at for-next 58 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29#define PERF_GUEST_ACTIVE 0x01 30#define PERF_GUEST_USER 0x02 31 32struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36}; 37 38#ifdef CONFIG_HAVE_HW_BREAKPOINT 39#include <linux/rhashtable-types.h> 40#include <asm/hw_breakpoint.h> 41#endif 42 43#include <linux/list.h> 44#include <linux/mutex.h> 45#include <linux/rculist.h> 46#include <linux/rcupdate.h> 47#include <linux/spinlock.h> 48#include <linux/hrtimer.h> 49#include <linux/fs.h> 50#include <linux/pid_namespace.h> 51#include <linux/workqueue.h> 52#include <linux/ftrace.h> 53#include <linux/cpu.h> 54#include <linux/irq_work.h> 55#include <linux/static_key.h> 56#include <linux/jump_label_ratelimit.h> 57#include <linux/atomic.h> 58#include <linux/sysfs.h> 59#include <linux/perf_regs.h> 60#include <linux/cgroup.h> 61#include <linux/refcount.h> 62#include <linux/security.h> 63#include <linux/static_call.h> 64#include <linux/lockdep.h> 65#include <asm/local.h> 66 67struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70}; 71 72struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78}; 79 80typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91} __packed; 92 93struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96}; 97 98static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 99{ 100 return frag->pad < sizeof(u64); 101} 102 103/* 104 * branch stack layout: 105 * nr: number of taken branches stored in entries[] 106 * hw_idx: The low level index of raw branch records 107 * for the most recent branch. 108 * -1ULL means invalid/unknown. 109 * 110 * Note that nr can vary from sample to sample 111 * branches (to, from) are stored from most recent 112 * to least recent, i.e., entries[0] contains the most 113 * recent branch. 114 * The entries[] is an abstraction of raw branch records, 115 * which may not be stored in age order in HW, e.g. Intel LBR. 116 * The hw_idx is to expose the low level index of raw 117 * branch record for the most recent branch aka entries[0]. 118 * The hw_idx index is between -1 (unknown) and max depth, 119 * which can be retrieved in /sys/devices/cpu/caps/branches. 120 * For the architectures whose raw branch records are 121 * already stored in age order, the hw_idx should be 0. 122 */ 123struct perf_branch_stack { 124 __u64 nr; 125 __u64 hw_idx; 126 struct perf_branch_entry entries[]; 127}; 128 129struct task_struct; 130 131/* 132 * extra PMU register associated with an event 133 */ 134struct hw_perf_event_extra { 135 u64 config; /* register value */ 136 unsigned int reg; /* register address or index */ 137 int alloc; /* extra register already allocated */ 138 int idx; /* index in shared_regs->regs[] */ 139}; 140 141/** 142 * hw_perf_event::flag values 143 * 144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 145 * usage. 146 */ 147#define PERF_EVENT_FLAG_ARCH 0x000fffff 148#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 149 150static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 151 152/** 153 * struct hw_perf_event - performance event hardware details: 154 */ 155struct hw_perf_event { 156#ifdef CONFIG_PERF_EVENTS 157 union { 158 struct { /* hardware */ 159 u64 config; 160 u64 last_tag; 161 unsigned long config_base; 162 unsigned long event_base; 163 int event_base_rdpmc; 164 int idx; 165 int last_cpu; 166 int flags; 167 168 struct hw_perf_event_extra extra_reg; 169 struct hw_perf_event_extra branch_reg; 170 }; 171 struct { /* aux / Intel-PT */ 172 u64 aux_config; 173 /* 174 * For AUX area events, aux_paused cannot be a state 175 * flag because it can be updated asynchronously to 176 * state. 177 */ 178 unsigned int aux_paused; 179 }; 180 struct { /* software */ 181 struct hrtimer hrtimer; 182 }; 183 struct { /* tracepoint */ 184 /* for tp_event->class */ 185 struct list_head tp_list; 186 }; 187 struct { /* amd_power */ 188 u64 pwr_acc; 189 u64 ptsc; 190 }; 191#ifdef CONFIG_HAVE_HW_BREAKPOINT 192 struct { /* breakpoint */ 193 /* 194 * Crufty hack to avoid the chicken and egg 195 * problem hw_breakpoint has with context 196 * creation and event initalization. 197 */ 198 struct arch_hw_breakpoint info; 199 struct rhlist_head bp_list; 200 }; 201#endif 202 struct { /* amd_iommu */ 203 u8 iommu_bank; 204 u8 iommu_cntr; 205 u16 padding; 206 u64 conf; 207 u64 conf1; 208 }; 209 }; 210 /* 211 * If the event is a per task event, this will point to the task in 212 * question. See the comment in perf_event_alloc(). 213 */ 214 struct task_struct *target; 215 216 /* 217 * PMU would store hardware filter configuration 218 * here. 219 */ 220 void *addr_filters; 221 222 /* Last sync'ed generation of filters */ 223 unsigned long addr_filters_gen; 224 225/* 226 * hw_perf_event::state flags; used to track the PERF_EF_* state. 227 */ 228#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 229#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 230#define PERF_HES_ARCH 0x04 231 232 int state; 233 234 /* 235 * The last observed hardware counter value, updated with a 236 * local64_cmpxchg() such that pmu::read() can be called nested. 237 */ 238 local64_t prev_count; 239 240 /* 241 * The period to start the next sample with. 242 */ 243 u64 sample_period; 244 245 union { 246 struct { /* Sampling */ 247 /* 248 * The period we started this sample with. 249 */ 250 u64 last_period; 251 252 /* 253 * However much is left of the current period; 254 * note that this is a full 64bit value and 255 * allows for generation of periods longer 256 * than hardware might allow. 257 */ 258 local64_t period_left; 259 }; 260 struct { /* Topdown events counting for context switch */ 261 u64 saved_metric; 262 u64 saved_slots; 263 }; 264 }; 265 266 /* 267 * State for throttling the event, see __perf_event_overflow() and 268 * perf_adjust_freq_unthr_context(). 269 */ 270 u64 interrupts_seq; 271 u64 interrupts; 272 273 /* 274 * State for freq target events, see __perf_event_overflow() and 275 * perf_adjust_freq_unthr_context(). 276 */ 277 u64 freq_time_stamp; 278 u64 freq_count_stamp; 279#endif 280}; 281 282struct perf_event; 283struct perf_event_pmu_context; 284 285/* 286 * Common implementation detail of pmu::{start,commit,cancel}_txn 287 */ 288#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 289#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 290 291/** 292 * pmu::capabilities flags 293 */ 294#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 295#define PERF_PMU_CAP_NO_NMI 0x0002 296#define PERF_PMU_CAP_AUX_NO_SG 0x0004 297#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 298#define PERF_PMU_CAP_EXCLUSIVE 0x0010 299#define PERF_PMU_CAP_ITRACE 0x0020 300#define PERF_PMU_CAP_NO_EXCLUDE 0x0040 301#define PERF_PMU_CAP_AUX_OUTPUT 0x0080 302#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 303#define PERF_PMU_CAP_AUX_PAUSE 0x0200 304 305/** 306 * pmu::scope 307 */ 308enum perf_pmu_scope { 309 PERF_PMU_SCOPE_NONE = 0, 310 PERF_PMU_SCOPE_CORE, 311 PERF_PMU_SCOPE_DIE, 312 PERF_PMU_SCOPE_CLUSTER, 313 PERF_PMU_SCOPE_PKG, 314 PERF_PMU_SCOPE_SYS_WIDE, 315 PERF_PMU_MAX_SCOPE, 316}; 317 318struct perf_output_handle; 319 320#define PMU_NULL_DEV ((void *)(~0UL)) 321 322/** 323 * struct pmu - generic performance monitoring unit 324 */ 325struct pmu { 326 struct list_head entry; 327 328 struct module *module; 329 struct device *dev; 330 struct device *parent; 331 const struct attribute_group **attr_groups; 332 const struct attribute_group **attr_update; 333 const char *name; 334 int type; 335 336 /* 337 * various common per-pmu feature flags 338 */ 339 int