at for-next 19 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_PWM_H 3#define __LINUX_PWM_H 4 5#include <linux/device.h> 6#include <linux/err.h> 7#include <linux/module.h> 8#include <linux/mutex.h> 9#include <linux/of.h> 10 11MODULE_IMPORT_NS("PWM"); 12 13struct pwm_chip; 14 15/** 16 * enum pwm_polarity - polarity of a PWM signal 17 * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty- 18 * cycle, followed by a low signal for the remainder of the pulse 19 * period 20 * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty- 21 * cycle, followed by a high signal for the remainder of the pulse 22 * period 23 */ 24enum pwm_polarity { 25 PWM_POLARITY_NORMAL, 26 PWM_POLARITY_INVERSED, 27}; 28 29/** 30 * struct pwm_args - board-dependent PWM arguments 31 * @period: reference period 32 * @polarity: reference polarity 33 * 34 * This structure describes board-dependent arguments attached to a PWM 35 * device. These arguments are usually retrieved from the PWM lookup table or 36 * device tree. 37 * 38 * Do not confuse this with the PWM state: PWM arguments represent the initial 39 * configuration that users want to use on this PWM device rather than the 40 * current PWM hardware state. 41 */ 42struct pwm_args { 43 u64 period; 44 enum pwm_polarity polarity; 45}; 46 47enum { 48 PWMF_REQUESTED = 0, 49 PWMF_EXPORTED = 1, 50}; 51 52/** 53 * struct pwm_waveform - description of a PWM waveform 54 * @period_length_ns: PWM period 55 * @duty_length_ns: PWM duty cycle 56 * @duty_offset_ns: offset of the rising edge from the period's start 57 * 58 * This is a representation of a PWM waveform alternative to struct pwm_state 59 * below. It's more expressive than struct pwm_state as it contains a 60 * duty_offset_ns and so can represent offsets other than zero (with .polarity = 61 * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity = 62 * PWM_POLARITY_INVERSED). 63 * 64 * Note there is no explicit bool for enabled. A "disabled" PWM is represented 65 * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM 66 * is undefined. Depending on the hardware's capabilities it might drive the 67 * active or inactive level, go high-z or even continue to toggle. 68 * 69 * The unit for all three members is nanoseconds. 70 */ 71struct pwm_waveform { 72 u64 period_length_ns; 73 u64 duty_length_ns; 74 u64 duty_offset_ns; 75}; 76 77/* 78 * struct pwm_state - state of a PWM channel 79 * @period: PWM period (in nanoseconds) 80 * @duty_cycle: PWM duty cycle (in nanoseconds) 81 * @polarity: PWM polarity 82 * @enabled: PWM enabled status 83 * @usage_power: If set, the PWM driver is only required to maintain the power 84 * output but has more freedom regarding signal form. 85 * If supported, the signal can be optimized, for example to 86 * improve EMI by phase shifting individual channels. 87 */ 88struct pwm_state { 89 u64 period; 90 u64 duty_cycle; 91 enum pwm_polarity polarity; 92 bool enabled; 93 bool usage_power; 94}; 95 96/** 97 * struct pwm_device - PWM channel object 98 * @label: name of the PWM device 99 * @flags: flags associated with the PWM device 100 * @hwpwm: per-chip relative index of the PWM device 101 * @chip: PWM chip providing this PWM device 102 * @args: PWM arguments 103 * @state: last applied state 104 * @last: last implemented state (for PWM_DEBUG) 105 */ 106struct pwm_device { 107 const char *label; 108 unsigned long flags; 109 unsigned int hwpwm; 110 struct pwm_chip *chip; 111 112 struct pwm_args args; 113 struct pwm_state state; 114 struct pwm_state last; 115}; 116 117/** 118 * pwm_get_state() - retrieve the current PWM state 119 * @pwm: PWM device 120 * @state: state to fill with the current PWM state 121 * 122 * The returned PWM state represents the state that was applied by a previous call to 123 * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to 124 * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware 125 * state (if supported) or the default settings. 