 948 /* Fields enclosed in headers group are copied 949 * using a single memcpy() in __copy_skb_header() 950 */ 951 struct_group(headers, 952 953 /* private: */ 954 __u8 __pkt_type_offset[0]; 955 /* public: */ 956 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 957 __u8 ignore_df:1; 958 __u8 dst_pending_confirm:1; 959 __u8 ip_summed:2; 960 __u8 ooo_okay:1; 961 962 /* private: */ 963 __u8 __mono_tc_offset[0]; 964 /* public: */ 965 __u8 tstamp_type:2; /* See skb_tstamp_type */ 966#ifdef CONFIG_NET_XGRESS 967 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 968 __u8 tc_skip_classify:1; 969#endif 970 __u8 remcsum_offload:1; 971 __u8 csum_complete_sw:1; 972 __u8 csum_level:2; 973 __u8 inner_protocol_type:1; 974 975 __u8 l4_hash:1; 976 __u8 sw_hash:1; 977#ifdef CONFIG_WIRELESS 978 __u8 wifi_acked_valid:1; 979 __u8 wifi_acked:1; 980#endif 981 __u8 no_fcs:1; 982 /* Indicates the inner headers are valid in the skbuff. */ 983 __u8 encapsulation:1; 984 __u8 encap_hdr_csum:1; 985 __u8 csum_valid:1; 986#ifdef CONFIG_IPV6_NDISC_NODETYPE 987 __u8 ndisc_nodetype:2; 988#endif 989 990#if IS_ENABLED(CONFIG_IP_VS) 991 __u8 ipvs_property:1; 992#endif 993#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 994 __u8 nf_trace:1; 995#endif 996#ifdef CONFIG_NET_SWITCHDEV 997 __u8 offload_fwd_mark:1; 998 __u8 offload_l3_fwd_mark:1; 999#endif 1000 __u8 redirected:1; 1001#ifdef CONFIG_NET_REDIRECT 1002 __u8 from_ingress:1; 1003#endif 1004#ifdef CONFIG_NETFILTER_SKIP_EGRESS 1005 __u8 nf_skip_egress:1; 1006#endif 1007#ifdef CONFIG_SKB_DECRYPTED 1008 __u8 decrypted:1; 1009#endif 1010 __u8 slow_gro:1; 1011#if IS_ENABLED(CONFIG_IP_SCTP) 1012 __u8 csum_not_inet:1; 1013#endif 1014 __u8 unreadable:1; 1015#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1016 __u16 tc_index; /* traffic control index */ 1017#endif 1018 1019 u16 alloc_cpu; 1020 1021 union { 1022 __wsum csum; 1023 struct { 1024 __u16 csum_start; 1025 __u16 csum_offset; 1026 }; 1027 }; 1028 __u32 priority; 1029 int skb_iif; 1030 __u32 hash; 1031 union { 1032 u32 vlan_all; 1033 struct { 1034 __be16 vlan_proto; 1035 __u16 vlan_tci; 1036 }; 1037 }; 1038#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1039 union { 1040 unsigned int napi_id; 1041 unsigned int sender_cpu; 1042 }; 1043#endif 1044#ifdef CONFIG_NETWORK_SECMARK 1045 __u32 secmark; 1046#endif 1047 1048 union { 1049 __u32 mark; 1050 __u32 reserved_tailroom; 1051 }; 1052 1053 union { 1054 __be16 inner_protocol; 1055 __u8 inner_ipproto; 1056 }; 1057 1058 __u16 inner_transport_header; 1059 __u16 inner_network_header; 1060 __u16 inner_mac_header; 1061 1062 __be16 protocol; 1063 __u16 transport_header; 1064 __u16 network_header; 1065 __u16 mac_header; 1066 1067#ifdef CONFIG_KCOV 1068 u64 kcov_handle; 1069#endif 1070 1071 ); /* end headers group */ 1072 1073 /* These elements must be at the end, see alloc_skb() for details. */ 1074 sk_buff_data_t tail; 1075 sk_buff_data_t end; 1076 unsigned char *head, 1077 *data; 1078 unsigned int truesize; 1079 refcount_t users; 1080 1081#ifdef CONFIG_SKB_EXTENSIONS 1082 /* only usable after checking ->active_extensions != 0 */ 1083 struct skb_ext *extensions; 1084#endif 1085}; 1086 1087/* if you move pkt_type around you also must adapt those constants */ 1088#ifdef __BIG_ENDIAN_BITFIELD 1089#define PKT_TYPE_MAX (7 << 5) 1090#else 1091#define PKT_TYPE_MAX 7 1092#endif 1093#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1094 1095/* if you move tc_at_ingress or tstamp_type 1096 * around, you also must adapt these constants. 1097 */ 1098#ifdef __BIG_ENDIAN_BITFIELD 1099#define SKB_TSTAMP_TYPE_MASK (3 << 6) 1100#define SKB_TSTAMP_TYPE_RSHIFT (6) 1101#define TC_AT_INGRESS_MASK (1 << 5) 1102#else 1103#define SKB_TSTAMP_TYPE_MASK (3) 1104#define TC_AT_INGRESS_MASK (1 << 2) 1105#endif 1106#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1107 1108#ifdef __KERNEL__ 1109/* 1110 * Handling routines are only of interest to the kernel 1111 */ 1112 1113#define SKB_ALLOC_FCLONE 0x01 1114#define SKB_ALLOC_RX 0x02 1115#define SKB_ALLOC_NAPI 0x04 1116 1117/** 1118 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1119 * @skb: buffer 1120 */ 1121static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1122{ 1123 return unlikely(skb->pfmemalloc); 1124} 1125 1126/* 1127 * skb might have a dst pointer attached, refcounted or not. 1128 * _skb_refdst low order bit is set if refcount was _not_ taken 1129 */ 1130#define SKB_DST_NOREF 1UL 1131#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1132 1133/** 1134 * skb_dst - returns skb dst_entry 1135 * @skb: buffer 1136 * 1137 * Returns skb dst_entry, regardless of reference taken or not. 1138 */ 1139static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1140{ 1141 /* If refdst was not refcounted, check we still are in a 1142 * rcu_read_lock section 1143 */ 1144 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1145 !rcu_read_lock_held() && 1146 !rcu_read_lock_bh_held()); 1147 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1148} 1149 1150/** 1151 * skb_dst_set - sets skb dst 1152 * @skb: buffer 1153 * @dst: dst entry 1154 * 1155 * Sets skb dst, assuming a reference was taken on dst and should 1156 * be released by skb_dst_drop() 1157 */ 1158static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1159{ 1160 skb->slow_gro |= !!dst; 1161 skb->_skb_refdst = (unsigned long)dst; 1162} 1163 1164/** 1165 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1166 * @skb: buffer 1167 * @dst: dst entry 1168 * 1169 * Sets skb dst, assuming a reference was not taken on dst. 1170 * If dst entry is cached, we do not take reference and dst_release 1171 * will be avoided by refdst_drop. If dst entry is not cached, we take 1172 * reference, so that last dst_release can destroy the dst immediately. 1173 */ 1174static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1175{ 1176 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1177 skb->slow_gro |= !!dst; 1178 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1179} 1180 1181/** 1182 * skb_dst_is_noref - Test if skb dst isn't refcounted 1183 * @skb: buffer 1184 */ 1185static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1186{ 1187 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1188} 1189 1190/* For mangling skb->pkt_type from user space side from applications 1191 * such as nft, tc, etc, we only allow a conservative subset of 1192 * possible pkt_types to be set. 1193*/ 1194static inline bool skb_pkt_type_ok(u32 ptype) 1195{ 1196 return ptype <= PACKET_OTHERHOST; 1197} 1198 1199/** 1200 * skb_napi_id - Returns the skb's NAPI id 1201 * @skb: buffer 1202 */ 1203static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1204{ 1205#ifdef CONFIG_NET_RX_BUSY_POLL 1206 return skb->napi_id; 1207#else 1208 return 0; 1209#endif 1210} 1211 1212static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1213{ 1214#ifdef CONFIG_WIRELESS 1215 return skb->wifi_acked_valid; 1216#else 1217 return 0; 1218#endif 1219} 1220 1221/** 1222 * skb_unref - decrement the skb's reference count 1223 * @skb: buffer 1224 * 1225 * Returns true if we can free the skb. 1226 */ 1227static inline bool skb_unref(struct sk_buff *skb) 1228{ 1229 if (unlikely(!skb)) 1230 return false; 1231 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) 1232 smp_rmb(); 1233 else if (likely(!refcount_dec_and_test(&skb->users))) 1234 return false; 1235 1236 return true; 1237} 1238 1239static inline bool skb_data_unref(const struct sk_buff *skb, 1240 struct skb_shared_info *shinfo) 1241{ 1242 int bias; 1243 1244 if (!skb->cloned) 1245 return true; 1246 1247 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1248 1249 if (atomic_read(&shinfo->dataref) == bias) 1250 smp_rmb(); 1251 else if (atomic_sub_return(bias, &shinfo->dataref)) 1252 return false; 1253 1254 return true; 1255} 1256 1257void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1258 enum skb_drop_reason reason); 1259 1260static inline void 1261kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1262{ 1263 sk_skb_reason_drop(NULL, skb, reason); 1264} 1265 1266/** 1267 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1268 * @skb: buffer to free 1269 */ 1270static inline void kfree_skb(struct sk_buff *skb) 1271{ 1272 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1273} 1274 1275void skb_release_head_state(struct sk_buff *skb); 1276void kfree_skb_list_reason(struct sk_buff *segs, 1277 enum skb_drop_reason reason); 1278void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1279void skb_tx_error(struct sk_buff *skb); 1280 1281static inline void kfree_skb_list(struct sk_buff *segs) 1282{ 1283 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1284} 1285 1286#ifdef CONFIG_TRACEPOINTS 1287void consume_skb(struct sk_buff *skb); 1288#else 1289static inline void consume_skb(struct sk_buff *skb) 1290{ 1291 return kfree_skb(skb); 1292} 1293#endif 1294 1295void __consume_stateless_skb(struct sk_buff *skb); 1296void __kfree_skb(struct sk_buff *skb); 1297 1298void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1299bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1300 bool *fragstolen, int *delta_truesize); 1301 1302struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1303 int node); 1304struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1305struct sk_buff *build_skb(void *data, unsigned int frag_size); 1306struct sk_buff *build_skb_around(struct sk_buff *skb, 1307 void *data, unsigned int frag_size); 1308void skb_attempt_defer_free(struct sk_buff *skb); 1309 1310struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1311struct sk_buff *slab_build_skb(void *data); 1312 1313/** 1314 * alloc_skb - allocate a network buffer 1315 * @size: size to allocate 1316 * @priority: allocation mask 1317 * 1318 * This function is a convenient wrapper around __alloc_skb(). 1319 */ 1320static inline struct sk_buff *alloc_skb(unsigned int size, 1321 gfp_t priority) 1322{ 1323 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1324} 1325 1326struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1327 unsigned long data_len, 1328 int max_page_order, 1329 int *errcode, 1330 gfp_t gfp_mask); 1331struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1332 1333/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1334struct sk_buff_fclones { 1335 struct sk_buff skb1; 1336 1337 struct sk_buff skb2; 1338 1339 refcount_t fclone_ref; 1340}; 1341 1342/** 1343 * skb_fclone_busy - check if fclone is busy 1344 * @sk: socket 1345 * @skb: buffer 1346 * 1347 * Returns true if skb is a fast clone, and its clone is not freed. 1348 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1349 * so we also check that didn't happen. 1350 */ 1351static inline bool skb_fclone_busy(const struct sock *sk, 1352 const struct sk_buff *skb) 1353{ 1354 const struct sk_buff_fclones *fclones; 1355 1356 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1357 1358 return skb->fclone == SKB_FCLONE_ORIG && 1359 refcount_read(&fclones->fclone_ref) > 1 && 1360 READ_ONCE(fclones->skb2.sk) == sk; 1361} 1362 1363/** 1364 * alloc_skb_fclone - allocate a network buffer from fclone cache 1365 * @size: size to allocate 1366 * @priority: allocation mask 1367 * 1368 * This function is a convenient wrapper around __alloc_skb(). 1369 */ 1370static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1371 gfp_t priority) 1372{ 1373 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1374} 1375 1376struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1377void skb_headers_offset_update(struct sk_buff *skb, int off); 1378int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1379struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1380void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1381struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1382struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1383 gfp_t gfp_mask, bool fclone); 1384static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1385 gfp_t gfp_mask) 1386{ 1387 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1388} 1389 1390int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1391struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1392 unsigned int headroom); 1393struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1394struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1395 int newtailroom, gfp_t priority); 1396int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1397 int offset, int len); 1398int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1399 int offset, int len); 1400int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1401int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1402 1403/** 1404 * skb_pad - zero pad the tail of an skb 1405 * @skb: buffer to pad 1406 * @pad: space to pad 1407 * 1408 * Ensure that a buffer is followed by a padding area that is zero 1409 * filled. Used by network drivers which may DMA or transfer data 1410 * beyond the buffer end onto the wire. 1411 * 1412 * May return error in out of memory cases. The skb is freed on error. 1413 */ 1414static inline int skb_pad(struct sk_buff *skb, int pad) 1415{ 1416 return __skb_pad(skb, pad, true); 1417} 1418#define dev_kfree_skb(a) consume_skb(a) 1419 1420int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1421 int offset, size_t size, size_t max_frags); 1422 1423struct skb_seq_state { 1424 __u32 lower_offset; 1425 __u32 upper_offset; 1426 __u32 frag_idx; 1427 __u32 stepped_offset; 1428 struct sk_buff *root_skb; 1429 struct sk_buff *cur_skb; 1430 __u8 *frag_data; 1431 __u32 frag_off; 1432}; 1433 1434void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1435 unsigned int to, struct skb_seq_state *st); 1436unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1437 struct skb_seq_state *st); 1438void skb_abort_seq_read(struct skb_seq_state *st); 1439int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); 1440 1441unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1442 unsigned int to, struct ts_config *config); 1443 1444/* 1445 * Packet hash types specify the type of hash in skb_set_hash. 1446 * 1447 * Hash types refer to the protocol layer addresses which are used to 1448 * construct a packet's hash. The hashes are used to differentiate or identify 1449 * flows of the protocol layer for the hash type. Hash types are either 1450 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1451 * 1452 * Properties of hashes: 1453 * 1454 * 1) Two packets in different flows have different hash values 1455 * 2) Two packets in the same flow should have the same hash value 1456 * 1457 * A hash at a higher layer is considered to be more specific. A driver should 1458 * set the most specific hash possible. 