capabilities; 340 341 /* 342 * PMU scope 343 */ 344 unsigned int scope; 345 346 int __percpu *pmu_disable_count; 347 struct perf_cpu_pmu_context __percpu *cpu_pmu_context; 348 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 349 int task_ctx_nr; 350 int hrtimer_interval_ms; 351 352 /* number of address filters this PMU can do */ 353 unsigned int nr_addr_filters; 354 355 /* 356 * Fully disable/enable this PMU, can be used to protect from the PMI 357 * as well as for lazy/batch writing of the MSRs. 358 */ 359 void (*pmu_enable) (struct pmu *pmu); /* optional */ 360 void (*pmu_disable) (struct pmu *pmu); /* optional */ 361 362 /* 363 * Try and initialize the event for this PMU. 364 * 365 * Returns: 366 * -ENOENT -- @event is not for this PMU 367 * 368 * -ENODEV -- @event is for this PMU but PMU not present 369 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 370 * -EINVAL -- @event is for this PMU but @event is not valid 371 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 372 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 373 * 374 * 0 -- @event is for this PMU and valid 375 * 376 * Other error return values are allowed. 377 */ 378 int (*event_init) (struct perf_event *event); 379 380 /* 381 * Notification that the event was mapped or unmapped. Called 382 * in the context of the mapping task. 383 */ 384 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 385 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 386 387 /* 388 * Flags for ->add()/->del()/ ->start()/->stop(). There are 389 * matching hw_perf_event::state flags. 390 */ 391#define PERF_EF_START 0x01 /* start the counter when adding */ 392#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 393#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 394#define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */ 395#define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */ 396 397 /* 398 * Adds/Removes a counter to/from the PMU, can be done inside a 399 * transaction, see the ->*_txn() methods. 400 * 401 * The add/del callbacks will reserve all hardware resources required 402 * to service the event, this includes any counter constraint 403 * scheduling etc. 404 * 405 * Called with IRQs disabled and the PMU disabled on the CPU the event 406 * is on. 407 * 408 * ->add() called without PERF_EF_START should result in the same state 409 * as ->add() followed by ->stop(). 410 * 411 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 412 * ->stop() that must deal with already being stopped without 413 * PERF_EF_UPDATE. 414 */ 415 int (*add) (struct perf_event *event, int flags); 416 void (*del) (struct perf_event *event, int flags); 417 418 /* 419 * Starts/Stops a counter present on the PMU. 420 * 421 * The PMI handler should stop the counter when perf_event_overflow() 422 * returns !0. ->start() will be used to continue. 423 * 424 * Also used to change the sample period. 425 * 426 * Called with IRQs disabled and the PMU disabled on the CPU the event 427 * is on -- will be called from NMI context with the PMU generates 428 * NMIs. 429 * 430 * ->stop() with PERF_EF_UPDATE will read the counter and update 431 * period/count values like ->read() would. 432 * 433 * ->start() with PERF_EF_RELOAD will reprogram the counter 434 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 435 * 436 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not 437 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with 438 * PERF_EF_RESUME. 439 * 440 * ->start() with PERF_EF_RESUME will start as simply as possible but 441 * only if the counter is not otherwise stopped. Will not overlap 442 * another ->start() with PERF_EF_RESUME nor ->stop() with 443 * PERF_EF_PAUSE. 444 * 445 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other 446 * ->stop()/->start() invocations, just not itself. 447 */ 448 void (*start) (struct perf_event *event, int flags); 449 void (*stop) (struct perf_event *event, int flags); 450 451 /* 452 * Updates the counter value of the event. 453 * 454 * For sampling capable PMUs this will also update the software period 455 * hw_perf_event::period_left field. 456 */ 457 void (*read) (struct perf_event *event); 458 459 /* 460 * Group events scheduling is treated as a transaction, add 461 * group events as a whole and perform one schedulability test. 462 * If the test fails, roll back the whole group 463 * 464 * Start the transaction, after this ->add() doesn't need to 465 * do schedulability tests. 466 * 467 * Optional. 468 */ 469 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 470 /* 471 * If ->start_txn() disabled the ->add() schedulability test 472 * then ->commit_txn() is required to perform one. On success 473 * the transaction is closed. On error the transaction is kept 474 * open until ->cancel_txn() is called. 475 * 476 * Optional. 477 */ 478 int (*commit_txn) (struct pmu *pmu); 479 /* 480 * Will cancel the transaction, assumes ->del() is called 481 * for each successful ->add() during the transaction. 482 * 483 * Optional. 484 */ 485 void (*cancel_txn) (struct pmu *pmu); 486 487 /* 488 * Will return the value for perf_event_mmap_page::index for this event, 489 * if no implementation is provided it will default to 0 (see 490 * perf_event_idx_default). 491 */ 492 int (*event_idx) (struct perf_event *event); /*optional */ 493 494 /* 495 * context-switches callback 496 */ 497 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, 498 bool sched_in); 499 500 /* 501 * Kmem cache of PMU specific data 502 */ 503 struct kmem_cache *task_ctx_cache; 504 505 /* 506 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 507 * can be synchronized using this function. See Intel LBR callstack support 508 * implementation and Perf core context switch handling callbacks for usage 509 * examples. 510 */ 511 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc, 512 struct perf_event_pmu_context *next_epc); 513 /* optional */ 514 515 /* 516 * Set up pmu-private data structures for an AUX area 517 */ 518 void *(*setup_aux) (struct perf_event *event, void **pages, 519 int nr_pages, bool overwrite); 520 /* optional */ 521 522 /* 523 * Free pmu-private AUX data structures 524 */ 525 void (*free_aux) (void *aux); /* optional */ 526 527 /* 528 * Take a snapshot of the AUX buffer without touching the event 529 * state, so that preempting ->start()/->stop() callbacks does 530 * not interfere with their logic. Called in PMI context. 531 * 532 * Returns the size of AUX data copied to the output handle. 533 * 534 * Optional. 535 */ 536 long (*snapshot_aux) (struct perf_event *event, 537 struct perf_output_handle *handle, 538 unsigned long size); 539 540 /* 541 * Validate address range filters: make sure the HW supports the 542 * requested configuration and number of filters; return 0 if the 543 * supplied filters are valid, -errno otherwise. 544 * 545 * Runs in the context of the ioctl()ing process and is not serialized 546 * with the rest of the PMU callbacks. 547 */ 548 int (*addr_filters_validate) (struct list_head *filters); 549 /* optional */ 550 551 /* 552 * Synchronize address range filter configuration: 553 * translate hw-agnostic filters into hardware configuration in 554 * event::hw::addr_filters. 555 * 556 * Runs as a part of filter sync sequence that is done in ->start() 557 * callback by calling perf_event_addr_filters_sync(). 558 * 559 * May (and should) traverse event::addr_filters::list, for which its 560 * caller provides necessary serialization. 