126 */ 127static inline void pwm_get_state(const struct pwm_device *pwm, 128 struct pwm_state *state) 129{ 130 *state = pwm->state; 131} 132 133static inline bool pwm_is_enabled(const struct pwm_device *pwm) 134{ 135 struct pwm_state state; 136 137 pwm_get_state(pwm, &state); 138 139 return state.enabled; 140} 141 142static inline u64 pwm_get_period(const struct pwm_device *pwm) 143{ 144 struct pwm_state state; 145 146 pwm_get_state(pwm, &state); 147 148 return state.period; 149} 150 151static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm) 152{ 153 struct pwm_state state; 154 155 pwm_get_state(pwm, &state); 156 157 return state.duty_cycle; 158} 159 160static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm) 161{ 162 struct pwm_state state; 163 164 pwm_get_state(pwm, &state); 165 166 return state.polarity; 167} 168 169static inline void pwm_get_args(const struct pwm_device *pwm, 170 struct pwm_args *args) 171{ 172 *args = pwm->args; 173} 174 175/** 176 * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep() 177 * @pwm: PWM device 178 * @state: state to fill with the prepared PWM state 179 * 180 * This functions prepares a state that can later be tweaked and applied 181 * to the PWM device with pwm_apply_might_sleep(). This is a convenient function 182 * that first retrieves the current PWM state and the replaces the period 183 * and polarity fields with the reference values defined in pwm->args. 184 * Once the function returns, you can adjust the ->enabled and ->duty_cycle 185 * fields according to your needs before calling pwm_apply_might_sleep(). 186 * 187 * ->duty_cycle is initially set to zero to avoid cases where the current 188 * ->duty_cycle value exceed the pwm_args->period one, which would trigger 189 * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle 190 * first. 191 */ 192static inline void pwm_init_state(const struct pwm_device *pwm, 193 struct pwm_state *state) 194{ 195 struct pwm_args args; 196 197 /* First get the current state. */ 198 pwm_get_state(pwm, state); 199 200 /* Then fill it with the reference config */ 201 pwm_get_args(pwm, &args); 202 203 state->period = args.period; 204 state->polarity = args.polarity; 205 state->duty_cycle = 0; 206 state->usage_power = false; 207} 208 209/** 210 * pwm_get_relative_duty_cycle() - Get a relative duty cycle value 211 * @state: PWM state to extract the duty cycle from 212 * @scale: target scale of the relative duty cycle 213 * 214 * This functions converts the absolute duty cycle stored in @state (expressed 215 * in nanosecond) into a value relative to the period. 216 * 217 * For example if you want to get the duty_cycle expressed in percent, call: 218 * 219 * pwm_get_state(pwm, &state); 220 * duty = pwm_get_relative_duty_cycle(&state, 100); 221 */ 222static inline unsigned int 223pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale) 224{ 225 if (!state->period) 226 return 0; 227 228 return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale, 229 state->period); 230} 231 232/** 233 * pwm_set_relative_duty_cycle() - Set a relative duty cycle value 234 * @state: PWM state to fill 235 * @duty_cycle: relative duty cycle value 236 * @scale: scale in which @duty_cycle is expressed 237 * 238 * This functions converts a relative into an absolute duty cycle (expressed 239 * in nanoseconds), and puts the result in state->duty_cycle. 240 * 241 * For example if you want to configure a 50% duty cycle, call: 242 * 243 * pwm_init_state(pwm, &state); 244 * pwm_set_relative_duty_cycle(&state, 50, 100); 245 * pwm_apply_might_sleep(pwm, &state); 246 * 247 * This functions returns -EINVAL if @duty_cycle and/or @scale are 248 * inconsistent (@scale == 0 or @duty_cycle > @scale). 