1459 * 1460 * A driver cannot indicate a more specific hash than the layer at which a hash 1461 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1462 * 1463 * A driver may indicate a hash level which is less specific than the 1464 * actual layer the hash was computed on. For instance, a hash computed 1465 * at L4 may be considered an L3 hash. This should only be done if the 1466 * driver can't unambiguously determine that the HW computed the hash at 1467 * the higher layer. Note that the "should" in the second property above 1468 * permits this. 1469 */ 1470enum pkt_hash_types { 1471 PKT_HASH_TYPE_NONE, /* Undefined type */ 1472 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1473 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1474 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1475}; 1476 1477static inline void skb_clear_hash(struct sk_buff *skb) 1478{ 1479 skb->hash = 0; 1480 skb->sw_hash = 0; 1481 skb->l4_hash = 0; 1482} 1483 1484static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1485{ 1486 if (!skb->l4_hash) 1487 skb_clear_hash(skb); 1488} 1489 1490static inline void 1491__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1492{ 1493 skb->l4_hash = is_l4; 1494 skb->sw_hash = is_sw; 1495 skb->hash = hash; 1496} 1497 1498static inline void 1499skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1500{ 1501 /* Used by drivers to set hash from HW */ 1502 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1503} 1504 1505static inline void 1506__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1507{ 1508 __skb_set_hash(skb, hash, true, is_l4); 1509} 1510 1511u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1512 1513static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1514{ 1515 return __skb_get_hash_symmetric_net(NULL, skb); 1516} 1517 1518void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1519u32 skb_get_poff(const struct sk_buff *skb); 1520u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1521 const struct flow_keys_basic *keys, int hlen); 1522__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1523 const void *data, int hlen_proto); 1524 1525static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1526 int thoff, u8 ip_proto) 1527{ 1528 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1529} 1530 1531void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1532 const struct flow_dissector_key *key, 1533 unsigned int key_count); 1534 1535struct bpf_flow_dissector; 1536u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1537 __be16 proto, int nhoff, int hlen, unsigned int flags); 1538 1539bool __skb_flow_dissect(const struct net *net, 1540 const struct sk_buff *skb, 1541 struct flow_dissector *flow_dissector, 1542 void *target_container, const void *data, 1543 __be16 proto, int nhoff, int hlen, unsigned int flags); 1544 1545static inline bool skb_flow_dissect(const struct sk_buff *skb, 1546 struct flow_dissector *flow_dissector, 1547 void *target_container, unsigned int flags) 1548{ 1549 return __skb_flow_dissect(NULL, skb, flow_dissector, 1550 target_container, NULL, 0, 0, 0, flags); 1551} 1552 1553static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1554 struct flow_keys *flow, 1555 unsigned int flags) 1556{ 1557 memset(flow, 0, sizeof(*flow)); 1558 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1559 flow, NULL, 0, 0, 0, flags); 1560} 1561 1562static inline bool 1563skb_flow_dissect_flow_keys_basic(const struct net *net, 1564 const struct sk_buff *skb, 1565 struct flow_keys_basic *flow, 1566 const void *data, __be16 proto, 1567 int nhoff, int hlen, unsigned int flags) 1568{ 1569 memset(flow, 0, sizeof(*flow)); 1570 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1571 data, proto, nhoff, hlen, flags); 1572} 1573 1574void skb_flow_dissect_meta(const struct sk_buff *skb, 1575 struct flow_dissector *flow_dissector, 1576 void *target_container); 1577 1578/* Gets a skb connection tracking info, ctinfo map should be a 1579 * map of mapsize to translate enum ip_conntrack_info states 1580 * to user states. 1581 */ 1582void 1583skb_flow_dissect_ct(const struct sk_buff *skb, 1584 struct flow_dissector *flow_dissector, 1585 void *target_container, 1586 u16 *ctinfo_map, size_t mapsize, 1587 bool post_ct, u16 zone); 1588void 1589skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1590 struct flow_dissector *flow_dissector, 1591 void *target_container); 1592 1593void skb_flow_dissect_hash(const struct sk_buff *skb, 1594 struct flow_dissector *flow_dissector, 1595 void *target_container); 1596 1597static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1598{ 1599 if (!skb->l4_hash && !skb->sw_hash) 1600 __skb_get_hash_net(net, skb); 1601 1602 return skb->hash; 1603} 1604 1605static inline __u32 skb_get_hash(struct sk_buff *skb) 1606{ 1607 if (!skb->l4_hash && !skb->sw_hash) 1608 __skb_get_hash_net(NULL, skb); 1609 1610 return skb->hash; 1611} 1612 1613static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1614{ 1615 if (!skb->l4_hash && !skb->sw_hash) { 1616 struct flow_keys keys; 1617 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1618 1619 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1620 } 1621 1622 return skb->hash; 1623} 1624 1625__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1626 const siphash_key_t *perturb); 1627 1628static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1629{ 1630 return skb->hash; 1631} 1632 1633static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1634{ 1635 to->hash = from->hash; 1636 to->sw_hash = from->sw_hash; 1637 to->l4_hash = from->l4_hash; 1638}; 1639 1640static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1641 const struct sk_buff *skb2) 1642{ 1643#ifdef CONFIG_SKB_DECRYPTED 1644 return skb2->decrypted - skb1->decrypted; 1645#else 1646 return 0; 1647#endif 1648} 1649 1650static inline bool skb_is_decrypted(const struct sk_buff *skb) 1651{ 1652#ifdef CONFIG_SKB_DECRYPTED 1653 return skb->decrypted; 1654#else 1655 return false; 1656#endif 1657} 1658 1659static inline void skb_copy_decrypted(struct sk_buff *to, 1660 const struct sk_buff *from) 1661{ 1662#ifdef CONFIG_SKB_DECRYPTED 1663 to->decrypted = from->decrypted; 1664#endif 1665} 1666 1667#ifdef NET_SKBUFF_DATA_USES_OFFSET 1668static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1669{ 1670 return skb->head + skb->end; 1671} 1672 1673static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1674{ 1675 return skb->end; 1676} 1677 1678static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1679{ 1680 skb->end = offset; 1681} 1682#else 1683static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1684{ 1685 return skb->end; 1686} 1687 1688static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1689{ 1690 return skb->end - skb->head; 1691} 1692 1693static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1694{ 1695 skb->end = skb->head + offset; 1696} 1697#endif 1698 1699extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1700 1701struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1702 struct ubuf_info *uarg); 1703 1704void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1705 1706int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1707 struct sk_buff *skb, struct iov_iter *from, 1708 size_t length); 1709 1710int zerocopy_fill_skb_from_iter(struct sk_buff *skb, 1711 struct iov_iter *from, size_t length); 1712 1713static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1714 struct msghdr *msg, int len) 1715{ 1716 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1717} 1718 1719int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1720 struct msghdr *msg, int len, 1721 struct ubuf_info *uarg); 1722 1723/* Internal */ 1724#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1725 1726static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1727{ 1728 return &skb_shinfo(skb)->hwtstamps; 1729} 1730 1731static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1732{ 1733 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1734 1735 return is_zcopy ? skb_uarg(skb) : NULL; 1736} 1737 1738static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1739{ 1740 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1741} 1742 1743static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1744{ 1745 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1746} 1747 1748static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1749 const struct sk_buff *skb2) 1750{ 1751 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1752} 1753 1754static inline void net_zcopy_get(struct ubuf_info *uarg) 1755{ 1756 refcount_inc(&uarg->refcnt); 1757} 1758 1759static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1760{ 1761 skb_shinfo(skb)->destructor_arg = uarg; 1762 skb_shinfo(skb)->flags |= uarg->flags; 1763} 1764 1765static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1766 bool *have_ref) 1767{ 1768 if (skb && uarg && !skb_zcopy(skb)) { 1769 if (unlikely(have_ref && *have_ref)) 1770 *have_ref = false; 1771 else 1772 net_zcopy_get(uarg); 1773 skb_zcopy_init(skb, uarg); 1774 } 1775} 1776 1777static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1778{ 1779 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1780 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1781} 1782 1783static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1784{ 1785 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1786} 1787 1788static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1789{ 1790 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1791} 1792 1793static inline void net_zcopy_put(struct ubuf_info *uarg) 1794{ 1795 if (uarg) 1796 uarg->ops->complete(NULL, uarg, true); 1797} 1798 1799static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1800{ 1801 if (uarg) { 1802 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1803 msg_zerocopy_put_abort(uarg, have_uref); 1804 else if (have_uref) 1805 net_zcopy_put(uarg); 1806 } 1807} 1808 1809/* Release a reference on a zerocopy structure */ 1810static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1811{ 1812 struct ubuf_info *uarg = skb_zcopy(skb); 1813 1814 if (uarg) { 1815 if (!skb_zcopy_is_nouarg(skb)) 1816 uarg->ops->complete(skb, uarg, zerocopy_success); 1817 1818 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1819 } 1820} 1821 1822void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1823 1824static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1825{ 1826 if (unlikely(skb_zcopy_managed(skb))) 1827 __skb_zcopy_downgrade_managed(skb); 1828} 1829 1830/* Return true if frags in this skb are readable by the host. */ 1831static inline bool skb_frags_readable(const struct sk_buff *skb) 1832{ 1833 return !skb->unreadable; 1834} 1835 1836static inline void skb_mark_not_on_list(struct sk_buff *skb) 1837{ 1838 skb->next = NULL; 1839} 1840 1841static inline void skb_poison_list(struct sk_buff *skb) 1842{ 1843#ifdef CONFIG_DEBUG_NET 1844 skb->next = SKB_LIST_POISON_NEXT; 1845#endif 1846} 1847 1848/* Iterate through singly-linked GSO fragments of an skb. */ 1849#define skb_list_walk_safe(first, skb, next_skb) \ 1850 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1851 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1852 1853static inline void skb_list_del_init(struct sk_buff *skb) 1854{ 1855 __list_del_entry(&skb->list); 1856 skb_mark_not_on_list(skb); 1857} 1858 1859/** 1860 * skb_queue_empty - check if a queue is empty 1861 * @list: queue head 1862 * 1863 * Returns true if the queue is empty, false otherwise. 1864 */ 1865static inline int skb_queue_empty(const struct sk_buff_head *list) 1866{ 1867 return list->next == (const struct sk_buff *) list; 1868} 1869 1870/** 1871 * skb_queue_empty_lockless - check if a queue is empty 1872 * @list: queue head 1873 * 1874 * Returns true if the queue is empty, false otherwise. 1875 * This variant can be used in lockless contexts. 1876 */ 1877static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1878{ 1879 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1880} 1881 1882 1883/** 1884 * skb_queue_is_last - check if skb is the last entry in the queue 1885 * @list: queue head 1886 * @skb: buffer 1887 * 1888 * Returns true if @skb is the last buffer on the list. 1889 */ 1890static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1891 const struct sk_buff *skb) 1892{ 1893 return skb->next == (const struct sk_buff *) list; 1894} 1895 1896/** 1897 * skb_queue_is_first - check if skb is the first entry in the queue 1898 * @list: queue head 1899 * @skb: buffer 1900 * 1901 * Returns true if @skb is the first buffer on the list. 1902 */ 1903static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1904 const struct sk_buff *skb) 1905{ 1906 return skb->prev == (const struct sk_buff *) list; 1907} 1908 1909/** 1910 * skb_queue_next - return the next packet in the queue 1911 * @list: queue head 1912 * @skb: current buffer 1913 * 1914 * Return the next packet in @list after @skb. It is only valid to 1915 * call this if skb_queue_is_last() evaluates to false. 1916 */ 1917static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1918 const struct sk_buff *skb) 1919{ 1920 /* This BUG_ON may seem severe, but if we just return then we 1921 * are going to dereference garbage. 1922 */ 1923 BUG_ON(skb_queue_is_last(list, skb)); 1924 return skb->next; 1925} 1926 1927/** 1928 * skb_queue_prev - return the prev packet in the queue 1929 * @list: queue head 1930 * @skb: current buffer 1931 * 1932 * Return the prev packet in @list before @skb. It is only valid to 1933 * call this if skb_queue_is_first() evaluates to false. 1934 */ 1935static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1936 const struct sk_buff *skb) 1937{ 1938 /* This BUG_ON may seem severe, but if we just return then we 1939 * are going to dereference garbage. 1940 */ 1941 BUG_ON(skb_queue_is_first(list, skb)); 1942 return skb->prev; 1943} 1944 1945/** 1946 * skb_get - reference buffer 1947 * @skb: buffer to reference 1948 * 1949 * Makes another reference to a socket buffer and returns a pointer 1950 * to the buffer. 1951 */ 1952static inline struct sk_buff *skb_get(struct sk_buff *skb) 1953{ 1954 refcount_inc(&skb->users); 1955 return skb; 1956} 1957 1958/* 1959 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1960 */ 1961 1962/** 1963 * skb_cloned - is the buffer a clone 1964 * @skb: buffer to check 1965 * 1966 * Returns true if the buffer was generated with skb_clone() and is 1967 * one of multiple shared copies of the buffer. Cloned buffers are 1968 * shared data so must not be written to under normal circumstances. 1969 */ 1970static inline int skb_cloned(const struct sk_buff *skb) 1971{ 1972 return skb->cloned && 1973 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1974} 1975 1976static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1977{ 1978 might_sleep_if(gfpflags_allow_blocking(pri)); 1979 1980 if (skb_cloned(skb)) 1981 return pskb_expand_head(skb, 0, 0, pri); 1982 1983 return 0; 1984} 1985 1986/* This variant of skb_unclone() makes sure skb->truesize 1987 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1988 * 1989 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1990 * when various debugging features are in place. 1991 */ 1992int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1993static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1994{ 1995 might_sleep_if(gfpflags_allow_blocking(pri)); 1996 1997 if (skb_cloned(skb)) 1998 return __skb_unclone_keeptruesize(skb, pri); 1999 return 0; 2000} 2001 2002/** 2003 * skb_header_cloned - is the header a clone 2004 * @skb: buffer to check 2005 * 2006 * Returns true if modifying the header part of the buffer requires 2007 * the data to be copied. 2008 */ 2009static inline int skb_header_cloned(const struct sk_buff *skb) 2010{ 2011 int dataref; 2012 2013 if (!skb->cloned) 2014 return 0; 2015 2016 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2017 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2018 return dataref != 1; 2019} 2020 2021static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2022{ 2023 might_sleep_if(gfpflags_allow_blocking(pri)); 2024 2025 if (skb_header_cloned(skb)) 2026 return pskb_expand_head(skb, 0, 0, pri); 2027 2028 return 0; 2029} 2030 2031/** 2032 * __skb_header_release() - allow clones to use the headroom 2033 * @skb: buffer to operate on 2034 * 2035 * See "DOC: dataref and headerless skbs". 2036 */ 2037static inline void __skb_header_release(struct sk_buff *skb) 2038{ 2039 skb->nohdr = 1; 2040 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2041} 2042 2043 2044/** 2045 * skb_shared - is the buffer shared 2046 * @skb: buffer to check 2047 * 2048 * Returns true if more than one person has a reference to this 2049 * buffer. 2050 */ 2051static inline int skb_shared(const struct sk_buff *skb) 2052{ 2053 return refcount_read(&skb->users) != 1; 2054} 2055 2056/** 2057 * skb_share_check - check if buffer is shared and if so clone it 2058 * @skb: buffer to check 2059 * @pri: priority for memory allocation 2060 * 2061 * If the buffer is shared the buffer is cloned and the old copy 2062 * drops a reference. A new clone with a single reference is returned. 