561 */ 562 void (*addr_filters_sync) (struct perf_event *event); 563 /* optional */ 564 565 /* 566 * Check if event can be used for aux_output purposes for 567 * events of this PMU. 568 * 569 * Runs from perf_event_open(). Should return 0 for "no match" 570 * or non-zero for "match". 571 */ 572 int (*aux_output_match) (struct perf_event *event); 573 /* optional */ 574 575 /* 576 * Skip programming this PMU on the given CPU. Typically needed for 577 * big.LITTLE things. 578 */ 579 bool (*filter) (struct pmu *pmu, int cpu); /* optional */ 580 581 /* 582 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 583 */ 584 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 585}; 586 587enum perf_addr_filter_action_t { 588 PERF_ADDR_FILTER_ACTION_STOP = 0, 589 PERF_ADDR_FILTER_ACTION_START, 590 PERF_ADDR_FILTER_ACTION_FILTER, 591}; 592 593/** 594 * struct perf_addr_filter - address range filter definition 595 * @entry: event's filter list linkage 596 * @path: object file's path for file-based filters 597 * @offset: filter range offset 598 * @size: filter range size (size==0 means single address trigger) 599 * @action: filter/start/stop 600 * 601 * This is a hardware-agnostic filter configuration as specified by the user. 602 */ 603struct perf_addr_filter { 604 struct list_head entry; 605 struct path path; 606 unsigned long offset; 607 unsigned long size; 608 enum perf_addr_filter_action_t action; 609}; 610 611/** 612 * struct perf_addr_filters_head - container for address range filters 613 * @list: list of filters for this event 614 * @lock: spinlock that serializes accesses to the @list and event's 615 * (and its children's) filter generations. 616 * @nr_file_filters: number of file-based filters 617 * 618 * A child event will use parent's @list (and therefore @lock), so they are 619 * bundled together; see perf_event_addr_filters(). 620 */ 621struct perf_addr_filters_head { 622 struct list_head list; 623 raw_spinlock_t lock; 624 unsigned int nr_file_filters; 625}; 626 627struct perf_addr_filter_range { 628 unsigned long start; 629 unsigned long size; 630}; 631 632/** 633 * enum perf_event_state - the states of an event: 634 */ 635enum perf_event_state { 636 PERF_EVENT_STATE_DEAD = -4, 637 PERF_EVENT_STATE_EXIT = -3, 638 PERF_EVENT_STATE_ERROR = -2, 639 PERF_EVENT_STATE_OFF = -1, 640 PERF_EVENT_STATE_INACTIVE = 0, 641 PERF_EVENT_STATE_ACTIVE = 1, 642}; 643 644struct file; 645struct perf_sample_data; 646 647typedef void (*perf_overflow_handler_t)(struct perf_event *, 648 struct perf_sample_data *, 649 struct pt_regs *regs); 650 651/* 652 * Event capabilities. For event_caps and groups caps. 653 * 654 * PERF_EV_CAP_SOFTWARE: Is a software event. 655 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 656 * from any CPU in the package where it is active. 657 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 658 * cannot be a group leader. If an event with this flag is detached from the 659 * group it is scheduled out and moved into an unrecoverable ERROR state. 660 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the 661 * PMU scope where it is active. 662 */ 663#define PERF_EV_CAP_SOFTWARE BIT(0) 664#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 665#define PERF_EV_CAP_SIBLING BIT(2) 666#define PERF_EV_CAP_READ_SCOPE BIT(3) 667 668#define SWEVENT_HLIST_BITS 8 669#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 670 671struct swevent_hlist { 672 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 673 struct rcu_head rcu_head; 674}; 675 676#define PERF_ATTACH_CONTEXT 0x01 677#define PERF_ATTACH_GROUP 0x02 678#define PERF_ATTACH_TASK 0x04 679#define PERF_ATTACH_TASK_DATA 0x08 680#define PERF_ATTACH_ITRACE 0x10 681#define PERF_ATTACH_SCHED_CB 0x20 682#define PERF_ATTACH_CHILD 0x40 683 684struct bpf_prog; 685struct perf_cgroup; 686struct perf_buffer; 687 688struct pmu_event_list { 689 raw_spinlock_t lock; 690 struct list_head list; 691}; 692 693/* 694 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 695 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 696 * safe lock, and is only held by the CPU doing the modification, having IRQs 697 * disabled is sufficient since it will hold-off the IPIs. 698 */ 699#ifdef CONFIG_PROVE_LOCKING 700#define lockdep_assert_event_ctx(event) \ 701 WARN_ON_ONCE(__lockdep_enabled && \ 702 (this_cpu_read(hardirqs_enabled) && \ 703 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 704#else 705#define lockdep_assert_event_ctx(event) 706#endif 707 708#define for_each_sibling_event(sibling, event) \ 709 lockdep_assert_event_ctx(event); \ 710 if ((event)->group_leader == (event)) \ 711 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 712 713/** 714 * struct perf_event - performance event kernel representation: 715 */ 716struct perf_event { 717#ifdef CONFIG_PERF_EVENTS 718 /* 719 * entry onto perf_event_context::event_list; 720 * modifications require ctx->lock 721 * RCU safe iterations. 722 */ 723 struct list_head event_entry; 724 725 /* 726 * Locked for modification by both ctx->mutex and ctx->lock; holding 727 * either sufficies for read. 728 */ 729 struct list_head sibling_list; 730 struct list_head active_list; 731 /* 732 * Node on the pinned or flexible tree located at the event context; 733 */ 734 struct rb_node group_node; 735 u64 group_index; 736 /* 737 * We need storage to track the entries in perf_pmu_migrate_context; we 738 * cannot use the event_entry because of RCU and we want to keep the 739 * group in tact which avoids us using the other two entries. 740 */ 741 struct list_head migrate_entry; 742 743 struct hlist_node hlist_entry; 744 struct list_head active_entry; 745 int nr_siblings; 746 747 /* Not serialized. Only written during event initialization. */ 748 int event_caps; 749 /* The cumulative AND of all event_caps for events in this group. */ 750 int group_caps; 751 752 unsigned int group_generation; 753 struct perf_event *group_leader; 754 /* 755 * event->pmu will always point to pmu in which this event belongs. 756 * Whereas event->pmu_ctx->pmu may point to other pmu when group of 757 * different pmu events is created. 758 */ 759 struct pmu *pmu; 760 void *pmu_private; 761 762 enum perf_event_state state; 763 unsigned int attach_state; 764 local64_t count; 765 atomic64_t child_count; 766 767 /* 768 * These are the total time in nanoseconds that the event 769 * has been enabled (i.e. eligible to run, and the task has 770 * been scheduled in, if this is a per-task event) 771 * and running (scheduled onto the CPU), respectively. 772 */ 773 u64 total_time_enabled; 774 u64 total_time_running; 775 u64 tstamp; 776 777 struct perf_event_attr attr; 778 u16 header_size; 779 u16 id_header_size; 780 u16 read_size; 781 struct hw_perf_event hw; 782 783 struct perf_event_context *ctx; 784 /* 785 * event->pmu_ctx points to perf_event_pmu_context in which the event 786 * is added. This pmu_ctx can be of other pmu for sw event when that 787 * sw event is part of a group which also contains non-sw events. 788 */ 789 struct perf_event_pmu_context *pmu_ctx; 790 atomic_long_t refcount; 791 792 /* 793 * These accumulate total time (in nanoseconds) that children 794 * events have been enabled and running, respectively. 