249 */ 250static inline int 251pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle, 252 unsigned int scale) 253{ 254 if (!scale || duty_cycle > scale) 255 return -EINVAL; 256 257 state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle * 258 state->period, 259 scale); 260 261 return 0; 262} 263 264/** 265 * struct pwm_capture - PWM capture data 266 * @period: period of the PWM signal (in nanoseconds) 267 * @duty_cycle: duty cycle of the PWM signal (in nanoseconds) 268 */ 269struct pwm_capture { 270 unsigned int period; 271 unsigned int duty_cycle; 272}; 273 274/** 275 * struct pwm_ops - PWM controller operations 276 * @request: optional hook for requesting a PWM 277 * @free: optional hook for freeing a PWM 278 * @capture: capture and report PWM signal 279 * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation 280 * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation 281 * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform 282 * @read_waveform: read driver specific waveform presentation from hardware 283 * @write_waveform: write driver specific waveform presentation to hardware 284 * @apply: atomically apply a new PWM config 285 * @get_state: get the current PWM state. 286 */ 287struct pwm_ops { 288 int (*request)(struct pwm_chip *chip, struct pwm_device *pwm); 289 void (*free)(struct pwm_chip *chip, struct pwm_device *pwm); 290 int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm, 291 struct pwm_capture *result, unsigned long timeout); 292 293 size_t sizeof_wfhw; 294 int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm, 295 const struct pwm_waveform *wf, void *wfhw); 296 int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm, 297 const void *wfhw, struct pwm_waveform *wf); 298 int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, 299 void *wfhw); 300 int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm, 301 const void *wfhw); 302 303 int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm, 304 const struct pwm_state *state); 305 int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm, 306 struct pwm_state *state); 307}; 308 309/** 310 * struct pwm_chip - abstract a PWM controller 311 * @dev: device providing the PWMs 312 * @ops: callbacks for this PWM controller 313 * @owner: module providing this chip 314 * @id: unique number of this PWM chip 315 * @npwm: number of PWMs controlled by this chip 316 * @of_xlate: request a PWM device given a device tree PWM specifier 317 * @atomic: can the driver's ->apply() be called in atomic context 318 * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip 319 * @operational: signals if the chip can be used (or is already deregistered) 320 * @nonatomic_lock: mutex for nonatomic chips 321 * @atomic_lock: mutex for atomic chips 322 * @pwms: array of PWM devices allocated by the framework 323 */ 324struct pwm_chip { 325 struct device dev; 326 const struct pwm_ops *ops; 327 struct module *owner; 328 unsigned int id; 329 unsigned int npwm; 330 331 struct pwm_device * (*of_xlate)(struct pwm_chip *chip, 332 const struct of_phandle_args *args); 333 bool atomic; 334 335 /* only used internally by the PWM framework */ 336 bool uses_pwmchip_alloc; 337 bool operational; 338 union { 339 /* 340 * depending on the chip being atomic or not either the mutex or 341 * the spinlock is used. It protects .operational and 342 * synchronizes the callbacks in .ops 343 */ 344 struct mutex nonatomic_lock; 345 spinlock_t atomic_lock; 346 }; 347 struct pwm_device pwms[] __counted_by(npwm); 348}; 349 350static inline struct device *pwmchip_parent(const struct pwm_chip *chip) 351{ 352 return chip->dev.parent; 353} 354 355static inline void *pwmchip_get_drvdata(struct pwm_chip *chip) 356{ 357 return dev_get_drvdata(&chip->dev); 358} 359 360static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data) 361{ 362 dev_set_drvdata(&chip->dev, data); 363} 364 365#if IS_ENABLED(CONFIG_PWM) 366 367/* PWM consumer APIs */ 368int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); 