2063 * If the buffer is not shared the original buffer is returned. When 2064 * being called from interrupt status or with spinlocks held pri must 2065 * be GFP_ATOMIC. 2066 * 2067 * NULL is returned on a memory allocation failure. 2068 */ 2069static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2070{ 2071 might_sleep_if(gfpflags_allow_blocking(pri)); 2072 if (skb_shared(skb)) { 2073 struct sk_buff *nskb = skb_clone(skb, pri); 2074 2075 if (likely(nskb)) 2076 consume_skb(skb); 2077 else 2078 kfree_skb(skb); 2079 skb = nskb; 2080 } 2081 return skb; 2082} 2083 2084/* 2085 * Copy shared buffers into a new sk_buff. We effectively do COW on 2086 * packets to handle cases where we have a local reader and forward 2087 * and a couple of other messy ones. The normal one is tcpdumping 2088 * a packet that's being forwarded. 2089 */ 2090 2091/** 2092 * skb_unshare - make a copy of a shared buffer 2093 * @skb: buffer to check 2094 * @pri: priority for memory allocation 2095 * 2096 * If the socket buffer is a clone then this function creates a new 2097 * copy of the data, drops a reference count on the old copy and returns 2098 * the new copy with the reference count at 1. If the buffer is not a clone 2099 * the original buffer is returned. When called with a spinlock held or 2100 * from interrupt state @pri must be %GFP_ATOMIC 2101 * 2102 * %NULL is returned on a memory allocation failure. 2103 */ 2104static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2105 gfp_t pri) 2106{ 2107 might_sleep_if(gfpflags_allow_blocking(pri)); 2108 if (skb_cloned(skb)) { 2109 struct sk_buff *nskb = skb_copy(skb, pri); 2110 2111 /* Free our shared copy */ 2112 if (likely(nskb)) 2113 consume_skb(skb); 2114 else 2115 kfree_skb(skb); 2116 skb = nskb; 2117 } 2118 return skb; 2119} 2120 2121/** 2122 * skb_peek - peek at the head of an &sk_buff_head 2123 * @list_: list to peek at 2124 * 2125 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2126 * be careful with this one. A peek leaves the buffer on the 2127 * list and someone else may run off with it. You must hold 2128 * the appropriate locks or have a private queue to do this. 2129 * 2130 * Returns %NULL for an empty list or a pointer to the head element. 2131 * The reference count is not incremented and the reference is therefore 2132 * volatile. Use with caution. 2133 */ 2134static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2135{ 2136 struct sk_buff *skb = list_->next; 2137 2138 if (skb == (struct sk_buff *)list_) 2139 skb = NULL; 2140 return skb; 2141} 2142 2143/** 2144 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2145 * @list_: list to peek at 2146 * 2147 * Like skb_peek(), but the caller knows that the list is not empty. 2148 */ 2149static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2150{ 2151 return list_->next; 2152} 2153 2154/** 2155 * skb_peek_next - peek skb following the given one from a queue 2156 * @skb: skb to start from 2157 * @list_: list to peek at 2158 * 2159 * Returns %NULL when the end of the list is met or a pointer to the 2160 * next element. The reference count is not incremented and the 2161 * reference is therefore volatile. Use with caution. 2162 */ 2163static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2164 const struct sk_buff_head *list_) 2165{ 2166 struct sk_buff *next = skb->next; 2167 2168 if (next == (struct sk_buff *)list_) 2169 next = NULL; 2170 return next; 2171} 2172 2173/** 2174 * skb_peek_tail - peek at the tail of an &sk_buff_head 2175 * @list_: list to peek at 2176 * 2177 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2178 * be careful with this one. A peek leaves the buffer on the 2179 * list and someone else may run off with it. You must hold 2180 * the appropriate locks or have a private queue to do this. 2181 * 2182 * Returns %NULL for an empty list or a pointer to the tail element. 2183 * The reference count is not incremented and the reference is therefore 2184 * volatile. Use with caution. 2185 */ 2186static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2187{ 2188 struct sk_buff *skb = READ_ONCE(list_->prev); 2189 2190 if (skb == (struct sk_buff *)list_) 2191 skb = NULL; 2192 return skb; 2193 2194} 2195 2196/** 2197 * skb_queue_len - get queue length 2198 * @list_: list to measure 2199 * 2200 * Return the length of an &sk_buff queue. 2201 */ 2202static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2203{ 2204 return list_->qlen; 2205} 2206 2207/** 2208 * skb_queue_len_lockless - get queue length 2209 * @list_: list to measure 2210 * 2211 * Return the length of an &sk_buff queue. 2212 * This variant can be used in lockless contexts. 2213 */ 2214static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2215{ 2216 return READ_ONCE(list_->qlen); 2217} 2218 2219/** 2220 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2221 * @list: queue to initialize 2222 * 2223 * This initializes only the list and queue length aspects of 2224 * an sk_buff_head object. This allows to initialize the list 2225 * aspects of an sk_buff_head without reinitializing things like 2226 * the spinlock. It can also be used for on-stack sk_buff_head 2227 * objects where the spinlock is known to not be used. 2228 */ 2229static inline void __skb_queue_head_init(struct sk_buff_head *list) 2230{ 2231 list->prev = list->next = (struct sk_buff *)list; 2232 list->qlen = 0; 2233} 2234 2235/* 2236 * This function creates a split out lock class for each invocation; 2237 * this is needed for now since a whole lot of users of the skb-queue 2238 * infrastructure in drivers have different locking usage (in hardirq) 2239 * than the networking core (in softirq only). In the long run either the 2240 * network layer or drivers should need annotation to consolidate the 2241 * main types of usage into 3 classes. 2242 */ 2243static inline void skb_queue_head_init(struct sk_buff_head *list) 2244{ 2245 spin_lock_init(&list->lock); 2246 __skb_queue_head_init(list); 2247} 2248 2249static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2250 struct lock_class_key *class) 2251{ 2252 skb_queue_head_init(list); 2253 lockdep_set_class(&list->lock, class); 2254} 2255 2256/* 2257 * Insert an sk_buff on a list. 2258 * 2259 * The "__skb_xxxx()" functions are the non-atomic ones that 2260 * can only be called with interrupts disabled. 2261 */ 2262static inline void __skb_insert(struct sk_buff *newsk, 2263 struct sk_buff *prev, struct sk_buff *next, 2264 struct sk_buff_head *list) 2265{ 2266 /* See skb_queue_empty_lockless() and skb_peek_tail() 2267 * for the opposite READ_ONCE() 2268 */ 2269 WRITE_ONCE(newsk->next, next); 2270 WRITE_ONCE(newsk->prev, prev); 2271 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2272 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2273 WRITE_ONCE(list->qlen, list->qlen + 1); 2274} 2275 2276static inline void __skb_queue_splice(const struct sk_buff_head *list, 2277 struct sk_buff *prev, 2278 struct sk_buff *next) 2279{ 2280 struct sk_buff *first = list->next; 2281 struct sk_buff *last = list->prev; 2282 2283 WRITE_ONCE(first->prev, prev); 2284 WRITE_ONCE(prev->next, first); 2285 2286 WRITE_ONCE(last->next, next); 2287 WRITE_ONCE(next->prev, last); 2288} 2289 2290/** 2291 * skb_queue_splice - join two skb lists, this is designed for stacks 2292 * @list: the new list to add 2293 * @head: the place to add it in the first list 2294 */ 2295static inline void skb_queue_splice(const struct sk_buff_head *list, 2296 struct sk_buff_head *head) 2297{ 2298 if (!skb_queue_empty(list)) { 2299 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2300 head->qlen += list->qlen; 2301 } 2302} 2303 2304/** 2305 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2306 * @list: the new list to add 2307 * @head: the place to add it in the first list 2308 * 2309 * The list at @list is reinitialised 2310 */ 2311static inline void skb_queue_splice_init(struct sk_buff_head *list, 2312 struct sk_buff_head *head) 2313{ 2314 if (!skb_queue_empty(list)) { 2315 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2316 head->qlen += list->qlen; 2317 __skb_queue_head_init(list); 2318 } 2319} 2320 2321/** 2322 * skb_queue_splice_tail - join two skb lists, each list being a queue 2323 * @list: the new list to add 2324 * @head: the place to add it in the first list 2325 */ 2326static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2327 struct sk_buff_head *head) 2328{ 2329 if (!skb_queue_empty(list)) { 2330 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2331 head->qlen += list->qlen; 2332 } 2333} 2334 2335/** 2336 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2337 * @list: the new list to add 2338 * @head: the place to add it in the first list 2339 * 2340 * Each of the lists is a queue. 2341 * The list at @list is reinitialised 2342 */ 2343static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2344 struct sk_buff_head *head) 2345{ 2346 if (!skb_queue_empty(list)) { 2347 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2348 head->qlen += list->qlen; 2349 __skb_queue_head_init(list); 2350 } 2351} 2352 2353/** 2354 * __skb_queue_after - queue a buffer at the list head 2355 * @list: list to use 2356 * @prev: place after this buffer 2357 * @newsk: buffer to queue 2358 * 2359 * Queue a buffer int the middle of a list. This function takes no locks 2360 * and you must therefore hold required locks before calling it. 2361 * 2362 * A buffer cannot be placed on two lists at the same time. 2363 */ 2364static inline void __skb_queue_after(struct sk_buff_head *list, 2365 struct sk_buff *prev, 2366 struct sk_buff *newsk) 2367{ 2368 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2369} 2370 2371void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2372 struct sk_buff_head *list); 2373 2374static inline void __skb_queue_before(struct sk_buff_head *list, 2375 struct sk_buff *next, 2376 struct sk_buff *newsk) 2377{ 2378 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2379} 2380 2381/** 2382 * __skb_queue_head - queue a buffer at the list head 2383 * @list: list to use 2384 * @newsk: buffer to queue 2385 * 2386 * Queue a buffer at the start of a list. This function takes no locks 2387 * and you must therefore hold required locks before calling it. 2388 * 2389 * A buffer cannot be placed on two lists at the same time. 2390 */ 2391static inline void __skb_queue_head(struct sk_buff_head *list, 2392 struct sk_buff *newsk) 2393{ 2394 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2395} 2396void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2397 2398/** 2399 * __skb_queue_tail - queue a buffer at the list tail 2400 * @list: list to use 2401 * @newsk: buffer to queue 2402 * 2403 * Queue a buffer at the end of a list. This function takes no locks 2404 * and you must therefore hold required locks before calling it. 2405 * 2406 * A buffer cannot be placed on two lists at the same time. 2407 */ 2408static inline void __skb_queue_tail(struct sk_buff_head *list, 2409 struct sk_buff *newsk) 2410{ 2411 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2412} 2413void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2414 2415/* 2416 * remove sk_buff from list. _Must_ be called atomically, and with 2417 * the list known.. 2418 */ 2419void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2420static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2421{ 2422 struct sk_buff *next, *prev; 2423 2424 WRITE_ONCE(list->qlen, list->qlen - 1); 2425 next = skb->next; 2426 prev = skb->prev; 2427 skb->next = skb->prev = NULL; 2428 WRITE_ONCE(next->prev, prev); 2429 WRITE_ONCE(prev->next, next); 2430} 2431 2432/** 2433 * __skb_dequeue - remove from the head of the queue 2434 * @list: list to dequeue from 2435 * 2436 * Remove the head of the list. This function does not take any locks 2437 * so must be used with appropriate locks held only. The head item is 2438 * returned or %NULL if the list is empty. 2439 */ 2440static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2441{ 2442 struct sk_buff *skb = skb_peek(list); 2443 if (skb) 2444 __skb_unlink(skb, list); 2445 return skb; 2446} 2447struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2448 2449/** 2450 * __skb_dequeue_tail - remove from the tail of the queue 2451 * @list: list to dequeue from 2452 * 2453 * Remove the tail of the list. This function does not take any locks 2454 * so must be used with appropriate locks held only. The tail item is 2455 * returned or %NULL if the list is empty. 2456 */ 2457static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2458{ 2459 struct sk_buff *skb = skb_peek_tail(list); 2460 if (skb) 2461 __skb_unlink(skb, list); 2462 return skb; 2463} 2464struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2465 2466 2467static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2468{ 2469 return skb->data_len; 2470} 2471 2472static inline unsigned int skb_headlen(const struct sk_buff *skb) 2473{ 2474 return skb->len - skb->data_len; 2475} 2476 2477static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2478{ 2479 unsigned int i, len = 0; 2480 2481 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2482 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2483 return len; 2484} 2485 2486static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2487{ 2488 return skb_headlen(skb) + __skb_pagelen(skb); 2489} 2490 2491static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2492 netmem_ref netmem, int off, 2493 int size) 2494{ 2495 frag->netmem = netmem; 2496 frag->offset = off; 2497 skb_frag_size_set(frag, size); 2498} 2499 2500static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2501 struct page *page, 2502 int off, int size) 2503{ 2504 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2505} 2506 2507static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2508 int i, netmem_ref netmem, 2509 int off, int size) 2510{ 2511 skb_frag_t *frag = &shinfo->frags[i]; 2512 2513 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2514} 2515 2516static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2517 int i, struct page *page, 2518 int off, int size) 2519{ 2520 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2521 size); 2522} 2523 2524/** 2525 * skb_len_add - adds a number to len fields of skb 2526 * @skb: buffer to add len to 2527 * @delta: number of bytes to add 2528 */ 2529static inline void skb_len_add(struct sk_buff *skb, int delta) 2530{ 2531 skb->len += delta; 2532 skb->data_len += delta; 2533 skb->truesize += delta; 2534} 2535 2536/** 2537 * __skb_fill_netmem_desc - initialise a fragment in an skb 2538 * @skb: buffer containing fragment to be initialised 2539 * @i: fragment index to initialise 2540 * @netmem: the netmem to use for this fragment 2541 * @off: the offset to the data with @page 2542 * @size: the length of the data 2543 * 2544 * Initialises the @i'th fragment of @skb to point to &size bytes at 2545 * offset @off within @page. 2546 * 2547 * Does not take any additional reference on the fragment. 2548 */ 2549static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2550 netmem_ref netmem, int off, int size) 2551{ 2552 struct page *page; 2553 2554 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2555 2556 if (netmem_is_net_iov(netmem)) { 2557 skb->unreadable = true; 2558 return; 2559 } 2560 2561 page = netmem_to_page(netmem); 2562 2563 /* Propagate page pfmemalloc to the skb if we can. The problem is 2564 * that not all callers have unique ownership of the page but rely 2565 * on page_is_pfmemalloc doing the right thing(tm). 