795 */ 796 atomic64_t child_total_time_enabled; 797 atomic64_t child_total_time_running; 798 799 /* 800 * Protect attach/detach and child_list: 801 */ 802 struct mutex child_mutex; 803 struct list_head child_list; 804 struct perf_event *parent; 805 806 int oncpu; 807 int cpu; 808 809 struct list_head owner_entry; 810 struct task_struct *owner; 811 812 /* mmap bits */ 813 struct mutex mmap_mutex; 814 atomic_t mmap_count; 815 816 struct perf_buffer *rb; 817 struct list_head rb_entry; 818 unsigned long rcu_batches; 819 int rcu_pending; 820 821 /* poll related */ 822 wait_queue_head_t waitq; 823 struct fasync_struct *fasync; 824 825 /* delayed work for NMIs and such */ 826 unsigned int pending_wakeup; 827 unsigned int pending_kill; 828 unsigned int pending_disable; 829 unsigned long pending_addr; /* SIGTRAP */ 830 struct irq_work pending_irq; 831 struct irq_work pending_disable_irq; 832 struct callback_head pending_task; 833 unsigned int pending_work; 834 struct rcuwait pending_work_wait; 835 836 atomic_t event_limit; 837 838 /* address range filters */ 839 struct perf_addr_filters_head addr_filters; 840 /* vma address array for file-based filders */ 841 struct perf_addr_filter_range *addr_filter_ranges; 842 unsigned long addr_filters_gen; 843 844 /* for aux_output events */ 845 struct perf_event *aux_event; 846 847 void (*destroy)(struct perf_event *); 848 struct rcu_head rcu_head; 849 850 struct pid_namespace *ns; 851 u64 id; 852 853 atomic64_t lost_samples; 854 855 u64 (*clock)(void); 856 perf_overflow_handler_t overflow_handler; 857 void *overflow_handler_context; 858 struct bpf_prog *prog; 859 u64 bpf_cookie; 860 861#ifdef CONFIG_EVENT_TRACING 862 struct trace_event_call *tp_event; 863 struct event_filter *filter; 864#ifdef CONFIG_FUNCTION_TRACER 865 struct ftrace_ops ftrace_ops; 866#endif 867#endif 868 869#ifdef CONFIG_CGROUP_PERF 870 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 871#endif 872 873#ifdef CONFIG_SECURITY 874 void *security; 875#endif 876 struct list_head sb_list; 877 878 /* 879 * Certain events gets forwarded to another pmu internally by over- 880 * writing kernel copy of event->attr.type without user being aware 881 * of it. event->orig_type contains original 'type' requested by 882 * user. 883 */ 884 __u32 orig_type; 885#endif /* CONFIG_PERF_EVENTS */ 886}; 887 888/* 889 * ,-----------------------[1:n]------------------------. 890 * V V 891 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event 892 * | | 893 * `--[n:1]-> pmu <-[1:n]--' 894 * 895 * 896 * struct perf_event_pmu_context lifetime is refcount based and RCU freed 897 * (similar to perf_event_context). Locking is as if it were a member of 898 * perf_event_context; specifically: 899 * 900 * modification, both: ctx->mutex && ctx->lock 901 * reading, either: ctx->mutex || ctx->lock 902 * 903 * There is one exception to this; namely put_pmu_ctx() isn't always called 904 * with ctx->mutex held; this means that as long as we can guarantee the epc 905 * has events the above rules hold. 906 * 907 * Specificially, sys_perf_event_open()'s group_leader case depends on 908 * ctx->mutex pinning the configuration. Since we hold a reference on 909 * group_leader (through the filedesc) it can't go away, therefore it's 910 * associated pmu_ctx must exist and cannot change due to ctx->mutex. 911 * 912 * perf_event holds a refcount on perf_event_context 913 * perf_event holds a refcount on perf_event_pmu_context 914 */ 915struct perf_event_pmu_context { 916 struct pmu *pmu; 917 struct perf_event_context *ctx; 918 919 struct list_head pmu_ctx_entry; 920 921 struct list_head pinned_active; 922 struct list_head flexible_active; 923 924 /* Used to avoid freeing per-cpu perf_event_pmu_context */ 925 unsigned int embedded : 1; 926 927 unsigned int nr_events; 928 unsigned int nr_cgroups; 929 unsigned int nr_freq; 930 931 atomic_t refcount; /* event <-> epc */ 932 struct rcu_head rcu_head; 933 934 void *task_ctx_data; /* pmu specific data */ 935 /* 936 * Set when one or more (plausibly active) event can't be scheduled 937 * due to pmu overcommit or pmu constraints, except tolerant to 938 * events not necessary to be active due to scheduling constraints, 939 * such as cgroups. 940 */ 941 int rotate_necessary; 942}; 943 944static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) 945{ 946 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active); 947} 948 949struct perf_event_groups { 950 struct rb_root tree; 951 u64 index; 952}; 953 954 955/** 956 * struct perf_event_context - event context structure 957 * 958 * Used as a container for task events and CPU events as well: 959 */ 960struct perf_event_context { 961 /* 962 * Protect the states of the events in the list, 963 * nr_active, and the list: 964 */ 965 raw_spinlock_t lock; 966 /* 967 * Protect the list of events. Locking either mutex or lock 968 * is sufficient to ensure the list doesn't change; to change 969 * the list you need to lock both the mutex and the spinlock. 970 */ 971 struct mutex mutex; 972 973 struct list_head pmu_ctx_list; 974 struct perf_event_groups pinned_groups; 975 struct perf_event_groups flexible_groups; 976 struct list_head event_list; 977 978 int nr_events; 979 int nr_user; 980 int is_active; 981 982 int nr_task_data; 983 int nr_stat; 984 int nr_freq; 985 int rotate_disable; 986 987 refcount_t refcount; /* event <-> ctx */ 988 struct task_struct *task; 989 990 /* 991 * Context clock, runs when context enabled. 992 */ 993 u64 time; 994 u64 timestamp; 995 u64 timeoffset; 996 997 /* 998 * These fields let us detect when two contexts have both 999 * been cloned (inherited) from a common ancestor. 1000 */ 1001 struct perf_event_context *parent_ctx; 1002 u64 parent_gen; 1003 u64 generation; 1004 int pin_count; 1005#ifdef CONFIG_CGROUP_PERF 1006 int nr_cgroups; /* cgroup evts */ 1007#endif 1008 struct rcu_head rcu_head; 1009 1010 /* 1011 * The count of events for which using the switch-out fast path 1012 * should be avoided. 1013 * 1014 * Sum (event->pending_work + events with 1015 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) 1016 * 1017 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 1018 * that until the signal is delivered. 1019 */ 1020 local_t nr_no_switch_fast; 1021}; 1022 1023struct perf_cpu_pmu_context { 1024 struct perf_event_pmu_context epc; 1025 struct perf_event_pmu_context *task_epc; 1026 1027 struct list_head sched_cb_entry; 1028 int sched_cb_usage; 1029 1030 int active_oncpu; 1031 int exclusive; 1032 1033 raw_spinlock_t hrtimer_lock; 1034 struct hrtimer hrtimer; 1035 ktime_t hrtimer_interval; 1036 unsigned int hrtimer_active; 1037}; 1038 1039/** 1040 * struct perf_event_cpu_context - per cpu event context structure 1041 */ 1042struct perf_cpu_context { 1043 struct perf_event_context ctx; 1044 struct perf_event_context *task_ctx; 1045 int online; 1046 1047#ifdef CONFIG_CGROUP_PERF 1048 struct perf_cgroup *cgrp; 1049#endif 1050 1051 /* 1052 * Per-CPU storage for iterators used in visit_groups_merge. The default 1053 * storage is of size 2 to hold the CPU and any CPU event iterators. 1054 */ 1055 int heap_size; 1056 struct perf_event **heap; 1057 struct perf_event *heap_default[2]; 1058}; 1059 1060struct perf_output_handle { 1061 struct perf_event *event; 1062 struct perf_buffer *rb; 1063 unsigned long wakeup; 1064 unsigned long size; 1065 u64 aux_flags; 1066 union { 1067 void *addr; 1068 unsigned long head; 1069 }; 1070 int page; 1071}; 1072 1073struct bpf_perf_event_data_kern { 1074 bpf_user_pt_regs_t *regs; 1075 struct perf_sample_data *data; 1076 struct perf_event *event; 1077}; 1078 1079#ifdef CONFIG_CGROUP_PERF 1080 1081/* 1082 * perf_cgroup_info keeps track of time_enabled for a cgroup. 1083 * This is a per-cpu dynamically allocated data structure. 