369int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf); 370int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact); 371int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state); 372int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state); 373int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state); 374int pwm_adjust_config(struct pwm_device *pwm); 375 376/** 377 * pwm_config() - change a PWM device configuration 378 * @pwm: PWM device 379 * @duty_ns: "on" time (in nanoseconds) 380 * @period_ns: duration (in nanoseconds) of one cycle 381 * 382 * Returns: 0 on success or a negative error code on failure. 383 */ 384static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 385 int period_ns) 386{ 387 struct pwm_state state; 388 389 if (!pwm) 390 return -EINVAL; 391 392 if (duty_ns < 0 || period_ns < 0) 393 return -EINVAL; 394 395 pwm_get_state(pwm, &state); 396 if (state.duty_cycle == duty_ns && state.period == period_ns) 397 return 0; 398 399 state.duty_cycle = duty_ns; 400 state.period = period_ns; 401 return pwm_apply_might_sleep(pwm, &state); 402} 403 404/** 405 * pwm_enable() - start a PWM output toggling 406 * @pwm: PWM device 407 * 408 * Returns: 0 on success or a negative error code on failure. 409 */ 410static inline int pwm_enable(struct pwm_device *pwm) 411{ 412 struct pwm_state state; 413 414 if (!pwm) 415 return -EINVAL; 416 417 pwm_get_state(pwm, &state); 418 if (state.enabled) 419 return 0; 420 421 state.enabled = true; 422 return pwm_apply_might_sleep(pwm, &state); 423} 424 425/** 426 * pwm_disable() - stop a PWM output toggling 427 * @pwm: PWM device 428 */ 429static inline void pwm_disable(struct pwm_device *pwm) 430{ 431 struct pwm_state state; 432 433 if (!pwm) 434 return; 435 436 pwm_get_state(pwm, &state); 437 if (!state.enabled) 438 return; 439 440 state.enabled = false; 441 pwm_apply_might_sleep(pwm, &state); 442} 443 444/** 445 * pwm_might_sleep() - is pwm_apply_atomic() supported? 446 * @pwm: PWM device 447 * 448 * Returns: false if pwm_apply_atomic() can be called from atomic context. 449 */ 450static inline bool pwm_might_sleep(struct pwm_device *pwm) 451{ 452 return !pwm->chip->atomic; 453} 454 455/* PWM provider APIs */ 456void pwmchip_put(struct pwm_chip *chip); 457struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv); 458struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv); 459 460int __pwmchip_add(struct pwm_chip *chip, struct module *owner); 461#define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE) 462void pwmchip_remove(struct pwm_chip *chip); 463 464int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner); 465#define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE) 466 467struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip, 468 const struct of_phandle_args *args); 469struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip, 470 const struct of_phandle_args *args); 471 472struct pwm_device *pwm_get(struct device *dev, const char *con_id); 473void pwm_put(struct pwm_device *pwm); 474 475struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id); 476struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 477 struct fwnode_handle *fwnode, 478 const char *con_id); 479#else 480static inline bool pwm_might_sleep(struct pwm_device *pwm) 481{ 482 return true; 483} 484 485static inline int pwm_apply_might_sleep(struct pwm_device *pwm, 486 const struct pwm_state *state) 487{ 488 might_sleep(); 489 return -EOPNOTSUPP; 490} 491 492static inline int pwm_apply_atomic(struct pwm_device *pwm, 493 const struct pwm_state *state) 494{ 495 return -EOPNOTSUPP; 496} 497 498static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 499{ 500 return -EOPNOTSUPP; 501} 502 503static inline int pwm_adjust_config(struct pwm_device *pwm) 504{ 505 return -EOPNOTSUPP; 506} 507 508static inline int pwm_config(struct pwm_device *pwm, int duty_ns, 509 int period_ns) 