2566 */ 2567 page = compound_head(page); 2568 if (page_is_pfmemalloc(page)) 2569 skb->pfmemalloc = true; 2570} 2571 2572static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2573 struct page *page, int off, int size) 2574{ 2575 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2576} 2577 2578static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2579 netmem_ref netmem, int off, int size) 2580{ 2581 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2582 skb_shinfo(skb)->nr_frags = i + 1; 2583} 2584 2585/** 2586 * skb_fill_page_desc - initialise a paged fragment in an skb 2587 * @skb: buffer containing fragment to be initialised 2588 * @i: paged fragment index to initialise 2589 * @page: the page to use for this fragment 2590 * @off: the offset to the data with @page 2591 * @size: the length of the data 2592 * 2593 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2594 * @skb to point to @size bytes at offset @off within @page. In 2595 * addition updates @skb such that @i is the last fragment. 2596 * 2597 * Does not take any additional reference on the fragment. 2598 */ 2599static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2600 struct page *page, int off, int size) 2601{ 2602 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2603} 2604 2605/** 2606 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2607 * @skb: buffer containing fragment to be initialised 2608 * @i: paged fragment index to initialise 2609 * @page: the page to use for this fragment 2610 * @off: the offset to the data with @page 2611 * @size: the length of the data 2612 * 2613 * Variant of skb_fill_page_desc() which does not deal with 2614 * pfmemalloc, if page is not owned by us. 2615 */ 2616static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2617 struct page *page, int off, 2618 int size) 2619{ 2620 struct skb_shared_info *shinfo = skb_shinfo(skb); 2621 2622 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2623 shinfo->nr_frags = i + 1; 2624} 2625 2626void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2627 int off, int size, unsigned int truesize); 2628 2629static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2630 struct page *page, int off, int size, 2631 unsigned int truesize) 2632{ 2633 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2634 truesize); 2635} 2636 2637void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2638 unsigned int truesize); 2639 2640#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2641 2642#ifdef NET_SKBUFF_DATA_USES_OFFSET 2643static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2644{ 2645 return skb->head + skb->tail; 2646} 2647 2648static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2649{ 2650 skb->tail = skb->data - skb->head; 2651} 2652 2653static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2654{ 2655 skb_reset_tail_pointer(skb); 2656 skb->tail += offset; 2657} 2658 2659#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2660static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2661{ 2662 return skb->tail; 2663} 2664 2665static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2666{ 2667 skb->tail = skb->data; 2668} 2669 2670static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2671{ 2672 skb->tail = skb->data + offset; 2673} 2674 2675#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2676 2677static inline void skb_assert_len(struct sk_buff *skb) 2678{ 2679#ifdef CONFIG_DEBUG_NET 2680 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2681 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2682#endif /* CONFIG_DEBUG_NET */ 2683} 2684 2685#if defined(CONFIG_FAIL_SKB_REALLOC) 2686void skb_might_realloc(struct sk_buff *skb); 2687#else 2688static inline void skb_might_realloc(struct sk_buff *skb) {} 2689#endif 2690 2691/* 2692 * Add data to an sk_buff 2693 */ 2694void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2695void *skb_put(struct sk_buff *skb, unsigned int len); 2696static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2697{ 2698 void *tmp = skb_tail_pointer(skb); 2699 SKB_LINEAR_ASSERT(skb); 2700 skb->tail += len; 2701 skb->len += len; 2702 return tmp; 2703} 2704 2705static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2706{ 2707 void *tmp = __skb_put(skb, len); 2708 2709 memset(tmp, 0, len); 2710 return tmp; 2711} 2712 2713static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2714 unsigned int len) 2715{ 2716 void *tmp = __skb_put(skb, len); 2717 2718 memcpy(tmp, data, len); 2719 return tmp; 2720} 2721 2722static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2723{ 2724 *(u8 *)__skb_put(skb, 1) = val; 2725} 2726 2727static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2728{ 2729 void *tmp = skb_put(skb, len); 2730 2731 memset(tmp, 0, len); 2732 2733 return tmp; 2734} 2735 2736static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2737 unsigned int len) 2738{ 2739 void *tmp = skb_put(skb, len); 2740 2741 memcpy(tmp, data, len); 2742 2743 return tmp; 2744} 2745 2746static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2747{ 2748 *(u8 *)skb_put(skb, 1) = val; 2749} 2750 2751void *skb_push(struct sk_buff *skb, unsigned int len); 2752static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2753{ 2754 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2755 2756 skb->data -= len; 2757 skb->len += len; 2758 return skb->data; 2759} 2760 2761void *skb_pull(struct sk_buff *skb, unsigned int len); 2762static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2763{ 2764 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2765 2766 skb->len -= len; 2767 if (unlikely(skb->len < skb->data_len)) { 2768#if defined(CONFIG_DEBUG_NET) 2769 skb->len += len; 2770 pr_err("__skb_pull(len=%u)\n", len); 2771 skb_dump(KERN_ERR, skb, false); 2772#endif 2773 BUG(); 2774 } 2775 return skb->data += len; 2776} 2777 2778static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2779{ 2780 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2781} 2782 2783void *skb_pull_data(struct sk_buff *skb, size_t len); 2784 2785void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2786 2787static inline enum skb_drop_reason 2788pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2789{ 2790 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2791 skb_might_realloc(skb); 2792 2793 if (likely(len <= skb_headlen(skb))) 2794 return SKB_NOT_DROPPED_YET; 2795 2796 if (unlikely(len > skb->len)) 2797 return SKB_DROP_REASON_PKT_TOO_SMALL; 2798 2799 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2800 return SKB_DROP_REASON_NOMEM; 2801 2802 return SKB_NOT_DROPPED_YET; 2803} 2804 2805static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2806{ 2807 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2808} 2809 2810static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2811{ 2812 if (!pskb_may_pull(skb, len)) 2813 return NULL; 2814 2815 skb->len -= len; 2816 return skb->data += len; 2817} 2818 2819void skb_condense(struct sk_buff *skb); 2820 2821/** 2822 * skb_headroom - bytes at buffer head 2823 * @skb: buffer to check 2824 * 2825 * Return the number of bytes of free space at the head of an &sk_buff. 2826 */ 2827static inline unsigned int skb_headroom(const struct sk_buff *skb) 2828{ 2829 return skb->data - skb->head; 2830} 2831 2832/** 2833 * skb_tailroom - bytes at buffer end 2834 * @skb: buffer to check 2835 * 2836 * Return the number of bytes of free space at the tail of an sk_buff 2837 */ 2838static inline int skb_tailroom(const struct sk_buff *skb) 2839{ 2840 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2841} 2842 2843/** 2844 * skb_availroom - bytes at buffer end 2845 * @skb: buffer to check 2846 * 2847 * Return the number of bytes of free space at the tail of an sk_buff 2848 * allocated by sk_stream_alloc() 2849 */ 2850static inline int skb_availroom(const struct sk_buff *skb) 2851{ 2852 if (skb_is_nonlinear(skb)) 2853 return 0; 2854 2855 return skb->end - skb->tail - skb->reserved_tailroom; 2856} 2857 2858/** 2859 * skb_reserve - adjust headroom 2860 * @skb: buffer to alter 2861 * @len: bytes to move 2862 * 2863 * Increase the headroom of an empty &sk_buff by reducing the tail 2864 * room. This is only allowed for an empty buffer. 2865 */ 2866static inline void skb_reserve(struct sk_buff *skb, int len) 2867{ 2868 skb->data += len; 2869 skb->tail += len; 2870} 2871 2872/** 2873 * skb_tailroom_reserve - adjust reserved_tailroom 2874 * @skb: buffer to alter 2875 * @mtu: maximum amount of headlen permitted 2876 * @needed_tailroom: minimum amount of reserved_tailroom 2877 * 2878 * Set reserved_tailroom so that headlen can be as large as possible but 2879 * not larger than mtu and tailroom cannot be smaller than 2880 * needed_tailroom. 2881 * The required headroom should already have been reserved before using 2882 * this function. 2883 */ 2884static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2885 unsigned int needed_tailroom) 2886{ 2887 SKB_LINEAR_ASSERT(skb); 2888 if (mtu < skb_tailroom(skb) - needed_tailroom) 2889 /* use at most mtu */ 2890 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2891 else 2892 /* use up to all available space */ 2893 skb->reserved_tailroom = needed_tailroom; 2894} 2895 2896#define ENCAP_TYPE_ETHER 0 2897#define ENCAP_TYPE_IPPROTO 1 2898 2899static inline void skb_set_inner_protocol(struct sk_buff *skb, 2900 __be16 protocol) 2901{ 2902 skb->inner_protocol = protocol; 2903 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2904} 2905 2906static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2907 __u8 ipproto) 2908{ 2909 skb->inner_ipproto = ipproto; 2910 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2911} 2912 2913static inline void skb_reset_inner_headers(struct sk_buff *skb) 2914{ 2915 skb->inner_mac_header = skb->mac_header; 2916 skb->inner_network_header = skb->network_header; 2917 skb->inner_transport_header = skb->transport_header; 2918} 2919 2920static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2921{ 2922 return skb->mac_header != (typeof(skb->mac_header))~0U; 2923} 2924 2925static inline void skb_reset_mac_len(struct sk_buff *skb) 2926{ 2927 if (!skb_mac_header_was_set(skb)) { 2928 DEBUG_NET_WARN_ON_ONCE(1); 2929 skb->mac_len = 0; 2930 } else { 2931 skb->mac_len = skb->network_header - skb->mac_header; 2932 } 2933} 2934 2935static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2936 *skb) 2937{ 2938 return skb->head + skb->inner_transport_header; 2939} 2940 2941static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2942{ 2943 return skb_inner_transport_header(skb) - skb->data; 2944} 2945 2946static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2947{ 2948 long offset = skb->data - skb->head; 2949 2950 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); 2951 skb->inner_transport_header = offset; 2952} 2953 2954static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2955 const int offset) 2956{ 2957 skb_reset_inner_transport_header(skb); 2958 skb->inner_transport_header += offset; 2959} 2960 2961static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2962{ 2963 return skb->head + skb->inner_network_header; 2964} 2965 2966static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2967{ 2968 long offset = skb->data - skb->head; 2969 2970 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); 2971 skb->inner_network_header = offset; 2972} 2973 2974static inline void skb_set_inner_network_header(struct sk_buff *skb, 2975 const int offset) 2976{ 2977 skb_reset_inner_network_header(skb); 2978 skb->inner_network_header += offset; 2979} 2980 2981static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2982{ 2983 return skb->inner_network_header > 0; 2984} 2985 2986static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2987{ 2988 return skb->head + skb->inner_mac_header; 2989} 2990 2991static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2992{ 2993 long offset = skb->data - skb->head; 2994 2995 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); 2996 skb->inner_mac_header = offset; 2997} 2998 2999static inline void skb_set_inner_mac_header(struct sk_buff *skb, 3000 const int offset) 3001{ 3002 skb_reset_inner_mac_header(skb); 3003 skb->inner_mac_header += offset; 3004} 3005static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 3006{ 3007 return skb->transport_header != (typeof(skb->transport_header))~0U; 3008} 3009 3010static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 3011{ 3012 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3013 return skb->head + skb->transport_header; 3014} 3015 3016static inline void skb_reset_transport_header(struct sk_buff *skb) 3017{ 3018 long offset = skb->data - skb->head; 3019 3020 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); 3021 skb->transport_header = offset; 3022} 3023 3024static inline void skb_set_transport_header(struct sk_buff *skb, 3025 const int offset) 3026{ 3027 skb_reset_transport_header(skb); 3028 skb->transport_header += offset; 3029} 3030 3031static inline unsigned char *skb_network_header(const struct sk_buff *skb) 3032{ 3033 return skb->head + skb->network_header; 3034} 3035 3036static inline void skb_reset_network_header(struct sk_buff *skb) 3037{ 3038 long offset = skb->data - skb->head; 3039 3040 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); 3041 skb->network_header = offset; 3042} 3043 3044static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 3045{ 3046 skb_reset_network_header(skb); 3047 skb->network_header += offset; 3048} 3049 3050static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3051{ 3052 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3053 return skb->head + skb->mac_header; 3054} 3055 3056static inline int skb_mac_offset(const struct sk_buff *skb) 3057{ 3058 return skb_mac_header(skb) - skb->data; 3059} 3060 3061static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3062{ 3063 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3064 return skb->network_header - skb->mac_header; 3065} 3066 3067static inline void skb_unset_mac_header(struct sk_buff *skb) 3068{ 3069 skb->mac_header = (typeof(skb->mac_header))~0U; 3070} 3071 3072static inline void skb_reset_mac_header(struct sk_buff *skb) 3073{ 3074 long offset = skb->data - skb->head; 3075 3076 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); 3077 skb->mac_header = offset; 3078} 3079 3080static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3081{ 3082 skb_reset_mac_header(skb); 3083 skb->mac_header += offset; 3084} 3085 3086static inline void skb_pop_mac_header(struct sk_buff *skb) 3087{ 3088 skb->mac_header = skb->network_header; 3089} 3090 3091static inline void skb_probe_transport_header(struct sk_buff *skb) 3092{ 3093 struct flow_keys_basic keys; 3094 3095 if (skb_transport_header_was_set(skb)) 3096 return; 3097 3098 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3099 NULL, 0, 0, 0, 0)) 3100 skb_set_transport_header(skb, keys.control.thoff); 3101} 3102 3103static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3104{ 3105 if (skb_mac_header_was_set(skb)) { 3106 const unsigned char *old_mac = skb_mac_header(skb); 3107 3108 skb_set_mac_header(skb, -skb->mac_len); 3109 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3110 } 3111} 3112 3113/* Move the full mac header up to current network_header. 3114 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3115 * Must be provided the complete mac header length. 3116 */ 3117static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3118{ 3119 if (skb_mac_header_was_set(skb)) { 3120 const unsigned char *old_mac = skb_mac_header(skb); 3121 3122 skb_set_mac_header(skb, -full_mac_len); 3123 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3124 __skb_push(skb, full_mac_len - skb->mac_len); 3125 } 3126} 3127 3128static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3129{ 3130 return skb->csum_start - skb_headroom(skb); 3131} 3132 3133static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3134{ 3135 return skb->head + skb->csum_start; 3136} 3137 3138static inline int skb_transport_offset(const struct sk_buff *skb) 3139{ 3140 return skb_transport_header(skb) - skb->data; 3141} 3142 3143static inline u32 skb_network_header_len(const struct sk_buff *skb) 3144{ 3145 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3146 return skb->transport_header - skb->network_header; 3147} 3148 3149static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3150{ 3151 return skb->inner_transport_header - skb->inner_network_header; 3152} 3153 3154static inline int skb_network_offset(const struct sk_buff *skb) 3155{ 3156 return skb_network_header(skb) - skb->data; 3157} 3158 3159static inline int skb_inner_network_offset(const struct sk_buff *skb) 3160{ 3161 return skb_inner_network_header(skb) - skb->data; 3162} 3163 3164static inline enum skb_drop_reason 3165pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) 3166{ 3167 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len); 3168} 3169 3170static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3171{ 3172 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 3173} 3174 3175/* 3176 * CPUs often take a performance hit when accessing unaligned memory 3177 * locations. The actual performance hit varies, it can be small if the 3178 * hardware handles it or large if we have to take an exception and fix it 3179 * in software. 