1084 */ 1085struct perf_cgroup_info { 1086 u64 time; 1087 u64 timestamp; 1088 u64 timeoffset; 1089 int active; 1090}; 1091 1092struct perf_cgroup { 1093 struct cgroup_subsys_state css; 1094 struct perf_cgroup_info __percpu *info; 1095}; 1096 1097/* 1098 * Must ensure cgroup is pinned (css_get) before calling 1099 * this function. In other words, we cannot call this function 1100 * if there is no cgroup event for the current CPU context. 1101 */ 1102static inline struct perf_cgroup * 1103perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 1104{ 1105 return container_of(task_css_check(task, perf_event_cgrp_id, 1106 ctx ? lockdep_is_held(&ctx->lock) 1107 : true), 1108 struct perf_cgroup, css); 1109} 1110#endif /* CONFIG_CGROUP_PERF */ 1111 1112#ifdef CONFIG_PERF_EVENTS 1113 1114extern struct perf_event_context *perf_cpu_task_ctx(void); 1115 1116extern void *perf_aux_output_begin(struct perf_output_handle *handle, 1117 struct perf_event *event); 1118extern void perf_aux_output_end(struct perf_output_handle *handle, 1119 unsigned long size); 1120extern int perf_aux_output_skip(struct perf_output_handle *handle, 1121 unsigned long size); 1122extern void *perf_get_aux(struct perf_output_handle *handle); 1123extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 1124extern void perf_event_itrace_started(struct perf_event *event); 1125 1126extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 1127extern void perf_pmu_unregister(struct pmu *pmu); 1128 1129extern void __perf_event_task_sched_in(struct task_struct *prev, 1130 struct task_struct *task); 1131extern void __perf_event_task_sched_out(struct task_struct *prev, 1132 struct task_struct *next); 1133extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1134extern void perf_event_exit_task(struct task_struct *child); 1135extern void perf_event_free_task(struct task_struct *task); 1136extern void perf_event_delayed_put(struct task_struct *task); 1137extern struct file *perf_event_get(unsigned int fd); 1138extern const struct perf_event *perf_get_event(struct file *file); 1139extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1140extern void perf_event_print_debug(void); 1141extern void perf_pmu_disable(struct pmu *pmu); 1142extern void perf_pmu_enable(struct pmu *pmu); 1143extern void perf_sched_cb_dec(struct pmu *pmu); 1144extern void perf_sched_cb_inc(struct pmu *pmu); 1145extern int perf_event_task_disable(void); 1146extern int perf_event_task_enable(void); 1147 1148extern void perf_pmu_resched(struct pmu *pmu); 1149 1150extern int perf_event_refresh(struct perf_event *event, int refresh); 1151extern void perf_event_update_userpage(struct perf_event *event); 1152extern int perf_event_release_kernel(struct perf_event *event); 1153extern struct perf_event * 1154perf_event_create_kernel_counter(struct perf_event_attr *attr, 1155 int cpu, 1156 struct task_struct *task, 1157 perf_overflow_handler_t callback, 1158 void *context); 1159extern void perf_pmu_migrate_context(struct pmu *pmu, 1160 int src_cpu, int dst_cpu); 1161int perf_event_read_local(struct perf_event *event, u64 *value, 1162 u64 *enabled, u64 *running); 1163extern u64 perf_event_read_value(struct perf_event *event, 1164 u64 *enabled, u64 *running); 1165 1166extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1167 1168static inline bool branch_sample_no_flags(const struct perf_event *event) 1169{ 1170 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1171} 1172 1173static inline bool branch_sample_no_cycles(const struct perf_event *event) 1174{ 1175 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1176} 1177 1178static inline bool branch_sample_type(const struct perf_event *event) 1179{ 1180 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1181} 1182 1183static inline bool branch_sample_hw_index(const struct perf_event *event) 1184{ 1185 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1186} 1187 1188static inline bool branch_sample_priv(const struct perf_event *event) 1189{ 1190 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1191} 1192 1193static inline bool branch_sample_counters(const struct perf_event *event) 1194{ 1195 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; 1196} 1197 1198static inline bool branch_sample_call_stack(const struct perf_event *event) 1199{ 1200 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; 1201} 1202 1203struct perf_sample_data { 1204 /* 1205 * Fields set by perf_sample_data_init() unconditionally, 1206 * group so as to minimize the cachelines touched. 1207 */ 1208 u64 sample_flags; 1209 u64 period; 1210 u64 dyn_size; 1211 1212 /* 1213 * Fields commonly set by __perf_event_header__init_id(), 1214 * group so as to minimize the cachelines touched. 1215 */ 1216 u64 type; 1217 struct { 1218 u32 pid; 1219 u32 tid; 1220 } tid_entry; 1221 u64 time; 1222 u64 id; 1223 struct { 1224 u32 cpu; 1225 u32 reserved; 1226 } cpu_entry; 1227 1228 /* 1229 * The other fields, optionally {set,used} by 1230 * perf_{prepare,output}_sample(). 1231 */ 1232 u64 ip; 1233 struct perf_callchain_entry *callchain; 1234 struct perf_raw_record *raw; 1235 struct perf_branch_stack *br_stack; 1236 u64 *br_stack_cntr; 1237 union perf_sample_weight weight; 1238 union perf_mem_data_src data_src; 1239 u64 txn; 1240 1241 struct perf_regs regs_user; 1242 struct perf_regs regs_intr; 1243 u64 stack_user_size; 1244 1245 u64 stream_id; 1246 u64 cgroup; 1247 u64 addr; 1248 u64 phys_addr; 1249 u64 data_page_size; 1250 u64 code_page_size; 1251 u64 aux_size; 1252} ____cacheline_aligned; 1253 1254/* default value for data source */ 1255#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1256 PERF_MEM_S(LVL, NA) |\ 1257 PERF_MEM_S(SNOOP, NA) |\ 1258 PERF_MEM_S(LOCK, NA) |\ 1259 PERF_MEM_S(TLB, NA) |\ 1260 PERF_MEM_S(LVLNUM, NA)) 1261 1262static inline void perf_sample_data_init(struct perf_sample_data *data, 1263 u64 addr, u64 period) 1264{ 1265 /* remaining struct members initialized in perf_prepare_sample() */ 1266 data->sample_flags = PERF_SAMPLE_PERIOD; 1267 data->period = period; 1268 data->dyn_size = 0; 1269 1270 if (addr) { 1271 data->addr = addr; 1272 data->sample_flags |= PERF_SAMPLE_ADDR; 1273 } 1274} 1275 1276static inline void perf_sample_save_callchain(struct perf_sample_data *data, 1277 struct perf_event *event, 1278 struct pt_regs *regs) 1279{ 1280 int size = 1; 1281 1282 data->callchain = perf_callchain(event, regs); 1283 size += data->callchain->nr; 1284 1285 data->dyn_size += size * sizeof(u64); 1286 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1287} 1288 1289static inline void perf_sample_save_raw_data(struct perf_sample_data *data, 1290 struct perf_raw_record *raw) 1291{ 1292 struct perf_raw_frag *frag = &raw->frag; 1293 u32 sum = 0; 1294 int size; 1295 1296 do { 1297 sum += frag->size; 1298 if (perf_raw_frag_last(frag)) 1299 break; 1300 frag = frag->next; 1301 } while (1); 1302 1303 size = round_up(sum + sizeof(u32), sizeof(u64)); 1304 raw->size = size - sizeof(u32); 1305 frag->pad = raw->size - sum; 1306 1307 data->raw = raw; 1308 data->dyn_size += size; 1309 data->sample_flags |= PERF_SAMPLE_RAW; 1310} 1311 1312static inline void perf_sample_save_brstack(struct perf_sample_data *data, 1313 struct perf_event *event, 1314 struct perf_branch_stack *brs, 1315 u64 *brs_cntr) 1316{ 1317 int size = sizeof(u64); /* nr */ 1318 1319 if (branch_sample_hw_index(event)) 1320 size += sizeof(u64); 1321 size += brs->nr * sizeof(struct perf_branch_entry); 1322 1323 /* 1324 * The extension space for counters is appended after the 1325 * struct perf_branch_stack. It is used to store the occurrences 1326 * of events of each branch. 