at for-next 52 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct folio_batch; 20 21unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24static inline void invalidate_remote_inode(struct inode *inode) 25{ 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29} 30int invalidate_inode_pages2(struct address_space *mapping); 31int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35int filemap_invalidate_pages(struct address_space *mapping, 36 loff_t pos, loff_t end, bool nowait); 37 38int write_inode_now(struct inode *, int sync); 39int filemap_fdatawrite(struct address_space *); 40int filemap_flush(struct address_space *); 41int filemap_fdatawait_keep_errors(struct address_space *mapping); 42int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 43int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 44 loff_t start_byte, loff_t end_byte); 45int filemap_invalidate_inode(struct inode *inode, bool flush, 46 loff_t start, loff_t end); 47 48static inline int filemap_fdatawait(struct address_space *mapping) 49{ 50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 51} 52 53bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 54int filemap_write_and_wait_range(struct address_space *mapping, 55 loff_t lstart, loff_t lend); 56int __filemap_fdatawrite_range(struct address_space *mapping, 57 loff_t start, loff_t end, int sync_mode); 58int filemap_fdatawrite_range(struct address_space *mapping, 59 loff_t start, loff_t end); 60int filemap_check_errors(struct address_space *mapping); 61void __filemap_set_wb_err(struct address_space *mapping, int err); 62int filemap_fdatawrite_wbc(struct address_space *mapping, 63 struct writeback_control *wbc); 64int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 65 66static inline int filemap_write_and_wait(struct address_space *mapping) 67{ 68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 69} 70 71/** 72 * filemap_set_wb_err - set a writeback error on an address_space 73 * @mapping: mapping in which to set writeback error 74 * @err: error to be set in mapping 75 * 76 * When writeback fails in some way, we must record that error so that 77 * userspace can be informed when fsync and the like are called. We endeavor 78 * to report errors on any file that was open at the time of the error. Some 79 * internal callers also need to know when writeback errors have occurred. 80 * 81 * When a writeback error occurs, most filesystems will want to call 82 * filemap_set_wb_err to record the error in the mapping so that it will be 83 * automatically reported whenever fsync is called on the file. 84 */ 85static inline void filemap_set_wb_err(struct address_space *mapping, int err) 86{ 87 /* Fastpath for common case of no error */ 88 if (unlikely(err)) 89 __filemap_set_wb_err(mapping, err); 90} 91 92/** 93 * filemap_check_wb_err - has an error occurred since the mark was sampled? 94 * @mapping: mapping to check for writeback errors 95 * @since: previously-sampled errseq_t 96 * 97 * Grab the errseq_t value from the mapping, and see if it has changed "since" 98 * the given value was sampled. 99 * 100 * If it has then report the latest error set, otherwise return 0. 101 */ 102static inline int filemap_check_wb_err(struct address_space *mapping, 103 errseq_t since) 104{ 105 return errseq_check(&mapping->wb_err, since); 106} 107 108/** 109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 110 * @mapping: mapping to be sampled 111 * 112 * Writeback errors are always reported relative to a particular sample point 113 * in the past. This function provides those sample points. 114 */ 115static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 116{ 117 return errseq_sample(&mapping->wb_err); 118} 119 120/** 121 * file_sample_sb_err - sample the current errseq_t to test for later errors 122 * @file: file pointer to be sampled 123 * 124 * Grab the most current superblock-level errseq_t value for the given 125 * struct file. 126 */ 127static inline errseq_t file_sample_sb_err(struct file *file) 128{ 129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 130} 131 132/* 133 * Flush file data before changing attributes. Caller must hold any locks 134 * required to prevent further writes to this file until we're done setting 135 * flags. 136 */ 137static inline int inode_drain_writes(struct inode *inode) 138{ 139 inode_dio_wait(inode); 140 return filemap_write_and_wait(inode->i_mapping); 141} 142 143static inline bool mapping_empty(struct address_space *mapping) 144{ 145 return xa_empty(&mapping->i_pages); 146} 147 148/* 149 * mapping_shrinkable - test if page cache state allows inode reclaim 150 * @mapping: the page cache mapping 151 * 152 * This checks the mapping's cache state for the pupose of inode 153 * reclaim and LRU management. 154 * 155 * The caller is expected to hold the i_lock, but is not required to 156 * hold the i_pages lock, which usually protects cache state. That's 157 * because the i_lock and the list_lru lock that protect the inode and 158 * its LRU state don't nest inside the irq-safe i_pages lock. 159 * 160 * Cache deletions are performed under the i_lock, which ensures that 161 * when an inode goes empty, it will reliably get queued on the LRU. 162 * 163 * Cache additions do not acquire the i_lock and may race with this 164 * check, in which case we'll report the inode as shrinkable when it 165 * has cache pages. This is okay: the shrinker also checks the 166 * refcount and the referenced bit, which will be elevated or set in 167 * the process of adding new cache pages to an inode. 168 */ 169static inline bool mapping_shrinkable(struct address_space *mapping) 170{ 171 void *head; 172 173 /* 174 * On highmem systems, there could be lowmem pressure from the 175 * inodes before there is highmem pressure from the page 176 * cache. Make inodes shrinkable regardless of cache state. 177 */ 178 if (IS_ENABLED(CONFIG_HIGHMEM)) 179 return true; 180 181 /* Cache completely empty? Shrink away. */ 182 head = rcu_access_pointer(mapping->i_pages.xa_head); 183 if (!head) 184 return true; 185 186 /* 187 * The xarray stores single offset-0 entries directly in the 188 * head pointer, which allows non-resident page cache entries 189 * to escape the shadow shrinker's list of xarray nodes. The 190 * inode shrinker needs to pick them up under memory pressure. 191 */ 192 if (!xa_is_node(head) && xa_is_value(head)) 193 return true; 194 195 return false; 196} 197 198/* 199 * Bits in mapping->flags. 