3180 * 3181 * Since an ethernet header is 14 bytes network drivers often end up with 3182 * the IP header at an unaligned offset. The IP header can be aligned by 3183 * shifting the start of the packet by 2 bytes. Drivers should do this 3184 * with: 3185 * 3186 * skb_reserve(skb, NET_IP_ALIGN); 3187 * 3188 * The downside to this alignment of the IP header is that the DMA is now 3189 * unaligned. On some architectures the cost of an unaligned DMA is high 3190 * and this cost outweighs the gains made by aligning the IP header. 3191 * 3192 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3193 * to be overridden. 3194 */ 3195#ifndef NET_IP_ALIGN 3196#define NET_IP_ALIGN 2 3197#endif 3198 3199/* 3200 * The networking layer reserves some headroom in skb data (via 3201 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3202 * the header has to grow. In the default case, if the header has to grow 3203 * 32 bytes or less we avoid the reallocation. 3204 * 3205 * Unfortunately this headroom changes the DMA alignment of the resulting 3206 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3207 * on some architectures. An architecture can override this value, 3208 * perhaps setting it to a cacheline in size (since that will maintain 3209 * cacheline alignment of the DMA). It must be a power of 2. 3210 * 3211 * Various parts of the networking layer expect at least 32 bytes of 3212 * headroom, you should not reduce this. 3213 * 3214 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3215 * to reduce average number of cache lines per packet. 3216 * get_rps_cpu() for example only access one 64 bytes aligned block : 3217 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3218 */ 3219#ifndef NET_SKB_PAD 3220#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3221#endif 3222 3223int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3224 3225static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3226{ 3227 if (WARN_ON(skb_is_nonlinear(skb))) 3228 return; 3229 skb->len = len; 3230 skb_set_tail_pointer(skb, len); 3231} 3232 3233static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3234{ 3235 __skb_set_length(skb, len); 3236} 3237 3238void skb_trim(struct sk_buff *skb, unsigned int len); 3239 3240static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3241{ 3242 if (skb->data_len) 3243 return ___pskb_trim(skb, len); 3244 __skb_trim(skb, len); 3245 return 0; 3246} 3247 3248static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3249{ 3250 skb_might_realloc(skb); 3251 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3252} 3253 3254/** 3255 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3256 * @skb: buffer to alter 3257 * @len: new length 3258 * 3259 * This is identical to pskb_trim except that the caller knows that 3260 * the skb is not cloned so we should never get an error due to out- 3261 * of-memory. 3262 */ 3263static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3264{ 3265 int err = pskb_trim(skb, len); 3266 BUG_ON(err); 3267} 3268 3269static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3270{ 3271 unsigned int diff = len - skb->len; 3272 3273 if (skb_tailroom(skb) < diff) { 3274 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3275 GFP_ATOMIC); 3276 if (ret) 3277 return ret; 3278 } 3279 __skb_set_length(skb, len); 3280 return 0; 3281} 3282 3283/** 3284 * skb_orphan - orphan a buffer 3285 * @skb: buffer to orphan 3286 * 3287 * If a buffer currently has an owner then we call the owner's 3288 * destructor function and make the @skb unowned. The buffer continues 3289 * to exist but is no longer charged to its former owner. 3290 */ 3291static inline void skb_orphan(struct sk_buff *skb) 3292{ 3293 if (skb->destructor) { 3294 skb->destructor(skb); 3295 skb->destructor = NULL; 3296 skb->sk = NULL; 3297 } else { 3298 BUG_ON(skb->sk); 3299 } 3300} 3301 3302/** 3303 * skb_orphan_frags - orphan the frags contained in a buffer 3304 * @skb: buffer to orphan frags from 3305 * @gfp_mask: allocation mask for replacement pages 3306 * 3307 * For each frag in the SKB which needs a destructor (i.e. has an 3308 * owner) create a copy of that frag and release the original 3309 * page by calling the destructor. 3310 */ 3311static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3312{ 3313 if (likely(!skb_zcopy(skb))) 3314 return 0; 3315 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3316 return 0; 3317 return skb_copy_ubufs(skb, gfp_mask); 3318} 3319 3320/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3321static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3322{ 3323 if (likely(!skb_zcopy(skb))) 3324 return 0; 3325 return skb_copy_ubufs(skb, gfp_mask); 3326} 3327 3328/** 3329 * __skb_queue_purge_reason - empty a list 3330 * @list: list to empty 3331 * @reason: drop reason 3332 * 3333 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3334 * the list and one reference dropped. This function does not take the 3335 * list lock and the caller must hold the relevant locks to use it. 3336 */ 3337static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3338 enum skb_drop_reason reason) 3339{ 3340 struct sk_buff *skb; 3341 3342 while ((skb = __skb_dequeue(list)) != NULL) 3343 kfree_skb_reason(skb, reason); 3344} 3345 3346static inline void __skb_queue_purge(struct sk_buff_head *list) 3347{ 3348 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3349} 3350 3351void skb_queue_purge_reason(struct sk_buff_head *list, 3352 enum skb_drop_reason reason); 3353 3354static inline void skb_queue_purge(struct sk_buff_head *list) 3355{ 3356 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3357} 3358 3359unsigned int skb_rbtree_purge(struct rb_root *root); 3360void skb_errqueue_purge(struct sk_buff_head *list); 3361 3362void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3363 3364/** 3365 * netdev_alloc_frag - allocate a page fragment 3366 * @fragsz: fragment size 3367 * 3368 * Allocates a frag from a page for receive buffer. 3369 * Uses GFP_ATOMIC allocations. 3370 */ 3371static inline void *netdev_alloc_frag(unsigned int fragsz) 3372{ 3373 return __netdev_alloc_frag_align(fragsz, ~0u); 3374} 3375 3376static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3377 unsigned int align) 3378{ 3379 WARN_ON_ONCE(!is_power_of_2(align)); 3380 return __netdev_alloc_frag_align(fragsz, -align); 3381} 3382 3383struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3384 gfp_t gfp_mask); 3385 3386/** 3387 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3388 * @dev: network device to receive on 3389 * @length: length to allocate 3390 * 3391 * Allocate a new &sk_buff and assign it a usage count of one. The 3392 * buffer has unspecified headroom built in. Users should allocate 3393 * the headroom they think they need without accounting for the 3394 * built in space. The built in space is used for optimisations. 3395 * 3396 * %NULL is returned if there is no free memory. Although this function 3397 * allocates memory it can be called from an interrupt. 3398 */ 3399static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3400 unsigned int length) 3401{ 3402 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3403} 3404 3405/* legacy helper around __netdev_alloc_skb() */ 3406static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3407 gfp_t gfp_mask) 3408{ 3409 return __netdev_alloc_skb(NULL, length, gfp_mask); 3410} 3411 3412/* legacy helper around netdev_alloc_skb() */ 3413static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3414{ 3415 return netdev_alloc_skb(NULL, length); 3416} 3417 3418 3419static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3420 unsigned int length, gfp_t gfp) 3421{ 3422 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3423 3424 if (NET_IP_ALIGN && skb) 3425 skb_reserve(skb, NET_IP_ALIGN); 3426 return skb; 3427} 3428 3429static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3430 unsigned int length) 3431{ 3432 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3433} 3434 3435static inline void skb_free_frag(void *addr) 3436{ 3437 page_frag_free(addr); 3438} 3439 3440void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3441 3442static inline void *napi_alloc_frag(unsigned int fragsz) 3443{ 3444 return __napi_alloc_frag_align(fragsz, ~0u); 3445} 3446 3447static inline void *napi_alloc_frag_align(unsigned int fragsz, 3448 unsigned int align) 3449{ 3450 WARN_ON_ONCE(!is_power_of_2(align)); 3451 return __napi_alloc_frag_align(fragsz, -align); 3452} 3453 3454struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3455void napi_consume_skb(struct sk_buff *skb, int budget); 3456 3457void napi_skb_free_stolen_head(struct sk_buff *skb); 3458void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3459 3460/** 3461 * __dev_alloc_pages - allocate page for network Rx 3462 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3463 * @order: size of the allocation 3464 * 3465 * Allocate a new page. 3466 * 3467 * %NULL is returned if there is no free memory. 3468*/ 3469static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3470 unsigned int order) 3471{ 3472 /* This piece of code contains several assumptions. 3473 * 1. This is for device Rx, therefore a cold page is preferred. 3474 * 2. The expectation is the user wants a compound page. 3475 * 3. If requesting a order 0 page it will not be compound 3476 * due to the check to see if order has a value in prep_new_page 3477 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3478 * code in gfp_to_alloc_flags that should be enforcing this. 3479 */ 3480 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3481 3482 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3483} 3484#define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3485 3486/* 3487 * This specialized allocator has to be a macro for its allocations to be 3488 * accounted separately (to have a separate alloc_tag). 3489 */ 3490#define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3491 3492/** 3493 * __dev_alloc_page - allocate a page for network Rx 3494 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3495 * 3496 * Allocate a new page. 3497 * 3498 * %NULL is returned if there is no free memory. 3499 */ 3500static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3501{ 3502 return __dev_alloc_pages_noprof(gfp_mask, 0); 3503} 3504#define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3505 3506/* 3507 * This specialized allocator has to be a macro for its allocations to be 3508 * accounted separately (to have a separate alloc_tag). 3509 */ 3510#define dev_alloc_page() dev_alloc_pages(0) 3511 3512/** 3513 * dev_page_is_reusable - check whether a page can be reused for network Rx 3514 * @page: the page to test 3515 * 3516 * A page shouldn't be considered for reusing/recycling if it was allocated 3517 * under memory pressure or at a distant memory node. 3518 * 3519 * Returns false if this page should be returned to page allocator, true 3520 * otherwise. 3521 */ 3522static inline bool dev_page_is_reusable(const struct page *page) 3523{ 3524 return likely(page_to_nid(page) == numa_mem_id() && 3525 !page_is_pfmemalloc(page)); 3526} 3527 3528/** 3529 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3530 * @page: The page that was allocated from skb_alloc_page 3531 * @skb: The skb that may need pfmemalloc set 3532 */ 3533static inline void skb_propagate_pfmemalloc(const struct page *page, 3534 struct sk_buff *skb) 3535{ 3536 if (page_is_pfmemalloc(page)) 3537 skb->pfmemalloc = true; 3538} 3539 3540/** 3541 * skb_frag_off() - Returns the offset of a skb fragment 3542 * @frag: the paged fragment 3543 */ 3544static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3545{ 3546 return frag->offset; 3547} 3548 3549/** 3550 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3551 * @frag: skb fragment 3552 * @delta: value to add 3553 */ 3554static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3555{ 3556 frag->offset += delta; 3557} 3558 3559/** 3560 * skb_frag_off_set() - Sets the offset of a skb fragment 3561 * @frag: skb fragment 3562 * @offset: offset of fragment 3563 */ 3564static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3565{ 3566 frag->offset = offset; 3567} 3568 3569/** 3570 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3571 * @fragto: skb fragment where offset is set 3572 * @fragfrom: skb fragment offset is copied from 3573 */ 3574static inline void skb_frag_off_copy(skb_frag_t *fragto, 3575 const skb_frag_t *fragfrom) 3576{ 3577 fragto->offset = fragfrom->offset; 3578} 3579 3580/* Return: true if the skb_frag contains a net_iov. */ 3581static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) 3582{ 3583 return netmem_is_net_iov(frag->netmem); 3584} 3585 3586/** 3587 * skb_frag_net_iov - retrieve the net_iov referred to by fragment 3588 * @frag: the fragment 3589 * 3590 * Return: the &struct net_iov associated with @frag. Returns NULL if this 3591 * frag has no associated net_iov. 3592 */ 3593static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) 3594{ 3595 if (!skb_frag_is_net_iov(frag)) 3596 return NULL; 3597 3598 return netmem_to_net_iov(frag->netmem); 3599} 3600 3601/** 3602 * skb_frag_page - retrieve the page referred to by a paged fragment 3603 * @frag: the paged fragment 3604 * 3605 * Return: the &struct page associated with @frag. Returns NULL if this frag 3606 * has no associated page. 3607 */ 3608static inline struct page *skb_frag_page(const skb_frag_t *frag) 3609{ 3610 if (skb_frag_is_net_iov(frag)) 3611 return NULL; 3612 3613 return netmem_to_page(frag->netmem); 3614} 3615 3616/** 3617 * skb_frag_netmem - retrieve the netmem referred to by a fragment 3618 * @frag: the fragment 3619 * 3620 * Return: the &netmem_ref associated with @frag. 3621 */ 3622static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) 3623{ 3624 return frag->netmem; 3625} 3626 3627int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3628 unsigned int headroom); 3629int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3630 struct bpf_prog *prog); 3631 3632/** 3633 * skb_frag_address - gets the address of the data contained in a paged fragment 3634 * @frag: the paged fragment buffer 3635 * 3636 * Returns the address of the data within @frag. The page must already 3637 * be mapped. 3638 */ 3639static inline void *skb_frag_address(const skb_frag_t *frag) 3640{ 3641 if (!skb_frag_page(frag)) 3642 return NULL; 3643 3644 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3645} 3646 3647/** 3648 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3649 * @frag: the paged fragment buffer 3650 * 3651 * Returns the address of the data within @frag. Checks that the page 3652 * is mapped and returns %NULL otherwise. 