1327 */ 1328 if (brs_cntr) 1329 size += brs->nr * sizeof(u64); 1330 1331 data->br_stack = brs; 1332 data->br_stack_cntr = brs_cntr; 1333 data->dyn_size += size; 1334 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1335} 1336 1337static inline u32 perf_sample_data_size(struct perf_sample_data *data, 1338 struct perf_event *event) 1339{ 1340 u32 size = sizeof(struct perf_event_header); 1341 1342 size += event->header_size + event->id_header_size; 1343 size += data->dyn_size; 1344 1345 return size; 1346} 1347 1348/* 1349 * Clear all bitfields in the perf_branch_entry. 1350 * The to and from fields are not cleared because they are 1351 * systematically modified by caller. 1352 */ 1353static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1354{ 1355 br->mispred = 0; 1356 br->predicted = 0; 1357 br->in_tx = 0; 1358 br->abort = 0; 1359 br->cycles = 0; 1360 br->type = 0; 1361 br->spec = PERF_BR_SPEC_NA; 1362 br->reserved = 0; 1363} 1364 1365extern void perf_output_sample(struct perf_output_handle *handle, 1366 struct perf_event_header *header, 1367 struct perf_sample_data *data, 1368 struct perf_event *event); 1369extern void perf_prepare_sample(struct perf_sample_data *data, 1370 struct perf_event *event, 1371 struct pt_regs *regs); 1372extern void perf_prepare_header(struct perf_event_header *header, 1373 struct perf_sample_data *data, 1374 struct perf_event *event, 1375 struct pt_regs *regs); 1376 1377extern int perf_event_overflow(struct perf_event *event, 1378 struct perf_sample_data *data, 1379 struct pt_regs *regs); 1380 1381extern void perf_event_output_forward(struct perf_event *event, 1382 struct perf_sample_data *data, 1383 struct pt_regs *regs); 1384extern void perf_event_output_backward(struct perf_event *event, 1385 struct perf_sample_data *data, 1386 struct pt_regs *regs); 1387extern int perf_event_output(struct perf_event *event, 1388 struct perf_sample_data *data, 1389 struct pt_regs *regs); 1390 1391static inline bool 1392is_default_overflow_handler(struct perf_event *event) 1393{ 1394 perf_overflow_handler_t overflow_handler = event->overflow_handler; 1395 1396 if (likely(overflow_handler == perf_event_output_forward)) 1397 return true; 1398 if (unlikely(overflow_handler == perf_event_output_backward)) 1399 return true; 1400 return false; 1401} 1402 1403extern void 1404perf_event_header__init_id(struct perf_event_header *header, 1405 struct perf_sample_data *data, 1406 struct perf_event *event); 1407extern void 1408perf_event__output_id_sample(struct perf_event *event, 1409 struct perf_output_handle *handle, 1410 struct perf_sample_data *sample); 1411 1412extern void 1413perf_log_lost_samples(struct perf_event *event, u64 lost); 1414 1415static inline bool event_has_any_exclude_flag(struct perf_event *event) 1416{ 1417 struct perf_event_attr *attr = &event->attr; 1418 1419 return attr->exclude_idle || attr->exclude_user || 1420 attr->exclude_kernel || attr->exclude_hv || 1421 attr->exclude_guest || attr->exclude_host; 1422} 1423 1424static inline bool is_sampling_event(struct perf_event *event) 1425{ 1426 return event->attr.sample_period != 0; 1427} 1428 1429/* 1430 * Return 1 for a software event, 0 for a hardware event 1431 */ 1432static inline int is_software_event(struct perf_event *event) 1433{ 1434 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1435} 1436 1437/* 1438 * Return 1 for event in sw context, 0 for event in hw context 1439 */ 1440static inline int in_software_context(struct perf_event *event) 1441{ 1442 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; 1443} 1444 1445static inline int is_exclusive_pmu(struct pmu *pmu) 1446{ 1447 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1448} 1449 1450extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1451 1452extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1453extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1454 1455#ifndef perf_arch_fetch_caller_regs 1456static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1457#endif 1458 1459/* 1460 * When generating a perf sample in-line, instead of from an interrupt / 1461 * exception, we lack a pt_regs. This is typically used from software events 1462 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1463 * 1464 * We typically don't need a full set, but (for x86) do require: 1465 * - ip for PERF_SAMPLE_IP 1466 * - cs for user_mode() tests 1467 * - sp for PERF_SAMPLE_CALLCHAIN 1468 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1469 * 1470 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1471 * things like PERF_SAMPLE_REGS_INTR. 1472 */ 1473static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1474{ 1475 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1476} 1477 1478static __always_inline void 1479perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1480{ 1481 if (static_key_false(&perf_swevent_enabled[event_id])) 1482 __perf_sw_event(event_id, nr, regs, addr); 1483} 1484 1485DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1486 1487/* 1488 * 'Special' version for the scheduler, it hard assumes no recursion, 1489 * which is guaranteed by us not actually scheduling inside other swevents 1490 * because those disable preemption. 1491 */ 1492static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1493{ 1494 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1495 1496 perf_fetch_caller_regs(regs); 1497 ___perf_sw_event(event_id, nr, regs, addr); 1498} 1499 1500extern struct static_key_false perf_sched_events; 1501 1502static __always_inline bool __perf_sw_enabled(int swevt) 1503{ 1504 return static_key_false(&perf_swevent_enabled[swevt]); 1505} 1506 1507static inline void perf_event_task_migrate(struct task_struct *task) 1508{ 1509 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1510 task->sched_migrated = 1; 1511} 1512 1513static inline void perf_event_task_sched_in(struct task_struct *prev, 1514 struct task_struct *task) 1515{ 1516 if (static_branch_unlikely(&perf_sched_events)) 1517 __perf_event_task_sched_in(prev, task); 1518 1519 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1520 task->sched_migrated) { 1521 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1522 task->sched_migrated = 0; 1523 } 1524} 1525 1526static inline void perf_event_task_sched_out(struct task_struct *prev, 1527 struct task_struct *next) 1528{ 1529 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1530 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1531 1532#ifdef CONFIG_CGROUP_PERF 1533 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1534 perf_cgroup_from_task(prev, NULL) != 1535 perf_cgroup_from_task(next, NULL)) 1536 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1537#endif 1538 1539 if (static_branch_unlikely(&perf_sched_events)) 1540 __perf_event_task_sched_out(prev, next); 1541} 1542 1543extern void perf_event_mmap(struct vm_area_struct *vma); 1544 1545extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1546 bool unregister, const char *sym); 1547extern void perf_event_bpf_event(struct bpf_prog *prog, 1548 enum perf_bpf_event_type type, 1549 u16 flags); 1550 1551#ifdef CONFIG_GUEST_PERF_EVENTS 1552extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1553 1554DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1555DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1556DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1557 1558static inline unsigned int perf_guest_state(void) 1559{ 1560 return static_call(__perf_guest_state)(); 1561} 1562static inline unsigned long perf_guest_get_ip(void) 1563{ 1564 return static_call(__perf_guest_get_ip)(); 1565} 