510{ 511 might_sleep(); 512 return -EINVAL; 513} 514 515static inline int pwm_enable(struct pwm_device *pwm) 516{ 517 might_sleep(); 518 return -EINVAL; 519} 520 521static inline void pwm_disable(struct pwm_device *pwm) 522{ 523 might_sleep(); 524} 525 526static inline void pwmchip_put(struct pwm_chip *chip) 527{ 528} 529 530static inline struct pwm_chip *pwmchip_alloc(struct device *parent, 531 unsigned int npwm, 532 size_t sizeof_priv) 533{ 534 return ERR_PTR(-EINVAL); 535} 536 537static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent, 538 unsigned int npwm, 539 size_t sizeof_priv) 540{ 541 return pwmchip_alloc(parent, npwm, sizeof_priv); 542} 543 544static inline int pwmchip_add(struct pwm_chip *chip) 545{ 546 return -EINVAL; 547} 548 549static inline int pwmchip_remove(struct pwm_chip *chip) 550{ 551 return -EINVAL; 552} 553 554static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip) 555{ 556 return -EINVAL; 557} 558 559static inline struct pwm_device *pwm_get(struct device *dev, 560 const char *consumer) 561{ 562 might_sleep(); 563 return ERR_PTR(-ENODEV); 564} 565 566static inline void pwm_put(struct pwm_device *pwm) 567{ 568 might_sleep(); 569} 570 571static inline struct pwm_device *devm_pwm_get(struct device *dev, 572 const char *consumer) 573{ 574 might_sleep(); 575 return ERR_PTR(-ENODEV); 576} 577 578static inline struct pwm_device * 579devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode, 580 const char *con_id) 581{ 582 might_sleep(); 583 return ERR_PTR(-ENODEV); 584} 585#endif 586 587static inline void pwm_apply_args(struct pwm_device *pwm) 588{ 589 struct pwm_state state = { }; 590 591 /* 592 * PWM users calling pwm_apply_args() expect to have a fresh config 593 * where the polarity and period are set according to pwm_args info. 594 * The problem is, polarity can only be changed when the PWM is 595 * disabled. 596 * 597 * PWM drivers supporting hardware readout may declare the PWM device 598 * as enabled, and prevent polarity setting, which changes from the 599 * existing behavior, where all PWM devices are declared as disabled 600 * at startup (even if they are actually enabled), thus authorizing 601 * polarity setting. 602 * 603 * To fulfill this requirement, we apply a new state which disables 604 * the PWM device and set the reference period and polarity config. 605 * 606 * Note that PWM users requiring a smooth handover between the 607 * bootloader and the kernel (like critical regulators controlled by 608 * PWM devices) will have to switch to the atomic API and avoid calling 609 * pwm_apply_args(). 610 */ 611 612 state.enabled = false; 613 state.polarity = pwm->args.polarity; 614 state.period = pwm->args.period; 615 state.usage_power = false; 616 617 pwm_apply_might_sleep(pwm, &state); 618} 619 620struct pwm_lookup { 621 struct list_head list; 622 const char *provider; 623 unsigned int index; 624 const char *dev_id; 625 const char *con_id; 626 unsigned int period; 627 enum pwm_polarity polarity; 628 const char *module; /* optional, may be NULL */ 629}; 630 631#define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, \ 632 _period, _polarity, _module) \ 633 { \ 634 .provider = _provider, \ 635 .index = _index, \ 636 .dev_id = _dev_id, \ 637 .con_id = _con_id, \ 638 .period = _period, \ 639 .polarity = _polarity, \ 640 .module = _module, \ 641 } 642 643#define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \ 644 PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \ 645 _polarity, NULL) 646 647#if IS_ENABLED(CONFIG_PWM) 648void pwm_add_table(struct pwm_lookup *table, size_t num); 649void pwm_remove_table(struct pwm_lookup *table, size_t num); 650#else 651static inline void pwm_add_table(struct pwm_lookup *table, size_t num) 652{ 653} 654 655static inline void pwm_remove_table(struct pwm_lookup *table, size_t num) 656{ 657} 658#endif 659 660#endif /* __LINUX_PWM_H */