200 */ 201enum mapping_flags { 202 AS_EIO = 0, /* IO error on async write */ 203 AS_ENOSPC = 1, /* ENOSPC on async write */ 204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 206 AS_EXITING = 4, /* final truncate in progress */ 207 /* writeback related tags are not used */ 208 AS_NO_WRITEBACK_TAGS = 5, 209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */ 210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying 211 folio contents */ 212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */ 213 /* Bits 16-25 are used for FOLIO_ORDER */ 214 AS_FOLIO_ORDER_BITS = 5, 215 AS_FOLIO_ORDER_MIN = 16, 216 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS, 217}; 218 219#define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1) 220#define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN) 221#define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX) 222#define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK) 223 224/** 225 * mapping_set_error - record a writeback error in the address_space 226 * @mapping: the mapping in which an error should be set 227 * @error: the error to set in the mapping 228 * 229 * When writeback fails in some way, we must record that error so that 230 * userspace can be informed when fsync and the like are called. We endeavor 231 * to report errors on any file that was open at the time of the error. Some 232 * internal callers also need to know when writeback errors have occurred. 233 * 234 * When a writeback error occurs, most filesystems will want to call 235 * mapping_set_error to record the error in the mapping so that it can be 236 * reported when the application calls fsync(2). 237 */ 238static inline void mapping_set_error(struct address_space *mapping, int error) 239{ 240 if (likely(!error)) 241 return; 242 243 /* Record in wb_err for checkers using errseq_t based tracking */ 244 __filemap_set_wb_err(mapping, error); 245 246 /* Record it in superblock */ 247 if (mapping->host) 248 errseq_set(&mapping->host->i_sb->s_wb_err, error); 249 250 /* Record it in flags for now, for legacy callers */ 251 if (error == -ENOSPC) 252 set_bit(AS_ENOSPC, &mapping->flags); 253 else 254 set_bit(AS_EIO, &mapping->flags); 255} 256 257static inline void mapping_set_unevictable(struct address_space *mapping) 258{ 259 set_bit(AS_UNEVICTABLE, &mapping->flags); 260} 261 262static inline void mapping_clear_unevictable(struct address_space *mapping) 263{ 264 clear_bit(AS_UNEVICTABLE, &mapping->flags); 265} 266 267static inline bool mapping_unevictable(struct address_space *mapping) 268{ 269 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 270} 271 272static inline void mapping_set_exiting(struct address_space *mapping) 273{ 274 set_bit(AS_EXITING, &mapping->flags); 275} 276 277static inline int mapping_exiting(struct address_space *mapping) 278{ 279 return test_bit(AS_EXITING, &mapping->flags); 280} 281 282static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 283{ 284 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 285} 286 287static inline int mapping_use_writeback_tags(struct address_space *mapping) 288{ 289 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 290} 291 292static inline bool mapping_release_always(const struct address_space *mapping) 293{ 294 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 295} 296 297static inline void mapping_set_release_always(struct address_space *mapping) 298{ 299 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 300} 301 302static inline void mapping_clear_release_always(struct address_space *mapping) 303{ 304 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 305} 306 307static inline bool mapping_stable_writes(const struct address_space *mapping) 308{ 309 return test_bit(AS_STABLE_WRITES, &mapping->flags); 310} 311 312static inline void mapping_set_stable_writes(struct address_space *mapping) 313{ 314 set_bit(AS_STABLE_WRITES, &mapping->flags); 315} 316 317static inline void mapping_clear_stable_writes(struct address_space *mapping) 318{ 319 clear_bit(AS_STABLE_WRITES, &mapping->flags); 320} 321 322static inline void mapping_set_inaccessible(struct address_space *mapping) 323{ 324 /* 325 * It's expected inaccessible mappings are also unevictable. Compaction 326 * migrate scanner (isolate_migratepages_block()) relies on this to 327 * reduce page locking. 328 */ 329 set_bit(AS_UNEVICTABLE, &mapping->flags); 330 set_bit(AS_INACCESSIBLE, &mapping->flags); 331} 332 333static inline bool mapping_inaccessible(struct address_space *mapping) 334{ 335 return test_bit(AS_INACCESSIBLE, &mapping->flags); 336} 337 338static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 339{ 340 return mapping->gfp_mask; 341} 342 343/* Restricts the given gfp_mask to what the mapping allows. */ 344static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 345 gfp_t gfp_mask) 346{ 347 return mapping_gfp_mask(mapping) & gfp_mask; 348} 349 350/* 351 * This is non-atomic. Only to be used before the mapping is activated. 352 * Probably needs a barrier... 353 */ 354static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 355{ 356 m->gfp_mask = mask; 357} 358 359/* 360 * There are some parts of the kernel which assume that PMD entries 361 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 362 * limit the maximum allocation order to PMD size. I'm not aware of any 363 * assumptions about maximum order if THP are disabled, but 8 seems like 364 * a good order (that's 1MB if you're using 4kB pages) 365 */ 366#ifdef CONFIG_TRANSPARENT_HUGEPAGE 367#define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 368#else 369#define PREFERRED_MAX_PAGECACHE_ORDER 8 370#endif 371 372/* 373 * xas_split_alloc() does not support arbitrary orders. This implies no 374 * 512MB THP on ARM64 with 64KB base page size. 375 */ 376#define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 377#define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 378 379/* 380 * mapping_max_folio_size_supported() - Check the max folio size supported 381 * 382 * The filesystem should call this function at mount time if there is a 383 * requirement on the folio mapping size in the page cache. 384 */ 385static inline size_t mapping_max_folio_size_supported(void) 386{ 387 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 388 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER); 389 return PAGE_SIZE; 390} 391 392/* 393 * mapping_set_folio_order_range() - Set the orders supported by a file. 394 * @mapping: The address space of the file. 395 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive). 396 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive). 397 * 398 * The filesystem should call this function in its inode constructor to 399 * indicate which base size (min) and maximum size (max) of folio the VFS 400 * can use to cache the contents of the file. This should only be used 401 * if the filesystem needs special handling of folio sizes (ie there is 402 * something the core cannot know). 403 * Do not tune it based on, eg, i_size. 404 * 405 * Context: This should not be called while the inode is active as it 406 * is non-atomic. 