1566static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1567{ 1568 return static_call(__perf_guest_handle_intel_pt_intr)(); 1569} 1570extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1571extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1572#else 1573static inline unsigned int perf_guest_state(void) { return 0; } 1574static inline unsigned long perf_guest_get_ip(void) { return 0; } 1575static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1576#endif /* CONFIG_GUEST_PERF_EVENTS */ 1577 1578extern void perf_event_exec(void); 1579extern void perf_event_comm(struct task_struct *tsk, bool exec); 1580extern void perf_event_namespaces(struct task_struct *tsk); 1581extern void perf_event_fork(struct task_struct *tsk); 1582extern void perf_event_text_poke(const void *addr, 1583 const void *old_bytes, size_t old_len, 1584 const void *new_bytes, size_t new_len); 1585 1586/* Callchains */ 1587DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1588 1589extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1590extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1591extern struct perf_callchain_entry * 1592get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1593 u32 max_stack, bool crosstask, bool add_mark); 1594extern int get_callchain_buffers(int max_stack); 1595extern void put_callchain_buffers(void); 1596extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1597extern void put_callchain_entry(int rctx); 1598 1599extern int sysctl_perf_event_max_stack; 1600extern int sysctl_perf_event_max_contexts_per_stack; 1601 1602static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1603{ 1604 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1605 struct perf_callchain_entry *entry = ctx->entry; 1606 entry->ip[entry->nr++] = ip; 1607 ++ctx->contexts; 1608 return 0; 1609 } else { 1610 ctx->contexts_maxed = true; 1611 return -1; /* no more room, stop walking the stack */ 1612 } 1613} 1614 1615static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1616{ 1617 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1618 struct perf_callchain_entry *entry = ctx->entry; 1619 entry->ip[entry->nr++] = ip; 1620 ++ctx->nr; 1621 return 0; 1622 } else { 1623 return -1; /* no more room, stop walking the stack */ 1624 } 1625} 1626 1627extern int sysctl_perf_event_paranoid; 1628extern int sysctl_perf_event_mlock; 1629extern int sysctl_perf_event_sample_rate; 1630extern int sysctl_perf_cpu_time_max_percent; 1631 1632extern void perf_sample_event_took(u64 sample_len_ns); 1633 1634int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 1635 void *buffer, size_t *lenp, loff_t *ppos); 1636int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 1637 void *buffer, size_t *lenp, loff_t *ppos); 1638int perf_event_max_stack_handler(const struct ctl_table *table, int write, 1639 void *buffer, size_t *lenp, loff_t *ppos); 1640 1641/* Access to perf_event_open(2) syscall. */ 1642#define PERF_SECURITY_OPEN 0 1643 1644/* Finer grained perf_event_open(2) access control. */ 1645#define PERF_SECURITY_CPU 1 1646#define PERF_SECURITY_KERNEL 2 1647#define PERF_SECURITY_TRACEPOINT 3 1648 1649static inline int perf_is_paranoid(void) 1650{ 1651 return sysctl_perf_event_paranoid > -1; 1652} 1653 1654int perf_allow_kernel(struct perf_event_attr *attr); 1655 1656static inline int perf_allow_cpu(struct perf_event_attr *attr) 1657{ 1658 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1659 return -EACCES; 1660 1661 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1662} 1663 1664static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1665{ 1666 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1667 return -EPERM; 1668 1669 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1670} 1671 1672extern void perf_event_init(void); 1673extern void perf_tp_event(u16 event_type, u64 count, void *record, 1674 int entry_size, struct pt_regs *regs, 1675 struct hlist_head *head, int rctx, 1676 struct task_struct *task); 1677extern void perf_bp_event(struct perf_event *event, void *data); 1678 1679extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs); 1680extern unsigned long perf_instruction_pointer(struct perf_event *event, 1681 struct pt_regs *regs); 1682 1683#ifndef perf_arch_misc_flags 1684# define perf_arch_misc_flags(regs) \ 1685 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1686# define perf_arch_instruction_pointer(regs) instruction_pointer(regs) 1687#endif 1688#ifndef perf_arch_bpf_user_pt_regs 1689# define perf_arch_bpf_user_pt_regs(regs) regs 1690#endif 1691 1692#ifndef perf_arch_guest_misc_flags 1693static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 1694{ 1695 unsigned long guest_state = perf_guest_state(); 1696 1697 if (!(guest_state & PERF_GUEST_ACTIVE)) 1698 return 0; 1699 1700 if (guest_state & PERF_GUEST_USER) 1701 return PERF_RECORD_MISC_GUEST_USER; 1702 else 1703 return PERF_RECORD_MISC_GUEST_KERNEL; 1704} 1705# define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs) 1706#endif 1707 1708static inline bool has_branch_stack(struct perf_event *event) 1709{ 1710 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1711} 1712 1713static inline bool needs_branch_stack(struct perf_event *event) 1714{ 1715 return event->attr.branch_sample_type != 0; 1716} 1717 1718static inline bool has_aux(struct perf_event *event) 1719{ 1720 return event->pmu->setup_aux; 1721} 1722 1723static inline bool has_aux_action(struct perf_event *event) 1724{ 1725 return event->attr.aux_sample_size || 1726 event->attr.aux_pause || 1727 event->attr.aux_resume; 1728} 1729 1730static inline bool is_write_backward(struct perf_event *event) 1731{ 1732 return !!event->attr.write_backward; 1733} 1734 1735static inline bool has_addr_filter(struct perf_event *event) 1736{ 1737 return event->pmu->nr_addr_filters; 1738} 1739 1740/* 1741 * An inherited event uses parent's filters 1742 */ 1743static inline struct perf_addr_filters_head * 1744perf_event_addr_filters(struct perf_event *event) 1745{ 1746 struct perf_addr_filters_head *ifh = &event->addr_filters; 1747 1748 if (event->parent) 1749 ifh = &event->parent->addr_filters; 1750 1751 return ifh; 1752} 1753 1754static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 1755{ 1756 /* Only the parent has fasync state */ 1757 if (event->parent) 1758 event = event->parent; 1759 return &event->fasync; 1760} 1761 1762extern void perf_event_addr_filters_sync(struct perf_event *event); 1763extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1764 1765extern int perf_output_begin(struct perf_output_handle *handle, 1766 struct perf_sample_data *data, 1767 struct perf_event *event, unsigned int size); 1768extern int perf_output_begin_forward(struct perf_output_handle *handle, 1769 struct perf_sample_data *data, 1770 struct perf_event *event, 1771 unsigned int size); 1772extern int perf_output_begin_backward(struct perf_output_handle *handle, 1773 struct perf_sample_data *data, 1774 struct perf_event *event, 1775 unsigned int size); 1776 1777extern void perf_output_end(struct perf_output_handle *handle); 1778extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1779 const void *buf, unsigned int len); 1780extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1781 unsigned int len); 1782extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1783 struct perf_output_handle *handle, 1784 unsigned long from, unsigned long to); 1785extern int perf_swevent_get_recursion_context(void); 1786extern void perf_swevent_put_recursion_context(int rctx); 1787extern u64 perf_swevent_set_period(struct perf_event *event); 