3653 */ 3654static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3655{ 3656 void *ptr = page_address(skb_frag_page(frag)); 3657 if (unlikely(!ptr)) 3658 return NULL; 3659 3660 return ptr + skb_frag_off(frag); 3661} 3662 3663/** 3664 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3665 * @fragto: skb fragment where page is set 3666 * @fragfrom: skb fragment page is copied from 3667 */ 3668static inline void skb_frag_page_copy(skb_frag_t *fragto, 3669 const skb_frag_t *fragfrom) 3670{ 3671 fragto->netmem = fragfrom->netmem; 3672} 3673 3674bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3675 3676/** 3677 * skb_frag_dma_map - maps a paged fragment via the DMA API 3678 * @dev: the device to map the fragment to 3679 * @frag: the paged fragment to map 3680 * @offset: the offset within the fragment (starting at the 3681 * fragment's own offset) 3682 * @size: the number of bytes to map 3683 * @dir: the direction of the mapping (``PCI_DMA_*``) 3684 * 3685 * Maps the page associated with @frag to @device. 3686 */ 3687static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3688 const skb_frag_t *frag, 3689 size_t offset, size_t size, 3690 enum dma_data_direction dir) 3691{ 3692 return dma_map_page(dev, skb_frag_page(frag), 3693 skb_frag_off(frag) + offset, size, dir); 3694} 3695 3696static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3697 gfp_t gfp_mask) 3698{ 3699 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3700} 3701 3702 3703static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3704 gfp_t gfp_mask) 3705{ 3706 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3707} 3708 3709 3710/** 3711 * skb_clone_writable - is the header of a clone writable 3712 * @skb: buffer to check 3713 * @len: length up to which to write 3714 * 3715 * Returns true if modifying the header part of the cloned buffer 3716 * does not requires the data to be copied. 3717 */ 3718static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3719{ 3720 return !skb_header_cloned(skb) && 3721 skb_headroom(skb) + len <= skb->hdr_len; 3722} 3723 3724static inline int skb_try_make_writable(struct sk_buff *skb, 3725 unsigned int write_len) 3726{ 3727 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3728 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3729} 3730 3731static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3732 int cloned) 3733{ 3734 int delta = 0; 3735 3736 if (headroom > skb_headroom(skb)) 3737 delta = headroom - skb_headroom(skb); 3738 3739 if (delta || cloned) 3740 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3741 GFP_ATOMIC); 3742 return 0; 3743} 3744 3745/** 3746 * skb_cow - copy header of skb when it is required 3747 * @skb: buffer to cow 3748 * @headroom: needed headroom 3749 * 3750 * If the skb passed lacks sufficient headroom or its data part 3751 * is shared, data is reallocated. If reallocation fails, an error 3752 * is returned and original skb is not changed. 3753 * 3754 * The result is skb with writable area skb->head...skb->tail 3755 * and at least @headroom of space at head. 3756 */ 3757static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3758{ 3759 return __skb_cow(skb, headroom, skb_cloned(skb)); 3760} 3761 3762/** 3763 * skb_cow_head - skb_cow but only making the head writable 3764 * @skb: buffer to cow 3765 * @headroom: needed headroom 3766 * 3767 * This function is identical to skb_cow except that we replace the 3768 * skb_cloned check by skb_header_cloned. It should be used when 3769 * you only need to push on some header and do not need to modify 3770 * the data. 3771 */ 3772static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3773{ 3774 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3775} 3776 3777/** 3778 * skb_padto - pad an skbuff up to a minimal size 3779 * @skb: buffer to pad 3780 * @len: minimal length 3781 * 3782 * Pads up a buffer to ensure the trailing bytes exist and are 3783 * blanked. If the buffer already contains sufficient data it 3784 * is untouched. Otherwise it is extended. Returns zero on 3785 * success. The skb is freed on error. 3786 */ 3787static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3788{ 3789 unsigned int size = skb->len; 3790 if (likely(size >= len)) 3791 return 0; 3792 return skb_pad(skb, len - size); 3793} 3794 3795/** 3796 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3797 * @skb: buffer to pad 3798 * @len: minimal length 3799 * @free_on_error: free buffer on error 3800 * 3801 * Pads up a buffer to ensure the trailing bytes exist and are 3802 * blanked. If the buffer already contains sufficient data it 3803 * is untouched. Otherwise it is extended. Returns zero on 3804 * success. The skb is freed on error if @free_on_error is true. 3805 */ 3806static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3807 unsigned int len, 3808 bool free_on_error) 3809{ 3810 unsigned int size = skb->len; 3811 3812 if (unlikely(size < len)) { 3813 len -= size; 3814 if (__skb_pad(skb, len, free_on_error)) 3815 return -ENOMEM; 3816 __skb_put(skb, len); 3817 } 3818 return 0; 3819} 3820 3821/** 3822 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3823 * @skb: buffer to pad 3824 * @len: minimal length 3825 * 3826 * Pads up a buffer to ensure the trailing bytes exist and are 3827 * blanked. If the buffer already contains sufficient data it 3828 * is untouched. Otherwise it is extended. Returns zero on 3829 * success. The skb is freed on error. 3830 */ 3831static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3832{ 3833 return __skb_put_padto(skb, len, true); 3834} 3835 3836bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3837 __must_check; 3838 3839static inline int skb_add_data(struct sk_buff *skb, 3840 struct iov_iter *from, int copy) 3841{ 3842 const int off = skb->len; 3843 3844 if (skb->ip_summed == CHECKSUM_NONE) { 3845 __wsum csum = 0; 3846 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3847 &csum, from)) { 3848 skb->csum = csum_block_add(skb->csum, csum, off); 3849 return 0; 3850 } 3851 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3852 return 0; 3853 3854 __skb_trim(skb, off); 3855 return -EFAULT; 3856} 3857 3858static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3859 const struct page *page, int off) 3860{ 3861 if (skb_zcopy(skb)) 3862 return false; 3863 if (i) { 3864 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3865 3866 return page == skb_frag_page(frag) && 3867 off == skb_frag_off(frag) + skb_frag_size(frag); 3868 } 3869 return false; 3870} 3871 3872static inline int __skb_linearize(struct sk_buff *skb) 3873{ 3874 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3875} 3876 3877/** 3878 * skb_linearize - convert paged skb to linear one 3879 * @skb: buffer to linarize 3880 * 3881 * If there is no free memory -ENOMEM is returned, otherwise zero 3882 * is returned and the old skb data released. 3883 */ 3884static inline int skb_linearize(struct sk_buff *skb) 3885{ 3886 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3887} 3888 3889/** 3890 * skb_has_shared_frag - can any frag be overwritten 3891 * @skb: buffer to test 3892 * 3893 * Return true if the skb has at least one frag that might be modified 3894 * by an external entity (as in vmsplice()/sendfile()) 3895 */ 3896static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3897{ 3898 return skb_is_nonlinear(skb) && 3899 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3900} 3901 3902/** 3903 * skb_linearize_cow - make sure skb is linear and writable 3904 * @skb: buffer to process 3905 * 3906 * If there is no free memory -ENOMEM is returned, otherwise zero 3907 * is returned and the old skb data released. 3908 */ 3909static inline int skb_linearize_cow(struct sk_buff *skb) 3910{ 3911 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3912 __skb_linearize(skb) : 0; 3913} 3914 3915static __always_inline void 3916__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3917 unsigned int off) 3918{ 3919 if (skb->ip_summed == CHECKSUM_COMPLETE) 3920 skb->csum = csum_block_sub(skb->csum, 3921 csum_partial(start, len, 0), off); 3922 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3923 skb_checksum_start_offset(skb) < 0) 3924 skb->ip_summed = CHECKSUM_NONE; 3925} 3926 3927/** 3928 * skb_postpull_rcsum - update checksum for received skb after pull 3929 * @skb: buffer to update 3930 * @start: start of data before pull 3931 * @len: length of data pulled 3932 * 3933 * After doing a pull on a received packet, you need to call this to 3934 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3935 * CHECKSUM_NONE so that it can be recomputed from scratch. 3936 */ 3937static inline void skb_postpull_rcsum(struct sk_buff *skb, 3938 const void *start, unsigned int len) 3939{ 3940 if (skb->ip_summed == CHECKSUM_COMPLETE) 3941 skb->csum = wsum_negate(csum_partial(start, len, 3942 wsum_negate(skb->csum))); 3943 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3944 skb_checksum_start_offset(skb) < 0) 3945 skb->ip_summed = CHECKSUM_NONE; 3946} 3947 3948static __always_inline void 3949__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3950 unsigned int off) 3951{ 3952 if (skb->ip_summed == CHECKSUM_COMPLETE) 3953 skb->csum = csum_block_add(skb->csum, 3954 csum_partial(start, len, 0), off); 3955} 3956 3957/** 3958 * skb_postpush_rcsum - update checksum for received skb after push 3959 * @skb: buffer to update 3960 * @start: start of data after push 3961 * @len: length of data pushed 3962 * 3963 * After doing a push on a received packet, you need to call this to 3964 * update the CHECKSUM_COMPLETE checksum. 3965 */ 3966static inline void skb_postpush_rcsum(struct sk_buff *skb, 3967 const void *start, unsigned int len) 3968{ 3969 __skb_postpush_rcsum(skb, start, len, 0); 3970} 3971 3972void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3973 3974/** 3975 * skb_push_rcsum - push skb and update receive checksum 3976 * @skb: buffer to update 3977 * @len: length of data pulled 3978 * 3979 * This function performs an skb_push on the packet and updates 3980 * the CHECKSUM_COMPLETE checksum. It should be used on 3981 * receive path processing instead of skb_push unless you know 3982 * that the checksum difference is zero (e.g., a valid IP header) 3983 * or you are setting ip_summed to CHECKSUM_NONE. 3984 */ 3985static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3986{ 3987 skb_push(skb, len); 3988 skb_postpush_rcsum(skb, skb->data, len); 3989 return skb->data; 3990} 3991 3992int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3993/** 3994 * pskb_trim_rcsum - trim received skb and update checksum 3995 * @skb: buffer to trim 3996 * @len: new length 3997 * 3998 * This is exactly the same as pskb_trim except that it ensures the 3999 * checksum of received packets are still valid after the operation. 4000 * It can change skb pointers. 4001 */ 4002 4003static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4004{ 4005 skb_might_realloc(skb); 4006 if (likely(len >= skb->len)) 4007 return 0; 4008 return pskb_trim_rcsum_slow(skb, len); 4009} 4010 4011static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4012{ 4013 if (skb->ip_summed == CHECKSUM_COMPLETE) 4014 skb->ip_summed = CHECKSUM_NONE; 4015 __skb_trim(skb, len); 4016 return 0; 4017} 4018 4019static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 4020{ 4021 if (skb->ip_summed == CHECKSUM_COMPLETE) 4022 skb->ip_summed = CHECKSUM_NONE; 4023 return __skb_grow(skb, len); 4024} 4025 4026#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 4027#define skb_rb_first(root) rb_to_skb(rb_first(root)) 4028#define skb_rb_last(root) rb_to_skb(rb_last(root)) 4029#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 4030#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 4031 4032#define skb_queue_walk(queue, skb) \ 4033 for (skb = (queue)->next; \ 4034 skb != (struct sk_buff *)(queue); \ 4035 skb = skb->next) 4036 4037#define skb_queue_walk_safe(queue, skb, tmp) \ 4038 for (skb = (queue)->next, tmp = skb->next; \ 4039 skb != (struct sk_buff *)(queue); \ 4040 skb = tmp, tmp = skb->next) 4041 4042#define skb_queue_walk_from(queue, skb) \ 4043 for (; skb != (struct sk_buff *)(queue); \ 4044 skb = skb->next) 4045 4046#define skb_rbtree_walk(skb, root) \ 4047 for (skb = skb_rb_first(root); skb != NULL; \ 4048 skb = skb_rb_next(skb)) 4049 4050#define skb_rbtree_walk_from(skb) \ 4051 for (; skb != NULL; \ 4052 skb = skb_rb_next(skb)) 4053 4054#define skb_rbtree_walk_from_safe(skb, tmp) \ 4055 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 4056 skb = tmp) 4057 4058#define skb_queue_walk_from_safe(queue, skb, tmp) \ 4059 for (tmp = skb->next; \ 4060 skb != (struct sk_buff *)(queue); \ 4061 skb = tmp, tmp = skb->next) 4062 4063#define skb_queue_reverse_walk(queue, skb) \ 4064 for (skb = (queue)->prev; \ 4065 skb != (struct sk_buff *)(queue); \ 4066 skb = skb->prev) 4067 4068#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 4069 for (skb = (queue)->prev, tmp = skb->prev; \ 4070 skb != (struct sk_buff *)(queue); \ 4071 skb = tmp, tmp = skb->prev) 4072 4073#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 4074 for (tmp = skb->prev; \ 4075 skb != (struct sk_buff *)(queue); \ 4076 skb = tmp, tmp = skb->prev) 4077 4078static inline bool skb_has_frag_list(const struct sk_buff *skb) 4079{ 4080 return skb_shinfo(skb)->frag_list != NULL; 4081} 4082 4083static inline void skb_frag_list_init(struct sk_buff *skb) 4084{ 4085 skb_shinfo(skb)->frag_list = NULL; 4086} 4087 4088#define skb_walk_frags(skb, iter) \ 4089 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4090 4091 4092int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4093 int *err, long *timeo_p, 4094 const struct sk_buff *skb); 4095struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 4096 struct sk_buff_head *queue, 4097 unsigned int flags, 4098 int *off, int *err, 4099 struct sk_buff **last); 4100struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4101 struct sk_buff_head *queue, 4102 unsigned int flags, int *off, int *err, 4103 struct sk_buff **last); 4104struct sk_buff *__skb_recv_datagram(struct sock *sk, 4105 struct sk_buff_head *sk_queue, 4106 unsigned int flags, int *off, int *err); 4107struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4108__poll_t datagram_poll(struct file *file, struct socket *sock, 4109 struct poll_table_struct *wait); 4110int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4111 struct iov_iter *to, int size); 4112static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4113 struct msghdr *msg, int size) 4114{ 4115 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4116} 4117int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4118 struct msghdr *msg); 4119int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4120 struct iov_iter *to, int len, 4121 struct ahash_request *hash); 4122int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4123 struct iov_iter *from, int len); 4124int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4125void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4126int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4127int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4128int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4129__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4130 int len); 4131int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4132 struct pipe_inode_info *pipe, unsigned int len, 4133 unsigned int flags); 4134int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4135 int len); 4136int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4137void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4138unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4139int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4140 int len, int hlen); 4141void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4142int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4143void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4144struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4145struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4146 unsigned int offset); 4147struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4148int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4149int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4150int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4151int skb_vlan_pop(struct sk_buff *skb); 4152int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4153int skb_eth_pop(struct sk_buff *skb); 4154int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4155 const unsigned char *src); 4156int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4157 int mac_len, bool ethernet); 4158int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4159 bool ethernet); 4160int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4161int skb_mpls_dec_ttl(struct sk_buff *skb); 4162struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4163 gfp_t gfp); 4164 4165static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4166{ 4167 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4168} 4169 4170static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4171{ 4172 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4173} 4174 4175struct skb_checksum_ops { 4176 __wsum (*update)(const void *mem, int len, __wsum wsum); 4177 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4178}; 4179 4180extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4181 4182__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4183 __wsum csum, const struct skb_checksum_ops *ops); 4184__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4185 __wsum csum); 4186 4187static inline void * __must_check 4188__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4189 const void *data, int hlen, void *buffer) 4190{ 4191 if (likely(hlen - offset >= len)) 4192 return (void *)data + offset; 4193 4194 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4195 return NULL; 4196 4197 return buffer; 4198} 4199 4200static inline void * __must_check 4201skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4202{ 4203 return __skb_header_pointer(skb, offset, len, skb->data, 4204 skb_headlen(skb), buffer); 4205} 4206 4207static inline void * __must_check 4208skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4209{ 4210 if (likely(skb_headlen(skb) - offset >= len)) 4211 return skb->data + offset; 4212 return NULL; 4213} 4214 4215/** 4216 * skb_needs_linearize - check if we need to linearize a given skb 4217 * depending on the given device features. 