407 */ 408static inline void mapping_set_folio_order_range(struct address_space *mapping, 409 unsigned int min, 410 unsigned int max) 411{ 412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 413 return; 414 415 if (min > MAX_PAGECACHE_ORDER) 416 min = MAX_PAGECACHE_ORDER; 417 418 if (max > MAX_PAGECACHE_ORDER) 419 max = MAX_PAGECACHE_ORDER; 420 421 if (max < min) 422 max = min; 423 424 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) | 425 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX); 426} 427 428static inline void mapping_set_folio_min_order(struct address_space *mapping, 429 unsigned int min) 430{ 431 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER); 432} 433 434/** 435 * mapping_set_large_folios() - Indicate the file supports large folios. 436 * @mapping: The address space of the file. 437 * 438 * The filesystem should call this function in its inode constructor to 439 * indicate that the VFS can use large folios to cache the contents of 440 * the file. 441 * 442 * Context: This should not be called while the inode is active as it 443 * is non-atomic. 444 */ 445static inline void mapping_set_large_folios(struct address_space *mapping) 446{ 447 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER); 448} 449 450static inline unsigned int 451mapping_max_folio_order(const struct address_space *mapping) 452{ 453 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 454 return 0; 455 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX; 456} 457 458static inline unsigned int 459mapping_min_folio_order(const struct address_space *mapping) 460{ 461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 462 return 0; 463 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN; 464} 465 466static inline unsigned long 467mapping_min_folio_nrpages(struct address_space *mapping) 468{ 469 return 1UL << mapping_min_folio_order(mapping); 470} 471 472/** 473 * mapping_align_index() - Align index for this mapping. 474 * @mapping: The address_space. 475 * @index: The page index. 476 * 477 * The index of a folio must be naturally aligned. If you are adding a 478 * new folio to the page cache and need to know what index to give it, 479 * call this function. 480 */ 481static inline pgoff_t mapping_align_index(struct address_space *mapping, 482 pgoff_t index) 483{ 484 return round_down(index, mapping_min_folio_nrpages(mapping)); 485} 486 487/* 488 * Large folio support currently depends on THP. These dependencies are 489 * being worked on but are not yet fixed. 490 */ 491static inline bool mapping_large_folio_support(struct address_space *mapping) 492{ 493 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */ 494 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON, 495 "Anonymous mapping always supports large folio"); 496 497 return mapping_max_folio_order(mapping) > 0; 498} 499 500/* Return the maximum folio size for this pagecache mapping, in bytes. */ 501static inline size_t mapping_max_folio_size(const struct address_space *mapping) 502{ 503 return PAGE_SIZE << mapping_max_folio_order(mapping); 504} 505 506static inline int filemap_nr_thps(struct address_space *mapping) 507{ 508#ifdef CONFIG_READ_ONLY_THP_FOR_FS 509 return atomic_read(&mapping->nr_thps); 510#else 511 return 0; 512#endif 513} 514 515static inline void filemap_nr_thps_inc(struct address_space *mapping) 516{ 517#ifdef CONFIG_READ_ONLY_THP_FOR_FS 518 if (!mapping_large_folio_support(mapping)) 519 atomic_inc(&mapping->nr_thps); 520#else 521 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 522#endif 523} 524 525static inline void filemap_nr_thps_dec(struct address_space *mapping) 526{ 527#ifdef CONFIG_READ_ONLY_THP_FOR_FS 528 if (!mapping_large_folio_support(mapping)) 529 atomic_dec(&mapping->nr_thps); 530#else 531 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 532#endif 533} 534 535struct address_space *folio_mapping(struct folio *); 536struct address_space *swapcache_mapping(struct folio *); 537 538/** 539 * folio_file_mapping - Find the mapping this folio belongs to. 540 * @folio: The folio. 541 * 542 * For folios which are in the page cache, return the mapping that this 543 * page belongs to. Folios in the swap cache return the mapping of the 544 * swap file or swap device where the data is stored. This is different 545 * from the mapping returned by folio_mapping(). The only reason to 546 * use it is if, like NFS, you return 0 from ->activate_swapfile. 547 * 548 * Do not call this for folios which aren't in the page cache or swap cache. 549 */ 550static inline struct address_space *folio_file_mapping(struct folio *folio) 551{ 552 if (unlikely(folio_test_swapcache(folio))) 553 return swapcache_mapping(folio); 554 555 return folio->mapping; 556} 557 558/** 559 * folio_flush_mapping - Find the file mapping this folio belongs to. 560 * @folio: The folio. 561 * 562 * For folios which are in the page cache, return the mapping that this 563 * page belongs to. Anonymous folios return NULL, even if they're in 564 * the swap cache. Other kinds of folio also return NULL. 565 * 566 * This is ONLY used by architecture cache flushing code. If you aren't 567 * writing cache flushing code, you want either folio_mapping() or 568 * folio_file_mapping(). 569 */ 570static inline struct address_space *folio_flush_mapping(struct folio *folio) 571{ 572 if (unlikely(folio_test_swapcache(folio))) 573 return NULL; 574 575 return folio_mapping(folio); 576} 577 578static inline struct address_space *page_file_mapping(struct page *page) 579{ 580 return folio_file_mapping(page_folio(page)); 581} 582 583/** 584 * folio_inode - Get the host inode for this folio. 585 * @folio: The folio. 586 * 587 * For folios which are in the page cache, return the inode that this folio 588 * belongs to. 589 * 590 * Do not call this for folios which aren't in the page cache. 591 */ 592static inline struct inode *folio_inode(struct folio *folio) 593{ 594 return folio->mapping->host; 595} 596 597/** 598 * folio_attach_private - Attach private data to a folio. 599 * @folio: Folio to attach data to. 600 * @data: Data to attach to folio. 601 * 602 * Attaching private data to a folio increments the page's reference count. 603 * The data must be detached before the folio will be freed. 604 */ 605static inline void folio_attach_private(struct folio *folio, void *data) 606{ 607 folio_get(folio); 608 folio->private = data; 609 folio_set_private(folio); 610} 611 612/** 613 * folio_change_private - Change private data on a folio. 614 * @folio: Folio to change the data on. 615 * @data: Data to set on the folio. 616 * 617 * Change the private data attached to a folio and return the old 618 * data. The page must previously have had data attached and the data 619 * must be detached before the folio will be freed. 620 * 621 * Return: Data that was previously attached to the folio. 622 */ 623static inline void *folio_change_private(struct folio *folio, void *data) 624{ 625 void *old = folio_get_private(folio); 626 627 folio->private = data; 628 return old; 629} 630 631/** 632 * folio_detach_private - Detach private data from a folio. 