1788extern void perf_event_enable(struct perf_event *event); 1789extern void perf_event_disable(struct perf_event *event); 1790extern void perf_event_disable_local(struct perf_event *event); 1791extern void perf_event_disable_inatomic(struct perf_event *event); 1792extern void perf_event_task_tick(void); 1793extern int perf_event_account_interrupt(struct perf_event *event); 1794extern int perf_event_period(struct perf_event *event, u64 value); 1795extern u64 perf_event_pause(struct perf_event *event, bool reset); 1796#else /* !CONFIG_PERF_EVENTS: */ 1797static inline void * 1798perf_aux_output_begin(struct perf_output_handle *handle, 1799 struct perf_event *event) { return NULL; } 1800static inline void 1801perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1802 { } 1803static inline int 1804perf_aux_output_skip(struct perf_output_handle *handle, 1805 unsigned long size) { return -EINVAL; } 1806static inline void * 1807perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1808static inline void 1809perf_event_task_migrate(struct task_struct *task) { } 1810static inline void 1811perf_event_task_sched_in(struct task_struct *prev, 1812 struct task_struct *task) { } 1813static inline void 1814perf_event_task_sched_out(struct task_struct *prev, 1815 struct task_struct *next) { } 1816static inline int perf_event_init_task(struct task_struct *child, 1817 u64 clone_flags) { return 0; } 1818static inline void perf_event_exit_task(struct task_struct *child) { } 1819static inline void perf_event_free_task(struct task_struct *task) { } 1820static inline void perf_event_delayed_put(struct task_struct *task) { } 1821static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1822static inline const struct perf_event *perf_get_event(struct file *file) 1823{ 1824 return ERR_PTR(-EINVAL); 1825} 1826static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1827{ 1828 return ERR_PTR(-EINVAL); 1829} 1830static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1831 u64 *enabled, u64 *running) 1832{ 1833 return -EINVAL; 1834} 1835static inline void perf_event_print_debug(void) { } 1836static inline int perf_event_task_disable(void) { return -EINVAL; } 1837static inline int perf_event_task_enable(void) { return -EINVAL; } 1838static inline int perf_event_refresh(struct perf_event *event, int refresh) 1839{ 1840 return -EINVAL; 1841} 1842 1843static inline void 1844perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1845static inline void 1846perf_bp_event(struct perf_event *event, void *data) { } 1847 1848static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1849 1850typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1851static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1852 bool unregister, const char *sym) { } 1853static inline void perf_event_bpf_event(struct bpf_prog *prog, 1854 enum perf_bpf_event_type type, 1855 u16 flags) { } 1856static inline void perf_event_exec(void) { } 1857static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1858static inline void perf_event_namespaces(struct task_struct *tsk) { } 1859static inline void perf_event_fork(struct task_struct *tsk) { } 1860static inline void perf_event_text_poke(const void *addr, 1861 const void *old_bytes, 1862 size_t old_len, 1863 const void *new_bytes, 1864 size_t new_len) { } 1865static inline void perf_event_init(void) { } 1866static inline int perf_swevent_get_recursion_context(void) { return -1; } 1867static inline void perf_swevent_put_recursion_context(int rctx) { } 1868static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1869static inline void perf_event_enable(struct perf_event *event) { } 1870static inline void perf_event_disable(struct perf_event *event) { } 1871static inline int __perf_event_disable(void *info) { return -1; } 1872static inline void perf_event_task_tick(void) { } 1873static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1874static inline int perf_event_period(struct perf_event *event, u64 value) 1875{ 1876 return -EINVAL; 1877} 1878static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1879{ 1880 return 0; 1881} 1882#endif 1883 1884#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1885extern void perf_restore_debug_store(void); 1886#else 1887static inline void perf_restore_debug_store(void) { } 1888#endif 1889 1890#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1891 1892struct perf_pmu_events_attr { 1893 struct device_attribute attr; 1894 u64 id; 1895 const char *event_str; 1896}; 1897 1898struct perf_pmu_events_ht_attr { 1899 struct device_attribute attr; 1900 u64 id; 1901 const char *event_str_ht; 1902 const char *event_str_noht; 1903}; 1904 1905struct perf_pmu_events_hybrid_attr { 1906 struct device_attribute attr; 1907 u64 id; 1908 const char *event_str; 1909 u64 pmu_type; 1910}; 1911 1912struct perf_pmu_format_hybrid_attr { 1913 struct device_attribute attr; 1914 u64 pmu_type; 1915}; 1916 1917ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1918 char *page); 1919 1920#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1921static struct perf_pmu_events_attr _var = { \ 1922 .attr = __ATTR(_name, 0444, _show, NULL), \ 1923 .id = _id, \ 1924}; 1925 1926#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1927static struct perf_pmu_events_attr _var = { \ 1928 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1929 .id = 0, \ 1930 .event_str = _str, \ 1931}; 1932 1933#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1934 (&((struct perf_pmu_events_attr[]) { \ 1935 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1936 .id = _id, } \ 1937 })[0].attr.attr) 1938 1939#define PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1940static ssize_t \ 1941_name##_show(struct device *dev, \ 1942 struct device_attribute *attr, \ 1943 char *page) \ 1944{ \ 1945 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1946 return sprintf(page, _format "\n"); \ 1947} \ 1948 1949#define PMU_FORMAT_ATTR(_name, _format) \ 1950 PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1951 \ 1952static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1953 1954/* Performance counter hotplug functions */ 1955#ifdef CONFIG_PERF_EVENTS 1956int perf_event_init_cpu(unsigned int cpu); 1957int perf_event_exit_cpu(unsigned int cpu); 1958#else 1959#define perf_event_init_cpu NULL 1960#define perf_event_exit_cpu NULL 1961#endif 1962 1963extern void arch_perf_update_userpage(struct perf_event *event, 1964 struct perf_event_mmap_page *userpg, 1965 u64 now); 1966 1967/* 1968 * Snapshot branch stack on software events. 1969 * 1970 * Branch stack can be very useful in understanding software events. For 1971 * example, when a long function, e.g. sys_perf_event_open, returns an 1972 * errno, it is not obvious why the function failed. Branch stack could 1973 * provide very helpful information in this type of scenarios. 1974 * 1975 * On software event, it is necessary to stop the hardware branch recorder 1976 * fast. Otherwise, the hardware register/buffer will be flushed with 1977 * entries of the triggering event. Therefore, static call is used to 1978 * stop the hardware recorder. 1979 */ 1980 1981/* 1982 * cnt is the number of entries allocated for entries. 1983 * Return number of entries copied to . 1984 */ 1985typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1986 unsigned int cnt); 1987DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1988 1989#ifndef PERF_NEEDS_LOPWR_CB 1990static inline void perf_lopwr_cb(bool mode) 1991{ 1992} 1993#endif 1994 1995#endif /* _LINUX_PERF_EVENT_H */