4218 * @skb: socket buffer to check 4219 * @features: net device features 4220 * 4221 * Returns true if either: 4222 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4223 * 2. skb is fragmented and the device does not support SG. 4224 */ 4225static inline bool skb_needs_linearize(struct sk_buff *skb, 4226 netdev_features_t features) 4227{ 4228 return skb_is_nonlinear(skb) && 4229 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4230 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4231} 4232 4233static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4234 void *to, 4235 const unsigned int len) 4236{ 4237 memcpy(to, skb->data, len); 4238} 4239 4240static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4241 const int offset, void *to, 4242 const unsigned int len) 4243{ 4244 memcpy(to, skb->data + offset, len); 4245} 4246 4247static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4248 const void *from, 4249 const unsigned int len) 4250{ 4251 memcpy(skb->data, from, len); 4252} 4253 4254static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4255 const int offset, 4256 const void *from, 4257 const unsigned int len) 4258{ 4259 memcpy(skb->data + offset, from, len); 4260} 4261 4262void skb_init(void); 4263 4264static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4265{ 4266 return skb->tstamp; 4267} 4268 4269/** 4270 * skb_get_timestamp - get timestamp from a skb 4271 * @skb: skb to get stamp from 4272 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4273 * 4274 * Timestamps are stored in the skb as offsets to a base timestamp. 4275 * This function converts the offset back to a struct timeval and stores 4276 * it in stamp. 4277 */ 4278static inline void skb_get_timestamp(const struct sk_buff *skb, 4279 struct __kernel_old_timeval *stamp) 4280{ 4281 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4282} 4283 4284static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4285 struct __kernel_sock_timeval *stamp) 4286{ 4287 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4288 4289 stamp->tv_sec = ts.tv_sec; 4290 stamp->tv_usec = ts.tv_nsec / 1000; 4291} 4292 4293static inline void skb_get_timestampns(const struct sk_buff *skb, 4294 struct __kernel_old_timespec *stamp) 4295{ 4296 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4297 4298 stamp->tv_sec = ts.tv_sec; 4299 stamp->tv_nsec = ts.tv_nsec; 4300} 4301 4302static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4303 struct __kernel_timespec *stamp) 4304{ 4305 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4306 4307 stamp->tv_sec = ts.tv_sec; 4308 stamp->tv_nsec = ts.tv_nsec; 4309} 4310 4311static inline void __net_timestamp(struct sk_buff *skb) 4312{ 4313 skb->tstamp = ktime_get_real(); 4314 skb->tstamp_type = SKB_CLOCK_REALTIME; 4315} 4316 4317static inline ktime_t net_timedelta(ktime_t t) 4318{ 4319 return ktime_sub(ktime_get_real(), t); 4320} 4321 4322static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4323 u8 tstamp_type) 4324{ 4325 skb->tstamp = kt; 4326 4327 if (kt) 4328 skb->tstamp_type = tstamp_type; 4329 else 4330 skb->tstamp_type = SKB_CLOCK_REALTIME; 4331} 4332 4333static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4334 ktime_t kt, clockid_t clockid) 4335{ 4336 u8 tstamp_type = SKB_CLOCK_REALTIME; 4337 4338 switch (clockid) { 4339 case CLOCK_REALTIME: 4340 break; 4341 case CLOCK_MONOTONIC: 4342 tstamp_type = SKB_CLOCK_MONOTONIC; 4343 break; 4344 case CLOCK_TAI: 4345 tstamp_type = SKB_CLOCK_TAI; 4346 break; 4347 default: 4348 WARN_ON_ONCE(1); 4349 kt = 0; 4350 } 4351 4352 skb_set_delivery_time(skb, kt, tstamp_type); 4353} 4354 4355DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4356 4357/* It is used in the ingress path to clear the delivery_time. 4358 * If needed, set the skb->tstamp to the (rcv) timestamp. 4359 */ 4360static inline void skb_clear_delivery_time(struct sk_buff *skb) 4361{ 4362 if (skb->tstamp_type) { 4363 skb->tstamp_type = SKB_CLOCK_REALTIME; 4364 if (static_branch_unlikely(&netstamp_needed_key)) 4365 skb->tstamp = ktime_get_real(); 4366 else 4367 skb->tstamp = 0; 4368 } 4369} 4370 4371static inline void skb_clear_tstamp(struct sk_buff *skb) 4372{ 4373 if (skb->tstamp_type) 4374 return; 4375 4376 skb->tstamp = 0; 4377} 4378 4379static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4380{ 4381 if (skb->tstamp_type) 4382 return 0; 4383 4384 return skb->tstamp; 4385} 4386 4387static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4388{ 4389 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4390 return skb->tstamp; 4391 4392 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4393 return ktime_get_real(); 4394 4395 return 0; 4396} 4397 4398static inline u8 skb_metadata_len(const struct sk_buff *skb) 4399{ 4400 return skb_shinfo(skb)->meta_len; 4401} 4402 4403static inline void *skb_metadata_end(const struct sk_buff *skb) 4404{ 4405 return skb_mac_header(skb); 4406} 4407 4408static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4409 const struct sk_buff *skb_b, 4410 u8 meta_len) 4411{ 4412 const void *a = skb_metadata_end(skb_a); 4413 const void *b = skb_metadata_end(skb_b); 4414 u64 diffs = 0; 4415 4416 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4417 BITS_PER_LONG != 64) 4418 goto slow; 4419 4420 /* Using more efficient variant than plain call to memcmp(). */ 4421 switch (meta_len) { 4422#define __it(x, op) (x -= sizeof(u##op)) 4423#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4424 case 32: diffs |= __it_diff(a, b, 64); 4425 fallthrough; 4426 case 24: diffs |= __it_diff(a, b, 64); 4427 fallthrough; 4428 case 16: diffs |= __it_diff(a, b, 64); 4429 fallthrough; 4430 case 8: diffs |= __it_diff(a, b, 64); 4431 break; 4432 case 28: diffs |= __it_diff(a, b, 64); 4433 fallthrough; 4434 case 20: diffs |= __it_diff(a, b, 64); 4435 fallthrough; 4436 case 12: diffs |= __it_diff(a, b, 64); 4437 fallthrough; 4438 case 4: diffs |= __it_diff(a, b, 32); 4439 break; 4440 default: 4441slow: 4442 return memcmp(a - meta_len, b - meta_len, meta_len); 4443 } 4444 return diffs; 4445} 4446 4447static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4448 const struct sk_buff *skb_b) 4449{ 4450 u8 len_a = skb_metadata_len(skb_a); 4451 u8 len_b = skb_metadata_len(skb_b); 4452 4453 if (!(len_a | len_b)) 4454 return false; 4455 4456 return len_a != len_b ? 4457 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4458} 4459 4460static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4461{ 4462 skb_shinfo(skb)->meta_len = meta_len; 4463} 4464 4465static inline void skb_metadata_clear(struct sk_buff *skb) 4466{ 4467 skb_metadata_set(skb, 0); 4468} 4469 4470struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4471 4472#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4473 4474void skb_clone_tx_timestamp(struct sk_buff *skb); 4475bool skb_defer_rx_timestamp(struct sk_buff *skb); 4476 4477#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4478 4479static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4480{ 4481} 4482 4483static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4484{ 4485 return false; 4486} 4487 4488#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4489 4490/** 4491 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4492 * 4493 * PHY drivers may accept clones of transmitted packets for 4494 * timestamping via their phy_driver.txtstamp method. These drivers 4495 * must call this function to return the skb back to the stack with a 4496 * timestamp. 4497 * 4498 * @skb: clone of the original outgoing packet 4499 * @hwtstamps: hardware time stamps 4500 * 4501 */ 4502void skb_complete_tx_timestamp(struct sk_buff *skb, 4503 struct skb_shared_hwtstamps *hwtstamps); 4504 4505void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4506 struct skb_shared_hwtstamps *hwtstamps, 4507 struct sock *sk, int tstype); 4508 4509/** 4510 * skb_tstamp_tx - queue clone of skb with send time stamps 4511 * @orig_skb: the original outgoing packet 4512 * @hwtstamps: hardware time stamps, may be NULL if not available 4513 * 4514 * If the skb has a socket associated, then this function clones the 4515 * skb (thus sharing the actual data and optional structures), stores 4516 * the optional hardware time stamping information (if non NULL) or 4517 * generates a software time stamp (otherwise), then queues the clone 4518 * to the error queue of the socket. Errors are silently ignored. 4519 */ 4520void skb_tstamp_tx(struct sk_buff *orig_skb, 4521 struct skb_shared_hwtstamps *hwtstamps); 4522 4523/** 4524 * skb_tx_timestamp() - Driver hook for transmit timestamping 4525 * 4526 * Ethernet MAC Drivers should call this function in their hard_xmit() 4527 * function immediately before giving the sk_buff to the MAC hardware. 4528 * 4529 * Specifically, one should make absolutely sure that this function is 4530 * called before TX completion of this packet can trigger. Otherwise 4531 * the packet could potentially already be freed. 4532 * 4533 * @skb: A socket buffer. 4534 */ 4535static inline void skb_tx_timestamp(struct sk_buff *skb) 4536{ 4537 skb_clone_tx_timestamp(skb); 4538 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4539 skb_tstamp_tx(skb, NULL); 4540} 4541 4542/** 4543 * skb_complete_wifi_ack - deliver skb with wifi status 4544 * 4545 * @skb: the original outgoing packet 4546 * @acked: ack status 4547 * 4548 */ 4549void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4550 4551__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4552__sum16 __skb_checksum_complete(struct sk_buff *skb); 4553 4554static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4555{ 4556 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4557 skb->csum_valid || 4558 (skb->ip_summed == CHECKSUM_PARTIAL && 4559 skb_checksum_start_offset(skb) >= 0)); 4560} 4561 4562/** 4563 * skb_checksum_complete - Calculate checksum of an entire packet 4564 * @skb: packet to process 4565 * 4566 * This function calculates the checksum over the entire packet plus 4567 * the value of skb->csum. The latter can be used to supply the 4568 * checksum of a pseudo header as used by TCP/UDP. It returns the 4569 * checksum. 4570 * 4571 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4572 * this function can be used to verify that checksum on received 4573 * packets. In that case the function should return zero if the 4574 * checksum is correct. In particular, this function will return zero 4575 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4576 * hardware has already verified the correctness of the checksum. 4577 */ 4578static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4579{ 4580 return skb_csum_unnecessary(skb) ? 4581 0 : __skb_checksum_complete(skb); 4582} 4583 4584static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4585{ 4586 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4587 if (skb->csum_level == 0) 4588 skb->ip_summed = CHECKSUM_NONE; 4589 else 4590 skb->csum_level--; 4591 } 4592} 4593 4594static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4595{ 4596 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4597 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4598 skb->csum_level++; 4599 } else if (skb->ip_summed == CHECKSUM_NONE) { 4600 skb->ip_summed = CHECKSUM_UNNECESSARY; 4601 skb->csum_level = 0; 4602 } 4603} 4604 4605static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4606{ 4607 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4608 skb->ip_summed = CHECKSUM_NONE; 4609 skb->csum_level = 0; 4610 } 4611} 4612 4613/* Check if we need to perform checksum complete validation. 4614 * 4615 * Returns true if checksum complete is needed, false otherwise 4616 * (either checksum is unnecessary or zero checksum is allowed). 4617 */ 4618static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4619 bool zero_okay, 4620 __sum16 check) 4621{ 4622 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4623 skb->csum_valid = 1; 4624 __skb_decr_checksum_unnecessary(skb); 4625 return false; 4626 } 4627 4628 return true; 4629} 4630 4631/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4632 * in checksum_init. 4633 */ 4634#define CHECKSUM_BREAK 76 4635 4636/* Unset checksum-complete 4637 * 4638 * Unset checksum complete can be done when packet is being modified 4639 * (uncompressed for instance) and checksum-complete value is 4640 * invalidated. 4641 */ 4642static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4643{ 4644 if (skb->ip_summed == CHECKSUM_COMPLETE) 4645 skb->ip_summed = CHECKSUM_NONE; 4646} 4647 4648/* Validate (init) checksum based on checksum complete. 4649 * 4650 * Return values: 4651 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4652 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4653 * checksum is stored in skb->csum for use in __skb_checksum_complete 4654 * non-zero: value of invalid checksum 4655 * 4656 */ 4657static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4658 bool complete, 4659 __wsum psum) 4660{ 4661 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4662 if (!csum_fold(csum_add(psum, skb->csum))) { 4663 skb->csum_valid = 1; 4664 return 0; 4665 } 4666 } 4667 4668 skb->csum = psum; 4669 4670 if (complete || skb->len <= CHECKSUM_BREAK) { 4671 __sum16 csum; 4672 4673 csum = __skb_checksum_complete(skb); 4674 skb->csum_valid = !csum; 4675 return csum; 4676 } 4677 4678 return 0; 4679} 4680 4681static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4682{ 4683 return 0; 4684} 4685 4686/* Perform checksum validate (init). Note that this is a macro since we only 4687 * want to calculate the pseudo header which is an input function if necessary. 