633 * @folio: Folio to detach data from. 634 * 635 * Removes the data that was previously attached to the folio and decrements 636 * the refcount on the page. 637 * 638 * Return: Data that was attached to the folio. 639 */ 640static inline void *folio_detach_private(struct folio *folio) 641{ 642 void *data = folio_get_private(folio); 643 644 if (!folio_test_private(folio)) 645 return NULL; 646 folio_clear_private(folio); 647 folio->private = NULL; 648 folio_put(folio); 649 650 return data; 651} 652 653static inline void attach_page_private(struct page *page, void *data) 654{ 655 folio_attach_private(page_folio(page), data); 656} 657 658static inline void *detach_page_private(struct page *page) 659{ 660 return folio_detach_private(page_folio(page)); 661} 662 663#ifdef CONFIG_NUMA 664struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order); 665#else 666static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 667{ 668 return folio_alloc_noprof(gfp, order); 669} 670#endif 671 672#define filemap_alloc_folio(...) \ 673 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 674 675static inline struct page *__page_cache_alloc(gfp_t gfp) 676{ 677 return &filemap_alloc_folio(gfp, 0)->page; 678} 679 680static inline gfp_t readahead_gfp_mask(struct address_space *x) 681{ 682 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 683} 684 685typedef int filler_t(struct file *, struct folio *); 686 687pgoff_t page_cache_next_miss(struct address_space *mapping, 688 pgoff_t index, unsigned long max_scan); 689pgoff_t page_cache_prev_miss(struct address_space *mapping, 690 pgoff_t index, unsigned long max_scan); 691 692/** 693 * typedef fgf_t - Flags for getting folios from the page cache. 694 * 695 * Most users of the page cache will not need to use these flags; 696 * there are convenience functions such as filemap_get_folio() and 697 * filemap_lock_folio(). For users which need more control over exactly 698 * what is done with the folios, these flags to __filemap_get_folio() 699 * are available. 700 * 701 * * %FGP_ACCESSED - The folio will be marked accessed. 702 * * %FGP_LOCK - The folio is returned locked. 703 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 704 * added to the page cache and the VM's LRU list. The folio is 705 * returned locked. 706 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 707 * folio is already in cache. If the folio was allocated, unlock it 708 * before returning so the caller can do the same dance. 709 * * %FGP_WRITE - The folio will be written to by the caller. 710 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 711 * * %FGP_NOWAIT - Don't block on the folio lock. 712 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 713 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 714 * implementation. 715 */ 716typedef unsigned int __bitwise fgf_t; 717 718#define FGP_ACCESSED ((__force fgf_t)0x00000001) 719#define FGP_LOCK ((__force fgf_t)0x00000002) 720#define FGP_CREAT ((__force fgf_t)0x00000004) 721#define FGP_WRITE ((__force fgf_t)0x00000008) 722#define FGP_NOFS ((__force fgf_t)0x00000010) 723#define FGP_NOWAIT ((__force fgf_t)0x00000020) 724#define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 725#define FGP_STABLE ((__force fgf_t)0x00000080) 726#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 727 728#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 729 730/** 731 * fgf_set_order - Encode a length in the fgf_t flags. 732 * @size: The suggested size of the folio to create. 733 * 734 * The caller of __filemap_get_folio() can use this to suggest a preferred 735 * size for the folio that is created. If there is already a folio at 736 * the index, it will be returned, no matter what its size. If a folio 737 * is freshly created, it may be of a different size than requested 738 * due to alignment constraints, memory pressure, or the presence of 739 * other folios at nearby indices. 740 */ 741static inline fgf_t fgf_set_order(size_t size) 742{ 743 unsigned int shift = ilog2(size); 744 745 if (shift <= PAGE_SHIFT) 746 return 0; 747 return (__force fgf_t)((shift - PAGE_SHIFT) << 26); 748} 749 750void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 751struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 752 fgf_t fgp_flags, gfp_t gfp); 753struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 754 fgf_t fgp_flags, gfp_t gfp); 755 756/** 757 * filemap_get_folio - Find and get a folio. 758 * @mapping: The address_space to search. 759 * @index: The page index. 760 * 761 * Looks up the page cache entry at @mapping & @index. If a folio is 762 * present, it is returned with an increased refcount. 763 * 764 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 765 * this index. Will not return a shadow, swap or DAX entry. 766 */ 767static inline struct folio *filemap_get_folio(struct address_space *mapping, 768 pgoff_t index) 769{ 770 return __filemap_get_folio(mapping, index, 0, 0); 771} 772 773/** 774 * filemap_lock_folio - Find and lock a folio. 775 * @mapping: The address_space to search. 776 * @index: The page index. 777 * 778 * Looks up the page cache entry at @mapping & @index. If a folio is 779 * present, it is returned locked with an increased refcount. 780 * 781 * Context: May sleep. 782 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 783 * this index. Will not return a shadow, swap or DAX entry. 784 */ 785static inline struct folio *filemap_lock_folio(struct address_space *mapping, 786 pgoff_t index) 787{ 788 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 789} 790 791/** 792 * filemap_grab_folio - grab a folio from the page cache 793 * @mapping: The address space to search 794 * @index: The page index 795 * 796 * Looks up the page cache entry at @mapping & @index. If no folio is found, 797 * a new folio is created. The folio is locked, marked as accessed, and 798 * returned. 799 * 800 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 801 * and failed to create a folio. 802 */ 803static inline struct folio *filemap_grab_folio(struct address_space *mapping, 804 pgoff_t index) 805{ 806 return __filemap_get_folio(mapping, index, 807 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 808 mapping_gfp_mask(mapping)); 809} 810 811/** 812 * find_get_page - find and get a page reference 813 * @mapping: the address_space to search 814 * @offset: the page index 815 * 816 * Looks up the page cache slot at @mapping & @offset. If there is a 817 * page cache page, it is returned with an increased refcount. 818 * 819 * Otherwise, %NULL is returned. 820 */ 821static inline struct page *find_get_page(struct address_space *mapping, 822 pgoff_t offset) 823{ 824 return pagecache_get_page(mapping, offset, 0, 0); 825} 826 827static inline struct page *find_get_page_flags(struct address_space *mapping, 828 pgoff_t offset, fgf_t fgp_flags) 829{ 830 return pagecache_get_page(mapping, offset, fgp_flags, 0); 831} 832 833/** 834 * find_lock_page - locate, pin and lock a pagecache page 835 * @mapping: the address_space to search 836 * @index: the page index 837 * 838 * Looks up the page cache entry at @mapping & @index. If there is a 839 * page cache page, it is returned locked and with an increased 840 * refcount. 841 * 842 * Context: May sleep. 843 * Return: A struct page or %NULL if there is no page in the cache for this 844 * index. 845 */ 846static inline struct page *find_lock_page(struct address_space *mapping, 847 pgoff_t index) 848{ 849 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 850} 851 852/** 853 * find_or_create_page - locate or add a pagecache page 854 * @mapping: the page's address_space 855 * @index: the page's index into the mapping 856 * @gfp_mask: page allocation mode 857 * 858 * Looks up the page cache slot at @mapping & @offset. If there is a 859 * page cache page, it is returned locked and with an increased 860 * refcount. 861 * 862 * If the page is not present, a new page is allocated using @gfp_mask 863 * and added to the page cache and the VM's LRU list. The page is 864 * returned locked and with an increased refcount. 865 * 866 * On memory exhaustion, %NULL is returned. 867 * 868 * find_or_create_page() may sleep, even if @gfp_flags specifies an 869 * atomic allocation! 870 */ 871static inline struct page *find_or_create_page(struct address_space *mapping, 872 pgoff_t index, gfp_t gfp_mask) 873{ 874 return pagecache_get_page(mapping, index, 875 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 876 gfp_mask); 877} 878 879/** 880 * grab_cache_page_nowait - returns locked page at given index in given cache 881 * @mapping: target address_space 882 * @index: the page index 883 * 884 * Same as grab_cache_page(), but do not wait if the page is unavailable. 885 * This is intended for speculative data generators, where the data can 886 * be regenerated if the page couldn't be grabbed. This routine should 887 * be safe to call while holding the lock for another page. 888 * 889 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 890 * and deadlock against the caller's locked page. 891 */ 892static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 893 pgoff_t index) 894{ 895 return pagecache_get_page(mapping, index, 896 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 897 mapping_gfp_mask(mapping)); 898} 899 900extern pgoff_t __folio_swap_cache_index(struct folio *folio); 901 902/** 903 * folio_index - File index of a folio. 904 * @folio: The folio. 905 * 906 * For a folio which is either in the page cache or the swap cache, 907 * return its index within the address_space it belongs to. If you know 908 * the page is definitely in the page cache, you can look at the folio's 909 * index directly. 910 * 911 * Return: The index (offset in units of pages) of a folio in its file. 912 */ 913static inline pgoff_t folio_index(struct folio *folio) 914{ 915 if (unlikely(folio_test_swapcache(folio))) 916 return __folio_swap_cache_index(folio); 917 return folio->index; 918} 919 920/** 921 * folio_next_index - Get the index of the next folio. 922 * @folio: The current folio. 923 * 924 * Return: The index of the folio which follows this folio in the file. 925 */ 926static inline pgoff_t folio_next_index(struct folio *folio) 927{ 928 return folio->index + folio_nr_pages(folio); 929} 930 931/** 932 * folio_file_page - The page for a particular index. 933 * @folio: The folio which contains this index. 934 * @index: The index we want to look up. 935 * 936 * Sometimes after looking up a folio in the page cache, we need to 937 * obtain the specific page for an index (eg a page fault). 938 * 939 * Return: The page containing the file data for this index. 940 */ 941static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 942{ 943 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 944} 945 946/** 947 * folio_contains - Does this folio contain this index? 948 * @folio: The folio. 949 * @index: The page index within the file. 950 * 951 * Context: The caller should have the page locked in order to prevent 952 * (eg) shmem from moving the page between the page cache and swap cache 953 * and changing its index in the middle of the operation. 954 * Return: true or false. 955 */ 956static inline bool folio_contains(struct folio *folio, pgoff_t index) 957{ 958 return index - folio_index(folio) < folio_nr_pages(folio); 959} 960 961/* 962 * Given the page we found in the page cache, return the page corresponding 963 * to this index in the file 964 */ 965static inline struct page *find_subpage(struct page *head, pgoff_t index) 966{ 967 /* HugeTLBfs wants the head page regardless */ 968 if (PageHuge(head)) 969 return head; 970 971 return head + (index & (thp_nr_pages(head) - 1)); 972} 973 974unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 975 pgoff_t end, struct folio_batch *fbatch); 976unsigned filemap_get_folios_contig(struct address_space *mapping, 977 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 978unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 979 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 980 981struct page *grab_cache_page_write_begin(struct address_space *mapping, 982 pgoff_t index); 983 984/* 985 * Returns locked page at given index in given cache, creating it if needed. 986 */ 987static inline struct page *grab_cache_page(struct address_space *mapping, 988 pgoff_t index) 989{ 990 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 991} 992 993struct folio *read_cache_folio(struct address_space *, pgoff_t index, 994 filler_t *filler, struct file *file); 995struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 996 gfp_t flags); 997struct page *read_cache_page(struct address_space *, pgoff_t index, 998 filler_t *filler, struct file *file); 999extern struct page * read_cache_page_gfp(struct address_space *mapping, 1000 pgoff_t index, gfp_t gfp_mask); 1001 1002static inline struct page *read_mapping_page(struct address_space *mapping, 1003 pgoff_t index, struct file *file) 1004{ 1005 return read_cache_page(mapping, index, NULL, file); 1006} 1007 1008static inline struct folio *read_mapping_folio(struct address_space *mapping, 1009 pgoff_t index, struct file *file) 1010{ 1011 return read_cache_folio(mapping, index, NULL, file); 1012} 1013 1014/** 1015 * page_pgoff - Calculate the logical page offset of this page. 1016 * @folio: The folio containing this page. 1017 * @page: The page which we need the offset of. 1018 * 1019 * For file pages, this is the offset from the beginning of the file 1020 * in units of PAGE_SIZE. For anonymous pages, this is the offset from 1021 * the beginning of the anon_vma in units of PAGE_SIZE. This will 1022 * return nonsense for KSM pages. 1023 * 1024 * Context: Caller must have a reference on the folio or otherwise 1025 * prevent it from being split or freed. 