4688 * First we try to validate without any computation (checksum unnecessary) and 4689 * then calculate based on checksum complete calling the function to compute 4690 * pseudo header. 4691 * 4692 * Return values: 4693 * 0: checksum is validated or try to in skb_checksum_complete 4694 * non-zero: value of invalid checksum 4695 */ 4696#define __skb_checksum_validate(skb, proto, complete, \ 4697 zero_okay, check, compute_pseudo) \ 4698({ \ 4699 __sum16 __ret = 0; \ 4700 skb->csum_valid = 0; \ 4701 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4702 __ret = __skb_checksum_validate_complete(skb, \ 4703 complete, compute_pseudo(skb, proto)); \ 4704 __ret; \ 4705}) 4706 4707#define skb_checksum_init(skb, proto, compute_pseudo) \ 4708 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4709 4710#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4711 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4712 4713#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4714 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4715 4716#define skb_checksum_validate_zero_check(skb, proto, check, \ 4717 compute_pseudo) \ 4718 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4719 4720#define skb_checksum_simple_validate(skb) \ 4721 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4722 4723static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4724{ 4725 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4726} 4727 4728static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4729{ 4730 skb->csum = ~pseudo; 4731 skb->ip_summed = CHECKSUM_COMPLETE; 4732} 4733 4734#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4735do { \ 4736 if (__skb_checksum_convert_check(skb)) \ 4737 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4738} while (0) 4739 4740static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4741 u16 start, u16 offset) 4742{ 4743 skb->ip_summed = CHECKSUM_PARTIAL; 4744 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4745 skb->csum_offset = offset - start; 4746} 4747 4748/* Update skbuf and packet to reflect the remote checksum offload operation. 4749 * When called, ptr indicates the starting point for skb->csum when 4750 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4751 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4752 */ 4753static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4754 int start, int offset, bool nopartial) 4755{ 4756 __wsum delta; 4757 4758 if (!nopartial) { 4759 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4760 return; 4761 } 4762 4763 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4764 __skb_checksum_complete(skb); 4765 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4766 } 4767 4768 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4769 4770 /* Adjust skb->csum since we changed the packet */ 4771 skb->csum = csum_add(skb->csum, delta); 4772} 4773 4774static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4775{ 4776#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4777 return (void *)(skb->_nfct & NFCT_PTRMASK); 4778#else 4779 return NULL; 4780#endif 4781} 4782 4783static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4784{ 4785#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4786 return skb->_nfct; 4787#else 4788 return 0UL; 4789#endif 4790} 4791 4792static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4793{ 4794#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4795 skb->slow_gro |= !!nfct; 4796 skb->_nfct = nfct; 4797#endif 4798} 4799 4800#ifdef CONFIG_SKB_EXTENSIONS 4801enum skb_ext_id { 4802#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4803 SKB_EXT_BRIDGE_NF, 4804#endif 4805#ifdef CONFIG_XFRM 4806 SKB_EXT_SEC_PATH, 4807#endif 4808#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4809 TC_SKB_EXT, 4810#endif 4811#if IS_ENABLED(CONFIG_MPTCP) 4812 SKB_EXT_MPTCP, 4813#endif 4814#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4815 SKB_EXT_MCTP, 4816#endif 4817 SKB_EXT_NUM, /* must be last */ 4818}; 4819 4820/** 4821 * struct skb_ext - sk_buff extensions 4822 * @refcnt: 1 on allocation, deallocated on 0 4823 * @offset: offset to add to @data to obtain extension address 4824 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4825 * @data: start of extension data, variable sized 4826 * 4827 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4828 * to use 'u8' types while allowing up to 2kb worth of extension data. 4829 */ 4830struct skb_ext { 4831 refcount_t refcnt; 4832 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4833 u8 chunks; /* same */ 4834 char data[] __aligned(8); 4835}; 4836 4837struct skb_ext *__skb_ext_alloc(gfp_t flags); 4838void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4839 struct skb_ext *ext); 4840void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4841void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4842void __skb_ext_put(struct skb_ext *ext); 4843 4844static inline void skb_ext_put(struct sk_buff *skb) 4845{ 4846 if (skb->active_extensions) 4847 __skb_ext_put(skb->extensions); 4848} 4849 4850static inline void __skb_ext_copy(struct sk_buff *dst, 4851 const struct sk_buff *src) 4852{ 4853 dst->active_extensions = src->active_extensions; 4854 4855 if (src->active_extensions) { 4856 struct skb_ext *ext = src->extensions; 4857 4858 refcount_inc(&ext->refcnt); 4859 dst->extensions = ext; 4860 } 4861} 4862 4863static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4864{ 4865 skb_ext_put(dst); 4866 __skb_ext_copy(dst, src); 4867} 4868 4869static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4870{ 4871 return !!ext->offset[i]; 4872} 4873 4874static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4875{ 4876 return skb->active_extensions & (1 << id); 4877} 4878 4879static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4880{ 4881 if (skb_ext_exist(skb, id)) 4882 __skb_ext_del(skb, id); 4883} 4884 4885static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4886{ 4887 if (skb_ext_exist(skb, id)) { 4888 struct skb_ext *ext = skb->extensions; 4889 4890 return (void *)ext + (ext->offset[id] << 3); 4891 } 4892 4893 return NULL; 4894} 4895 4896static inline void skb_ext_reset(struct sk_buff *skb) 4897{ 4898 if (unlikely(skb->active_extensions)) { 4899 __skb_ext_put(skb->extensions); 4900 skb->active_extensions = 0; 4901 } 4902} 4903 4904static inline bool skb_has_extensions(struct sk_buff *skb) 4905{ 4906 return unlikely(skb->active_extensions); 4907} 4908#else 4909static inline void skb_ext_put(struct sk_buff *skb) {} 4910static inline void skb_ext_reset(struct sk_buff *skb) {} 4911static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4912static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4913static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4914static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4915#endif /* CONFIG_SKB_EXTENSIONS */ 4916 4917static inline void nf_reset_ct(struct sk_buff *skb) 4918{ 4919#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4920 nf_conntrack_put(skb_nfct(skb)); 4921 skb->_nfct = 0; 4922#endif 4923} 4924 4925static inline void nf_reset_trace(struct sk_buff *skb) 4926{ 4927#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4928 skb->nf_trace = 0; 4929#endif 4930} 4931 4932static inline void ipvs_reset(struct sk_buff *skb) 4933{ 4934#if IS_ENABLED(CONFIG_IP_VS) 4935 skb->ipvs_property = 0; 4936#endif 4937} 4938 4939/* Note: This doesn't put any conntrack info in dst. */ 4940static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4941 bool copy) 4942{ 4943#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4944 dst->_nfct = src->_nfct; 4945 nf_conntrack_get(skb_nfct(src)); 4946#endif 4947#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4948 if (copy) 4949 dst->nf_trace = src->nf_trace; 4950#endif 4951} 4952 4953static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4954{ 4955#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4956 nf_conntrack_put(skb_nfct(dst)); 4957#endif 4958 dst->slow_gro = src->slow_gro; 4959 __nf_copy(dst, src, true); 4960} 4961 4962#ifdef CONFIG_NETWORK_SECMARK 4963static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4964{ 4965 to->secmark = from->secmark; 4966} 4967 4968static inline void skb_init_secmark(struct sk_buff *skb) 4969{ 4970 skb->secmark = 0; 4971} 4972#else 4973static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4974{ } 4975 4976static inline void skb_init_secmark(struct sk_buff *skb) 4977{ } 4978#endif 4979 4980static inline int secpath_exists(const struct sk_buff *skb) 4981{ 4982#ifdef CONFIG_XFRM 4983 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4984#else 4985 return 0; 4986#endif 4987} 4988 4989static inline bool skb_irq_freeable(const struct sk_buff *skb) 4990{ 4991 return !skb->destructor && 4992 !secpath_exists(skb) && 4993 !skb_nfct(skb) && 4994 !skb->_skb_refdst && 4995 !skb_has_frag_list(skb); 4996} 4997 4998static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4999{ 5000 skb->queue_mapping = queue_mapping; 5001} 5002 5003static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 5004{ 5005 return skb->queue_mapping; 5006} 5007 5008static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 5009{ 5010 to->queue_mapping = from->queue_mapping; 5011} 5012 5013static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 5014{ 5015 skb->queue_mapping = rx_queue + 1; 5016} 5017 5018static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 5019{ 5020 return skb->queue_mapping - 1; 5021} 5022 5023static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 5024{ 5025 return skb->queue_mapping != 0; 5026} 5027 5028static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 5029{ 5030 skb->dst_pending_confirm = val; 5031} 5032 5033static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 5034{ 5035 return skb->dst_pending_confirm != 0; 5036} 5037 5038static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 5039{ 5040#ifdef CONFIG_XFRM 5041 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 5042#else 5043 return NULL; 5044#endif 5045} 5046 5047static inline bool skb_is_gso(const struct sk_buff *skb) 5048{ 5049 return skb_shinfo(skb)->gso_size; 5050} 5051 5052/* Note: Should be called only if skb_is_gso(skb) is true */ 5053static inline bool skb_is_gso_v6(const struct sk_buff *skb) 5054{ 5055 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 5056} 5057 5058/* Note: Should be called only if skb_is_gso(skb) is true */ 5059static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 5060{ 5061 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 5062} 5063 5064/* Note: Should be called only if skb_is_gso(skb) is true */ 5065static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 5066{ 5067 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 5068} 5069 5070static inline void skb_gso_reset(struct sk_buff *skb) 5071{ 5072 skb_shinfo(skb)->gso_size = 0; 5073 skb_shinfo(skb)->gso_segs = 0; 5074 skb_shinfo(skb)->gso_type = 0; 5075} 5076 5077static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 5078 u16 increment) 5079{ 5080 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5081 return; 5082 shinfo->gso_size += increment; 5083} 5084 5085static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 5086 u16 decrement) 5087{ 5088 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5089 return; 5090 shinfo->gso_size -= decrement; 5091} 5092 5093void __skb_warn_lro_forwarding(const struct sk_buff *skb); 5094 5095static inline bool skb_warn_if_lro(const struct sk_buff *skb) 5096{ 5097 /* LRO sets gso_size but not gso_type, whereas if GSO is really 5098 * wanted then gso_type will be set. */ 5099 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5100 5101 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 5102 unlikely(shinfo->gso_type == 0)) { 5103 __skb_warn_lro_forwarding(skb); 5104 return true; 5105 } 5106 return false; 5107} 5108 5109static inline void skb_forward_csum(struct sk_buff *skb) 5110{ 5111 /* Unfortunately we don't support this one. Any brave souls? */ 5112 if (skb->ip_summed == CHECKSUM_COMPLETE) 5113 skb->ip_summed = CHECKSUM_NONE; 5114} 5115 5116/** 5117 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5118 * @skb: skb to check 5119 * 5120 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5121 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5122 * use this helper, to document places where we make this assertion. 5123 */ 5124static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5125{ 5126 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5127} 5128 5129bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5130 5131int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5132struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5133 unsigned int transport_len, 5134 __sum16(*skb_chkf)(struct sk_buff *skb)); 5135 5136/** 5137 * skb_head_is_locked - Determine if the skb->head is locked down 5138 * @skb: skb to check 5139 * 5140 * The head on skbs build around a head frag can be removed if they are 5141 * not cloned. This function returns true if the skb head is locked down 5142 * due to either being allocated via kmalloc, or by being a clone with 5143 * multiple references to the head. 5144 */ 5145static inline bool skb_head_is_locked(const struct sk_buff *skb) 5146{ 5147 return !skb->head_frag || skb_cloned(skb); 5148} 5149 5150/* Local Checksum Offload. 5151 * Compute outer checksum based on the assumption that the 5152 * inner checksum will be offloaded later. 5153 * See Documentation/networking/checksum-offloads.rst for 5154 * explanation of how this works. 5155 * Fill in outer checksum adjustment (e.g. with sum of outer 5156 * pseudo-header) before calling. 5157 * Also ensure that inner checksum is in linear data area. 5158 */ 5159static inline __wsum lco_csum(struct sk_buff *skb) 5160{ 5161 unsigned char *csum_start = skb_checksum_start(skb); 5162 unsigned char *l4_hdr = skb_transport_header(skb); 5163 __wsum partial; 5164 5165 /* Start with complement of inner checksum adjustment */ 5166 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5167 skb->csum_offset)); 5168 5169 /* Add in checksum of our headers (incl. outer checksum 5170 * adjustment filled in by caller) and return result. 5171 */ 5172 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5173} 5174 5175static inline bool skb_is_redirected(const struct sk_buff *skb) 5176{ 5177 return skb->redirected; 5178} 5179 5180static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5181{ 5182 skb->redirected = 1; 5183#ifdef CONFIG_NET_REDIRECT 5184 skb->from_ingress = from_ingress; 5185 if (skb->from_ingress) 5186 skb_clear_tstamp(skb); 5187#endif 5188} 5189 5190static inline void skb_reset_redirect(struct sk_buff *skb) 5191{ 5192 skb->redirected = 0; 5193} 5194 5195static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5196 bool from_ingress) 5197{ 5198 skb->redirected = 1; 5199#ifdef CONFIG_NET_REDIRECT 5200 skb->from_ingress = from_ingress; 5201#endif 5202} 5203 5204static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5205{ 5206#if IS_ENABLED(CONFIG_IP_SCTP) 5207 return skb->csum_not_inet; 5208#else 5209 return 0; 5210#endif 5211} 5212 5213static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5214{ 5215 skb->ip_summed = CHECKSUM_NONE; 5216#if IS_ENABLED(CONFIG_IP_SCTP) 5217 skb->csum_not_inet = 0; 5218#endif 5219} 5220 5221static inline void skb_set_kcov_handle(struct sk_buff *skb, 5222 const u64 kcov_handle) 5223{ 5224#ifdef CONFIG_KCOV 5225 skb->kcov_handle = kcov_handle; 5226#endif 5227} 5228 5229static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5230{ 5231#ifdef CONFIG_KCOV 5232 return skb->kcov_handle; 5233#else 5234 return 0; 5235#endif 5236} 5237 5238static inline void skb_mark_for_recycle(struct sk_buff *skb) 5239{ 5240#ifdef CONFIG_PAGE_POOL 5241 skb->pp_recycle = 1; 5242#endif 5243} 5244 5245ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5246 ssize_t maxsize, gfp_t gfp); 5247 5248#endif /* __KERNEL__ */ 5249#endif /* _LINUX_SKBUFF_H */