1026 * 1027 * Return: The offset in units of PAGE_SIZE. 1028 */ 1029static inline pgoff_t page_pgoff(const struct folio *folio, 1030 const struct page *page) 1031{ 1032 return folio->index + folio_page_idx(folio, page); 1033} 1034 1035/* 1036 * Return byte-offset into filesystem object for page. 1037 */ 1038static inline loff_t page_offset(struct page *page) 1039{ 1040 return ((loff_t)page->index) << PAGE_SHIFT; 1041} 1042 1043/** 1044 * folio_pos - Returns the byte position of this folio in its file. 1045 * @folio: The folio. 1046 */ 1047static inline loff_t folio_pos(struct folio *folio) 1048{ 1049 return page_offset(&folio->page); 1050} 1051 1052/* 1053 * Get the offset in PAGE_SIZE (even for hugetlb folios). 1054 */ 1055static inline pgoff_t folio_pgoff(struct folio *folio) 1056{ 1057 return folio->index; 1058} 1059 1060static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 1061 unsigned long address) 1062{ 1063 pgoff_t pgoff; 1064 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 1065 pgoff += vma->vm_pgoff; 1066 return pgoff; 1067} 1068 1069struct wait_page_key { 1070 struct folio *folio; 1071 int bit_nr; 1072 int page_match; 1073}; 1074 1075struct wait_page_queue { 1076 struct folio *folio; 1077 int bit_nr; 1078 wait_queue_entry_t wait; 1079}; 1080 1081static inline bool wake_page_match(struct wait_page_queue *wait_page, 1082 struct wait_page_key *key) 1083{ 1084 if (wait_page->folio != key->folio) 1085 return false; 1086 key->page_match = 1; 1087 1088 if (wait_page->bit_nr != key->bit_nr) 1089 return false; 1090 1091 return true; 1092} 1093 1094void __folio_lock(struct folio *folio); 1095int __folio_lock_killable(struct folio *folio); 1096vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 1097void unlock_page(struct page *page); 1098void folio_unlock(struct folio *folio); 1099 1100/** 1101 * folio_trylock() - Attempt to lock a folio. 1102 * @folio: The folio to attempt to lock. 1103 * 1104 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1105 * when the locks are being taken in the wrong order, or if making 1106 * progress through a batch of folios is more important than processing 1107 * them in order). Usually folio_lock() is the correct function to call. 1108 * 1109 * Context: Any context. 1110 * Return: Whether the lock was successfully acquired. 1111 */ 1112static inline bool folio_trylock(struct folio *folio) 1113{ 1114 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1115} 1116 1117/* 1118 * Return true if the page was successfully locked 1119 */ 1120static inline bool trylock_page(struct page *page) 1121{ 1122 return folio_trylock(page_folio(page)); 1123} 1124 1125/** 1126 * folio_lock() - Lock this folio. 1127 * @folio: The folio to lock. 1128 * 1129 * The folio lock protects against many things, probably more than it 1130 * should. It is primarily held while a folio is being brought uptodate, 1131 * either from its backing file or from swap. It is also held while a 1132 * folio is being truncated from its address_space, so holding the lock 1133 * is sufficient to keep folio->mapping stable. 1134 * 1135 * The folio lock is also held while write() is modifying the page to 1136 * provide POSIX atomicity guarantees (as long as the write does not 1137 * cross a page boundary). Other modifications to the data in the folio 1138 * do not hold the folio lock and can race with writes, eg DMA and stores 1139 * to mapped pages. 1140 * 1141 * Context: May sleep. If you need to acquire the locks of two or 1142 * more folios, they must be in order of ascending index, if they are 1143 * in the same address_space. If they are in different address_spaces, 1144 * acquire the lock of the folio which belongs to the address_space which 1145 * has the lowest address in memory first. 1146 */ 1147static inline void folio_lock(struct folio *folio) 1148{ 1149 might_sleep(); 1150 if (!folio_trylock(folio)) 1151 __folio_lock(folio); 1152} 1153 1154/** 1155 * lock_page() - Lock the folio containing this page. 1156 * @page: The page to lock. 1157 * 1158 * See folio_lock() for a description of what the lock protects. 1159 * This is a legacy function and new code should probably use folio_lock() 1160 * instead. 1161 * 1162 * Context: May sleep. Pages in the same folio share a lock, so do not 1163 * attempt to lock two pages which share a folio. 1164 */ 1165static inline void lock_page(struct page *page) 1166{ 1167 struct folio *folio; 1168 might_sleep(); 1169 1170 folio = page_folio(page); 1171 if (!folio_trylock(folio)) 1172 __folio_lock(folio); 1173} 1174 1175/** 1176 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1177 * @folio: The folio to lock. 1178 * 1179 * Attempts to lock the folio, like folio_lock(), except that the sleep 1180 * to acquire the lock is interruptible by a fatal signal. 1181 * 1182 * Context: May sleep; see folio_lock(). 1183 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1184 */ 1185static inline int folio_lock_killable(struct folio *folio) 1186{ 1187 might_sleep(); 1188 if (!folio_trylock(folio)) 1189 return __folio_lock_killable(folio); 1190 return 0; 1191} 1192 1193/* 1194 * folio_lock_or_retry - Lock the folio, unless this would block and the 1195 * caller indicated that it can handle a retry. 1196 * 1197 * Return value and mmap_lock implications depend on flags; see 1198 * __folio_lock_or_retry(). 1199 */ 1200static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1201 struct vm_fault *vmf) 1202{ 1203 might_sleep(); 1204 if (!folio_trylock(folio)) 1205 return __folio_lock_or_retry(folio, vmf); 1206 return 0; 1207} 1208 1209/* 1210 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1211 * and should not be used directly. 1212 */ 1213void folio_wait_bit(struct folio *folio, int bit_nr); 1214int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1215 1216/* 1217 * Wait for a folio to be unlocked. 1218 * 1219 * This must be called with the caller "holding" the folio, 1220 * ie with increased folio reference count so that the folio won't 1221 * go away during the wait. 1222 */ 1223static inline void folio_wait_locked(struct folio *folio) 1224{ 1225 if (folio_test_locked(folio)) 1226 folio_wait_bit(folio, PG_locked); 1227} 1228 1229static inline int folio_wait_locked_killable(struct folio *folio) 1230{ 1231 if (!folio_test_locked(folio)) 1232 return 0; 1233 return folio_wait_bit_killable(folio, PG_locked); 1234} 1235 1236static inline void wait_on_page_locked(struct page *page) 1237{ 1238 folio_wait_locked(page_folio(page)); 1239} 1240 1241void folio_end_read(struct folio *folio, bool success); 1242void wait_on_page_writeback(struct page *page); 1243void folio_wait_writeback(struct folio *folio); 1244int folio_wait_writeback_killable(struct folio *folio); 1245void end_page_writeback(struct page *page); 1246void folio_end_writeback(struct folio *folio); 1247void wait_for_stable_page(struct page *page); 1248void folio_wait_stable(struct folio *folio); 1249void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1250void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1251void __folio_cancel_dirty(struct folio *folio); 1252static inline void folio_cancel_dirty(struct folio *folio) 1253{ 1254 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1255 if (folio_test_dirty(folio)) 1256 __folio_cancel_dirty(folio); 1257} 1258bool folio_clear_dirty_for_io(struct folio *folio); 1259bool clear_page_dirty_for_io(struct page *page); 1260void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1261bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1262 1263#ifdef CONFIG_MIGRATION 1264int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1265 struct folio *src, enum migrate_mode mode); 1266#else 1267#define filemap_migrate_folio NULL 1268#endif 1269void folio_end_private_2(struct folio *folio); 1270void folio_wait_private_2(struct folio *folio); 1271int folio_wait_private_2_killable(struct folio *folio); 1272 1273/* 1274 * Add an arbitrary waiter to a page's wait queue 1275 */ 1276void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 1277 1278/* 1279 * Fault in userspace address range. 1280 */ 1281size_t fault_in_writeable(char __user *uaddr, size_t size); 1282size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1283size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1284size_t fault_in_readable(const char __user *uaddr, size_t size); 1285 1286int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1287 pgoff_t index, gfp_t gfp); 1288int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1289 pgoff_t index, gfp_t gfp); 1290void filemap_remove_folio(struct folio *folio); 1291void __filemap_remove_folio(struct folio *folio, void *shadow); 1292void replace_page_cache_folio(struct folio *old, struct folio *new); 1293void delete_from_page_cache_batch(struct address_space *mapping, 1294 struct folio_batch *fbatch); 1295bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1296loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1297 int whence); 1298 1299/* Must be non-static for BPF error injection */ 1300int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1301 pgoff_t index, gfp_t gfp, void **shadowp); 1302 1303bool filemap_range_has_writeback(struct address_space *mapping, 1304 loff_t start_byte, loff_t end_byte); 1305 1306/** 1307 * filemap_range_needs_writeback - check if range potentially needs writeback 1308 * @mapping: address space within which to check 1309 * @start_byte: offset in bytes where the range starts 1310 * @end_byte: offset in bytes where the range ends (inclusive) 1311 * 1312 * Find at least one page in the range supplied, usually used to check if 1313 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1314 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1315 * filemap_write_and_wait_range() before proceeding. 1316 * 1317 * Return: %true if the caller should do filemap_write_and_wait_range() before 1318 * doing O_DIRECT to a page in this range, %false otherwise. 1319 */ 1320static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1321 loff_t start_byte, 1322 loff_t end_byte) 1323{ 1324 if (!mapping->nrpages) 1325 return false; 1326 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1327 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1328 return false; 1329 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1330} 1331 1332/** 1333 * struct readahead_control - Describes a readahead request. 1334 * 1335 * A readahead request is for consecutive pages. Filesystems which 1336 * implement the ->readahead method should call readahead_page() or 1337 * readahead_page_batch() in a loop and attempt to start I/O against 1338 * each page in the request. 1339 * 1340 * Most of the fields in this struct are private and should be accessed 1341 * by the functions below. 1342 * 1343 * @file: The file, used primarily by network filesystems for authentication. 1344 * May be NULL if invoked internally by the filesystem. 1345 * @mapping: Readahead this filesystem object. 1346 * @ra: File readahead state. May be NULL. 1347 */ 1348struct readahead_control { 1349 struct file *file; 1350 struct address_space *mapping; 1351 struct file_ra_state *ra; 1352/* private: use the readahead_* accessors instead */ 1353 pgoff_t _index; 1354 unsigned int _nr_pages; 1355 unsigned int _batch_count; 1356 bool _workingset; 1357 unsigned long _pflags; 1358}; 1359 1360#define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1361 struct readahead_control ractl = { \ 1362 .file = f, \ 1363 .mapping = m, \ 1364 .ra = r, \ 1365 ._index = i, \ 1366 } 1367 1368#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1369 1370void page_cache_ra_unbounded(struct readahead_control *, 1371 unsigned long nr_to_read, unsigned long lookahead_count); 1372void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1373void page_cache_async_ra(struct readahead_control *, struct folio *, 1374 unsigned long req_count); 1375void readahead_expand(struct readahead_control *ractl, 1376 loff_t new_start, size_t new_len); 1377 1378/** 1379 * page_cache_sync_readahead - generic file readahead 1380 * @mapping: address_space which holds the pagecache and I/O vectors 1381 * @ra: file_ra_state which holds the readahead state 1382 * @file: Used by the filesystem for authentication. 1383 * @index: Index of first page to be read. 1384 * @req_count: Total number of pages being read by the caller. 1385 * 1386 * page_cache_sync_readahead() should be called when a cache miss happened: 1387 * it will submit the read. The readahead logic may decide to piggyback more 1388 * pages onto the read request if access patterns suggest it will improve 1389 * performance. 1390 */ 1391static inline 1392void page_cache_sync_readahead(struct address_space *mapping, 1393 struct file_ra_state *ra, struct file *file, pgoff_t index, 1394 unsigned long req_count) 1395{ 1396 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1397 page_cache_sync_ra(&ractl, req_count); 1398} 1399 1400/** 1401 * page_cache_async_readahead - file readahead for marked pages 1402 * @mapping: address_space which holds the pagecache and I/O vectors 1403 * @ra: file_ra_state which holds the readahead state 1404 * @file: Used by the filesystem for authentication. 1405 * @folio: The folio which triggered the readahead call. 1406 * @req_count: Total number of pages being read by the caller. 1407 * 1408 * page_cache_async_readahead() should be called when a page is used which 1409 * is marked as PageReadahead; this is a marker to suggest that the application 1410 * has used up enough of the readahead window that we should start pulling in 1411 * more pages. 1412 */ 1413static inline 1414void page_cache_async_readahead(struct address_space *mapping, 1415 struct file_ra_state *ra, struct file *file, 1416 struct folio *folio, unsigned long req_count) 1417{ 1418 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1419 page_cache_async_ra(&ractl, folio, req_count); 1420} 1421 1422static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1423{ 1424 struct folio *folio; 1425 1426 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1427 ractl->_nr_pages -= ractl->_batch_count; 1428 ractl->_index += ractl->_batch_count; 1429 1430 if (!ractl->_nr_pages) { 1431 ractl->_batch_count = 0; 1432 return NULL; 1433 } 1434 1435 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1436 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1437 ractl->_batch_count = folio_nr_pages(folio); 1438 1439 return folio; 1440} 1441 1442/** 1443 * readahead_page - Get the next page to read. 1444 * @ractl: The current readahead request. 1445 * 1446 * Context: The page is locked and has an elevated refcount. The caller 1447 * should decreases the refcount once the page has been submitted for I/O 1448 * and unlock the page once all I/O to that page has completed. 1449 * Return: A pointer to the next page, or %NULL if we are done. 1450 */ 1451static inline struct page *readahead_page(struct readahead_control *ractl) 1452{ 1453 struct folio *folio = __readahead_folio(ractl); 1454 1455 return &folio->page; 1456} 1457 1458/** 1459 * readahead_folio - Get the next folio to read. 1460 * @ractl: The current readahead request. 1461 * 1462 * Context: The folio is locked. The caller should unlock the folio once 1463 * all I/O to that folio has completed. 1464 * Return: A pointer to the next folio, or %NULL if we are done. 1465 */ 1466static inline struct folio *readahead_folio(struct readahead_control *ractl) 1467{ 1468 struct folio *folio = __readahead_folio(ractl); 1469 1470 if (folio) 1471 folio_put(folio); 1472 return folio; 1473} 1474 1475static inline unsigned int __readahead_batch(struct readahead_control *rac, 1476 struct page **array, unsigned int array_sz) 1477{ 1478 unsigned int i = 0; 1479 XA_STATE(xas, &rac->mapping->i_pages, 0); 1480 struct page *page; 1481 1482 BUG_ON(rac->_batch_count > rac->_nr_pages); 1483 rac->_nr_pages -= rac->_batch_count; 1484 rac->_index += rac->_batch_count; 1485 rac->_batch_count = 0; 1486 1487 xas_set(&xas, rac->_index); 1488 rcu_read_lock(); 1489 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1490 if (xas_retry(&xas, page)) 1491 continue; 1492 VM_BUG_ON_PAGE(!PageLocked(page), page); 1493 VM_BUG_ON_PAGE(PageTail(page), page); 1494 array[i++] = page; 1495 rac->_batch_count += thp_nr_pages(page); 1496 if (i == array_sz) 1497 break; 1498 } 1499 rcu_read_unlock(); 1500 1501 return i; 1502} 1503 1504/** 1505 * readahead_page_batch - Get a batch of pages to read. 1506 * @rac: The current readahead request. 1507 * @array: An array of pointers to struct page. 1508 * 1509 * Context: The pages are locked and have an elevated refcount. The caller 1510 * should decreases the refcount once the page has been submitted for I/O 1511 * and unlock the page once all I/O to that page has completed. 1512 * Return: The number of pages placed in the array. 0 indicates the request 1513 * is complete. 1514 */ 1515#define readahead_page_batch(rac, array) \ 1516 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1517 1518/** 1519 * readahead_pos - The byte offset into the file of this readahead request. 1520 * @rac: The readahead request. 1521 */ 1522static inline loff_t readahead_pos(struct readahead_control *rac) 1523{ 1524 return (loff_t)rac->_index * PAGE_SIZE; 1525} 1526 1527/** 1528 * readahead_length - The number of bytes in this readahead request. 1529 * @rac: The readahead request. 1530 */ 1531static inline size_t readahead_length(struct readahead_control *rac) 1532{ 1533 return rac->_nr_pages * PAGE_SIZE; 1534} 1535 1536/** 1537 * readahead_index - The index of the first page in this readahead request. 1538 * @rac: The readahead request. 1539 */ 1540static inline pgoff_t readahead_index(struct readahead_control *rac) 1541{ 1542 return rac->_index; 1543} 1544 1545/** 1546 * readahead_count - The number of pages in this readahead request. 1547 * @rac: The readahead request. 1548 */ 1549static inline unsigned int readahead_count(struct readahead_control *rac) 1550{ 1551 return rac->_nr_pages; 1552} 1553 1554/** 1555 * readahead_batch_length - The number of bytes in the current batch. 1556 * @rac: The readahead request. 1557 */ 1558static inline size_t readahead_batch_length(struct readahead_control *rac) 1559{ 1560 return rac->_batch_count * PAGE_SIZE; 1561} 1562 1563static inline unsigned long dir_pages(struct inode *inode) 1564{ 1565 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1566 PAGE_SHIFT; 1567} 1568 1569/** 1570 * folio_mkwrite_check_truncate - check if folio was truncated 1571 * @folio: the folio to check 1572 * @inode: the inode to check the folio against 1573 * 1574 * Return: the number of bytes in the folio up to EOF, 1575 * or -EFAULT if the folio was truncated. 1576 */ 1577static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1578 struct inode *inode) 1579{ 1580 loff_t size = i_size_read(inode); 1581 pgoff_t index = size >> PAGE_SHIFT; 1582 size_t offset = offset_in_folio(folio, size); 1583 1584 if (!folio->mapping) 1585 return -EFAULT; 1586 1587 /* folio is wholly inside EOF */ 1588 if (folio_next_index(folio) - 1 < index) 1589 return folio_size(folio); 1590 /* folio is wholly past EOF */ 1591 if (folio->index > index || !offset) 1592 return -EFAULT; 1593 /* folio is partially inside EOF */ 1594 return offset; 1595} 1596 1597/** 1598 * page_mkwrite_check_truncate - check if page was truncated 1599 * @page: the page to check 1600 * @inode: the inode to check the page against 1601 * 1602 * Returns the number of bytes in the page up to EOF, 1603 * or -EFAULT if the page was truncated. 1604 */ 1605static inline int page_mkwrite_check_truncate(struct page *page, 1606 struct inode *inode) 1607{ 1608 loff_t size = i_size_read(inode); 1609 pgoff_t index = size >> PAGE_SHIFT; 1610 int offset = offset_in_page(size); 1611 1612 if (page->mapping != inode->i_mapping) 1613 return -EFAULT; 1614 1615 /* page is wholly inside EOF */ 1616 if (page->index < index) 1617 return PAGE_SIZE; 1618 /* page is wholly past EOF */ 1619 if (page->index > index || !offset) 1620 return -EFAULT; 1621 /* page is partially inside EOF */ 1622 return offset; 1623} 1624 1625/** 1626 * i_blocks_per_folio - How many blocks fit in this folio. 1627 * @inode: The inode which contains the blocks. 1628 * @folio: The folio. 1629 * 1630 * If the block size is larger than the size of this folio, return zero. 1631 * 1632 * Context: The caller should hold a refcount on the folio to prevent it 1633 * from being split. 1634 * Return: The number of filesystem blocks covered by this folio. 1635 */ 1636static inline 1637unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1638{ 1639 return folio_size(folio) >> inode->i_blkbits; 1640} 1641#endif /* _LINUX_PAGEMAP_H */